re PR middle-end/78468 (libgomp.c/reduction-10.c and many more FAIL)
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
67
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69
70 /* Commonly used modes. */
71
72 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split.
194 Set to -1 otherwise. */
195 int split_branch_probability = -1;
196 \f
197 /* Returns a hash code for X (which is a really a CONST_INT). */
198
199 hashval_t
200 const_int_hasher::hash (rtx x)
201 {
202 return (hashval_t) INTVAL (x);
203 }
204
205 /* Returns nonzero if the value represented by X (which is really a
206 CONST_INT) is the same as that given by Y (which is really a
207 HOST_WIDE_INT *). */
208
209 bool
210 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
211 {
212 return (INTVAL (x) == y);
213 }
214
215 #if TARGET_SUPPORTS_WIDE_INT
216 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
217
218 hashval_t
219 const_wide_int_hasher::hash (rtx x)
220 {
221 int i;
222 unsigned HOST_WIDE_INT hash = 0;
223 const_rtx xr = x;
224
225 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
226 hash += CONST_WIDE_INT_ELT (xr, i);
227
228 return (hashval_t) hash;
229 }
230
231 /* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
233 CONST_WIDE_INT). */
234
235 bool
236 const_wide_int_hasher::equal (rtx x, rtx y)
237 {
238 int i;
239 const_rtx xr = x;
240 const_rtx yr = y;
241 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
242 return false;
243
244 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
245 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
246 return false;
247
248 return true;
249 }
250 #endif
251
252 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
253 hashval_t
254 const_double_hasher::hash (rtx x)
255 {
256 const_rtx const value = x;
257 hashval_t h;
258
259 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
260 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
261 else
262 {
263 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
264 /* MODE is used in the comparison, so it should be in the hash. */
265 h ^= GET_MODE (value);
266 }
267 return h;
268 }
269
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...) */
272 bool
273 const_double_hasher::equal (rtx x, rtx y)
274 {
275 const_rtx const a = x, b = y;
276
277 if (GET_MODE (a) != GET_MODE (b))
278 return 0;
279 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
280 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
281 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
282 else
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
284 CONST_DOUBLE_REAL_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is really a CONST_FIXED). */
288
289 hashval_t
290 const_fixed_hasher::hash (rtx x)
291 {
292 const_rtx const value = x;
293 hashval_t h;
294
295 h = fixed_hash (CONST_FIXED_VALUE (value));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h ^= GET_MODE (value);
298 return h;
299 }
300
301 /* Returns nonzero if the value represented by X is the same as that
302 represented by Y. */
303
304 bool
305 const_fixed_hasher::equal (rtx x, rtx y)
306 {
307 const_rtx const a = x, b = y;
308
309 if (GET_MODE (a) != GET_MODE (b))
310 return 0;
311 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
312 }
313
314 /* Return true if the given memory attributes are equal. */
315
316 bool
317 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
318 {
319 if (p == q)
320 return true;
321 if (!p || !q)
322 return false;
323 return (p->alias == q->alias
324 && p->offset_known_p == q->offset_known_p
325 && (!p->offset_known_p || p->offset == q->offset)
326 && p->size_known_p == q->size_known_p
327 && (!p->size_known_p || p->size == q->size)
328 && p->align == q->align
329 && p->addrspace == q->addrspace
330 && (p->expr == q->expr
331 || (p->expr != NULL_TREE && q->expr != NULL_TREE
332 && operand_equal_p (p->expr, q->expr, 0))));
333 }
334
335 /* Set MEM's memory attributes so that they are the same as ATTRS. */
336
337 static void
338 set_mem_attrs (rtx mem, mem_attrs *attrs)
339 {
340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
342 {
343 MEM_ATTRS (mem) = 0;
344 return;
345 }
346
347 if (!MEM_ATTRS (mem)
348 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
349 {
350 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
351 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
352 }
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 hashval_t
358 reg_attr_hasher::hash (reg_attrs *x)
359 {
360 const reg_attrs *const p = x;
361
362 return ((p->offset * 1000) ^ (intptr_t) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X is the same as that given by
366 Y. */
367
368 bool
369 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
370 {
371 const reg_attrs *const p = x;
372 const reg_attrs *const q = y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384
385 /* If everything is the default, we can just return zero. */
386 if (decl == 0 && offset == 0)
387 return 0;
388
389 attrs.decl = decl;
390 attrs.offset = offset;
391
392 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
393 if (*slot == 0)
394 {
395 *slot = ggc_alloc<reg_attrs> ();
396 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 }
398
399 return *slot;
400 }
401
402
403 #if !HAVE_blockage
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
406
407 rtx
408 gen_blockage (void)
409 {
410 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
411 MEM_VOLATILE_P (x) = true;
412 return x;
413 }
414 #endif
415
416
417 /* Set the mode and register number of X to MODE and REGNO. */
418
419 void
420 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
421 {
422 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
423 ? hard_regno_nregs[regno][mode]
424 : 1);
425 PUT_MODE_RAW (x, mode);
426 set_regno_raw (x, regno, nregs);
427 }
428
429 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
432
433 rtx
434 gen_raw_REG (machine_mode mode, unsigned int regno)
435 {
436 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
437 set_mode_and_regno (x, mode, regno);
438 REG_ATTRS (x) = NULL;
439 ORIGINAL_REGNO (x) = regno;
440 return x;
441 }
442
443 /* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
446
447 rtx_expr_list *
448 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
449 {
450 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
451 expr_list));
452 }
453
454 rtx_insn_list *
455 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
456 {
457 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
458 insn_list));
459 }
460
461 rtx_insn *
462 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
463 basic_block bb, rtx pattern, int location, int code,
464 rtx reg_notes)
465 {
466 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
467 prev_insn, next_insn,
468 bb, pattern, location, code,
469 reg_notes));
470 }
471
472 rtx
473 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
474 {
475 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
476 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
477
478 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx && arg == STORE_FLAG_VALUE)
480 return const_true_rtx;
481 #endif
482
483 /* Look up the CONST_INT in the hash table. */
484 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
485 INSERT);
486 if (*slot == 0)
487 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
488
489 return *slot;
490 }
491
492 rtx
493 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
494 {
495 return GEN_INT (trunc_int_for_mode (c, mode));
496 }
497
498 /* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501
502 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
505 static rtx
506 lookup_const_double (rtx real)
507 {
508 rtx *slot = const_double_htab->find_slot (real, INSERT);
509 if (*slot == 0)
510 *slot = real;
511
512 return *slot;
513 }
514
515 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
517 rtx
518 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
519 {
520 rtx real = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (real, mode);
522
523 real->u.rv = value;
524
525 return lookup_const_double (real);
526 }
527
528 /* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
531
532 static rtx
533 lookup_const_fixed (rtx fixed)
534 {
535 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
536 if (*slot == 0)
537 *slot = fixed;
538
539 return *slot;
540 }
541
542 /* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
544
545 rtx
546 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
547 {
548 rtx fixed = rtx_alloc (CONST_FIXED);
549 PUT_MODE (fixed, mode);
550
551 fixed->u.fv = value;
552
553 return lookup_const_fixed (fixed);
554 }
555
556 #if TARGET_SUPPORTS_WIDE_INT == 0
557 /* Constructs double_int from rtx CST. */
558
559 double_int
560 rtx_to_double_int (const_rtx cst)
561 {
562 double_int r;
563
564 if (CONST_INT_P (cst))
565 r = double_int::from_shwi (INTVAL (cst));
566 else if (CONST_DOUBLE_AS_INT_P (cst))
567 {
568 r.low = CONST_DOUBLE_LOW (cst);
569 r.high = CONST_DOUBLE_HIGH (cst);
570 }
571 else
572 gcc_unreachable ();
573
574 return r;
575 }
576 #endif
577
578 #if TARGET_SUPPORTS_WIDE_INT
579 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
581 return it. */
582
583 static rtx
584 lookup_const_wide_int (rtx wint)
585 {
586 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
587 if (*slot == 0)
588 *slot = wint;
589
590 return *slot;
591 }
592 #endif
593
594 /* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
598
599 rtx
600 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
601 {
602 unsigned int len = v.get_len ();
603 unsigned int prec = GET_MODE_PRECISION (mode);
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 if (mode != VOIDmode)
664 {
665 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
666 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
669 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
671
672 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
673 return gen_int_mode (i0, mode);
674 }
675
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
678 return GEN_INT (i0);
679
680 /* We use VOIDmode for integers. */
681 value = rtx_alloc (CONST_DOUBLE);
682 PUT_MODE (value, VOIDmode);
683
684 CONST_DOUBLE_LOW (value) = i0;
685 CONST_DOUBLE_HIGH (value) = i1;
686
687 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
688 XWINT (value, i) = 0;
689
690 return lookup_const_double (value);
691 }
692 #endif
693
694 rtx
695 gen_rtx_REG (machine_mode mode, unsigned int regno)
696 {
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
701 assigned to them.
702
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
707
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
710
711 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
712 {
713 if (regno == FRAME_POINTER_REGNUM
714 && (!reload_completed || frame_pointer_needed))
715 return frame_pointer_rtx;
716
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno == HARD_FRAME_POINTER_REGNUM
719 && (!reload_completed || frame_pointer_needed))
720 return hard_frame_pointer_rtx;
721 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
723 && regno == ARG_POINTER_REGNUM)
724 return arg_pointer_rtx;
725 #endif
726 #ifdef RETURN_ADDRESS_POINTER_REGNUM
727 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
728 return return_address_pointer_rtx;
729 #endif
730 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
731 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
732 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
733 return pic_offset_table_rtx;
734 if (regno == STACK_POINTER_REGNUM)
735 return stack_pointer_rtx;
736 }
737
738 #if 0
739 /* If the per-function register table has been set up, try to re-use
740 an existing entry in that table to avoid useless generation of RTL.
741
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
745 on the amount of useless RTL that gets generated.
746
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
749
750 if (cfun
751 && cfun->emit
752 && regno_reg_rtx
753 && regno < FIRST_PSEUDO_REGISTER
754 && reg_raw_mode[regno] == mode)
755 return regno_reg_rtx[regno];
756 #endif
757
758 return gen_raw_REG (mode, regno);
759 }
760
761 rtx
762 gen_rtx_MEM (machine_mode mode, rtx addr)
763 {
764 rtx rt = gen_rtx_raw_MEM (mode, addr);
765
766 /* This field is not cleared by the mere allocation of the rtx, so
767 we clear it here. */
768 MEM_ATTRS (rt) = 0;
769
770 return rt;
771 }
772
773 /* Generate a memory referring to non-trapping constant memory. */
774
775 rtx
776 gen_const_mem (machine_mode mode, rtx addr)
777 {
778 rtx mem = gen_rtx_MEM (mode, addr);
779 MEM_READONLY_P (mem) = 1;
780 MEM_NOTRAP_P (mem) = 1;
781 return mem;
782 }
783
784 /* Generate a MEM referring to fixed portions of the frame, e.g., register
785 save areas. */
786
787 rtx
788 gen_frame_mem (machine_mode mode, rtx addr)
789 {
790 rtx mem = gen_rtx_MEM (mode, addr);
791 MEM_NOTRAP_P (mem) = 1;
792 set_mem_alias_set (mem, get_frame_alias_set ());
793 return mem;
794 }
795
796 /* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
799 rtx
800 gen_tmp_stack_mem (machine_mode mode, rtx addr)
801 {
802 rtx mem = gen_rtx_MEM (mode, addr);
803 MEM_NOTRAP_P (mem) = 1;
804 if (!cfun->calls_alloca)
805 set_mem_alias_set (mem, get_frame_alias_set ());
806 return mem;
807 }
808
809 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
811
812 bool
813 validate_subreg (machine_mode omode, machine_mode imode,
814 const_rtx reg, unsigned int offset)
815 {
816 unsigned int isize = GET_MODE_SIZE (imode);
817 unsigned int osize = GET_MODE_SIZE (omode);
818
819 /* All subregs must be aligned. */
820 if (offset % osize != 0)
821 return false;
822
823 /* The subreg offset cannot be outside the inner object. */
824 if (offset >= isize)
825 return false;
826
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
830 fix them all. */
831 if (omode == word_mode)
832 ;
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize >= UNITS_PER_WORD && isize >= osize)
836 ;
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
840 && GET_MODE_INNER (imode) == omode)
841 ;
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
848 ;
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
853 {
854 if (! (isize == osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
861 || lra_in_progress))
862 return false;
863 }
864
865 /* Paradoxical subregs must have offset zero. */
866 if (osize > isize)
867 return offset == 0;
868
869 /* This is a normal subreg. Verify that the offset is representable. */
870
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
874 {
875 unsigned int regno = REGNO (reg);
876
877 #ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
879 && GET_MODE_INNER (imode) == omode)
880 ;
881 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
882 return false;
883 #endif
884
885 return subreg_offset_representable_p (regno, imode, offset, omode);
886 }
887
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
894 if (osize < UNITS_PER_WORD
895 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
896 {
897 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
898 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
899 if (offset % UNITS_PER_WORD != low_off)
900 return false;
901 }
902 return true;
903 }
904
905 rtx
906 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
907 {
908 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
909 return gen_rtx_raw_SUBREG (mode, reg, offset);
910 }
911
912 /* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
914
915 rtx
916 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
917 {
918 machine_mode inmode;
919
920 inmode = GET_MODE (reg);
921 if (inmode == VOIDmode)
922 inmode = mode;
923 return gen_rtx_SUBREG (mode, reg,
924 subreg_lowpart_offset (mode, inmode));
925 }
926
927 rtx
928 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
929 enum var_init_status status)
930 {
931 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
932 PAT_VAR_LOCATION_STATUS (x) = status;
933 return x;
934 }
935 \f
936
937 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
938
939 rtvec
940 gen_rtvec (int n, ...)
941 {
942 int i;
943 rtvec rt_val;
944 va_list p;
945
946 va_start (p, n);
947
948 /* Don't allocate an empty rtvec... */
949 if (n == 0)
950 {
951 va_end (p);
952 return NULL_RTVEC;
953 }
954
955 rt_val = rtvec_alloc (n);
956
957 for (i = 0; i < n; i++)
958 rt_val->elem[i] = va_arg (p, rtx);
959
960 va_end (p);
961 return rt_val;
962 }
963
964 rtvec
965 gen_rtvec_v (int n, rtx *argp)
966 {
967 int i;
968 rtvec rt_val;
969
970 /* Don't allocate an empty rtvec... */
971 if (n == 0)
972 return NULL_RTVEC;
973
974 rt_val = rtvec_alloc (n);
975
976 for (i = 0; i < n; i++)
977 rt_val->elem[i] = *argp++;
978
979 return rt_val;
980 }
981
982 rtvec
983 gen_rtvec_v (int n, rtx_insn **argp)
984 {
985 int i;
986 rtvec rt_val;
987
988 /* Don't allocate an empty rtvec... */
989 if (n == 0)
990 return NULL_RTVEC;
991
992 rt_val = rtvec_alloc (n);
993
994 for (i = 0; i < n; i++)
995 rt_val->elem[i] = *argp++;
996
997 return rt_val;
998 }
999
1000 \f
1001 /* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1006
1007 int
1008 byte_lowpart_offset (machine_mode outer_mode,
1009 machine_mode inner_mode)
1010 {
1011 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1012 return subreg_lowpart_offset (outer_mode, inner_mode);
1013 else
1014 return -subreg_lowpart_offset (inner_mode, outer_mode);
1015 }
1016 \f
1017 /* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1019
1020 rtx
1021 gen_reg_rtx (machine_mode mode)
1022 {
1023 rtx val;
1024 unsigned int align = GET_MODE_ALIGNMENT (mode);
1025
1026 gcc_assert (can_create_pseudo_p ());
1027
1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1030 to stack later. */
1031 if (SUPPORTS_STACK_ALIGNMENT
1032 && crtl->stack_alignment_estimated < align
1033 && !crtl->stack_realign_processed)
1034 {
1035 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1036 if (crtl->stack_alignment_estimated < min_align)
1037 crtl->stack_alignment_estimated = min_align;
1038 }
1039
1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1043 {
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart, imagpart;
1050 machine_mode partmode = GET_MODE_INNER (mode);
1051
1052 realpart = gen_reg_rtx (partmode);
1053 imagpart = gen_reg_rtx (partmode);
1054 return gen_rtx_CONCAT (mode, realpart, imagpart);
1055 }
1056
1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl->emit.regno_pointer_align_length);
1059
1060 crtl->emit.ensure_regno_capacity ();
1061 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1062
1063 val = gen_raw_REG (mode, reg_rtx_no);
1064 regno_reg_rtx[reg_rtx_no++] = val;
1065 return val;
1066 }
1067
1068 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1069 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1070
1071 void
1072 emit_status::ensure_regno_capacity ()
1073 {
1074 int old_size = regno_pointer_align_length;
1075
1076 if (reg_rtx_no < old_size)
1077 return;
1078
1079 int new_size = old_size * 2;
1080 while (reg_rtx_no >= new_size)
1081 new_size *= 2;
1082
1083 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1084 memset (tmp + old_size, 0, new_size - old_size);
1085 regno_pointer_align = (unsigned char *) tmp;
1086
1087 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1088 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1089 regno_reg_rtx = new1;
1090
1091 crtl->emit.regno_pointer_align_length = new_size;
1092 }
1093
1094 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1095
1096 bool
1097 reg_is_parm_p (rtx reg)
1098 {
1099 tree decl;
1100
1101 gcc_assert (REG_P (reg));
1102 decl = REG_EXPR (reg);
1103 return (decl && TREE_CODE (decl) == PARM_DECL);
1104 }
1105
1106 /* Update NEW with the same attributes as REG, but with OFFSET added
1107 to the REG_OFFSET. */
1108
1109 static void
1110 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1111 {
1112 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1113 REG_OFFSET (reg) + offset);
1114 }
1115
1116 /* Generate a register with same attributes as REG, but with OFFSET
1117 added to the REG_OFFSET. */
1118
1119 rtx
1120 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1121 int offset)
1122 {
1123 rtx new_rtx = gen_rtx_REG (mode, regno);
1124
1125 update_reg_offset (new_rtx, reg, offset);
1126 return new_rtx;
1127 }
1128
1129 /* Generate a new pseudo-register with the same attributes as REG, but
1130 with OFFSET added to the REG_OFFSET. */
1131
1132 rtx
1133 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1134 {
1135 rtx new_rtx = gen_reg_rtx (mode);
1136
1137 update_reg_offset (new_rtx, reg, offset);
1138 return new_rtx;
1139 }
1140
1141 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1142 new register is a (possibly paradoxical) lowpart of the old one. */
1143
1144 void
1145 adjust_reg_mode (rtx reg, machine_mode mode)
1146 {
1147 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1148 PUT_MODE (reg, mode);
1149 }
1150
1151 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1152 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1153
1154 void
1155 set_reg_attrs_from_value (rtx reg, rtx x)
1156 {
1157 int offset;
1158 bool can_be_reg_pointer = true;
1159
1160 /* Don't call mark_reg_pointer for incompatible pointer sign
1161 extension. */
1162 while (GET_CODE (x) == SIGN_EXTEND
1163 || GET_CODE (x) == ZERO_EXTEND
1164 || GET_CODE (x) == TRUNCATE
1165 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1166 {
1167 #if defined(POINTERS_EXTEND_UNSIGNED)
1168 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1169 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1170 || (paradoxical_subreg_p (x)
1171 && ! (SUBREG_PROMOTED_VAR_P (x)
1172 && SUBREG_CHECK_PROMOTED_SIGN (x,
1173 POINTERS_EXTEND_UNSIGNED))))
1174 && !targetm.have_ptr_extend ())
1175 can_be_reg_pointer = false;
1176 #endif
1177 x = XEXP (x, 0);
1178 }
1179
1180 /* Hard registers can be reused for multiple purposes within the same
1181 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1182 on them is wrong. */
1183 if (HARD_REGISTER_P (reg))
1184 return;
1185
1186 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1187 if (MEM_P (x))
1188 {
1189 if (MEM_OFFSET_KNOWN_P (x))
1190 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1191 MEM_OFFSET (x) + offset);
1192 if (can_be_reg_pointer && MEM_POINTER (x))
1193 mark_reg_pointer (reg, 0);
1194 }
1195 else if (REG_P (x))
1196 {
1197 if (REG_ATTRS (x))
1198 update_reg_offset (reg, x, offset);
1199 if (can_be_reg_pointer && REG_POINTER (x))
1200 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1201 }
1202 }
1203
1204 /* Generate a REG rtx for a new pseudo register, copying the mode
1205 and attributes from X. */
1206
1207 rtx
1208 gen_reg_rtx_and_attrs (rtx x)
1209 {
1210 rtx reg = gen_reg_rtx (GET_MODE (x));
1211 set_reg_attrs_from_value (reg, x);
1212 return reg;
1213 }
1214
1215 /* Set the register attributes for registers contained in PARM_RTX.
1216 Use needed values from memory attributes of MEM. */
1217
1218 void
1219 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1220 {
1221 if (REG_P (parm_rtx))
1222 set_reg_attrs_from_value (parm_rtx, mem);
1223 else if (GET_CODE (parm_rtx) == PARALLEL)
1224 {
1225 /* Check for a NULL entry in the first slot, used to indicate that the
1226 parameter goes both on the stack and in registers. */
1227 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1228 for (; i < XVECLEN (parm_rtx, 0); i++)
1229 {
1230 rtx x = XVECEXP (parm_rtx, 0, i);
1231 if (REG_P (XEXP (x, 0)))
1232 REG_ATTRS (XEXP (x, 0))
1233 = get_reg_attrs (MEM_EXPR (mem),
1234 INTVAL (XEXP (x, 1)));
1235 }
1236 }
1237 }
1238
1239 /* Set the REG_ATTRS for registers in value X, given that X represents
1240 decl T. */
1241
1242 void
1243 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1244 {
1245 if (!t)
1246 return;
1247 tree tdecl = t;
1248 if (GET_CODE (x) == SUBREG)
1249 {
1250 gcc_assert (subreg_lowpart_p (x));
1251 x = SUBREG_REG (x);
1252 }
1253 if (REG_P (x))
1254 REG_ATTRS (x)
1255 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1256 DECL_P (tdecl)
1257 ? DECL_MODE (tdecl)
1258 : TYPE_MODE (TREE_TYPE (tdecl))));
1259 if (GET_CODE (x) == CONCAT)
1260 {
1261 if (REG_P (XEXP (x, 0)))
1262 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1263 if (REG_P (XEXP (x, 1)))
1264 REG_ATTRS (XEXP (x, 1))
1265 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1266 }
1267 if (GET_CODE (x) == PARALLEL)
1268 {
1269 int i, start;
1270
1271 /* Check for a NULL entry, used to indicate that the parameter goes
1272 both on the stack and in registers. */
1273 if (XEXP (XVECEXP (x, 0, 0), 0))
1274 start = 0;
1275 else
1276 start = 1;
1277
1278 for (i = start; i < XVECLEN (x, 0); i++)
1279 {
1280 rtx y = XVECEXP (x, 0, i);
1281 if (REG_P (XEXP (y, 0)))
1282 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1283 }
1284 }
1285 }
1286
1287 /* Assign the RTX X to declaration T. */
1288
1289 void
1290 set_decl_rtl (tree t, rtx x)
1291 {
1292 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1293 if (x)
1294 set_reg_attrs_for_decl_rtl (t, x);
1295 }
1296
1297 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1298 if the ABI requires the parameter to be passed by reference. */
1299
1300 void
1301 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1302 {
1303 DECL_INCOMING_RTL (t) = x;
1304 if (x && !by_reference_p)
1305 set_reg_attrs_for_decl_rtl (t, x);
1306 }
1307
1308 /* Identify REG (which may be a CONCAT) as a user register. */
1309
1310 void
1311 mark_user_reg (rtx reg)
1312 {
1313 if (GET_CODE (reg) == CONCAT)
1314 {
1315 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1316 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1317 }
1318 else
1319 {
1320 gcc_assert (REG_P (reg));
1321 REG_USERVAR_P (reg) = 1;
1322 }
1323 }
1324
1325 /* Identify REG as a probable pointer register and show its alignment
1326 as ALIGN, if nonzero. */
1327
1328 void
1329 mark_reg_pointer (rtx reg, int align)
1330 {
1331 if (! REG_POINTER (reg))
1332 {
1333 REG_POINTER (reg) = 1;
1334
1335 if (align)
1336 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1337 }
1338 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1339 /* We can no-longer be sure just how aligned this pointer is. */
1340 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1341 }
1342
1343 /* Return 1 plus largest pseudo reg number used in the current function. */
1344
1345 int
1346 max_reg_num (void)
1347 {
1348 return reg_rtx_no;
1349 }
1350
1351 /* Return 1 + the largest label number used so far in the current function. */
1352
1353 int
1354 max_label_num (void)
1355 {
1356 return label_num;
1357 }
1358
1359 /* Return first label number used in this function (if any were used). */
1360
1361 int
1362 get_first_label_num (void)
1363 {
1364 return first_label_num;
1365 }
1366
1367 /* If the rtx for label was created during the expansion of a nested
1368 function, then first_label_num won't include this label number.
1369 Fix this now so that array indices work later. */
1370
1371 void
1372 maybe_set_first_label_num (rtx_code_label *x)
1373 {
1374 if (CODE_LABEL_NUMBER (x) < first_label_num)
1375 first_label_num = CODE_LABEL_NUMBER (x);
1376 }
1377
1378 /* For use by the RTL function loader, when mingling with normal
1379 functions.
1380 Ensure that label_num is greater than the label num of X, to avoid
1381 duplicate labels in the generated assembler. */
1382
1383 void
1384 maybe_set_max_label_num (rtx_code_label *x)
1385 {
1386 if (CODE_LABEL_NUMBER (x) >= label_num)
1387 label_num = CODE_LABEL_NUMBER (x) + 1;
1388 }
1389
1390 \f
1391 /* Return a value representing some low-order bits of X, where the number
1392 of low-order bits is given by MODE. Note that no conversion is done
1393 between floating-point and fixed-point values, rather, the bit
1394 representation is returned.
1395
1396 This function handles the cases in common between gen_lowpart, below,
1397 and two variants in cse.c and combine.c. These are the cases that can
1398 be safely handled at all points in the compilation.
1399
1400 If this is not a case we can handle, return 0. */
1401
1402 rtx
1403 gen_lowpart_common (machine_mode mode, rtx x)
1404 {
1405 int msize = GET_MODE_SIZE (mode);
1406 int xsize;
1407 machine_mode innermode;
1408
1409 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1410 so we have to make one up. Yuk. */
1411 innermode = GET_MODE (x);
1412 if (CONST_INT_P (x)
1413 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1414 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1415 else if (innermode == VOIDmode)
1416 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1417
1418 xsize = GET_MODE_SIZE (innermode);
1419
1420 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1421
1422 if (innermode == mode)
1423 return x;
1424
1425 /* MODE must occupy no more words than the mode of X. */
1426 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1427 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1428 return 0;
1429
1430 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1431 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1432 return 0;
1433
1434 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1435 && (GET_MODE_CLASS (mode) == MODE_INT
1436 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1437 {
1438 /* If we are getting the low-order part of something that has been
1439 sign- or zero-extended, we can either just use the object being
1440 extended or make a narrower extension. If we want an even smaller
1441 piece than the size of the object being extended, call ourselves
1442 recursively.
1443
1444 This case is used mostly by combine and cse. */
1445
1446 if (GET_MODE (XEXP (x, 0)) == mode)
1447 return XEXP (x, 0);
1448 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1449 return gen_lowpart_common (mode, XEXP (x, 0));
1450 else if (msize < xsize)
1451 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1452 }
1453 else if (GET_CODE (x) == SUBREG || REG_P (x)
1454 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1455 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1456 return lowpart_subreg (mode, x, innermode);
1457
1458 /* Otherwise, we can't do this. */
1459 return 0;
1460 }
1461 \f
1462 rtx
1463 gen_highpart (machine_mode mode, rtx x)
1464 {
1465 unsigned int msize = GET_MODE_SIZE (mode);
1466 rtx result;
1467
1468 /* This case loses if X is a subreg. To catch bugs early,
1469 complain if an invalid MODE is used even in other cases. */
1470 gcc_assert (msize <= UNITS_PER_WORD
1471 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1472
1473 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1474 subreg_highpart_offset (mode, GET_MODE (x)));
1475 gcc_assert (result);
1476
1477 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1478 the target if we have a MEM. gen_highpart must return a valid operand,
1479 emitting code if necessary to do so. */
1480 if (MEM_P (result))
1481 {
1482 result = validize_mem (result);
1483 gcc_assert (result);
1484 }
1485
1486 return result;
1487 }
1488
1489 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1490 be VOIDmode constant. */
1491 rtx
1492 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1493 {
1494 if (GET_MODE (exp) != VOIDmode)
1495 {
1496 gcc_assert (GET_MODE (exp) == innermode);
1497 return gen_highpart (outermode, exp);
1498 }
1499 return simplify_gen_subreg (outermode, exp, innermode,
1500 subreg_highpart_offset (outermode, innermode));
1501 }
1502
1503 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1504 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1505
1506 unsigned int
1507 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1508 {
1509 if (outer_bytes > inner_bytes)
1510 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1511 return 0;
1512
1513 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1514 return inner_bytes - outer_bytes;
1515 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1516 return 0;
1517 else
1518 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1519 }
1520
1521 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1522 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1523
1524 unsigned int
1525 subreg_size_highpart_offset (unsigned int outer_bytes,
1526 unsigned int inner_bytes)
1527 {
1528 gcc_assert (inner_bytes >= outer_bytes);
1529
1530 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1531 return 0;
1532 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1533 return inner_bytes - outer_bytes;
1534 else
1535 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1536 (inner_bytes - outer_bytes)
1537 * BITS_PER_UNIT);
1538 }
1539
1540 /* Return 1 iff X, assumed to be a SUBREG,
1541 refers to the least significant part of its containing reg.
1542 If X is not a SUBREG, always return 1 (it is its own low part!). */
1543
1544 int
1545 subreg_lowpart_p (const_rtx x)
1546 {
1547 if (GET_CODE (x) != SUBREG)
1548 return 1;
1549 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1550 return 0;
1551
1552 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1553 == SUBREG_BYTE (x));
1554 }
1555
1556 /* Return true if X is a paradoxical subreg, false otherwise. */
1557 bool
1558 paradoxical_subreg_p (const_rtx x)
1559 {
1560 if (GET_CODE (x) != SUBREG)
1561 return false;
1562 return (GET_MODE_PRECISION (GET_MODE (x))
1563 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1564 }
1565 \f
1566 /* Return subword OFFSET of operand OP.
1567 The word number, OFFSET, is interpreted as the word number starting
1568 at the low-order address. OFFSET 0 is the low-order word if not
1569 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1570
1571 If we cannot extract the required word, we return zero. Otherwise,
1572 an rtx corresponding to the requested word will be returned.
1573
1574 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1575 reload has completed, a valid address will always be returned. After
1576 reload, if a valid address cannot be returned, we return zero.
1577
1578 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1579 it is the responsibility of the caller.
1580
1581 MODE is the mode of OP in case it is a CONST_INT.
1582
1583 ??? This is still rather broken for some cases. The problem for the
1584 moment is that all callers of this thing provide no 'goal mode' to
1585 tell us to work with. This exists because all callers were written
1586 in a word based SUBREG world.
1587 Now use of this function can be deprecated by simplify_subreg in most
1588 cases.
1589 */
1590
1591 rtx
1592 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1593 {
1594 if (mode == VOIDmode)
1595 mode = GET_MODE (op);
1596
1597 gcc_assert (mode != VOIDmode);
1598
1599 /* If OP is narrower than a word, fail. */
1600 if (mode != BLKmode
1601 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1602 return 0;
1603
1604 /* If we want a word outside OP, return zero. */
1605 if (mode != BLKmode
1606 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1607 return const0_rtx;
1608
1609 /* Form a new MEM at the requested address. */
1610 if (MEM_P (op))
1611 {
1612 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1613
1614 if (! validate_address)
1615 return new_rtx;
1616
1617 else if (reload_completed)
1618 {
1619 if (! strict_memory_address_addr_space_p (word_mode,
1620 XEXP (new_rtx, 0),
1621 MEM_ADDR_SPACE (op)))
1622 return 0;
1623 }
1624 else
1625 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1626 }
1627
1628 /* Rest can be handled by simplify_subreg. */
1629 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1630 }
1631
1632 /* Similar to `operand_subword', but never return 0. If we can't
1633 extract the required subword, put OP into a register and try again.
1634 The second attempt must succeed. We always validate the address in
1635 this case.
1636
1637 MODE is the mode of OP, in case it is CONST_INT. */
1638
1639 rtx
1640 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1641 {
1642 rtx result = operand_subword (op, offset, 1, mode);
1643
1644 if (result)
1645 return result;
1646
1647 if (mode != BLKmode && mode != VOIDmode)
1648 {
1649 /* If this is a register which can not be accessed by words, copy it
1650 to a pseudo register. */
1651 if (REG_P (op))
1652 op = copy_to_reg (op);
1653 else
1654 op = force_reg (mode, op);
1655 }
1656
1657 result = operand_subword (op, offset, 1, mode);
1658 gcc_assert (result);
1659
1660 return result;
1661 }
1662 \f
1663 /* Returns 1 if both MEM_EXPR can be considered equal
1664 and 0 otherwise. */
1665
1666 int
1667 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1668 {
1669 if (expr1 == expr2)
1670 return 1;
1671
1672 if (! expr1 || ! expr2)
1673 return 0;
1674
1675 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1676 return 0;
1677
1678 return operand_equal_p (expr1, expr2, 0);
1679 }
1680
1681 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1682 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1683 -1 if not known. */
1684
1685 int
1686 get_mem_align_offset (rtx mem, unsigned int align)
1687 {
1688 tree expr;
1689 unsigned HOST_WIDE_INT offset;
1690
1691 /* This function can't use
1692 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1693 || (MAX (MEM_ALIGN (mem),
1694 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1695 < align))
1696 return -1;
1697 else
1698 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1699 for two reasons:
1700 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1701 for <variable>. get_inner_reference doesn't handle it and
1702 even if it did, the alignment in that case needs to be determined
1703 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1704 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1705 isn't sufficiently aligned, the object it is in might be. */
1706 gcc_assert (MEM_P (mem));
1707 expr = MEM_EXPR (mem);
1708 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1709 return -1;
1710
1711 offset = MEM_OFFSET (mem);
1712 if (DECL_P (expr))
1713 {
1714 if (DECL_ALIGN (expr) < align)
1715 return -1;
1716 }
1717 else if (INDIRECT_REF_P (expr))
1718 {
1719 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1720 return -1;
1721 }
1722 else if (TREE_CODE (expr) == COMPONENT_REF)
1723 {
1724 while (1)
1725 {
1726 tree inner = TREE_OPERAND (expr, 0);
1727 tree field = TREE_OPERAND (expr, 1);
1728 tree byte_offset = component_ref_field_offset (expr);
1729 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1730
1731 if (!byte_offset
1732 || !tree_fits_uhwi_p (byte_offset)
1733 || !tree_fits_uhwi_p (bit_offset))
1734 return -1;
1735
1736 offset += tree_to_uhwi (byte_offset);
1737 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1738
1739 if (inner == NULL_TREE)
1740 {
1741 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1742 < (unsigned int) align)
1743 return -1;
1744 break;
1745 }
1746 else if (DECL_P (inner))
1747 {
1748 if (DECL_ALIGN (inner) < align)
1749 return -1;
1750 break;
1751 }
1752 else if (TREE_CODE (inner) != COMPONENT_REF)
1753 return -1;
1754 expr = inner;
1755 }
1756 }
1757 else
1758 return -1;
1759
1760 return offset & ((align / BITS_PER_UNIT) - 1);
1761 }
1762
1763 /* Given REF (a MEM) and T, either the type of X or the expression
1764 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1765 if we are making a new object of this type. BITPOS is nonzero if
1766 there is an offset outstanding on T that will be applied later. */
1767
1768 void
1769 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1770 HOST_WIDE_INT bitpos)
1771 {
1772 HOST_WIDE_INT apply_bitpos = 0;
1773 tree type;
1774 struct mem_attrs attrs, *defattrs, *refattrs;
1775 addr_space_t as;
1776
1777 /* It can happen that type_for_mode was given a mode for which there
1778 is no language-level type. In which case it returns NULL, which
1779 we can see here. */
1780 if (t == NULL_TREE)
1781 return;
1782
1783 type = TYPE_P (t) ? t : TREE_TYPE (t);
1784 if (type == error_mark_node)
1785 return;
1786
1787 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1788 wrong answer, as it assumes that DECL_RTL already has the right alias
1789 info. Callers should not set DECL_RTL until after the call to
1790 set_mem_attributes. */
1791 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1792
1793 memset (&attrs, 0, sizeof (attrs));
1794
1795 /* Get the alias set from the expression or type (perhaps using a
1796 front-end routine) and use it. */
1797 attrs.alias = get_alias_set (t);
1798
1799 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1800 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1801
1802 /* Default values from pre-existing memory attributes if present. */
1803 refattrs = MEM_ATTRS (ref);
1804 if (refattrs)
1805 {
1806 /* ??? Can this ever happen? Calling this routine on a MEM that
1807 already carries memory attributes should probably be invalid. */
1808 attrs.expr = refattrs->expr;
1809 attrs.offset_known_p = refattrs->offset_known_p;
1810 attrs.offset = refattrs->offset;
1811 attrs.size_known_p = refattrs->size_known_p;
1812 attrs.size = refattrs->size;
1813 attrs.align = refattrs->align;
1814 }
1815
1816 /* Otherwise, default values from the mode of the MEM reference. */
1817 else
1818 {
1819 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1820 gcc_assert (!defattrs->expr);
1821 gcc_assert (!defattrs->offset_known_p);
1822
1823 /* Respect mode size. */
1824 attrs.size_known_p = defattrs->size_known_p;
1825 attrs.size = defattrs->size;
1826 /* ??? Is this really necessary? We probably should always get
1827 the size from the type below. */
1828
1829 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1830 if T is an object, always compute the object alignment below. */
1831 if (TYPE_P (t))
1832 attrs.align = defattrs->align;
1833 else
1834 attrs.align = BITS_PER_UNIT;
1835 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1836 e.g. if the type carries an alignment attribute. Should we be
1837 able to simply always use TYPE_ALIGN? */
1838 }
1839
1840 /* We can set the alignment from the type if we are making an object or if
1841 this is an INDIRECT_REF. */
1842 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1843 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1844
1845 /* If the size is known, we can set that. */
1846 tree new_size = TYPE_SIZE_UNIT (type);
1847
1848 /* The address-space is that of the type. */
1849 as = TYPE_ADDR_SPACE (type);
1850
1851 /* If T is not a type, we may be able to deduce some more information about
1852 the expression. */
1853 if (! TYPE_P (t))
1854 {
1855 tree base;
1856
1857 if (TREE_THIS_VOLATILE (t))
1858 MEM_VOLATILE_P (ref) = 1;
1859
1860 /* Now remove any conversions: they don't change what the underlying
1861 object is. Likewise for SAVE_EXPR. */
1862 while (CONVERT_EXPR_P (t)
1863 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1864 || TREE_CODE (t) == SAVE_EXPR)
1865 t = TREE_OPERAND (t, 0);
1866
1867 /* Note whether this expression can trap. */
1868 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1869
1870 base = get_base_address (t);
1871 if (base)
1872 {
1873 if (DECL_P (base)
1874 && TREE_READONLY (base)
1875 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1876 && !TREE_THIS_VOLATILE (base))
1877 MEM_READONLY_P (ref) = 1;
1878
1879 /* Mark static const strings readonly as well. */
1880 if (TREE_CODE (base) == STRING_CST
1881 && TREE_READONLY (base)
1882 && TREE_STATIC (base))
1883 MEM_READONLY_P (ref) = 1;
1884
1885 /* Address-space information is on the base object. */
1886 if (TREE_CODE (base) == MEM_REF
1887 || TREE_CODE (base) == TARGET_MEM_REF)
1888 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1889 0))));
1890 else
1891 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1892 }
1893
1894 /* If this expression uses it's parent's alias set, mark it such
1895 that we won't change it. */
1896 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1897 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1898
1899 /* If this is a decl, set the attributes of the MEM from it. */
1900 if (DECL_P (t))
1901 {
1902 attrs.expr = t;
1903 attrs.offset_known_p = true;
1904 attrs.offset = 0;
1905 apply_bitpos = bitpos;
1906 new_size = DECL_SIZE_UNIT (t);
1907 }
1908
1909 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1910 else if (CONSTANT_CLASS_P (t))
1911 ;
1912
1913 /* If this is a field reference, record it. */
1914 else if (TREE_CODE (t) == COMPONENT_REF)
1915 {
1916 attrs.expr = t;
1917 attrs.offset_known_p = true;
1918 attrs.offset = 0;
1919 apply_bitpos = bitpos;
1920 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1921 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1922 }
1923
1924 /* If this is an array reference, look for an outer field reference. */
1925 else if (TREE_CODE (t) == ARRAY_REF)
1926 {
1927 tree off_tree = size_zero_node;
1928 /* We can't modify t, because we use it at the end of the
1929 function. */
1930 tree t2 = t;
1931
1932 do
1933 {
1934 tree index = TREE_OPERAND (t2, 1);
1935 tree low_bound = array_ref_low_bound (t2);
1936 tree unit_size = array_ref_element_size (t2);
1937
1938 /* We assume all arrays have sizes that are a multiple of a byte.
1939 First subtract the lower bound, if any, in the type of the
1940 index, then convert to sizetype and multiply by the size of
1941 the array element. */
1942 if (! integer_zerop (low_bound))
1943 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1944 index, low_bound);
1945
1946 off_tree = size_binop (PLUS_EXPR,
1947 size_binop (MULT_EXPR,
1948 fold_convert (sizetype,
1949 index),
1950 unit_size),
1951 off_tree);
1952 t2 = TREE_OPERAND (t2, 0);
1953 }
1954 while (TREE_CODE (t2) == ARRAY_REF);
1955
1956 if (DECL_P (t2)
1957 || TREE_CODE (t2) == COMPONENT_REF)
1958 {
1959 attrs.expr = t2;
1960 attrs.offset_known_p = false;
1961 if (tree_fits_uhwi_p (off_tree))
1962 {
1963 attrs.offset_known_p = true;
1964 attrs.offset = tree_to_uhwi (off_tree);
1965 apply_bitpos = bitpos;
1966 }
1967 }
1968 /* Else do not record a MEM_EXPR. */
1969 }
1970
1971 /* If this is an indirect reference, record it. */
1972 else if (TREE_CODE (t) == MEM_REF
1973 || TREE_CODE (t) == TARGET_MEM_REF)
1974 {
1975 attrs.expr = t;
1976 attrs.offset_known_p = true;
1977 attrs.offset = 0;
1978 apply_bitpos = bitpos;
1979 }
1980
1981 /* Compute the alignment. */
1982 unsigned int obj_align;
1983 unsigned HOST_WIDE_INT obj_bitpos;
1984 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1985 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1986 if (obj_bitpos != 0)
1987 obj_align = least_bit_hwi (obj_bitpos);
1988 attrs.align = MAX (attrs.align, obj_align);
1989 }
1990
1991 if (tree_fits_uhwi_p (new_size))
1992 {
1993 attrs.size_known_p = true;
1994 attrs.size = tree_to_uhwi (new_size);
1995 }
1996
1997 /* If we modified OFFSET based on T, then subtract the outstanding
1998 bit position offset. Similarly, increase the size of the accessed
1999 object to contain the negative offset. */
2000 if (apply_bitpos)
2001 {
2002 gcc_assert (attrs.offset_known_p);
2003 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
2004 if (attrs.size_known_p)
2005 attrs.size += apply_bitpos / BITS_PER_UNIT;
2006 }
2007
2008 /* Now set the attributes we computed above. */
2009 attrs.addrspace = as;
2010 set_mem_attrs (ref, &attrs);
2011 }
2012
2013 void
2014 set_mem_attributes (rtx ref, tree t, int objectp)
2015 {
2016 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2017 }
2018
2019 /* Set the alias set of MEM to SET. */
2020
2021 void
2022 set_mem_alias_set (rtx mem, alias_set_type set)
2023 {
2024 struct mem_attrs attrs;
2025
2026 /* If the new and old alias sets don't conflict, something is wrong. */
2027 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2028 attrs = *get_mem_attrs (mem);
2029 attrs.alias = set;
2030 set_mem_attrs (mem, &attrs);
2031 }
2032
2033 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2034
2035 void
2036 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2037 {
2038 struct mem_attrs attrs;
2039
2040 attrs = *get_mem_attrs (mem);
2041 attrs.addrspace = addrspace;
2042 set_mem_attrs (mem, &attrs);
2043 }
2044
2045 /* Set the alignment of MEM to ALIGN bits. */
2046
2047 void
2048 set_mem_align (rtx mem, unsigned int align)
2049 {
2050 struct mem_attrs attrs;
2051
2052 attrs = *get_mem_attrs (mem);
2053 attrs.align = align;
2054 set_mem_attrs (mem, &attrs);
2055 }
2056
2057 /* Set the expr for MEM to EXPR. */
2058
2059 void
2060 set_mem_expr (rtx mem, tree expr)
2061 {
2062 struct mem_attrs attrs;
2063
2064 attrs = *get_mem_attrs (mem);
2065 attrs.expr = expr;
2066 set_mem_attrs (mem, &attrs);
2067 }
2068
2069 /* Set the offset of MEM to OFFSET. */
2070
2071 void
2072 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2073 {
2074 struct mem_attrs attrs;
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.offset_known_p = true;
2078 attrs.offset = offset;
2079 set_mem_attrs (mem, &attrs);
2080 }
2081
2082 /* Clear the offset of MEM. */
2083
2084 void
2085 clear_mem_offset (rtx mem)
2086 {
2087 struct mem_attrs attrs;
2088
2089 attrs = *get_mem_attrs (mem);
2090 attrs.offset_known_p = false;
2091 set_mem_attrs (mem, &attrs);
2092 }
2093
2094 /* Set the size of MEM to SIZE. */
2095
2096 void
2097 set_mem_size (rtx mem, HOST_WIDE_INT size)
2098 {
2099 struct mem_attrs attrs;
2100
2101 attrs = *get_mem_attrs (mem);
2102 attrs.size_known_p = true;
2103 attrs.size = size;
2104 set_mem_attrs (mem, &attrs);
2105 }
2106
2107 /* Clear the size of MEM. */
2108
2109 void
2110 clear_mem_size (rtx mem)
2111 {
2112 struct mem_attrs attrs;
2113
2114 attrs = *get_mem_attrs (mem);
2115 attrs.size_known_p = false;
2116 set_mem_attrs (mem, &attrs);
2117 }
2118 \f
2119 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2120 and its address changed to ADDR. (VOIDmode means don't change the mode.
2121 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2122 returned memory location is required to be valid. INPLACE is true if any
2123 changes can be made directly to MEMREF or false if MEMREF must be treated
2124 as immutable.
2125
2126 The memory attributes are not changed. */
2127
2128 static rtx
2129 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2130 bool inplace)
2131 {
2132 addr_space_t as;
2133 rtx new_rtx;
2134
2135 gcc_assert (MEM_P (memref));
2136 as = MEM_ADDR_SPACE (memref);
2137 if (mode == VOIDmode)
2138 mode = GET_MODE (memref);
2139 if (addr == 0)
2140 addr = XEXP (memref, 0);
2141 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2142 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2143 return memref;
2144
2145 /* Don't validate address for LRA. LRA can make the address valid
2146 by itself in most efficient way. */
2147 if (validate && !lra_in_progress)
2148 {
2149 if (reload_in_progress || reload_completed)
2150 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2151 else
2152 addr = memory_address_addr_space (mode, addr, as);
2153 }
2154
2155 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2156 return memref;
2157
2158 if (inplace)
2159 {
2160 XEXP (memref, 0) = addr;
2161 return memref;
2162 }
2163
2164 new_rtx = gen_rtx_MEM (mode, addr);
2165 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2166 return new_rtx;
2167 }
2168
2169 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2170 way we are changing MEMREF, so we only preserve the alias set. */
2171
2172 rtx
2173 change_address (rtx memref, machine_mode mode, rtx addr)
2174 {
2175 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2176 machine_mode mmode = GET_MODE (new_rtx);
2177 struct mem_attrs attrs, *defattrs;
2178
2179 attrs = *get_mem_attrs (memref);
2180 defattrs = mode_mem_attrs[(int) mmode];
2181 attrs.expr = NULL_TREE;
2182 attrs.offset_known_p = false;
2183 attrs.size_known_p = defattrs->size_known_p;
2184 attrs.size = defattrs->size;
2185 attrs.align = defattrs->align;
2186
2187 /* If there are no changes, just return the original memory reference. */
2188 if (new_rtx == memref)
2189 {
2190 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2191 return new_rtx;
2192
2193 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2194 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2195 }
2196
2197 set_mem_attrs (new_rtx, &attrs);
2198 return new_rtx;
2199 }
2200
2201 /* Return a memory reference like MEMREF, but with its mode changed
2202 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2203 nonzero, the memory address is forced to be valid.
2204 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2205 and the caller is responsible for adjusting MEMREF base register.
2206 If ADJUST_OBJECT is zero, the underlying object associated with the
2207 memory reference is left unchanged and the caller is responsible for
2208 dealing with it. Otherwise, if the new memory reference is outside
2209 the underlying object, even partially, then the object is dropped.
2210 SIZE, if nonzero, is the size of an access in cases where MODE
2211 has no inherent size. */
2212
2213 rtx
2214 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2215 int validate, int adjust_address, int adjust_object,
2216 HOST_WIDE_INT size)
2217 {
2218 rtx addr = XEXP (memref, 0);
2219 rtx new_rtx;
2220 machine_mode address_mode;
2221 int pbits;
2222 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2223 unsigned HOST_WIDE_INT max_align;
2224 #ifdef POINTERS_EXTEND_UNSIGNED
2225 machine_mode pointer_mode
2226 = targetm.addr_space.pointer_mode (attrs.addrspace);
2227 #endif
2228
2229 /* VOIDmode means no mode change for change_address_1. */
2230 if (mode == VOIDmode)
2231 mode = GET_MODE (memref);
2232
2233 /* Take the size of non-BLKmode accesses from the mode. */
2234 defattrs = mode_mem_attrs[(int) mode];
2235 if (defattrs->size_known_p)
2236 size = defattrs->size;
2237
2238 /* If there are no changes, just return the original memory reference. */
2239 if (mode == GET_MODE (memref) && !offset
2240 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2241 && (!validate || memory_address_addr_space_p (mode, addr,
2242 attrs.addrspace)))
2243 return memref;
2244
2245 /* ??? Prefer to create garbage instead of creating shared rtl.
2246 This may happen even if offset is nonzero -- consider
2247 (plus (plus reg reg) const_int) -- so do this always. */
2248 addr = copy_rtx (addr);
2249
2250 /* Convert a possibly large offset to a signed value within the
2251 range of the target address space. */
2252 address_mode = get_address_mode (memref);
2253 pbits = GET_MODE_BITSIZE (address_mode);
2254 if (HOST_BITS_PER_WIDE_INT > pbits)
2255 {
2256 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2257 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2258 >> shift);
2259 }
2260
2261 if (adjust_address)
2262 {
2263 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2264 object, we can merge it into the LO_SUM. */
2265 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2266 && offset >= 0
2267 && (unsigned HOST_WIDE_INT) offset
2268 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2269 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2270 plus_constant (address_mode,
2271 XEXP (addr, 1), offset));
2272 #ifdef POINTERS_EXTEND_UNSIGNED
2273 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2274 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2275 the fact that pointers are not allowed to overflow. */
2276 else if (POINTERS_EXTEND_UNSIGNED > 0
2277 && GET_CODE (addr) == ZERO_EXTEND
2278 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2279 && trunc_int_for_mode (offset, pointer_mode) == offset)
2280 addr = gen_rtx_ZERO_EXTEND (address_mode,
2281 plus_constant (pointer_mode,
2282 XEXP (addr, 0), offset));
2283 #endif
2284 else
2285 addr = plus_constant (address_mode, addr, offset);
2286 }
2287
2288 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2289
2290 /* If the address is a REG, change_address_1 rightfully returns memref,
2291 but this would destroy memref's MEM_ATTRS. */
2292 if (new_rtx == memref && offset != 0)
2293 new_rtx = copy_rtx (new_rtx);
2294
2295 /* Conservatively drop the object if we don't know where we start from. */
2296 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2297 {
2298 attrs.expr = NULL_TREE;
2299 attrs.alias = 0;
2300 }
2301
2302 /* Compute the new values of the memory attributes due to this adjustment.
2303 We add the offsets and update the alignment. */
2304 if (attrs.offset_known_p)
2305 {
2306 attrs.offset += offset;
2307
2308 /* Drop the object if the new left end is not within its bounds. */
2309 if (adjust_object && attrs.offset < 0)
2310 {
2311 attrs.expr = NULL_TREE;
2312 attrs.alias = 0;
2313 }
2314 }
2315
2316 /* Compute the new alignment by taking the MIN of the alignment and the
2317 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2318 if zero. */
2319 if (offset != 0)
2320 {
2321 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2322 attrs.align = MIN (attrs.align, max_align);
2323 }
2324
2325 if (size)
2326 {
2327 /* Drop the object if the new right end is not within its bounds. */
2328 if (adjust_object && (offset + size) > attrs.size)
2329 {
2330 attrs.expr = NULL_TREE;
2331 attrs.alias = 0;
2332 }
2333 attrs.size_known_p = true;
2334 attrs.size = size;
2335 }
2336 else if (attrs.size_known_p)
2337 {
2338 gcc_assert (!adjust_object);
2339 attrs.size -= offset;
2340 /* ??? The store_by_pieces machinery generates negative sizes,
2341 so don't assert for that here. */
2342 }
2343
2344 set_mem_attrs (new_rtx, &attrs);
2345
2346 return new_rtx;
2347 }
2348
2349 /* Return a memory reference like MEMREF, but with its mode changed
2350 to MODE and its address changed to ADDR, which is assumed to be
2351 MEMREF offset by OFFSET bytes. If VALIDATE is
2352 nonzero, the memory address is forced to be valid. */
2353
2354 rtx
2355 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2356 HOST_WIDE_INT offset, int validate)
2357 {
2358 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2359 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2360 }
2361
2362 /* Return a memory reference like MEMREF, but whose address is changed by
2363 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2364 known to be in OFFSET (possibly 1). */
2365
2366 rtx
2367 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2368 {
2369 rtx new_rtx, addr = XEXP (memref, 0);
2370 machine_mode address_mode;
2371 struct mem_attrs attrs, *defattrs;
2372
2373 attrs = *get_mem_attrs (memref);
2374 address_mode = get_address_mode (memref);
2375 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2376
2377 /* At this point we don't know _why_ the address is invalid. It
2378 could have secondary memory references, multiplies or anything.
2379
2380 However, if we did go and rearrange things, we can wind up not
2381 being able to recognize the magic around pic_offset_table_rtx.
2382 This stuff is fragile, and is yet another example of why it is
2383 bad to expose PIC machinery too early. */
2384 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2385 attrs.addrspace)
2386 && GET_CODE (addr) == PLUS
2387 && XEXP (addr, 0) == pic_offset_table_rtx)
2388 {
2389 addr = force_reg (GET_MODE (addr), addr);
2390 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2391 }
2392
2393 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2394 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2395
2396 /* If there are no changes, just return the original memory reference. */
2397 if (new_rtx == memref)
2398 return new_rtx;
2399
2400 /* Update the alignment to reflect the offset. Reset the offset, which
2401 we don't know. */
2402 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2403 attrs.offset_known_p = false;
2404 attrs.size_known_p = defattrs->size_known_p;
2405 attrs.size = defattrs->size;
2406 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2407 set_mem_attrs (new_rtx, &attrs);
2408 return new_rtx;
2409 }
2410
2411 /* Return a memory reference like MEMREF, but with its address changed to
2412 ADDR. The caller is asserting that the actual piece of memory pointed
2413 to is the same, just the form of the address is being changed, such as
2414 by putting something into a register. INPLACE is true if any changes
2415 can be made directly to MEMREF or false if MEMREF must be treated as
2416 immutable. */
2417
2418 rtx
2419 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2420 {
2421 /* change_address_1 copies the memory attribute structure without change
2422 and that's exactly what we want here. */
2423 update_temp_slot_address (XEXP (memref, 0), addr);
2424 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2425 }
2426
2427 /* Likewise, but the reference is not required to be valid. */
2428
2429 rtx
2430 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2431 {
2432 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2433 }
2434
2435 /* Return a memory reference like MEMREF, but with its mode widened to
2436 MODE and offset by OFFSET. This would be used by targets that e.g.
2437 cannot issue QImode memory operations and have to use SImode memory
2438 operations plus masking logic. */
2439
2440 rtx
2441 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2442 {
2443 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2444 struct mem_attrs attrs;
2445 unsigned int size = GET_MODE_SIZE (mode);
2446
2447 /* If there are no changes, just return the original memory reference. */
2448 if (new_rtx == memref)
2449 return new_rtx;
2450
2451 attrs = *get_mem_attrs (new_rtx);
2452
2453 /* If we don't know what offset we were at within the expression, then
2454 we can't know if we've overstepped the bounds. */
2455 if (! attrs.offset_known_p)
2456 attrs.expr = NULL_TREE;
2457
2458 while (attrs.expr)
2459 {
2460 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2461 {
2462 tree field = TREE_OPERAND (attrs.expr, 1);
2463 tree offset = component_ref_field_offset (attrs.expr);
2464
2465 if (! DECL_SIZE_UNIT (field))
2466 {
2467 attrs.expr = NULL_TREE;
2468 break;
2469 }
2470
2471 /* Is the field at least as large as the access? If so, ok,
2472 otherwise strip back to the containing structure. */
2473 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2474 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2475 && attrs.offset >= 0)
2476 break;
2477
2478 if (! tree_fits_uhwi_p (offset))
2479 {
2480 attrs.expr = NULL_TREE;
2481 break;
2482 }
2483
2484 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2485 attrs.offset += tree_to_uhwi (offset);
2486 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2487 / BITS_PER_UNIT);
2488 }
2489 /* Similarly for the decl. */
2490 else if (DECL_P (attrs.expr)
2491 && DECL_SIZE_UNIT (attrs.expr)
2492 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2493 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2494 && (! attrs.offset_known_p || attrs.offset >= 0))
2495 break;
2496 else
2497 {
2498 /* The widened memory access overflows the expression, which means
2499 that it could alias another expression. Zap it. */
2500 attrs.expr = NULL_TREE;
2501 break;
2502 }
2503 }
2504
2505 if (! attrs.expr)
2506 attrs.offset_known_p = false;
2507
2508 /* The widened memory may alias other stuff, so zap the alias set. */
2509 /* ??? Maybe use get_alias_set on any remaining expression. */
2510 attrs.alias = 0;
2511 attrs.size_known_p = true;
2512 attrs.size = size;
2513 set_mem_attrs (new_rtx, &attrs);
2514 return new_rtx;
2515 }
2516 \f
2517 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2518 static GTY(()) tree spill_slot_decl;
2519
2520 tree
2521 get_spill_slot_decl (bool force_build_p)
2522 {
2523 tree d = spill_slot_decl;
2524 rtx rd;
2525 struct mem_attrs attrs;
2526
2527 if (d || !force_build_p)
2528 return d;
2529
2530 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2531 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2532 DECL_ARTIFICIAL (d) = 1;
2533 DECL_IGNORED_P (d) = 1;
2534 TREE_USED (d) = 1;
2535 spill_slot_decl = d;
2536
2537 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2538 MEM_NOTRAP_P (rd) = 1;
2539 attrs = *mode_mem_attrs[(int) BLKmode];
2540 attrs.alias = new_alias_set ();
2541 attrs.expr = d;
2542 set_mem_attrs (rd, &attrs);
2543 SET_DECL_RTL (d, rd);
2544
2545 return d;
2546 }
2547
2548 /* Given MEM, a result from assign_stack_local, fill in the memory
2549 attributes as appropriate for a register allocator spill slot.
2550 These slots are not aliasable by other memory. We arrange for
2551 them all to use a single MEM_EXPR, so that the aliasing code can
2552 work properly in the case of shared spill slots. */
2553
2554 void
2555 set_mem_attrs_for_spill (rtx mem)
2556 {
2557 struct mem_attrs attrs;
2558 rtx addr;
2559
2560 attrs = *get_mem_attrs (mem);
2561 attrs.expr = get_spill_slot_decl (true);
2562 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2563 attrs.addrspace = ADDR_SPACE_GENERIC;
2564
2565 /* We expect the incoming memory to be of the form:
2566 (mem:MODE (plus (reg sfp) (const_int offset)))
2567 with perhaps the plus missing for offset = 0. */
2568 addr = XEXP (mem, 0);
2569 attrs.offset_known_p = true;
2570 attrs.offset = 0;
2571 if (GET_CODE (addr) == PLUS
2572 && CONST_INT_P (XEXP (addr, 1)))
2573 attrs.offset = INTVAL (XEXP (addr, 1));
2574
2575 set_mem_attrs (mem, &attrs);
2576 MEM_NOTRAP_P (mem) = 1;
2577 }
2578 \f
2579 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2580
2581 rtx_code_label *
2582 gen_label_rtx (void)
2583 {
2584 return as_a <rtx_code_label *> (
2585 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2586 NULL, label_num++, NULL));
2587 }
2588 \f
2589 /* For procedure integration. */
2590
2591 /* Install new pointers to the first and last insns in the chain.
2592 Also, set cur_insn_uid to one higher than the last in use.
2593 Used for an inline-procedure after copying the insn chain. */
2594
2595 void
2596 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2597 {
2598 rtx_insn *insn;
2599
2600 set_first_insn (first);
2601 set_last_insn (last);
2602 cur_insn_uid = 0;
2603
2604 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2605 {
2606 int debug_count = 0;
2607
2608 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2609 cur_debug_insn_uid = 0;
2610
2611 for (insn = first; insn; insn = NEXT_INSN (insn))
2612 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2613 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2614 else
2615 {
2616 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2617 if (DEBUG_INSN_P (insn))
2618 debug_count++;
2619 }
2620
2621 if (debug_count)
2622 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2623 else
2624 cur_debug_insn_uid++;
2625 }
2626 else
2627 for (insn = first; insn; insn = NEXT_INSN (insn))
2628 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2629
2630 cur_insn_uid++;
2631 }
2632 \f
2633 /* Go through all the RTL insn bodies and copy any invalid shared
2634 structure. This routine should only be called once. */
2635
2636 static void
2637 unshare_all_rtl_1 (rtx_insn *insn)
2638 {
2639 /* Unshare just about everything else. */
2640 unshare_all_rtl_in_chain (insn);
2641
2642 /* Make sure the addresses of stack slots found outside the insn chain
2643 (such as, in DECL_RTL of a variable) are not shared
2644 with the insn chain.
2645
2646 This special care is necessary when the stack slot MEM does not
2647 actually appear in the insn chain. If it does appear, its address
2648 is unshared from all else at that point. */
2649 unsigned int i;
2650 rtx temp;
2651 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2652 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2653 }
2654
2655 /* Go through all the RTL insn bodies and copy any invalid shared
2656 structure, again. This is a fairly expensive thing to do so it
2657 should be done sparingly. */
2658
2659 void
2660 unshare_all_rtl_again (rtx_insn *insn)
2661 {
2662 rtx_insn *p;
2663 tree decl;
2664
2665 for (p = insn; p; p = NEXT_INSN (p))
2666 if (INSN_P (p))
2667 {
2668 reset_used_flags (PATTERN (p));
2669 reset_used_flags (REG_NOTES (p));
2670 if (CALL_P (p))
2671 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2672 }
2673
2674 /* Make sure that virtual stack slots are not shared. */
2675 set_used_decls (DECL_INITIAL (cfun->decl));
2676
2677 /* Make sure that virtual parameters are not shared. */
2678 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2679 set_used_flags (DECL_RTL (decl));
2680
2681 rtx temp;
2682 unsigned int i;
2683 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2684 reset_used_flags (temp);
2685
2686 unshare_all_rtl_1 (insn);
2687 }
2688
2689 unsigned int
2690 unshare_all_rtl (void)
2691 {
2692 unshare_all_rtl_1 (get_insns ());
2693
2694 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2695 {
2696 if (DECL_RTL_SET_P (decl))
2697 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2698 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2699 }
2700
2701 return 0;
2702 }
2703
2704
2705 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2706 Recursively does the same for subexpressions. */
2707
2708 static void
2709 verify_rtx_sharing (rtx orig, rtx insn)
2710 {
2711 rtx x = orig;
2712 int i;
2713 enum rtx_code code;
2714 const char *format_ptr;
2715
2716 if (x == 0)
2717 return;
2718
2719 code = GET_CODE (x);
2720
2721 /* These types may be freely shared. */
2722
2723 switch (code)
2724 {
2725 case REG:
2726 case DEBUG_EXPR:
2727 case VALUE:
2728 CASE_CONST_ANY:
2729 case SYMBOL_REF:
2730 case LABEL_REF:
2731 case CODE_LABEL:
2732 case PC:
2733 case CC0:
2734 case RETURN:
2735 case SIMPLE_RETURN:
2736 case SCRATCH:
2737 /* SCRATCH must be shared because they represent distinct values. */
2738 return;
2739 case CLOBBER:
2740 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2741 clobbers or clobbers of hard registers that originated as pseudos.
2742 This is needed to allow safe register renaming. */
2743 if (REG_P (XEXP (x, 0))
2744 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2745 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2746 return;
2747 break;
2748
2749 case CONST:
2750 if (shared_const_p (orig))
2751 return;
2752 break;
2753
2754 case MEM:
2755 /* A MEM is allowed to be shared if its address is constant. */
2756 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2757 || reload_completed || reload_in_progress)
2758 return;
2759
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* This rtx may not be shared. If it has already been seen,
2767 replace it with a copy of itself. */
2768 if (flag_checking && RTX_FLAG (x, used))
2769 {
2770 error ("invalid rtl sharing found in the insn");
2771 debug_rtx (insn);
2772 error ("shared rtx");
2773 debug_rtx (x);
2774 internal_error ("internal consistency failure");
2775 }
2776 gcc_assert (!RTX_FLAG (x, used));
2777
2778 RTX_FLAG (x, used) = 1;
2779
2780 /* Now scan the subexpressions recursively. */
2781
2782 format_ptr = GET_RTX_FORMAT (code);
2783
2784 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2785 {
2786 switch (*format_ptr++)
2787 {
2788 case 'e':
2789 verify_rtx_sharing (XEXP (x, i), insn);
2790 break;
2791
2792 case 'E':
2793 if (XVEC (x, i) != NULL)
2794 {
2795 int j;
2796 int len = XVECLEN (x, i);
2797
2798 for (j = 0; j < len; j++)
2799 {
2800 /* We allow sharing of ASM_OPERANDS inside single
2801 instruction. */
2802 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2803 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2804 == ASM_OPERANDS))
2805 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2806 else
2807 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2808 }
2809 }
2810 break;
2811 }
2812 }
2813 return;
2814 }
2815
2816 /* Reset used-flags for INSN. */
2817
2818 static void
2819 reset_insn_used_flags (rtx insn)
2820 {
2821 gcc_assert (INSN_P (insn));
2822 reset_used_flags (PATTERN (insn));
2823 reset_used_flags (REG_NOTES (insn));
2824 if (CALL_P (insn))
2825 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2826 }
2827
2828 /* Go through all the RTL insn bodies and clear all the USED bits. */
2829
2830 static void
2831 reset_all_used_flags (void)
2832 {
2833 rtx_insn *p;
2834
2835 for (p = get_insns (); p; p = NEXT_INSN (p))
2836 if (INSN_P (p))
2837 {
2838 rtx pat = PATTERN (p);
2839 if (GET_CODE (pat) != SEQUENCE)
2840 reset_insn_used_flags (p);
2841 else
2842 {
2843 gcc_assert (REG_NOTES (p) == NULL);
2844 for (int i = 0; i < XVECLEN (pat, 0); i++)
2845 {
2846 rtx insn = XVECEXP (pat, 0, i);
2847 if (INSN_P (insn))
2848 reset_insn_used_flags (insn);
2849 }
2850 }
2851 }
2852 }
2853
2854 /* Verify sharing in INSN. */
2855
2856 static void
2857 verify_insn_sharing (rtx insn)
2858 {
2859 gcc_assert (INSN_P (insn));
2860 verify_rtx_sharing (PATTERN (insn), insn);
2861 verify_rtx_sharing (REG_NOTES (insn), insn);
2862 if (CALL_P (insn))
2863 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2864 }
2865
2866 /* Go through all the RTL insn bodies and check that there is no unexpected
2867 sharing in between the subexpressions. */
2868
2869 DEBUG_FUNCTION void
2870 verify_rtl_sharing (void)
2871 {
2872 rtx_insn *p;
2873
2874 timevar_push (TV_VERIFY_RTL_SHARING);
2875
2876 reset_all_used_flags ();
2877
2878 for (p = get_insns (); p; p = NEXT_INSN (p))
2879 if (INSN_P (p))
2880 {
2881 rtx pat = PATTERN (p);
2882 if (GET_CODE (pat) != SEQUENCE)
2883 verify_insn_sharing (p);
2884 else
2885 for (int i = 0; i < XVECLEN (pat, 0); i++)
2886 {
2887 rtx insn = XVECEXP (pat, 0, i);
2888 if (INSN_P (insn))
2889 verify_insn_sharing (insn);
2890 }
2891 }
2892
2893 reset_all_used_flags ();
2894
2895 timevar_pop (TV_VERIFY_RTL_SHARING);
2896 }
2897
2898 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2899 Assumes the mark bits are cleared at entry. */
2900
2901 void
2902 unshare_all_rtl_in_chain (rtx_insn *insn)
2903 {
2904 for (; insn; insn = NEXT_INSN (insn))
2905 if (INSN_P (insn))
2906 {
2907 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2908 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2909 if (CALL_P (insn))
2910 CALL_INSN_FUNCTION_USAGE (insn)
2911 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2912 }
2913 }
2914
2915 /* Go through all virtual stack slots of a function and mark them as
2916 shared. We never replace the DECL_RTLs themselves with a copy,
2917 but expressions mentioned into a DECL_RTL cannot be shared with
2918 expressions in the instruction stream.
2919
2920 Note that reload may convert pseudo registers into memories in-place.
2921 Pseudo registers are always shared, but MEMs never are. Thus if we
2922 reset the used flags on MEMs in the instruction stream, we must set
2923 them again on MEMs that appear in DECL_RTLs. */
2924
2925 static void
2926 set_used_decls (tree blk)
2927 {
2928 tree t;
2929
2930 /* Mark decls. */
2931 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2932 if (DECL_RTL_SET_P (t))
2933 set_used_flags (DECL_RTL (t));
2934
2935 /* Now process sub-blocks. */
2936 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2937 set_used_decls (t);
2938 }
2939
2940 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2941 Recursively does the same for subexpressions. Uses
2942 copy_rtx_if_shared_1 to reduce stack space. */
2943
2944 rtx
2945 copy_rtx_if_shared (rtx orig)
2946 {
2947 copy_rtx_if_shared_1 (&orig);
2948 return orig;
2949 }
2950
2951 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2952 use. Recursively does the same for subexpressions. */
2953
2954 static void
2955 copy_rtx_if_shared_1 (rtx *orig1)
2956 {
2957 rtx x;
2958 int i;
2959 enum rtx_code code;
2960 rtx *last_ptr;
2961 const char *format_ptr;
2962 int copied = 0;
2963 int length;
2964
2965 /* Repeat is used to turn tail-recursion into iteration. */
2966 repeat:
2967 x = *orig1;
2968
2969 if (x == 0)
2970 return;
2971
2972 code = GET_CODE (x);
2973
2974 /* These types may be freely shared. */
2975
2976 switch (code)
2977 {
2978 case REG:
2979 case DEBUG_EXPR:
2980 case VALUE:
2981 CASE_CONST_ANY:
2982 case SYMBOL_REF:
2983 case LABEL_REF:
2984 case CODE_LABEL:
2985 case PC:
2986 case CC0:
2987 case RETURN:
2988 case SIMPLE_RETURN:
2989 case SCRATCH:
2990 /* SCRATCH must be shared because they represent distinct values. */
2991 return;
2992 case CLOBBER:
2993 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2994 clobbers or clobbers of hard registers that originated as pseudos.
2995 This is needed to allow safe register renaming. */
2996 if (REG_P (XEXP (x, 0))
2997 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2998 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2999 return;
3000 break;
3001
3002 case CONST:
3003 if (shared_const_p (x))
3004 return;
3005 break;
3006
3007 case DEBUG_INSN:
3008 case INSN:
3009 case JUMP_INSN:
3010 case CALL_INSN:
3011 case NOTE:
3012 case BARRIER:
3013 /* The chain of insns is not being copied. */
3014 return;
3015
3016 default:
3017 break;
3018 }
3019
3020 /* This rtx may not be shared. If it has already been seen,
3021 replace it with a copy of itself. */
3022
3023 if (RTX_FLAG (x, used))
3024 {
3025 x = shallow_copy_rtx (x);
3026 copied = 1;
3027 }
3028 RTX_FLAG (x, used) = 1;
3029
3030 /* Now scan the subexpressions recursively.
3031 We can store any replaced subexpressions directly into X
3032 since we know X is not shared! Any vectors in X
3033 must be copied if X was copied. */
3034
3035 format_ptr = GET_RTX_FORMAT (code);
3036 length = GET_RTX_LENGTH (code);
3037 last_ptr = NULL;
3038
3039 for (i = 0; i < length; i++)
3040 {
3041 switch (*format_ptr++)
3042 {
3043 case 'e':
3044 if (last_ptr)
3045 copy_rtx_if_shared_1 (last_ptr);
3046 last_ptr = &XEXP (x, i);
3047 break;
3048
3049 case 'E':
3050 if (XVEC (x, i) != NULL)
3051 {
3052 int j;
3053 int len = XVECLEN (x, i);
3054
3055 /* Copy the vector iff I copied the rtx and the length
3056 is nonzero. */
3057 if (copied && len > 0)
3058 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3059
3060 /* Call recursively on all inside the vector. */
3061 for (j = 0; j < len; j++)
3062 {
3063 if (last_ptr)
3064 copy_rtx_if_shared_1 (last_ptr);
3065 last_ptr = &XVECEXP (x, i, j);
3066 }
3067 }
3068 break;
3069 }
3070 }
3071 *orig1 = x;
3072 if (last_ptr)
3073 {
3074 orig1 = last_ptr;
3075 goto repeat;
3076 }
3077 return;
3078 }
3079
3080 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3081
3082 static void
3083 mark_used_flags (rtx x, int flag)
3084 {
3085 int i, j;
3086 enum rtx_code code;
3087 const char *format_ptr;
3088 int length;
3089
3090 /* Repeat is used to turn tail-recursion into iteration. */
3091 repeat:
3092 if (x == 0)
3093 return;
3094
3095 code = GET_CODE (x);
3096
3097 /* These types may be freely shared so we needn't do any resetting
3098 for them. */
3099
3100 switch (code)
3101 {
3102 case REG:
3103 case DEBUG_EXPR:
3104 case VALUE:
3105 CASE_CONST_ANY:
3106 case SYMBOL_REF:
3107 case CODE_LABEL:
3108 case PC:
3109 case CC0:
3110 case RETURN:
3111 case SIMPLE_RETURN:
3112 return;
3113
3114 case DEBUG_INSN:
3115 case INSN:
3116 case JUMP_INSN:
3117 case CALL_INSN:
3118 case NOTE:
3119 case LABEL_REF:
3120 case BARRIER:
3121 /* The chain of insns is not being copied. */
3122 return;
3123
3124 default:
3125 break;
3126 }
3127
3128 RTX_FLAG (x, used) = flag;
3129
3130 format_ptr = GET_RTX_FORMAT (code);
3131 length = GET_RTX_LENGTH (code);
3132
3133 for (i = 0; i < length; i++)
3134 {
3135 switch (*format_ptr++)
3136 {
3137 case 'e':
3138 if (i == length-1)
3139 {
3140 x = XEXP (x, i);
3141 goto repeat;
3142 }
3143 mark_used_flags (XEXP (x, i), flag);
3144 break;
3145
3146 case 'E':
3147 for (j = 0; j < XVECLEN (x, i); j++)
3148 mark_used_flags (XVECEXP (x, i, j), flag);
3149 break;
3150 }
3151 }
3152 }
3153
3154 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3155 to look for shared sub-parts. */
3156
3157 void
3158 reset_used_flags (rtx x)
3159 {
3160 mark_used_flags (x, 0);
3161 }
3162
3163 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3164 to look for shared sub-parts. */
3165
3166 void
3167 set_used_flags (rtx x)
3168 {
3169 mark_used_flags (x, 1);
3170 }
3171 \f
3172 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3173 Return X or the rtx for the pseudo reg the value of X was copied into.
3174 OTHER must be valid as a SET_DEST. */
3175
3176 rtx
3177 make_safe_from (rtx x, rtx other)
3178 {
3179 while (1)
3180 switch (GET_CODE (other))
3181 {
3182 case SUBREG:
3183 other = SUBREG_REG (other);
3184 break;
3185 case STRICT_LOW_PART:
3186 case SIGN_EXTEND:
3187 case ZERO_EXTEND:
3188 other = XEXP (other, 0);
3189 break;
3190 default:
3191 goto done;
3192 }
3193 done:
3194 if ((MEM_P (other)
3195 && ! CONSTANT_P (x)
3196 && !REG_P (x)
3197 && GET_CODE (x) != SUBREG)
3198 || (REG_P (other)
3199 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3200 || reg_mentioned_p (other, x))))
3201 {
3202 rtx temp = gen_reg_rtx (GET_MODE (x));
3203 emit_move_insn (temp, x);
3204 return temp;
3205 }
3206 return x;
3207 }
3208 \f
3209 /* Emission of insns (adding them to the doubly-linked list). */
3210
3211 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3212
3213 rtx_insn *
3214 get_last_insn_anywhere (void)
3215 {
3216 struct sequence_stack *seq;
3217 for (seq = get_current_sequence (); seq; seq = seq->next)
3218 if (seq->last != 0)
3219 return seq->last;
3220 return 0;
3221 }
3222
3223 /* Return the first nonnote insn emitted in current sequence or current
3224 function. This routine looks inside SEQUENCEs. */
3225
3226 rtx_insn *
3227 get_first_nonnote_insn (void)
3228 {
3229 rtx_insn *insn = get_insns ();
3230
3231 if (insn)
3232 {
3233 if (NOTE_P (insn))
3234 for (insn = next_insn (insn);
3235 insn && NOTE_P (insn);
3236 insn = next_insn (insn))
3237 continue;
3238 else
3239 {
3240 if (NONJUMP_INSN_P (insn)
3241 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3242 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3243 }
3244 }
3245
3246 return insn;
3247 }
3248
3249 /* Return the last nonnote insn emitted in current sequence or current
3250 function. This routine looks inside SEQUENCEs. */
3251
3252 rtx_insn *
3253 get_last_nonnote_insn (void)
3254 {
3255 rtx_insn *insn = get_last_insn ();
3256
3257 if (insn)
3258 {
3259 if (NOTE_P (insn))
3260 for (insn = previous_insn (insn);
3261 insn && NOTE_P (insn);
3262 insn = previous_insn (insn))
3263 continue;
3264 else
3265 {
3266 if (NONJUMP_INSN_P (insn))
3267 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3268 insn = seq->insn (seq->len () - 1);
3269 }
3270 }
3271
3272 return insn;
3273 }
3274
3275 /* Return the number of actual (non-debug) insns emitted in this
3276 function. */
3277
3278 int
3279 get_max_insn_count (void)
3280 {
3281 int n = cur_insn_uid;
3282
3283 /* The table size must be stable across -g, to avoid codegen
3284 differences due to debug insns, and not be affected by
3285 -fmin-insn-uid, to avoid excessive table size and to simplify
3286 debugging of -fcompare-debug failures. */
3287 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3288 n -= cur_debug_insn_uid;
3289 else
3290 n -= MIN_NONDEBUG_INSN_UID;
3291
3292 return n;
3293 }
3294
3295 \f
3296 /* Return the next insn. If it is a SEQUENCE, return the first insn
3297 of the sequence. */
3298
3299 rtx_insn *
3300 next_insn (rtx_insn *insn)
3301 {
3302 if (insn)
3303 {
3304 insn = NEXT_INSN (insn);
3305 if (insn && NONJUMP_INSN_P (insn)
3306 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3307 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3308 }
3309
3310 return insn;
3311 }
3312
3313 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3314 of the sequence. */
3315
3316 rtx_insn *
3317 previous_insn (rtx_insn *insn)
3318 {
3319 if (insn)
3320 {
3321 insn = PREV_INSN (insn);
3322 if (insn && NONJUMP_INSN_P (insn))
3323 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3324 insn = seq->insn (seq->len () - 1);
3325 }
3326
3327 return insn;
3328 }
3329
3330 /* Return the next insn after INSN that is not a NOTE. This routine does not
3331 look inside SEQUENCEs. */
3332
3333 rtx_insn *
3334 next_nonnote_insn (rtx_insn *insn)
3335 {
3336 while (insn)
3337 {
3338 insn = NEXT_INSN (insn);
3339 if (insn == 0 || !NOTE_P (insn))
3340 break;
3341 }
3342
3343 return insn;
3344 }
3345
3346 /* Return the next insn after INSN that is not a NOTE, but stop the
3347 search before we enter another basic block. This routine does not
3348 look inside SEQUENCEs. */
3349
3350 rtx_insn *
3351 next_nonnote_insn_bb (rtx_insn *insn)
3352 {
3353 while (insn)
3354 {
3355 insn = NEXT_INSN (insn);
3356 if (insn == 0 || !NOTE_P (insn))
3357 break;
3358 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3359 return NULL;
3360 }
3361
3362 return insn;
3363 }
3364
3365 /* Return the previous insn before INSN that is not a NOTE. This routine does
3366 not look inside SEQUENCEs. */
3367
3368 rtx_insn *
3369 prev_nonnote_insn (rtx_insn *insn)
3370 {
3371 while (insn)
3372 {
3373 insn = PREV_INSN (insn);
3374 if (insn == 0 || !NOTE_P (insn))
3375 break;
3376 }
3377
3378 return insn;
3379 }
3380
3381 /* Return the previous insn before INSN that is not a NOTE, but stop
3382 the search before we enter another basic block. This routine does
3383 not look inside SEQUENCEs. */
3384
3385 rtx_insn *
3386 prev_nonnote_insn_bb (rtx_insn *insn)
3387 {
3388
3389 while (insn)
3390 {
3391 insn = PREV_INSN (insn);
3392 if (insn == 0 || !NOTE_P (insn))
3393 break;
3394 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3395 return NULL;
3396 }
3397
3398 return insn;
3399 }
3400
3401 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3402 routine does not look inside SEQUENCEs. */
3403
3404 rtx_insn *
3405 next_nondebug_insn (rtx_insn *insn)
3406 {
3407 while (insn)
3408 {
3409 insn = NEXT_INSN (insn);
3410 if (insn == 0 || !DEBUG_INSN_P (insn))
3411 break;
3412 }
3413
3414 return insn;
3415 }
3416
3417 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3418 This routine does not look inside SEQUENCEs. */
3419
3420 rtx_insn *
3421 prev_nondebug_insn (rtx_insn *insn)
3422 {
3423 while (insn)
3424 {
3425 insn = PREV_INSN (insn);
3426 if (insn == 0 || !DEBUG_INSN_P (insn))
3427 break;
3428 }
3429
3430 return insn;
3431 }
3432
3433 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3434 This routine does not look inside SEQUENCEs. */
3435
3436 rtx_insn *
3437 next_nonnote_nondebug_insn (rtx_insn *insn)
3438 {
3439 while (insn)
3440 {
3441 insn = NEXT_INSN (insn);
3442 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3443 break;
3444 }
3445
3446 return insn;
3447 }
3448
3449 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3450 This routine does not look inside SEQUENCEs. */
3451
3452 rtx_insn *
3453 prev_nonnote_nondebug_insn (rtx_insn *insn)
3454 {
3455 while (insn)
3456 {
3457 insn = PREV_INSN (insn);
3458 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3459 break;
3460 }
3461
3462 return insn;
3463 }
3464
3465 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3466 or 0, if there is none. This routine does not look inside
3467 SEQUENCEs. */
3468
3469 rtx_insn *
3470 next_real_insn (rtx uncast_insn)
3471 {
3472 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3473
3474 while (insn)
3475 {
3476 insn = NEXT_INSN (insn);
3477 if (insn == 0 || INSN_P (insn))
3478 break;
3479 }
3480
3481 return insn;
3482 }
3483
3484 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3485 or 0, if there is none. This routine does not look inside
3486 SEQUENCEs. */
3487
3488 rtx_insn *
3489 prev_real_insn (rtx_insn *insn)
3490 {
3491 while (insn)
3492 {
3493 insn = PREV_INSN (insn);
3494 if (insn == 0 || INSN_P (insn))
3495 break;
3496 }
3497
3498 return insn;
3499 }
3500
3501 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3502 This routine does not look inside SEQUENCEs. */
3503
3504 rtx_call_insn *
3505 last_call_insn (void)
3506 {
3507 rtx_insn *insn;
3508
3509 for (insn = get_last_insn ();
3510 insn && !CALL_P (insn);
3511 insn = PREV_INSN (insn))
3512 ;
3513
3514 return safe_as_a <rtx_call_insn *> (insn);
3515 }
3516
3517 /* Find the next insn after INSN that really does something. This routine
3518 does not look inside SEQUENCEs. After reload this also skips over
3519 standalone USE and CLOBBER insn. */
3520
3521 int
3522 active_insn_p (const rtx_insn *insn)
3523 {
3524 return (CALL_P (insn) || JUMP_P (insn)
3525 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3526 || (NONJUMP_INSN_P (insn)
3527 && (! reload_completed
3528 || (GET_CODE (PATTERN (insn)) != USE
3529 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3530 }
3531
3532 rtx_insn *
3533 next_active_insn (rtx_insn *insn)
3534 {
3535 while (insn)
3536 {
3537 insn = NEXT_INSN (insn);
3538 if (insn == 0 || active_insn_p (insn))
3539 break;
3540 }
3541
3542 return insn;
3543 }
3544
3545 /* Find the last insn before INSN that really does something. This routine
3546 does not look inside SEQUENCEs. After reload this also skips over
3547 standalone USE and CLOBBER insn. */
3548
3549 rtx_insn *
3550 prev_active_insn (rtx_insn *insn)
3551 {
3552 while (insn)
3553 {
3554 insn = PREV_INSN (insn);
3555 if (insn == 0 || active_insn_p (insn))
3556 break;
3557 }
3558
3559 return insn;
3560 }
3561 \f
3562 /* Return the next insn that uses CC0 after INSN, which is assumed to
3563 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3564 applied to the result of this function should yield INSN).
3565
3566 Normally, this is simply the next insn. However, if a REG_CC_USER note
3567 is present, it contains the insn that uses CC0.
3568
3569 Return 0 if we can't find the insn. */
3570
3571 rtx_insn *
3572 next_cc0_user (rtx_insn *insn)
3573 {
3574 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3575
3576 if (note)
3577 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3578
3579 insn = next_nonnote_insn (insn);
3580 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3581 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3582
3583 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3584 return insn;
3585
3586 return 0;
3587 }
3588
3589 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3590 note, it is the previous insn. */
3591
3592 rtx_insn *
3593 prev_cc0_setter (rtx_insn *insn)
3594 {
3595 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3596
3597 if (note)
3598 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3599
3600 insn = prev_nonnote_insn (insn);
3601 gcc_assert (sets_cc0_p (PATTERN (insn)));
3602
3603 return insn;
3604 }
3605
3606 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3607
3608 static int
3609 find_auto_inc (const_rtx x, const_rtx reg)
3610 {
3611 subrtx_iterator::array_type array;
3612 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3613 {
3614 const_rtx x = *iter;
3615 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3616 && rtx_equal_p (reg, XEXP (x, 0)))
3617 return true;
3618 }
3619 return false;
3620 }
3621
3622 /* Increment the label uses for all labels present in rtx. */
3623
3624 static void
3625 mark_label_nuses (rtx x)
3626 {
3627 enum rtx_code code;
3628 int i, j;
3629 const char *fmt;
3630
3631 code = GET_CODE (x);
3632 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3633 LABEL_NUSES (label_ref_label (x))++;
3634
3635 fmt = GET_RTX_FORMAT (code);
3636 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3637 {
3638 if (fmt[i] == 'e')
3639 mark_label_nuses (XEXP (x, i));
3640 else if (fmt[i] == 'E')
3641 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3642 mark_label_nuses (XVECEXP (x, i, j));
3643 }
3644 }
3645
3646 \f
3647 /* Try splitting insns that can be split for better scheduling.
3648 PAT is the pattern which might split.
3649 TRIAL is the insn providing PAT.
3650 LAST is nonzero if we should return the last insn of the sequence produced.
3651
3652 If this routine succeeds in splitting, it returns the first or last
3653 replacement insn depending on the value of LAST. Otherwise, it
3654 returns TRIAL. If the insn to be returned can be split, it will be. */
3655
3656 rtx_insn *
3657 try_split (rtx pat, rtx_insn *trial, int last)
3658 {
3659 rtx_insn *before, *after;
3660 rtx note;
3661 rtx_insn *seq, *tem;
3662 int probability;
3663 rtx_insn *insn_last, *insn;
3664 int njumps = 0;
3665 rtx_insn *call_insn = NULL;
3666
3667 /* We're not good at redistributing frame information. */
3668 if (RTX_FRAME_RELATED_P (trial))
3669 return trial;
3670
3671 if (any_condjump_p (trial)
3672 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3673 split_branch_probability = XINT (note, 0);
3674 probability = split_branch_probability;
3675
3676 seq = split_insns (pat, trial);
3677
3678 split_branch_probability = -1;
3679
3680 if (!seq)
3681 return trial;
3682
3683 /* Avoid infinite loop if any insn of the result matches
3684 the original pattern. */
3685 insn_last = seq;
3686 while (1)
3687 {
3688 if (INSN_P (insn_last)
3689 && rtx_equal_p (PATTERN (insn_last), pat))
3690 return trial;
3691 if (!NEXT_INSN (insn_last))
3692 break;
3693 insn_last = NEXT_INSN (insn_last);
3694 }
3695
3696 /* We will be adding the new sequence to the function. The splitters
3697 may have introduced invalid RTL sharing, so unshare the sequence now. */
3698 unshare_all_rtl_in_chain (seq);
3699
3700 /* Mark labels and copy flags. */
3701 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3702 {
3703 if (JUMP_P (insn))
3704 {
3705 if (JUMP_P (trial))
3706 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3707 mark_jump_label (PATTERN (insn), insn, 0);
3708 njumps++;
3709 if (probability != -1
3710 && any_condjump_p (insn)
3711 && !find_reg_note (insn, REG_BR_PROB, 0))
3712 {
3713 /* We can preserve the REG_BR_PROB notes only if exactly
3714 one jump is created, otherwise the machine description
3715 is responsible for this step using
3716 split_branch_probability variable. */
3717 gcc_assert (njumps == 1);
3718 add_int_reg_note (insn, REG_BR_PROB, probability);
3719 }
3720 }
3721 }
3722
3723 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3724 in SEQ and copy any additional information across. */
3725 if (CALL_P (trial))
3726 {
3727 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3728 if (CALL_P (insn))
3729 {
3730 rtx_insn *next;
3731 rtx *p;
3732
3733 gcc_assert (call_insn == NULL_RTX);
3734 call_insn = insn;
3735
3736 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3737 target may have explicitly specified. */
3738 p = &CALL_INSN_FUNCTION_USAGE (insn);
3739 while (*p)
3740 p = &XEXP (*p, 1);
3741 *p = CALL_INSN_FUNCTION_USAGE (trial);
3742
3743 /* If the old call was a sibling call, the new one must
3744 be too. */
3745 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3746
3747 /* If the new call is the last instruction in the sequence,
3748 it will effectively replace the old call in-situ. Otherwise
3749 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3750 so that it comes immediately after the new call. */
3751 if (NEXT_INSN (insn))
3752 for (next = NEXT_INSN (trial);
3753 next && NOTE_P (next);
3754 next = NEXT_INSN (next))
3755 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3756 {
3757 remove_insn (next);
3758 add_insn_after (next, insn, NULL);
3759 break;
3760 }
3761 }
3762 }
3763
3764 /* Copy notes, particularly those related to the CFG. */
3765 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3766 {
3767 switch (REG_NOTE_KIND (note))
3768 {
3769 case REG_EH_REGION:
3770 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3771 break;
3772
3773 case REG_NORETURN:
3774 case REG_SETJMP:
3775 case REG_TM:
3776 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3777 {
3778 if (CALL_P (insn))
3779 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3780 }
3781 break;
3782
3783 case REG_NON_LOCAL_GOTO:
3784 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3785 {
3786 if (JUMP_P (insn))
3787 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3788 }
3789 break;
3790
3791 case REG_INC:
3792 if (!AUTO_INC_DEC)
3793 break;
3794
3795 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3796 {
3797 rtx reg = XEXP (note, 0);
3798 if (!FIND_REG_INC_NOTE (insn, reg)
3799 && find_auto_inc (PATTERN (insn), reg))
3800 add_reg_note (insn, REG_INC, reg);
3801 }
3802 break;
3803
3804 case REG_ARGS_SIZE:
3805 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3806 break;
3807
3808 case REG_CALL_DECL:
3809 gcc_assert (call_insn != NULL_RTX);
3810 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3811 break;
3812
3813 default:
3814 break;
3815 }
3816 }
3817
3818 /* If there are LABELS inside the split insns increment the
3819 usage count so we don't delete the label. */
3820 if (INSN_P (trial))
3821 {
3822 insn = insn_last;
3823 while (insn != NULL_RTX)
3824 {
3825 /* JUMP_P insns have already been "marked" above. */
3826 if (NONJUMP_INSN_P (insn))
3827 mark_label_nuses (PATTERN (insn));
3828
3829 insn = PREV_INSN (insn);
3830 }
3831 }
3832
3833 before = PREV_INSN (trial);
3834 after = NEXT_INSN (trial);
3835
3836 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3837
3838 delete_insn (trial);
3839
3840 /* Recursively call try_split for each new insn created; by the
3841 time control returns here that insn will be fully split, so
3842 set LAST and continue from the insn after the one returned.
3843 We can't use next_active_insn here since AFTER may be a note.
3844 Ignore deleted insns, which can be occur if not optimizing. */
3845 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3846 if (! tem->deleted () && INSN_P (tem))
3847 tem = try_split (PATTERN (tem), tem, 1);
3848
3849 /* Return either the first or the last insn, depending on which was
3850 requested. */
3851 return last
3852 ? (after ? PREV_INSN (after) : get_last_insn ())
3853 : NEXT_INSN (before);
3854 }
3855 \f
3856 /* Make and return an INSN rtx, initializing all its slots.
3857 Store PATTERN in the pattern slots. */
3858
3859 rtx_insn *
3860 make_insn_raw (rtx pattern)
3861 {
3862 rtx_insn *insn;
3863
3864 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3865
3866 INSN_UID (insn) = cur_insn_uid++;
3867 PATTERN (insn) = pattern;
3868 INSN_CODE (insn) = -1;
3869 REG_NOTES (insn) = NULL;
3870 INSN_LOCATION (insn) = curr_insn_location ();
3871 BLOCK_FOR_INSN (insn) = NULL;
3872
3873 #ifdef ENABLE_RTL_CHECKING
3874 if (insn
3875 && INSN_P (insn)
3876 && (returnjump_p (insn)
3877 || (GET_CODE (insn) == SET
3878 && SET_DEST (insn) == pc_rtx)))
3879 {
3880 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3881 debug_rtx (insn);
3882 }
3883 #endif
3884
3885 return insn;
3886 }
3887
3888 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3889
3890 static rtx_insn *
3891 make_debug_insn_raw (rtx pattern)
3892 {
3893 rtx_debug_insn *insn;
3894
3895 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3896 INSN_UID (insn) = cur_debug_insn_uid++;
3897 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3898 INSN_UID (insn) = cur_insn_uid++;
3899
3900 PATTERN (insn) = pattern;
3901 INSN_CODE (insn) = -1;
3902 REG_NOTES (insn) = NULL;
3903 INSN_LOCATION (insn) = curr_insn_location ();
3904 BLOCK_FOR_INSN (insn) = NULL;
3905
3906 return insn;
3907 }
3908
3909 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3910
3911 static rtx_insn *
3912 make_jump_insn_raw (rtx pattern)
3913 {
3914 rtx_jump_insn *insn;
3915
3916 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3917 INSN_UID (insn) = cur_insn_uid++;
3918
3919 PATTERN (insn) = pattern;
3920 INSN_CODE (insn) = -1;
3921 REG_NOTES (insn) = NULL;
3922 JUMP_LABEL (insn) = NULL;
3923 INSN_LOCATION (insn) = curr_insn_location ();
3924 BLOCK_FOR_INSN (insn) = NULL;
3925
3926 return insn;
3927 }
3928
3929 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3930
3931 static rtx_insn *
3932 make_call_insn_raw (rtx pattern)
3933 {
3934 rtx_call_insn *insn;
3935
3936 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3937 INSN_UID (insn) = cur_insn_uid++;
3938
3939 PATTERN (insn) = pattern;
3940 INSN_CODE (insn) = -1;
3941 REG_NOTES (insn) = NULL;
3942 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3943 INSN_LOCATION (insn) = curr_insn_location ();
3944 BLOCK_FOR_INSN (insn) = NULL;
3945
3946 return insn;
3947 }
3948
3949 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3950
3951 static rtx_note *
3952 make_note_raw (enum insn_note subtype)
3953 {
3954 /* Some notes are never created this way at all. These notes are
3955 only created by patching out insns. */
3956 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3957 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3958
3959 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3960 INSN_UID (note) = cur_insn_uid++;
3961 NOTE_KIND (note) = subtype;
3962 BLOCK_FOR_INSN (note) = NULL;
3963 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3964 return note;
3965 }
3966 \f
3967 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3968 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3969 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3970
3971 static inline void
3972 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3973 {
3974 SET_PREV_INSN (insn) = prev;
3975 SET_NEXT_INSN (insn) = next;
3976 if (prev != NULL)
3977 {
3978 SET_NEXT_INSN (prev) = insn;
3979 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3980 {
3981 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3982 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3983 }
3984 }
3985 if (next != NULL)
3986 {
3987 SET_PREV_INSN (next) = insn;
3988 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3989 {
3990 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3991 SET_PREV_INSN (sequence->insn (0)) = insn;
3992 }
3993 }
3994
3995 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3996 {
3997 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3998 SET_PREV_INSN (sequence->insn (0)) = prev;
3999 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4000 }
4001 }
4002
4003 /* Add INSN to the end of the doubly-linked list.
4004 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4005
4006 void
4007 add_insn (rtx_insn *insn)
4008 {
4009 rtx_insn *prev = get_last_insn ();
4010 link_insn_into_chain (insn, prev, NULL);
4011 if (NULL == get_insns ())
4012 set_first_insn (insn);
4013 set_last_insn (insn);
4014 }
4015
4016 /* Add INSN into the doubly-linked list after insn AFTER. */
4017
4018 static void
4019 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4020 {
4021 rtx_insn *next = NEXT_INSN (after);
4022
4023 gcc_assert (!optimize || !after->deleted ());
4024
4025 link_insn_into_chain (insn, after, next);
4026
4027 if (next == NULL)
4028 {
4029 struct sequence_stack *seq;
4030
4031 for (seq = get_current_sequence (); seq; seq = seq->next)
4032 if (after == seq->last)
4033 {
4034 seq->last = insn;
4035 break;
4036 }
4037 }
4038 }
4039
4040 /* Add INSN into the doubly-linked list before insn BEFORE. */
4041
4042 static void
4043 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4044 {
4045 rtx_insn *prev = PREV_INSN (before);
4046
4047 gcc_assert (!optimize || !before->deleted ());
4048
4049 link_insn_into_chain (insn, prev, before);
4050
4051 if (prev == NULL)
4052 {
4053 struct sequence_stack *seq;
4054
4055 for (seq = get_current_sequence (); seq; seq = seq->next)
4056 if (before == seq->first)
4057 {
4058 seq->first = insn;
4059 break;
4060 }
4061
4062 gcc_assert (seq);
4063 }
4064 }
4065
4066 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4067 If BB is NULL, an attempt is made to infer the bb from before.
4068
4069 This and the next function should be the only functions called
4070 to insert an insn once delay slots have been filled since only
4071 they know how to update a SEQUENCE. */
4072
4073 void
4074 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4075 {
4076 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4077 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4078 add_insn_after_nobb (insn, after);
4079 if (!BARRIER_P (after)
4080 && !BARRIER_P (insn)
4081 && (bb = BLOCK_FOR_INSN (after)))
4082 {
4083 set_block_for_insn (insn, bb);
4084 if (INSN_P (insn))
4085 df_insn_rescan (insn);
4086 /* Should not happen as first in the BB is always
4087 either NOTE or LABEL. */
4088 if (BB_END (bb) == after
4089 /* Avoid clobbering of structure when creating new BB. */
4090 && !BARRIER_P (insn)
4091 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4092 BB_END (bb) = insn;
4093 }
4094 }
4095
4096 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4097 If BB is NULL, an attempt is made to infer the bb from before.
4098
4099 This and the previous function should be the only functions called
4100 to insert an insn once delay slots have been filled since only
4101 they know how to update a SEQUENCE. */
4102
4103 void
4104 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4105 {
4106 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4107 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4108 add_insn_before_nobb (insn, before);
4109
4110 if (!bb
4111 && !BARRIER_P (before)
4112 && !BARRIER_P (insn))
4113 bb = BLOCK_FOR_INSN (before);
4114
4115 if (bb)
4116 {
4117 set_block_for_insn (insn, bb);
4118 if (INSN_P (insn))
4119 df_insn_rescan (insn);
4120 /* Should not happen as first in the BB is always either NOTE or
4121 LABEL. */
4122 gcc_assert (BB_HEAD (bb) != insn
4123 /* Avoid clobbering of structure when creating new BB. */
4124 || BARRIER_P (insn)
4125 || NOTE_INSN_BASIC_BLOCK_P (insn));
4126 }
4127 }
4128
4129 /* Replace insn with an deleted instruction note. */
4130
4131 void
4132 set_insn_deleted (rtx insn)
4133 {
4134 if (INSN_P (insn))
4135 df_insn_delete (as_a <rtx_insn *> (insn));
4136 PUT_CODE (insn, NOTE);
4137 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4138 }
4139
4140
4141 /* Unlink INSN from the insn chain.
4142
4143 This function knows how to handle sequences.
4144
4145 This function does not invalidate data flow information associated with
4146 INSN (i.e. does not call df_insn_delete). That makes this function
4147 usable for only disconnecting an insn from the chain, and re-emit it
4148 elsewhere later.
4149
4150 To later insert INSN elsewhere in the insn chain via add_insn and
4151 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4152 the caller. Nullifying them here breaks many insn chain walks.
4153
4154 To really delete an insn and related DF information, use delete_insn. */
4155
4156 void
4157 remove_insn (rtx uncast_insn)
4158 {
4159 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4160 rtx_insn *next = NEXT_INSN (insn);
4161 rtx_insn *prev = PREV_INSN (insn);
4162 basic_block bb;
4163
4164 if (prev)
4165 {
4166 SET_NEXT_INSN (prev) = next;
4167 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4168 {
4169 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4170 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4171 }
4172 }
4173 else
4174 {
4175 struct sequence_stack *seq;
4176
4177 for (seq = get_current_sequence (); seq; seq = seq->next)
4178 if (insn == seq->first)
4179 {
4180 seq->first = next;
4181 break;
4182 }
4183
4184 gcc_assert (seq);
4185 }
4186
4187 if (next)
4188 {
4189 SET_PREV_INSN (next) = prev;
4190 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4191 {
4192 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4193 SET_PREV_INSN (sequence->insn (0)) = prev;
4194 }
4195 }
4196 else
4197 {
4198 struct sequence_stack *seq;
4199
4200 for (seq = get_current_sequence (); seq; seq = seq->next)
4201 if (insn == seq->last)
4202 {
4203 seq->last = prev;
4204 break;
4205 }
4206
4207 gcc_assert (seq);
4208 }
4209
4210 /* Fix up basic block boundaries, if necessary. */
4211 if (!BARRIER_P (insn)
4212 && (bb = BLOCK_FOR_INSN (insn)))
4213 {
4214 if (BB_HEAD (bb) == insn)
4215 {
4216 /* Never ever delete the basic block note without deleting whole
4217 basic block. */
4218 gcc_assert (!NOTE_P (insn));
4219 BB_HEAD (bb) = next;
4220 }
4221 if (BB_END (bb) == insn)
4222 BB_END (bb) = prev;
4223 }
4224 }
4225
4226 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4227
4228 void
4229 add_function_usage_to (rtx call_insn, rtx call_fusage)
4230 {
4231 gcc_assert (call_insn && CALL_P (call_insn));
4232
4233 /* Put the register usage information on the CALL. If there is already
4234 some usage information, put ours at the end. */
4235 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4236 {
4237 rtx link;
4238
4239 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4240 link = XEXP (link, 1))
4241 ;
4242
4243 XEXP (link, 1) = call_fusage;
4244 }
4245 else
4246 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4247 }
4248
4249 /* Delete all insns made since FROM.
4250 FROM becomes the new last instruction. */
4251
4252 void
4253 delete_insns_since (rtx_insn *from)
4254 {
4255 if (from == 0)
4256 set_first_insn (0);
4257 else
4258 SET_NEXT_INSN (from) = 0;
4259 set_last_insn (from);
4260 }
4261
4262 /* This function is deprecated, please use sequences instead.
4263
4264 Move a consecutive bunch of insns to a different place in the chain.
4265 The insns to be moved are those between FROM and TO.
4266 They are moved to a new position after the insn AFTER.
4267 AFTER must not be FROM or TO or any insn in between.
4268
4269 This function does not know about SEQUENCEs and hence should not be
4270 called after delay-slot filling has been done. */
4271
4272 void
4273 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4274 {
4275 if (flag_checking)
4276 {
4277 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4278 gcc_assert (after != x);
4279 gcc_assert (after != to);
4280 }
4281
4282 /* Splice this bunch out of where it is now. */
4283 if (PREV_INSN (from))
4284 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4285 if (NEXT_INSN (to))
4286 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4287 if (get_last_insn () == to)
4288 set_last_insn (PREV_INSN (from));
4289 if (get_insns () == from)
4290 set_first_insn (NEXT_INSN (to));
4291
4292 /* Make the new neighbors point to it and it to them. */
4293 if (NEXT_INSN (after))
4294 SET_PREV_INSN (NEXT_INSN (after)) = to;
4295
4296 SET_NEXT_INSN (to) = NEXT_INSN (after);
4297 SET_PREV_INSN (from) = after;
4298 SET_NEXT_INSN (after) = from;
4299 if (after == get_last_insn ())
4300 set_last_insn (to);
4301 }
4302
4303 /* Same as function above, but take care to update BB boundaries. */
4304 void
4305 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4306 {
4307 rtx_insn *prev = PREV_INSN (from);
4308 basic_block bb, bb2;
4309
4310 reorder_insns_nobb (from, to, after);
4311
4312 if (!BARRIER_P (after)
4313 && (bb = BLOCK_FOR_INSN (after)))
4314 {
4315 rtx_insn *x;
4316 df_set_bb_dirty (bb);
4317
4318 if (!BARRIER_P (from)
4319 && (bb2 = BLOCK_FOR_INSN (from)))
4320 {
4321 if (BB_END (bb2) == to)
4322 BB_END (bb2) = prev;
4323 df_set_bb_dirty (bb2);
4324 }
4325
4326 if (BB_END (bb) == after)
4327 BB_END (bb) = to;
4328
4329 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4330 if (!BARRIER_P (x))
4331 df_insn_change_bb (x, bb);
4332 }
4333 }
4334
4335 \f
4336 /* Emit insn(s) of given code and pattern
4337 at a specified place within the doubly-linked list.
4338
4339 All of the emit_foo global entry points accept an object
4340 X which is either an insn list or a PATTERN of a single
4341 instruction.
4342
4343 There are thus a few canonical ways to generate code and
4344 emit it at a specific place in the instruction stream. For
4345 example, consider the instruction named SPOT and the fact that
4346 we would like to emit some instructions before SPOT. We might
4347 do it like this:
4348
4349 start_sequence ();
4350 ... emit the new instructions ...
4351 insns_head = get_insns ();
4352 end_sequence ();
4353
4354 emit_insn_before (insns_head, SPOT);
4355
4356 It used to be common to generate SEQUENCE rtl instead, but that
4357 is a relic of the past which no longer occurs. The reason is that
4358 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4359 generated would almost certainly die right after it was created. */
4360
4361 static rtx_insn *
4362 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4363 rtx_insn *(*make_raw) (rtx))
4364 {
4365 rtx_insn *insn;
4366
4367 gcc_assert (before);
4368
4369 if (x == NULL_RTX)
4370 return safe_as_a <rtx_insn *> (last);
4371
4372 switch (GET_CODE (x))
4373 {
4374 case DEBUG_INSN:
4375 case INSN:
4376 case JUMP_INSN:
4377 case CALL_INSN:
4378 case CODE_LABEL:
4379 case BARRIER:
4380 case NOTE:
4381 insn = as_a <rtx_insn *> (x);
4382 while (insn)
4383 {
4384 rtx_insn *next = NEXT_INSN (insn);
4385 add_insn_before (insn, before, bb);
4386 last = insn;
4387 insn = next;
4388 }
4389 break;
4390
4391 #ifdef ENABLE_RTL_CHECKING
4392 case SEQUENCE:
4393 gcc_unreachable ();
4394 break;
4395 #endif
4396
4397 default:
4398 last = (*make_raw) (x);
4399 add_insn_before (last, before, bb);
4400 break;
4401 }
4402
4403 return safe_as_a <rtx_insn *> (last);
4404 }
4405
4406 /* Make X be output before the instruction BEFORE. */
4407
4408 rtx_insn *
4409 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4410 {
4411 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4412 }
4413
4414 /* Make an instruction with body X and code JUMP_INSN
4415 and output it before the instruction BEFORE. */
4416
4417 rtx_jump_insn *
4418 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4419 {
4420 return as_a <rtx_jump_insn *> (
4421 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4422 make_jump_insn_raw));
4423 }
4424
4425 /* Make an instruction with body X and code CALL_INSN
4426 and output it before the instruction BEFORE. */
4427
4428 rtx_insn *
4429 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4430 {
4431 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4432 make_call_insn_raw);
4433 }
4434
4435 /* Make an instruction with body X and code DEBUG_INSN
4436 and output it before the instruction BEFORE. */
4437
4438 rtx_insn *
4439 emit_debug_insn_before_noloc (rtx x, rtx before)
4440 {
4441 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4442 make_debug_insn_raw);
4443 }
4444
4445 /* Make an insn of code BARRIER
4446 and output it before the insn BEFORE. */
4447
4448 rtx_barrier *
4449 emit_barrier_before (rtx before)
4450 {
4451 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4452
4453 INSN_UID (insn) = cur_insn_uid++;
4454
4455 add_insn_before (insn, before, NULL);
4456 return insn;
4457 }
4458
4459 /* Emit the label LABEL before the insn BEFORE. */
4460
4461 rtx_code_label *
4462 emit_label_before (rtx label, rtx_insn *before)
4463 {
4464 gcc_checking_assert (INSN_UID (label) == 0);
4465 INSN_UID (label) = cur_insn_uid++;
4466 add_insn_before (label, before, NULL);
4467 return as_a <rtx_code_label *> (label);
4468 }
4469 \f
4470 /* Helper for emit_insn_after, handles lists of instructions
4471 efficiently. */
4472
4473 static rtx_insn *
4474 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4475 {
4476 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4477 rtx_insn *last;
4478 rtx_insn *after_after;
4479 if (!bb && !BARRIER_P (after))
4480 bb = BLOCK_FOR_INSN (after);
4481
4482 if (bb)
4483 {
4484 df_set_bb_dirty (bb);
4485 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4486 if (!BARRIER_P (last))
4487 {
4488 set_block_for_insn (last, bb);
4489 df_insn_rescan (last);
4490 }
4491 if (!BARRIER_P (last))
4492 {
4493 set_block_for_insn (last, bb);
4494 df_insn_rescan (last);
4495 }
4496 if (BB_END (bb) == after)
4497 BB_END (bb) = last;
4498 }
4499 else
4500 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4501 continue;
4502
4503 after_after = NEXT_INSN (after);
4504
4505 SET_NEXT_INSN (after) = first;
4506 SET_PREV_INSN (first) = after;
4507 SET_NEXT_INSN (last) = after_after;
4508 if (after_after)
4509 SET_PREV_INSN (after_after) = last;
4510
4511 if (after == get_last_insn ())
4512 set_last_insn (last);
4513
4514 return last;
4515 }
4516
4517 static rtx_insn *
4518 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4519 rtx_insn *(*make_raw)(rtx))
4520 {
4521 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4522 rtx_insn *last = after;
4523
4524 gcc_assert (after);
4525
4526 if (x == NULL_RTX)
4527 return last;
4528
4529 switch (GET_CODE (x))
4530 {
4531 case DEBUG_INSN:
4532 case INSN:
4533 case JUMP_INSN:
4534 case CALL_INSN:
4535 case CODE_LABEL:
4536 case BARRIER:
4537 case NOTE:
4538 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4539 break;
4540
4541 #ifdef ENABLE_RTL_CHECKING
4542 case SEQUENCE:
4543 gcc_unreachable ();
4544 break;
4545 #endif
4546
4547 default:
4548 last = (*make_raw) (x);
4549 add_insn_after (last, after, bb);
4550 break;
4551 }
4552
4553 return last;
4554 }
4555
4556 /* Make X be output after the insn AFTER and set the BB of insn. If
4557 BB is NULL, an attempt is made to infer the BB from AFTER. */
4558
4559 rtx_insn *
4560 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4561 {
4562 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4563 }
4564
4565
4566 /* Make an insn of code JUMP_INSN with body X
4567 and output it after the insn AFTER. */
4568
4569 rtx_jump_insn *
4570 emit_jump_insn_after_noloc (rtx x, rtx after)
4571 {
4572 return as_a <rtx_jump_insn *> (
4573 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4574 }
4575
4576 /* Make an instruction with body X and code CALL_INSN
4577 and output it after the instruction AFTER. */
4578
4579 rtx_insn *
4580 emit_call_insn_after_noloc (rtx x, rtx after)
4581 {
4582 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4583 }
4584
4585 /* Make an instruction with body X and code CALL_INSN
4586 and output it after the instruction AFTER. */
4587
4588 rtx_insn *
4589 emit_debug_insn_after_noloc (rtx x, rtx after)
4590 {
4591 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4592 }
4593
4594 /* Make an insn of code BARRIER
4595 and output it after the insn AFTER. */
4596
4597 rtx_barrier *
4598 emit_barrier_after (rtx after)
4599 {
4600 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4601
4602 INSN_UID (insn) = cur_insn_uid++;
4603
4604 add_insn_after (insn, after, NULL);
4605 return insn;
4606 }
4607
4608 /* Emit the label LABEL after the insn AFTER. */
4609
4610 rtx_insn *
4611 emit_label_after (rtx label, rtx_insn *after)
4612 {
4613 gcc_checking_assert (INSN_UID (label) == 0);
4614 INSN_UID (label) = cur_insn_uid++;
4615 add_insn_after (label, after, NULL);
4616 return as_a <rtx_insn *> (label);
4617 }
4618 \f
4619 /* Notes require a bit of special handling: Some notes need to have their
4620 BLOCK_FOR_INSN set, others should never have it set, and some should
4621 have it set or clear depending on the context. */
4622
4623 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4624 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4625 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4626
4627 static bool
4628 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4629 {
4630 switch (subtype)
4631 {
4632 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4633 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4634 return true;
4635
4636 /* Notes for var tracking and EH region markers can appear between or
4637 inside basic blocks. If the caller is emitting on the basic block
4638 boundary, do not set BLOCK_FOR_INSN on the new note. */
4639 case NOTE_INSN_VAR_LOCATION:
4640 case NOTE_INSN_CALL_ARG_LOCATION:
4641 case NOTE_INSN_EH_REGION_BEG:
4642 case NOTE_INSN_EH_REGION_END:
4643 return on_bb_boundary_p;
4644
4645 /* Otherwise, BLOCK_FOR_INSN must be set. */
4646 default:
4647 return false;
4648 }
4649 }
4650
4651 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4652
4653 rtx_note *
4654 emit_note_after (enum insn_note subtype, rtx_insn *after)
4655 {
4656 rtx_note *note = make_note_raw (subtype);
4657 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4658 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4659
4660 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4661 add_insn_after_nobb (note, after);
4662 else
4663 add_insn_after (note, after, bb);
4664 return note;
4665 }
4666
4667 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4668
4669 rtx_note *
4670 emit_note_before (enum insn_note subtype, rtx_insn *before)
4671 {
4672 rtx_note *note = make_note_raw (subtype);
4673 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4674 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4675
4676 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4677 add_insn_before_nobb (note, before);
4678 else
4679 add_insn_before (note, before, bb);
4680 return note;
4681 }
4682 \f
4683 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4684 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4685
4686 static rtx_insn *
4687 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4688 rtx_insn *(*make_raw) (rtx))
4689 {
4690 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4691 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4692
4693 if (pattern == NULL_RTX || !loc)
4694 return last;
4695
4696 after = NEXT_INSN (after);
4697 while (1)
4698 {
4699 if (active_insn_p (after)
4700 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4701 && !INSN_LOCATION (after))
4702 INSN_LOCATION (after) = loc;
4703 if (after == last)
4704 break;
4705 after = NEXT_INSN (after);
4706 }
4707 return last;
4708 }
4709
4710 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4711 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4712 any DEBUG_INSNs. */
4713
4714 static rtx_insn *
4715 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4716 rtx_insn *(*make_raw) (rtx))
4717 {
4718 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4719 rtx_insn *prev = after;
4720
4721 if (skip_debug_insns)
4722 while (DEBUG_INSN_P (prev))
4723 prev = PREV_INSN (prev);
4724
4725 if (INSN_P (prev))
4726 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4727 make_raw);
4728 else
4729 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4730 }
4731
4732 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4733 rtx_insn *
4734 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4735 {
4736 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4737 }
4738
4739 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4740 rtx_insn *
4741 emit_insn_after (rtx pattern, rtx after)
4742 {
4743 return emit_pattern_after (pattern, after, true, make_insn_raw);
4744 }
4745
4746 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4747 rtx_jump_insn *
4748 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4749 {
4750 return as_a <rtx_jump_insn *> (
4751 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4752 }
4753
4754 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4755 rtx_jump_insn *
4756 emit_jump_insn_after (rtx pattern, rtx after)
4757 {
4758 return as_a <rtx_jump_insn *> (
4759 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4760 }
4761
4762 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4763 rtx_insn *
4764 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4765 {
4766 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4767 }
4768
4769 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4770 rtx_insn *
4771 emit_call_insn_after (rtx pattern, rtx after)
4772 {
4773 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4774 }
4775
4776 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4777 rtx_insn *
4778 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4779 {
4780 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4781 }
4782
4783 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4784 rtx_insn *
4785 emit_debug_insn_after (rtx pattern, rtx after)
4786 {
4787 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4788 }
4789
4790 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4791 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4792 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4793 CALL_INSN, etc. */
4794
4795 static rtx_insn *
4796 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4797 rtx_insn *(*make_raw) (rtx))
4798 {
4799 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4800 rtx_insn *first = PREV_INSN (before);
4801 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4802 insnp ? before : NULL_RTX,
4803 NULL, make_raw);
4804
4805 if (pattern == NULL_RTX || !loc)
4806 return last;
4807
4808 if (!first)
4809 first = get_insns ();
4810 else
4811 first = NEXT_INSN (first);
4812 while (1)
4813 {
4814 if (active_insn_p (first)
4815 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4816 && !INSN_LOCATION (first))
4817 INSN_LOCATION (first) = loc;
4818 if (first == last)
4819 break;
4820 first = NEXT_INSN (first);
4821 }
4822 return last;
4823 }
4824
4825 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4826 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4827 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4828 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4829
4830 static rtx_insn *
4831 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4832 bool insnp, rtx_insn *(*make_raw) (rtx))
4833 {
4834 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4835 rtx_insn *next = before;
4836
4837 if (skip_debug_insns)
4838 while (DEBUG_INSN_P (next))
4839 next = PREV_INSN (next);
4840
4841 if (INSN_P (next))
4842 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4843 insnp, make_raw);
4844 else
4845 return emit_pattern_before_noloc (pattern, before,
4846 insnp ? before : NULL_RTX,
4847 NULL, make_raw);
4848 }
4849
4850 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4851 rtx_insn *
4852 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4853 {
4854 return emit_pattern_before_setloc (pattern, before, loc, true,
4855 make_insn_raw);
4856 }
4857
4858 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4859 rtx_insn *
4860 emit_insn_before (rtx pattern, rtx before)
4861 {
4862 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4863 }
4864
4865 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4866 rtx_jump_insn *
4867 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4868 {
4869 return as_a <rtx_jump_insn *> (
4870 emit_pattern_before_setloc (pattern, before, loc, false,
4871 make_jump_insn_raw));
4872 }
4873
4874 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4875 rtx_jump_insn *
4876 emit_jump_insn_before (rtx pattern, rtx before)
4877 {
4878 return as_a <rtx_jump_insn *> (
4879 emit_pattern_before (pattern, before, true, false,
4880 make_jump_insn_raw));
4881 }
4882
4883 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4884 rtx_insn *
4885 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4886 {
4887 return emit_pattern_before_setloc (pattern, before, loc, false,
4888 make_call_insn_raw);
4889 }
4890
4891 /* Like emit_call_insn_before_noloc,
4892 but set insn_location according to BEFORE. */
4893 rtx_insn *
4894 emit_call_insn_before (rtx pattern, rtx_insn *before)
4895 {
4896 return emit_pattern_before (pattern, before, true, false,
4897 make_call_insn_raw);
4898 }
4899
4900 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4901 rtx_insn *
4902 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4903 {
4904 return emit_pattern_before_setloc (pattern, before, loc, false,
4905 make_debug_insn_raw);
4906 }
4907
4908 /* Like emit_debug_insn_before_noloc,
4909 but set insn_location according to BEFORE. */
4910 rtx_insn *
4911 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4912 {
4913 return emit_pattern_before (pattern, before, false, false,
4914 make_debug_insn_raw);
4915 }
4916 \f
4917 /* Take X and emit it at the end of the doubly-linked
4918 INSN list.
4919
4920 Returns the last insn emitted. */
4921
4922 rtx_insn *
4923 emit_insn (rtx x)
4924 {
4925 rtx_insn *last = get_last_insn ();
4926 rtx_insn *insn;
4927
4928 if (x == NULL_RTX)
4929 return last;
4930
4931 switch (GET_CODE (x))
4932 {
4933 case DEBUG_INSN:
4934 case INSN:
4935 case JUMP_INSN:
4936 case CALL_INSN:
4937 case CODE_LABEL:
4938 case BARRIER:
4939 case NOTE:
4940 insn = as_a <rtx_insn *> (x);
4941 while (insn)
4942 {
4943 rtx_insn *next = NEXT_INSN (insn);
4944 add_insn (insn);
4945 last = insn;
4946 insn = next;
4947 }
4948 break;
4949
4950 #ifdef ENABLE_RTL_CHECKING
4951 case JUMP_TABLE_DATA:
4952 case SEQUENCE:
4953 gcc_unreachable ();
4954 break;
4955 #endif
4956
4957 default:
4958 last = make_insn_raw (x);
4959 add_insn (last);
4960 break;
4961 }
4962
4963 return last;
4964 }
4965
4966 /* Make an insn of code DEBUG_INSN with pattern X
4967 and add it to the end of the doubly-linked list. */
4968
4969 rtx_insn *
4970 emit_debug_insn (rtx x)
4971 {
4972 rtx_insn *last = get_last_insn ();
4973 rtx_insn *insn;
4974
4975 if (x == NULL_RTX)
4976 return last;
4977
4978 switch (GET_CODE (x))
4979 {
4980 case DEBUG_INSN:
4981 case INSN:
4982 case JUMP_INSN:
4983 case CALL_INSN:
4984 case CODE_LABEL:
4985 case BARRIER:
4986 case NOTE:
4987 insn = as_a <rtx_insn *> (x);
4988 while (insn)
4989 {
4990 rtx_insn *next = NEXT_INSN (insn);
4991 add_insn (insn);
4992 last = insn;
4993 insn = next;
4994 }
4995 break;
4996
4997 #ifdef ENABLE_RTL_CHECKING
4998 case JUMP_TABLE_DATA:
4999 case SEQUENCE:
5000 gcc_unreachable ();
5001 break;
5002 #endif
5003
5004 default:
5005 last = make_debug_insn_raw (x);
5006 add_insn (last);
5007 break;
5008 }
5009
5010 return last;
5011 }
5012
5013 /* Make an insn of code JUMP_INSN with pattern X
5014 and add it to the end of the doubly-linked list. */
5015
5016 rtx_insn *
5017 emit_jump_insn (rtx x)
5018 {
5019 rtx_insn *last = NULL;
5020 rtx_insn *insn;
5021
5022 switch (GET_CODE (x))
5023 {
5024 case DEBUG_INSN:
5025 case INSN:
5026 case JUMP_INSN:
5027 case CALL_INSN:
5028 case CODE_LABEL:
5029 case BARRIER:
5030 case NOTE:
5031 insn = as_a <rtx_insn *> (x);
5032 while (insn)
5033 {
5034 rtx_insn *next = NEXT_INSN (insn);
5035 add_insn (insn);
5036 last = insn;
5037 insn = next;
5038 }
5039 break;
5040
5041 #ifdef ENABLE_RTL_CHECKING
5042 case JUMP_TABLE_DATA:
5043 case SEQUENCE:
5044 gcc_unreachable ();
5045 break;
5046 #endif
5047
5048 default:
5049 last = make_jump_insn_raw (x);
5050 add_insn (last);
5051 break;
5052 }
5053
5054 return last;
5055 }
5056
5057 /* Make an insn of code CALL_INSN with pattern X
5058 and add it to the end of the doubly-linked list. */
5059
5060 rtx_insn *
5061 emit_call_insn (rtx x)
5062 {
5063 rtx_insn *insn;
5064
5065 switch (GET_CODE (x))
5066 {
5067 case DEBUG_INSN:
5068 case INSN:
5069 case JUMP_INSN:
5070 case CALL_INSN:
5071 case CODE_LABEL:
5072 case BARRIER:
5073 case NOTE:
5074 insn = emit_insn (x);
5075 break;
5076
5077 #ifdef ENABLE_RTL_CHECKING
5078 case SEQUENCE:
5079 case JUMP_TABLE_DATA:
5080 gcc_unreachable ();
5081 break;
5082 #endif
5083
5084 default:
5085 insn = make_call_insn_raw (x);
5086 add_insn (insn);
5087 break;
5088 }
5089
5090 return insn;
5091 }
5092
5093 /* Add the label LABEL to the end of the doubly-linked list. */
5094
5095 rtx_code_label *
5096 emit_label (rtx uncast_label)
5097 {
5098 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5099
5100 gcc_checking_assert (INSN_UID (label) == 0);
5101 INSN_UID (label) = cur_insn_uid++;
5102 add_insn (label);
5103 return label;
5104 }
5105
5106 /* Make an insn of code JUMP_TABLE_DATA
5107 and add it to the end of the doubly-linked list. */
5108
5109 rtx_jump_table_data *
5110 emit_jump_table_data (rtx table)
5111 {
5112 rtx_jump_table_data *jump_table_data =
5113 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5114 INSN_UID (jump_table_data) = cur_insn_uid++;
5115 PATTERN (jump_table_data) = table;
5116 BLOCK_FOR_INSN (jump_table_data) = NULL;
5117 add_insn (jump_table_data);
5118 return jump_table_data;
5119 }
5120
5121 /* Make an insn of code BARRIER
5122 and add it to the end of the doubly-linked list. */
5123
5124 rtx_barrier *
5125 emit_barrier (void)
5126 {
5127 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5128 INSN_UID (barrier) = cur_insn_uid++;
5129 add_insn (barrier);
5130 return barrier;
5131 }
5132
5133 /* Emit a copy of note ORIG. */
5134
5135 rtx_note *
5136 emit_note_copy (rtx_note *orig)
5137 {
5138 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5139 rtx_note *note = make_note_raw (kind);
5140 NOTE_DATA (note) = NOTE_DATA (orig);
5141 add_insn (note);
5142 return note;
5143 }
5144
5145 /* Make an insn of code NOTE or type NOTE_NO
5146 and add it to the end of the doubly-linked list. */
5147
5148 rtx_note *
5149 emit_note (enum insn_note kind)
5150 {
5151 rtx_note *note = make_note_raw (kind);
5152 add_insn (note);
5153 return note;
5154 }
5155
5156 /* Emit a clobber of lvalue X. */
5157
5158 rtx_insn *
5159 emit_clobber (rtx x)
5160 {
5161 /* CONCATs should not appear in the insn stream. */
5162 if (GET_CODE (x) == CONCAT)
5163 {
5164 emit_clobber (XEXP (x, 0));
5165 return emit_clobber (XEXP (x, 1));
5166 }
5167 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5168 }
5169
5170 /* Return a sequence of insns to clobber lvalue X. */
5171
5172 rtx_insn *
5173 gen_clobber (rtx x)
5174 {
5175 rtx_insn *seq;
5176
5177 start_sequence ();
5178 emit_clobber (x);
5179 seq = get_insns ();
5180 end_sequence ();
5181 return seq;
5182 }
5183
5184 /* Emit a use of rvalue X. */
5185
5186 rtx_insn *
5187 emit_use (rtx x)
5188 {
5189 /* CONCATs should not appear in the insn stream. */
5190 if (GET_CODE (x) == CONCAT)
5191 {
5192 emit_use (XEXP (x, 0));
5193 return emit_use (XEXP (x, 1));
5194 }
5195 return emit_insn (gen_rtx_USE (VOIDmode, x));
5196 }
5197
5198 /* Return a sequence of insns to use rvalue X. */
5199
5200 rtx_insn *
5201 gen_use (rtx x)
5202 {
5203 rtx_insn *seq;
5204
5205 start_sequence ();
5206 emit_use (x);
5207 seq = get_insns ();
5208 end_sequence ();
5209 return seq;
5210 }
5211
5212 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5213 Return the set in INSN that such notes describe, or NULL if the notes
5214 have no meaning for INSN. */
5215
5216 rtx
5217 set_for_reg_notes (rtx insn)
5218 {
5219 rtx pat, reg;
5220
5221 if (!INSN_P (insn))
5222 return NULL_RTX;
5223
5224 pat = PATTERN (insn);
5225 if (GET_CODE (pat) == PARALLEL)
5226 {
5227 /* We do not use single_set because that ignores SETs of unused
5228 registers. REG_EQUAL and REG_EQUIV notes really do require the
5229 PARALLEL to have a single SET. */
5230 if (multiple_sets (insn))
5231 return NULL_RTX;
5232 pat = XVECEXP (pat, 0, 0);
5233 }
5234
5235 if (GET_CODE (pat) != SET)
5236 return NULL_RTX;
5237
5238 reg = SET_DEST (pat);
5239
5240 /* Notes apply to the contents of a STRICT_LOW_PART. */
5241 if (GET_CODE (reg) == STRICT_LOW_PART
5242 || GET_CODE (reg) == ZERO_EXTRACT)
5243 reg = XEXP (reg, 0);
5244
5245 /* Check that we have a register. */
5246 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5247 return NULL_RTX;
5248
5249 return pat;
5250 }
5251
5252 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5253 note of this type already exists, remove it first. */
5254
5255 rtx
5256 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5257 {
5258 rtx note = find_reg_note (insn, kind, NULL_RTX);
5259
5260 switch (kind)
5261 {
5262 case REG_EQUAL:
5263 case REG_EQUIV:
5264 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5265 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5266 return NULL_RTX;
5267
5268 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5269 It serves no useful purpose and breaks eliminate_regs. */
5270 if (GET_CODE (datum) == ASM_OPERANDS)
5271 return NULL_RTX;
5272
5273 /* Notes with side effects are dangerous. Even if the side-effect
5274 initially mirrors one in PATTERN (INSN), later optimizations
5275 might alter the way that the final register value is calculated
5276 and so move or alter the side-effect in some way. The note would
5277 then no longer be a valid substitution for SET_SRC. */
5278 if (side_effects_p (datum))
5279 return NULL_RTX;
5280 break;
5281
5282 default:
5283 break;
5284 }
5285
5286 if (note)
5287 XEXP (note, 0) = datum;
5288 else
5289 {
5290 add_reg_note (insn, kind, datum);
5291 note = REG_NOTES (insn);
5292 }
5293
5294 switch (kind)
5295 {
5296 case REG_EQUAL:
5297 case REG_EQUIV:
5298 df_notes_rescan (as_a <rtx_insn *> (insn));
5299 break;
5300 default:
5301 break;
5302 }
5303
5304 return note;
5305 }
5306
5307 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5308 rtx
5309 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5310 {
5311 rtx set = set_for_reg_notes (insn);
5312
5313 if (set && SET_DEST (set) == dst)
5314 return set_unique_reg_note (insn, kind, datum);
5315 return NULL_RTX;
5316 }
5317 \f
5318 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5319 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5320 is true.
5321
5322 If X is a label, it is simply added into the insn chain. */
5323
5324 rtx_insn *
5325 emit (rtx x, bool allow_barrier_p)
5326 {
5327 enum rtx_code code = classify_insn (x);
5328
5329 switch (code)
5330 {
5331 case CODE_LABEL:
5332 return emit_label (x);
5333 case INSN:
5334 return emit_insn (x);
5335 case JUMP_INSN:
5336 {
5337 rtx_insn *insn = emit_jump_insn (x);
5338 if (allow_barrier_p
5339 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5340 return emit_barrier ();
5341 return insn;
5342 }
5343 case CALL_INSN:
5344 return emit_call_insn (x);
5345 case DEBUG_INSN:
5346 return emit_debug_insn (x);
5347 default:
5348 gcc_unreachable ();
5349 }
5350 }
5351 \f
5352 /* Space for free sequence stack entries. */
5353 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5354
5355 /* Begin emitting insns to a sequence. If this sequence will contain
5356 something that might cause the compiler to pop arguments to function
5357 calls (because those pops have previously been deferred; see
5358 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5359 before calling this function. That will ensure that the deferred
5360 pops are not accidentally emitted in the middle of this sequence. */
5361
5362 void
5363 start_sequence (void)
5364 {
5365 struct sequence_stack *tem;
5366
5367 if (free_sequence_stack != NULL)
5368 {
5369 tem = free_sequence_stack;
5370 free_sequence_stack = tem->next;
5371 }
5372 else
5373 tem = ggc_alloc<sequence_stack> ();
5374
5375 tem->next = get_current_sequence ()->next;
5376 tem->first = get_insns ();
5377 tem->last = get_last_insn ();
5378 get_current_sequence ()->next = tem;
5379
5380 set_first_insn (0);
5381 set_last_insn (0);
5382 }
5383
5384 /* Set up the insn chain starting with FIRST as the current sequence,
5385 saving the previously current one. See the documentation for
5386 start_sequence for more information about how to use this function. */
5387
5388 void
5389 push_to_sequence (rtx_insn *first)
5390 {
5391 rtx_insn *last;
5392
5393 start_sequence ();
5394
5395 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5396 ;
5397
5398 set_first_insn (first);
5399 set_last_insn (last);
5400 }
5401
5402 /* Like push_to_sequence, but take the last insn as an argument to avoid
5403 looping through the list. */
5404
5405 void
5406 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5407 {
5408 start_sequence ();
5409
5410 set_first_insn (first);
5411 set_last_insn (last);
5412 }
5413
5414 /* Set up the outer-level insn chain
5415 as the current sequence, saving the previously current one. */
5416
5417 void
5418 push_topmost_sequence (void)
5419 {
5420 struct sequence_stack *top;
5421
5422 start_sequence ();
5423
5424 top = get_topmost_sequence ();
5425 set_first_insn (top->first);
5426 set_last_insn (top->last);
5427 }
5428
5429 /* After emitting to the outer-level insn chain, update the outer-level
5430 insn chain, and restore the previous saved state. */
5431
5432 void
5433 pop_topmost_sequence (void)
5434 {
5435 struct sequence_stack *top;
5436
5437 top = get_topmost_sequence ();
5438 top->first = get_insns ();
5439 top->last = get_last_insn ();
5440
5441 end_sequence ();
5442 }
5443
5444 /* After emitting to a sequence, restore previous saved state.
5445
5446 To get the contents of the sequence just made, you must call
5447 `get_insns' *before* calling here.
5448
5449 If the compiler might have deferred popping arguments while
5450 generating this sequence, and this sequence will not be immediately
5451 inserted into the instruction stream, use do_pending_stack_adjust
5452 before calling get_insns. That will ensure that the deferred
5453 pops are inserted into this sequence, and not into some random
5454 location in the instruction stream. See INHIBIT_DEFER_POP for more
5455 information about deferred popping of arguments. */
5456
5457 void
5458 end_sequence (void)
5459 {
5460 struct sequence_stack *tem = get_current_sequence ()->next;
5461
5462 set_first_insn (tem->first);
5463 set_last_insn (tem->last);
5464 get_current_sequence ()->next = tem->next;
5465
5466 memset (tem, 0, sizeof (*tem));
5467 tem->next = free_sequence_stack;
5468 free_sequence_stack = tem;
5469 }
5470
5471 /* Return 1 if currently emitting into a sequence. */
5472
5473 int
5474 in_sequence_p (void)
5475 {
5476 return get_current_sequence ()->next != 0;
5477 }
5478 \f
5479 /* Put the various virtual registers into REGNO_REG_RTX. */
5480
5481 static void
5482 init_virtual_regs (void)
5483 {
5484 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5485 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5486 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5487 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5488 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5489 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5490 = virtual_preferred_stack_boundary_rtx;
5491 }
5492
5493 \f
5494 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5495 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5496 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5497 static int copy_insn_n_scratches;
5498
5499 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5500 copied an ASM_OPERANDS.
5501 In that case, it is the original input-operand vector. */
5502 static rtvec orig_asm_operands_vector;
5503
5504 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5505 copied an ASM_OPERANDS.
5506 In that case, it is the copied input-operand vector. */
5507 static rtvec copy_asm_operands_vector;
5508
5509 /* Likewise for the constraints vector. */
5510 static rtvec orig_asm_constraints_vector;
5511 static rtvec copy_asm_constraints_vector;
5512
5513 /* Recursively create a new copy of an rtx for copy_insn.
5514 This function differs from copy_rtx in that it handles SCRATCHes and
5515 ASM_OPERANDs properly.
5516 Normally, this function is not used directly; use copy_insn as front end.
5517 However, you could first copy an insn pattern with copy_insn and then use
5518 this function afterwards to properly copy any REG_NOTEs containing
5519 SCRATCHes. */
5520
5521 rtx
5522 copy_insn_1 (rtx orig)
5523 {
5524 rtx copy;
5525 int i, j;
5526 RTX_CODE code;
5527 const char *format_ptr;
5528
5529 if (orig == NULL)
5530 return NULL;
5531
5532 code = GET_CODE (orig);
5533
5534 switch (code)
5535 {
5536 case REG:
5537 case DEBUG_EXPR:
5538 CASE_CONST_ANY:
5539 case SYMBOL_REF:
5540 case CODE_LABEL:
5541 case PC:
5542 case CC0:
5543 case RETURN:
5544 case SIMPLE_RETURN:
5545 return orig;
5546 case CLOBBER:
5547 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5548 clobbers or clobbers of hard registers that originated as pseudos.
5549 This is needed to allow safe register renaming. */
5550 if (REG_P (XEXP (orig, 0))
5551 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5552 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5553 return orig;
5554 break;
5555
5556 case SCRATCH:
5557 for (i = 0; i < copy_insn_n_scratches; i++)
5558 if (copy_insn_scratch_in[i] == orig)
5559 return copy_insn_scratch_out[i];
5560 break;
5561
5562 case CONST:
5563 if (shared_const_p (orig))
5564 return orig;
5565 break;
5566
5567 /* A MEM with a constant address is not sharable. The problem is that
5568 the constant address may need to be reloaded. If the mem is shared,
5569 then reloading one copy of this mem will cause all copies to appear
5570 to have been reloaded. */
5571
5572 default:
5573 break;
5574 }
5575
5576 /* Copy the various flags, fields, and other information. We assume
5577 that all fields need copying, and then clear the fields that should
5578 not be copied. That is the sensible default behavior, and forces
5579 us to explicitly document why we are *not* copying a flag. */
5580 copy = shallow_copy_rtx (orig);
5581
5582 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5583 if (INSN_P (orig))
5584 {
5585 RTX_FLAG (copy, jump) = 0;
5586 RTX_FLAG (copy, call) = 0;
5587 RTX_FLAG (copy, frame_related) = 0;
5588 }
5589
5590 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5591
5592 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5593 switch (*format_ptr++)
5594 {
5595 case 'e':
5596 if (XEXP (orig, i) != NULL)
5597 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5598 break;
5599
5600 case 'E':
5601 case 'V':
5602 if (XVEC (orig, i) == orig_asm_constraints_vector)
5603 XVEC (copy, i) = copy_asm_constraints_vector;
5604 else if (XVEC (orig, i) == orig_asm_operands_vector)
5605 XVEC (copy, i) = copy_asm_operands_vector;
5606 else if (XVEC (orig, i) != NULL)
5607 {
5608 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5609 for (j = 0; j < XVECLEN (copy, i); j++)
5610 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5611 }
5612 break;
5613
5614 case 't':
5615 case 'w':
5616 case 'i':
5617 case 's':
5618 case 'S':
5619 case 'u':
5620 case '0':
5621 /* These are left unchanged. */
5622 break;
5623
5624 default:
5625 gcc_unreachable ();
5626 }
5627
5628 if (code == SCRATCH)
5629 {
5630 i = copy_insn_n_scratches++;
5631 gcc_assert (i < MAX_RECOG_OPERANDS);
5632 copy_insn_scratch_in[i] = orig;
5633 copy_insn_scratch_out[i] = copy;
5634 }
5635 else if (code == ASM_OPERANDS)
5636 {
5637 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5638 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5639 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5640 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5641 }
5642
5643 return copy;
5644 }
5645
5646 /* Create a new copy of an rtx.
5647 This function differs from copy_rtx in that it handles SCRATCHes and
5648 ASM_OPERANDs properly.
5649 INSN doesn't really have to be a full INSN; it could be just the
5650 pattern. */
5651 rtx
5652 copy_insn (rtx insn)
5653 {
5654 copy_insn_n_scratches = 0;
5655 orig_asm_operands_vector = 0;
5656 orig_asm_constraints_vector = 0;
5657 copy_asm_operands_vector = 0;
5658 copy_asm_constraints_vector = 0;
5659 return copy_insn_1 (insn);
5660 }
5661
5662 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5663 on that assumption that INSN itself remains in its original place. */
5664
5665 rtx_insn *
5666 copy_delay_slot_insn (rtx_insn *insn)
5667 {
5668 /* Copy INSN with its rtx_code, all its notes, location etc. */
5669 insn = as_a <rtx_insn *> (copy_rtx (insn));
5670 INSN_UID (insn) = cur_insn_uid++;
5671 return insn;
5672 }
5673
5674 /* Initialize data structures and variables in this file
5675 before generating rtl for each function. */
5676
5677 void
5678 init_emit (void)
5679 {
5680 set_first_insn (NULL);
5681 set_last_insn (NULL);
5682 if (MIN_NONDEBUG_INSN_UID)
5683 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5684 else
5685 cur_insn_uid = 1;
5686 cur_debug_insn_uid = 1;
5687 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5688 first_label_num = label_num;
5689 get_current_sequence ()->next = NULL;
5690
5691 /* Init the tables that describe all the pseudo regs. */
5692
5693 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5694
5695 crtl->emit.regno_pointer_align
5696 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5697
5698 regno_reg_rtx
5699 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5700
5701 /* Put copies of all the hard registers into regno_reg_rtx. */
5702 memcpy (regno_reg_rtx,
5703 initial_regno_reg_rtx,
5704 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5705
5706 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5707 init_virtual_regs ();
5708
5709 /* Indicate that the virtual registers and stack locations are
5710 all pointers. */
5711 REG_POINTER (stack_pointer_rtx) = 1;
5712 REG_POINTER (frame_pointer_rtx) = 1;
5713 REG_POINTER (hard_frame_pointer_rtx) = 1;
5714 REG_POINTER (arg_pointer_rtx) = 1;
5715
5716 REG_POINTER (virtual_incoming_args_rtx) = 1;
5717 REG_POINTER (virtual_stack_vars_rtx) = 1;
5718 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5719 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5720 REG_POINTER (virtual_cfa_rtx) = 1;
5721
5722 #ifdef STACK_BOUNDARY
5723 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5724 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5725 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5726 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5727
5728 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5729 32-bit SPARC and cannot be all fixed because of the ABI). */
5730 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5731 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5732 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5733 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5734
5735 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5736 #endif
5737
5738 #ifdef INIT_EXPANDERS
5739 INIT_EXPANDERS;
5740 #endif
5741 }
5742
5743 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5744
5745 static rtx
5746 gen_const_vector (machine_mode mode, int constant)
5747 {
5748 rtx tem;
5749 rtvec v;
5750 int units, i;
5751 machine_mode inner;
5752
5753 units = GET_MODE_NUNITS (mode);
5754 inner = GET_MODE_INNER (mode);
5755
5756 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5757
5758 v = rtvec_alloc (units);
5759
5760 /* We need to call this function after we set the scalar const_tiny_rtx
5761 entries. */
5762 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5763
5764 for (i = 0; i < units; ++i)
5765 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5766
5767 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5768 return tem;
5769 }
5770
5771 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5772 all elements are zero, and the one vector when all elements are one. */
5773 rtx
5774 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5775 {
5776 machine_mode inner = GET_MODE_INNER (mode);
5777 int nunits = GET_MODE_NUNITS (mode);
5778 rtx x;
5779 int i;
5780
5781 /* Check to see if all of the elements have the same value. */
5782 x = RTVEC_ELT (v, nunits - 1);
5783 for (i = nunits - 2; i >= 0; i--)
5784 if (RTVEC_ELT (v, i) != x)
5785 break;
5786
5787 /* If the values are all the same, check to see if we can use one of the
5788 standard constant vectors. */
5789 if (i == -1)
5790 {
5791 if (x == CONST0_RTX (inner))
5792 return CONST0_RTX (mode);
5793 else if (x == CONST1_RTX (inner))
5794 return CONST1_RTX (mode);
5795 else if (x == CONSTM1_RTX (inner))
5796 return CONSTM1_RTX (mode);
5797 }
5798
5799 return gen_rtx_raw_CONST_VECTOR (mode, v);
5800 }
5801
5802 /* Initialise global register information required by all functions. */
5803
5804 void
5805 init_emit_regs (void)
5806 {
5807 int i;
5808 machine_mode mode;
5809 mem_attrs *attrs;
5810
5811 /* Reset register attributes */
5812 reg_attrs_htab->empty ();
5813
5814 /* We need reg_raw_mode, so initialize the modes now. */
5815 init_reg_modes_target ();
5816
5817 /* Assign register numbers to the globally defined register rtx. */
5818 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5819 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5820 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5821 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5822 virtual_incoming_args_rtx =
5823 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5824 virtual_stack_vars_rtx =
5825 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5826 virtual_stack_dynamic_rtx =
5827 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5828 virtual_outgoing_args_rtx =
5829 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5830 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5831 virtual_preferred_stack_boundary_rtx =
5832 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5833
5834 /* Initialize RTL for commonly used hard registers. These are
5835 copied into regno_reg_rtx as we begin to compile each function. */
5836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5837 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5838
5839 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5840 return_address_pointer_rtx
5841 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5842 #endif
5843
5844 pic_offset_table_rtx = NULL_RTX;
5845 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5846 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5847
5848 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5849 {
5850 mode = (machine_mode) i;
5851 attrs = ggc_cleared_alloc<mem_attrs> ();
5852 attrs->align = BITS_PER_UNIT;
5853 attrs->addrspace = ADDR_SPACE_GENERIC;
5854 if (mode != BLKmode)
5855 {
5856 attrs->size_known_p = true;
5857 attrs->size = GET_MODE_SIZE (mode);
5858 if (STRICT_ALIGNMENT)
5859 attrs->align = GET_MODE_ALIGNMENT (mode);
5860 }
5861 mode_mem_attrs[i] = attrs;
5862 }
5863 }
5864
5865 /* Initialize global machine_mode variables. */
5866
5867 void
5868 init_derived_machine_modes (void)
5869 {
5870 byte_mode = VOIDmode;
5871 word_mode = VOIDmode;
5872
5873 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5874 mode != VOIDmode;
5875 mode = GET_MODE_WIDER_MODE (mode))
5876 {
5877 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5878 && byte_mode == VOIDmode)
5879 byte_mode = mode;
5880
5881 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5882 && word_mode == VOIDmode)
5883 word_mode = mode;
5884 }
5885
5886 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5887 }
5888
5889 /* Create some permanent unique rtl objects shared between all functions. */
5890
5891 void
5892 init_emit_once (void)
5893 {
5894 int i;
5895 machine_mode mode;
5896 machine_mode double_mode;
5897
5898 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5899 CONST_FIXED, and memory attribute hash tables. */
5900 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5901
5902 #if TARGET_SUPPORTS_WIDE_INT
5903 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5904 #endif
5905 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5906
5907 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5908
5909 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5910
5911 #ifdef INIT_EXPANDERS
5912 /* This is to initialize {init|mark|free}_machine_status before the first
5913 call to push_function_context_to. This is needed by the Chill front
5914 end which calls push_function_context_to before the first call to
5915 init_function_start. */
5916 INIT_EXPANDERS;
5917 #endif
5918
5919 /* Create the unique rtx's for certain rtx codes and operand values. */
5920
5921 /* Process stack-limiting command-line options. */
5922 if (opt_fstack_limit_symbol_arg != NULL)
5923 stack_limit_rtx
5924 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5925 if (opt_fstack_limit_register_no >= 0)
5926 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5927
5928 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5929 tries to use these variables. */
5930 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5931 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5932 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5933
5934 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5935 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5936 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5937 else
5938 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5939
5940 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5941
5942 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5943 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5944 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5945
5946 dconstm1 = dconst1;
5947 dconstm1.sign = 1;
5948
5949 dconsthalf = dconst1;
5950 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5951
5952 for (i = 0; i < 3; i++)
5953 {
5954 const REAL_VALUE_TYPE *const r =
5955 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5956
5957 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5958 mode != VOIDmode;
5959 mode = GET_MODE_WIDER_MODE (mode))
5960 const_tiny_rtx[i][(int) mode] =
5961 const_double_from_real_value (*r, mode);
5962
5963 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5964 mode != VOIDmode;
5965 mode = GET_MODE_WIDER_MODE (mode))
5966 const_tiny_rtx[i][(int) mode] =
5967 const_double_from_real_value (*r, mode);
5968
5969 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5970
5971 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5972 mode != VOIDmode;
5973 mode = GET_MODE_WIDER_MODE (mode))
5974 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5975
5976 for (mode = MIN_MODE_PARTIAL_INT;
5977 mode <= MAX_MODE_PARTIAL_INT;
5978 mode = (machine_mode)((int)(mode) + 1))
5979 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5980 }
5981
5982 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5983
5984 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5985 mode != VOIDmode;
5986 mode = GET_MODE_WIDER_MODE (mode))
5987 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5988
5989 for (mode = MIN_MODE_PARTIAL_INT;
5990 mode <= MAX_MODE_PARTIAL_INT;
5991 mode = (machine_mode)((int)(mode) + 1))
5992 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5993
5994 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5995 mode != VOIDmode;
5996 mode = GET_MODE_WIDER_MODE (mode))
5997 {
5998 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5999 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6000 }
6001
6002 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6003 mode != VOIDmode;
6004 mode = GET_MODE_WIDER_MODE (mode))
6005 {
6006 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6007 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6008 }
6009
6010 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6011 mode != VOIDmode;
6012 mode = GET_MODE_WIDER_MODE (mode))
6013 {
6014 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6015 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6016 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6017 }
6018
6019 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6020 mode != VOIDmode;
6021 mode = GET_MODE_WIDER_MODE (mode))
6022 {
6023 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6024 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6025 }
6026
6027 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6028 mode != VOIDmode;
6029 mode = GET_MODE_WIDER_MODE (mode))
6030 {
6031 FCONST0 (mode).data.high = 0;
6032 FCONST0 (mode).data.low = 0;
6033 FCONST0 (mode).mode = mode;
6034 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6035 FCONST0 (mode), mode);
6036 }
6037
6038 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6039 mode != VOIDmode;
6040 mode = GET_MODE_WIDER_MODE (mode))
6041 {
6042 FCONST0 (mode).data.high = 0;
6043 FCONST0 (mode).data.low = 0;
6044 FCONST0 (mode).mode = mode;
6045 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6046 FCONST0 (mode), mode);
6047 }
6048
6049 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6050 mode != VOIDmode;
6051 mode = GET_MODE_WIDER_MODE (mode))
6052 {
6053 FCONST0 (mode).data.high = 0;
6054 FCONST0 (mode).data.low = 0;
6055 FCONST0 (mode).mode = mode;
6056 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6057 FCONST0 (mode), mode);
6058
6059 /* We store the value 1. */
6060 FCONST1 (mode).data.high = 0;
6061 FCONST1 (mode).data.low = 0;
6062 FCONST1 (mode).mode = mode;
6063 FCONST1 (mode).data
6064 = double_int_one.lshift (GET_MODE_FBIT (mode),
6065 HOST_BITS_PER_DOUBLE_INT,
6066 SIGNED_FIXED_POINT_MODE_P (mode));
6067 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6068 FCONST1 (mode), mode);
6069 }
6070
6071 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6072 mode != VOIDmode;
6073 mode = GET_MODE_WIDER_MODE (mode))
6074 {
6075 FCONST0 (mode).data.high = 0;
6076 FCONST0 (mode).data.low = 0;
6077 FCONST0 (mode).mode = mode;
6078 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6079 FCONST0 (mode), mode);
6080
6081 /* We store the value 1. */
6082 FCONST1 (mode).data.high = 0;
6083 FCONST1 (mode).data.low = 0;
6084 FCONST1 (mode).mode = mode;
6085 FCONST1 (mode).data
6086 = double_int_one.lshift (GET_MODE_FBIT (mode),
6087 HOST_BITS_PER_DOUBLE_INT,
6088 SIGNED_FIXED_POINT_MODE_P (mode));
6089 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6090 FCONST1 (mode), mode);
6091 }
6092
6093 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6094 mode != VOIDmode;
6095 mode = GET_MODE_WIDER_MODE (mode))
6096 {
6097 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6098 }
6099
6100 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6101 mode != VOIDmode;
6102 mode = GET_MODE_WIDER_MODE (mode))
6103 {
6104 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6105 }
6106
6107 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6108 mode != VOIDmode;
6109 mode = GET_MODE_WIDER_MODE (mode))
6110 {
6111 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6112 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6113 }
6114
6115 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6116 mode != VOIDmode;
6117 mode = GET_MODE_WIDER_MODE (mode))
6118 {
6119 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6120 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6121 }
6122
6123 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6124 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6125 const_tiny_rtx[0][i] = const0_rtx;
6126
6127 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6128 if (STORE_FLAG_VALUE == 1)
6129 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6130
6131 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6132 mode != VOIDmode;
6133 mode = GET_MODE_WIDER_MODE (mode))
6134 {
6135 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6136 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6137 }
6138
6139 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6140 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6141 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6142 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6143 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6144 /*prev_insn=*/NULL,
6145 /*next_insn=*/NULL,
6146 /*bb=*/NULL,
6147 /*pattern=*/NULL_RTX,
6148 /*location=*/-1,
6149 CODE_FOR_nothing,
6150 /*reg_notes=*/NULL_RTX);
6151 }
6152 \f
6153 /* Produce exact duplicate of insn INSN after AFTER.
6154 Care updating of libcall regions if present. */
6155
6156 rtx_insn *
6157 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6158 {
6159 rtx_insn *new_rtx;
6160 rtx link;
6161
6162 switch (GET_CODE (insn))
6163 {
6164 case INSN:
6165 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6166 break;
6167
6168 case JUMP_INSN:
6169 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6170 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6171 break;
6172
6173 case DEBUG_INSN:
6174 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6175 break;
6176
6177 case CALL_INSN:
6178 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6179 if (CALL_INSN_FUNCTION_USAGE (insn))
6180 CALL_INSN_FUNCTION_USAGE (new_rtx)
6181 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6182 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6183 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6184 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6185 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6186 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6187 break;
6188
6189 default:
6190 gcc_unreachable ();
6191 }
6192
6193 /* Update LABEL_NUSES. */
6194 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6195
6196 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6197
6198 /* If the old insn is frame related, then so is the new one. This is
6199 primarily needed for IA-64 unwind info which marks epilogue insns,
6200 which may be duplicated by the basic block reordering code. */
6201 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6202
6203 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6204 rtx *ptail = &REG_NOTES (new_rtx);
6205 while (*ptail != NULL_RTX)
6206 ptail = &XEXP (*ptail, 1);
6207
6208 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6209 will make them. REG_LABEL_TARGETs are created there too, but are
6210 supposed to be sticky, so we copy them. */
6211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6212 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6213 {
6214 *ptail = duplicate_reg_note (link);
6215 ptail = &XEXP (*ptail, 1);
6216 }
6217
6218 INSN_CODE (new_rtx) = INSN_CODE (insn);
6219 return new_rtx;
6220 }
6221
6222 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6223 rtx
6224 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6225 {
6226 if (hard_reg_clobbers[mode][regno])
6227 return hard_reg_clobbers[mode][regno];
6228 else
6229 return (hard_reg_clobbers[mode][regno] =
6230 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6231 }
6232
6233 location_t prologue_location;
6234 location_t epilogue_location;
6235
6236 /* Hold current location information and last location information, so the
6237 datastructures are built lazily only when some instructions in given
6238 place are needed. */
6239 static location_t curr_location;
6240
6241 /* Allocate insn location datastructure. */
6242 void
6243 insn_locations_init (void)
6244 {
6245 prologue_location = epilogue_location = 0;
6246 curr_location = UNKNOWN_LOCATION;
6247 }
6248
6249 /* At the end of emit stage, clear current location. */
6250 void
6251 insn_locations_finalize (void)
6252 {
6253 epilogue_location = curr_location;
6254 curr_location = UNKNOWN_LOCATION;
6255 }
6256
6257 /* Set current location. */
6258 void
6259 set_curr_insn_location (location_t location)
6260 {
6261 curr_location = location;
6262 }
6263
6264 /* Get current location. */
6265 location_t
6266 curr_insn_location (void)
6267 {
6268 return curr_location;
6269 }
6270
6271 /* Return lexical scope block insn belongs to. */
6272 tree
6273 insn_scope (const rtx_insn *insn)
6274 {
6275 return LOCATION_BLOCK (INSN_LOCATION (insn));
6276 }
6277
6278 /* Return line number of the statement that produced this insn. */
6279 int
6280 insn_line (const rtx_insn *insn)
6281 {
6282 return LOCATION_LINE (INSN_LOCATION (insn));
6283 }
6284
6285 /* Return source file of the statement that produced this insn. */
6286 const char *
6287 insn_file (const rtx_insn *insn)
6288 {
6289 return LOCATION_FILE (INSN_LOCATION (insn));
6290 }
6291
6292 /* Return expanded location of the statement that produced this insn. */
6293 expanded_location
6294 insn_location (const rtx_insn *insn)
6295 {
6296 return expand_location (INSN_LOCATION (insn));
6297 }
6298
6299 /* Return true if memory model MODEL requires a pre-operation (release-style)
6300 barrier or a post-operation (acquire-style) barrier. While not universal,
6301 this function matches behavior of several targets. */
6302
6303 bool
6304 need_atomic_barrier_p (enum memmodel model, bool pre)
6305 {
6306 switch (model & MEMMODEL_BASE_MASK)
6307 {
6308 case MEMMODEL_RELAXED:
6309 case MEMMODEL_CONSUME:
6310 return false;
6311 case MEMMODEL_RELEASE:
6312 return pre;
6313 case MEMMODEL_ACQUIRE:
6314 return !pre;
6315 case MEMMODEL_ACQ_REL:
6316 case MEMMODEL_SEQ_CST:
6317 return true;
6318 default:
6319 gcc_unreachable ();
6320 }
6321 }
6322
6323 /* Initialize fields of rtl_data related to stack alignment. */
6324
6325 void
6326 rtl_data::init_stack_alignment ()
6327 {
6328 stack_alignment_needed = STACK_BOUNDARY;
6329 max_used_stack_slot_alignment = STACK_BOUNDARY;
6330 stack_alignment_estimated = 0;
6331 preferred_stack_boundary = STACK_BOUNDARY;
6332 }
6333
6334 \f
6335 #include "gt-emit-rtl.h"