emit-rtl.c (gen_rtx_REG): After reload...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112
113 /* All references to the following fixed hard registers go through
114 these unique rtl objects. On machines where the frame-pointer and
115 arg-pointer are the same register, they use the same unique object.
116
117 After register allocation, other rtl objects which used to be pseudo-regs
118 may be clobbered to refer to the frame-pointer register.
119 But references that were originally to the frame-pointer can be
120 distinguished from the others because they contain frame_pointer_rtx.
121
122 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
123 tricky: until register elimination has taken place hard_frame_pointer_rtx
124 should be used if it is being set, and frame_pointer_rtx otherwise. After
125 register elimination hard_frame_pointer_rtx should always be used.
126 On machines where the two registers are same (most) then these are the
127 same.
128
129 In an inline procedure, the stack and frame pointer rtxs may not be
130 used for anything else. */
131 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
132 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
133 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
134 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
136
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
140
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
145
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
147
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
150
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
153
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
157
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
161
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_linenum (cfun->emit->x_last_linenum)
166 #define last_filename (cfun->emit->x_last_filename)
167 #define first_label_num (cfun->emit->x_first_label_num)
168
169 static rtx make_jump_insn_raw PARAMS ((rtx));
170 static rtx make_call_insn_raw PARAMS ((rtx));
171 static rtx find_line_note PARAMS ((rtx));
172 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
173 int));
174 static void unshare_all_rtl_1 PARAMS ((rtx));
175 static void unshare_all_decls PARAMS ((tree));
176 static void reset_used_decls PARAMS ((tree));
177 static void mark_label_nuses PARAMS ((rtx));
178 static hashval_t const_int_htab_hash PARAMS ((const void *));
179 static int const_int_htab_eq PARAMS ((const void *,
180 const void *));
181 static hashval_t const_double_htab_hash PARAMS ((const void *));
182 static int const_double_htab_eq PARAMS ((const void *,
183 const void *));
184 static rtx lookup_const_double PARAMS ((rtx));
185 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
186 static int mem_attrs_htab_eq PARAMS ((const void *,
187 const void *));
188 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
189 rtx, unsigned int,
190 enum machine_mode));
191 static tree component_ref_for_mem_expr PARAMS ((tree));
192 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
193
194 /* Probability of the conditional branch currently proceeded by try_split.
195 Set to -1 otherwise. */
196 int split_branch_probability = -1;
197 \f
198 /* Returns a hash code for X (which is a really a CONST_INT). */
199
200 static hashval_t
201 const_int_htab_hash (x)
202 const void *x;
203 {
204 return (hashval_t) INTVAL ((struct rtx_def *) x);
205 }
206
207 /* Returns non-zero if the value represented by X (which is really a
208 CONST_INT) is the same as that given by Y (which is really a
209 HOST_WIDE_INT *). */
210
211 static int
212 const_int_htab_eq (x, y)
213 const void *x;
214 const void *y;
215 {
216 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
217 }
218
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
220 static hashval_t
221 const_double_htab_hash (x)
222 const void *x;
223 {
224 hashval_t h = 0;
225 size_t i;
226 rtx value = (rtx) x;
227
228 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
229 h ^= XWINT (value, i);
230 return h;
231 }
232
233 /* Returns non-zero if the value represented by X (really a ...)
234 is the same as that represented by Y (really a ...) */
235 static int
236 const_double_htab_eq (x, y)
237 const void *x;
238 const void *y;
239 {
240 rtx a = (rtx)x, b = (rtx)y;
241 size_t i;
242
243 if (GET_MODE (a) != GET_MODE (b))
244 return 0;
245 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
246 if (XWINT (a, i) != XWINT (b, i))
247 return 0;
248
249 return 1;
250 }
251
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
253
254 static hashval_t
255 mem_attrs_htab_hash (x)
256 const void *x;
257 {
258 mem_attrs *p = (mem_attrs *) x;
259
260 return (p->alias ^ (p->align * 1000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) p->expr);
264 }
265
266 /* Returns non-zero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
269
270 static int
271 mem_attrs_htab_eq (x, y)
272 const void *x;
273 const void *y;
274 {
275 mem_attrs *p = (mem_attrs *) x;
276 mem_attrs *q = (mem_attrs *) y;
277
278 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
279 && p->size == q->size && p->align == q->align);
280 }
281
282 /* Allocate a new mem_attrs structure and insert it into the hash table if
283 one identical to it is not already in the table. We are doing this for
284 MEM of mode MODE. */
285
286 static mem_attrs *
287 get_mem_attrs (alias, expr, offset, size, align, mode)
288 HOST_WIDE_INT alias;
289 tree expr;
290 rtx offset;
291 rtx size;
292 unsigned int align;
293 enum machine_mode mode;
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (align == BITS_PER_UNIT
303 || (STRICT_ALIGNMENT
304 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
305 return 0;
306
307 attrs.alias = alias;
308 attrs.expr = expr;
309 attrs.offset = offset;
310 attrs.size = size;
311 attrs.align = align;
312
313 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
314 if (*slot == 0)
315 {
316 *slot = ggc_alloc (sizeof (mem_attrs));
317 memcpy (*slot, &attrs, sizeof (mem_attrs));
318 }
319
320 return *slot;
321 }
322
323 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
324 don't attempt to share with the various global pieces of rtl (such as
325 frame_pointer_rtx). */
326
327 rtx
328 gen_raw_REG (mode, regno)
329 enum machine_mode mode;
330 int regno;
331 {
332 rtx x = gen_rtx_raw_REG (mode, regno);
333 ORIGINAL_REGNO (x) = regno;
334 return x;
335 }
336
337 /* There are some RTL codes that require special attention; the generation
338 functions do the raw handling. If you add to this list, modify
339 special_rtx in gengenrtl.c as well. */
340
341 rtx
342 gen_rtx_CONST_INT (mode, arg)
343 enum machine_mode mode ATTRIBUTE_UNUSED;
344 HOST_WIDE_INT arg;
345 {
346 void **slot;
347
348 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
349 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
350
351 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
352 if (const_true_rtx && arg == STORE_FLAG_VALUE)
353 return const_true_rtx;
354 #endif
355
356 /* Look up the CONST_INT in the hash table. */
357 slot = htab_find_slot_with_hash (const_int_htab, &arg,
358 (hashval_t) arg, INSERT);
359 if (*slot == 0)
360 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
361
362 return (rtx) *slot;
363 }
364
365 rtx
366 gen_int_mode (c, mode)
367 HOST_WIDE_INT c;
368 enum machine_mode mode;
369 {
370 return GEN_INT (trunc_int_for_mode (c, mode));
371 }
372
373 /* CONST_DOUBLEs might be created from pairs of integers, or from
374 REAL_VALUE_TYPEs. Also, their length is known only at run time,
375 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
376
377 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
378 hash table. If so, return its counterpart; otherwise add it
379 to the hash table and return it. */
380 static rtx
381 lookup_const_double (real)
382 rtx real;
383 {
384 void **slot = htab_find_slot (const_double_htab, real, INSERT);
385 if (*slot == 0)
386 *slot = real;
387
388 return (rtx) *slot;
389 }
390
391 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
392 VALUE in mode MODE. */
393 rtx
394 const_double_from_real_value (value, mode)
395 REAL_VALUE_TYPE value;
396 enum machine_mode mode;
397 {
398 rtx real = rtx_alloc (CONST_DOUBLE);
399 PUT_MODE (real, mode);
400
401 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
402
403 return lookup_const_double (real);
404 }
405
406 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
407 of ints: I0 is the low-order word and I1 is the high-order word.
408 Do not use this routine for non-integer modes; convert to
409 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
410
411 rtx
412 immed_double_const (i0, i1, mode)
413 HOST_WIDE_INT i0, i1;
414 enum machine_mode mode;
415 {
416 rtx value;
417 unsigned int i;
418
419 if (mode != VOIDmode)
420 {
421 int width;
422 if (GET_MODE_CLASS (mode) != MODE_INT
423 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
424 /* We can get a 0 for an error mark. */
425 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
426 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
427 abort ();
428
429 /* We clear out all bits that don't belong in MODE, unless they and
430 our sign bit are all one. So we get either a reasonable negative
431 value or a reasonable unsigned value for this mode. */
432 width = GET_MODE_BITSIZE (mode);
433 if (width < HOST_BITS_PER_WIDE_INT
434 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
435 != ((HOST_WIDE_INT) (-1) << (width - 1))))
436 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
437 else if (width == HOST_BITS_PER_WIDE_INT
438 && ! (i1 == ~0 && i0 < 0))
439 i1 = 0;
440 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
441 /* We cannot represent this value as a constant. */
442 abort ();
443
444 /* If this would be an entire word for the target, but is not for
445 the host, then sign-extend on the host so that the number will
446 look the same way on the host that it would on the target.
447
448 For example, when building a 64 bit alpha hosted 32 bit sparc
449 targeted compiler, then we want the 32 bit unsigned value -1 to be
450 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
451 The latter confuses the sparc backend. */
452
453 if (width < HOST_BITS_PER_WIDE_INT
454 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
455 i0 |= ((HOST_WIDE_INT) (-1) << width);
456
457 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
458 CONST_INT.
459
460 ??? Strictly speaking, this is wrong if we create a CONST_INT for
461 a large unsigned constant with the size of MODE being
462 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
463 in a wider mode. In that case we will mis-interpret it as a
464 negative number.
465
466 Unfortunately, the only alternative is to make a CONST_DOUBLE for
467 any constant in any mode if it is an unsigned constant larger
468 than the maximum signed integer in an int on the host. However,
469 doing this will break everyone that always expects to see a
470 CONST_INT for SImode and smaller.
471
472 We have always been making CONST_INTs in this case, so nothing
473 new is being broken. */
474
475 if (width <= HOST_BITS_PER_WIDE_INT)
476 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
477 }
478
479 /* If this integer fits in one word, return a CONST_INT. */
480 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
481 return GEN_INT (i0);
482
483 /* We use VOIDmode for integers. */
484 value = rtx_alloc (CONST_DOUBLE);
485 PUT_MODE (value, VOIDmode);
486
487 CONST_DOUBLE_LOW (value) = i0;
488 CONST_DOUBLE_HIGH (value) = i1;
489
490 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
491 XWINT (value, i) = 0;
492
493 return lookup_const_double (value);
494 }
495
496 rtx
497 gen_rtx_REG (mode, regno)
498 enum machine_mode mode;
499 unsigned int regno;
500 {
501 /* In case the MD file explicitly references the frame pointer, have
502 all such references point to the same frame pointer. This is
503 used during frame pointer elimination to distinguish the explicit
504 references to these registers from pseudos that happened to be
505 assigned to them.
506
507 If we have eliminated the frame pointer or arg pointer, we will
508 be using it as a normal register, for example as a spill
509 register. In such cases, we might be accessing it in a mode that
510 is not Pmode and therefore cannot use the pre-allocated rtx.
511
512 Also don't do this when we are making new REGs in reload, since
513 we don't want to get confused with the real pointers. */
514
515 if (mode == Pmode && !reload_in_progress)
516 {
517 if (regno == FRAME_POINTER_REGNUM
518 && (!reload_completed || frame_pointer_needed))
519 return frame_pointer_rtx;
520 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
521 if (regno == HARD_FRAME_POINTER_REGNUM
522 && (!reload_completed || frame_pointer_needed))
523 return hard_frame_pointer_rtx;
524 #endif
525 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
526 if (regno == ARG_POINTER_REGNUM)
527 return arg_pointer_rtx;
528 #endif
529 #ifdef RETURN_ADDRESS_POINTER_REGNUM
530 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
531 return return_address_pointer_rtx;
532 #endif
533 if (regno == PIC_OFFSET_TABLE_REGNUM
534 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
535 return pic_offset_table_rtx;
536 if (regno == STACK_POINTER_REGNUM)
537 return stack_pointer_rtx;
538 }
539
540 #if 0
541 /* If the per-function register table has been set up, try to re-use
542 an existing entry in that table to avoid useless generation of RTL.
543
544 This code is disabled for now until we can fix the various backends
545 which depend on having non-shared hard registers in some cases. Long
546 term we want to re-enable this code as it can significantly cut down
547 on the amount of useless RTL that gets generated.
548
549 We'll also need to fix some code that runs after reload that wants to
550 set ORIGINAL_REGNO. */
551
552 if (cfun
553 && cfun->emit
554 && regno_reg_rtx
555 && regno < FIRST_PSEUDO_REGISTER
556 && reg_raw_mode[regno] == mode)
557 return regno_reg_rtx[regno];
558 #endif
559
560 return gen_raw_REG (mode, regno);
561 }
562
563 rtx
564 gen_rtx_MEM (mode, addr)
565 enum machine_mode mode;
566 rtx addr;
567 {
568 rtx rt = gen_rtx_raw_MEM (mode, addr);
569
570 /* This field is not cleared by the mere allocation of the rtx, so
571 we clear it here. */
572 MEM_ATTRS (rt) = 0;
573
574 return rt;
575 }
576
577 rtx
578 gen_rtx_SUBREG (mode, reg, offset)
579 enum machine_mode mode;
580 rtx reg;
581 int offset;
582 {
583 /* This is the most common failure type.
584 Catch it early so we can see who does it. */
585 if ((offset % GET_MODE_SIZE (mode)) != 0)
586 abort ();
587
588 /* This check isn't usable right now because combine will
589 throw arbitrary crap like a CALL into a SUBREG in
590 gen_lowpart_for_combine so we must just eat it. */
591 #if 0
592 /* Check for this too. */
593 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
594 abort ();
595 #endif
596 return gen_rtx_raw_SUBREG (mode, reg, offset);
597 }
598
599 /* Generate a SUBREG representing the least-significant part of REG if MODE
600 is smaller than mode of REG, otherwise paradoxical SUBREG. */
601
602 rtx
603 gen_lowpart_SUBREG (mode, reg)
604 enum machine_mode mode;
605 rtx reg;
606 {
607 enum machine_mode inmode;
608
609 inmode = GET_MODE (reg);
610 if (inmode == VOIDmode)
611 inmode = mode;
612 return gen_rtx_SUBREG (mode, reg,
613 subreg_lowpart_offset (mode, inmode));
614 }
615 \f
616 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
617 **
618 ** This routine generates an RTX of the size specified by
619 ** <code>, which is an RTX code. The RTX structure is initialized
620 ** from the arguments <element1> through <elementn>, which are
621 ** interpreted according to the specific RTX type's format. The
622 ** special machine mode associated with the rtx (if any) is specified
623 ** in <mode>.
624 **
625 ** gen_rtx can be invoked in a way which resembles the lisp-like
626 ** rtx it will generate. For example, the following rtx structure:
627 **
628 ** (plus:QI (mem:QI (reg:SI 1))
629 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
630 **
631 ** ...would be generated by the following C code:
632 **
633 ** gen_rtx (PLUS, QImode,
634 ** gen_rtx (MEM, QImode,
635 ** gen_rtx (REG, SImode, 1)),
636 ** gen_rtx (MEM, QImode,
637 ** gen_rtx (PLUS, SImode,
638 ** gen_rtx (REG, SImode, 2),
639 ** gen_rtx (REG, SImode, 3)))),
640 */
641
642 /*VARARGS2*/
643 rtx
644 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
645 {
646 int i; /* Array indices... */
647 const char *fmt; /* Current rtx's format... */
648 rtx rt_val; /* RTX to return to caller... */
649
650 VA_OPEN (p, mode);
651 VA_FIXEDARG (p, enum rtx_code, code);
652 VA_FIXEDARG (p, enum machine_mode, mode);
653
654 switch (code)
655 {
656 case CONST_INT:
657 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
658 break;
659
660 case CONST_DOUBLE:
661 {
662 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
663 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
664
665 rt_val = immed_double_const (arg0, arg1, mode);
666 }
667 break;
668
669 case REG:
670 rt_val = gen_rtx_REG (mode, va_arg (p, int));
671 break;
672
673 case MEM:
674 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
675 break;
676
677 default:
678 rt_val = rtx_alloc (code); /* Allocate the storage space. */
679 rt_val->mode = mode; /* Store the machine mode... */
680
681 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
682 for (i = 0; i < GET_RTX_LENGTH (code); i++)
683 {
684 switch (*fmt++)
685 {
686 case '0': /* Unused field. */
687 break;
688
689 case 'i': /* An integer? */
690 XINT (rt_val, i) = va_arg (p, int);
691 break;
692
693 case 'w': /* A wide integer? */
694 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
695 break;
696
697 case 's': /* A string? */
698 XSTR (rt_val, i) = va_arg (p, char *);
699 break;
700
701 case 'e': /* An expression? */
702 case 'u': /* An insn? Same except when printing. */
703 XEXP (rt_val, i) = va_arg (p, rtx);
704 break;
705
706 case 'E': /* An RTX vector? */
707 XVEC (rt_val, i) = va_arg (p, rtvec);
708 break;
709
710 case 'b': /* A bitmap? */
711 XBITMAP (rt_val, i) = va_arg (p, bitmap);
712 break;
713
714 case 't': /* A tree? */
715 XTREE (rt_val, i) = va_arg (p, tree);
716 break;
717
718 default:
719 abort ();
720 }
721 }
722 break;
723 }
724
725 VA_CLOSE (p);
726 return rt_val;
727 }
728
729 /* gen_rtvec (n, [rt1, ..., rtn])
730 **
731 ** This routine creates an rtvec and stores within it the
732 ** pointers to rtx's which are its arguments.
733 */
734
735 /*VARARGS1*/
736 rtvec
737 gen_rtvec VPARAMS ((int n, ...))
738 {
739 int i, save_n;
740 rtx *vector;
741
742 VA_OPEN (p, n);
743 VA_FIXEDARG (p, int, n);
744
745 if (n == 0)
746 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
747
748 vector = (rtx *) alloca (n * sizeof (rtx));
749
750 for (i = 0; i < n; i++)
751 vector[i] = va_arg (p, rtx);
752
753 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
754 save_n = n;
755 VA_CLOSE (p);
756
757 return gen_rtvec_v (save_n, vector);
758 }
759
760 rtvec
761 gen_rtvec_v (n, argp)
762 int n;
763 rtx *argp;
764 {
765 int i;
766 rtvec rt_val;
767
768 if (n == 0)
769 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
770
771 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
772
773 for (i = 0; i < n; i++)
774 rt_val->elem[i] = *argp++;
775
776 return rt_val;
777 }
778 \f
779 /* Generate a REG rtx for a new pseudo register of mode MODE.
780 This pseudo is assigned the next sequential register number. */
781
782 rtx
783 gen_reg_rtx (mode)
784 enum machine_mode mode;
785 {
786 struct function *f = cfun;
787 rtx val;
788
789 /* Don't let anything called after initial flow analysis create new
790 registers. */
791 if (no_new_pseudos)
792 abort ();
793
794 if (generating_concat_p
795 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
796 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
797 {
798 /* For complex modes, don't make a single pseudo.
799 Instead, make a CONCAT of two pseudos.
800 This allows noncontiguous allocation of the real and imaginary parts,
801 which makes much better code. Besides, allocating DCmode
802 pseudos overstrains reload on some machines like the 386. */
803 rtx realpart, imagpart;
804 int size = GET_MODE_UNIT_SIZE (mode);
805 enum machine_mode partmode
806 = mode_for_size (size * BITS_PER_UNIT,
807 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
808 ? MODE_FLOAT : MODE_INT),
809 0);
810
811 realpart = gen_reg_rtx (partmode);
812 imagpart = gen_reg_rtx (partmode);
813 return gen_rtx_CONCAT (mode, realpart, imagpart);
814 }
815
816 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
817 enough to have an element for this pseudo reg number. */
818
819 if (reg_rtx_no == f->emit->regno_pointer_align_length)
820 {
821 int old_size = f->emit->regno_pointer_align_length;
822 char *new;
823 rtx *new1;
824 tree *new2;
825
826 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
827 memset (new + old_size, 0, old_size);
828 f->emit->regno_pointer_align = (unsigned char *) new;
829
830 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
831 old_size * 2 * sizeof (rtx));
832 memset (new1 + old_size, 0, old_size * sizeof (rtx));
833 regno_reg_rtx = new1;
834
835 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
836 old_size * 2 * sizeof (tree));
837 memset (new2 + old_size, 0, old_size * sizeof (tree));
838 f->emit->regno_decl = new2;
839
840 f->emit->regno_pointer_align_length = old_size * 2;
841 }
842
843 val = gen_raw_REG (mode, reg_rtx_no);
844 regno_reg_rtx[reg_rtx_no++] = val;
845 return val;
846 }
847
848 /* Identify REG (which may be a CONCAT) as a user register. */
849
850 void
851 mark_user_reg (reg)
852 rtx reg;
853 {
854 if (GET_CODE (reg) == CONCAT)
855 {
856 REG_USERVAR_P (XEXP (reg, 0)) = 1;
857 REG_USERVAR_P (XEXP (reg, 1)) = 1;
858 }
859 else if (GET_CODE (reg) == REG)
860 REG_USERVAR_P (reg) = 1;
861 else
862 abort ();
863 }
864
865 /* Identify REG as a probable pointer register and show its alignment
866 as ALIGN, if nonzero. */
867
868 void
869 mark_reg_pointer (reg, align)
870 rtx reg;
871 int align;
872 {
873 if (! REG_POINTER (reg))
874 {
875 REG_POINTER (reg) = 1;
876
877 if (align)
878 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
879 }
880 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
881 /* We can no-longer be sure just how aligned this pointer is */
882 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
883 }
884
885 /* Return 1 plus largest pseudo reg number used in the current function. */
886
887 int
888 max_reg_num ()
889 {
890 return reg_rtx_no;
891 }
892
893 /* Return 1 + the largest label number used so far in the current function. */
894
895 int
896 max_label_num ()
897 {
898 if (last_label_num && label_num == base_label_num)
899 return last_label_num;
900 return label_num;
901 }
902
903 /* Return first label number used in this function (if any were used). */
904
905 int
906 get_first_label_num ()
907 {
908 return first_label_num;
909 }
910 \f
911 /* Return the final regno of X, which is a SUBREG of a hard
912 register. */
913 int
914 subreg_hard_regno (x, check_mode)
915 rtx x;
916 int check_mode;
917 {
918 enum machine_mode mode = GET_MODE (x);
919 unsigned int byte_offset, base_regno, final_regno;
920 rtx reg = SUBREG_REG (x);
921
922 /* This is where we attempt to catch illegal subregs
923 created by the compiler. */
924 if (GET_CODE (x) != SUBREG
925 || GET_CODE (reg) != REG)
926 abort ();
927 base_regno = REGNO (reg);
928 if (base_regno >= FIRST_PSEUDO_REGISTER)
929 abort ();
930 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
931 abort ();
932
933 /* Catch non-congruent offsets too. */
934 byte_offset = SUBREG_BYTE (x);
935 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
936 abort ();
937
938 final_regno = subreg_regno (x);
939
940 return final_regno;
941 }
942
943 /* Return a value representing some low-order bits of X, where the number
944 of low-order bits is given by MODE. Note that no conversion is done
945 between floating-point and fixed-point values, rather, the bit
946 representation is returned.
947
948 This function handles the cases in common between gen_lowpart, below,
949 and two variants in cse.c and combine.c. These are the cases that can
950 be safely handled at all points in the compilation.
951
952 If this is not a case we can handle, return 0. */
953
954 rtx
955 gen_lowpart_common (mode, x)
956 enum machine_mode mode;
957 rtx x;
958 {
959 int msize = GET_MODE_SIZE (mode);
960 int xsize = GET_MODE_SIZE (GET_MODE (x));
961 int offset = 0;
962
963 if (GET_MODE (x) == mode)
964 return x;
965
966 /* MODE must occupy no more words than the mode of X. */
967 if (GET_MODE (x) != VOIDmode
968 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
969 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
970 return 0;
971
972 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
973 if (GET_MODE_CLASS (mode) == MODE_FLOAT
974 && GET_MODE (x) != VOIDmode && msize > xsize)
975 return 0;
976
977 offset = subreg_lowpart_offset (mode, GET_MODE (x));
978
979 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
980 && (GET_MODE_CLASS (mode) == MODE_INT
981 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
982 {
983 /* If we are getting the low-order part of something that has been
984 sign- or zero-extended, we can either just use the object being
985 extended or make a narrower extension. If we want an even smaller
986 piece than the size of the object being extended, call ourselves
987 recursively.
988
989 This case is used mostly by combine and cse. */
990
991 if (GET_MODE (XEXP (x, 0)) == mode)
992 return XEXP (x, 0);
993 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
994 return gen_lowpart_common (mode, XEXP (x, 0));
995 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
996 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
997 }
998 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
999 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1000 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1001 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1002 from the low-order part of the constant. */
1003 else if ((GET_MODE_CLASS (mode) == MODE_INT
1004 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1005 && GET_MODE (x) == VOIDmode
1006 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1007 {
1008 /* If MODE is twice the host word size, X is already the desired
1009 representation. Otherwise, if MODE is wider than a word, we can't
1010 do this. If MODE is exactly a word, return just one CONST_INT. */
1011
1012 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1013 return x;
1014 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1015 return 0;
1016 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1017 return (GET_CODE (x) == CONST_INT ? x
1018 : GEN_INT (CONST_DOUBLE_LOW (x)));
1019 else
1020 {
1021 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1022 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1023 : CONST_DOUBLE_LOW (x));
1024
1025 /* Sign extend to HOST_WIDE_INT. */
1026 val = trunc_int_for_mode (val, mode);
1027
1028 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1029 : GEN_INT (val));
1030 }
1031 }
1032
1033 /* The floating-point emulator can handle all conversions between
1034 FP and integer operands. This simplifies reload because it
1035 doesn't have to deal with constructs like (subreg:DI
1036 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1037 /* Single-precision floats are always 32-bits and double-precision
1038 floats are always 64-bits. */
1039
1040 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1041 && GET_MODE_BITSIZE (mode) == 32
1042 && GET_CODE (x) == CONST_INT)
1043 {
1044 REAL_VALUE_TYPE r;
1045 HOST_WIDE_INT i;
1046
1047 i = INTVAL (x);
1048 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
1049 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1050 }
1051 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1052 && GET_MODE_BITSIZE (mode) == 64
1053 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1054 && GET_MODE (x) == VOIDmode)
1055 {
1056 REAL_VALUE_TYPE r;
1057 HOST_WIDE_INT i[2];
1058 HOST_WIDE_INT low, high;
1059
1060 if (GET_CODE (x) == CONST_INT)
1061 {
1062 low = INTVAL (x);
1063 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1064 }
1065 else
1066 {
1067 low = CONST_DOUBLE_LOW (x);
1068 high = CONST_DOUBLE_HIGH (x);
1069 }
1070
1071 #if HOST_BITS_PER_WIDE_INT == 32
1072 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1073 target machine. */
1074 if (WORDS_BIG_ENDIAN)
1075 i[0] = high, i[1] = low;
1076 else
1077 i[0] = low, i[1] = high;
1078 #else
1079 i[0] = low;
1080 #endif
1081
1082 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1083 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1084 }
1085 else if ((GET_MODE_CLASS (mode) == MODE_INT
1086 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1087 && GET_CODE (x) == CONST_DOUBLE
1088 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1089 {
1090 REAL_VALUE_TYPE r;
1091 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1092 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1093
1094 /* Convert 'r' into an array of four 32-bit words in target word
1095 order. */
1096 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1097 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1098 {
1099 case 32:
1100 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1101 i[1] = 0;
1102 i[2] = 0;
1103 i[3 - 3 * endian] = 0;
1104 break;
1105 case 64:
1106 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1107 i[2 - 2 * endian] = 0;
1108 i[3 - 2 * endian] = 0;
1109 break;
1110 case 96:
1111 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1112 i[3 - 3 * endian] = 0;
1113 break;
1114 case 128:
1115 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1116 break;
1117 default:
1118 abort ();
1119 }
1120 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1121 and return it. */
1122 #if HOST_BITS_PER_WIDE_INT == 32
1123 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1124 #else
1125 if (HOST_BITS_PER_WIDE_INT != 64)
1126 abort ();
1127
1128 return immed_double_const ((((unsigned long) i[3 * endian])
1129 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1130 (((unsigned long) i[2 - endian])
1131 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1132 mode);
1133 #endif
1134 }
1135
1136 /* Otherwise, we can't do this. */
1137 return 0;
1138 }
1139 \f
1140 /* Return the real part (which has mode MODE) of a complex value X.
1141 This always comes at the low address in memory. */
1142
1143 rtx
1144 gen_realpart (mode, x)
1145 enum machine_mode mode;
1146 rtx x;
1147 {
1148 if (WORDS_BIG_ENDIAN
1149 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1150 && REG_P (x)
1151 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1152 internal_error
1153 ("can't access real part of complex value in hard register");
1154 else if (WORDS_BIG_ENDIAN)
1155 return gen_highpart (mode, x);
1156 else
1157 return gen_lowpart (mode, x);
1158 }
1159
1160 /* Return the imaginary part (which has mode MODE) of a complex value X.
1161 This always comes at the high address in memory. */
1162
1163 rtx
1164 gen_imagpart (mode, x)
1165 enum machine_mode mode;
1166 rtx x;
1167 {
1168 if (WORDS_BIG_ENDIAN)
1169 return gen_lowpart (mode, x);
1170 else if (! WORDS_BIG_ENDIAN
1171 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1172 && REG_P (x)
1173 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1174 internal_error
1175 ("can't access imaginary part of complex value in hard register");
1176 else
1177 return gen_highpart (mode, x);
1178 }
1179
1180 /* Return 1 iff X, assumed to be a SUBREG,
1181 refers to the real part of the complex value in its containing reg.
1182 Complex values are always stored with the real part in the first word,
1183 regardless of WORDS_BIG_ENDIAN. */
1184
1185 int
1186 subreg_realpart_p (x)
1187 rtx x;
1188 {
1189 if (GET_CODE (x) != SUBREG)
1190 abort ();
1191
1192 return ((unsigned int) SUBREG_BYTE (x)
1193 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1194 }
1195 \f
1196 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1197 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1198 least-significant part of X.
1199 MODE specifies how big a part of X to return;
1200 it usually should not be larger than a word.
1201 If X is a MEM whose address is a QUEUED, the value may be so also. */
1202
1203 rtx
1204 gen_lowpart (mode, x)
1205 enum machine_mode mode;
1206 rtx x;
1207 {
1208 rtx result = gen_lowpart_common (mode, x);
1209
1210 if (result)
1211 return result;
1212 else if (GET_CODE (x) == REG)
1213 {
1214 /* Must be a hard reg that's not valid in MODE. */
1215 result = gen_lowpart_common (mode, copy_to_reg (x));
1216 if (result == 0)
1217 abort ();
1218 return result;
1219 }
1220 else if (GET_CODE (x) == MEM)
1221 {
1222 /* The only additional case we can do is MEM. */
1223 int offset = 0;
1224 if (WORDS_BIG_ENDIAN)
1225 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1226 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1227
1228 if (BYTES_BIG_ENDIAN)
1229 /* Adjust the address so that the address-after-the-data
1230 is unchanged. */
1231 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1232 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1233
1234 return adjust_address (x, mode, offset);
1235 }
1236 else if (GET_CODE (x) == ADDRESSOF)
1237 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1238 else
1239 abort ();
1240 }
1241
1242 /* Like `gen_lowpart', but refer to the most significant part.
1243 This is used to access the imaginary part of a complex number. */
1244
1245 rtx
1246 gen_highpart (mode, x)
1247 enum machine_mode mode;
1248 rtx x;
1249 {
1250 unsigned int msize = GET_MODE_SIZE (mode);
1251 rtx result;
1252
1253 /* This case loses if X is a subreg. To catch bugs early,
1254 complain if an invalid MODE is used even in other cases. */
1255 if (msize > UNITS_PER_WORD
1256 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1257 abort ();
1258
1259 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1260 subreg_highpart_offset (mode, GET_MODE (x)));
1261
1262 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1263 the target if we have a MEM. gen_highpart must return a valid operand,
1264 emitting code if necessary to do so. */
1265 if (result != NULL_RTX && GET_CODE (result) == MEM)
1266 result = validize_mem (result);
1267
1268 if (!result)
1269 abort ();
1270 return result;
1271 }
1272
1273 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1274 be VOIDmode constant. */
1275 rtx
1276 gen_highpart_mode (outermode, innermode, exp)
1277 enum machine_mode outermode, innermode;
1278 rtx exp;
1279 {
1280 if (GET_MODE (exp) != VOIDmode)
1281 {
1282 if (GET_MODE (exp) != innermode)
1283 abort ();
1284 return gen_highpart (outermode, exp);
1285 }
1286 return simplify_gen_subreg (outermode, exp, innermode,
1287 subreg_highpart_offset (outermode, innermode));
1288 }
1289
1290 /* Return offset in bytes to get OUTERMODE low part
1291 of the value in mode INNERMODE stored in memory in target format. */
1292
1293 unsigned int
1294 subreg_lowpart_offset (outermode, innermode)
1295 enum machine_mode outermode, innermode;
1296 {
1297 unsigned int offset = 0;
1298 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1299
1300 if (difference > 0)
1301 {
1302 if (WORDS_BIG_ENDIAN)
1303 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1304 if (BYTES_BIG_ENDIAN)
1305 offset += difference % UNITS_PER_WORD;
1306 }
1307
1308 return offset;
1309 }
1310
1311 /* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1313 unsigned int
1314 subreg_highpart_offset (outermode, innermode)
1315 enum machine_mode outermode, innermode;
1316 {
1317 unsigned int offset = 0;
1318 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319
1320 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1321 abort ();
1322
1323 if (difference > 0)
1324 {
1325 if (! WORDS_BIG_ENDIAN)
1326 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1327 if (! BYTES_BIG_ENDIAN)
1328 offset += difference % UNITS_PER_WORD;
1329 }
1330
1331 return offset;
1332 }
1333
1334 /* Return 1 iff X, assumed to be a SUBREG,
1335 refers to the least significant part of its containing reg.
1336 If X is not a SUBREG, always return 1 (it is its own low part!). */
1337
1338 int
1339 subreg_lowpart_p (x)
1340 rtx x;
1341 {
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
1346
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
1349 }
1350 \f
1351
1352 /* Helper routine for all the constant cases of operand_subword.
1353 Some places invoke this directly. */
1354
1355 rtx
1356 constant_subword (op, offset, mode)
1357 rtx op;
1358 int offset;
1359 enum machine_mode mode;
1360 {
1361 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1362 HOST_WIDE_INT val;
1363
1364 /* If OP is already an integer word, return it. */
1365 if (GET_MODE_CLASS (mode) == MODE_INT
1366 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1367 return op;
1368
1369 /* The output is some bits, the width of the target machine's word.
1370 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1371 host can't. */
1372 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1373 && GET_MODE_CLASS (mode) == MODE_FLOAT
1374 && GET_MODE_BITSIZE (mode) == 64
1375 && GET_CODE (op) == CONST_DOUBLE)
1376 {
1377 long k[2];
1378 REAL_VALUE_TYPE rv;
1379
1380 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1381 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1382
1383 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1384 which the words are written depends on the word endianness.
1385 ??? This is a potential portability problem and should
1386 be fixed at some point.
1387
1388 We must exercise caution with the sign bit. By definition there
1389 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1390 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1391 So we explicitly mask and sign-extend as necessary. */
1392 if (BITS_PER_WORD == 32)
1393 {
1394 val = k[offset];
1395 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1396 return GEN_INT (val);
1397 }
1398 #if HOST_BITS_PER_WIDE_INT >= 64
1399 else if (BITS_PER_WORD >= 64 && offset == 0)
1400 {
1401 val = k[! WORDS_BIG_ENDIAN];
1402 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1403 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1404 return GEN_INT (val);
1405 }
1406 #endif
1407 else if (BITS_PER_WORD == 16)
1408 {
1409 val = k[offset >> 1];
1410 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1411 val >>= 16;
1412 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1413 return GEN_INT (val);
1414 }
1415 else
1416 abort ();
1417 }
1418 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1419 && GET_MODE_CLASS (mode) == MODE_FLOAT
1420 && GET_MODE_BITSIZE (mode) > 64
1421 && GET_CODE (op) == CONST_DOUBLE)
1422 {
1423 long k[4];
1424 REAL_VALUE_TYPE rv;
1425
1426 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1427 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1428
1429 if (BITS_PER_WORD == 32)
1430 {
1431 val = k[offset];
1432 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1433 return GEN_INT (val);
1434 }
1435 #if HOST_BITS_PER_WIDE_INT >= 64
1436 else if (BITS_PER_WORD >= 64 && offset <= 1)
1437 {
1438 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1439 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1440 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1441 return GEN_INT (val);
1442 }
1443 #endif
1444 else
1445 abort ();
1446 }
1447
1448 /* Single word float is a little harder, since single- and double-word
1449 values often do not have the same high-order bits. We have already
1450 verified that we want the only defined word of the single-word value. */
1451 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1452 && GET_MODE_BITSIZE (mode) == 32
1453 && GET_CODE (op) == CONST_DOUBLE)
1454 {
1455 long l;
1456 REAL_VALUE_TYPE rv;
1457
1458 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1459 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1460
1461 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1462 val = l;
1463 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1464
1465 if (BITS_PER_WORD == 16)
1466 {
1467 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1468 val >>= 16;
1469 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1470 }
1471
1472 return GEN_INT (val);
1473 }
1474
1475 /* The only remaining cases that we can handle are integers.
1476 Convert to proper endianness now since these cases need it.
1477 At this point, offset == 0 means the low-order word.
1478
1479 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1480 in general. However, if OP is (const_int 0), we can just return
1481 it for any word. */
1482
1483 if (op == const0_rtx)
1484 return op;
1485
1486 if (GET_MODE_CLASS (mode) != MODE_INT
1487 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1488 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1489 return 0;
1490
1491 if (WORDS_BIG_ENDIAN)
1492 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1493
1494 /* Find out which word on the host machine this value is in and get
1495 it from the constant. */
1496 val = (offset / size_ratio == 0
1497 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1498 : (GET_CODE (op) == CONST_INT
1499 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1500
1501 /* Get the value we want into the low bits of val. */
1502 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1503 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1504
1505 val = trunc_int_for_mode (val, word_mode);
1506
1507 return GEN_INT (val);
1508 }
1509
1510 /* Return subword OFFSET of operand OP.
1511 The word number, OFFSET, is interpreted as the word number starting
1512 at the low-order address. OFFSET 0 is the low-order word if not
1513 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1514
1515 If we cannot extract the required word, we return zero. Otherwise,
1516 an rtx corresponding to the requested word will be returned.
1517
1518 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1519 reload has completed, a valid address will always be returned. After
1520 reload, if a valid address cannot be returned, we return zero.
1521
1522 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1523 it is the responsibility of the caller.
1524
1525 MODE is the mode of OP in case it is a CONST_INT.
1526
1527 ??? This is still rather broken for some cases. The problem for the
1528 moment is that all callers of this thing provide no 'goal mode' to
1529 tell us to work with. This exists because all callers were written
1530 in a word based SUBREG world.
1531 Now use of this function can be deprecated by simplify_subreg in most
1532 cases.
1533 */
1534
1535 rtx
1536 operand_subword (op, offset, validate_address, mode)
1537 rtx op;
1538 unsigned int offset;
1539 int validate_address;
1540 enum machine_mode mode;
1541 {
1542 if (mode == VOIDmode)
1543 mode = GET_MODE (op);
1544
1545 if (mode == VOIDmode)
1546 abort ();
1547
1548 /* If OP is narrower than a word, fail. */
1549 if (mode != BLKmode
1550 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1551 return 0;
1552
1553 /* If we want a word outside OP, return zero. */
1554 if (mode != BLKmode
1555 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1556 return const0_rtx;
1557
1558 /* Form a new MEM at the requested address. */
1559 if (GET_CODE (op) == MEM)
1560 {
1561 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1562
1563 if (! validate_address)
1564 return new;
1565
1566 else if (reload_completed)
1567 {
1568 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1569 return 0;
1570 }
1571 else
1572 return replace_equiv_address (new, XEXP (new, 0));
1573 }
1574
1575 /* Rest can be handled by simplify_subreg. */
1576 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1577 }
1578
1579 /* Similar to `operand_subword', but never return 0. If we can't extract
1580 the required subword, put OP into a register and try again. If that fails,
1581 abort. We always validate the address in this case.
1582
1583 MODE is the mode of OP, in case it is CONST_INT. */
1584
1585 rtx
1586 operand_subword_force (op, offset, mode)
1587 rtx op;
1588 unsigned int offset;
1589 enum machine_mode mode;
1590 {
1591 rtx result = operand_subword (op, offset, 1, mode);
1592
1593 if (result)
1594 return result;
1595
1596 if (mode != BLKmode && mode != VOIDmode)
1597 {
1598 /* If this is a register which can not be accessed by words, copy it
1599 to a pseudo register. */
1600 if (GET_CODE (op) == REG)
1601 op = copy_to_reg (op);
1602 else
1603 op = force_reg (mode, op);
1604 }
1605
1606 result = operand_subword (op, offset, 1, mode);
1607 if (result == 0)
1608 abort ();
1609
1610 return result;
1611 }
1612 \f
1613 /* Given a compare instruction, swap the operands.
1614 A test instruction is changed into a compare of 0 against the operand. */
1615
1616 void
1617 reverse_comparison (insn)
1618 rtx insn;
1619 {
1620 rtx body = PATTERN (insn);
1621 rtx comp;
1622
1623 if (GET_CODE (body) == SET)
1624 comp = SET_SRC (body);
1625 else
1626 comp = SET_SRC (XVECEXP (body, 0, 0));
1627
1628 if (GET_CODE (comp) == COMPARE)
1629 {
1630 rtx op0 = XEXP (comp, 0);
1631 rtx op1 = XEXP (comp, 1);
1632 XEXP (comp, 0) = op1;
1633 XEXP (comp, 1) = op0;
1634 }
1635 else
1636 {
1637 rtx new = gen_rtx_COMPARE (VOIDmode,
1638 CONST0_RTX (GET_MODE (comp)), comp);
1639 if (GET_CODE (body) == SET)
1640 SET_SRC (body) = new;
1641 else
1642 SET_SRC (XVECEXP (body, 0, 0)) = new;
1643 }
1644 }
1645 \f
1646 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1647 or (2) a component ref of something variable. Represent the later with
1648 a NULL expression. */
1649
1650 static tree
1651 component_ref_for_mem_expr (ref)
1652 tree ref;
1653 {
1654 tree inner = TREE_OPERAND (ref, 0);
1655
1656 if (TREE_CODE (inner) == COMPONENT_REF)
1657 inner = component_ref_for_mem_expr (inner);
1658 else
1659 {
1660 tree placeholder_ptr = 0;
1661
1662 /* Now remove any conversions: they don't change what the underlying
1663 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1664 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1665 || TREE_CODE (inner) == NON_LVALUE_EXPR
1666 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1667 || TREE_CODE (inner) == SAVE_EXPR
1668 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1669 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1670 inner = find_placeholder (inner, &placeholder_ptr);
1671 else
1672 inner = TREE_OPERAND (inner, 0);
1673
1674 if (! DECL_P (inner))
1675 inner = NULL_TREE;
1676 }
1677
1678 if (inner == TREE_OPERAND (ref, 0))
1679 return ref;
1680 else
1681 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1682 TREE_OPERAND (ref, 1));
1683 }
1684
1685 /* Given REF, a MEM, and T, either the type of X or the expression
1686 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1687 if we are making a new object of this type. BITPOS is nonzero if
1688 there is an offset outstanding on T that will be applied later. */
1689
1690 void
1691 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1692 rtx ref;
1693 tree t;
1694 int objectp;
1695 HOST_WIDE_INT bitpos;
1696 {
1697 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1698 tree expr = MEM_EXPR (ref);
1699 rtx offset = MEM_OFFSET (ref);
1700 rtx size = MEM_SIZE (ref);
1701 unsigned int align = MEM_ALIGN (ref);
1702 HOST_WIDE_INT apply_bitpos = 0;
1703 tree type;
1704
1705 /* It can happen that type_for_mode was given a mode for which there
1706 is no language-level type. In which case it returns NULL, which
1707 we can see here. */
1708 if (t == NULL_TREE)
1709 return;
1710
1711 type = TYPE_P (t) ? t : TREE_TYPE (t);
1712
1713 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1714 wrong answer, as it assumes that DECL_RTL already has the right alias
1715 info. Callers should not set DECL_RTL until after the call to
1716 set_mem_attributes. */
1717 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1718 abort ();
1719
1720 /* Get the alias set from the expression or type (perhaps using a
1721 front-end routine) and use it. */
1722 alias = get_alias_set (t);
1723
1724 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1725 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1726 RTX_UNCHANGING_P (ref)
1727 |= ((lang_hooks.honor_readonly
1728 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1729 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1730
1731 /* If we are making an object of this type, or if this is a DECL, we know
1732 that it is a scalar if the type is not an aggregate. */
1733 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1734 MEM_SCALAR_P (ref) = 1;
1735
1736 /* We can set the alignment from the type if we are making an object,
1737 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1738 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1739 align = MAX (align, TYPE_ALIGN (type));
1740
1741 /* If the size is known, we can set that. */
1742 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1743 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1744
1745 /* If T is not a type, we may be able to deduce some more information about
1746 the expression. */
1747 if (! TYPE_P (t))
1748 {
1749 maybe_set_unchanging (ref, t);
1750 if (TREE_THIS_VOLATILE (t))
1751 MEM_VOLATILE_P (ref) = 1;
1752
1753 /* Now remove any conversions: they don't change what the underlying
1754 object is. Likewise for SAVE_EXPR. */
1755 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1756 || TREE_CODE (t) == NON_LVALUE_EXPR
1757 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1758 || TREE_CODE (t) == SAVE_EXPR)
1759 t = TREE_OPERAND (t, 0);
1760
1761 /* If this expression can't be addressed (e.g., it contains a reference
1762 to a non-addressable field), show we don't change its alias set. */
1763 if (! can_address_p (t))
1764 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1765
1766 /* If this is a decl, set the attributes of the MEM from it. */
1767 if (DECL_P (t))
1768 {
1769 expr = t;
1770 offset = const0_rtx;
1771 apply_bitpos = bitpos;
1772 size = (DECL_SIZE_UNIT (t)
1773 && host_integerp (DECL_SIZE_UNIT (t), 1)
1774 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1775 align = DECL_ALIGN (t);
1776 }
1777
1778 /* If this is a constant, we know the alignment. */
1779 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1780 {
1781 align = TYPE_ALIGN (type);
1782 #ifdef CONSTANT_ALIGNMENT
1783 align = CONSTANT_ALIGNMENT (t, align);
1784 #endif
1785 }
1786
1787 /* If this is a field reference and not a bit-field, record it. */
1788 /* ??? There is some information that can be gleened from bit-fields,
1789 such as the word offset in the structure that might be modified.
1790 But skip it for now. */
1791 else if (TREE_CODE (t) == COMPONENT_REF
1792 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1793 {
1794 expr = component_ref_for_mem_expr (t);
1795 offset = const0_rtx;
1796 apply_bitpos = bitpos;
1797 /* ??? Any reason the field size would be different than
1798 the size we got from the type? */
1799 }
1800
1801 /* If this is an array reference, look for an outer field reference. */
1802 else if (TREE_CODE (t) == ARRAY_REF)
1803 {
1804 tree off_tree = size_zero_node;
1805
1806 do
1807 {
1808 off_tree
1809 = fold (build (PLUS_EXPR, sizetype,
1810 fold (build (MULT_EXPR, sizetype,
1811 TREE_OPERAND (t, 1),
1812 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1813 off_tree));
1814 t = TREE_OPERAND (t, 0);
1815 }
1816 while (TREE_CODE (t) == ARRAY_REF);
1817
1818 if (DECL_P (t))
1819 {
1820 expr = t;
1821 offset = NULL;
1822 if (host_integerp (off_tree, 1))
1823 {
1824 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1825 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1826 align = DECL_ALIGN (t);
1827 if (aoff && aoff < align)
1828 align = aoff;
1829 offset = GEN_INT (ioff);
1830 apply_bitpos = bitpos;
1831 }
1832 }
1833 else if (TREE_CODE (t) == COMPONENT_REF)
1834 {
1835 expr = component_ref_for_mem_expr (t);
1836 if (host_integerp (off_tree, 1))
1837 {
1838 offset = GEN_INT (tree_low_cst (off_tree, 1));
1839 apply_bitpos = bitpos;
1840 }
1841 /* ??? Any reason the field size would be different than
1842 the size we got from the type? */
1843 }
1844 else if (flag_argument_noalias > 1
1845 && TREE_CODE (t) == INDIRECT_REF
1846 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1847 {
1848 expr = t;
1849 offset = NULL;
1850 }
1851 }
1852
1853 /* If this is a Fortran indirect argument reference, record the
1854 parameter decl. */
1855 else if (flag_argument_noalias > 1
1856 && TREE_CODE (t) == INDIRECT_REF
1857 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1858 {
1859 expr = t;
1860 offset = NULL;
1861 }
1862 }
1863
1864 /* If we modified OFFSET based on T, then subtract the outstanding
1865 bit position offset. */
1866 if (apply_bitpos)
1867 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1868
1869 /* Now set the attributes we computed above. */
1870 MEM_ATTRS (ref)
1871 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1872
1873 /* If this is already known to be a scalar or aggregate, we are done. */
1874 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1875 return;
1876
1877 /* If it is a reference into an aggregate, this is part of an aggregate.
1878 Otherwise we don't know. */
1879 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1880 || TREE_CODE (t) == ARRAY_RANGE_REF
1881 || TREE_CODE (t) == BIT_FIELD_REF)
1882 MEM_IN_STRUCT_P (ref) = 1;
1883 }
1884
1885 void
1886 set_mem_attributes (ref, t, objectp)
1887 rtx ref;
1888 tree t;
1889 int objectp;
1890 {
1891 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1892 }
1893
1894 /* Set the alias set of MEM to SET. */
1895
1896 void
1897 set_mem_alias_set (mem, set)
1898 rtx mem;
1899 HOST_WIDE_INT set;
1900 {
1901 #ifdef ENABLE_CHECKING
1902 /* If the new and old alias sets don't conflict, something is wrong. */
1903 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1904 abort ();
1905 #endif
1906
1907 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1908 MEM_SIZE (mem), MEM_ALIGN (mem),
1909 GET_MODE (mem));
1910 }
1911
1912 /* Set the alignment of MEM to ALIGN bits. */
1913
1914 void
1915 set_mem_align (mem, align)
1916 rtx mem;
1917 unsigned int align;
1918 {
1919 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1920 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1921 GET_MODE (mem));
1922 }
1923
1924 /* Set the expr for MEM to EXPR. */
1925
1926 void
1927 set_mem_expr (mem, expr)
1928 rtx mem;
1929 tree expr;
1930 {
1931 MEM_ATTRS (mem)
1932 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1933 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1934 }
1935
1936 /* Set the offset of MEM to OFFSET. */
1937
1938 void
1939 set_mem_offset (mem, offset)
1940 rtx mem, offset;
1941 {
1942 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1943 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1944 GET_MODE (mem));
1945 }
1946 \f
1947 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1948 and its address changed to ADDR. (VOIDmode means don't change the mode.
1949 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1950 returned memory location is required to be valid. The memory
1951 attributes are not changed. */
1952
1953 static rtx
1954 change_address_1 (memref, mode, addr, validate)
1955 rtx memref;
1956 enum machine_mode mode;
1957 rtx addr;
1958 int validate;
1959 {
1960 rtx new;
1961
1962 if (GET_CODE (memref) != MEM)
1963 abort ();
1964 if (mode == VOIDmode)
1965 mode = GET_MODE (memref);
1966 if (addr == 0)
1967 addr = XEXP (memref, 0);
1968
1969 if (validate)
1970 {
1971 if (reload_in_progress || reload_completed)
1972 {
1973 if (! memory_address_p (mode, addr))
1974 abort ();
1975 }
1976 else
1977 addr = memory_address (mode, addr);
1978 }
1979
1980 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1981 return memref;
1982
1983 new = gen_rtx_MEM (mode, addr);
1984 MEM_COPY_ATTRIBUTES (new, memref);
1985 return new;
1986 }
1987
1988 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1989 way we are changing MEMREF, so we only preserve the alias set. */
1990
1991 rtx
1992 change_address (memref, mode, addr)
1993 rtx memref;
1994 enum machine_mode mode;
1995 rtx addr;
1996 {
1997 rtx new = change_address_1 (memref, mode, addr, 1);
1998 enum machine_mode mmode = GET_MODE (new);
1999
2000 MEM_ATTRS (new)
2001 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2002 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2003 (mmode == BLKmode ? BITS_PER_UNIT
2004 : GET_MODE_ALIGNMENT (mmode)),
2005 mmode);
2006
2007 return new;
2008 }
2009
2010 /* Return a memory reference like MEMREF, but with its mode changed
2011 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2012 nonzero, the memory address is forced to be valid.
2013 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2014 and caller is responsible for adjusting MEMREF base register. */
2015
2016 rtx
2017 adjust_address_1 (memref, mode, offset, validate, adjust)
2018 rtx memref;
2019 enum machine_mode mode;
2020 HOST_WIDE_INT offset;
2021 int validate, adjust;
2022 {
2023 rtx addr = XEXP (memref, 0);
2024 rtx new;
2025 rtx memoffset = MEM_OFFSET (memref);
2026 rtx size = 0;
2027 unsigned int memalign = MEM_ALIGN (memref);
2028
2029 /* ??? Prefer to create garbage instead of creating shared rtl.
2030 This may happen even if offset is non-zero -- consider
2031 (plus (plus reg reg) const_int) -- so do this always. */
2032 addr = copy_rtx (addr);
2033
2034 if (adjust)
2035 {
2036 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2037 object, we can merge it into the LO_SUM. */
2038 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2039 && offset >= 0
2040 && (unsigned HOST_WIDE_INT) offset
2041 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2042 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2043 plus_constant (XEXP (addr, 1), offset));
2044 else
2045 addr = plus_constant (addr, offset);
2046 }
2047
2048 new = change_address_1 (memref, mode, addr, validate);
2049
2050 /* Compute the new values of the memory attributes due to this adjustment.
2051 We add the offsets and update the alignment. */
2052 if (memoffset)
2053 memoffset = GEN_INT (offset + INTVAL (memoffset));
2054
2055 /* Compute the new alignment by taking the MIN of the alignment and the
2056 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2057 if zero. */
2058 if (offset != 0)
2059 memalign
2060 = MIN (memalign,
2061 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2062
2063 /* We can compute the size in a number of ways. */
2064 if (GET_MODE (new) != BLKmode)
2065 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2066 else if (MEM_SIZE (memref))
2067 size = plus_constant (MEM_SIZE (memref), -offset);
2068
2069 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2070 memoffset, size, memalign, GET_MODE (new));
2071
2072 /* At some point, we should validate that this offset is within the object,
2073 if all the appropriate values are known. */
2074 return new;
2075 }
2076
2077 /* Return a memory reference like MEMREF, but with its mode changed
2078 to MODE and its address changed to ADDR, which is assumed to be
2079 MEMREF offseted by OFFSET bytes. If VALIDATE is
2080 nonzero, the memory address is forced to be valid. */
2081
2082 rtx
2083 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2084 rtx memref;
2085 enum machine_mode mode;
2086 rtx addr;
2087 HOST_WIDE_INT offset;
2088 int validate;
2089 {
2090 memref = change_address_1 (memref, VOIDmode, addr, validate);
2091 return adjust_address_1 (memref, mode, offset, validate, 0);
2092 }
2093
2094 /* Return a memory reference like MEMREF, but whose address is changed by
2095 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2096 known to be in OFFSET (possibly 1). */
2097
2098 rtx
2099 offset_address (memref, offset, pow2)
2100 rtx memref;
2101 rtx offset;
2102 HOST_WIDE_INT pow2;
2103 {
2104 rtx new, addr = XEXP (memref, 0);
2105
2106 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2107
2108 /* At this point we don't know _why_ the address is invalid. It
2109 could have secondary memory refereces, multiplies or anything.
2110
2111 However, if we did go and rearrange things, we can wind up not
2112 being able to recognize the magic around pic_offset_table_rtx.
2113 This stuff is fragile, and is yet another example of why it is
2114 bad to expose PIC machinery too early. */
2115 if (! memory_address_p (GET_MODE (memref), new)
2116 && GET_CODE (addr) == PLUS
2117 && XEXP (addr, 0) == pic_offset_table_rtx)
2118 {
2119 addr = force_reg (GET_MODE (addr), addr);
2120 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2121 }
2122
2123 update_temp_slot_address (XEXP (memref, 0), new);
2124 new = change_address_1 (memref, VOIDmode, new, 1);
2125
2126 /* Update the alignment to reflect the offset. Reset the offset, which
2127 we don't know. */
2128 MEM_ATTRS (new)
2129 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2130 MIN (MEM_ALIGN (memref),
2131 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2132 GET_MODE (new));
2133 return new;
2134 }
2135
2136 /* Return a memory reference like MEMREF, but with its address changed to
2137 ADDR. The caller is asserting that the actual piece of memory pointed
2138 to is the same, just the form of the address is being changed, such as
2139 by putting something into a register. */
2140
2141 rtx
2142 replace_equiv_address (memref, addr)
2143 rtx memref;
2144 rtx addr;
2145 {
2146 /* change_address_1 copies the memory attribute structure without change
2147 and that's exactly what we want here. */
2148 update_temp_slot_address (XEXP (memref, 0), addr);
2149 return change_address_1 (memref, VOIDmode, addr, 1);
2150 }
2151
2152 /* Likewise, but the reference is not required to be valid. */
2153
2154 rtx
2155 replace_equiv_address_nv (memref, addr)
2156 rtx memref;
2157 rtx addr;
2158 {
2159 return change_address_1 (memref, VOIDmode, addr, 0);
2160 }
2161
2162 /* Return a memory reference like MEMREF, but with its mode widened to
2163 MODE and offset by OFFSET. This would be used by targets that e.g.
2164 cannot issue QImode memory operations and have to use SImode memory
2165 operations plus masking logic. */
2166
2167 rtx
2168 widen_memory_access (memref, mode, offset)
2169 rtx memref;
2170 enum machine_mode mode;
2171 HOST_WIDE_INT offset;
2172 {
2173 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2174 tree expr = MEM_EXPR (new);
2175 rtx memoffset = MEM_OFFSET (new);
2176 unsigned int size = GET_MODE_SIZE (mode);
2177
2178 /* If we don't know what offset we were at within the expression, then
2179 we can't know if we've overstepped the bounds. */
2180 if (! memoffset)
2181 expr = NULL_TREE;
2182
2183 while (expr)
2184 {
2185 if (TREE_CODE (expr) == COMPONENT_REF)
2186 {
2187 tree field = TREE_OPERAND (expr, 1);
2188
2189 if (! DECL_SIZE_UNIT (field))
2190 {
2191 expr = NULL_TREE;
2192 break;
2193 }
2194
2195 /* Is the field at least as large as the access? If so, ok,
2196 otherwise strip back to the containing structure. */
2197 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2198 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2199 && INTVAL (memoffset) >= 0)
2200 break;
2201
2202 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2203 {
2204 expr = NULL_TREE;
2205 break;
2206 }
2207
2208 expr = TREE_OPERAND (expr, 0);
2209 memoffset = (GEN_INT (INTVAL (memoffset)
2210 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2211 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2212 / BITS_PER_UNIT)));
2213 }
2214 /* Similarly for the decl. */
2215 else if (DECL_P (expr)
2216 && DECL_SIZE_UNIT (expr)
2217 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2218 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2219 && (! memoffset || INTVAL (memoffset) >= 0))
2220 break;
2221 else
2222 {
2223 /* The widened memory access overflows the expression, which means
2224 that it could alias another expression. Zap it. */
2225 expr = NULL_TREE;
2226 break;
2227 }
2228 }
2229
2230 if (! expr)
2231 memoffset = NULL_RTX;
2232
2233 /* The widened memory may alias other stuff, so zap the alias set. */
2234 /* ??? Maybe use get_alias_set on any remaining expression. */
2235
2236 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2237 MEM_ALIGN (new), mode);
2238
2239 return new;
2240 }
2241 \f
2242 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2243
2244 rtx
2245 gen_label_rtx ()
2246 {
2247 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2248 NULL, label_num++, NULL);
2249 }
2250 \f
2251 /* For procedure integration. */
2252
2253 /* Install new pointers to the first and last insns in the chain.
2254 Also, set cur_insn_uid to one higher than the last in use.
2255 Used for an inline-procedure after copying the insn chain. */
2256
2257 void
2258 set_new_first_and_last_insn (first, last)
2259 rtx first, last;
2260 {
2261 rtx insn;
2262
2263 first_insn = first;
2264 last_insn = last;
2265 cur_insn_uid = 0;
2266
2267 for (insn = first; insn; insn = NEXT_INSN (insn))
2268 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2269
2270 cur_insn_uid++;
2271 }
2272
2273 /* Set the range of label numbers found in the current function.
2274 This is used when belatedly compiling an inline function. */
2275
2276 void
2277 set_new_first_and_last_label_num (first, last)
2278 int first, last;
2279 {
2280 base_label_num = label_num;
2281 first_label_num = first;
2282 last_label_num = last;
2283 }
2284
2285 /* Set the last label number found in the current function.
2286 This is used when belatedly compiling an inline function. */
2287
2288 void
2289 set_new_last_label_num (last)
2290 int last;
2291 {
2292 base_label_num = label_num;
2293 last_label_num = last;
2294 }
2295 \f
2296 /* Restore all variables describing the current status from the structure *P.
2297 This is used after a nested function. */
2298
2299 void
2300 restore_emit_status (p)
2301 struct function *p ATTRIBUTE_UNUSED;
2302 {
2303 last_label_num = 0;
2304 }
2305 \f
2306 /* Go through all the RTL insn bodies and copy any invalid shared
2307 structure. This routine should only be called once. */
2308
2309 void
2310 unshare_all_rtl (fndecl, insn)
2311 tree fndecl;
2312 rtx insn;
2313 {
2314 tree decl;
2315
2316 /* Make sure that virtual parameters are not shared. */
2317 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2318 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2319
2320 /* Make sure that virtual stack slots are not shared. */
2321 unshare_all_decls (DECL_INITIAL (fndecl));
2322
2323 /* Unshare just about everything else. */
2324 unshare_all_rtl_1 (insn);
2325
2326 /* Make sure the addresses of stack slots found outside the insn chain
2327 (such as, in DECL_RTL of a variable) are not shared
2328 with the insn chain.
2329
2330 This special care is necessary when the stack slot MEM does not
2331 actually appear in the insn chain. If it does appear, its address
2332 is unshared from all else at that point. */
2333 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2334 }
2335
2336 /* Go through all the RTL insn bodies and copy any invalid shared
2337 structure, again. This is a fairly expensive thing to do so it
2338 should be done sparingly. */
2339
2340 void
2341 unshare_all_rtl_again (insn)
2342 rtx insn;
2343 {
2344 rtx p;
2345 tree decl;
2346
2347 for (p = insn; p; p = NEXT_INSN (p))
2348 if (INSN_P (p))
2349 {
2350 reset_used_flags (PATTERN (p));
2351 reset_used_flags (REG_NOTES (p));
2352 reset_used_flags (LOG_LINKS (p));
2353 }
2354
2355 /* Make sure that virtual stack slots are not shared. */
2356 reset_used_decls (DECL_INITIAL (cfun->decl));
2357
2358 /* Make sure that virtual parameters are not shared. */
2359 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2360 reset_used_flags (DECL_RTL (decl));
2361
2362 reset_used_flags (stack_slot_list);
2363
2364 unshare_all_rtl (cfun->decl, insn);
2365 }
2366
2367 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2368 Assumes the mark bits are cleared at entry. */
2369
2370 static void
2371 unshare_all_rtl_1 (insn)
2372 rtx insn;
2373 {
2374 for (; insn; insn = NEXT_INSN (insn))
2375 if (INSN_P (insn))
2376 {
2377 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2378 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2379 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2380 }
2381 }
2382
2383 /* Go through all virtual stack slots of a function and copy any
2384 shared structure. */
2385 static void
2386 unshare_all_decls (blk)
2387 tree blk;
2388 {
2389 tree t;
2390
2391 /* Copy shared decls. */
2392 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2393 if (DECL_RTL_SET_P (t))
2394 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2395
2396 /* Now process sub-blocks. */
2397 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2398 unshare_all_decls (t);
2399 }
2400
2401 /* Go through all virtual stack slots of a function and mark them as
2402 not shared. */
2403 static void
2404 reset_used_decls (blk)
2405 tree blk;
2406 {
2407 tree t;
2408
2409 /* Mark decls. */
2410 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2411 if (DECL_RTL_SET_P (t))
2412 reset_used_flags (DECL_RTL (t));
2413
2414 /* Now process sub-blocks. */
2415 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2416 reset_used_decls (t);
2417 }
2418
2419 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2420 placed in the result directly, rather than being copied. MAY_SHARE is
2421 either a MEM of an EXPR_LIST of MEMs. */
2422
2423 rtx
2424 copy_most_rtx (orig, may_share)
2425 rtx orig;
2426 rtx may_share;
2427 {
2428 rtx copy;
2429 int i, j;
2430 RTX_CODE code;
2431 const char *format_ptr;
2432
2433 if (orig == may_share
2434 || (GET_CODE (may_share) == EXPR_LIST
2435 && in_expr_list_p (may_share, orig)))
2436 return orig;
2437
2438 code = GET_CODE (orig);
2439
2440 switch (code)
2441 {
2442 case REG:
2443 case QUEUED:
2444 case CONST_INT:
2445 case CONST_DOUBLE:
2446 case CONST_VECTOR:
2447 case SYMBOL_REF:
2448 case CODE_LABEL:
2449 case PC:
2450 case CC0:
2451 return orig;
2452 default:
2453 break;
2454 }
2455
2456 copy = rtx_alloc (code);
2457 PUT_MODE (copy, GET_MODE (orig));
2458 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2459 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2460 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2461 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2462 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2463
2464 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2465
2466 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2467 {
2468 switch (*format_ptr++)
2469 {
2470 case 'e':
2471 XEXP (copy, i) = XEXP (orig, i);
2472 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2473 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2474 break;
2475
2476 case 'u':
2477 XEXP (copy, i) = XEXP (orig, i);
2478 break;
2479
2480 case 'E':
2481 case 'V':
2482 XVEC (copy, i) = XVEC (orig, i);
2483 if (XVEC (orig, i) != NULL)
2484 {
2485 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2486 for (j = 0; j < XVECLEN (copy, i); j++)
2487 XVECEXP (copy, i, j)
2488 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2489 }
2490 break;
2491
2492 case 'w':
2493 XWINT (copy, i) = XWINT (orig, i);
2494 break;
2495
2496 case 'n':
2497 case 'i':
2498 XINT (copy, i) = XINT (orig, i);
2499 break;
2500
2501 case 't':
2502 XTREE (copy, i) = XTREE (orig, i);
2503 break;
2504
2505 case 's':
2506 case 'S':
2507 XSTR (copy, i) = XSTR (orig, i);
2508 break;
2509
2510 case '0':
2511 /* Copy this through the wide int field; that's safest. */
2512 X0WINT (copy, i) = X0WINT (orig, i);
2513 break;
2514
2515 default:
2516 abort ();
2517 }
2518 }
2519 return copy;
2520 }
2521
2522 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2523 Recursively does the same for subexpressions. */
2524
2525 rtx
2526 copy_rtx_if_shared (orig)
2527 rtx orig;
2528 {
2529 rtx x = orig;
2530 int i;
2531 enum rtx_code code;
2532 const char *format_ptr;
2533 int copied = 0;
2534
2535 if (x == 0)
2536 return 0;
2537
2538 code = GET_CODE (x);
2539
2540 /* These types may be freely shared. */
2541
2542 switch (code)
2543 {
2544 case REG:
2545 case QUEUED:
2546 case CONST_INT:
2547 case CONST_DOUBLE:
2548 case CONST_VECTOR:
2549 case SYMBOL_REF:
2550 case CODE_LABEL:
2551 case PC:
2552 case CC0:
2553 case SCRATCH:
2554 /* SCRATCH must be shared because they represent distinct values. */
2555 return x;
2556
2557 case CONST:
2558 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2559 a LABEL_REF, it isn't sharable. */
2560 if (GET_CODE (XEXP (x, 0)) == PLUS
2561 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2562 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2563 return x;
2564 break;
2565
2566 case INSN:
2567 case JUMP_INSN:
2568 case CALL_INSN:
2569 case NOTE:
2570 case BARRIER:
2571 /* The chain of insns is not being copied. */
2572 return x;
2573
2574 case MEM:
2575 /* A MEM is allowed to be shared if its address is constant.
2576
2577 We used to allow sharing of MEMs which referenced
2578 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2579 that can lose. instantiate_virtual_regs will not unshare
2580 the MEMs, and combine may change the structure of the address
2581 because it looks safe and profitable in one context, but
2582 in some other context it creates unrecognizable RTL. */
2583 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2584 return x;
2585
2586 break;
2587
2588 default:
2589 break;
2590 }
2591
2592 /* This rtx may not be shared. If it has already been seen,
2593 replace it with a copy of itself. */
2594
2595 if (RTX_FLAG (x, used))
2596 {
2597 rtx copy;
2598
2599 copy = rtx_alloc (code);
2600 memcpy (copy, x,
2601 (sizeof (*copy) - sizeof (copy->fld)
2602 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2603 x = copy;
2604 copied = 1;
2605 }
2606 RTX_FLAG (x, used) = 1;
2607
2608 /* Now scan the subexpressions recursively.
2609 We can store any replaced subexpressions directly into X
2610 since we know X is not shared! Any vectors in X
2611 must be copied if X was copied. */
2612
2613 format_ptr = GET_RTX_FORMAT (code);
2614
2615 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2616 {
2617 switch (*format_ptr++)
2618 {
2619 case 'e':
2620 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2621 break;
2622
2623 case 'E':
2624 if (XVEC (x, i) != NULL)
2625 {
2626 int j;
2627 int len = XVECLEN (x, i);
2628
2629 if (copied && len > 0)
2630 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2631 for (j = 0; j < len; j++)
2632 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2633 }
2634 break;
2635 }
2636 }
2637 return x;
2638 }
2639
2640 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2641 to look for shared sub-parts. */
2642
2643 void
2644 reset_used_flags (x)
2645 rtx x;
2646 {
2647 int i, j;
2648 enum rtx_code code;
2649 const char *format_ptr;
2650
2651 if (x == 0)
2652 return;
2653
2654 code = GET_CODE (x);
2655
2656 /* These types may be freely shared so we needn't do any resetting
2657 for them. */
2658
2659 switch (code)
2660 {
2661 case REG:
2662 case QUEUED:
2663 case CONST_INT:
2664 case CONST_DOUBLE:
2665 case CONST_VECTOR:
2666 case SYMBOL_REF:
2667 case CODE_LABEL:
2668 case PC:
2669 case CC0:
2670 return;
2671
2672 case INSN:
2673 case JUMP_INSN:
2674 case CALL_INSN:
2675 case NOTE:
2676 case LABEL_REF:
2677 case BARRIER:
2678 /* The chain of insns is not being copied. */
2679 return;
2680
2681 default:
2682 break;
2683 }
2684
2685 RTX_FLAG (x, used) = 0;
2686
2687 format_ptr = GET_RTX_FORMAT (code);
2688 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2689 {
2690 switch (*format_ptr++)
2691 {
2692 case 'e':
2693 reset_used_flags (XEXP (x, i));
2694 break;
2695
2696 case 'E':
2697 for (j = 0; j < XVECLEN (x, i); j++)
2698 reset_used_flags (XVECEXP (x, i, j));
2699 break;
2700 }
2701 }
2702 }
2703 \f
2704 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2705 Return X or the rtx for the pseudo reg the value of X was copied into.
2706 OTHER must be valid as a SET_DEST. */
2707
2708 rtx
2709 make_safe_from (x, other)
2710 rtx x, other;
2711 {
2712 while (1)
2713 switch (GET_CODE (other))
2714 {
2715 case SUBREG:
2716 other = SUBREG_REG (other);
2717 break;
2718 case STRICT_LOW_PART:
2719 case SIGN_EXTEND:
2720 case ZERO_EXTEND:
2721 other = XEXP (other, 0);
2722 break;
2723 default:
2724 goto done;
2725 }
2726 done:
2727 if ((GET_CODE (other) == MEM
2728 && ! CONSTANT_P (x)
2729 && GET_CODE (x) != REG
2730 && GET_CODE (x) != SUBREG)
2731 || (GET_CODE (other) == REG
2732 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2733 || reg_mentioned_p (other, x))))
2734 {
2735 rtx temp = gen_reg_rtx (GET_MODE (x));
2736 emit_move_insn (temp, x);
2737 return temp;
2738 }
2739 return x;
2740 }
2741 \f
2742 /* Emission of insns (adding them to the doubly-linked list). */
2743
2744 /* Return the first insn of the current sequence or current function. */
2745
2746 rtx
2747 get_insns ()
2748 {
2749 return first_insn;
2750 }
2751
2752 /* Specify a new insn as the first in the chain. */
2753
2754 void
2755 set_first_insn (insn)
2756 rtx insn;
2757 {
2758 if (PREV_INSN (insn) != 0)
2759 abort ();
2760 first_insn = insn;
2761 }
2762
2763 /* Return the last insn emitted in current sequence or current function. */
2764
2765 rtx
2766 get_last_insn ()
2767 {
2768 return last_insn;
2769 }
2770
2771 /* Specify a new insn as the last in the chain. */
2772
2773 void
2774 set_last_insn (insn)
2775 rtx insn;
2776 {
2777 if (NEXT_INSN (insn) != 0)
2778 abort ();
2779 last_insn = insn;
2780 }
2781
2782 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2783
2784 rtx
2785 get_last_insn_anywhere ()
2786 {
2787 struct sequence_stack *stack;
2788 if (last_insn)
2789 return last_insn;
2790 for (stack = seq_stack; stack; stack = stack->next)
2791 if (stack->last != 0)
2792 return stack->last;
2793 return 0;
2794 }
2795
2796 /* Return the first nonnote insn emitted in current sequence or current
2797 function. This routine looks inside SEQUENCEs. */
2798
2799 rtx
2800 get_first_nonnote_insn ()
2801 {
2802 rtx insn = first_insn;
2803
2804 while (insn)
2805 {
2806 insn = next_insn (insn);
2807 if (insn == 0 || GET_CODE (insn) != NOTE)
2808 break;
2809 }
2810
2811 return insn;
2812 }
2813
2814 /* Return the last nonnote insn emitted in current sequence or current
2815 function. This routine looks inside SEQUENCEs. */
2816
2817 rtx
2818 get_last_nonnote_insn ()
2819 {
2820 rtx insn = last_insn;
2821
2822 while (insn)
2823 {
2824 insn = previous_insn (insn);
2825 if (insn == 0 || GET_CODE (insn) != NOTE)
2826 break;
2827 }
2828
2829 return insn;
2830 }
2831
2832 /* Return a number larger than any instruction's uid in this function. */
2833
2834 int
2835 get_max_uid ()
2836 {
2837 return cur_insn_uid;
2838 }
2839
2840 /* Renumber instructions so that no instruction UIDs are wasted. */
2841
2842 void
2843 renumber_insns (stream)
2844 FILE *stream;
2845 {
2846 rtx insn;
2847
2848 /* If we're not supposed to renumber instructions, don't. */
2849 if (!flag_renumber_insns)
2850 return;
2851
2852 /* If there aren't that many instructions, then it's not really
2853 worth renumbering them. */
2854 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2855 return;
2856
2857 cur_insn_uid = 1;
2858
2859 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2860 {
2861 if (stream)
2862 fprintf (stream, "Renumbering insn %d to %d\n",
2863 INSN_UID (insn), cur_insn_uid);
2864 INSN_UID (insn) = cur_insn_uid++;
2865 }
2866 }
2867 \f
2868 /* Return the next insn. If it is a SEQUENCE, return the first insn
2869 of the sequence. */
2870
2871 rtx
2872 next_insn (insn)
2873 rtx insn;
2874 {
2875 if (insn)
2876 {
2877 insn = NEXT_INSN (insn);
2878 if (insn && GET_CODE (insn) == INSN
2879 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2880 insn = XVECEXP (PATTERN (insn), 0, 0);
2881 }
2882
2883 return insn;
2884 }
2885
2886 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2887 of the sequence. */
2888
2889 rtx
2890 previous_insn (insn)
2891 rtx insn;
2892 {
2893 if (insn)
2894 {
2895 insn = PREV_INSN (insn);
2896 if (insn && GET_CODE (insn) == INSN
2897 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2898 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2899 }
2900
2901 return insn;
2902 }
2903
2904 /* Return the next insn after INSN that is not a NOTE. This routine does not
2905 look inside SEQUENCEs. */
2906
2907 rtx
2908 next_nonnote_insn (insn)
2909 rtx insn;
2910 {
2911 while (insn)
2912 {
2913 insn = NEXT_INSN (insn);
2914 if (insn == 0 || GET_CODE (insn) != NOTE)
2915 break;
2916 }
2917
2918 return insn;
2919 }
2920
2921 /* Return the previous insn before INSN that is not a NOTE. This routine does
2922 not look inside SEQUENCEs. */
2923
2924 rtx
2925 prev_nonnote_insn (insn)
2926 rtx insn;
2927 {
2928 while (insn)
2929 {
2930 insn = PREV_INSN (insn);
2931 if (insn == 0 || GET_CODE (insn) != NOTE)
2932 break;
2933 }
2934
2935 return insn;
2936 }
2937
2938 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2939 or 0, if there is none. This routine does not look inside
2940 SEQUENCEs. */
2941
2942 rtx
2943 next_real_insn (insn)
2944 rtx insn;
2945 {
2946 while (insn)
2947 {
2948 insn = NEXT_INSN (insn);
2949 if (insn == 0 || GET_CODE (insn) == INSN
2950 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2951 break;
2952 }
2953
2954 return insn;
2955 }
2956
2957 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2958 or 0, if there is none. This routine does not look inside
2959 SEQUENCEs. */
2960
2961 rtx
2962 prev_real_insn (insn)
2963 rtx insn;
2964 {
2965 while (insn)
2966 {
2967 insn = PREV_INSN (insn);
2968 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2969 || GET_CODE (insn) == JUMP_INSN)
2970 break;
2971 }
2972
2973 return insn;
2974 }
2975
2976 /* Find the next insn after INSN that really does something. This routine
2977 does not look inside SEQUENCEs. Until reload has completed, this is the
2978 same as next_real_insn. */
2979
2980 int
2981 active_insn_p (insn)
2982 rtx insn;
2983 {
2984 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2985 || (GET_CODE (insn) == INSN
2986 && (! reload_completed
2987 || (GET_CODE (PATTERN (insn)) != USE
2988 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2989 }
2990
2991 rtx
2992 next_active_insn (insn)
2993 rtx insn;
2994 {
2995 while (insn)
2996 {
2997 insn = NEXT_INSN (insn);
2998 if (insn == 0 || active_insn_p (insn))
2999 break;
3000 }
3001
3002 return insn;
3003 }
3004
3005 /* Find the last insn before INSN that really does something. This routine
3006 does not look inside SEQUENCEs. Until reload has completed, this is the
3007 same as prev_real_insn. */
3008
3009 rtx
3010 prev_active_insn (insn)
3011 rtx insn;
3012 {
3013 while (insn)
3014 {
3015 insn = PREV_INSN (insn);
3016 if (insn == 0 || active_insn_p (insn))
3017 break;
3018 }
3019
3020 return insn;
3021 }
3022
3023 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3024
3025 rtx
3026 next_label (insn)
3027 rtx insn;
3028 {
3029 while (insn)
3030 {
3031 insn = NEXT_INSN (insn);
3032 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3033 break;
3034 }
3035
3036 return insn;
3037 }
3038
3039 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3040
3041 rtx
3042 prev_label (insn)
3043 rtx insn;
3044 {
3045 while (insn)
3046 {
3047 insn = PREV_INSN (insn);
3048 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3049 break;
3050 }
3051
3052 return insn;
3053 }
3054 \f
3055 #ifdef HAVE_cc0
3056 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3057 and REG_CC_USER notes so we can find it. */
3058
3059 void
3060 link_cc0_insns (insn)
3061 rtx insn;
3062 {
3063 rtx user = next_nonnote_insn (insn);
3064
3065 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3066 user = XVECEXP (PATTERN (user), 0, 0);
3067
3068 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3069 REG_NOTES (user));
3070 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3071 }
3072
3073 /* Return the next insn that uses CC0 after INSN, which is assumed to
3074 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3075 applied to the result of this function should yield INSN).
3076
3077 Normally, this is simply the next insn. However, if a REG_CC_USER note
3078 is present, it contains the insn that uses CC0.
3079
3080 Return 0 if we can't find the insn. */
3081
3082 rtx
3083 next_cc0_user (insn)
3084 rtx insn;
3085 {
3086 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3087
3088 if (note)
3089 return XEXP (note, 0);
3090
3091 insn = next_nonnote_insn (insn);
3092 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3093 insn = XVECEXP (PATTERN (insn), 0, 0);
3094
3095 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3096 return insn;
3097
3098 return 0;
3099 }
3100
3101 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3102 note, it is the previous insn. */
3103
3104 rtx
3105 prev_cc0_setter (insn)
3106 rtx insn;
3107 {
3108 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3109
3110 if (note)
3111 return XEXP (note, 0);
3112
3113 insn = prev_nonnote_insn (insn);
3114 if (! sets_cc0_p (PATTERN (insn)))
3115 abort ();
3116
3117 return insn;
3118 }
3119 #endif
3120
3121 /* Increment the label uses for all labels present in rtx. */
3122
3123 static void
3124 mark_label_nuses (x)
3125 rtx x;
3126 {
3127 enum rtx_code code;
3128 int i, j;
3129 const char *fmt;
3130
3131 code = GET_CODE (x);
3132 if (code == LABEL_REF)
3133 LABEL_NUSES (XEXP (x, 0))++;
3134
3135 fmt = GET_RTX_FORMAT (code);
3136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3137 {
3138 if (fmt[i] == 'e')
3139 mark_label_nuses (XEXP (x, i));
3140 else if (fmt[i] == 'E')
3141 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3142 mark_label_nuses (XVECEXP (x, i, j));
3143 }
3144 }
3145
3146 \f
3147 /* Try splitting insns that can be split for better scheduling.
3148 PAT is the pattern which might split.
3149 TRIAL is the insn providing PAT.
3150 LAST is non-zero if we should return the last insn of the sequence produced.
3151
3152 If this routine succeeds in splitting, it returns the first or last
3153 replacement insn depending on the value of LAST. Otherwise, it
3154 returns TRIAL. If the insn to be returned can be split, it will be. */
3155
3156 rtx
3157 try_split (pat, trial, last)
3158 rtx pat, trial;
3159 int last;
3160 {
3161 rtx before = PREV_INSN (trial);
3162 rtx after = NEXT_INSN (trial);
3163 int has_barrier = 0;
3164 rtx tem;
3165 rtx note, seq;
3166 int probability;
3167
3168 if (any_condjump_p (trial)
3169 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3170 split_branch_probability = INTVAL (XEXP (note, 0));
3171 probability = split_branch_probability;
3172
3173 seq = split_insns (pat, trial);
3174
3175 split_branch_probability = -1;
3176
3177 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3178 We may need to handle this specially. */
3179 if (after && GET_CODE (after) == BARRIER)
3180 {
3181 has_barrier = 1;
3182 after = NEXT_INSN (after);
3183 }
3184
3185 if (seq)
3186 {
3187 /* Sometimes there will be only one insn in that list, this case will
3188 normally arise only when we want it in turn to be split (SFmode on
3189 the 29k is an example). */
3190 if (NEXT_INSN (seq) != NULL_RTX)
3191 {
3192 rtx insn_last, insn;
3193 int njumps = 0;
3194
3195 /* Avoid infinite loop if any insn of the result matches
3196 the original pattern. */
3197 insn_last = seq;
3198 while (1)
3199 {
3200 if (INSN_P (insn_last)
3201 && rtx_equal_p (PATTERN (insn_last), pat))
3202 return trial;
3203 if (NEXT_INSN (insn_last) == NULL_RTX)
3204 break;
3205 insn_last = NEXT_INSN (insn_last);
3206 }
3207
3208 /* Mark labels. */
3209 insn = insn_last;
3210 while (insn != NULL_RTX)
3211 {
3212 if (GET_CODE (insn) == JUMP_INSN)
3213 {
3214 mark_jump_label (PATTERN (insn), insn, 0);
3215 njumps++;
3216 if (probability != -1
3217 && any_condjump_p (insn)
3218 && !find_reg_note (insn, REG_BR_PROB, 0))
3219 {
3220 /* We can preserve the REG_BR_PROB notes only if exactly
3221 one jump is created, otherwise the machine description
3222 is responsible for this step using
3223 split_branch_probability variable. */
3224 if (njumps != 1)
3225 abort ();
3226 REG_NOTES (insn)
3227 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3228 GEN_INT (probability),
3229 REG_NOTES (insn));
3230 }
3231 }
3232
3233 insn = PREV_INSN (insn);
3234 }
3235
3236 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3237 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3238 if (GET_CODE (trial) == CALL_INSN)
3239 {
3240 insn = insn_last;
3241 while (insn != NULL_RTX)
3242 {
3243 if (GET_CODE (insn) == CALL_INSN)
3244 CALL_INSN_FUNCTION_USAGE (insn)
3245 = CALL_INSN_FUNCTION_USAGE (trial);
3246
3247 insn = PREV_INSN (insn);
3248 }
3249 }
3250
3251 /* Copy notes, particularly those related to the CFG. */
3252 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3253 {
3254 switch (REG_NOTE_KIND (note))
3255 {
3256 case REG_EH_REGION:
3257 insn = insn_last;
3258 while (insn != NULL_RTX)
3259 {
3260 if (GET_CODE (insn) == CALL_INSN
3261 || (flag_non_call_exceptions
3262 && may_trap_p (PATTERN (insn))))
3263 REG_NOTES (insn)
3264 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3265 XEXP (note, 0),
3266 REG_NOTES (insn));
3267 insn = PREV_INSN (insn);
3268 }
3269 break;
3270
3271 case REG_NORETURN:
3272 case REG_SETJMP:
3273 case REG_ALWAYS_RETURN:
3274 insn = insn_last;
3275 while (insn != NULL_RTX)
3276 {
3277 if (GET_CODE (insn) == CALL_INSN)
3278 REG_NOTES (insn)
3279 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3280 XEXP (note, 0),
3281 REG_NOTES (insn));
3282 insn = PREV_INSN (insn);
3283 }
3284 break;
3285
3286 case REG_NON_LOCAL_GOTO:
3287 insn = insn_last;
3288 while (insn != NULL_RTX)
3289 {
3290 if (GET_CODE (insn) == JUMP_INSN)
3291 REG_NOTES (insn)
3292 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3293 XEXP (note, 0),
3294 REG_NOTES (insn));
3295 insn = PREV_INSN (insn);
3296 }
3297 break;
3298
3299 default:
3300 break;
3301 }
3302 }
3303
3304 /* If there are LABELS inside the split insns increment the
3305 usage count so we don't delete the label. */
3306 if (GET_CODE (trial) == INSN)
3307 {
3308 insn = insn_last;
3309 while (insn != NULL_RTX)
3310 {
3311 if (GET_CODE (insn) == INSN)
3312 mark_label_nuses (PATTERN (insn));
3313
3314 insn = PREV_INSN (insn);
3315 }
3316 }
3317
3318 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3319
3320 delete_insn (trial);
3321 if (has_barrier)
3322 emit_barrier_after (tem);
3323
3324 /* Recursively call try_split for each new insn created; by the
3325 time control returns here that insn will be fully split, so
3326 set LAST and continue from the insn after the one returned.
3327 We can't use next_active_insn here since AFTER may be a note.
3328 Ignore deleted insns, which can be occur if not optimizing. */
3329 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3330 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3331 tem = try_split (PATTERN (tem), tem, 1);
3332 }
3333 /* Avoid infinite loop if the result matches the original pattern. */
3334 else if (rtx_equal_p (PATTERN (seq), pat))
3335 return trial;
3336 else
3337 {
3338 PATTERN (trial) = PATTERN (seq);
3339 INSN_CODE (trial) = -1;
3340 try_split (PATTERN (trial), trial, last);
3341 }
3342
3343 /* Return either the first or the last insn, depending on which was
3344 requested. */
3345 return last
3346 ? (after ? PREV_INSN (after) : last_insn)
3347 : NEXT_INSN (before);
3348 }
3349
3350 return trial;
3351 }
3352 \f
3353 /* Make and return an INSN rtx, initializing all its slots.
3354 Store PATTERN in the pattern slots. */
3355
3356 rtx
3357 make_insn_raw (pattern)
3358 rtx pattern;
3359 {
3360 rtx insn;
3361
3362 insn = rtx_alloc (INSN);
3363
3364 INSN_UID (insn) = cur_insn_uid++;
3365 PATTERN (insn) = pattern;
3366 INSN_CODE (insn) = -1;
3367 LOG_LINKS (insn) = NULL;
3368 REG_NOTES (insn) = NULL;
3369 INSN_SCOPE (insn) = NULL;
3370 BLOCK_FOR_INSN (insn) = NULL;
3371
3372 #ifdef ENABLE_RTL_CHECKING
3373 if (insn
3374 && INSN_P (insn)
3375 && (returnjump_p (insn)
3376 || (GET_CODE (insn) == SET
3377 && SET_DEST (insn) == pc_rtx)))
3378 {
3379 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3380 debug_rtx (insn);
3381 }
3382 #endif
3383
3384 return insn;
3385 }
3386
3387 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3388
3389 static rtx
3390 make_jump_insn_raw (pattern)
3391 rtx pattern;
3392 {
3393 rtx insn;
3394
3395 insn = rtx_alloc (JUMP_INSN);
3396 INSN_UID (insn) = cur_insn_uid++;
3397
3398 PATTERN (insn) = pattern;
3399 INSN_CODE (insn) = -1;
3400 LOG_LINKS (insn) = NULL;
3401 REG_NOTES (insn) = NULL;
3402 JUMP_LABEL (insn) = NULL;
3403 INSN_SCOPE (insn) = NULL;
3404 BLOCK_FOR_INSN (insn) = NULL;
3405
3406 return insn;
3407 }
3408
3409 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3410
3411 static rtx
3412 make_call_insn_raw (pattern)
3413 rtx pattern;
3414 {
3415 rtx insn;
3416
3417 insn = rtx_alloc (CALL_INSN);
3418 INSN_UID (insn) = cur_insn_uid++;
3419
3420 PATTERN (insn) = pattern;
3421 INSN_CODE (insn) = -1;
3422 LOG_LINKS (insn) = NULL;
3423 REG_NOTES (insn) = NULL;
3424 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3425 INSN_SCOPE (insn) = NULL;
3426 BLOCK_FOR_INSN (insn) = NULL;
3427
3428 return insn;
3429 }
3430 \f
3431 /* Add INSN to the end of the doubly-linked list.
3432 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3433
3434 void
3435 add_insn (insn)
3436 rtx insn;
3437 {
3438 PREV_INSN (insn) = last_insn;
3439 NEXT_INSN (insn) = 0;
3440
3441 if (NULL != last_insn)
3442 NEXT_INSN (last_insn) = insn;
3443
3444 if (NULL == first_insn)
3445 first_insn = insn;
3446
3447 last_insn = insn;
3448 }
3449
3450 /* Add INSN into the doubly-linked list after insn AFTER. This and
3451 the next should be the only functions called to insert an insn once
3452 delay slots have been filled since only they know how to update a
3453 SEQUENCE. */
3454
3455 void
3456 add_insn_after (insn, after)
3457 rtx insn, after;
3458 {
3459 rtx next = NEXT_INSN (after);
3460 basic_block bb;
3461
3462 if (optimize && INSN_DELETED_P (after))
3463 abort ();
3464
3465 NEXT_INSN (insn) = next;
3466 PREV_INSN (insn) = after;
3467
3468 if (next)
3469 {
3470 PREV_INSN (next) = insn;
3471 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3472 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3473 }
3474 else if (last_insn == after)
3475 last_insn = insn;
3476 else
3477 {
3478 struct sequence_stack *stack = seq_stack;
3479 /* Scan all pending sequences too. */
3480 for (; stack; stack = stack->next)
3481 if (after == stack->last)
3482 {
3483 stack->last = insn;
3484 break;
3485 }
3486
3487 if (stack == 0)
3488 abort ();
3489 }
3490
3491 if (GET_CODE (after) != BARRIER
3492 && GET_CODE (insn) != BARRIER
3493 && (bb = BLOCK_FOR_INSN (after)))
3494 {
3495 set_block_for_insn (insn, bb);
3496 if (INSN_P (insn))
3497 bb->flags |= BB_DIRTY;
3498 /* Should not happen as first in the BB is always
3499 either NOTE or LABEL. */
3500 if (bb->end == after
3501 /* Avoid clobbering of structure when creating new BB. */
3502 && GET_CODE (insn) != BARRIER
3503 && (GET_CODE (insn) != NOTE
3504 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3505 bb->end = insn;
3506 }
3507
3508 NEXT_INSN (after) = insn;
3509 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3510 {
3511 rtx sequence = PATTERN (after);
3512 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3513 }
3514 }
3515
3516 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3517 the previous should be the only functions called to insert an insn once
3518 delay slots have been filled since only they know how to update a
3519 SEQUENCE. */
3520
3521 void
3522 add_insn_before (insn, before)
3523 rtx insn, before;
3524 {
3525 rtx prev = PREV_INSN (before);
3526 basic_block bb;
3527
3528 if (optimize && INSN_DELETED_P (before))
3529 abort ();
3530
3531 PREV_INSN (insn) = prev;
3532 NEXT_INSN (insn) = before;
3533
3534 if (prev)
3535 {
3536 NEXT_INSN (prev) = insn;
3537 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3538 {
3539 rtx sequence = PATTERN (prev);
3540 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3541 }
3542 }
3543 else if (first_insn == before)
3544 first_insn = insn;
3545 else
3546 {
3547 struct sequence_stack *stack = seq_stack;
3548 /* Scan all pending sequences too. */
3549 for (; stack; stack = stack->next)
3550 if (before == stack->first)
3551 {
3552 stack->first = insn;
3553 break;
3554 }
3555
3556 if (stack == 0)
3557 abort ();
3558 }
3559
3560 if (GET_CODE (before) != BARRIER
3561 && GET_CODE (insn) != BARRIER
3562 && (bb = BLOCK_FOR_INSN (before)))
3563 {
3564 set_block_for_insn (insn, bb);
3565 if (INSN_P (insn))
3566 bb->flags |= BB_DIRTY;
3567 /* Should not happen as first in the BB is always
3568 either NOTE or LABEl. */
3569 if (bb->head == insn
3570 /* Avoid clobbering of structure when creating new BB. */
3571 && GET_CODE (insn) != BARRIER
3572 && (GET_CODE (insn) != NOTE
3573 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3574 abort ();
3575 }
3576
3577 PREV_INSN (before) = insn;
3578 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3579 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3580 }
3581
3582 /* Remove an insn from its doubly-linked list. This function knows how
3583 to handle sequences. */
3584 void
3585 remove_insn (insn)
3586 rtx insn;
3587 {
3588 rtx next = NEXT_INSN (insn);
3589 rtx prev = PREV_INSN (insn);
3590 basic_block bb;
3591
3592 if (prev)
3593 {
3594 NEXT_INSN (prev) = next;
3595 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3596 {
3597 rtx sequence = PATTERN (prev);
3598 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3599 }
3600 }
3601 else if (first_insn == insn)
3602 first_insn = next;
3603 else
3604 {
3605 struct sequence_stack *stack = seq_stack;
3606 /* Scan all pending sequences too. */
3607 for (; stack; stack = stack->next)
3608 if (insn == stack->first)
3609 {
3610 stack->first = next;
3611 break;
3612 }
3613
3614 if (stack == 0)
3615 abort ();
3616 }
3617
3618 if (next)
3619 {
3620 PREV_INSN (next) = prev;
3621 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3622 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3623 }
3624 else if (last_insn == insn)
3625 last_insn = prev;
3626 else
3627 {
3628 struct sequence_stack *stack = seq_stack;
3629 /* Scan all pending sequences too. */
3630 for (; stack; stack = stack->next)
3631 if (insn == stack->last)
3632 {
3633 stack->last = prev;
3634 break;
3635 }
3636
3637 if (stack == 0)
3638 abort ();
3639 }
3640 if (GET_CODE (insn) != BARRIER
3641 && (bb = BLOCK_FOR_INSN (insn)))
3642 {
3643 if (INSN_P (insn))
3644 bb->flags |= BB_DIRTY;
3645 if (bb->head == insn)
3646 {
3647 /* Never ever delete the basic block note without deleting whole
3648 basic block. */
3649 if (GET_CODE (insn) == NOTE)
3650 abort ();
3651 bb->head = next;
3652 }
3653 if (bb->end == insn)
3654 bb->end = prev;
3655 }
3656 }
3657
3658 /* Delete all insns made since FROM.
3659 FROM becomes the new last instruction. */
3660
3661 void
3662 delete_insns_since (from)
3663 rtx from;
3664 {
3665 if (from == 0)
3666 first_insn = 0;
3667 else
3668 NEXT_INSN (from) = 0;
3669 last_insn = from;
3670 }
3671
3672 /* This function is deprecated, please use sequences instead.
3673
3674 Move a consecutive bunch of insns to a different place in the chain.
3675 The insns to be moved are those between FROM and TO.
3676 They are moved to a new position after the insn AFTER.
3677 AFTER must not be FROM or TO or any insn in between.
3678
3679 This function does not know about SEQUENCEs and hence should not be
3680 called after delay-slot filling has been done. */
3681
3682 void
3683 reorder_insns_nobb (from, to, after)
3684 rtx from, to, after;
3685 {
3686 /* Splice this bunch out of where it is now. */
3687 if (PREV_INSN (from))
3688 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3689 if (NEXT_INSN (to))
3690 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3691 if (last_insn == to)
3692 last_insn = PREV_INSN (from);
3693 if (first_insn == from)
3694 first_insn = NEXT_INSN (to);
3695
3696 /* Make the new neighbors point to it and it to them. */
3697 if (NEXT_INSN (after))
3698 PREV_INSN (NEXT_INSN (after)) = to;
3699
3700 NEXT_INSN (to) = NEXT_INSN (after);
3701 PREV_INSN (from) = after;
3702 NEXT_INSN (after) = from;
3703 if (after == last_insn)
3704 last_insn = to;
3705 }
3706
3707 /* Same as function above, but take care to update BB boundaries. */
3708 void
3709 reorder_insns (from, to, after)
3710 rtx from, to, after;
3711 {
3712 rtx prev = PREV_INSN (from);
3713 basic_block bb, bb2;
3714
3715 reorder_insns_nobb (from, to, after);
3716
3717 if (GET_CODE (after) != BARRIER
3718 && (bb = BLOCK_FOR_INSN (after)))
3719 {
3720 rtx x;
3721 bb->flags |= BB_DIRTY;
3722
3723 if (GET_CODE (from) != BARRIER
3724 && (bb2 = BLOCK_FOR_INSN (from)))
3725 {
3726 if (bb2->end == to)
3727 bb2->end = prev;
3728 bb2->flags |= BB_DIRTY;
3729 }
3730
3731 if (bb->end == after)
3732 bb->end = to;
3733
3734 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3735 set_block_for_insn (x, bb);
3736 }
3737 }
3738
3739 /* Return the line note insn preceding INSN. */
3740
3741 static rtx
3742 find_line_note (insn)
3743 rtx insn;
3744 {
3745 if (no_line_numbers)
3746 return 0;
3747
3748 for (; insn; insn = PREV_INSN (insn))
3749 if (GET_CODE (insn) == NOTE
3750 && NOTE_LINE_NUMBER (insn) >= 0)
3751 break;
3752
3753 return insn;
3754 }
3755
3756 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3757 of the moved insns when debugging. This may insert a note between AFTER
3758 and FROM, and another one after TO. */
3759
3760 void
3761 reorder_insns_with_line_notes (from, to, after)
3762 rtx from, to, after;
3763 {
3764 rtx from_line = find_line_note (from);
3765 rtx after_line = find_line_note (after);
3766
3767 reorder_insns (from, to, after);
3768
3769 if (from_line == after_line)
3770 return;
3771
3772 if (from_line)
3773 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3774 NOTE_LINE_NUMBER (from_line),
3775 after);
3776 if (after_line)
3777 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3778 NOTE_LINE_NUMBER (after_line),
3779 to);
3780 }
3781
3782 /* Remove unnecessary notes from the instruction stream. */
3783
3784 void
3785 remove_unnecessary_notes ()
3786 {
3787 rtx block_stack = NULL_RTX;
3788 rtx eh_stack = NULL_RTX;
3789 rtx insn;
3790 rtx next;
3791 rtx tmp;
3792
3793 /* We must not remove the first instruction in the function because
3794 the compiler depends on the first instruction being a note. */
3795 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3796 {
3797 /* Remember what's next. */
3798 next = NEXT_INSN (insn);
3799
3800 /* We're only interested in notes. */
3801 if (GET_CODE (insn) != NOTE)
3802 continue;
3803
3804 switch (NOTE_LINE_NUMBER (insn))
3805 {
3806 case NOTE_INSN_DELETED:
3807 case NOTE_INSN_LOOP_END_TOP_COND:
3808 remove_insn (insn);
3809 break;
3810
3811 case NOTE_INSN_EH_REGION_BEG:
3812 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3813 break;
3814
3815 case NOTE_INSN_EH_REGION_END:
3816 /* Too many end notes. */
3817 if (eh_stack == NULL_RTX)
3818 abort ();
3819 /* Mismatched nesting. */
3820 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3821 abort ();
3822 tmp = eh_stack;
3823 eh_stack = XEXP (eh_stack, 1);
3824 free_INSN_LIST_node (tmp);
3825 break;
3826
3827 case NOTE_INSN_BLOCK_BEG:
3828 /* By now, all notes indicating lexical blocks should have
3829 NOTE_BLOCK filled in. */
3830 if (NOTE_BLOCK (insn) == NULL_TREE)
3831 abort ();
3832 block_stack = alloc_INSN_LIST (insn, block_stack);
3833 break;
3834
3835 case NOTE_INSN_BLOCK_END:
3836 /* Too many end notes. */
3837 if (block_stack == NULL_RTX)
3838 abort ();
3839 /* Mismatched nesting. */
3840 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3841 abort ();
3842 tmp = block_stack;
3843 block_stack = XEXP (block_stack, 1);
3844 free_INSN_LIST_node (tmp);
3845
3846 /* Scan back to see if there are any non-note instructions
3847 between INSN and the beginning of this block. If not,
3848 then there is no PC range in the generated code that will
3849 actually be in this block, so there's no point in
3850 remembering the existence of the block. */
3851 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3852 {
3853 /* This block contains a real instruction. Note that we
3854 don't include labels; if the only thing in the block
3855 is a label, then there are still no PC values that
3856 lie within the block. */
3857 if (INSN_P (tmp))
3858 break;
3859
3860 /* We're only interested in NOTEs. */
3861 if (GET_CODE (tmp) != NOTE)
3862 continue;
3863
3864 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3865 {
3866 /* We just verified that this BLOCK matches us with
3867 the block_stack check above. Never delete the
3868 BLOCK for the outermost scope of the function; we
3869 can refer to names from that scope even if the
3870 block notes are messed up. */
3871 if (! is_body_block (NOTE_BLOCK (insn))
3872 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3873 {
3874 remove_insn (tmp);
3875 remove_insn (insn);
3876 }
3877 break;
3878 }
3879 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3880 /* There's a nested block. We need to leave the
3881 current block in place since otherwise the debugger
3882 wouldn't be able to show symbols from our block in
3883 the nested block. */
3884 break;
3885 }
3886 }
3887 }
3888
3889 /* Too many begin notes. */
3890 if (block_stack || eh_stack)
3891 abort ();
3892 }
3893
3894 \f
3895 /* Emit insn(s) of given code and pattern
3896 at a specified place within the doubly-linked list.
3897
3898 All of the emit_foo global entry points accept an object
3899 X which is either an insn list or a PATTERN of a single
3900 instruction.
3901
3902 There are thus a few canonical ways to generate code and
3903 emit it at a specific place in the instruction stream. For
3904 example, consider the instruction named SPOT and the fact that
3905 we would like to emit some instructions before SPOT. We might
3906 do it like this:
3907
3908 start_sequence ();
3909 ... emit the new instructions ...
3910 insns_head = get_insns ();
3911 end_sequence ();
3912
3913 emit_insn_before (insns_head, SPOT);
3914
3915 It used to be common to generate SEQUENCE rtl instead, but that
3916 is a relic of the past which no longer occurs. The reason is that
3917 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3918 generated would almost certainly die right after it was created. */
3919
3920 /* Make X be output before the instruction BEFORE. */
3921
3922 rtx
3923 emit_insn_before (x, before)
3924 rtx x, before;
3925 {
3926 rtx last = before;
3927 rtx insn;
3928
3929 #ifdef ENABLE_RTL_CHECKING
3930 if (before == NULL_RTX)
3931 abort ();
3932 #endif
3933
3934 if (x == NULL_RTX)
3935 return last;
3936
3937 switch (GET_CODE (x))
3938 {
3939 case INSN:
3940 case JUMP_INSN:
3941 case CALL_INSN:
3942 case CODE_LABEL:
3943 case BARRIER:
3944 case NOTE:
3945 insn = x;
3946 while (insn)
3947 {
3948 rtx next = NEXT_INSN (insn);
3949 add_insn_before (insn, before);
3950 last = insn;
3951 insn = next;
3952 }
3953 break;
3954
3955 #ifdef ENABLE_RTL_CHECKING
3956 case SEQUENCE:
3957 abort ();
3958 break;
3959 #endif
3960
3961 default:
3962 last = make_insn_raw (x);
3963 add_insn_before (last, before);
3964 break;
3965 }
3966
3967 return last;
3968 }
3969
3970 /* Make an instruction with body X and code JUMP_INSN
3971 and output it before the instruction BEFORE. */
3972
3973 rtx
3974 emit_jump_insn_before (x, before)
3975 rtx x, before;
3976 {
3977 rtx insn, last;
3978
3979 #ifdef ENABLE_RTL_CHECKING
3980 if (before == NULL_RTX)
3981 abort ();
3982 #endif
3983
3984 switch (GET_CODE (x))
3985 {
3986 case INSN:
3987 case JUMP_INSN:
3988 case CALL_INSN:
3989 case CODE_LABEL:
3990 case BARRIER:
3991 case NOTE:
3992 insn = x;
3993 while (insn)
3994 {
3995 rtx next = NEXT_INSN (insn);
3996 add_insn_before (insn, before);
3997 last = insn;
3998 insn = next;
3999 }
4000 break;
4001
4002 #ifdef ENABLE_RTL_CHECKING
4003 case SEQUENCE:
4004 abort ();
4005 break;
4006 #endif
4007
4008 default:
4009 last = make_jump_insn_raw (x);
4010 add_insn_before (last, before);
4011 break;
4012 }
4013
4014 return last;
4015 }
4016
4017 /* Make an instruction with body X and code CALL_INSN
4018 and output it before the instruction BEFORE. */
4019
4020 rtx
4021 emit_call_insn_before (x, before)
4022 rtx x, before;
4023 {
4024 rtx last, insn;
4025
4026 #ifdef ENABLE_RTL_CHECKING
4027 if (before == NULL_RTX)
4028 abort ();
4029 #endif
4030
4031 switch (GET_CODE (x))
4032 {
4033 case INSN:
4034 case JUMP_INSN:
4035 case CALL_INSN:
4036 case CODE_LABEL:
4037 case BARRIER:
4038 case NOTE:
4039 insn = x;
4040 while (insn)
4041 {
4042 rtx next = NEXT_INSN (insn);
4043 add_insn_before (insn, before);
4044 last = insn;
4045 insn = next;
4046 }
4047 break;
4048
4049 #ifdef ENABLE_RTL_CHECKING
4050 case SEQUENCE:
4051 abort ();
4052 break;
4053 #endif
4054
4055 default:
4056 last = make_call_insn_raw (x);
4057 add_insn_before (last, before);
4058 break;
4059 }
4060
4061 return last;
4062 }
4063
4064 /* Make an insn of code BARRIER
4065 and output it before the insn BEFORE. */
4066
4067 rtx
4068 emit_barrier_before (before)
4069 rtx before;
4070 {
4071 rtx insn = rtx_alloc (BARRIER);
4072
4073 INSN_UID (insn) = cur_insn_uid++;
4074
4075 add_insn_before (insn, before);
4076 return insn;
4077 }
4078
4079 /* Emit the label LABEL before the insn BEFORE. */
4080
4081 rtx
4082 emit_label_before (label, before)
4083 rtx label, before;
4084 {
4085 /* This can be called twice for the same label as a result of the
4086 confusion that follows a syntax error! So make it harmless. */
4087 if (INSN_UID (label) == 0)
4088 {
4089 INSN_UID (label) = cur_insn_uid++;
4090 add_insn_before (label, before);
4091 }
4092
4093 return label;
4094 }
4095
4096 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4097
4098 rtx
4099 emit_note_before (subtype, before)
4100 int subtype;
4101 rtx before;
4102 {
4103 rtx note = rtx_alloc (NOTE);
4104 INSN_UID (note) = cur_insn_uid++;
4105 NOTE_SOURCE_FILE (note) = 0;
4106 NOTE_LINE_NUMBER (note) = subtype;
4107 BLOCK_FOR_INSN (note) = NULL;
4108
4109 add_insn_before (note, before);
4110 return note;
4111 }
4112 \f
4113 /* Helper for emit_insn_after, handles lists of instructions
4114 efficiently. */
4115
4116 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4117
4118 static rtx
4119 emit_insn_after_1 (first, after)
4120 rtx first, after;
4121 {
4122 rtx last;
4123 rtx after_after;
4124 basic_block bb;
4125
4126 if (GET_CODE (after) != BARRIER
4127 && (bb = BLOCK_FOR_INSN (after)))
4128 {
4129 bb->flags |= BB_DIRTY;
4130 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4131 if (GET_CODE (last) != BARRIER)
4132 set_block_for_insn (last, bb);
4133 if (GET_CODE (last) != BARRIER)
4134 set_block_for_insn (last, bb);
4135 if (bb->end == after)
4136 bb->end = last;
4137 }
4138 else
4139 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4140 continue;
4141
4142 after_after = NEXT_INSN (after);
4143
4144 NEXT_INSN (after) = first;
4145 PREV_INSN (first) = after;
4146 NEXT_INSN (last) = after_after;
4147 if (after_after)
4148 PREV_INSN (after_after) = last;
4149
4150 if (after == last_insn)
4151 last_insn = last;
4152 return last;
4153 }
4154
4155 /* Make X be output after the insn AFTER. */
4156
4157 rtx
4158 emit_insn_after (x, after)
4159 rtx x, after;
4160 {
4161 rtx last = after;
4162
4163 #ifdef ENABLE_RTL_CHECKING
4164 if (after == NULL_RTX)
4165 abort ();
4166 #endif
4167
4168 if (x == NULL_RTX)
4169 return last;
4170
4171 switch (GET_CODE (x))
4172 {
4173 case INSN:
4174 case JUMP_INSN:
4175 case CALL_INSN:
4176 case CODE_LABEL:
4177 case BARRIER:
4178 case NOTE:
4179 last = emit_insn_after_1 (x, after);
4180 break;
4181
4182 #ifdef ENABLE_RTL_CHECKING
4183 case SEQUENCE:
4184 abort ();
4185 break;
4186 #endif
4187
4188 default:
4189 last = make_insn_raw (x);
4190 add_insn_after (last, after);
4191 break;
4192 }
4193
4194 return last;
4195 }
4196
4197 /* Similar to emit_insn_after, except that line notes are to be inserted so
4198 as to act as if this insn were at FROM. */
4199
4200 void
4201 emit_insn_after_with_line_notes (x, after, from)
4202 rtx x, after, from;
4203 {
4204 rtx from_line = find_line_note (from);
4205 rtx after_line = find_line_note (after);
4206 rtx insn = emit_insn_after (x, after);
4207
4208 if (from_line)
4209 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4210 NOTE_LINE_NUMBER (from_line),
4211 after);
4212
4213 if (after_line)
4214 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4215 NOTE_LINE_NUMBER (after_line),
4216 insn);
4217 }
4218
4219 /* Make an insn of code JUMP_INSN with body X
4220 and output it after the insn AFTER. */
4221
4222 rtx
4223 emit_jump_insn_after (x, after)
4224 rtx x, after;
4225 {
4226 rtx last;
4227
4228 #ifdef ENABLE_RTL_CHECKING
4229 if (after == NULL_RTX)
4230 abort ();
4231 #endif
4232
4233 switch (GET_CODE (x))
4234 {
4235 case INSN:
4236 case JUMP_INSN:
4237 case CALL_INSN:
4238 case CODE_LABEL:
4239 case BARRIER:
4240 case NOTE:
4241 last = emit_insn_after_1 (x, after);
4242 break;
4243
4244 #ifdef ENABLE_RTL_CHECKING
4245 case SEQUENCE:
4246 abort ();
4247 break;
4248 #endif
4249
4250 default:
4251 last = make_jump_insn_raw (x);
4252 add_insn_after (last, after);
4253 break;
4254 }
4255
4256 return last;
4257 }
4258
4259 /* Make an instruction with body X and code CALL_INSN
4260 and output it after the instruction AFTER. */
4261
4262 rtx
4263 emit_call_insn_after (x, after)
4264 rtx x, after;
4265 {
4266 rtx last;
4267
4268 #ifdef ENABLE_RTL_CHECKING
4269 if (after == NULL_RTX)
4270 abort ();
4271 #endif
4272
4273 switch (GET_CODE (x))
4274 {
4275 case INSN:
4276 case JUMP_INSN:
4277 case CALL_INSN:
4278 case CODE_LABEL:
4279 case BARRIER:
4280 case NOTE:
4281 last = emit_insn_after_1 (x, after);
4282 break;
4283
4284 #ifdef ENABLE_RTL_CHECKING
4285 case SEQUENCE:
4286 abort ();
4287 break;
4288 #endif
4289
4290 default:
4291 last = make_call_insn_raw (x);
4292 add_insn_after (last, after);
4293 break;
4294 }
4295
4296 return last;
4297 }
4298
4299 /* Make an insn of code BARRIER
4300 and output it after the insn AFTER. */
4301
4302 rtx
4303 emit_barrier_after (after)
4304 rtx after;
4305 {
4306 rtx insn = rtx_alloc (BARRIER);
4307
4308 INSN_UID (insn) = cur_insn_uid++;
4309
4310 add_insn_after (insn, after);
4311 return insn;
4312 }
4313
4314 /* Emit the label LABEL after the insn AFTER. */
4315
4316 rtx
4317 emit_label_after (label, after)
4318 rtx label, after;
4319 {
4320 /* This can be called twice for the same label
4321 as a result of the confusion that follows a syntax error!
4322 So make it harmless. */
4323 if (INSN_UID (label) == 0)
4324 {
4325 INSN_UID (label) = cur_insn_uid++;
4326 add_insn_after (label, after);
4327 }
4328
4329 return label;
4330 }
4331
4332 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4333
4334 rtx
4335 emit_note_after (subtype, after)
4336 int subtype;
4337 rtx after;
4338 {
4339 rtx note = rtx_alloc (NOTE);
4340 INSN_UID (note) = cur_insn_uid++;
4341 NOTE_SOURCE_FILE (note) = 0;
4342 NOTE_LINE_NUMBER (note) = subtype;
4343 BLOCK_FOR_INSN (note) = NULL;
4344 add_insn_after (note, after);
4345 return note;
4346 }
4347
4348 /* Emit a line note for FILE and LINE after the insn AFTER. */
4349
4350 rtx
4351 emit_line_note_after (file, line, after)
4352 const char *file;
4353 int line;
4354 rtx after;
4355 {
4356 rtx note;
4357
4358 if (no_line_numbers && line > 0)
4359 {
4360 cur_insn_uid++;
4361 return 0;
4362 }
4363
4364 note = rtx_alloc (NOTE);
4365 INSN_UID (note) = cur_insn_uid++;
4366 NOTE_SOURCE_FILE (note) = file;
4367 NOTE_LINE_NUMBER (note) = line;
4368 BLOCK_FOR_INSN (note) = NULL;
4369 add_insn_after (note, after);
4370 return note;
4371 }
4372 \f
4373 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4374 rtx
4375 emit_insn_after_scope (pattern, after, scope)
4376 rtx pattern, after;
4377 tree scope;
4378 {
4379 rtx last = emit_insn_after (pattern, after);
4380
4381 after = NEXT_INSN (after);
4382 while (1)
4383 {
4384 if (active_insn_p (after))
4385 INSN_SCOPE (after) = scope;
4386 if (after == last)
4387 break;
4388 after = NEXT_INSN (after);
4389 }
4390 return last;
4391 }
4392
4393 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4394 rtx
4395 emit_jump_insn_after_scope (pattern, after, scope)
4396 rtx pattern, after;
4397 tree scope;
4398 {
4399 rtx last = emit_jump_insn_after (pattern, after);
4400
4401 after = NEXT_INSN (after);
4402 while (1)
4403 {
4404 if (active_insn_p (after))
4405 INSN_SCOPE (after) = scope;
4406 if (after == last)
4407 break;
4408 after = NEXT_INSN (after);
4409 }
4410 return last;
4411 }
4412
4413 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4414 rtx
4415 emit_call_insn_after_scope (pattern, after, scope)
4416 rtx pattern, after;
4417 tree scope;
4418 {
4419 rtx last = emit_call_insn_after (pattern, after);
4420
4421 after = NEXT_INSN (after);
4422 while (1)
4423 {
4424 if (active_insn_p (after))
4425 INSN_SCOPE (after) = scope;
4426 if (after == last)
4427 break;
4428 after = NEXT_INSN (after);
4429 }
4430 return last;
4431 }
4432
4433 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4434 rtx
4435 emit_insn_before_scope (pattern, before, scope)
4436 rtx pattern, before;
4437 tree scope;
4438 {
4439 rtx first = PREV_INSN (before);
4440 rtx last = emit_insn_before (pattern, before);
4441
4442 first = NEXT_INSN (first);
4443 while (1)
4444 {
4445 if (active_insn_p (first))
4446 INSN_SCOPE (first) = scope;
4447 if (first == last)
4448 break;
4449 first = NEXT_INSN (first);
4450 }
4451 return last;
4452 }
4453 \f
4454 /* Take X and emit it at the end of the doubly-linked
4455 INSN list.
4456
4457 Returns the last insn emitted. */
4458
4459 rtx
4460 emit_insn (x)
4461 rtx x;
4462 {
4463 rtx last = last_insn;
4464 rtx insn;
4465
4466 if (x == NULL_RTX)
4467 return last;
4468
4469 switch (GET_CODE (x))
4470 {
4471 case INSN:
4472 case JUMP_INSN:
4473 case CALL_INSN:
4474 case CODE_LABEL:
4475 case BARRIER:
4476 case NOTE:
4477 insn = x;
4478 while (insn)
4479 {
4480 rtx next = NEXT_INSN (insn);
4481 add_insn (insn);
4482 last = insn;
4483 insn = next;
4484 }
4485 break;
4486
4487 #ifdef ENABLE_RTL_CHECKING
4488 case SEQUENCE:
4489 abort ();
4490 break;
4491 #endif
4492
4493 default:
4494 last = make_insn_raw (x);
4495 add_insn (last);
4496 break;
4497 }
4498
4499 return last;
4500 }
4501
4502 /* Make an insn of code JUMP_INSN with pattern X
4503 and add it to the end of the doubly-linked list. */
4504
4505 rtx
4506 emit_jump_insn (x)
4507 rtx x;
4508 {
4509 rtx last, insn;
4510
4511 switch (GET_CODE (x))
4512 {
4513 case INSN:
4514 case JUMP_INSN:
4515 case CALL_INSN:
4516 case CODE_LABEL:
4517 case BARRIER:
4518 case NOTE:
4519 insn = x;
4520 while (insn)
4521 {
4522 rtx next = NEXT_INSN (insn);
4523 add_insn (insn);
4524 last = insn;
4525 insn = next;
4526 }
4527 break;
4528
4529 #ifdef ENABLE_RTL_CHECKING
4530 case SEQUENCE:
4531 abort ();
4532 break;
4533 #endif
4534
4535 default:
4536 last = make_jump_insn_raw (x);
4537 add_insn (last);
4538 break;
4539 }
4540
4541 return last;
4542 }
4543
4544 /* Make an insn of code CALL_INSN with pattern X
4545 and add it to the end of the doubly-linked list. */
4546
4547 rtx
4548 emit_call_insn (x)
4549 rtx x;
4550 {
4551 rtx insn;
4552
4553 switch (GET_CODE (x))
4554 {
4555 case INSN:
4556 case JUMP_INSN:
4557 case CALL_INSN:
4558 case CODE_LABEL:
4559 case BARRIER:
4560 case NOTE:
4561 insn = emit_insn (x);
4562 break;
4563
4564 #ifdef ENABLE_RTL_CHECKING
4565 case SEQUENCE:
4566 abort ();
4567 break;
4568 #endif
4569
4570 default:
4571 insn = make_call_insn_raw (x);
4572 add_insn (insn);
4573 break;
4574 }
4575
4576 return insn;
4577 }
4578
4579 /* Add the label LABEL to the end of the doubly-linked list. */
4580
4581 rtx
4582 emit_label (label)
4583 rtx label;
4584 {
4585 /* This can be called twice for the same label
4586 as a result of the confusion that follows a syntax error!
4587 So make it harmless. */
4588 if (INSN_UID (label) == 0)
4589 {
4590 INSN_UID (label) = cur_insn_uid++;
4591 add_insn (label);
4592 }
4593 return label;
4594 }
4595
4596 /* Make an insn of code BARRIER
4597 and add it to the end of the doubly-linked list. */
4598
4599 rtx
4600 emit_barrier ()
4601 {
4602 rtx barrier = rtx_alloc (BARRIER);
4603 INSN_UID (barrier) = cur_insn_uid++;
4604 add_insn (barrier);
4605 return barrier;
4606 }
4607
4608 /* Make an insn of code NOTE
4609 with data-fields specified by FILE and LINE
4610 and add it to the end of the doubly-linked list,
4611 but only if line-numbers are desired for debugging info. */
4612
4613 rtx
4614 emit_line_note (file, line)
4615 const char *file;
4616 int line;
4617 {
4618 set_file_and_line_for_stmt (file, line);
4619
4620 #if 0
4621 if (no_line_numbers)
4622 return 0;
4623 #endif
4624
4625 return emit_note (file, line);
4626 }
4627
4628 /* Make an insn of code NOTE
4629 with data-fields specified by FILE and LINE
4630 and add it to the end of the doubly-linked list.
4631 If it is a line-number NOTE, omit it if it matches the previous one. */
4632
4633 rtx
4634 emit_note (file, line)
4635 const char *file;
4636 int line;
4637 {
4638 rtx note;
4639
4640 if (line > 0)
4641 {
4642 if (file && last_filename && !strcmp (file, last_filename)
4643 && line == last_linenum)
4644 return 0;
4645 last_filename = file;
4646 last_linenum = line;
4647 }
4648
4649 if (no_line_numbers && line > 0)
4650 {
4651 cur_insn_uid++;
4652 return 0;
4653 }
4654
4655 note = rtx_alloc (NOTE);
4656 INSN_UID (note) = cur_insn_uid++;
4657 NOTE_SOURCE_FILE (note) = file;
4658 NOTE_LINE_NUMBER (note) = line;
4659 BLOCK_FOR_INSN (note) = NULL;
4660 add_insn (note);
4661 return note;
4662 }
4663
4664 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4665
4666 rtx
4667 emit_line_note_force (file, line)
4668 const char *file;
4669 int line;
4670 {
4671 last_linenum = -1;
4672 return emit_line_note (file, line);
4673 }
4674
4675 /* Cause next statement to emit a line note even if the line number
4676 has not changed. This is used at the beginning of a function. */
4677
4678 void
4679 force_next_line_note ()
4680 {
4681 last_linenum = -1;
4682 }
4683
4684 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4685 note of this type already exists, remove it first. */
4686
4687 rtx
4688 set_unique_reg_note (insn, kind, datum)
4689 rtx insn;
4690 enum reg_note kind;
4691 rtx datum;
4692 {
4693 rtx note = find_reg_note (insn, kind, NULL_RTX);
4694
4695 switch (kind)
4696 {
4697 case REG_EQUAL:
4698 case REG_EQUIV:
4699 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4700 has multiple sets (some callers assume single_set
4701 means the insn only has one set, when in fact it
4702 means the insn only has one * useful * set). */
4703 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4704 {
4705 if (note)
4706 abort ();
4707 return NULL_RTX;
4708 }
4709
4710 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4711 It serves no useful purpose and breaks eliminate_regs. */
4712 if (GET_CODE (datum) == ASM_OPERANDS)
4713 return NULL_RTX;
4714 break;
4715
4716 default:
4717 break;
4718 }
4719
4720 if (note)
4721 {
4722 XEXP (note, 0) = datum;
4723 return note;
4724 }
4725
4726 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4727 return REG_NOTES (insn);
4728 }
4729 \f
4730 /* Return an indication of which type of insn should have X as a body.
4731 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4732
4733 enum rtx_code
4734 classify_insn (x)
4735 rtx x;
4736 {
4737 if (GET_CODE (x) == CODE_LABEL)
4738 return CODE_LABEL;
4739 if (GET_CODE (x) == CALL)
4740 return CALL_INSN;
4741 if (GET_CODE (x) == RETURN)
4742 return JUMP_INSN;
4743 if (GET_CODE (x) == SET)
4744 {
4745 if (SET_DEST (x) == pc_rtx)
4746 return JUMP_INSN;
4747 else if (GET_CODE (SET_SRC (x)) == CALL)
4748 return CALL_INSN;
4749 else
4750 return INSN;
4751 }
4752 if (GET_CODE (x) == PARALLEL)
4753 {
4754 int j;
4755 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4756 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4757 return CALL_INSN;
4758 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4759 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4760 return JUMP_INSN;
4761 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4762 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4763 return CALL_INSN;
4764 }
4765 return INSN;
4766 }
4767
4768 /* Emit the rtl pattern X as an appropriate kind of insn.
4769 If X is a label, it is simply added into the insn chain. */
4770
4771 rtx
4772 emit (x)
4773 rtx x;
4774 {
4775 enum rtx_code code = classify_insn (x);
4776
4777 if (code == CODE_LABEL)
4778 return emit_label (x);
4779 else if (code == INSN)
4780 return emit_insn (x);
4781 else if (code == JUMP_INSN)
4782 {
4783 rtx insn = emit_jump_insn (x);
4784 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4785 return emit_barrier ();
4786 return insn;
4787 }
4788 else if (code == CALL_INSN)
4789 return emit_call_insn (x);
4790 else
4791 abort ();
4792 }
4793 \f
4794 /* Space for free sequence stack entries. */
4795 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4796
4797 /* Begin emitting insns to a sequence which can be packaged in an
4798 RTL_EXPR. If this sequence will contain something that might cause
4799 the compiler to pop arguments to function calls (because those
4800 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4801 details), use do_pending_stack_adjust before calling this function.
4802 That will ensure that the deferred pops are not accidentally
4803 emitted in the middle of this sequence. */
4804
4805 void
4806 start_sequence ()
4807 {
4808 struct sequence_stack *tem;
4809
4810 if (free_sequence_stack != NULL)
4811 {
4812 tem = free_sequence_stack;
4813 free_sequence_stack = tem->next;
4814 }
4815 else
4816 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4817
4818 tem->next = seq_stack;
4819 tem->first = first_insn;
4820 tem->last = last_insn;
4821 tem->sequence_rtl_expr = seq_rtl_expr;
4822
4823 seq_stack = tem;
4824
4825 first_insn = 0;
4826 last_insn = 0;
4827 }
4828
4829 /* Similarly, but indicate that this sequence will be placed in T, an
4830 RTL_EXPR. See the documentation for start_sequence for more
4831 information about how to use this function. */
4832
4833 void
4834 start_sequence_for_rtl_expr (t)
4835 tree t;
4836 {
4837 start_sequence ();
4838
4839 seq_rtl_expr = t;
4840 }
4841
4842 /* Set up the insn chain starting with FIRST as the current sequence,
4843 saving the previously current one. See the documentation for
4844 start_sequence for more information about how to use this function. */
4845
4846 void
4847 push_to_sequence (first)
4848 rtx first;
4849 {
4850 rtx last;
4851
4852 start_sequence ();
4853
4854 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4855
4856 first_insn = first;
4857 last_insn = last;
4858 }
4859
4860 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4861
4862 void
4863 push_to_full_sequence (first, last)
4864 rtx first, last;
4865 {
4866 start_sequence ();
4867 first_insn = first;
4868 last_insn = last;
4869 /* We really should have the end of the insn chain here. */
4870 if (last && NEXT_INSN (last))
4871 abort ();
4872 }
4873
4874 /* Set up the outer-level insn chain
4875 as the current sequence, saving the previously current one. */
4876
4877 void
4878 push_topmost_sequence ()
4879 {
4880 struct sequence_stack *stack, *top = NULL;
4881
4882 start_sequence ();
4883
4884 for (stack = seq_stack; stack; stack = stack->next)
4885 top = stack;
4886
4887 first_insn = top->first;
4888 last_insn = top->last;
4889 seq_rtl_expr = top->sequence_rtl_expr;
4890 }
4891
4892 /* After emitting to the outer-level insn chain, update the outer-level
4893 insn chain, and restore the previous saved state. */
4894
4895 void
4896 pop_topmost_sequence ()
4897 {
4898 struct sequence_stack *stack, *top = NULL;
4899
4900 for (stack = seq_stack; stack; stack = stack->next)
4901 top = stack;
4902
4903 top->first = first_insn;
4904 top->last = last_insn;
4905 /* ??? Why don't we save seq_rtl_expr here? */
4906
4907 end_sequence ();
4908 }
4909
4910 /* After emitting to a sequence, restore previous saved state.
4911
4912 To get the contents of the sequence just made, you must call
4913 `get_insns' *before* calling here.
4914
4915 If the compiler might have deferred popping arguments while
4916 generating this sequence, and this sequence will not be immediately
4917 inserted into the instruction stream, use do_pending_stack_adjust
4918 before calling get_insns. That will ensure that the deferred
4919 pops are inserted into this sequence, and not into some random
4920 location in the instruction stream. See INHIBIT_DEFER_POP for more
4921 information about deferred popping of arguments. */
4922
4923 void
4924 end_sequence ()
4925 {
4926 struct sequence_stack *tem = seq_stack;
4927
4928 first_insn = tem->first;
4929 last_insn = tem->last;
4930 seq_rtl_expr = tem->sequence_rtl_expr;
4931 seq_stack = tem->next;
4932
4933 memset (tem, 0, sizeof (*tem));
4934 tem->next = free_sequence_stack;
4935 free_sequence_stack = tem;
4936 }
4937
4938 /* This works like end_sequence, but records the old sequence in FIRST
4939 and LAST. */
4940
4941 void
4942 end_full_sequence (first, last)
4943 rtx *first, *last;
4944 {
4945 *first = first_insn;
4946 *last = last_insn;
4947 end_sequence ();
4948 }
4949
4950 /* Return 1 if currently emitting into a sequence. */
4951
4952 int
4953 in_sequence_p ()
4954 {
4955 return seq_stack != 0;
4956 }
4957 \f
4958 /* Put the various virtual registers into REGNO_REG_RTX. */
4959
4960 void
4961 init_virtual_regs (es)
4962 struct emit_status *es;
4963 {
4964 rtx *ptr = es->x_regno_reg_rtx;
4965 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4966 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4967 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4968 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4969 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4970 }
4971
4972 \f
4973 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4974 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4975 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4976 static int copy_insn_n_scratches;
4977
4978 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4979 copied an ASM_OPERANDS.
4980 In that case, it is the original input-operand vector. */
4981 static rtvec orig_asm_operands_vector;
4982
4983 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4984 copied an ASM_OPERANDS.
4985 In that case, it is the copied input-operand vector. */
4986 static rtvec copy_asm_operands_vector;
4987
4988 /* Likewise for the constraints vector. */
4989 static rtvec orig_asm_constraints_vector;
4990 static rtvec copy_asm_constraints_vector;
4991
4992 /* Recursively create a new copy of an rtx for copy_insn.
4993 This function differs from copy_rtx in that it handles SCRATCHes and
4994 ASM_OPERANDs properly.
4995 Normally, this function is not used directly; use copy_insn as front end.
4996 However, you could first copy an insn pattern with copy_insn and then use
4997 this function afterwards to properly copy any REG_NOTEs containing
4998 SCRATCHes. */
4999
5000 rtx
5001 copy_insn_1 (orig)
5002 rtx orig;
5003 {
5004 rtx copy;
5005 int i, j;
5006 RTX_CODE code;
5007 const char *format_ptr;
5008
5009 code = GET_CODE (orig);
5010
5011 switch (code)
5012 {
5013 case REG:
5014 case QUEUED:
5015 case CONST_INT:
5016 case CONST_DOUBLE:
5017 case CONST_VECTOR:
5018 case SYMBOL_REF:
5019 case CODE_LABEL:
5020 case PC:
5021 case CC0:
5022 case ADDRESSOF:
5023 return orig;
5024
5025 case SCRATCH:
5026 for (i = 0; i < copy_insn_n_scratches; i++)
5027 if (copy_insn_scratch_in[i] == orig)
5028 return copy_insn_scratch_out[i];
5029 break;
5030
5031 case CONST:
5032 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5033 a LABEL_REF, it isn't sharable. */
5034 if (GET_CODE (XEXP (orig, 0)) == PLUS
5035 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5036 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5037 return orig;
5038 break;
5039
5040 /* A MEM with a constant address is not sharable. The problem is that
5041 the constant address may need to be reloaded. If the mem is shared,
5042 then reloading one copy of this mem will cause all copies to appear
5043 to have been reloaded. */
5044
5045 default:
5046 break;
5047 }
5048
5049 copy = rtx_alloc (code);
5050
5051 /* Copy the various flags, and other information. We assume that
5052 all fields need copying, and then clear the fields that should
5053 not be copied. That is the sensible default behavior, and forces
5054 us to explicitly document why we are *not* copying a flag. */
5055 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5056
5057 /* We do not copy the USED flag, which is used as a mark bit during
5058 walks over the RTL. */
5059 RTX_FLAG (copy, used) = 0;
5060
5061 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5062 if (GET_RTX_CLASS (code) == 'i')
5063 {
5064 RTX_FLAG (copy, jump) = 0;
5065 RTX_FLAG (copy, call) = 0;
5066 RTX_FLAG (copy, frame_related) = 0;
5067 }
5068
5069 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5070
5071 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5072 {
5073 copy->fld[i] = orig->fld[i];
5074 switch (*format_ptr++)
5075 {
5076 case 'e':
5077 if (XEXP (orig, i) != NULL)
5078 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5079 break;
5080
5081 case 'E':
5082 case 'V':
5083 if (XVEC (orig, i) == orig_asm_constraints_vector)
5084 XVEC (copy, i) = copy_asm_constraints_vector;
5085 else if (XVEC (orig, i) == orig_asm_operands_vector)
5086 XVEC (copy, i) = copy_asm_operands_vector;
5087 else if (XVEC (orig, i) != NULL)
5088 {
5089 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5090 for (j = 0; j < XVECLEN (copy, i); j++)
5091 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5092 }
5093 break;
5094
5095 case 't':
5096 case 'w':
5097 case 'i':
5098 case 's':
5099 case 'S':
5100 case 'u':
5101 case '0':
5102 /* These are left unchanged. */
5103 break;
5104
5105 default:
5106 abort ();
5107 }
5108 }
5109
5110 if (code == SCRATCH)
5111 {
5112 i = copy_insn_n_scratches++;
5113 if (i >= MAX_RECOG_OPERANDS)
5114 abort ();
5115 copy_insn_scratch_in[i] = orig;
5116 copy_insn_scratch_out[i] = copy;
5117 }
5118 else if (code == ASM_OPERANDS)
5119 {
5120 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5121 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5122 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5123 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5124 }
5125
5126 return copy;
5127 }
5128
5129 /* Create a new copy of an rtx.
5130 This function differs from copy_rtx in that it handles SCRATCHes and
5131 ASM_OPERANDs properly.
5132 INSN doesn't really have to be a full INSN; it could be just the
5133 pattern. */
5134 rtx
5135 copy_insn (insn)
5136 rtx insn;
5137 {
5138 copy_insn_n_scratches = 0;
5139 orig_asm_operands_vector = 0;
5140 orig_asm_constraints_vector = 0;
5141 copy_asm_operands_vector = 0;
5142 copy_asm_constraints_vector = 0;
5143 return copy_insn_1 (insn);
5144 }
5145
5146 /* Initialize data structures and variables in this file
5147 before generating rtl for each function. */
5148
5149 void
5150 init_emit ()
5151 {
5152 struct function *f = cfun;
5153
5154 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5155 first_insn = NULL;
5156 last_insn = NULL;
5157 seq_rtl_expr = NULL;
5158 cur_insn_uid = 1;
5159 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5160 last_linenum = 0;
5161 last_filename = 0;
5162 first_label_num = label_num;
5163 last_label_num = 0;
5164 seq_stack = NULL;
5165
5166 /* Init the tables that describe all the pseudo regs. */
5167
5168 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5169
5170 f->emit->regno_pointer_align
5171 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5172 * sizeof (unsigned char));
5173
5174 regno_reg_rtx
5175 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5176 * sizeof (rtx));
5177
5178 f->emit->regno_decl
5179 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5180 * sizeof (tree));
5181
5182 /* Put copies of all the hard registers into regno_reg_rtx. */
5183 memcpy (regno_reg_rtx,
5184 static_regno_reg_rtx,
5185 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5186
5187 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5188 init_virtual_regs (f->emit);
5189
5190 /* Indicate that the virtual registers and stack locations are
5191 all pointers. */
5192 REG_POINTER (stack_pointer_rtx) = 1;
5193 REG_POINTER (frame_pointer_rtx) = 1;
5194 REG_POINTER (hard_frame_pointer_rtx) = 1;
5195 REG_POINTER (arg_pointer_rtx) = 1;
5196
5197 REG_POINTER (virtual_incoming_args_rtx) = 1;
5198 REG_POINTER (virtual_stack_vars_rtx) = 1;
5199 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5200 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5201 REG_POINTER (virtual_cfa_rtx) = 1;
5202
5203 #ifdef STACK_BOUNDARY
5204 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5205 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5206 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5207 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5208
5209 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5210 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5211 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5212 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5213 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5214 #endif
5215
5216 #ifdef INIT_EXPANDERS
5217 INIT_EXPANDERS;
5218 #endif
5219 }
5220
5221 /* Generate the constant 0. */
5222
5223 static rtx
5224 gen_const_vector_0 (mode)
5225 enum machine_mode mode;
5226 {
5227 rtx tem;
5228 rtvec v;
5229 int units, i;
5230 enum machine_mode inner;
5231
5232 units = GET_MODE_NUNITS (mode);
5233 inner = GET_MODE_INNER (mode);
5234
5235 v = rtvec_alloc (units);
5236
5237 /* We need to call this function after we to set CONST0_RTX first. */
5238 if (!CONST0_RTX (inner))
5239 abort ();
5240
5241 for (i = 0; i < units; ++i)
5242 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5243
5244 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5245 return tem;
5246 }
5247
5248 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5249 all elements are zero. */
5250 rtx
5251 gen_rtx_CONST_VECTOR (mode, v)
5252 enum machine_mode mode;
5253 rtvec v;
5254 {
5255 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5256 int i;
5257
5258 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5259 if (RTVEC_ELT (v, i) != inner_zero)
5260 return gen_rtx_raw_CONST_VECTOR (mode, v);
5261 return CONST0_RTX (mode);
5262 }
5263
5264 /* Create some permanent unique rtl objects shared between all functions.
5265 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5266
5267 void
5268 init_emit_once (line_numbers)
5269 int line_numbers;
5270 {
5271 int i;
5272 enum machine_mode mode;
5273 enum machine_mode double_mode;
5274
5275 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5276 tables. */
5277 const_int_htab = htab_create (37, const_int_htab_hash,
5278 const_int_htab_eq, NULL);
5279
5280 const_double_htab = htab_create (37, const_double_htab_hash,
5281 const_double_htab_eq, NULL);
5282
5283 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5284 mem_attrs_htab_eq, NULL);
5285
5286 no_line_numbers = ! line_numbers;
5287
5288 /* Compute the word and byte modes. */
5289
5290 byte_mode = VOIDmode;
5291 word_mode = VOIDmode;
5292 double_mode = VOIDmode;
5293
5294 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5295 mode = GET_MODE_WIDER_MODE (mode))
5296 {
5297 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5298 && byte_mode == VOIDmode)
5299 byte_mode = mode;
5300
5301 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5302 && word_mode == VOIDmode)
5303 word_mode = mode;
5304 }
5305
5306 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5307 mode = GET_MODE_WIDER_MODE (mode))
5308 {
5309 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5310 && double_mode == VOIDmode)
5311 double_mode = mode;
5312 }
5313
5314 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5315
5316 /* Assign register numbers to the globally defined register rtx.
5317 This must be done at runtime because the register number field
5318 is in a union and some compilers can't initialize unions. */
5319
5320 pc_rtx = gen_rtx (PC, VOIDmode);
5321 cc0_rtx = gen_rtx (CC0, VOIDmode);
5322 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5323 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5324 if (hard_frame_pointer_rtx == 0)
5325 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5326 HARD_FRAME_POINTER_REGNUM);
5327 if (arg_pointer_rtx == 0)
5328 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5329 virtual_incoming_args_rtx =
5330 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5331 virtual_stack_vars_rtx =
5332 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5333 virtual_stack_dynamic_rtx =
5334 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5335 virtual_outgoing_args_rtx =
5336 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5337 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5338
5339 /* Initialize RTL for commonly used hard registers. These are
5340 copied into regno_reg_rtx as we begin to compile each function. */
5341 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5342 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5343
5344 #ifdef INIT_EXPANDERS
5345 /* This is to initialize {init|mark|free}_machine_status before the first
5346 call to push_function_context_to. This is needed by the Chill front
5347 end which calls push_function_context_to before the first call to
5348 init_function_start. */
5349 INIT_EXPANDERS;
5350 #endif
5351
5352 /* Create the unique rtx's for certain rtx codes and operand values. */
5353
5354 /* Don't use gen_rtx here since gen_rtx in this case
5355 tries to use these variables. */
5356 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5357 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5358 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5359
5360 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5361 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5362 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5363 else
5364 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5365
5366 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5367 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5368 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5369 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5370
5371 for (i = 0; i <= 2; i++)
5372 {
5373 REAL_VALUE_TYPE *r =
5374 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5375
5376 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5377 mode = GET_MODE_WIDER_MODE (mode))
5378 const_tiny_rtx[i][(int) mode] =
5379 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5380
5381 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5382
5383 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5384 mode = GET_MODE_WIDER_MODE (mode))
5385 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5386
5387 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5388 mode != VOIDmode;
5389 mode = GET_MODE_WIDER_MODE (mode))
5390 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5391 }
5392
5393 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5394 mode != VOIDmode;
5395 mode = GET_MODE_WIDER_MODE (mode))
5396 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5397
5398 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5399 mode != VOIDmode;
5400 mode = GET_MODE_WIDER_MODE (mode))
5401 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5402
5403 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5404 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5405 const_tiny_rtx[0][i] = const0_rtx;
5406
5407 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5408 if (STORE_FLAG_VALUE == 1)
5409 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5410
5411 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5412 return_address_pointer_rtx
5413 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5414 #endif
5415
5416 #ifdef STRUCT_VALUE
5417 struct_value_rtx = STRUCT_VALUE;
5418 #else
5419 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5420 #endif
5421
5422 #ifdef STRUCT_VALUE_INCOMING
5423 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5424 #else
5425 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5426 struct_value_incoming_rtx
5427 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5428 #else
5429 struct_value_incoming_rtx = struct_value_rtx;
5430 #endif
5431 #endif
5432
5433 #ifdef STATIC_CHAIN_REGNUM
5434 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5435
5436 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5437 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5438 static_chain_incoming_rtx
5439 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5440 else
5441 #endif
5442 static_chain_incoming_rtx = static_chain_rtx;
5443 #endif
5444
5445 #ifdef STATIC_CHAIN
5446 static_chain_rtx = STATIC_CHAIN;
5447
5448 #ifdef STATIC_CHAIN_INCOMING
5449 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5450 #else
5451 static_chain_incoming_rtx = static_chain_rtx;
5452 #endif
5453 #endif
5454
5455 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5456 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5457 }
5458 \f
5459 /* Query and clear/ restore no_line_numbers. This is used by the
5460 switch / case handling in stmt.c to give proper line numbers in
5461 warnings about unreachable code. */
5462
5463 int
5464 force_line_numbers ()
5465 {
5466 int old = no_line_numbers;
5467
5468 no_line_numbers = 0;
5469 if (old)
5470 force_next_line_note ();
5471 return old;
5472 }
5473
5474 void
5475 restore_line_number_status (old_value)
5476 int old_value;
5477 {
5478 no_line_numbers = old_value;
5479 }
5480
5481 /* Produce exact duplicate of insn INSN after AFTER.
5482 Care updating of libcall regions if present. */
5483
5484 rtx
5485 emit_copy_of_insn_after (insn, after)
5486 rtx insn, after;
5487 {
5488 rtx new;
5489 rtx note1, note2, link;
5490
5491 switch (GET_CODE (insn))
5492 {
5493 case INSN:
5494 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5495 break;
5496
5497 case JUMP_INSN:
5498 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5499 break;
5500
5501 case CALL_INSN:
5502 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5503 if (CALL_INSN_FUNCTION_USAGE (insn))
5504 CALL_INSN_FUNCTION_USAGE (new)
5505 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5506 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5507 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5508 break;
5509
5510 default:
5511 abort ();
5512 }
5513
5514 /* Update LABEL_NUSES. */
5515 mark_jump_label (PATTERN (new), new, 0);
5516
5517 INSN_SCOPE (new) = INSN_SCOPE (insn);
5518
5519 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5520 make them. */
5521 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5522 if (REG_NOTE_KIND (link) != REG_LABEL)
5523 {
5524 if (GET_CODE (link) == EXPR_LIST)
5525 REG_NOTES (new)
5526 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5527 XEXP (link, 0),
5528 REG_NOTES (new)));
5529 else
5530 REG_NOTES (new)
5531 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5532 XEXP (link, 0),
5533 REG_NOTES (new)));
5534 }
5535
5536 /* Fix the libcall sequences. */
5537 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5538 {
5539 rtx p = new;
5540 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5541 p = PREV_INSN (p);
5542 XEXP (note1, 0) = p;
5543 XEXP (note2, 0) = new;
5544 }
5545 return new;
5546 }
5547
5548 #include "gt-emit-rtl.h"