Make SET_NEXT_INSN/SET_PREV_INSN require an rtx_insn
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "varasm.h"
42 #include "basic-block.h"
43 #include "tree-eh.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "stringpool.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "debug.h"
56 #include "langhooks.h"
57 #include "df.h"
58 #include "params.h"
59 #include "target.h"
60 #include "builtins.h"
61 #include "rtl-iter.h"
62
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
67
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69
70 /* Commonly used modes. */
71
72 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* A hash table storing CONST_INTs whose absolute value is greater
126 than MAX_SAVED_CONST_INT. */
127
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t const_int_htab;
130
131 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
132 htab_t const_wide_int_htab;
133
134 /* A hash table storing register attribute structures. */
135 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
136 htab_t reg_attrs_htab;
137
138 /* A hash table storing all CONST_DOUBLEs. */
139 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
140 htab_t const_double_htab;
141
142 /* A hash table storing all CONST_FIXEDs. */
143 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
144 htab_t const_fixed_htab;
145
146 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
147 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
148 #define first_label_num (crtl->emit.x_first_label_num)
149
150 static void set_used_decls (tree);
151 static void mark_label_nuses (rtx);
152 static hashval_t const_int_htab_hash (const void *);
153 static int const_int_htab_eq (const void *, const void *);
154 #if TARGET_SUPPORTS_WIDE_INT
155 static hashval_t const_wide_int_htab_hash (const void *);
156 static int const_wide_int_htab_eq (const void *, const void *);
157 static rtx lookup_const_wide_int (rtx);
158 #endif
159 static hashval_t const_double_htab_hash (const void *);
160 static int const_double_htab_eq (const void *, const void *);
161 static rtx lookup_const_double (rtx);
162 static hashval_t const_fixed_htab_hash (const void *);
163 static int const_fixed_htab_eq (const void *, const void *);
164 static rtx lookup_const_fixed (rtx);
165 static hashval_t reg_attrs_htab_hash (const void *);
166 static int reg_attrs_htab_eq (const void *, const void *);
167 static reg_attrs *get_reg_attrs (tree, int);
168 static rtx gen_const_vector (enum machine_mode, int);
169 static void copy_rtx_if_shared_1 (rtx *orig);
170
171 /* Probability of the conditional branch currently proceeded by try_split.
172 Set to -1 otherwise. */
173 int split_branch_probability = -1;
174 \f
175 /* Returns a hash code for X (which is a really a CONST_INT). */
176
177 static hashval_t
178 const_int_htab_hash (const void *x)
179 {
180 return (hashval_t) INTVAL ((const_rtx) x);
181 }
182
183 /* Returns nonzero if the value represented by X (which is really a
184 CONST_INT) is the same as that given by Y (which is really a
185 HOST_WIDE_INT *). */
186
187 static int
188 const_int_htab_eq (const void *x, const void *y)
189 {
190 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
191 }
192
193 #if TARGET_SUPPORTS_WIDE_INT
194 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
195
196 static hashval_t
197 const_wide_int_htab_hash (const void *x)
198 {
199 int i;
200 HOST_WIDE_INT hash = 0;
201 const_rtx xr = (const_rtx) x;
202
203 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
204 hash += CONST_WIDE_INT_ELT (xr, i);
205
206 return (hashval_t) hash;
207 }
208
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_WIDE_INT) is the same as that given by Y (which is really a
211 CONST_WIDE_INT). */
212
213 static int
214 const_wide_int_htab_eq (const void *x, const void *y)
215 {
216 int i;
217 const_rtx xr = (const_rtx) x;
218 const_rtx yr = (const_rtx) y;
219 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
220 return 0;
221
222 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
223 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
224 return 0;
225
226 return 1;
227 }
228 #endif
229
230 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
231 static hashval_t
232 const_double_htab_hash (const void *x)
233 {
234 const_rtx const value = (const_rtx) x;
235 hashval_t h;
236
237 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
238 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
239 else
240 {
241 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
242 /* MODE is used in the comparison, so it should be in the hash. */
243 h ^= GET_MODE (value);
244 }
245 return h;
246 }
247
248 /* Returns nonzero if the value represented by X (really a ...)
249 is the same as that represented by Y (really a ...) */
250 static int
251 const_double_htab_eq (const void *x, const void *y)
252 {
253 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
254
255 if (GET_MODE (a) != GET_MODE (b))
256 return 0;
257 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
258 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
259 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
260 else
261 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
262 CONST_DOUBLE_REAL_VALUE (b));
263 }
264
265 /* Returns a hash code for X (which is really a CONST_FIXED). */
266
267 static hashval_t
268 const_fixed_htab_hash (const void *x)
269 {
270 const_rtx const value = (const_rtx) x;
271 hashval_t h;
272
273 h = fixed_hash (CONST_FIXED_VALUE (value));
274 /* MODE is used in the comparison, so it should be in the hash. */
275 h ^= GET_MODE (value);
276 return h;
277 }
278
279 /* Returns nonzero if the value represented by X (really a ...)
280 is the same as that represented by Y (really a ...). */
281
282 static int
283 const_fixed_htab_eq (const void *x, const void *y)
284 {
285 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
286
287 if (GET_MODE (a) != GET_MODE (b))
288 return 0;
289 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
290 }
291
292 /* Return true if the given memory attributes are equal. */
293
294 bool
295 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
296 {
297 if (p == q)
298 return true;
299 if (!p || !q)
300 return false;
301 return (p->alias == q->alias
302 && p->offset_known_p == q->offset_known_p
303 && (!p->offset_known_p || p->offset == q->offset)
304 && p->size_known_p == q->size_known_p
305 && (!p->size_known_p || p->size == q->size)
306 && p->align == q->align
307 && p->addrspace == q->addrspace
308 && (p->expr == q->expr
309 || (p->expr != NULL_TREE && q->expr != NULL_TREE
310 && operand_equal_p (p->expr, q->expr, 0))));
311 }
312
313 /* Set MEM's memory attributes so that they are the same as ATTRS. */
314
315 static void
316 set_mem_attrs (rtx mem, mem_attrs *attrs)
317 {
318 /* If everything is the default, we can just clear the attributes. */
319 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
320 {
321 MEM_ATTRS (mem) = 0;
322 return;
323 }
324
325 if (!MEM_ATTRS (mem)
326 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
327 {
328 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
329 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
330 }
331 }
332
333 /* Returns a hash code for X (which is a really a reg_attrs *). */
334
335 static hashval_t
336 reg_attrs_htab_hash (const void *x)
337 {
338 const reg_attrs *const p = (const reg_attrs *) x;
339
340 return ((p->offset * 1000) ^ (intptr_t) p->decl);
341 }
342
343 /* Returns nonzero if the value represented by X (which is really a
344 reg_attrs *) is the same as that given by Y (which is also really a
345 reg_attrs *). */
346
347 static int
348 reg_attrs_htab_eq (const void *x, const void *y)
349 {
350 const reg_attrs *const p = (const reg_attrs *) x;
351 const reg_attrs *const q = (const reg_attrs *) y;
352
353 return (p->decl == q->decl && p->offset == q->offset);
354 }
355 /* Allocate a new reg_attrs structure and insert it into the hash table if
356 one identical to it is not already in the table. We are doing this for
357 MEM of mode MODE. */
358
359 static reg_attrs *
360 get_reg_attrs (tree decl, int offset)
361 {
362 reg_attrs attrs;
363 void **slot;
364
365 /* If everything is the default, we can just return zero. */
366 if (decl == 0 && offset == 0)
367 return 0;
368
369 attrs.decl = decl;
370 attrs.offset = offset;
371
372 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
373 if (*slot == 0)
374 {
375 *slot = ggc_alloc<reg_attrs> ();
376 memcpy (*slot, &attrs, sizeof (reg_attrs));
377 }
378
379 return (reg_attrs *) *slot;
380 }
381
382
383 #if !HAVE_blockage
384 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
385 and to block register equivalences to be seen across this insn. */
386
387 rtx
388 gen_blockage (void)
389 {
390 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
391 MEM_VOLATILE_P (x) = true;
392 return x;
393 }
394 #endif
395
396
397 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
398 don't attempt to share with the various global pieces of rtl (such as
399 frame_pointer_rtx). */
400
401 rtx
402 gen_raw_REG (enum machine_mode mode, int regno)
403 {
404 rtx x = gen_rtx_raw_REG (mode, regno);
405 ORIGINAL_REGNO (x) = regno;
406 return x;
407 }
408
409 /* There are some RTL codes that require special attention; the generation
410 functions do the raw handling. If you add to this list, modify
411 special_rtx in gengenrtl.c as well. */
412
413 rtx_expr_list *
414 gen_rtx_EXPR_LIST (enum machine_mode mode, rtx expr, rtx expr_list)
415 {
416 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
417 expr_list));
418 }
419
420 rtx_insn_list *
421 gen_rtx_INSN_LIST (enum machine_mode mode, rtx insn, rtx insn_list)
422 {
423 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
424 insn_list));
425 }
426
427 rtx
428 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
429 {
430 void **slot;
431
432 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
433 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
434
435 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
436 if (const_true_rtx && arg == STORE_FLAG_VALUE)
437 return const_true_rtx;
438 #endif
439
440 /* Look up the CONST_INT in the hash table. */
441 slot = htab_find_slot_with_hash (const_int_htab, &arg,
442 (hashval_t) arg, INSERT);
443 if (*slot == 0)
444 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
445
446 return (rtx) *slot;
447 }
448
449 rtx
450 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
451 {
452 return GEN_INT (trunc_int_for_mode (c, mode));
453 }
454
455 /* CONST_DOUBLEs might be created from pairs of integers, or from
456 REAL_VALUE_TYPEs. Also, their length is known only at run time,
457 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
458
459 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
460 hash table. If so, return its counterpart; otherwise add it
461 to the hash table and return it. */
462 static rtx
463 lookup_const_double (rtx real)
464 {
465 void **slot = htab_find_slot (const_double_htab, real, INSERT);
466 if (*slot == 0)
467 *slot = real;
468
469 return (rtx) *slot;
470 }
471
472 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
473 VALUE in mode MODE. */
474 rtx
475 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
476 {
477 rtx real = rtx_alloc (CONST_DOUBLE);
478 PUT_MODE (real, mode);
479
480 real->u.rv = value;
481
482 return lookup_const_double (real);
483 }
484
485 /* Determine whether FIXED, a CONST_FIXED, already exists in the
486 hash table. If so, return its counterpart; otherwise add it
487 to the hash table and return it. */
488
489 static rtx
490 lookup_const_fixed (rtx fixed)
491 {
492 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
493 if (*slot == 0)
494 *slot = fixed;
495
496 return (rtx) *slot;
497 }
498
499 /* Return a CONST_FIXED rtx for a fixed-point value specified by
500 VALUE in mode MODE. */
501
502 rtx
503 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
504 {
505 rtx fixed = rtx_alloc (CONST_FIXED);
506 PUT_MODE (fixed, mode);
507
508 fixed->u.fv = value;
509
510 return lookup_const_fixed (fixed);
511 }
512
513 #if TARGET_SUPPORTS_WIDE_INT == 0
514 /* Constructs double_int from rtx CST. */
515
516 double_int
517 rtx_to_double_int (const_rtx cst)
518 {
519 double_int r;
520
521 if (CONST_INT_P (cst))
522 r = double_int::from_shwi (INTVAL (cst));
523 else if (CONST_DOUBLE_AS_INT_P (cst))
524 {
525 r.low = CONST_DOUBLE_LOW (cst);
526 r.high = CONST_DOUBLE_HIGH (cst);
527 }
528 else
529 gcc_unreachable ();
530
531 return r;
532 }
533 #endif
534
535 #if TARGET_SUPPORTS_WIDE_INT
536 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
537 If so, return its counterpart; otherwise add it to the hash table and
538 return it. */
539
540 static rtx
541 lookup_const_wide_int (rtx wint)
542 {
543 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
544 if (*slot == 0)
545 *slot = wint;
546
547 return (rtx) *slot;
548 }
549 #endif
550
551 /* Return an rtx constant for V, given that the constant has mode MODE.
552 The returned rtx will be a CONST_INT if V fits, otherwise it will be
553 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
554 (if TARGET_SUPPORTS_WIDE_INT). */
555
556 rtx
557 immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
558 {
559 unsigned int len = v.get_len ();
560 unsigned int prec = GET_MODE_PRECISION (mode);
561
562 /* Allow truncation but not extension since we do not know if the
563 number is signed or unsigned. */
564 gcc_assert (prec <= v.get_precision ());
565
566 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
567 return gen_int_mode (v.elt (0), mode);
568
569 #if TARGET_SUPPORTS_WIDE_INT
570 {
571 unsigned int i;
572 rtx value;
573 unsigned int blocks_needed
574 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
575
576 if (len > blocks_needed)
577 len = blocks_needed;
578
579 value = const_wide_int_alloc (len);
580
581 /* It is so tempting to just put the mode in here. Must control
582 myself ... */
583 PUT_MODE (value, VOIDmode);
584 CWI_PUT_NUM_ELEM (value, len);
585
586 for (i = 0; i < len; i++)
587 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
588
589 return lookup_const_wide_int (value);
590 }
591 #else
592 return immed_double_const (v.elt (0), v.elt (1), mode);
593 #endif
594 }
595
596 #if TARGET_SUPPORTS_WIDE_INT == 0
597 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
598 of ints: I0 is the low-order word and I1 is the high-order word.
599 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
600 implied upper bits are copies of the high bit of i1. The value
601 itself is neither signed nor unsigned. Do not use this routine for
602 non-integer modes; convert to REAL_VALUE_TYPE and use
603 CONST_DOUBLE_FROM_REAL_VALUE. */
604
605 rtx
606 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
607 {
608 rtx value;
609 unsigned int i;
610
611 /* There are the following cases (note that there are no modes with
612 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
613
614 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
615 gen_int_mode.
616 2) If the value of the integer fits into HOST_WIDE_INT anyway
617 (i.e., i1 consists only from copies of the sign bit, and sign
618 of i0 and i1 are the same), then we return a CONST_INT for i0.
619 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
620 if (mode != VOIDmode)
621 {
622 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
623 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
624 /* We can get a 0 for an error mark. */
625 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
626 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
627
628 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
629 return gen_int_mode (i0, mode);
630 }
631
632 /* If this integer fits in one word, return a CONST_INT. */
633 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
634 return GEN_INT (i0);
635
636 /* We use VOIDmode for integers. */
637 value = rtx_alloc (CONST_DOUBLE);
638 PUT_MODE (value, VOIDmode);
639
640 CONST_DOUBLE_LOW (value) = i0;
641 CONST_DOUBLE_HIGH (value) = i1;
642
643 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
644 XWINT (value, i) = 0;
645
646 return lookup_const_double (value);
647 }
648 #endif
649
650 rtx
651 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
652 {
653 /* In case the MD file explicitly references the frame pointer, have
654 all such references point to the same frame pointer. This is
655 used during frame pointer elimination to distinguish the explicit
656 references to these registers from pseudos that happened to be
657 assigned to them.
658
659 If we have eliminated the frame pointer or arg pointer, we will
660 be using it as a normal register, for example as a spill
661 register. In such cases, we might be accessing it in a mode that
662 is not Pmode and therefore cannot use the pre-allocated rtx.
663
664 Also don't do this when we are making new REGs in reload, since
665 we don't want to get confused with the real pointers. */
666
667 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
668 {
669 if (regno == FRAME_POINTER_REGNUM
670 && (!reload_completed || frame_pointer_needed))
671 return frame_pointer_rtx;
672 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
673 if (regno == HARD_FRAME_POINTER_REGNUM
674 && (!reload_completed || frame_pointer_needed))
675 return hard_frame_pointer_rtx;
676 #endif
677 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
678 if (regno == ARG_POINTER_REGNUM)
679 return arg_pointer_rtx;
680 #endif
681 #ifdef RETURN_ADDRESS_POINTER_REGNUM
682 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
683 return return_address_pointer_rtx;
684 #endif
685 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
686 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
687 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
688 return pic_offset_table_rtx;
689 if (regno == STACK_POINTER_REGNUM)
690 return stack_pointer_rtx;
691 }
692
693 #if 0
694 /* If the per-function register table has been set up, try to re-use
695 an existing entry in that table to avoid useless generation of RTL.
696
697 This code is disabled for now until we can fix the various backends
698 which depend on having non-shared hard registers in some cases. Long
699 term we want to re-enable this code as it can significantly cut down
700 on the amount of useless RTL that gets generated.
701
702 We'll also need to fix some code that runs after reload that wants to
703 set ORIGINAL_REGNO. */
704
705 if (cfun
706 && cfun->emit
707 && regno_reg_rtx
708 && regno < FIRST_PSEUDO_REGISTER
709 && reg_raw_mode[regno] == mode)
710 return regno_reg_rtx[regno];
711 #endif
712
713 return gen_raw_REG (mode, regno);
714 }
715
716 rtx
717 gen_rtx_MEM (enum machine_mode mode, rtx addr)
718 {
719 rtx rt = gen_rtx_raw_MEM (mode, addr);
720
721 /* This field is not cleared by the mere allocation of the rtx, so
722 we clear it here. */
723 MEM_ATTRS (rt) = 0;
724
725 return rt;
726 }
727
728 /* Generate a memory referring to non-trapping constant memory. */
729
730 rtx
731 gen_const_mem (enum machine_mode mode, rtx addr)
732 {
733 rtx mem = gen_rtx_MEM (mode, addr);
734 MEM_READONLY_P (mem) = 1;
735 MEM_NOTRAP_P (mem) = 1;
736 return mem;
737 }
738
739 /* Generate a MEM referring to fixed portions of the frame, e.g., register
740 save areas. */
741
742 rtx
743 gen_frame_mem (enum machine_mode mode, rtx addr)
744 {
745 rtx mem = gen_rtx_MEM (mode, addr);
746 MEM_NOTRAP_P (mem) = 1;
747 set_mem_alias_set (mem, get_frame_alias_set ());
748 return mem;
749 }
750
751 /* Generate a MEM referring to a temporary use of the stack, not part
752 of the fixed stack frame. For example, something which is pushed
753 by a target splitter. */
754 rtx
755 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
756 {
757 rtx mem = gen_rtx_MEM (mode, addr);
758 MEM_NOTRAP_P (mem) = 1;
759 if (!cfun->calls_alloca)
760 set_mem_alias_set (mem, get_frame_alias_set ());
761 return mem;
762 }
763
764 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
765 this construct would be valid, and false otherwise. */
766
767 bool
768 validate_subreg (enum machine_mode omode, enum machine_mode imode,
769 const_rtx reg, unsigned int offset)
770 {
771 unsigned int isize = GET_MODE_SIZE (imode);
772 unsigned int osize = GET_MODE_SIZE (omode);
773
774 /* All subregs must be aligned. */
775 if (offset % osize != 0)
776 return false;
777
778 /* The subreg offset cannot be outside the inner object. */
779 if (offset >= isize)
780 return false;
781
782 /* ??? This should not be here. Temporarily continue to allow word_mode
783 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
784 Generally, backends are doing something sketchy but it'll take time to
785 fix them all. */
786 if (omode == word_mode)
787 ;
788 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
789 is the culprit here, and not the backends. */
790 else if (osize >= UNITS_PER_WORD && isize >= osize)
791 ;
792 /* Allow component subregs of complex and vector. Though given the below
793 extraction rules, it's not always clear what that means. */
794 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
795 && GET_MODE_INNER (imode) == omode)
796 ;
797 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
798 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
799 represent this. It's questionable if this ought to be represented at
800 all -- why can't this all be hidden in post-reload splitters that make
801 arbitrarily mode changes to the registers themselves. */
802 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
803 ;
804 /* Subregs involving floating point modes are not allowed to
805 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
806 (subreg:SI (reg:DF) 0) isn't. */
807 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
808 {
809 if (! (isize == osize
810 /* LRA can use subreg to store a floating point value in
811 an integer mode. Although the floating point and the
812 integer modes need the same number of hard registers,
813 the size of floating point mode can be less than the
814 integer mode. LRA also uses subregs for a register
815 should be used in different mode in on insn. */
816 || lra_in_progress))
817 return false;
818 }
819
820 /* Paradoxical subregs must have offset zero. */
821 if (osize > isize)
822 return offset == 0;
823
824 /* This is a normal subreg. Verify that the offset is representable. */
825
826 /* For hard registers, we already have most of these rules collected in
827 subreg_offset_representable_p. */
828 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
829 {
830 unsigned int regno = REGNO (reg);
831
832 #ifdef CANNOT_CHANGE_MODE_CLASS
833 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
834 && GET_MODE_INNER (imode) == omode)
835 ;
836 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
837 return false;
838 #endif
839
840 return subreg_offset_representable_p (regno, imode, offset, omode);
841 }
842
843 /* For pseudo registers, we want most of the same checks. Namely:
844 If the register no larger than a word, the subreg must be lowpart.
845 If the register is larger than a word, the subreg must be the lowpart
846 of a subword. A subreg does *not* perform arbitrary bit extraction.
847 Given that we've already checked mode/offset alignment, we only have
848 to check subword subregs here. */
849 if (osize < UNITS_PER_WORD
850 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
851 {
852 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
853 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
854 if (offset % UNITS_PER_WORD != low_off)
855 return false;
856 }
857 return true;
858 }
859
860 rtx
861 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
862 {
863 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
864 return gen_rtx_raw_SUBREG (mode, reg, offset);
865 }
866
867 /* Generate a SUBREG representing the least-significant part of REG if MODE
868 is smaller than mode of REG, otherwise paradoxical SUBREG. */
869
870 rtx
871 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
872 {
873 enum machine_mode inmode;
874
875 inmode = GET_MODE (reg);
876 if (inmode == VOIDmode)
877 inmode = mode;
878 return gen_rtx_SUBREG (mode, reg,
879 subreg_lowpart_offset (mode, inmode));
880 }
881
882 rtx
883 gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
884 enum var_init_status status)
885 {
886 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
887 PAT_VAR_LOCATION_STATUS (x) = status;
888 return x;
889 }
890 \f
891
892 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
893
894 rtvec
895 gen_rtvec (int n, ...)
896 {
897 int i;
898 rtvec rt_val;
899 va_list p;
900
901 va_start (p, n);
902
903 /* Don't allocate an empty rtvec... */
904 if (n == 0)
905 {
906 va_end (p);
907 return NULL_RTVEC;
908 }
909
910 rt_val = rtvec_alloc (n);
911
912 for (i = 0; i < n; i++)
913 rt_val->elem[i] = va_arg (p, rtx);
914
915 va_end (p);
916 return rt_val;
917 }
918
919 rtvec
920 gen_rtvec_v (int n, rtx *argp)
921 {
922 int i;
923 rtvec rt_val;
924
925 /* Don't allocate an empty rtvec... */
926 if (n == 0)
927 return NULL_RTVEC;
928
929 rt_val = rtvec_alloc (n);
930
931 for (i = 0; i < n; i++)
932 rt_val->elem[i] = *argp++;
933
934 return rt_val;
935 }
936
937 rtvec
938 gen_rtvec_v (int n, rtx_insn **argp)
939 {
940 int i;
941 rtvec rt_val;
942
943 /* Don't allocate an empty rtvec... */
944 if (n == 0)
945 return NULL_RTVEC;
946
947 rt_val = rtvec_alloc (n);
948
949 for (i = 0; i < n; i++)
950 rt_val->elem[i] = *argp++;
951
952 return rt_val;
953 }
954
955 \f
956 /* Return the number of bytes between the start of an OUTER_MODE
957 in-memory value and the start of an INNER_MODE in-memory value,
958 given that the former is a lowpart of the latter. It may be a
959 paradoxical lowpart, in which case the offset will be negative
960 on big-endian targets. */
961
962 int
963 byte_lowpart_offset (enum machine_mode outer_mode,
964 enum machine_mode inner_mode)
965 {
966 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
967 return subreg_lowpart_offset (outer_mode, inner_mode);
968 else
969 return -subreg_lowpart_offset (inner_mode, outer_mode);
970 }
971 \f
972 /* Generate a REG rtx for a new pseudo register of mode MODE.
973 This pseudo is assigned the next sequential register number. */
974
975 rtx
976 gen_reg_rtx (enum machine_mode mode)
977 {
978 rtx val;
979 unsigned int align = GET_MODE_ALIGNMENT (mode);
980
981 gcc_assert (can_create_pseudo_p ());
982
983 /* If a virtual register with bigger mode alignment is generated,
984 increase stack alignment estimation because it might be spilled
985 to stack later. */
986 if (SUPPORTS_STACK_ALIGNMENT
987 && crtl->stack_alignment_estimated < align
988 && !crtl->stack_realign_processed)
989 {
990 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
991 if (crtl->stack_alignment_estimated < min_align)
992 crtl->stack_alignment_estimated = min_align;
993 }
994
995 if (generating_concat_p
996 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
997 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
998 {
999 /* For complex modes, don't make a single pseudo.
1000 Instead, make a CONCAT of two pseudos.
1001 This allows noncontiguous allocation of the real and imaginary parts,
1002 which makes much better code. Besides, allocating DCmode
1003 pseudos overstrains reload on some machines like the 386. */
1004 rtx realpart, imagpart;
1005 enum machine_mode partmode = GET_MODE_INNER (mode);
1006
1007 realpart = gen_reg_rtx (partmode);
1008 imagpart = gen_reg_rtx (partmode);
1009 return gen_rtx_CONCAT (mode, realpart, imagpart);
1010 }
1011
1012 /* Do not call gen_reg_rtx with uninitialized crtl. */
1013 gcc_assert (crtl->emit.regno_pointer_align_length);
1014
1015 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1016 enough to have an element for this pseudo reg number. */
1017
1018 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1019 {
1020 int old_size = crtl->emit.regno_pointer_align_length;
1021 char *tmp;
1022 rtx *new1;
1023
1024 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1025 memset (tmp + old_size, 0, old_size);
1026 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1027
1028 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1029 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1030 regno_reg_rtx = new1;
1031
1032 crtl->emit.regno_pointer_align_length = old_size * 2;
1033 }
1034
1035 val = gen_raw_REG (mode, reg_rtx_no);
1036 regno_reg_rtx[reg_rtx_no++] = val;
1037 return val;
1038 }
1039
1040 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1041
1042 bool
1043 reg_is_parm_p (rtx reg)
1044 {
1045 tree decl;
1046
1047 gcc_assert (REG_P (reg));
1048 decl = REG_EXPR (reg);
1049 return (decl && TREE_CODE (decl) == PARM_DECL);
1050 }
1051
1052 /* Update NEW with the same attributes as REG, but with OFFSET added
1053 to the REG_OFFSET. */
1054
1055 static void
1056 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1057 {
1058 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1059 REG_OFFSET (reg) + offset);
1060 }
1061
1062 /* Generate a register with same attributes as REG, but with OFFSET
1063 added to the REG_OFFSET. */
1064
1065 rtx
1066 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1067 int offset)
1068 {
1069 rtx new_rtx = gen_rtx_REG (mode, regno);
1070
1071 update_reg_offset (new_rtx, reg, offset);
1072 return new_rtx;
1073 }
1074
1075 /* Generate a new pseudo-register with the same attributes as REG, but
1076 with OFFSET added to the REG_OFFSET. */
1077
1078 rtx
1079 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1080 {
1081 rtx new_rtx = gen_reg_rtx (mode);
1082
1083 update_reg_offset (new_rtx, reg, offset);
1084 return new_rtx;
1085 }
1086
1087 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1088 new register is a (possibly paradoxical) lowpart of the old one. */
1089
1090 void
1091 adjust_reg_mode (rtx reg, enum machine_mode mode)
1092 {
1093 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1094 PUT_MODE (reg, mode);
1095 }
1096
1097 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1098 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1099
1100 void
1101 set_reg_attrs_from_value (rtx reg, rtx x)
1102 {
1103 int offset;
1104 bool can_be_reg_pointer = true;
1105
1106 /* Don't call mark_reg_pointer for incompatible pointer sign
1107 extension. */
1108 while (GET_CODE (x) == SIGN_EXTEND
1109 || GET_CODE (x) == ZERO_EXTEND
1110 || GET_CODE (x) == TRUNCATE
1111 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1112 {
1113 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1114 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1115 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1116 can_be_reg_pointer = false;
1117 #endif
1118 x = XEXP (x, 0);
1119 }
1120
1121 /* Hard registers can be reused for multiple purposes within the same
1122 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1123 on them is wrong. */
1124 if (HARD_REGISTER_P (reg))
1125 return;
1126
1127 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1128 if (MEM_P (x))
1129 {
1130 if (MEM_OFFSET_KNOWN_P (x))
1131 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1132 MEM_OFFSET (x) + offset);
1133 if (can_be_reg_pointer && MEM_POINTER (x))
1134 mark_reg_pointer (reg, 0);
1135 }
1136 else if (REG_P (x))
1137 {
1138 if (REG_ATTRS (x))
1139 update_reg_offset (reg, x, offset);
1140 if (can_be_reg_pointer && REG_POINTER (x))
1141 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1142 }
1143 }
1144
1145 /* Generate a REG rtx for a new pseudo register, copying the mode
1146 and attributes from X. */
1147
1148 rtx
1149 gen_reg_rtx_and_attrs (rtx x)
1150 {
1151 rtx reg = gen_reg_rtx (GET_MODE (x));
1152 set_reg_attrs_from_value (reg, x);
1153 return reg;
1154 }
1155
1156 /* Set the register attributes for registers contained in PARM_RTX.
1157 Use needed values from memory attributes of MEM. */
1158
1159 void
1160 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1161 {
1162 if (REG_P (parm_rtx))
1163 set_reg_attrs_from_value (parm_rtx, mem);
1164 else if (GET_CODE (parm_rtx) == PARALLEL)
1165 {
1166 /* Check for a NULL entry in the first slot, used to indicate that the
1167 parameter goes both on the stack and in registers. */
1168 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1169 for (; i < XVECLEN (parm_rtx, 0); i++)
1170 {
1171 rtx x = XVECEXP (parm_rtx, 0, i);
1172 if (REG_P (XEXP (x, 0)))
1173 REG_ATTRS (XEXP (x, 0))
1174 = get_reg_attrs (MEM_EXPR (mem),
1175 INTVAL (XEXP (x, 1)));
1176 }
1177 }
1178 }
1179
1180 /* Set the REG_ATTRS for registers in value X, given that X represents
1181 decl T. */
1182
1183 void
1184 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1185 {
1186 if (GET_CODE (x) == SUBREG)
1187 {
1188 gcc_assert (subreg_lowpart_p (x));
1189 x = SUBREG_REG (x);
1190 }
1191 if (REG_P (x))
1192 REG_ATTRS (x)
1193 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1194 DECL_MODE (t)));
1195 if (GET_CODE (x) == CONCAT)
1196 {
1197 if (REG_P (XEXP (x, 0)))
1198 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1199 if (REG_P (XEXP (x, 1)))
1200 REG_ATTRS (XEXP (x, 1))
1201 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1202 }
1203 if (GET_CODE (x) == PARALLEL)
1204 {
1205 int i, start;
1206
1207 /* Check for a NULL entry, used to indicate that the parameter goes
1208 both on the stack and in registers. */
1209 if (XEXP (XVECEXP (x, 0, 0), 0))
1210 start = 0;
1211 else
1212 start = 1;
1213
1214 for (i = start; i < XVECLEN (x, 0); i++)
1215 {
1216 rtx y = XVECEXP (x, 0, i);
1217 if (REG_P (XEXP (y, 0)))
1218 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1219 }
1220 }
1221 }
1222
1223 /* Assign the RTX X to declaration T. */
1224
1225 void
1226 set_decl_rtl (tree t, rtx x)
1227 {
1228 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1229 if (x)
1230 set_reg_attrs_for_decl_rtl (t, x);
1231 }
1232
1233 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1234 if the ABI requires the parameter to be passed by reference. */
1235
1236 void
1237 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1238 {
1239 DECL_INCOMING_RTL (t) = x;
1240 if (x && !by_reference_p)
1241 set_reg_attrs_for_decl_rtl (t, x);
1242 }
1243
1244 /* Identify REG (which may be a CONCAT) as a user register. */
1245
1246 void
1247 mark_user_reg (rtx reg)
1248 {
1249 if (GET_CODE (reg) == CONCAT)
1250 {
1251 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1252 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1253 }
1254 else
1255 {
1256 gcc_assert (REG_P (reg));
1257 REG_USERVAR_P (reg) = 1;
1258 }
1259 }
1260
1261 /* Identify REG as a probable pointer register and show its alignment
1262 as ALIGN, if nonzero. */
1263
1264 void
1265 mark_reg_pointer (rtx reg, int align)
1266 {
1267 if (! REG_POINTER (reg))
1268 {
1269 REG_POINTER (reg) = 1;
1270
1271 if (align)
1272 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1273 }
1274 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1275 /* We can no-longer be sure just how aligned this pointer is. */
1276 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1277 }
1278
1279 /* Return 1 plus largest pseudo reg number used in the current function. */
1280
1281 int
1282 max_reg_num (void)
1283 {
1284 return reg_rtx_no;
1285 }
1286
1287 /* Return 1 + the largest label number used so far in the current function. */
1288
1289 int
1290 max_label_num (void)
1291 {
1292 return label_num;
1293 }
1294
1295 /* Return first label number used in this function (if any were used). */
1296
1297 int
1298 get_first_label_num (void)
1299 {
1300 return first_label_num;
1301 }
1302
1303 /* If the rtx for label was created during the expansion of a nested
1304 function, then first_label_num won't include this label number.
1305 Fix this now so that array indices work later. */
1306
1307 void
1308 maybe_set_first_label_num (rtx x)
1309 {
1310 if (CODE_LABEL_NUMBER (x) < first_label_num)
1311 first_label_num = CODE_LABEL_NUMBER (x);
1312 }
1313 \f
1314 /* Return a value representing some low-order bits of X, where the number
1315 of low-order bits is given by MODE. Note that no conversion is done
1316 between floating-point and fixed-point values, rather, the bit
1317 representation is returned.
1318
1319 This function handles the cases in common between gen_lowpart, below,
1320 and two variants in cse.c and combine.c. These are the cases that can
1321 be safely handled at all points in the compilation.
1322
1323 If this is not a case we can handle, return 0. */
1324
1325 rtx
1326 gen_lowpart_common (enum machine_mode mode, rtx x)
1327 {
1328 int msize = GET_MODE_SIZE (mode);
1329 int xsize;
1330 int offset = 0;
1331 enum machine_mode innermode;
1332
1333 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1334 so we have to make one up. Yuk. */
1335 innermode = GET_MODE (x);
1336 if (CONST_INT_P (x)
1337 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1338 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1339 else if (innermode == VOIDmode)
1340 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1341
1342 xsize = GET_MODE_SIZE (innermode);
1343
1344 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1345
1346 if (innermode == mode)
1347 return x;
1348
1349 /* MODE must occupy no more words than the mode of X. */
1350 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1351 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1352 return 0;
1353
1354 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1355 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1356 return 0;
1357
1358 offset = subreg_lowpart_offset (mode, innermode);
1359
1360 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1361 && (GET_MODE_CLASS (mode) == MODE_INT
1362 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1363 {
1364 /* If we are getting the low-order part of something that has been
1365 sign- or zero-extended, we can either just use the object being
1366 extended or make a narrower extension. If we want an even smaller
1367 piece than the size of the object being extended, call ourselves
1368 recursively.
1369
1370 This case is used mostly by combine and cse. */
1371
1372 if (GET_MODE (XEXP (x, 0)) == mode)
1373 return XEXP (x, 0);
1374 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1375 return gen_lowpart_common (mode, XEXP (x, 0));
1376 else if (msize < xsize)
1377 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1378 }
1379 else if (GET_CODE (x) == SUBREG || REG_P (x)
1380 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1381 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1382 return simplify_gen_subreg (mode, x, innermode, offset);
1383
1384 /* Otherwise, we can't do this. */
1385 return 0;
1386 }
1387 \f
1388 rtx
1389 gen_highpart (enum machine_mode mode, rtx x)
1390 {
1391 unsigned int msize = GET_MODE_SIZE (mode);
1392 rtx result;
1393
1394 /* This case loses if X is a subreg. To catch bugs early,
1395 complain if an invalid MODE is used even in other cases. */
1396 gcc_assert (msize <= UNITS_PER_WORD
1397 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1398
1399 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1400 subreg_highpart_offset (mode, GET_MODE (x)));
1401 gcc_assert (result);
1402
1403 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1404 the target if we have a MEM. gen_highpart must return a valid operand,
1405 emitting code if necessary to do so. */
1406 if (MEM_P (result))
1407 {
1408 result = validize_mem (result);
1409 gcc_assert (result);
1410 }
1411
1412 return result;
1413 }
1414
1415 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1416 be VOIDmode constant. */
1417 rtx
1418 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1419 {
1420 if (GET_MODE (exp) != VOIDmode)
1421 {
1422 gcc_assert (GET_MODE (exp) == innermode);
1423 return gen_highpart (outermode, exp);
1424 }
1425 return simplify_gen_subreg (outermode, exp, innermode,
1426 subreg_highpart_offset (outermode, innermode));
1427 }
1428
1429 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1430
1431 unsigned int
1432 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1433 {
1434 unsigned int offset = 0;
1435 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1436
1437 if (difference > 0)
1438 {
1439 if (WORDS_BIG_ENDIAN)
1440 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1441 if (BYTES_BIG_ENDIAN)
1442 offset += difference % UNITS_PER_WORD;
1443 }
1444
1445 return offset;
1446 }
1447
1448 /* Return offset in bytes to get OUTERMODE high part
1449 of the value in mode INNERMODE stored in memory in target format. */
1450 unsigned int
1451 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1452 {
1453 unsigned int offset = 0;
1454 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1455
1456 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1457
1458 if (difference > 0)
1459 {
1460 if (! WORDS_BIG_ENDIAN)
1461 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1462 if (! BYTES_BIG_ENDIAN)
1463 offset += difference % UNITS_PER_WORD;
1464 }
1465
1466 return offset;
1467 }
1468
1469 /* Return 1 iff X, assumed to be a SUBREG,
1470 refers to the least significant part of its containing reg.
1471 If X is not a SUBREG, always return 1 (it is its own low part!). */
1472
1473 int
1474 subreg_lowpart_p (const_rtx x)
1475 {
1476 if (GET_CODE (x) != SUBREG)
1477 return 1;
1478 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1479 return 0;
1480
1481 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1482 == SUBREG_BYTE (x));
1483 }
1484
1485 /* Return true if X is a paradoxical subreg, false otherwise. */
1486 bool
1487 paradoxical_subreg_p (const_rtx x)
1488 {
1489 if (GET_CODE (x) != SUBREG)
1490 return false;
1491 return (GET_MODE_PRECISION (GET_MODE (x))
1492 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1493 }
1494 \f
1495 /* Return subword OFFSET of operand OP.
1496 The word number, OFFSET, is interpreted as the word number starting
1497 at the low-order address. OFFSET 0 is the low-order word if not
1498 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1499
1500 If we cannot extract the required word, we return zero. Otherwise,
1501 an rtx corresponding to the requested word will be returned.
1502
1503 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1504 reload has completed, a valid address will always be returned. After
1505 reload, if a valid address cannot be returned, we return zero.
1506
1507 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1508 it is the responsibility of the caller.
1509
1510 MODE is the mode of OP in case it is a CONST_INT.
1511
1512 ??? This is still rather broken for some cases. The problem for the
1513 moment is that all callers of this thing provide no 'goal mode' to
1514 tell us to work with. This exists because all callers were written
1515 in a word based SUBREG world.
1516 Now use of this function can be deprecated by simplify_subreg in most
1517 cases.
1518 */
1519
1520 rtx
1521 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1522 {
1523 if (mode == VOIDmode)
1524 mode = GET_MODE (op);
1525
1526 gcc_assert (mode != VOIDmode);
1527
1528 /* If OP is narrower than a word, fail. */
1529 if (mode != BLKmode
1530 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1531 return 0;
1532
1533 /* If we want a word outside OP, return zero. */
1534 if (mode != BLKmode
1535 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1536 return const0_rtx;
1537
1538 /* Form a new MEM at the requested address. */
1539 if (MEM_P (op))
1540 {
1541 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1542
1543 if (! validate_address)
1544 return new_rtx;
1545
1546 else if (reload_completed)
1547 {
1548 if (! strict_memory_address_addr_space_p (word_mode,
1549 XEXP (new_rtx, 0),
1550 MEM_ADDR_SPACE (op)))
1551 return 0;
1552 }
1553 else
1554 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1555 }
1556
1557 /* Rest can be handled by simplify_subreg. */
1558 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1559 }
1560
1561 /* Similar to `operand_subword', but never return 0. If we can't
1562 extract the required subword, put OP into a register and try again.
1563 The second attempt must succeed. We always validate the address in
1564 this case.
1565
1566 MODE is the mode of OP, in case it is CONST_INT. */
1567
1568 rtx
1569 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1570 {
1571 rtx result = operand_subword (op, offset, 1, mode);
1572
1573 if (result)
1574 return result;
1575
1576 if (mode != BLKmode && mode != VOIDmode)
1577 {
1578 /* If this is a register which can not be accessed by words, copy it
1579 to a pseudo register. */
1580 if (REG_P (op))
1581 op = copy_to_reg (op);
1582 else
1583 op = force_reg (mode, op);
1584 }
1585
1586 result = operand_subword (op, offset, 1, mode);
1587 gcc_assert (result);
1588
1589 return result;
1590 }
1591 \f
1592 /* Returns 1 if both MEM_EXPR can be considered equal
1593 and 0 otherwise. */
1594
1595 int
1596 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1597 {
1598 if (expr1 == expr2)
1599 return 1;
1600
1601 if (! expr1 || ! expr2)
1602 return 0;
1603
1604 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1605 return 0;
1606
1607 return operand_equal_p (expr1, expr2, 0);
1608 }
1609
1610 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1611 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1612 -1 if not known. */
1613
1614 int
1615 get_mem_align_offset (rtx mem, unsigned int align)
1616 {
1617 tree expr;
1618 unsigned HOST_WIDE_INT offset;
1619
1620 /* This function can't use
1621 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1622 || (MAX (MEM_ALIGN (mem),
1623 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1624 < align))
1625 return -1;
1626 else
1627 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1628 for two reasons:
1629 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1630 for <variable>. get_inner_reference doesn't handle it and
1631 even if it did, the alignment in that case needs to be determined
1632 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1633 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1634 isn't sufficiently aligned, the object it is in might be. */
1635 gcc_assert (MEM_P (mem));
1636 expr = MEM_EXPR (mem);
1637 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1638 return -1;
1639
1640 offset = MEM_OFFSET (mem);
1641 if (DECL_P (expr))
1642 {
1643 if (DECL_ALIGN (expr) < align)
1644 return -1;
1645 }
1646 else if (INDIRECT_REF_P (expr))
1647 {
1648 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1649 return -1;
1650 }
1651 else if (TREE_CODE (expr) == COMPONENT_REF)
1652 {
1653 while (1)
1654 {
1655 tree inner = TREE_OPERAND (expr, 0);
1656 tree field = TREE_OPERAND (expr, 1);
1657 tree byte_offset = component_ref_field_offset (expr);
1658 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1659
1660 if (!byte_offset
1661 || !tree_fits_uhwi_p (byte_offset)
1662 || !tree_fits_uhwi_p (bit_offset))
1663 return -1;
1664
1665 offset += tree_to_uhwi (byte_offset);
1666 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1667
1668 if (inner == NULL_TREE)
1669 {
1670 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1671 < (unsigned int) align)
1672 return -1;
1673 break;
1674 }
1675 else if (DECL_P (inner))
1676 {
1677 if (DECL_ALIGN (inner) < align)
1678 return -1;
1679 break;
1680 }
1681 else if (TREE_CODE (inner) != COMPONENT_REF)
1682 return -1;
1683 expr = inner;
1684 }
1685 }
1686 else
1687 return -1;
1688
1689 return offset & ((align / BITS_PER_UNIT) - 1);
1690 }
1691
1692 /* Given REF (a MEM) and T, either the type of X or the expression
1693 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1694 if we are making a new object of this type. BITPOS is nonzero if
1695 there is an offset outstanding on T that will be applied later. */
1696
1697 void
1698 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1699 HOST_WIDE_INT bitpos)
1700 {
1701 HOST_WIDE_INT apply_bitpos = 0;
1702 tree type;
1703 struct mem_attrs attrs, *defattrs, *refattrs;
1704 addr_space_t as;
1705
1706 /* It can happen that type_for_mode was given a mode for which there
1707 is no language-level type. In which case it returns NULL, which
1708 we can see here. */
1709 if (t == NULL_TREE)
1710 return;
1711
1712 type = TYPE_P (t) ? t : TREE_TYPE (t);
1713 if (type == error_mark_node)
1714 return;
1715
1716 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1717 wrong answer, as it assumes that DECL_RTL already has the right alias
1718 info. Callers should not set DECL_RTL until after the call to
1719 set_mem_attributes. */
1720 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1721
1722 memset (&attrs, 0, sizeof (attrs));
1723
1724 /* Get the alias set from the expression or type (perhaps using a
1725 front-end routine) and use it. */
1726 attrs.alias = get_alias_set (t);
1727
1728 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1729 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1730
1731 /* Default values from pre-existing memory attributes if present. */
1732 refattrs = MEM_ATTRS (ref);
1733 if (refattrs)
1734 {
1735 /* ??? Can this ever happen? Calling this routine on a MEM that
1736 already carries memory attributes should probably be invalid. */
1737 attrs.expr = refattrs->expr;
1738 attrs.offset_known_p = refattrs->offset_known_p;
1739 attrs.offset = refattrs->offset;
1740 attrs.size_known_p = refattrs->size_known_p;
1741 attrs.size = refattrs->size;
1742 attrs.align = refattrs->align;
1743 }
1744
1745 /* Otherwise, default values from the mode of the MEM reference. */
1746 else
1747 {
1748 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1749 gcc_assert (!defattrs->expr);
1750 gcc_assert (!defattrs->offset_known_p);
1751
1752 /* Respect mode size. */
1753 attrs.size_known_p = defattrs->size_known_p;
1754 attrs.size = defattrs->size;
1755 /* ??? Is this really necessary? We probably should always get
1756 the size from the type below. */
1757
1758 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1759 if T is an object, always compute the object alignment below. */
1760 if (TYPE_P (t))
1761 attrs.align = defattrs->align;
1762 else
1763 attrs.align = BITS_PER_UNIT;
1764 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1765 e.g. if the type carries an alignment attribute. Should we be
1766 able to simply always use TYPE_ALIGN? */
1767 }
1768
1769 /* We can set the alignment from the type if we are making an object,
1770 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1771 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1772 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1773
1774 /* If the size is known, we can set that. */
1775 tree new_size = TYPE_SIZE_UNIT (type);
1776
1777 /* The address-space is that of the type. */
1778 as = TYPE_ADDR_SPACE (type);
1779
1780 /* If T is not a type, we may be able to deduce some more information about
1781 the expression. */
1782 if (! TYPE_P (t))
1783 {
1784 tree base;
1785
1786 if (TREE_THIS_VOLATILE (t))
1787 MEM_VOLATILE_P (ref) = 1;
1788
1789 /* Now remove any conversions: they don't change what the underlying
1790 object is. Likewise for SAVE_EXPR. */
1791 while (CONVERT_EXPR_P (t)
1792 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1793 || TREE_CODE (t) == SAVE_EXPR)
1794 t = TREE_OPERAND (t, 0);
1795
1796 /* Note whether this expression can trap. */
1797 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1798
1799 base = get_base_address (t);
1800 if (base)
1801 {
1802 if (DECL_P (base)
1803 && TREE_READONLY (base)
1804 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1805 && !TREE_THIS_VOLATILE (base))
1806 MEM_READONLY_P (ref) = 1;
1807
1808 /* Mark static const strings readonly as well. */
1809 if (TREE_CODE (base) == STRING_CST
1810 && TREE_READONLY (base)
1811 && TREE_STATIC (base))
1812 MEM_READONLY_P (ref) = 1;
1813
1814 /* Address-space information is on the base object. */
1815 if (TREE_CODE (base) == MEM_REF
1816 || TREE_CODE (base) == TARGET_MEM_REF)
1817 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1818 0))));
1819 else
1820 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1821 }
1822
1823 /* If this expression uses it's parent's alias set, mark it such
1824 that we won't change it. */
1825 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1826 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1827
1828 /* If this is a decl, set the attributes of the MEM from it. */
1829 if (DECL_P (t))
1830 {
1831 attrs.expr = t;
1832 attrs.offset_known_p = true;
1833 attrs.offset = 0;
1834 apply_bitpos = bitpos;
1835 new_size = DECL_SIZE_UNIT (t);
1836 }
1837
1838 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1839 else if (CONSTANT_CLASS_P (t))
1840 ;
1841
1842 /* If this is a field reference, record it. */
1843 else if (TREE_CODE (t) == COMPONENT_REF)
1844 {
1845 attrs.expr = t;
1846 attrs.offset_known_p = true;
1847 attrs.offset = 0;
1848 apply_bitpos = bitpos;
1849 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1850 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1851 }
1852
1853 /* If this is an array reference, look for an outer field reference. */
1854 else if (TREE_CODE (t) == ARRAY_REF)
1855 {
1856 tree off_tree = size_zero_node;
1857 /* We can't modify t, because we use it at the end of the
1858 function. */
1859 tree t2 = t;
1860
1861 do
1862 {
1863 tree index = TREE_OPERAND (t2, 1);
1864 tree low_bound = array_ref_low_bound (t2);
1865 tree unit_size = array_ref_element_size (t2);
1866
1867 /* We assume all arrays have sizes that are a multiple of a byte.
1868 First subtract the lower bound, if any, in the type of the
1869 index, then convert to sizetype and multiply by the size of
1870 the array element. */
1871 if (! integer_zerop (low_bound))
1872 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1873 index, low_bound);
1874
1875 off_tree = size_binop (PLUS_EXPR,
1876 size_binop (MULT_EXPR,
1877 fold_convert (sizetype,
1878 index),
1879 unit_size),
1880 off_tree);
1881 t2 = TREE_OPERAND (t2, 0);
1882 }
1883 while (TREE_CODE (t2) == ARRAY_REF);
1884
1885 if (DECL_P (t2)
1886 || TREE_CODE (t2) == COMPONENT_REF)
1887 {
1888 attrs.expr = t2;
1889 attrs.offset_known_p = false;
1890 if (tree_fits_uhwi_p (off_tree))
1891 {
1892 attrs.offset_known_p = true;
1893 attrs.offset = tree_to_uhwi (off_tree);
1894 apply_bitpos = bitpos;
1895 }
1896 }
1897 /* Else do not record a MEM_EXPR. */
1898 }
1899
1900 /* If this is an indirect reference, record it. */
1901 else if (TREE_CODE (t) == MEM_REF
1902 || TREE_CODE (t) == TARGET_MEM_REF)
1903 {
1904 attrs.expr = t;
1905 attrs.offset_known_p = true;
1906 attrs.offset = 0;
1907 apply_bitpos = bitpos;
1908 }
1909
1910 /* Compute the alignment. */
1911 unsigned int obj_align;
1912 unsigned HOST_WIDE_INT obj_bitpos;
1913 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1914 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1915 if (obj_bitpos != 0)
1916 obj_align = (obj_bitpos & -obj_bitpos);
1917 attrs.align = MAX (attrs.align, obj_align);
1918 }
1919
1920 if (tree_fits_uhwi_p (new_size))
1921 {
1922 attrs.size_known_p = true;
1923 attrs.size = tree_to_uhwi (new_size);
1924 }
1925
1926 /* If we modified OFFSET based on T, then subtract the outstanding
1927 bit position offset. Similarly, increase the size of the accessed
1928 object to contain the negative offset. */
1929 if (apply_bitpos)
1930 {
1931 gcc_assert (attrs.offset_known_p);
1932 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1933 if (attrs.size_known_p)
1934 attrs.size += apply_bitpos / BITS_PER_UNIT;
1935 }
1936
1937 /* Now set the attributes we computed above. */
1938 attrs.addrspace = as;
1939 set_mem_attrs (ref, &attrs);
1940 }
1941
1942 void
1943 set_mem_attributes (rtx ref, tree t, int objectp)
1944 {
1945 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1946 }
1947
1948 /* Set the alias set of MEM to SET. */
1949
1950 void
1951 set_mem_alias_set (rtx mem, alias_set_type set)
1952 {
1953 struct mem_attrs attrs;
1954
1955 /* If the new and old alias sets don't conflict, something is wrong. */
1956 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1957 attrs = *get_mem_attrs (mem);
1958 attrs.alias = set;
1959 set_mem_attrs (mem, &attrs);
1960 }
1961
1962 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1963
1964 void
1965 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1966 {
1967 struct mem_attrs attrs;
1968
1969 attrs = *get_mem_attrs (mem);
1970 attrs.addrspace = addrspace;
1971 set_mem_attrs (mem, &attrs);
1972 }
1973
1974 /* Set the alignment of MEM to ALIGN bits. */
1975
1976 void
1977 set_mem_align (rtx mem, unsigned int align)
1978 {
1979 struct mem_attrs attrs;
1980
1981 attrs = *get_mem_attrs (mem);
1982 attrs.align = align;
1983 set_mem_attrs (mem, &attrs);
1984 }
1985
1986 /* Set the expr for MEM to EXPR. */
1987
1988 void
1989 set_mem_expr (rtx mem, tree expr)
1990 {
1991 struct mem_attrs attrs;
1992
1993 attrs = *get_mem_attrs (mem);
1994 attrs.expr = expr;
1995 set_mem_attrs (mem, &attrs);
1996 }
1997
1998 /* Set the offset of MEM to OFFSET. */
1999
2000 void
2001 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2002 {
2003 struct mem_attrs attrs;
2004
2005 attrs = *get_mem_attrs (mem);
2006 attrs.offset_known_p = true;
2007 attrs.offset = offset;
2008 set_mem_attrs (mem, &attrs);
2009 }
2010
2011 /* Clear the offset of MEM. */
2012
2013 void
2014 clear_mem_offset (rtx mem)
2015 {
2016 struct mem_attrs attrs;
2017
2018 attrs = *get_mem_attrs (mem);
2019 attrs.offset_known_p = false;
2020 set_mem_attrs (mem, &attrs);
2021 }
2022
2023 /* Set the size of MEM to SIZE. */
2024
2025 void
2026 set_mem_size (rtx mem, HOST_WIDE_INT size)
2027 {
2028 struct mem_attrs attrs;
2029
2030 attrs = *get_mem_attrs (mem);
2031 attrs.size_known_p = true;
2032 attrs.size = size;
2033 set_mem_attrs (mem, &attrs);
2034 }
2035
2036 /* Clear the size of MEM. */
2037
2038 void
2039 clear_mem_size (rtx mem)
2040 {
2041 struct mem_attrs attrs;
2042
2043 attrs = *get_mem_attrs (mem);
2044 attrs.size_known_p = false;
2045 set_mem_attrs (mem, &attrs);
2046 }
2047 \f
2048 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2049 and its address changed to ADDR. (VOIDmode means don't change the mode.
2050 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2051 returned memory location is required to be valid. INPLACE is true if any
2052 changes can be made directly to MEMREF or false if MEMREF must be treated
2053 as immutable.
2054
2055 The memory attributes are not changed. */
2056
2057 static rtx
2058 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2059 bool inplace)
2060 {
2061 addr_space_t as;
2062 rtx new_rtx;
2063
2064 gcc_assert (MEM_P (memref));
2065 as = MEM_ADDR_SPACE (memref);
2066 if (mode == VOIDmode)
2067 mode = GET_MODE (memref);
2068 if (addr == 0)
2069 addr = XEXP (memref, 0);
2070 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2071 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2072 return memref;
2073
2074 /* Don't validate address for LRA. LRA can make the address valid
2075 by itself in most efficient way. */
2076 if (validate && !lra_in_progress)
2077 {
2078 if (reload_in_progress || reload_completed)
2079 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2080 else
2081 addr = memory_address_addr_space (mode, addr, as);
2082 }
2083
2084 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2085 return memref;
2086
2087 if (inplace)
2088 {
2089 XEXP (memref, 0) = addr;
2090 return memref;
2091 }
2092
2093 new_rtx = gen_rtx_MEM (mode, addr);
2094 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2095 return new_rtx;
2096 }
2097
2098 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2099 way we are changing MEMREF, so we only preserve the alias set. */
2100
2101 rtx
2102 change_address (rtx memref, enum machine_mode mode, rtx addr)
2103 {
2104 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2105 enum machine_mode mmode = GET_MODE (new_rtx);
2106 struct mem_attrs attrs, *defattrs;
2107
2108 attrs = *get_mem_attrs (memref);
2109 defattrs = mode_mem_attrs[(int) mmode];
2110 attrs.expr = NULL_TREE;
2111 attrs.offset_known_p = false;
2112 attrs.size_known_p = defattrs->size_known_p;
2113 attrs.size = defattrs->size;
2114 attrs.align = defattrs->align;
2115
2116 /* If there are no changes, just return the original memory reference. */
2117 if (new_rtx == memref)
2118 {
2119 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2120 return new_rtx;
2121
2122 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2123 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2124 }
2125
2126 set_mem_attrs (new_rtx, &attrs);
2127 return new_rtx;
2128 }
2129
2130 /* Return a memory reference like MEMREF, but with its mode changed
2131 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2132 nonzero, the memory address is forced to be valid.
2133 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2134 and the caller is responsible for adjusting MEMREF base register.
2135 If ADJUST_OBJECT is zero, the underlying object associated with the
2136 memory reference is left unchanged and the caller is responsible for
2137 dealing with it. Otherwise, if the new memory reference is outside
2138 the underlying object, even partially, then the object is dropped.
2139 SIZE, if nonzero, is the size of an access in cases where MODE
2140 has no inherent size. */
2141
2142 rtx
2143 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2144 int validate, int adjust_address, int adjust_object,
2145 HOST_WIDE_INT size)
2146 {
2147 rtx addr = XEXP (memref, 0);
2148 rtx new_rtx;
2149 enum machine_mode address_mode;
2150 int pbits;
2151 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2152 unsigned HOST_WIDE_INT max_align;
2153 #ifdef POINTERS_EXTEND_UNSIGNED
2154 enum machine_mode pointer_mode
2155 = targetm.addr_space.pointer_mode (attrs.addrspace);
2156 #endif
2157
2158 /* VOIDmode means no mode change for change_address_1. */
2159 if (mode == VOIDmode)
2160 mode = GET_MODE (memref);
2161
2162 /* Take the size of non-BLKmode accesses from the mode. */
2163 defattrs = mode_mem_attrs[(int) mode];
2164 if (defattrs->size_known_p)
2165 size = defattrs->size;
2166
2167 /* If there are no changes, just return the original memory reference. */
2168 if (mode == GET_MODE (memref) && !offset
2169 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2170 && (!validate || memory_address_addr_space_p (mode, addr,
2171 attrs.addrspace)))
2172 return memref;
2173
2174 /* ??? Prefer to create garbage instead of creating shared rtl.
2175 This may happen even if offset is nonzero -- consider
2176 (plus (plus reg reg) const_int) -- so do this always. */
2177 addr = copy_rtx (addr);
2178
2179 /* Convert a possibly large offset to a signed value within the
2180 range of the target address space. */
2181 address_mode = get_address_mode (memref);
2182 pbits = GET_MODE_BITSIZE (address_mode);
2183 if (HOST_BITS_PER_WIDE_INT > pbits)
2184 {
2185 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2186 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2187 >> shift);
2188 }
2189
2190 if (adjust_address)
2191 {
2192 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2193 object, we can merge it into the LO_SUM. */
2194 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2195 && offset >= 0
2196 && (unsigned HOST_WIDE_INT) offset
2197 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2198 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2199 plus_constant (address_mode,
2200 XEXP (addr, 1), offset));
2201 #ifdef POINTERS_EXTEND_UNSIGNED
2202 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2203 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2204 the fact that pointers are not allowed to overflow. */
2205 else if (POINTERS_EXTEND_UNSIGNED > 0
2206 && GET_CODE (addr) == ZERO_EXTEND
2207 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2208 && trunc_int_for_mode (offset, pointer_mode) == offset)
2209 addr = gen_rtx_ZERO_EXTEND (address_mode,
2210 plus_constant (pointer_mode,
2211 XEXP (addr, 0), offset));
2212 #endif
2213 else
2214 addr = plus_constant (address_mode, addr, offset);
2215 }
2216
2217 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2218
2219 /* If the address is a REG, change_address_1 rightfully returns memref,
2220 but this would destroy memref's MEM_ATTRS. */
2221 if (new_rtx == memref && offset != 0)
2222 new_rtx = copy_rtx (new_rtx);
2223
2224 /* Conservatively drop the object if we don't know where we start from. */
2225 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2226 {
2227 attrs.expr = NULL_TREE;
2228 attrs.alias = 0;
2229 }
2230
2231 /* Compute the new values of the memory attributes due to this adjustment.
2232 We add the offsets and update the alignment. */
2233 if (attrs.offset_known_p)
2234 {
2235 attrs.offset += offset;
2236
2237 /* Drop the object if the new left end is not within its bounds. */
2238 if (adjust_object && attrs.offset < 0)
2239 {
2240 attrs.expr = NULL_TREE;
2241 attrs.alias = 0;
2242 }
2243 }
2244
2245 /* Compute the new alignment by taking the MIN of the alignment and the
2246 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2247 if zero. */
2248 if (offset != 0)
2249 {
2250 max_align = (offset & -offset) * BITS_PER_UNIT;
2251 attrs.align = MIN (attrs.align, max_align);
2252 }
2253
2254 if (size)
2255 {
2256 /* Drop the object if the new right end is not within its bounds. */
2257 if (adjust_object && (offset + size) > attrs.size)
2258 {
2259 attrs.expr = NULL_TREE;
2260 attrs.alias = 0;
2261 }
2262 attrs.size_known_p = true;
2263 attrs.size = size;
2264 }
2265 else if (attrs.size_known_p)
2266 {
2267 gcc_assert (!adjust_object);
2268 attrs.size -= offset;
2269 /* ??? The store_by_pieces machinery generates negative sizes,
2270 so don't assert for that here. */
2271 }
2272
2273 set_mem_attrs (new_rtx, &attrs);
2274
2275 return new_rtx;
2276 }
2277
2278 /* Return a memory reference like MEMREF, but with its mode changed
2279 to MODE and its address changed to ADDR, which is assumed to be
2280 MEMREF offset by OFFSET bytes. If VALIDATE is
2281 nonzero, the memory address is forced to be valid. */
2282
2283 rtx
2284 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2285 HOST_WIDE_INT offset, int validate)
2286 {
2287 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2288 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2289 }
2290
2291 /* Return a memory reference like MEMREF, but whose address is changed by
2292 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2293 known to be in OFFSET (possibly 1). */
2294
2295 rtx
2296 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2297 {
2298 rtx new_rtx, addr = XEXP (memref, 0);
2299 enum machine_mode address_mode;
2300 struct mem_attrs attrs, *defattrs;
2301
2302 attrs = *get_mem_attrs (memref);
2303 address_mode = get_address_mode (memref);
2304 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2305
2306 /* At this point we don't know _why_ the address is invalid. It
2307 could have secondary memory references, multiplies or anything.
2308
2309 However, if we did go and rearrange things, we can wind up not
2310 being able to recognize the magic around pic_offset_table_rtx.
2311 This stuff is fragile, and is yet another example of why it is
2312 bad to expose PIC machinery too early. */
2313 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2314 attrs.addrspace)
2315 && GET_CODE (addr) == PLUS
2316 && XEXP (addr, 0) == pic_offset_table_rtx)
2317 {
2318 addr = force_reg (GET_MODE (addr), addr);
2319 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2320 }
2321
2322 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2323 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2324
2325 /* If there are no changes, just return the original memory reference. */
2326 if (new_rtx == memref)
2327 return new_rtx;
2328
2329 /* Update the alignment to reflect the offset. Reset the offset, which
2330 we don't know. */
2331 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2332 attrs.offset_known_p = false;
2333 attrs.size_known_p = defattrs->size_known_p;
2334 attrs.size = defattrs->size;
2335 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2336 set_mem_attrs (new_rtx, &attrs);
2337 return new_rtx;
2338 }
2339
2340 /* Return a memory reference like MEMREF, but with its address changed to
2341 ADDR. The caller is asserting that the actual piece of memory pointed
2342 to is the same, just the form of the address is being changed, such as
2343 by putting something into a register. INPLACE is true if any changes
2344 can be made directly to MEMREF or false if MEMREF must be treated as
2345 immutable. */
2346
2347 rtx
2348 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2349 {
2350 /* change_address_1 copies the memory attribute structure without change
2351 and that's exactly what we want here. */
2352 update_temp_slot_address (XEXP (memref, 0), addr);
2353 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2354 }
2355
2356 /* Likewise, but the reference is not required to be valid. */
2357
2358 rtx
2359 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2360 {
2361 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2362 }
2363
2364 /* Return a memory reference like MEMREF, but with its mode widened to
2365 MODE and offset by OFFSET. This would be used by targets that e.g.
2366 cannot issue QImode memory operations and have to use SImode memory
2367 operations plus masking logic. */
2368
2369 rtx
2370 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2371 {
2372 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2373 struct mem_attrs attrs;
2374 unsigned int size = GET_MODE_SIZE (mode);
2375
2376 /* If there are no changes, just return the original memory reference. */
2377 if (new_rtx == memref)
2378 return new_rtx;
2379
2380 attrs = *get_mem_attrs (new_rtx);
2381
2382 /* If we don't know what offset we were at within the expression, then
2383 we can't know if we've overstepped the bounds. */
2384 if (! attrs.offset_known_p)
2385 attrs.expr = NULL_TREE;
2386
2387 while (attrs.expr)
2388 {
2389 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2390 {
2391 tree field = TREE_OPERAND (attrs.expr, 1);
2392 tree offset = component_ref_field_offset (attrs.expr);
2393
2394 if (! DECL_SIZE_UNIT (field))
2395 {
2396 attrs.expr = NULL_TREE;
2397 break;
2398 }
2399
2400 /* Is the field at least as large as the access? If so, ok,
2401 otherwise strip back to the containing structure. */
2402 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2403 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2404 && attrs.offset >= 0)
2405 break;
2406
2407 if (! tree_fits_uhwi_p (offset))
2408 {
2409 attrs.expr = NULL_TREE;
2410 break;
2411 }
2412
2413 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2414 attrs.offset += tree_to_uhwi (offset);
2415 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2416 / BITS_PER_UNIT);
2417 }
2418 /* Similarly for the decl. */
2419 else if (DECL_P (attrs.expr)
2420 && DECL_SIZE_UNIT (attrs.expr)
2421 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2422 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2423 && (! attrs.offset_known_p || attrs.offset >= 0))
2424 break;
2425 else
2426 {
2427 /* The widened memory access overflows the expression, which means
2428 that it could alias another expression. Zap it. */
2429 attrs.expr = NULL_TREE;
2430 break;
2431 }
2432 }
2433
2434 if (! attrs.expr)
2435 attrs.offset_known_p = false;
2436
2437 /* The widened memory may alias other stuff, so zap the alias set. */
2438 /* ??? Maybe use get_alias_set on any remaining expression. */
2439 attrs.alias = 0;
2440 attrs.size_known_p = true;
2441 attrs.size = size;
2442 set_mem_attrs (new_rtx, &attrs);
2443 return new_rtx;
2444 }
2445 \f
2446 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2447 static GTY(()) tree spill_slot_decl;
2448
2449 tree
2450 get_spill_slot_decl (bool force_build_p)
2451 {
2452 tree d = spill_slot_decl;
2453 rtx rd;
2454 struct mem_attrs attrs;
2455
2456 if (d || !force_build_p)
2457 return d;
2458
2459 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2460 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2461 DECL_ARTIFICIAL (d) = 1;
2462 DECL_IGNORED_P (d) = 1;
2463 TREE_USED (d) = 1;
2464 spill_slot_decl = d;
2465
2466 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2467 MEM_NOTRAP_P (rd) = 1;
2468 attrs = *mode_mem_attrs[(int) BLKmode];
2469 attrs.alias = new_alias_set ();
2470 attrs.expr = d;
2471 set_mem_attrs (rd, &attrs);
2472 SET_DECL_RTL (d, rd);
2473
2474 return d;
2475 }
2476
2477 /* Given MEM, a result from assign_stack_local, fill in the memory
2478 attributes as appropriate for a register allocator spill slot.
2479 These slots are not aliasable by other memory. We arrange for
2480 them all to use a single MEM_EXPR, so that the aliasing code can
2481 work properly in the case of shared spill slots. */
2482
2483 void
2484 set_mem_attrs_for_spill (rtx mem)
2485 {
2486 struct mem_attrs attrs;
2487 rtx addr;
2488
2489 attrs = *get_mem_attrs (mem);
2490 attrs.expr = get_spill_slot_decl (true);
2491 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2492 attrs.addrspace = ADDR_SPACE_GENERIC;
2493
2494 /* We expect the incoming memory to be of the form:
2495 (mem:MODE (plus (reg sfp) (const_int offset)))
2496 with perhaps the plus missing for offset = 0. */
2497 addr = XEXP (mem, 0);
2498 attrs.offset_known_p = true;
2499 attrs.offset = 0;
2500 if (GET_CODE (addr) == PLUS
2501 && CONST_INT_P (XEXP (addr, 1)))
2502 attrs.offset = INTVAL (XEXP (addr, 1));
2503
2504 set_mem_attrs (mem, &attrs);
2505 MEM_NOTRAP_P (mem) = 1;
2506 }
2507 \f
2508 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2509
2510 rtx_code_label *
2511 gen_label_rtx (void)
2512 {
2513 return as_a <rtx_code_label *> (
2514 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2515 NULL, label_num++, NULL));
2516 }
2517 \f
2518 /* For procedure integration. */
2519
2520 /* Install new pointers to the first and last insns in the chain.
2521 Also, set cur_insn_uid to one higher than the last in use.
2522 Used for an inline-procedure after copying the insn chain. */
2523
2524 void
2525 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2526 {
2527 rtx_insn *insn;
2528
2529 set_first_insn (first);
2530 set_last_insn (last);
2531 cur_insn_uid = 0;
2532
2533 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2534 {
2535 int debug_count = 0;
2536
2537 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2538 cur_debug_insn_uid = 0;
2539
2540 for (insn = first; insn; insn = NEXT_INSN (insn))
2541 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2542 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2543 else
2544 {
2545 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2546 if (DEBUG_INSN_P (insn))
2547 debug_count++;
2548 }
2549
2550 if (debug_count)
2551 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2552 else
2553 cur_debug_insn_uid++;
2554 }
2555 else
2556 for (insn = first; insn; insn = NEXT_INSN (insn))
2557 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2558
2559 cur_insn_uid++;
2560 }
2561 \f
2562 /* Go through all the RTL insn bodies and copy any invalid shared
2563 structure. This routine should only be called once. */
2564
2565 static void
2566 unshare_all_rtl_1 (rtx_insn *insn)
2567 {
2568 /* Unshare just about everything else. */
2569 unshare_all_rtl_in_chain (insn);
2570
2571 /* Make sure the addresses of stack slots found outside the insn chain
2572 (such as, in DECL_RTL of a variable) are not shared
2573 with the insn chain.
2574
2575 This special care is necessary when the stack slot MEM does not
2576 actually appear in the insn chain. If it does appear, its address
2577 is unshared from all else at that point. */
2578 stack_slot_list = safe_as_a <rtx_expr_list *> (
2579 copy_rtx_if_shared (stack_slot_list));
2580 }
2581
2582 /* Go through all the RTL insn bodies and copy any invalid shared
2583 structure, again. This is a fairly expensive thing to do so it
2584 should be done sparingly. */
2585
2586 void
2587 unshare_all_rtl_again (rtx_insn *insn)
2588 {
2589 rtx_insn *p;
2590 tree decl;
2591
2592 for (p = insn; p; p = NEXT_INSN (p))
2593 if (INSN_P (p))
2594 {
2595 reset_used_flags (PATTERN (p));
2596 reset_used_flags (REG_NOTES (p));
2597 if (CALL_P (p))
2598 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2599 }
2600
2601 /* Make sure that virtual stack slots are not shared. */
2602 set_used_decls (DECL_INITIAL (cfun->decl));
2603
2604 /* Make sure that virtual parameters are not shared. */
2605 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2606 set_used_flags (DECL_RTL (decl));
2607
2608 reset_used_flags (stack_slot_list);
2609
2610 unshare_all_rtl_1 (insn);
2611 }
2612
2613 unsigned int
2614 unshare_all_rtl (void)
2615 {
2616 unshare_all_rtl_1 (get_insns ());
2617 return 0;
2618 }
2619
2620
2621 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2622 Recursively does the same for subexpressions. */
2623
2624 static void
2625 verify_rtx_sharing (rtx orig, rtx insn)
2626 {
2627 rtx x = orig;
2628 int i;
2629 enum rtx_code code;
2630 const char *format_ptr;
2631
2632 if (x == 0)
2633 return;
2634
2635 code = GET_CODE (x);
2636
2637 /* These types may be freely shared. */
2638
2639 switch (code)
2640 {
2641 case REG:
2642 case DEBUG_EXPR:
2643 case VALUE:
2644 CASE_CONST_ANY:
2645 case SYMBOL_REF:
2646 case LABEL_REF:
2647 case CODE_LABEL:
2648 case PC:
2649 case CC0:
2650 case RETURN:
2651 case SIMPLE_RETURN:
2652 case SCRATCH:
2653 /* SCRATCH must be shared because they represent distinct values. */
2654 return;
2655 case CLOBBER:
2656 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2657 clobbers or clobbers of hard registers that originated as pseudos.
2658 This is needed to allow safe register renaming. */
2659 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2660 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2661 return;
2662 break;
2663
2664 case CONST:
2665 if (shared_const_p (orig))
2666 return;
2667 break;
2668
2669 case MEM:
2670 /* A MEM is allowed to be shared if its address is constant. */
2671 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2672 || reload_completed || reload_in_progress)
2673 return;
2674
2675 break;
2676
2677 default:
2678 break;
2679 }
2680
2681 /* This rtx may not be shared. If it has already been seen,
2682 replace it with a copy of itself. */
2683 #ifdef ENABLE_CHECKING
2684 if (RTX_FLAG (x, used))
2685 {
2686 error ("invalid rtl sharing found in the insn");
2687 debug_rtx (insn);
2688 error ("shared rtx");
2689 debug_rtx (x);
2690 internal_error ("internal consistency failure");
2691 }
2692 #endif
2693 gcc_assert (!RTX_FLAG (x, used));
2694
2695 RTX_FLAG (x, used) = 1;
2696
2697 /* Now scan the subexpressions recursively. */
2698
2699 format_ptr = GET_RTX_FORMAT (code);
2700
2701 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2702 {
2703 switch (*format_ptr++)
2704 {
2705 case 'e':
2706 verify_rtx_sharing (XEXP (x, i), insn);
2707 break;
2708
2709 case 'E':
2710 if (XVEC (x, i) != NULL)
2711 {
2712 int j;
2713 int len = XVECLEN (x, i);
2714
2715 for (j = 0; j < len; j++)
2716 {
2717 /* We allow sharing of ASM_OPERANDS inside single
2718 instruction. */
2719 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2720 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2721 == ASM_OPERANDS))
2722 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2723 else
2724 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2725 }
2726 }
2727 break;
2728 }
2729 }
2730 return;
2731 }
2732
2733 /* Reset used-flags for INSN. */
2734
2735 static void
2736 reset_insn_used_flags (rtx insn)
2737 {
2738 gcc_assert (INSN_P (insn));
2739 reset_used_flags (PATTERN (insn));
2740 reset_used_flags (REG_NOTES (insn));
2741 if (CALL_P (insn))
2742 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2743 }
2744
2745 /* Go through all the RTL insn bodies and clear all the USED bits. */
2746
2747 static void
2748 reset_all_used_flags (void)
2749 {
2750 rtx p;
2751
2752 for (p = get_insns (); p; p = NEXT_INSN (p))
2753 if (INSN_P (p))
2754 {
2755 rtx pat = PATTERN (p);
2756 if (GET_CODE (pat) != SEQUENCE)
2757 reset_insn_used_flags (p);
2758 else
2759 {
2760 gcc_assert (REG_NOTES (p) == NULL);
2761 for (int i = 0; i < XVECLEN (pat, 0); i++)
2762 {
2763 rtx insn = XVECEXP (pat, 0, i);
2764 if (INSN_P (insn))
2765 reset_insn_used_flags (insn);
2766 }
2767 }
2768 }
2769 }
2770
2771 /* Verify sharing in INSN. */
2772
2773 static void
2774 verify_insn_sharing (rtx insn)
2775 {
2776 gcc_assert (INSN_P (insn));
2777 reset_used_flags (PATTERN (insn));
2778 reset_used_flags (REG_NOTES (insn));
2779 if (CALL_P (insn))
2780 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2781 }
2782
2783 /* Go through all the RTL insn bodies and check that there is no unexpected
2784 sharing in between the subexpressions. */
2785
2786 DEBUG_FUNCTION void
2787 verify_rtl_sharing (void)
2788 {
2789 rtx p;
2790
2791 timevar_push (TV_VERIFY_RTL_SHARING);
2792
2793 reset_all_used_flags ();
2794
2795 for (p = get_insns (); p; p = NEXT_INSN (p))
2796 if (INSN_P (p))
2797 {
2798 rtx pat = PATTERN (p);
2799 if (GET_CODE (pat) != SEQUENCE)
2800 verify_insn_sharing (p);
2801 else
2802 for (int i = 0; i < XVECLEN (pat, 0); i++)
2803 {
2804 rtx insn = XVECEXP (pat, 0, i);
2805 if (INSN_P (insn))
2806 verify_insn_sharing (insn);
2807 }
2808 }
2809
2810 reset_all_used_flags ();
2811
2812 timevar_pop (TV_VERIFY_RTL_SHARING);
2813 }
2814
2815 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2816 Assumes the mark bits are cleared at entry. */
2817
2818 void
2819 unshare_all_rtl_in_chain (rtx insn)
2820 {
2821 for (; insn; insn = NEXT_INSN (insn))
2822 if (INSN_P (insn))
2823 {
2824 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2825 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2826 if (CALL_P (insn))
2827 CALL_INSN_FUNCTION_USAGE (insn)
2828 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2829 }
2830 }
2831
2832 /* Go through all virtual stack slots of a function and mark them as
2833 shared. We never replace the DECL_RTLs themselves with a copy,
2834 but expressions mentioned into a DECL_RTL cannot be shared with
2835 expressions in the instruction stream.
2836
2837 Note that reload may convert pseudo registers into memories in-place.
2838 Pseudo registers are always shared, but MEMs never are. Thus if we
2839 reset the used flags on MEMs in the instruction stream, we must set
2840 them again on MEMs that appear in DECL_RTLs. */
2841
2842 static void
2843 set_used_decls (tree blk)
2844 {
2845 tree t;
2846
2847 /* Mark decls. */
2848 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2849 if (DECL_RTL_SET_P (t))
2850 set_used_flags (DECL_RTL (t));
2851
2852 /* Now process sub-blocks. */
2853 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2854 set_used_decls (t);
2855 }
2856
2857 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2858 Recursively does the same for subexpressions. Uses
2859 copy_rtx_if_shared_1 to reduce stack space. */
2860
2861 rtx
2862 copy_rtx_if_shared (rtx orig)
2863 {
2864 copy_rtx_if_shared_1 (&orig);
2865 return orig;
2866 }
2867
2868 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2869 use. Recursively does the same for subexpressions. */
2870
2871 static void
2872 copy_rtx_if_shared_1 (rtx *orig1)
2873 {
2874 rtx x;
2875 int i;
2876 enum rtx_code code;
2877 rtx *last_ptr;
2878 const char *format_ptr;
2879 int copied = 0;
2880 int length;
2881
2882 /* Repeat is used to turn tail-recursion into iteration. */
2883 repeat:
2884 x = *orig1;
2885
2886 if (x == 0)
2887 return;
2888
2889 code = GET_CODE (x);
2890
2891 /* These types may be freely shared. */
2892
2893 switch (code)
2894 {
2895 case REG:
2896 case DEBUG_EXPR:
2897 case VALUE:
2898 CASE_CONST_ANY:
2899 case SYMBOL_REF:
2900 case LABEL_REF:
2901 case CODE_LABEL:
2902 case PC:
2903 case CC0:
2904 case RETURN:
2905 case SIMPLE_RETURN:
2906 case SCRATCH:
2907 /* SCRATCH must be shared because they represent distinct values. */
2908 return;
2909 case CLOBBER:
2910 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2911 clobbers or clobbers of hard registers that originated as pseudos.
2912 This is needed to allow safe register renaming. */
2913 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2914 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2915 return;
2916 break;
2917
2918 case CONST:
2919 if (shared_const_p (x))
2920 return;
2921 break;
2922
2923 case DEBUG_INSN:
2924 case INSN:
2925 case JUMP_INSN:
2926 case CALL_INSN:
2927 case NOTE:
2928 case BARRIER:
2929 /* The chain of insns is not being copied. */
2930 return;
2931
2932 default:
2933 break;
2934 }
2935
2936 /* This rtx may not be shared. If it has already been seen,
2937 replace it with a copy of itself. */
2938
2939 if (RTX_FLAG (x, used))
2940 {
2941 x = shallow_copy_rtx (x);
2942 copied = 1;
2943 }
2944 RTX_FLAG (x, used) = 1;
2945
2946 /* Now scan the subexpressions recursively.
2947 We can store any replaced subexpressions directly into X
2948 since we know X is not shared! Any vectors in X
2949 must be copied if X was copied. */
2950
2951 format_ptr = GET_RTX_FORMAT (code);
2952 length = GET_RTX_LENGTH (code);
2953 last_ptr = NULL;
2954
2955 for (i = 0; i < length; i++)
2956 {
2957 switch (*format_ptr++)
2958 {
2959 case 'e':
2960 if (last_ptr)
2961 copy_rtx_if_shared_1 (last_ptr);
2962 last_ptr = &XEXP (x, i);
2963 break;
2964
2965 case 'E':
2966 if (XVEC (x, i) != NULL)
2967 {
2968 int j;
2969 int len = XVECLEN (x, i);
2970
2971 /* Copy the vector iff I copied the rtx and the length
2972 is nonzero. */
2973 if (copied && len > 0)
2974 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2975
2976 /* Call recursively on all inside the vector. */
2977 for (j = 0; j < len; j++)
2978 {
2979 if (last_ptr)
2980 copy_rtx_if_shared_1 (last_ptr);
2981 last_ptr = &XVECEXP (x, i, j);
2982 }
2983 }
2984 break;
2985 }
2986 }
2987 *orig1 = x;
2988 if (last_ptr)
2989 {
2990 orig1 = last_ptr;
2991 goto repeat;
2992 }
2993 return;
2994 }
2995
2996 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2997
2998 static void
2999 mark_used_flags (rtx x, int flag)
3000 {
3001 int i, j;
3002 enum rtx_code code;
3003 const char *format_ptr;
3004 int length;
3005
3006 /* Repeat is used to turn tail-recursion into iteration. */
3007 repeat:
3008 if (x == 0)
3009 return;
3010
3011 code = GET_CODE (x);
3012
3013 /* These types may be freely shared so we needn't do any resetting
3014 for them. */
3015
3016 switch (code)
3017 {
3018 case REG:
3019 case DEBUG_EXPR:
3020 case VALUE:
3021 CASE_CONST_ANY:
3022 case SYMBOL_REF:
3023 case CODE_LABEL:
3024 case PC:
3025 case CC0:
3026 case RETURN:
3027 case SIMPLE_RETURN:
3028 return;
3029
3030 case DEBUG_INSN:
3031 case INSN:
3032 case JUMP_INSN:
3033 case CALL_INSN:
3034 case NOTE:
3035 case LABEL_REF:
3036 case BARRIER:
3037 /* The chain of insns is not being copied. */
3038 return;
3039
3040 default:
3041 break;
3042 }
3043
3044 RTX_FLAG (x, used) = flag;
3045
3046 format_ptr = GET_RTX_FORMAT (code);
3047 length = GET_RTX_LENGTH (code);
3048
3049 for (i = 0; i < length; i++)
3050 {
3051 switch (*format_ptr++)
3052 {
3053 case 'e':
3054 if (i == length-1)
3055 {
3056 x = XEXP (x, i);
3057 goto repeat;
3058 }
3059 mark_used_flags (XEXP (x, i), flag);
3060 break;
3061
3062 case 'E':
3063 for (j = 0; j < XVECLEN (x, i); j++)
3064 mark_used_flags (XVECEXP (x, i, j), flag);
3065 break;
3066 }
3067 }
3068 }
3069
3070 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3071 to look for shared sub-parts. */
3072
3073 void
3074 reset_used_flags (rtx x)
3075 {
3076 mark_used_flags (x, 0);
3077 }
3078
3079 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3080 to look for shared sub-parts. */
3081
3082 void
3083 set_used_flags (rtx x)
3084 {
3085 mark_used_flags (x, 1);
3086 }
3087 \f
3088 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3089 Return X or the rtx for the pseudo reg the value of X was copied into.
3090 OTHER must be valid as a SET_DEST. */
3091
3092 rtx
3093 make_safe_from (rtx x, rtx other)
3094 {
3095 while (1)
3096 switch (GET_CODE (other))
3097 {
3098 case SUBREG:
3099 other = SUBREG_REG (other);
3100 break;
3101 case STRICT_LOW_PART:
3102 case SIGN_EXTEND:
3103 case ZERO_EXTEND:
3104 other = XEXP (other, 0);
3105 break;
3106 default:
3107 goto done;
3108 }
3109 done:
3110 if ((MEM_P (other)
3111 && ! CONSTANT_P (x)
3112 && !REG_P (x)
3113 && GET_CODE (x) != SUBREG)
3114 || (REG_P (other)
3115 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3116 || reg_mentioned_p (other, x))))
3117 {
3118 rtx temp = gen_reg_rtx (GET_MODE (x));
3119 emit_move_insn (temp, x);
3120 return temp;
3121 }
3122 return x;
3123 }
3124 \f
3125 /* Emission of insns (adding them to the doubly-linked list). */
3126
3127 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3128
3129 rtx_insn *
3130 get_last_insn_anywhere (void)
3131 {
3132 struct sequence_stack *stack;
3133 if (get_last_insn ())
3134 return get_last_insn ();
3135 for (stack = seq_stack; stack; stack = stack->next)
3136 if (stack->last != 0)
3137 return stack->last;
3138 return 0;
3139 }
3140
3141 /* Return the first nonnote insn emitted in current sequence or current
3142 function. This routine looks inside SEQUENCEs. */
3143
3144 rtx
3145 get_first_nonnote_insn (void)
3146 {
3147 rtx insn = get_insns ();
3148
3149 if (insn)
3150 {
3151 if (NOTE_P (insn))
3152 for (insn = next_insn (insn);
3153 insn && NOTE_P (insn);
3154 insn = next_insn (insn))
3155 continue;
3156 else
3157 {
3158 if (NONJUMP_INSN_P (insn)
3159 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3160 insn = XVECEXP (PATTERN (insn), 0, 0);
3161 }
3162 }
3163
3164 return insn;
3165 }
3166
3167 /* Return the last nonnote insn emitted in current sequence or current
3168 function. This routine looks inside SEQUENCEs. */
3169
3170 rtx
3171 get_last_nonnote_insn (void)
3172 {
3173 rtx insn = get_last_insn ();
3174
3175 if (insn)
3176 {
3177 if (NOTE_P (insn))
3178 for (insn = previous_insn (insn);
3179 insn && NOTE_P (insn);
3180 insn = previous_insn (insn))
3181 continue;
3182 else
3183 {
3184 if (NONJUMP_INSN_P (insn)
3185 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3186 insn = XVECEXP (PATTERN (insn), 0,
3187 XVECLEN (PATTERN (insn), 0) - 1);
3188 }
3189 }
3190
3191 return insn;
3192 }
3193
3194 /* Return the number of actual (non-debug) insns emitted in this
3195 function. */
3196
3197 int
3198 get_max_insn_count (void)
3199 {
3200 int n = cur_insn_uid;
3201
3202 /* The table size must be stable across -g, to avoid codegen
3203 differences due to debug insns, and not be affected by
3204 -fmin-insn-uid, to avoid excessive table size and to simplify
3205 debugging of -fcompare-debug failures. */
3206 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3207 n -= cur_debug_insn_uid;
3208 else
3209 n -= MIN_NONDEBUG_INSN_UID;
3210
3211 return n;
3212 }
3213
3214 \f
3215 /* Return the next insn. If it is a SEQUENCE, return the first insn
3216 of the sequence. */
3217
3218 rtx_insn *
3219 next_insn (rtx insn)
3220 {
3221 if (insn)
3222 {
3223 insn = NEXT_INSN (insn);
3224 if (insn && NONJUMP_INSN_P (insn)
3225 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3226 insn = XVECEXP (PATTERN (insn), 0, 0);
3227 }
3228
3229 return safe_as_a <rtx_insn *> (insn);
3230 }
3231
3232 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3233 of the sequence. */
3234
3235 rtx_insn *
3236 previous_insn (rtx insn)
3237 {
3238 if (insn)
3239 {
3240 insn = PREV_INSN (insn);
3241 if (insn && NONJUMP_INSN_P (insn)
3242 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3243 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3244 }
3245
3246 return safe_as_a <rtx_insn *> (insn);
3247 }
3248
3249 /* Return the next insn after INSN that is not a NOTE. This routine does not
3250 look inside SEQUENCEs. */
3251
3252 rtx_insn *
3253 next_nonnote_insn (rtx insn)
3254 {
3255 while (insn)
3256 {
3257 insn = NEXT_INSN (insn);
3258 if (insn == 0 || !NOTE_P (insn))
3259 break;
3260 }
3261
3262 return safe_as_a <rtx_insn *> (insn);
3263 }
3264
3265 /* Return the next insn after INSN that is not a NOTE, but stop the
3266 search before we enter another basic block. This routine does not
3267 look inside SEQUENCEs. */
3268
3269 rtx_insn *
3270 next_nonnote_insn_bb (rtx insn)
3271 {
3272 while (insn)
3273 {
3274 insn = NEXT_INSN (insn);
3275 if (insn == 0 || !NOTE_P (insn))
3276 break;
3277 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3278 return NULL;
3279 }
3280
3281 return safe_as_a <rtx_insn *> (insn);
3282 }
3283
3284 /* Return the previous insn before INSN that is not a NOTE. This routine does
3285 not look inside SEQUENCEs. */
3286
3287 rtx_insn *
3288 prev_nonnote_insn (rtx insn)
3289 {
3290 while (insn)
3291 {
3292 insn = PREV_INSN (insn);
3293 if (insn == 0 || !NOTE_P (insn))
3294 break;
3295 }
3296
3297 return safe_as_a <rtx_insn *> (insn);
3298 }
3299
3300 /* Return the previous insn before INSN that is not a NOTE, but stop
3301 the search before we enter another basic block. This routine does
3302 not look inside SEQUENCEs. */
3303
3304 rtx_insn *
3305 prev_nonnote_insn_bb (rtx insn)
3306 {
3307 while (insn)
3308 {
3309 insn = PREV_INSN (insn);
3310 if (insn == 0 || !NOTE_P (insn))
3311 break;
3312 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3313 return NULL;
3314 }
3315
3316 return safe_as_a <rtx_insn *> (insn);
3317 }
3318
3319 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3320 routine does not look inside SEQUENCEs. */
3321
3322 rtx_insn *
3323 next_nondebug_insn (rtx insn)
3324 {
3325 while (insn)
3326 {
3327 insn = NEXT_INSN (insn);
3328 if (insn == 0 || !DEBUG_INSN_P (insn))
3329 break;
3330 }
3331
3332 return safe_as_a <rtx_insn *> (insn);
3333 }
3334
3335 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3336 This routine does not look inside SEQUENCEs. */
3337
3338 rtx_insn *
3339 prev_nondebug_insn (rtx insn)
3340 {
3341 while (insn)
3342 {
3343 insn = PREV_INSN (insn);
3344 if (insn == 0 || !DEBUG_INSN_P (insn))
3345 break;
3346 }
3347
3348 return safe_as_a <rtx_insn *> (insn);
3349 }
3350
3351 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3352 This routine does not look inside SEQUENCEs. */
3353
3354 rtx_insn *
3355 next_nonnote_nondebug_insn (rtx insn)
3356 {
3357 while (insn)
3358 {
3359 insn = NEXT_INSN (insn);
3360 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3361 break;
3362 }
3363
3364 return safe_as_a <rtx_insn *> (insn);
3365 }
3366
3367 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3368 This routine does not look inside SEQUENCEs. */
3369
3370 rtx_insn *
3371 prev_nonnote_nondebug_insn (rtx insn)
3372 {
3373 while (insn)
3374 {
3375 insn = PREV_INSN (insn);
3376 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3377 break;
3378 }
3379
3380 return safe_as_a <rtx_insn *> (insn);
3381 }
3382
3383 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3384 or 0, if there is none. This routine does not look inside
3385 SEQUENCEs. */
3386
3387 rtx_insn *
3388 next_real_insn (rtx insn)
3389 {
3390 while (insn)
3391 {
3392 insn = NEXT_INSN (insn);
3393 if (insn == 0 || INSN_P (insn))
3394 break;
3395 }
3396
3397 return safe_as_a <rtx_insn *> (insn);
3398 }
3399
3400 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3401 or 0, if there is none. This routine does not look inside
3402 SEQUENCEs. */
3403
3404 rtx_insn *
3405 prev_real_insn (rtx insn)
3406 {
3407 while (insn)
3408 {
3409 insn = PREV_INSN (insn);
3410 if (insn == 0 || INSN_P (insn))
3411 break;
3412 }
3413
3414 return safe_as_a <rtx_insn *> (insn);
3415 }
3416
3417 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3418 This routine does not look inside SEQUENCEs. */
3419
3420 rtx_call_insn *
3421 last_call_insn (void)
3422 {
3423 rtx_insn *insn;
3424
3425 for (insn = get_last_insn ();
3426 insn && !CALL_P (insn);
3427 insn = PREV_INSN (insn))
3428 ;
3429
3430 return safe_as_a <rtx_call_insn *> (insn);
3431 }
3432
3433 /* Find the next insn after INSN that really does something. This routine
3434 does not look inside SEQUENCEs. After reload this also skips over
3435 standalone USE and CLOBBER insn. */
3436
3437 int
3438 active_insn_p (const_rtx insn)
3439 {
3440 return (CALL_P (insn) || JUMP_P (insn)
3441 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3442 || (NONJUMP_INSN_P (insn)
3443 && (! reload_completed
3444 || (GET_CODE (PATTERN (insn)) != USE
3445 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3446 }
3447
3448 rtx_insn *
3449 next_active_insn (rtx insn)
3450 {
3451 while (insn)
3452 {
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || active_insn_p (insn))
3455 break;
3456 }
3457
3458 return safe_as_a <rtx_insn *> (insn);
3459 }
3460
3461 /* Find the last insn before INSN that really does something. This routine
3462 does not look inside SEQUENCEs. After reload this also skips over
3463 standalone USE and CLOBBER insn. */
3464
3465 rtx_insn *
3466 prev_active_insn (rtx insn)
3467 {
3468 while (insn)
3469 {
3470 insn = PREV_INSN (insn);
3471 if (insn == 0 || active_insn_p (insn))
3472 break;
3473 }
3474
3475 return safe_as_a <rtx_insn *> (insn);
3476 }
3477 \f
3478 #ifdef HAVE_cc0
3479 /* Return the next insn that uses CC0 after INSN, which is assumed to
3480 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3481 applied to the result of this function should yield INSN).
3482
3483 Normally, this is simply the next insn. However, if a REG_CC_USER note
3484 is present, it contains the insn that uses CC0.
3485
3486 Return 0 if we can't find the insn. */
3487
3488 rtx_insn *
3489 next_cc0_user (rtx insn)
3490 {
3491 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3492
3493 if (note)
3494 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3495
3496 insn = next_nonnote_insn (insn);
3497 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3498 insn = XVECEXP (PATTERN (insn), 0, 0);
3499
3500 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3501 return safe_as_a <rtx_insn *> (insn);
3502
3503 return 0;
3504 }
3505
3506 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3507 note, it is the previous insn. */
3508
3509 rtx_insn *
3510 prev_cc0_setter (rtx insn)
3511 {
3512 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3513
3514 if (note)
3515 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3516
3517 insn = prev_nonnote_insn (insn);
3518 gcc_assert (sets_cc0_p (PATTERN (insn)));
3519
3520 return safe_as_a <rtx_insn *> (insn);
3521 }
3522 #endif
3523
3524 #ifdef AUTO_INC_DEC
3525 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3526
3527 static int
3528 find_auto_inc (const_rtx x, const_rtx reg)
3529 {
3530 subrtx_iterator::array_type array;
3531 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3532 {
3533 const_rtx x = *iter;
3534 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3535 && rtx_equal_p (reg, XEXP (x, 0)))
3536 return true;
3537 }
3538 return false;
3539 }
3540 #endif
3541
3542 /* Increment the label uses for all labels present in rtx. */
3543
3544 static void
3545 mark_label_nuses (rtx x)
3546 {
3547 enum rtx_code code;
3548 int i, j;
3549 const char *fmt;
3550
3551 code = GET_CODE (x);
3552 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3553 LABEL_NUSES (XEXP (x, 0))++;
3554
3555 fmt = GET_RTX_FORMAT (code);
3556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3557 {
3558 if (fmt[i] == 'e')
3559 mark_label_nuses (XEXP (x, i));
3560 else if (fmt[i] == 'E')
3561 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3562 mark_label_nuses (XVECEXP (x, i, j));
3563 }
3564 }
3565
3566 \f
3567 /* Try splitting insns that can be split for better scheduling.
3568 PAT is the pattern which might split.
3569 TRIAL is the insn providing PAT.
3570 LAST is nonzero if we should return the last insn of the sequence produced.
3571
3572 If this routine succeeds in splitting, it returns the first or last
3573 replacement insn depending on the value of LAST. Otherwise, it
3574 returns TRIAL. If the insn to be returned can be split, it will be. */
3575
3576 rtx_insn *
3577 try_split (rtx pat, rtx trial, int last)
3578 {
3579 rtx_insn *before = PREV_INSN (trial);
3580 rtx_insn *after = NEXT_INSN (trial);
3581 int has_barrier = 0;
3582 rtx note, seq, tem;
3583 int probability;
3584 rtx insn_last, insn;
3585 int njumps = 0;
3586 rtx call_insn = NULL_RTX;
3587
3588 /* We're not good at redistributing frame information. */
3589 if (RTX_FRAME_RELATED_P (trial))
3590 return as_a <rtx_insn *> (trial);
3591
3592 if (any_condjump_p (trial)
3593 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3594 split_branch_probability = XINT (note, 0);
3595 probability = split_branch_probability;
3596
3597 seq = split_insns (pat, trial);
3598
3599 split_branch_probability = -1;
3600
3601 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3602 We may need to handle this specially. */
3603 if (after && BARRIER_P (after))
3604 {
3605 has_barrier = 1;
3606 after = NEXT_INSN (after);
3607 }
3608
3609 if (!seq)
3610 return as_a <rtx_insn *> (trial);
3611
3612 /* Avoid infinite loop if any insn of the result matches
3613 the original pattern. */
3614 insn_last = seq;
3615 while (1)
3616 {
3617 if (INSN_P (insn_last)
3618 && rtx_equal_p (PATTERN (insn_last), pat))
3619 return as_a <rtx_insn *> (trial);
3620 if (!NEXT_INSN (insn_last))
3621 break;
3622 insn_last = NEXT_INSN (insn_last);
3623 }
3624
3625 /* We will be adding the new sequence to the function. The splitters
3626 may have introduced invalid RTL sharing, so unshare the sequence now. */
3627 unshare_all_rtl_in_chain (seq);
3628
3629 /* Mark labels and copy flags. */
3630 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3631 {
3632 if (JUMP_P (insn))
3633 {
3634 if (JUMP_P (trial))
3635 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3636 mark_jump_label (PATTERN (insn), insn, 0);
3637 njumps++;
3638 if (probability != -1
3639 && any_condjump_p (insn)
3640 && !find_reg_note (insn, REG_BR_PROB, 0))
3641 {
3642 /* We can preserve the REG_BR_PROB notes only if exactly
3643 one jump is created, otherwise the machine description
3644 is responsible for this step using
3645 split_branch_probability variable. */
3646 gcc_assert (njumps == 1);
3647 add_int_reg_note (insn, REG_BR_PROB, probability);
3648 }
3649 }
3650 }
3651
3652 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3653 in SEQ and copy any additional information across. */
3654 if (CALL_P (trial))
3655 {
3656 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3657 if (CALL_P (insn))
3658 {
3659 rtx next, *p;
3660
3661 gcc_assert (call_insn == NULL_RTX);
3662 call_insn = insn;
3663
3664 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3665 target may have explicitly specified. */
3666 p = &CALL_INSN_FUNCTION_USAGE (insn);
3667 while (*p)
3668 p = &XEXP (*p, 1);
3669 *p = CALL_INSN_FUNCTION_USAGE (trial);
3670
3671 /* If the old call was a sibling call, the new one must
3672 be too. */
3673 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3674
3675 /* If the new call is the last instruction in the sequence,
3676 it will effectively replace the old call in-situ. Otherwise
3677 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3678 so that it comes immediately after the new call. */
3679 if (NEXT_INSN (insn))
3680 for (next = NEXT_INSN (trial);
3681 next && NOTE_P (next);
3682 next = NEXT_INSN (next))
3683 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3684 {
3685 remove_insn (next);
3686 add_insn_after (next, insn, NULL);
3687 break;
3688 }
3689 }
3690 }
3691
3692 /* Copy notes, particularly those related to the CFG. */
3693 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3694 {
3695 switch (REG_NOTE_KIND (note))
3696 {
3697 case REG_EH_REGION:
3698 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3699 break;
3700
3701 case REG_NORETURN:
3702 case REG_SETJMP:
3703 case REG_TM:
3704 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3705 {
3706 if (CALL_P (insn))
3707 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3708 }
3709 break;
3710
3711 case REG_NON_LOCAL_GOTO:
3712 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3713 {
3714 if (JUMP_P (insn))
3715 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3716 }
3717 break;
3718
3719 #ifdef AUTO_INC_DEC
3720 case REG_INC:
3721 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3722 {
3723 rtx reg = XEXP (note, 0);
3724 if (!FIND_REG_INC_NOTE (insn, reg)
3725 && find_auto_inc (PATTERN (insn), reg))
3726 add_reg_note (insn, REG_INC, reg);
3727 }
3728 break;
3729 #endif
3730
3731 case REG_ARGS_SIZE:
3732 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3733 break;
3734
3735 case REG_CALL_DECL:
3736 gcc_assert (call_insn != NULL_RTX);
3737 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3738 break;
3739
3740 default:
3741 break;
3742 }
3743 }
3744
3745 /* If there are LABELS inside the split insns increment the
3746 usage count so we don't delete the label. */
3747 if (INSN_P (trial))
3748 {
3749 insn = insn_last;
3750 while (insn != NULL_RTX)
3751 {
3752 /* JUMP_P insns have already been "marked" above. */
3753 if (NONJUMP_INSN_P (insn))
3754 mark_label_nuses (PATTERN (insn));
3755
3756 insn = PREV_INSN (insn);
3757 }
3758 }
3759
3760 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3761
3762 delete_insn (trial);
3763 if (has_barrier)
3764 emit_barrier_after (tem);
3765
3766 /* Recursively call try_split for each new insn created; by the
3767 time control returns here that insn will be fully split, so
3768 set LAST and continue from the insn after the one returned.
3769 We can't use next_active_insn here since AFTER may be a note.
3770 Ignore deleted insns, which can be occur if not optimizing. */
3771 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3772 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3773 tem = try_split (PATTERN (tem), tem, 1);
3774
3775 /* Return either the first or the last insn, depending on which was
3776 requested. */
3777 return last
3778 ? (after ? PREV_INSN (after) : get_last_insn ())
3779 : NEXT_INSN (before);
3780 }
3781 \f
3782 /* Make and return an INSN rtx, initializing all its slots.
3783 Store PATTERN in the pattern slots. */
3784
3785 rtx_insn *
3786 make_insn_raw (rtx pattern)
3787 {
3788 rtx_insn *insn;
3789
3790 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3791
3792 INSN_UID (insn) = cur_insn_uid++;
3793 PATTERN (insn) = pattern;
3794 INSN_CODE (insn) = -1;
3795 REG_NOTES (insn) = NULL;
3796 INSN_LOCATION (insn) = curr_insn_location ();
3797 BLOCK_FOR_INSN (insn) = NULL;
3798
3799 #ifdef ENABLE_RTL_CHECKING
3800 if (insn
3801 && INSN_P (insn)
3802 && (returnjump_p (insn)
3803 || (GET_CODE (insn) == SET
3804 && SET_DEST (insn) == pc_rtx)))
3805 {
3806 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3807 debug_rtx (insn);
3808 }
3809 #endif
3810
3811 return insn;
3812 }
3813
3814 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3815
3816 static rtx_insn *
3817 make_debug_insn_raw (rtx pattern)
3818 {
3819 rtx_debug_insn *insn;
3820
3821 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3822 INSN_UID (insn) = cur_debug_insn_uid++;
3823 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3824 INSN_UID (insn) = cur_insn_uid++;
3825
3826 PATTERN (insn) = pattern;
3827 INSN_CODE (insn) = -1;
3828 REG_NOTES (insn) = NULL;
3829 INSN_LOCATION (insn) = curr_insn_location ();
3830 BLOCK_FOR_INSN (insn) = NULL;
3831
3832 return insn;
3833 }
3834
3835 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3836
3837 static rtx_insn *
3838 make_jump_insn_raw (rtx pattern)
3839 {
3840 rtx_jump_insn *insn;
3841
3842 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3843 INSN_UID (insn) = cur_insn_uid++;
3844
3845 PATTERN (insn) = pattern;
3846 INSN_CODE (insn) = -1;
3847 REG_NOTES (insn) = NULL;
3848 JUMP_LABEL (insn) = NULL;
3849 INSN_LOCATION (insn) = curr_insn_location ();
3850 BLOCK_FOR_INSN (insn) = NULL;
3851
3852 return insn;
3853 }
3854
3855 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3856
3857 static rtx_insn *
3858 make_call_insn_raw (rtx pattern)
3859 {
3860 rtx_call_insn *insn;
3861
3862 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3863 INSN_UID (insn) = cur_insn_uid++;
3864
3865 PATTERN (insn) = pattern;
3866 INSN_CODE (insn) = -1;
3867 REG_NOTES (insn) = NULL;
3868 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3869 INSN_LOCATION (insn) = curr_insn_location ();
3870 BLOCK_FOR_INSN (insn) = NULL;
3871
3872 return insn;
3873 }
3874
3875 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3876
3877 static rtx_note *
3878 make_note_raw (enum insn_note subtype)
3879 {
3880 /* Some notes are never created this way at all. These notes are
3881 only created by patching out insns. */
3882 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3883 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3884
3885 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3886 INSN_UID (note) = cur_insn_uid++;
3887 NOTE_KIND (note) = subtype;
3888 BLOCK_FOR_INSN (note) = NULL;
3889 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3890 return note;
3891 }
3892 \f
3893 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3894 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3895 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3896
3897 static inline void
3898 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3899 {
3900 SET_PREV_INSN (insn) = prev;
3901 SET_NEXT_INSN (insn) = next;
3902 if (prev != NULL)
3903 {
3904 SET_NEXT_INSN (prev) = insn;
3905 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3906 {
3907 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3908 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3909 }
3910 }
3911 if (next != NULL)
3912 {
3913 SET_PREV_INSN (next) = insn;
3914 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3915 {
3916 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3917 SET_PREV_INSN (sequence->insn (0)) = insn;
3918 }
3919 }
3920
3921 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3922 {
3923 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3924 SET_PREV_INSN (sequence->insn (0)) = prev;
3925 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3926 }
3927 }
3928
3929 /* Add INSN to the end of the doubly-linked list.
3930 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3931
3932 void
3933 add_insn (rtx_insn *insn)
3934 {
3935 rtx_insn *prev = get_last_insn ();
3936 link_insn_into_chain (insn, prev, NULL);
3937 if (NULL == get_insns ())
3938 set_first_insn (insn);
3939 set_last_insn (insn);
3940 }
3941
3942 /* Add INSN into the doubly-linked list after insn AFTER. */
3943
3944 static void
3945 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
3946 {
3947 rtx_insn *next = NEXT_INSN (after);
3948
3949 gcc_assert (!optimize || !INSN_DELETED_P (after));
3950
3951 link_insn_into_chain (insn, after, next);
3952
3953 if (next == NULL)
3954 {
3955 if (get_last_insn () == after)
3956 set_last_insn (insn);
3957 else
3958 {
3959 struct sequence_stack *stack = seq_stack;
3960 /* Scan all pending sequences too. */
3961 for (; stack; stack = stack->next)
3962 if (after == stack->last)
3963 {
3964 stack->last = insn;
3965 break;
3966 }
3967 }
3968 }
3969 }
3970
3971 /* Add INSN into the doubly-linked list before insn BEFORE. */
3972
3973 static void
3974 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
3975 {
3976 rtx_insn *prev = PREV_INSN (before);
3977
3978 gcc_assert (!optimize || !INSN_DELETED_P (before));
3979
3980 link_insn_into_chain (insn, prev, before);
3981
3982 if (prev == NULL)
3983 {
3984 if (get_insns () == before)
3985 set_first_insn (insn);
3986 else
3987 {
3988 struct sequence_stack *stack = seq_stack;
3989 /* Scan all pending sequences too. */
3990 for (; stack; stack = stack->next)
3991 if (before == stack->first)
3992 {
3993 stack->first = insn;
3994 break;
3995 }
3996
3997 gcc_assert (stack);
3998 }
3999 }
4000 }
4001
4002 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4003 If BB is NULL, an attempt is made to infer the bb from before.
4004
4005 This and the next function should be the only functions called
4006 to insert an insn once delay slots have been filled since only
4007 they know how to update a SEQUENCE. */
4008
4009 void
4010 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4011 {
4012 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4013 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4014 add_insn_after_nobb (insn, after);
4015 if (!BARRIER_P (after)
4016 && !BARRIER_P (insn)
4017 && (bb = BLOCK_FOR_INSN (after)))
4018 {
4019 set_block_for_insn (insn, bb);
4020 if (INSN_P (insn))
4021 df_insn_rescan (insn);
4022 /* Should not happen as first in the BB is always
4023 either NOTE or LABEL. */
4024 if (BB_END (bb) == after
4025 /* Avoid clobbering of structure when creating new BB. */
4026 && !BARRIER_P (insn)
4027 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4028 BB_END (bb) = insn;
4029 }
4030 }
4031
4032 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4033 If BB is NULL, an attempt is made to infer the bb from before.
4034
4035 This and the previous function should be the only functions called
4036 to insert an insn once delay slots have been filled since only
4037 they know how to update a SEQUENCE. */
4038
4039 void
4040 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4041 {
4042 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4043 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4044 add_insn_before_nobb (insn, before);
4045
4046 if (!bb
4047 && !BARRIER_P (before)
4048 && !BARRIER_P (insn))
4049 bb = BLOCK_FOR_INSN (before);
4050
4051 if (bb)
4052 {
4053 set_block_for_insn (insn, bb);
4054 if (INSN_P (insn))
4055 df_insn_rescan (insn);
4056 /* Should not happen as first in the BB is always either NOTE or
4057 LABEL. */
4058 gcc_assert (BB_HEAD (bb) != insn
4059 /* Avoid clobbering of structure when creating new BB. */
4060 || BARRIER_P (insn)
4061 || NOTE_INSN_BASIC_BLOCK_P (insn));
4062 }
4063 }
4064
4065 /* Replace insn with an deleted instruction note. */
4066
4067 void
4068 set_insn_deleted (rtx insn)
4069 {
4070 if (INSN_P (insn))
4071 df_insn_delete (as_a <rtx_insn *> (insn));
4072 PUT_CODE (insn, NOTE);
4073 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4074 }
4075
4076
4077 /* Unlink INSN from the insn chain.
4078
4079 This function knows how to handle sequences.
4080
4081 This function does not invalidate data flow information associated with
4082 INSN (i.e. does not call df_insn_delete). That makes this function
4083 usable for only disconnecting an insn from the chain, and re-emit it
4084 elsewhere later.
4085
4086 To later insert INSN elsewhere in the insn chain via add_insn and
4087 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4088 the caller. Nullifying them here breaks many insn chain walks.
4089
4090 To really delete an insn and related DF information, use delete_insn. */
4091
4092 void
4093 remove_insn (rtx insn)
4094 {
4095 rtx_insn *next = NEXT_INSN (insn);
4096 rtx_insn *prev = PREV_INSN (insn);
4097 basic_block bb;
4098
4099 if (prev)
4100 {
4101 SET_NEXT_INSN (prev) = next;
4102 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4103 {
4104 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4105 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4106 }
4107 }
4108 else if (get_insns () == insn)
4109 {
4110 if (next)
4111 SET_PREV_INSN (next) = NULL;
4112 set_first_insn (next);
4113 }
4114 else
4115 {
4116 struct sequence_stack *stack = seq_stack;
4117 /* Scan all pending sequences too. */
4118 for (; stack; stack = stack->next)
4119 if (insn == stack->first)
4120 {
4121 stack->first = next;
4122 break;
4123 }
4124
4125 gcc_assert (stack);
4126 }
4127
4128 if (next)
4129 {
4130 SET_PREV_INSN (next) = prev;
4131 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4132 {
4133 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4134 SET_PREV_INSN (sequence->insn (0)) = prev;
4135 }
4136 }
4137 else if (get_last_insn () == insn)
4138 set_last_insn (prev);
4139 else
4140 {
4141 struct sequence_stack *stack = seq_stack;
4142 /* Scan all pending sequences too. */
4143 for (; stack; stack = stack->next)
4144 if (insn == stack->last)
4145 {
4146 stack->last = prev;
4147 break;
4148 }
4149
4150 gcc_assert (stack);
4151 }
4152
4153 /* Fix up basic block boundaries, if necessary. */
4154 if (!BARRIER_P (insn)
4155 && (bb = BLOCK_FOR_INSN (insn)))
4156 {
4157 if (BB_HEAD (bb) == insn)
4158 {
4159 /* Never ever delete the basic block note without deleting whole
4160 basic block. */
4161 gcc_assert (!NOTE_P (insn));
4162 BB_HEAD (bb) = next;
4163 }
4164 if (BB_END (bb) == insn)
4165 BB_END (bb) = prev;
4166 }
4167 }
4168
4169 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4170
4171 void
4172 add_function_usage_to (rtx call_insn, rtx call_fusage)
4173 {
4174 gcc_assert (call_insn && CALL_P (call_insn));
4175
4176 /* Put the register usage information on the CALL. If there is already
4177 some usage information, put ours at the end. */
4178 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4179 {
4180 rtx link;
4181
4182 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4183 link = XEXP (link, 1))
4184 ;
4185
4186 XEXP (link, 1) = call_fusage;
4187 }
4188 else
4189 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4190 }
4191
4192 /* Delete all insns made since FROM.
4193 FROM becomes the new last instruction. */
4194
4195 void
4196 delete_insns_since (rtx_insn *from)
4197 {
4198 if (from == 0)
4199 set_first_insn (0);
4200 else
4201 SET_NEXT_INSN (from) = 0;
4202 set_last_insn (from);
4203 }
4204
4205 /* This function is deprecated, please use sequences instead.
4206
4207 Move a consecutive bunch of insns to a different place in the chain.
4208 The insns to be moved are those between FROM and TO.
4209 They are moved to a new position after the insn AFTER.
4210 AFTER must not be FROM or TO or any insn in between.
4211
4212 This function does not know about SEQUENCEs and hence should not be
4213 called after delay-slot filling has been done. */
4214
4215 void
4216 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4217 {
4218 #ifdef ENABLE_CHECKING
4219 rtx_insn *x;
4220 for (x = from; x != to; x = NEXT_INSN (x))
4221 gcc_assert (after != x);
4222 gcc_assert (after != to);
4223 #endif
4224
4225 /* Splice this bunch out of where it is now. */
4226 if (PREV_INSN (from))
4227 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4228 if (NEXT_INSN (to))
4229 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4230 if (get_last_insn () == to)
4231 set_last_insn (PREV_INSN (from));
4232 if (get_insns () == from)
4233 set_first_insn (NEXT_INSN (to));
4234
4235 /* Make the new neighbors point to it and it to them. */
4236 if (NEXT_INSN (after))
4237 SET_PREV_INSN (NEXT_INSN (after)) = to;
4238
4239 SET_NEXT_INSN (to) = NEXT_INSN (after);
4240 SET_PREV_INSN (from) = after;
4241 SET_NEXT_INSN (after) = from;
4242 if (after == get_last_insn ())
4243 set_last_insn (to);
4244 }
4245
4246 /* Same as function above, but take care to update BB boundaries. */
4247 void
4248 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4249 {
4250 rtx_insn *prev = PREV_INSN (from);
4251 basic_block bb, bb2;
4252
4253 reorder_insns_nobb (from, to, after);
4254
4255 if (!BARRIER_P (after)
4256 && (bb = BLOCK_FOR_INSN (after)))
4257 {
4258 rtx_insn *x;
4259 df_set_bb_dirty (bb);
4260
4261 if (!BARRIER_P (from)
4262 && (bb2 = BLOCK_FOR_INSN (from)))
4263 {
4264 if (BB_END (bb2) == to)
4265 BB_END (bb2) = prev;
4266 df_set_bb_dirty (bb2);
4267 }
4268
4269 if (BB_END (bb) == after)
4270 BB_END (bb) = to;
4271
4272 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4273 if (!BARRIER_P (x))
4274 df_insn_change_bb (x, bb);
4275 }
4276 }
4277
4278 \f
4279 /* Emit insn(s) of given code and pattern
4280 at a specified place within the doubly-linked list.
4281
4282 All of the emit_foo global entry points accept an object
4283 X which is either an insn list or a PATTERN of a single
4284 instruction.
4285
4286 There are thus a few canonical ways to generate code and
4287 emit it at a specific place in the instruction stream. For
4288 example, consider the instruction named SPOT and the fact that
4289 we would like to emit some instructions before SPOT. We might
4290 do it like this:
4291
4292 start_sequence ();
4293 ... emit the new instructions ...
4294 insns_head = get_insns ();
4295 end_sequence ();
4296
4297 emit_insn_before (insns_head, SPOT);
4298
4299 It used to be common to generate SEQUENCE rtl instead, but that
4300 is a relic of the past which no longer occurs. The reason is that
4301 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4302 generated would almost certainly die right after it was created. */
4303
4304 static rtx_insn *
4305 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4306 rtx_insn *(*make_raw) (rtx))
4307 {
4308 rtx_insn *insn;
4309
4310 gcc_assert (before);
4311
4312 if (x == NULL_RTX)
4313 return safe_as_a <rtx_insn *> (last);
4314
4315 switch (GET_CODE (x))
4316 {
4317 case DEBUG_INSN:
4318 case INSN:
4319 case JUMP_INSN:
4320 case CALL_INSN:
4321 case CODE_LABEL:
4322 case BARRIER:
4323 case NOTE:
4324 insn = as_a <rtx_insn *> (x);
4325 while (insn)
4326 {
4327 rtx_insn *next = NEXT_INSN (insn);
4328 add_insn_before (insn, before, bb);
4329 last = insn;
4330 insn = next;
4331 }
4332 break;
4333
4334 #ifdef ENABLE_RTL_CHECKING
4335 case SEQUENCE:
4336 gcc_unreachable ();
4337 break;
4338 #endif
4339
4340 default:
4341 last = (*make_raw) (x);
4342 add_insn_before (last, before, bb);
4343 break;
4344 }
4345
4346 return safe_as_a <rtx_insn *> (last);
4347 }
4348
4349 /* Make X be output before the instruction BEFORE. */
4350
4351 rtx_insn *
4352 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4353 {
4354 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4355 }
4356
4357 /* Make an instruction with body X and code JUMP_INSN
4358 and output it before the instruction BEFORE. */
4359
4360 rtx_insn *
4361 emit_jump_insn_before_noloc (rtx x, rtx before)
4362 {
4363 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4364 make_jump_insn_raw);
4365 }
4366
4367 /* Make an instruction with body X and code CALL_INSN
4368 and output it before the instruction BEFORE. */
4369
4370 rtx_insn *
4371 emit_call_insn_before_noloc (rtx x, rtx before)
4372 {
4373 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4374 make_call_insn_raw);
4375 }
4376
4377 /* Make an instruction with body X and code DEBUG_INSN
4378 and output it before the instruction BEFORE. */
4379
4380 rtx_insn *
4381 emit_debug_insn_before_noloc (rtx x, rtx before)
4382 {
4383 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4384 make_debug_insn_raw);
4385 }
4386
4387 /* Make an insn of code BARRIER
4388 and output it before the insn BEFORE. */
4389
4390 rtx_barrier *
4391 emit_barrier_before (rtx before)
4392 {
4393 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4394
4395 INSN_UID (insn) = cur_insn_uid++;
4396
4397 add_insn_before (insn, before, NULL);
4398 return insn;
4399 }
4400
4401 /* Emit the label LABEL before the insn BEFORE. */
4402
4403 rtx_insn *
4404 emit_label_before (rtx label, rtx before)
4405 {
4406 gcc_checking_assert (INSN_UID (label) == 0);
4407 INSN_UID (label) = cur_insn_uid++;
4408 add_insn_before (label, before, NULL);
4409 return as_a <rtx_insn *> (label);
4410 }
4411 \f
4412 /* Helper for emit_insn_after, handles lists of instructions
4413 efficiently. */
4414
4415 static rtx_insn *
4416 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4417 {
4418 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4419 rtx_insn *last;
4420 rtx_insn *after_after;
4421 if (!bb && !BARRIER_P (after))
4422 bb = BLOCK_FOR_INSN (after);
4423
4424 if (bb)
4425 {
4426 df_set_bb_dirty (bb);
4427 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4428 if (!BARRIER_P (last))
4429 {
4430 set_block_for_insn (last, bb);
4431 df_insn_rescan (last);
4432 }
4433 if (!BARRIER_P (last))
4434 {
4435 set_block_for_insn (last, bb);
4436 df_insn_rescan (last);
4437 }
4438 if (BB_END (bb) == after)
4439 BB_END (bb) = last;
4440 }
4441 else
4442 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4443 continue;
4444
4445 after_after = NEXT_INSN (after);
4446
4447 SET_NEXT_INSN (after) = first;
4448 SET_PREV_INSN (first) = after;
4449 SET_NEXT_INSN (last) = after_after;
4450 if (after_after)
4451 SET_PREV_INSN (after_after) = last;
4452
4453 if (after == get_last_insn ())
4454 set_last_insn (last);
4455
4456 return last;
4457 }
4458
4459 static rtx_insn *
4460 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4461 rtx_insn *(*make_raw)(rtx))
4462 {
4463 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4464 rtx_insn *last = after;
4465
4466 gcc_assert (after);
4467
4468 if (x == NULL_RTX)
4469 return last;
4470
4471 switch (GET_CODE (x))
4472 {
4473 case DEBUG_INSN:
4474 case INSN:
4475 case JUMP_INSN:
4476 case CALL_INSN:
4477 case CODE_LABEL:
4478 case BARRIER:
4479 case NOTE:
4480 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4481 break;
4482
4483 #ifdef ENABLE_RTL_CHECKING
4484 case SEQUENCE:
4485 gcc_unreachable ();
4486 break;
4487 #endif
4488
4489 default:
4490 last = (*make_raw) (x);
4491 add_insn_after (last, after, bb);
4492 break;
4493 }
4494
4495 return last;
4496 }
4497
4498 /* Make X be output after the insn AFTER and set the BB of insn. If
4499 BB is NULL, an attempt is made to infer the BB from AFTER. */
4500
4501 rtx_insn *
4502 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4503 {
4504 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4505 }
4506
4507
4508 /* Make an insn of code JUMP_INSN with body X
4509 and output it after the insn AFTER. */
4510
4511 rtx_insn *
4512 emit_jump_insn_after_noloc (rtx x, rtx after)
4513 {
4514 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4515 }
4516
4517 /* Make an instruction with body X and code CALL_INSN
4518 and output it after the instruction AFTER. */
4519
4520 rtx_insn *
4521 emit_call_insn_after_noloc (rtx x, rtx after)
4522 {
4523 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4524 }
4525
4526 /* Make an instruction with body X and code CALL_INSN
4527 and output it after the instruction AFTER. */
4528
4529 rtx_insn *
4530 emit_debug_insn_after_noloc (rtx x, rtx after)
4531 {
4532 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4533 }
4534
4535 /* Make an insn of code BARRIER
4536 and output it after the insn AFTER. */
4537
4538 rtx_barrier *
4539 emit_barrier_after (rtx after)
4540 {
4541 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4542
4543 INSN_UID (insn) = cur_insn_uid++;
4544
4545 add_insn_after (insn, after, NULL);
4546 return insn;
4547 }
4548
4549 /* Emit the label LABEL after the insn AFTER. */
4550
4551 rtx_insn *
4552 emit_label_after (rtx label, rtx after)
4553 {
4554 gcc_checking_assert (INSN_UID (label) == 0);
4555 INSN_UID (label) = cur_insn_uid++;
4556 add_insn_after (label, after, NULL);
4557 return as_a <rtx_insn *> (label);
4558 }
4559 \f
4560 /* Notes require a bit of special handling: Some notes need to have their
4561 BLOCK_FOR_INSN set, others should never have it set, and some should
4562 have it set or clear depending on the context. */
4563
4564 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4565 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4566 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4567
4568 static bool
4569 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4570 {
4571 switch (subtype)
4572 {
4573 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4574 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4575 return true;
4576
4577 /* Notes for var tracking and EH region markers can appear between or
4578 inside basic blocks. If the caller is emitting on the basic block
4579 boundary, do not set BLOCK_FOR_INSN on the new note. */
4580 case NOTE_INSN_VAR_LOCATION:
4581 case NOTE_INSN_CALL_ARG_LOCATION:
4582 case NOTE_INSN_EH_REGION_BEG:
4583 case NOTE_INSN_EH_REGION_END:
4584 return on_bb_boundary_p;
4585
4586 /* Otherwise, BLOCK_FOR_INSN must be set. */
4587 default:
4588 return false;
4589 }
4590 }
4591
4592 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4593
4594 rtx_note *
4595 emit_note_after (enum insn_note subtype, rtx uncast_after)
4596 {
4597 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4598 rtx_note *note = make_note_raw (subtype);
4599 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4600 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4601
4602 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4603 add_insn_after_nobb (note, after);
4604 else
4605 add_insn_after (note, after, bb);
4606 return note;
4607 }
4608
4609 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4610
4611 rtx_note *
4612 emit_note_before (enum insn_note subtype, rtx uncast_before)
4613 {
4614 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4615 rtx_note *note = make_note_raw (subtype);
4616 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4617 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4618
4619 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4620 add_insn_before_nobb (note, before);
4621 else
4622 add_insn_before (note, before, bb);
4623 return note;
4624 }
4625 \f
4626 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4627 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4628
4629 static rtx_insn *
4630 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4631 rtx_insn *(*make_raw) (rtx))
4632 {
4633 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4634
4635 if (pattern == NULL_RTX || !loc)
4636 return safe_as_a <rtx_insn *> (last);
4637
4638 after = NEXT_INSN (after);
4639 while (1)
4640 {
4641 if (active_insn_p (after) && !INSN_LOCATION (after))
4642 INSN_LOCATION (after) = loc;
4643 if (after == last)
4644 break;
4645 after = NEXT_INSN (after);
4646 }
4647 return safe_as_a <rtx_insn *> (last);
4648 }
4649
4650 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4651 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4652 any DEBUG_INSNs. */
4653
4654 static rtx_insn *
4655 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4656 rtx_insn *(*make_raw) (rtx))
4657 {
4658 rtx prev = after;
4659
4660 if (skip_debug_insns)
4661 while (DEBUG_INSN_P (prev))
4662 prev = PREV_INSN (prev);
4663
4664 if (INSN_P (prev))
4665 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4666 make_raw);
4667 else
4668 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4669 }
4670
4671 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4672 rtx_insn *
4673 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4674 {
4675 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4676 }
4677
4678 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4679 rtx_insn *
4680 emit_insn_after (rtx pattern, rtx after)
4681 {
4682 return emit_pattern_after (pattern, after, true, make_insn_raw);
4683 }
4684
4685 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4686 rtx_insn *
4687 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4688 {
4689 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4690 }
4691
4692 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4693 rtx_insn *
4694 emit_jump_insn_after (rtx pattern, rtx after)
4695 {
4696 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4697 }
4698
4699 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4700 rtx_insn *
4701 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4702 {
4703 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4704 }
4705
4706 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4707 rtx_insn *
4708 emit_call_insn_after (rtx pattern, rtx after)
4709 {
4710 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4711 }
4712
4713 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4714 rtx_insn *
4715 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4716 {
4717 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4718 }
4719
4720 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4721 rtx_insn *
4722 emit_debug_insn_after (rtx pattern, rtx after)
4723 {
4724 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4725 }
4726
4727 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4728 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4729 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4730 CALL_INSN, etc. */
4731
4732 static rtx_insn *
4733 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4734 rtx_insn *(*make_raw) (rtx))
4735 {
4736 rtx first = PREV_INSN (before);
4737 rtx last = emit_pattern_before_noloc (pattern, before,
4738 insnp ? before : NULL_RTX,
4739 NULL, make_raw);
4740
4741 if (pattern == NULL_RTX || !loc)
4742 return safe_as_a <rtx_insn *> (last);
4743
4744 if (!first)
4745 first = get_insns ();
4746 else
4747 first = NEXT_INSN (first);
4748 while (1)
4749 {
4750 if (active_insn_p (first) && !INSN_LOCATION (first))
4751 INSN_LOCATION (first) = loc;
4752 if (first == last)
4753 break;
4754 first = NEXT_INSN (first);
4755 }
4756 return safe_as_a <rtx_insn *> (last);
4757 }
4758
4759 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4760 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4761 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4762 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4763
4764 static rtx_insn *
4765 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4766 bool insnp, rtx_insn *(*make_raw) (rtx))
4767 {
4768 rtx next = before;
4769
4770 if (skip_debug_insns)
4771 while (DEBUG_INSN_P (next))
4772 next = PREV_INSN (next);
4773
4774 if (INSN_P (next))
4775 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4776 insnp, make_raw);
4777 else
4778 return emit_pattern_before_noloc (pattern, before,
4779 insnp ? before : NULL_RTX,
4780 NULL, make_raw);
4781 }
4782
4783 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4784 rtx_insn *
4785 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4786 {
4787 return emit_pattern_before_setloc (pattern, before, loc, true,
4788 make_insn_raw);
4789 }
4790
4791 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4792 rtx_insn *
4793 emit_insn_before (rtx pattern, rtx before)
4794 {
4795 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4796 }
4797
4798 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4799 rtx_insn *
4800 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4801 {
4802 return emit_pattern_before_setloc (pattern, before, loc, false,
4803 make_jump_insn_raw);
4804 }
4805
4806 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4807 rtx_insn *
4808 emit_jump_insn_before (rtx pattern, rtx before)
4809 {
4810 return emit_pattern_before (pattern, before, true, false,
4811 make_jump_insn_raw);
4812 }
4813
4814 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4815 rtx_insn *
4816 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4817 {
4818 return emit_pattern_before_setloc (pattern, before, loc, false,
4819 make_call_insn_raw);
4820 }
4821
4822 /* Like emit_call_insn_before_noloc,
4823 but set insn_location according to BEFORE. */
4824 rtx_insn *
4825 emit_call_insn_before (rtx pattern, rtx before)
4826 {
4827 return emit_pattern_before (pattern, before, true, false,
4828 make_call_insn_raw);
4829 }
4830
4831 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4832 rtx_insn *
4833 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4834 {
4835 return emit_pattern_before_setloc (pattern, before, loc, false,
4836 make_debug_insn_raw);
4837 }
4838
4839 /* Like emit_debug_insn_before_noloc,
4840 but set insn_location according to BEFORE. */
4841 rtx_insn *
4842 emit_debug_insn_before (rtx pattern, rtx before)
4843 {
4844 return emit_pattern_before (pattern, before, false, false,
4845 make_debug_insn_raw);
4846 }
4847 \f
4848 /* Take X and emit it at the end of the doubly-linked
4849 INSN list.
4850
4851 Returns the last insn emitted. */
4852
4853 rtx_insn *
4854 emit_insn (rtx x)
4855 {
4856 rtx_insn *last = get_last_insn ();
4857 rtx_insn *insn;
4858
4859 if (x == NULL_RTX)
4860 return last;
4861
4862 switch (GET_CODE (x))
4863 {
4864 case DEBUG_INSN:
4865 case INSN:
4866 case JUMP_INSN:
4867 case CALL_INSN:
4868 case CODE_LABEL:
4869 case BARRIER:
4870 case NOTE:
4871 insn = as_a <rtx_insn *> (x);
4872 while (insn)
4873 {
4874 rtx_insn *next = NEXT_INSN (insn);
4875 add_insn (insn);
4876 last = insn;
4877 insn = next;
4878 }
4879 break;
4880
4881 #ifdef ENABLE_RTL_CHECKING
4882 case JUMP_TABLE_DATA:
4883 case SEQUENCE:
4884 gcc_unreachable ();
4885 break;
4886 #endif
4887
4888 default:
4889 last = make_insn_raw (x);
4890 add_insn (last);
4891 break;
4892 }
4893
4894 return last;
4895 }
4896
4897 /* Make an insn of code DEBUG_INSN with pattern X
4898 and add it to the end of the doubly-linked list. */
4899
4900 rtx_insn *
4901 emit_debug_insn (rtx x)
4902 {
4903 rtx_insn *last = get_last_insn ();
4904 rtx_insn *insn;
4905
4906 if (x == NULL_RTX)
4907 return last;
4908
4909 switch (GET_CODE (x))
4910 {
4911 case DEBUG_INSN:
4912 case INSN:
4913 case JUMP_INSN:
4914 case CALL_INSN:
4915 case CODE_LABEL:
4916 case BARRIER:
4917 case NOTE:
4918 insn = as_a <rtx_insn *> (x);
4919 while (insn)
4920 {
4921 rtx_insn *next = NEXT_INSN (insn);
4922 add_insn (insn);
4923 last = insn;
4924 insn = next;
4925 }
4926 break;
4927
4928 #ifdef ENABLE_RTL_CHECKING
4929 case JUMP_TABLE_DATA:
4930 case SEQUENCE:
4931 gcc_unreachable ();
4932 break;
4933 #endif
4934
4935 default:
4936 last = make_debug_insn_raw (x);
4937 add_insn (last);
4938 break;
4939 }
4940
4941 return last;
4942 }
4943
4944 /* Make an insn of code JUMP_INSN with pattern X
4945 and add it to the end of the doubly-linked list. */
4946
4947 rtx_insn *
4948 emit_jump_insn (rtx x)
4949 {
4950 rtx_insn *last = NULL;
4951 rtx_insn *insn;
4952
4953 switch (GET_CODE (x))
4954 {
4955 case DEBUG_INSN:
4956 case INSN:
4957 case JUMP_INSN:
4958 case CALL_INSN:
4959 case CODE_LABEL:
4960 case BARRIER:
4961 case NOTE:
4962 insn = as_a <rtx_insn *> (x);
4963 while (insn)
4964 {
4965 rtx_insn *next = NEXT_INSN (insn);
4966 add_insn (insn);
4967 last = insn;
4968 insn = next;
4969 }
4970 break;
4971
4972 #ifdef ENABLE_RTL_CHECKING
4973 case JUMP_TABLE_DATA:
4974 case SEQUENCE:
4975 gcc_unreachable ();
4976 break;
4977 #endif
4978
4979 default:
4980 last = make_jump_insn_raw (x);
4981 add_insn (last);
4982 break;
4983 }
4984
4985 return last;
4986 }
4987
4988 /* Make an insn of code CALL_INSN with pattern X
4989 and add it to the end of the doubly-linked list. */
4990
4991 rtx_insn *
4992 emit_call_insn (rtx x)
4993 {
4994 rtx_insn *insn;
4995
4996 switch (GET_CODE (x))
4997 {
4998 case DEBUG_INSN:
4999 case INSN:
5000 case JUMP_INSN:
5001 case CALL_INSN:
5002 case CODE_LABEL:
5003 case BARRIER:
5004 case NOTE:
5005 insn = emit_insn (x);
5006 break;
5007
5008 #ifdef ENABLE_RTL_CHECKING
5009 case SEQUENCE:
5010 case JUMP_TABLE_DATA:
5011 gcc_unreachable ();
5012 break;
5013 #endif
5014
5015 default:
5016 insn = make_call_insn_raw (x);
5017 add_insn (insn);
5018 break;
5019 }
5020
5021 return insn;
5022 }
5023
5024 /* Add the label LABEL to the end of the doubly-linked list. */
5025
5026 rtx_insn *
5027 emit_label (rtx label)
5028 {
5029 gcc_checking_assert (INSN_UID (label) == 0);
5030 INSN_UID (label) = cur_insn_uid++;
5031 add_insn (as_a <rtx_insn *> (label));
5032 return as_a <rtx_insn *> (label);
5033 }
5034
5035 /* Make an insn of code JUMP_TABLE_DATA
5036 and add it to the end of the doubly-linked list. */
5037
5038 rtx_jump_table_data *
5039 emit_jump_table_data (rtx table)
5040 {
5041 rtx_jump_table_data *jump_table_data =
5042 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5043 INSN_UID (jump_table_data) = cur_insn_uid++;
5044 PATTERN (jump_table_data) = table;
5045 BLOCK_FOR_INSN (jump_table_data) = NULL;
5046 add_insn (jump_table_data);
5047 return jump_table_data;
5048 }
5049
5050 /* Make an insn of code BARRIER
5051 and add it to the end of the doubly-linked list. */
5052
5053 rtx_barrier *
5054 emit_barrier (void)
5055 {
5056 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5057 INSN_UID (barrier) = cur_insn_uid++;
5058 add_insn (barrier);
5059 return barrier;
5060 }
5061
5062 /* Emit a copy of note ORIG. */
5063
5064 rtx_note *
5065 emit_note_copy (rtx_note *orig)
5066 {
5067 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5068 rtx_note *note = make_note_raw (kind);
5069 NOTE_DATA (note) = NOTE_DATA (orig);
5070 add_insn (note);
5071 return note;
5072 }
5073
5074 /* Make an insn of code NOTE or type NOTE_NO
5075 and add it to the end of the doubly-linked list. */
5076
5077 rtx_note *
5078 emit_note (enum insn_note kind)
5079 {
5080 rtx_note *note = make_note_raw (kind);
5081 add_insn (note);
5082 return note;
5083 }
5084
5085 /* Emit a clobber of lvalue X. */
5086
5087 rtx_insn *
5088 emit_clobber (rtx x)
5089 {
5090 /* CONCATs should not appear in the insn stream. */
5091 if (GET_CODE (x) == CONCAT)
5092 {
5093 emit_clobber (XEXP (x, 0));
5094 return emit_clobber (XEXP (x, 1));
5095 }
5096 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5097 }
5098
5099 /* Return a sequence of insns to clobber lvalue X. */
5100
5101 rtx_insn *
5102 gen_clobber (rtx x)
5103 {
5104 rtx_insn *seq;
5105
5106 start_sequence ();
5107 emit_clobber (x);
5108 seq = get_insns ();
5109 end_sequence ();
5110 return seq;
5111 }
5112
5113 /* Emit a use of rvalue X. */
5114
5115 rtx_insn *
5116 emit_use (rtx x)
5117 {
5118 /* CONCATs should not appear in the insn stream. */
5119 if (GET_CODE (x) == CONCAT)
5120 {
5121 emit_use (XEXP (x, 0));
5122 return emit_use (XEXP (x, 1));
5123 }
5124 return emit_insn (gen_rtx_USE (VOIDmode, x));
5125 }
5126
5127 /* Return a sequence of insns to use rvalue X. */
5128
5129 rtx_insn *
5130 gen_use (rtx x)
5131 {
5132 rtx_insn *seq;
5133
5134 start_sequence ();
5135 emit_use (x);
5136 seq = get_insns ();
5137 end_sequence ();
5138 return seq;
5139 }
5140
5141 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5142 Return the set in INSN that such notes describe, or NULL if the notes
5143 have no meaning for INSN. */
5144
5145 rtx
5146 set_for_reg_notes (rtx insn)
5147 {
5148 rtx pat, reg;
5149
5150 if (!INSN_P (insn))
5151 return NULL_RTX;
5152
5153 pat = PATTERN (insn);
5154 if (GET_CODE (pat) == PARALLEL)
5155 {
5156 /* We do not use single_set because that ignores SETs of unused
5157 registers. REG_EQUAL and REG_EQUIV notes really do require the
5158 PARALLEL to have a single SET. */
5159 if (multiple_sets (insn))
5160 return NULL_RTX;
5161 pat = XVECEXP (pat, 0, 0);
5162 }
5163
5164 if (GET_CODE (pat) != SET)
5165 return NULL_RTX;
5166
5167 reg = SET_DEST (pat);
5168
5169 /* Notes apply to the contents of a STRICT_LOW_PART. */
5170 if (GET_CODE (reg) == STRICT_LOW_PART)
5171 reg = XEXP (reg, 0);
5172
5173 /* Check that we have a register. */
5174 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5175 return NULL_RTX;
5176
5177 return pat;
5178 }
5179
5180 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5181 note of this type already exists, remove it first. */
5182
5183 rtx
5184 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5185 {
5186 rtx note = find_reg_note (insn, kind, NULL_RTX);
5187
5188 switch (kind)
5189 {
5190 case REG_EQUAL:
5191 case REG_EQUIV:
5192 if (!set_for_reg_notes (insn))
5193 return NULL_RTX;
5194
5195 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5196 It serves no useful purpose and breaks eliminate_regs. */
5197 if (GET_CODE (datum) == ASM_OPERANDS)
5198 return NULL_RTX;
5199
5200 /* Notes with side effects are dangerous. Even if the side-effect
5201 initially mirrors one in PATTERN (INSN), later optimizations
5202 might alter the way that the final register value is calculated
5203 and so move or alter the side-effect in some way. The note would
5204 then no longer be a valid substitution for SET_SRC. */
5205 if (side_effects_p (datum))
5206 return NULL_RTX;
5207 break;
5208
5209 default:
5210 break;
5211 }
5212
5213 if (note)
5214 XEXP (note, 0) = datum;
5215 else
5216 {
5217 add_reg_note (insn, kind, datum);
5218 note = REG_NOTES (insn);
5219 }
5220
5221 switch (kind)
5222 {
5223 case REG_EQUAL:
5224 case REG_EQUIV:
5225 df_notes_rescan (as_a <rtx_insn *> (insn));
5226 break;
5227 default:
5228 break;
5229 }
5230
5231 return note;
5232 }
5233
5234 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5235 rtx
5236 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5237 {
5238 rtx set = set_for_reg_notes (insn);
5239
5240 if (set && SET_DEST (set) == dst)
5241 return set_unique_reg_note (insn, kind, datum);
5242 return NULL_RTX;
5243 }
5244 \f
5245 /* Return an indication of which type of insn should have X as a body.
5246 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5247
5248 static enum rtx_code
5249 classify_insn (rtx x)
5250 {
5251 if (LABEL_P (x))
5252 return CODE_LABEL;
5253 if (GET_CODE (x) == CALL)
5254 return CALL_INSN;
5255 if (ANY_RETURN_P (x))
5256 return JUMP_INSN;
5257 if (GET_CODE (x) == SET)
5258 {
5259 if (SET_DEST (x) == pc_rtx)
5260 return JUMP_INSN;
5261 else if (GET_CODE (SET_SRC (x)) == CALL)
5262 return CALL_INSN;
5263 else
5264 return INSN;
5265 }
5266 if (GET_CODE (x) == PARALLEL)
5267 {
5268 int j;
5269 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5270 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5271 return CALL_INSN;
5272 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5273 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5274 return JUMP_INSN;
5275 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5276 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5277 return CALL_INSN;
5278 }
5279 return INSN;
5280 }
5281
5282 /* Emit the rtl pattern X as an appropriate kind of insn.
5283 If X is a label, it is simply added into the insn chain. */
5284
5285 rtx_insn *
5286 emit (rtx x)
5287 {
5288 enum rtx_code code = classify_insn (x);
5289
5290 switch (code)
5291 {
5292 case CODE_LABEL:
5293 return emit_label (x);
5294 case INSN:
5295 return emit_insn (x);
5296 case JUMP_INSN:
5297 {
5298 rtx_insn *insn = emit_jump_insn (x);
5299 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5300 return emit_barrier ();
5301 return insn;
5302 }
5303 case CALL_INSN:
5304 return emit_call_insn (x);
5305 case DEBUG_INSN:
5306 return emit_debug_insn (x);
5307 default:
5308 gcc_unreachable ();
5309 }
5310 }
5311 \f
5312 /* Space for free sequence stack entries. */
5313 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5314
5315 /* Begin emitting insns to a sequence. If this sequence will contain
5316 something that might cause the compiler to pop arguments to function
5317 calls (because those pops have previously been deferred; see
5318 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5319 before calling this function. That will ensure that the deferred
5320 pops are not accidentally emitted in the middle of this sequence. */
5321
5322 void
5323 start_sequence (void)
5324 {
5325 struct sequence_stack *tem;
5326
5327 if (free_sequence_stack != NULL)
5328 {
5329 tem = free_sequence_stack;
5330 free_sequence_stack = tem->next;
5331 }
5332 else
5333 tem = ggc_alloc<sequence_stack> ();
5334
5335 tem->next = seq_stack;
5336 tem->first = get_insns ();
5337 tem->last = get_last_insn ();
5338
5339 seq_stack = tem;
5340
5341 set_first_insn (0);
5342 set_last_insn (0);
5343 }
5344
5345 /* Set up the insn chain starting with FIRST as the current sequence,
5346 saving the previously current one. See the documentation for
5347 start_sequence for more information about how to use this function. */
5348
5349 void
5350 push_to_sequence (rtx_insn *first)
5351 {
5352 rtx_insn *last;
5353
5354 start_sequence ();
5355
5356 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5357 ;
5358
5359 set_first_insn (first);
5360 set_last_insn (last);
5361 }
5362
5363 /* Like push_to_sequence, but take the last insn as an argument to avoid
5364 looping through the list. */
5365
5366 void
5367 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5368 {
5369 start_sequence ();
5370
5371 set_first_insn (first);
5372 set_last_insn (last);
5373 }
5374
5375 /* Set up the outer-level insn chain
5376 as the current sequence, saving the previously current one. */
5377
5378 void
5379 push_topmost_sequence (void)
5380 {
5381 struct sequence_stack *stack, *top = NULL;
5382
5383 start_sequence ();
5384
5385 for (stack = seq_stack; stack; stack = stack->next)
5386 top = stack;
5387
5388 set_first_insn (top->first);
5389 set_last_insn (top->last);
5390 }
5391
5392 /* After emitting to the outer-level insn chain, update the outer-level
5393 insn chain, and restore the previous saved state. */
5394
5395 void
5396 pop_topmost_sequence (void)
5397 {
5398 struct sequence_stack *stack, *top = NULL;
5399
5400 for (stack = seq_stack; stack; stack = stack->next)
5401 top = stack;
5402
5403 top->first = get_insns ();
5404 top->last = get_last_insn ();
5405
5406 end_sequence ();
5407 }
5408
5409 /* After emitting to a sequence, restore previous saved state.
5410
5411 To get the contents of the sequence just made, you must call
5412 `get_insns' *before* calling here.
5413
5414 If the compiler might have deferred popping arguments while
5415 generating this sequence, and this sequence will not be immediately
5416 inserted into the instruction stream, use do_pending_stack_adjust
5417 before calling get_insns. That will ensure that the deferred
5418 pops are inserted into this sequence, and not into some random
5419 location in the instruction stream. See INHIBIT_DEFER_POP for more
5420 information about deferred popping of arguments. */
5421
5422 void
5423 end_sequence (void)
5424 {
5425 struct sequence_stack *tem = seq_stack;
5426
5427 set_first_insn (tem->first);
5428 set_last_insn (tem->last);
5429 seq_stack = tem->next;
5430
5431 memset (tem, 0, sizeof (*tem));
5432 tem->next = free_sequence_stack;
5433 free_sequence_stack = tem;
5434 }
5435
5436 /* Return 1 if currently emitting into a sequence. */
5437
5438 int
5439 in_sequence_p (void)
5440 {
5441 return seq_stack != 0;
5442 }
5443 \f
5444 /* Put the various virtual registers into REGNO_REG_RTX. */
5445
5446 static void
5447 init_virtual_regs (void)
5448 {
5449 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5450 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5451 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5452 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5453 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5454 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5455 = virtual_preferred_stack_boundary_rtx;
5456 }
5457
5458 \f
5459 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5460 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5461 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5462 static int copy_insn_n_scratches;
5463
5464 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5465 copied an ASM_OPERANDS.
5466 In that case, it is the original input-operand vector. */
5467 static rtvec orig_asm_operands_vector;
5468
5469 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5470 copied an ASM_OPERANDS.
5471 In that case, it is the copied input-operand vector. */
5472 static rtvec copy_asm_operands_vector;
5473
5474 /* Likewise for the constraints vector. */
5475 static rtvec orig_asm_constraints_vector;
5476 static rtvec copy_asm_constraints_vector;
5477
5478 /* Recursively create a new copy of an rtx for copy_insn.
5479 This function differs from copy_rtx in that it handles SCRATCHes and
5480 ASM_OPERANDs properly.
5481 Normally, this function is not used directly; use copy_insn as front end.
5482 However, you could first copy an insn pattern with copy_insn and then use
5483 this function afterwards to properly copy any REG_NOTEs containing
5484 SCRATCHes. */
5485
5486 rtx
5487 copy_insn_1 (rtx orig)
5488 {
5489 rtx copy;
5490 int i, j;
5491 RTX_CODE code;
5492 const char *format_ptr;
5493
5494 if (orig == NULL)
5495 return NULL;
5496
5497 code = GET_CODE (orig);
5498
5499 switch (code)
5500 {
5501 case REG:
5502 case DEBUG_EXPR:
5503 CASE_CONST_ANY:
5504 case SYMBOL_REF:
5505 case CODE_LABEL:
5506 case PC:
5507 case CC0:
5508 case RETURN:
5509 case SIMPLE_RETURN:
5510 return orig;
5511 case CLOBBER:
5512 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5513 clobbers or clobbers of hard registers that originated as pseudos.
5514 This is needed to allow safe register renaming. */
5515 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5516 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5517 return orig;
5518 break;
5519
5520 case SCRATCH:
5521 for (i = 0; i < copy_insn_n_scratches; i++)
5522 if (copy_insn_scratch_in[i] == orig)
5523 return copy_insn_scratch_out[i];
5524 break;
5525
5526 case CONST:
5527 if (shared_const_p (orig))
5528 return orig;
5529 break;
5530
5531 /* A MEM with a constant address is not sharable. The problem is that
5532 the constant address may need to be reloaded. If the mem is shared,
5533 then reloading one copy of this mem will cause all copies to appear
5534 to have been reloaded. */
5535
5536 default:
5537 break;
5538 }
5539
5540 /* Copy the various flags, fields, and other information. We assume
5541 that all fields need copying, and then clear the fields that should
5542 not be copied. That is the sensible default behavior, and forces
5543 us to explicitly document why we are *not* copying a flag. */
5544 copy = shallow_copy_rtx (orig);
5545
5546 /* We do not copy the USED flag, which is used as a mark bit during
5547 walks over the RTL. */
5548 RTX_FLAG (copy, used) = 0;
5549
5550 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5551 if (INSN_P (orig))
5552 {
5553 RTX_FLAG (copy, jump) = 0;
5554 RTX_FLAG (copy, call) = 0;
5555 RTX_FLAG (copy, frame_related) = 0;
5556 }
5557
5558 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5559
5560 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5561 switch (*format_ptr++)
5562 {
5563 case 'e':
5564 if (XEXP (orig, i) != NULL)
5565 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5566 break;
5567
5568 case 'E':
5569 case 'V':
5570 if (XVEC (orig, i) == orig_asm_constraints_vector)
5571 XVEC (copy, i) = copy_asm_constraints_vector;
5572 else if (XVEC (orig, i) == orig_asm_operands_vector)
5573 XVEC (copy, i) = copy_asm_operands_vector;
5574 else if (XVEC (orig, i) != NULL)
5575 {
5576 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5577 for (j = 0; j < XVECLEN (copy, i); j++)
5578 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5579 }
5580 break;
5581
5582 case 't':
5583 case 'w':
5584 case 'i':
5585 case 's':
5586 case 'S':
5587 case 'u':
5588 case '0':
5589 /* These are left unchanged. */
5590 break;
5591
5592 default:
5593 gcc_unreachable ();
5594 }
5595
5596 if (code == SCRATCH)
5597 {
5598 i = copy_insn_n_scratches++;
5599 gcc_assert (i < MAX_RECOG_OPERANDS);
5600 copy_insn_scratch_in[i] = orig;
5601 copy_insn_scratch_out[i] = copy;
5602 }
5603 else if (code == ASM_OPERANDS)
5604 {
5605 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5606 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5607 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5608 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5609 }
5610
5611 return copy;
5612 }
5613
5614 /* Create a new copy of an rtx.
5615 This function differs from copy_rtx in that it handles SCRATCHes and
5616 ASM_OPERANDs properly.
5617 INSN doesn't really have to be a full INSN; it could be just the
5618 pattern. */
5619 rtx
5620 copy_insn (rtx insn)
5621 {
5622 copy_insn_n_scratches = 0;
5623 orig_asm_operands_vector = 0;
5624 orig_asm_constraints_vector = 0;
5625 copy_asm_operands_vector = 0;
5626 copy_asm_constraints_vector = 0;
5627 return copy_insn_1 (insn);
5628 }
5629
5630 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5631 on that assumption that INSN itself remains in its original place. */
5632
5633 rtx_insn *
5634 copy_delay_slot_insn (rtx_insn *insn)
5635 {
5636 /* Copy INSN with its rtx_code, all its notes, location etc. */
5637 insn = as_a <rtx_insn *> (copy_rtx (insn));
5638 INSN_UID (insn) = cur_insn_uid++;
5639 return insn;
5640 }
5641
5642 /* Initialize data structures and variables in this file
5643 before generating rtl for each function. */
5644
5645 void
5646 init_emit (void)
5647 {
5648 set_first_insn (NULL);
5649 set_last_insn (NULL);
5650 if (MIN_NONDEBUG_INSN_UID)
5651 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5652 else
5653 cur_insn_uid = 1;
5654 cur_debug_insn_uid = 1;
5655 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5656 first_label_num = label_num;
5657 seq_stack = NULL;
5658
5659 /* Init the tables that describe all the pseudo regs. */
5660
5661 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5662
5663 crtl->emit.regno_pointer_align
5664 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5665
5666 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5667
5668 /* Put copies of all the hard registers into regno_reg_rtx. */
5669 memcpy (regno_reg_rtx,
5670 initial_regno_reg_rtx,
5671 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5672
5673 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5674 init_virtual_regs ();
5675
5676 /* Indicate that the virtual registers and stack locations are
5677 all pointers. */
5678 REG_POINTER (stack_pointer_rtx) = 1;
5679 REG_POINTER (frame_pointer_rtx) = 1;
5680 REG_POINTER (hard_frame_pointer_rtx) = 1;
5681 REG_POINTER (arg_pointer_rtx) = 1;
5682
5683 REG_POINTER (virtual_incoming_args_rtx) = 1;
5684 REG_POINTER (virtual_stack_vars_rtx) = 1;
5685 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5686 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5687 REG_POINTER (virtual_cfa_rtx) = 1;
5688
5689 #ifdef STACK_BOUNDARY
5690 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5691 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5692 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5693 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5694
5695 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5696 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5697 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5698 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5699 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5700 #endif
5701
5702 #ifdef INIT_EXPANDERS
5703 INIT_EXPANDERS;
5704 #endif
5705 }
5706
5707 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5708
5709 static rtx
5710 gen_const_vector (enum machine_mode mode, int constant)
5711 {
5712 rtx tem;
5713 rtvec v;
5714 int units, i;
5715 enum machine_mode inner;
5716
5717 units = GET_MODE_NUNITS (mode);
5718 inner = GET_MODE_INNER (mode);
5719
5720 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5721
5722 v = rtvec_alloc (units);
5723
5724 /* We need to call this function after we set the scalar const_tiny_rtx
5725 entries. */
5726 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5727
5728 for (i = 0; i < units; ++i)
5729 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5730
5731 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5732 return tem;
5733 }
5734
5735 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5736 all elements are zero, and the one vector when all elements are one. */
5737 rtx
5738 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5739 {
5740 enum machine_mode inner = GET_MODE_INNER (mode);
5741 int nunits = GET_MODE_NUNITS (mode);
5742 rtx x;
5743 int i;
5744
5745 /* Check to see if all of the elements have the same value. */
5746 x = RTVEC_ELT (v, nunits - 1);
5747 for (i = nunits - 2; i >= 0; i--)
5748 if (RTVEC_ELT (v, i) != x)
5749 break;
5750
5751 /* If the values are all the same, check to see if we can use one of the
5752 standard constant vectors. */
5753 if (i == -1)
5754 {
5755 if (x == CONST0_RTX (inner))
5756 return CONST0_RTX (mode);
5757 else if (x == CONST1_RTX (inner))
5758 return CONST1_RTX (mode);
5759 else if (x == CONSTM1_RTX (inner))
5760 return CONSTM1_RTX (mode);
5761 }
5762
5763 return gen_rtx_raw_CONST_VECTOR (mode, v);
5764 }
5765
5766 /* Initialise global register information required by all functions. */
5767
5768 void
5769 init_emit_regs (void)
5770 {
5771 int i;
5772 enum machine_mode mode;
5773 mem_attrs *attrs;
5774
5775 /* Reset register attributes */
5776 htab_empty (reg_attrs_htab);
5777
5778 /* We need reg_raw_mode, so initialize the modes now. */
5779 init_reg_modes_target ();
5780
5781 /* Assign register numbers to the globally defined register rtx. */
5782 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5783 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5784 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5785 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5786 virtual_incoming_args_rtx =
5787 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5788 virtual_stack_vars_rtx =
5789 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5790 virtual_stack_dynamic_rtx =
5791 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5792 virtual_outgoing_args_rtx =
5793 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5794 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5795 virtual_preferred_stack_boundary_rtx =
5796 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5797
5798 /* Initialize RTL for commonly used hard registers. These are
5799 copied into regno_reg_rtx as we begin to compile each function. */
5800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5801 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5802
5803 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5804 return_address_pointer_rtx
5805 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5806 #endif
5807
5808 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5809 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5810 else
5811 pic_offset_table_rtx = NULL_RTX;
5812
5813 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5814 {
5815 mode = (enum machine_mode) i;
5816 attrs = ggc_cleared_alloc<mem_attrs> ();
5817 attrs->align = BITS_PER_UNIT;
5818 attrs->addrspace = ADDR_SPACE_GENERIC;
5819 if (mode != BLKmode)
5820 {
5821 attrs->size_known_p = true;
5822 attrs->size = GET_MODE_SIZE (mode);
5823 if (STRICT_ALIGNMENT)
5824 attrs->align = GET_MODE_ALIGNMENT (mode);
5825 }
5826 mode_mem_attrs[i] = attrs;
5827 }
5828 }
5829
5830 /* Initialize global machine_mode variables. */
5831
5832 void
5833 init_derived_machine_modes (void)
5834 {
5835 byte_mode = VOIDmode;
5836 word_mode = VOIDmode;
5837
5838 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 {
5842 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5843 && byte_mode == VOIDmode)
5844 byte_mode = mode;
5845
5846 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5847 && word_mode == VOIDmode)
5848 word_mode = mode;
5849 }
5850
5851 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5852 }
5853
5854 /* Create some permanent unique rtl objects shared between all functions. */
5855
5856 void
5857 init_emit_once (void)
5858 {
5859 int i;
5860 enum machine_mode mode;
5861 enum machine_mode double_mode;
5862
5863 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5864 CONST_FIXED, and memory attribute hash tables. */
5865 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5866 const_int_htab_eq, NULL);
5867
5868 #if TARGET_SUPPORTS_WIDE_INT
5869 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5870 const_wide_int_htab_eq, NULL);
5871 #endif
5872 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5873 const_double_htab_eq, NULL);
5874
5875 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5876 const_fixed_htab_eq, NULL);
5877
5878 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5879 reg_attrs_htab_eq, NULL);
5880
5881 #ifdef INIT_EXPANDERS
5882 /* This is to initialize {init|mark|free}_machine_status before the first
5883 call to push_function_context_to. This is needed by the Chill front
5884 end which calls push_function_context_to before the first call to
5885 init_function_start. */
5886 INIT_EXPANDERS;
5887 #endif
5888
5889 /* Create the unique rtx's for certain rtx codes and operand values. */
5890
5891 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5892 tries to use these variables. */
5893 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5894 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5895 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5896
5897 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5898 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5899 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5900 else
5901 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5902
5903 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5904
5905 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5906 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5907 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5908
5909 dconstm1 = dconst1;
5910 dconstm1.sign = 1;
5911
5912 dconsthalf = dconst1;
5913 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5914
5915 for (i = 0; i < 3; i++)
5916 {
5917 const REAL_VALUE_TYPE *const r =
5918 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5919
5920 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5921 mode != VOIDmode;
5922 mode = GET_MODE_WIDER_MODE (mode))
5923 const_tiny_rtx[i][(int) mode] =
5924 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5925
5926 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5927 mode != VOIDmode;
5928 mode = GET_MODE_WIDER_MODE (mode))
5929 const_tiny_rtx[i][(int) mode] =
5930 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5931
5932 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5933
5934 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5935 mode != VOIDmode;
5936 mode = GET_MODE_WIDER_MODE (mode))
5937 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5938
5939 for (mode = MIN_MODE_PARTIAL_INT;
5940 mode <= MAX_MODE_PARTIAL_INT;
5941 mode = (enum machine_mode)((int)(mode) + 1))
5942 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5943 }
5944
5945 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5946
5947 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5948 mode != VOIDmode;
5949 mode = GET_MODE_WIDER_MODE (mode))
5950 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5951
5952 for (mode = MIN_MODE_PARTIAL_INT;
5953 mode <= MAX_MODE_PARTIAL_INT;
5954 mode = (enum machine_mode)((int)(mode) + 1))
5955 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5956
5957 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5958 mode != VOIDmode;
5959 mode = GET_MODE_WIDER_MODE (mode))
5960 {
5961 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5962 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5963 }
5964
5965 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5966 mode != VOIDmode;
5967 mode = GET_MODE_WIDER_MODE (mode))
5968 {
5969 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5970 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5971 }
5972
5973 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5974 mode != VOIDmode;
5975 mode = GET_MODE_WIDER_MODE (mode))
5976 {
5977 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5978 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5979 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5980 }
5981
5982 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5983 mode != VOIDmode;
5984 mode = GET_MODE_WIDER_MODE (mode))
5985 {
5986 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5987 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5988 }
5989
5990 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5991 mode != VOIDmode;
5992 mode = GET_MODE_WIDER_MODE (mode))
5993 {
5994 FCONST0 (mode).data.high = 0;
5995 FCONST0 (mode).data.low = 0;
5996 FCONST0 (mode).mode = mode;
5997 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5998 FCONST0 (mode), mode);
5999 }
6000
6001 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6002 mode != VOIDmode;
6003 mode = GET_MODE_WIDER_MODE (mode))
6004 {
6005 FCONST0 (mode).data.high = 0;
6006 FCONST0 (mode).data.low = 0;
6007 FCONST0 (mode).mode = mode;
6008 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6009 FCONST0 (mode), mode);
6010 }
6011
6012 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6013 mode != VOIDmode;
6014 mode = GET_MODE_WIDER_MODE (mode))
6015 {
6016 FCONST0 (mode).data.high = 0;
6017 FCONST0 (mode).data.low = 0;
6018 FCONST0 (mode).mode = mode;
6019 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6020 FCONST0 (mode), mode);
6021
6022 /* We store the value 1. */
6023 FCONST1 (mode).data.high = 0;
6024 FCONST1 (mode).data.low = 0;
6025 FCONST1 (mode).mode = mode;
6026 FCONST1 (mode).data
6027 = double_int_one.lshift (GET_MODE_FBIT (mode),
6028 HOST_BITS_PER_DOUBLE_INT,
6029 SIGNED_FIXED_POINT_MODE_P (mode));
6030 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6031 FCONST1 (mode), mode);
6032 }
6033
6034 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6035 mode != VOIDmode;
6036 mode = GET_MODE_WIDER_MODE (mode))
6037 {
6038 FCONST0 (mode).data.high = 0;
6039 FCONST0 (mode).data.low = 0;
6040 FCONST0 (mode).mode = mode;
6041 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6042 FCONST0 (mode), mode);
6043
6044 /* We store the value 1. */
6045 FCONST1 (mode).data.high = 0;
6046 FCONST1 (mode).data.low = 0;
6047 FCONST1 (mode).mode = mode;
6048 FCONST1 (mode).data
6049 = double_int_one.lshift (GET_MODE_FBIT (mode),
6050 HOST_BITS_PER_DOUBLE_INT,
6051 SIGNED_FIXED_POINT_MODE_P (mode));
6052 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6053 FCONST1 (mode), mode);
6054 }
6055
6056 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6057 mode != VOIDmode;
6058 mode = GET_MODE_WIDER_MODE (mode))
6059 {
6060 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6061 }
6062
6063 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6064 mode != VOIDmode;
6065 mode = GET_MODE_WIDER_MODE (mode))
6066 {
6067 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6068 }
6069
6070 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6071 mode != VOIDmode;
6072 mode = GET_MODE_WIDER_MODE (mode))
6073 {
6074 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6075 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6076 }
6077
6078 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6079 mode != VOIDmode;
6080 mode = GET_MODE_WIDER_MODE (mode))
6081 {
6082 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6083 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6084 }
6085
6086 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6087 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6088 const_tiny_rtx[0][i] = const0_rtx;
6089
6090 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6091 if (STORE_FLAG_VALUE == 1)
6092 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6093
6094 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6095 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6096 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6097 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6098 }
6099 \f
6100 /* Produce exact duplicate of insn INSN after AFTER.
6101 Care updating of libcall regions if present. */
6102
6103 rtx_insn *
6104 emit_copy_of_insn_after (rtx insn, rtx after)
6105 {
6106 rtx_insn *new_rtx;
6107 rtx link;
6108
6109 switch (GET_CODE (insn))
6110 {
6111 case INSN:
6112 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6113 break;
6114
6115 case JUMP_INSN:
6116 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6117 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6118 break;
6119
6120 case DEBUG_INSN:
6121 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6122 break;
6123
6124 case CALL_INSN:
6125 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6126 if (CALL_INSN_FUNCTION_USAGE (insn))
6127 CALL_INSN_FUNCTION_USAGE (new_rtx)
6128 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6129 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6130 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6131 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6132 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6133 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6134 break;
6135
6136 default:
6137 gcc_unreachable ();
6138 }
6139
6140 /* Update LABEL_NUSES. */
6141 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6142
6143 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6144
6145 /* If the old insn is frame related, then so is the new one. This is
6146 primarily needed for IA-64 unwind info which marks epilogue insns,
6147 which may be duplicated by the basic block reordering code. */
6148 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6149
6150 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6151 will make them. REG_LABEL_TARGETs are created there too, but are
6152 supposed to be sticky, so we copy them. */
6153 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6154 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6155 {
6156 if (GET_CODE (link) == EXPR_LIST)
6157 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6158 copy_insn_1 (XEXP (link, 0)));
6159 else
6160 add_shallow_copy_of_reg_note (new_rtx, link);
6161 }
6162
6163 INSN_CODE (new_rtx) = INSN_CODE (insn);
6164 return new_rtx;
6165 }
6166
6167 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6168 rtx
6169 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6170 {
6171 if (hard_reg_clobbers[mode][regno])
6172 return hard_reg_clobbers[mode][regno];
6173 else
6174 return (hard_reg_clobbers[mode][regno] =
6175 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6176 }
6177
6178 location_t prologue_location;
6179 location_t epilogue_location;
6180
6181 /* Hold current location information and last location information, so the
6182 datastructures are built lazily only when some instructions in given
6183 place are needed. */
6184 static location_t curr_location;
6185
6186 /* Allocate insn location datastructure. */
6187 void
6188 insn_locations_init (void)
6189 {
6190 prologue_location = epilogue_location = 0;
6191 curr_location = UNKNOWN_LOCATION;
6192 }
6193
6194 /* At the end of emit stage, clear current location. */
6195 void
6196 insn_locations_finalize (void)
6197 {
6198 epilogue_location = curr_location;
6199 curr_location = UNKNOWN_LOCATION;
6200 }
6201
6202 /* Set current location. */
6203 void
6204 set_curr_insn_location (location_t location)
6205 {
6206 curr_location = location;
6207 }
6208
6209 /* Get current location. */
6210 location_t
6211 curr_insn_location (void)
6212 {
6213 return curr_location;
6214 }
6215
6216 /* Return lexical scope block insn belongs to. */
6217 tree
6218 insn_scope (const_rtx insn)
6219 {
6220 return LOCATION_BLOCK (INSN_LOCATION (insn));
6221 }
6222
6223 /* Return line number of the statement that produced this insn. */
6224 int
6225 insn_line (const_rtx insn)
6226 {
6227 return LOCATION_LINE (INSN_LOCATION (insn));
6228 }
6229
6230 /* Return source file of the statement that produced this insn. */
6231 const char *
6232 insn_file (const_rtx insn)
6233 {
6234 return LOCATION_FILE (INSN_LOCATION (insn));
6235 }
6236
6237 /* Return expanded location of the statement that produced this insn. */
6238 expanded_location
6239 insn_location (const_rtx insn)
6240 {
6241 return expand_location (INSN_LOCATION (insn));
6242 }
6243
6244 /* Return true if memory model MODEL requires a pre-operation (release-style)
6245 barrier or a post-operation (acquire-style) barrier. While not universal,
6246 this function matches behavior of several targets. */
6247
6248 bool
6249 need_atomic_barrier_p (enum memmodel model, bool pre)
6250 {
6251 switch (model & MEMMODEL_MASK)
6252 {
6253 case MEMMODEL_RELAXED:
6254 case MEMMODEL_CONSUME:
6255 return false;
6256 case MEMMODEL_RELEASE:
6257 return pre;
6258 case MEMMODEL_ACQUIRE:
6259 return !pre;
6260 case MEMMODEL_ACQ_REL:
6261 case MEMMODEL_SEQ_CST:
6262 return true;
6263 default:
6264 gcc_unreachable ();
6265 }
6266 }
6267 \f
6268 #include "gt-emit-rtl.h"