Strengthen return types of various {next|prev}_*insn from rtx to rtx_insn *
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "varasm.h"
42 #include "basic-block.h"
43 #include "tree-eh.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "stringpool.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "debug.h"
56 #include "langhooks.h"
57 #include "df.h"
58 #include "params.h"
59 #include "target.h"
60 #include "builtins.h"
61
62 struct target_rtl default_target_rtl;
63 #if SWITCHABLE_TARGET
64 struct target_rtl *this_target_rtl = &default_target_rtl;
65 #endif
66
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68
69 /* Commonly used modes. */
70
71 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
73 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
75
76 /* Datastructures maintained for currently processed function in RTL form. */
77
78 struct rtl_data x_rtl;
79
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
84
85 rtx * regno_reg_rtx;
86
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
89
90 static GTY(()) int label_num = 1;
91
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
96
97 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
98
99 rtx const_true_rtx;
100
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconsthalf;
106
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
110
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
115
116 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
117
118 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx pc_rtx;
120 rtx ret_rtx;
121 rtx simple_return_rtx;
122 rtx cc0_rtx;
123
124 /* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
126
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
129
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
132
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
136
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
140
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
144
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
148
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 #if TARGET_SUPPORTS_WIDE_INT
154 static hashval_t const_wide_int_htab_hash (const void *);
155 static int const_wide_int_htab_eq (const void *, const void *);
156 static rtx lookup_const_wide_int (rtx);
157 #endif
158 static hashval_t const_double_htab_hash (const void *);
159 static int const_double_htab_eq (const void *, const void *);
160 static rtx lookup_const_double (rtx);
161 static hashval_t const_fixed_htab_hash (const void *);
162 static int const_fixed_htab_eq (const void *, const void *);
163 static rtx lookup_const_fixed (rtx);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
169
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
173 \f
174 /* Returns a hash code for X (which is a really a CONST_INT). */
175
176 static hashval_t
177 const_int_htab_hash (const void *x)
178 {
179 return (hashval_t) INTVAL ((const_rtx) x);
180 }
181
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
185
186 static int
187 const_int_htab_eq (const void *x, const void *y)
188 {
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 }
191
192 #if TARGET_SUPPORTS_WIDE_INT
193 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
194
195 static hashval_t
196 const_wide_int_htab_hash (const void *x)
197 {
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
201
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
204
205 return (hashval_t) hash;
206 }
207
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
211
212 static int
213 const_wide_int_htab_eq (const void *x, const void *y)
214 {
215 int i;
216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
220
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
224
225 return 1;
226 }
227 #endif
228
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
230 static hashval_t
231 const_double_htab_hash (const void *x)
232 {
233 const_rtx const value = (const_rtx) x;
234 hashval_t h;
235
236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
239 {
240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
243 }
244 return h;
245 }
246
247 /* Returns nonzero if the value represented by X (really a ...)
248 is the same as that represented by Y (really a ...) */
249 static int
250 const_double_htab_eq (const void *x, const void *y)
251 {
252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
253
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
262 }
263
264 /* Returns a hash code for X (which is really a CONST_FIXED). */
265
266 static hashval_t
267 const_fixed_htab_hash (const void *x)
268 {
269 const_rtx const value = (const_rtx) x;
270 hashval_t h;
271
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
276 }
277
278 /* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
280
281 static int
282 const_fixed_htab_eq (const void *x, const void *y)
283 {
284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
285
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
289 }
290
291 /* Return true if the given memory attributes are equal. */
292
293 bool
294 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
295 {
296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
306 && p->addrspace == q->addrspace
307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
310 }
311
312 /* Set MEM's memory attributes so that they are the same as ATTRS. */
313
314 static void
315 set_mem_attrs (rtx mem, mem_attrs *attrs)
316 {
317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
319 {
320 MEM_ATTRS (mem) = 0;
321 return;
322 }
323
324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
326 {
327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
329 }
330 }
331
332 /* Returns a hash code for X (which is a really a reg_attrs *). */
333
334 static hashval_t
335 reg_attrs_htab_hash (const void *x)
336 {
337 const reg_attrs *const p = (const reg_attrs *) x;
338
339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
340 }
341
342 /* Returns nonzero if the value represented by X (which is really a
343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
345
346 static int
347 reg_attrs_htab_eq (const void *x, const void *y)
348 {
349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
351
352 return (p->decl == q->decl && p->offset == q->offset);
353 }
354 /* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
357
358 static reg_attrs *
359 get_reg_attrs (tree decl, int offset)
360 {
361 reg_attrs attrs;
362 void **slot;
363
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
367
368 attrs.decl = decl;
369 attrs.offset = offset;
370
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
373 {
374 *slot = ggc_alloc<reg_attrs> ();
375 memcpy (*slot, &attrs, sizeof (reg_attrs));
376 }
377
378 return (reg_attrs *) *slot;
379 }
380
381
382 #if !HAVE_blockage
383 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
385
386 rtx
387 gen_blockage (void)
388 {
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
392 }
393 #endif
394
395
396 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
399
400 rtx
401 gen_raw_REG (enum machine_mode mode, int regno)
402 {
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
406 }
407
408 /* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
411
412 rtx
413 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
414 {
415 void **slot;
416
417 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
418 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
419
420 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
421 if (const_true_rtx && arg == STORE_FLAG_VALUE)
422 return const_true_rtx;
423 #endif
424
425 /* Look up the CONST_INT in the hash table. */
426 slot = htab_find_slot_with_hash (const_int_htab, &arg,
427 (hashval_t) arg, INSERT);
428 if (*slot == 0)
429 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
430
431 return (rtx) *slot;
432 }
433
434 rtx
435 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
436 {
437 return GEN_INT (trunc_int_for_mode (c, mode));
438 }
439
440 /* CONST_DOUBLEs might be created from pairs of integers, or from
441 REAL_VALUE_TYPEs. Also, their length is known only at run time,
442 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
443
444 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
445 hash table. If so, return its counterpart; otherwise add it
446 to the hash table and return it. */
447 static rtx
448 lookup_const_double (rtx real)
449 {
450 void **slot = htab_find_slot (const_double_htab, real, INSERT);
451 if (*slot == 0)
452 *slot = real;
453
454 return (rtx) *slot;
455 }
456
457 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
458 VALUE in mode MODE. */
459 rtx
460 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
461 {
462 rtx real = rtx_alloc (CONST_DOUBLE);
463 PUT_MODE (real, mode);
464
465 real->u.rv = value;
466
467 return lookup_const_double (real);
468 }
469
470 /* Determine whether FIXED, a CONST_FIXED, already exists in the
471 hash table. If so, return its counterpart; otherwise add it
472 to the hash table and return it. */
473
474 static rtx
475 lookup_const_fixed (rtx fixed)
476 {
477 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
478 if (*slot == 0)
479 *slot = fixed;
480
481 return (rtx) *slot;
482 }
483
484 /* Return a CONST_FIXED rtx for a fixed-point value specified by
485 VALUE in mode MODE. */
486
487 rtx
488 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
489 {
490 rtx fixed = rtx_alloc (CONST_FIXED);
491 PUT_MODE (fixed, mode);
492
493 fixed->u.fv = value;
494
495 return lookup_const_fixed (fixed);
496 }
497
498 #if TARGET_SUPPORTS_WIDE_INT == 0
499 /* Constructs double_int from rtx CST. */
500
501 double_int
502 rtx_to_double_int (const_rtx cst)
503 {
504 double_int r;
505
506 if (CONST_INT_P (cst))
507 r = double_int::from_shwi (INTVAL (cst));
508 else if (CONST_DOUBLE_AS_INT_P (cst))
509 {
510 r.low = CONST_DOUBLE_LOW (cst);
511 r.high = CONST_DOUBLE_HIGH (cst);
512 }
513 else
514 gcc_unreachable ();
515
516 return r;
517 }
518 #endif
519
520 #if TARGET_SUPPORTS_WIDE_INT
521 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
522 If so, return its counterpart; otherwise add it to the hash table and
523 return it. */
524
525 static rtx
526 lookup_const_wide_int (rtx wint)
527 {
528 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
529 if (*slot == 0)
530 *slot = wint;
531
532 return (rtx) *slot;
533 }
534 #endif
535
536 /* Return an rtx constant for V, given that the constant has mode MODE.
537 The returned rtx will be a CONST_INT if V fits, otherwise it will be
538 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
539 (if TARGET_SUPPORTS_WIDE_INT). */
540
541 rtx
542 immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
543 {
544 unsigned int len = v.get_len ();
545 unsigned int prec = GET_MODE_PRECISION (mode);
546
547 /* Allow truncation but not extension since we do not know if the
548 number is signed or unsigned. */
549 gcc_assert (prec <= v.get_precision ());
550
551 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
552 return gen_int_mode (v.elt (0), mode);
553
554 #if TARGET_SUPPORTS_WIDE_INT
555 {
556 unsigned int i;
557 rtx value;
558 unsigned int blocks_needed
559 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
560
561 if (len > blocks_needed)
562 len = blocks_needed;
563
564 value = const_wide_int_alloc (len);
565
566 /* It is so tempting to just put the mode in here. Must control
567 myself ... */
568 PUT_MODE (value, VOIDmode);
569 CWI_PUT_NUM_ELEM (value, len);
570
571 for (i = 0; i < len; i++)
572 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
573
574 return lookup_const_wide_int (value);
575 }
576 #else
577 return immed_double_const (v.elt (0), v.elt (1), mode);
578 #endif
579 }
580
581 #if TARGET_SUPPORTS_WIDE_INT == 0
582 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
583 of ints: I0 is the low-order word and I1 is the high-order word.
584 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
585 implied upper bits are copies of the high bit of i1. The value
586 itself is neither signed nor unsigned. Do not use this routine for
587 non-integer modes; convert to REAL_VALUE_TYPE and use
588 CONST_DOUBLE_FROM_REAL_VALUE. */
589
590 rtx
591 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
592 {
593 rtx value;
594 unsigned int i;
595
596 /* There are the following cases (note that there are no modes with
597 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
598
599 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
600 gen_int_mode.
601 2) If the value of the integer fits into HOST_WIDE_INT anyway
602 (i.e., i1 consists only from copies of the sign bit, and sign
603 of i0 and i1 are the same), then we return a CONST_INT for i0.
604 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
605 if (mode != VOIDmode)
606 {
607 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
608 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
609 /* We can get a 0 for an error mark. */
610 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
611 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
612
613 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (i0, mode);
615 }
616
617 /* If this integer fits in one word, return a CONST_INT. */
618 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
619 return GEN_INT (i0);
620
621 /* We use VOIDmode for integers. */
622 value = rtx_alloc (CONST_DOUBLE);
623 PUT_MODE (value, VOIDmode);
624
625 CONST_DOUBLE_LOW (value) = i0;
626 CONST_DOUBLE_HIGH (value) = i1;
627
628 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
629 XWINT (value, i) = 0;
630
631 return lookup_const_double (value);
632 }
633 #endif
634
635 rtx
636 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
637 {
638 /* In case the MD file explicitly references the frame pointer, have
639 all such references point to the same frame pointer. This is
640 used during frame pointer elimination to distinguish the explicit
641 references to these registers from pseudos that happened to be
642 assigned to them.
643
644 If we have eliminated the frame pointer or arg pointer, we will
645 be using it as a normal register, for example as a spill
646 register. In such cases, we might be accessing it in a mode that
647 is not Pmode and therefore cannot use the pre-allocated rtx.
648
649 Also don't do this when we are making new REGs in reload, since
650 we don't want to get confused with the real pointers. */
651
652 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
653 {
654 if (regno == FRAME_POINTER_REGNUM
655 && (!reload_completed || frame_pointer_needed))
656 return frame_pointer_rtx;
657 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
658 if (regno == HARD_FRAME_POINTER_REGNUM
659 && (!reload_completed || frame_pointer_needed))
660 return hard_frame_pointer_rtx;
661 #endif
662 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
663 if (regno == ARG_POINTER_REGNUM)
664 return arg_pointer_rtx;
665 #endif
666 #ifdef RETURN_ADDRESS_POINTER_REGNUM
667 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
668 return return_address_pointer_rtx;
669 #endif
670 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
671 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
672 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
673 return pic_offset_table_rtx;
674 if (regno == STACK_POINTER_REGNUM)
675 return stack_pointer_rtx;
676 }
677
678 #if 0
679 /* If the per-function register table has been set up, try to re-use
680 an existing entry in that table to avoid useless generation of RTL.
681
682 This code is disabled for now until we can fix the various backends
683 which depend on having non-shared hard registers in some cases. Long
684 term we want to re-enable this code as it can significantly cut down
685 on the amount of useless RTL that gets generated.
686
687 We'll also need to fix some code that runs after reload that wants to
688 set ORIGINAL_REGNO. */
689
690 if (cfun
691 && cfun->emit
692 && regno_reg_rtx
693 && regno < FIRST_PSEUDO_REGISTER
694 && reg_raw_mode[regno] == mode)
695 return regno_reg_rtx[regno];
696 #endif
697
698 return gen_raw_REG (mode, regno);
699 }
700
701 rtx
702 gen_rtx_MEM (enum machine_mode mode, rtx addr)
703 {
704 rtx rt = gen_rtx_raw_MEM (mode, addr);
705
706 /* This field is not cleared by the mere allocation of the rtx, so
707 we clear it here. */
708 MEM_ATTRS (rt) = 0;
709
710 return rt;
711 }
712
713 /* Generate a memory referring to non-trapping constant memory. */
714
715 rtx
716 gen_const_mem (enum machine_mode mode, rtx addr)
717 {
718 rtx mem = gen_rtx_MEM (mode, addr);
719 MEM_READONLY_P (mem) = 1;
720 MEM_NOTRAP_P (mem) = 1;
721 return mem;
722 }
723
724 /* Generate a MEM referring to fixed portions of the frame, e.g., register
725 save areas. */
726
727 rtx
728 gen_frame_mem (enum machine_mode mode, rtx addr)
729 {
730 rtx mem = gen_rtx_MEM (mode, addr);
731 MEM_NOTRAP_P (mem) = 1;
732 set_mem_alias_set (mem, get_frame_alias_set ());
733 return mem;
734 }
735
736 /* Generate a MEM referring to a temporary use of the stack, not part
737 of the fixed stack frame. For example, something which is pushed
738 by a target splitter. */
739 rtx
740 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
741 {
742 rtx mem = gen_rtx_MEM (mode, addr);
743 MEM_NOTRAP_P (mem) = 1;
744 if (!cfun->calls_alloca)
745 set_mem_alias_set (mem, get_frame_alias_set ());
746 return mem;
747 }
748
749 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
750 this construct would be valid, and false otherwise. */
751
752 bool
753 validate_subreg (enum machine_mode omode, enum machine_mode imode,
754 const_rtx reg, unsigned int offset)
755 {
756 unsigned int isize = GET_MODE_SIZE (imode);
757 unsigned int osize = GET_MODE_SIZE (omode);
758
759 /* All subregs must be aligned. */
760 if (offset % osize != 0)
761 return false;
762
763 /* The subreg offset cannot be outside the inner object. */
764 if (offset >= isize)
765 return false;
766
767 /* ??? This should not be here. Temporarily continue to allow word_mode
768 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
769 Generally, backends are doing something sketchy but it'll take time to
770 fix them all. */
771 if (omode == word_mode)
772 ;
773 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
774 is the culprit here, and not the backends. */
775 else if (osize >= UNITS_PER_WORD && isize >= osize)
776 ;
777 /* Allow component subregs of complex and vector. Though given the below
778 extraction rules, it's not always clear what that means. */
779 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
780 && GET_MODE_INNER (imode) == omode)
781 ;
782 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
783 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
784 represent this. It's questionable if this ought to be represented at
785 all -- why can't this all be hidden in post-reload splitters that make
786 arbitrarily mode changes to the registers themselves. */
787 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
788 ;
789 /* Subregs involving floating point modes are not allowed to
790 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
791 (subreg:SI (reg:DF) 0) isn't. */
792 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
793 {
794 if (! (isize == osize
795 /* LRA can use subreg to store a floating point value in
796 an integer mode. Although the floating point and the
797 integer modes need the same number of hard registers,
798 the size of floating point mode can be less than the
799 integer mode. LRA also uses subregs for a register
800 should be used in different mode in on insn. */
801 || lra_in_progress))
802 return false;
803 }
804
805 /* Paradoxical subregs must have offset zero. */
806 if (osize > isize)
807 return offset == 0;
808
809 /* This is a normal subreg. Verify that the offset is representable. */
810
811 /* For hard registers, we already have most of these rules collected in
812 subreg_offset_representable_p. */
813 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
814 {
815 unsigned int regno = REGNO (reg);
816
817 #ifdef CANNOT_CHANGE_MODE_CLASS
818 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
819 && GET_MODE_INNER (imode) == omode)
820 ;
821 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
822 return false;
823 #endif
824
825 return subreg_offset_representable_p (regno, imode, offset, omode);
826 }
827
828 /* For pseudo registers, we want most of the same checks. Namely:
829 If the register no larger than a word, the subreg must be lowpart.
830 If the register is larger than a word, the subreg must be the lowpart
831 of a subword. A subreg does *not* perform arbitrary bit extraction.
832 Given that we've already checked mode/offset alignment, we only have
833 to check subword subregs here. */
834 if (osize < UNITS_PER_WORD
835 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
836 {
837 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
838 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
839 if (offset % UNITS_PER_WORD != low_off)
840 return false;
841 }
842 return true;
843 }
844
845 rtx
846 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
847 {
848 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
849 return gen_rtx_raw_SUBREG (mode, reg, offset);
850 }
851
852 /* Generate a SUBREG representing the least-significant part of REG if MODE
853 is smaller than mode of REG, otherwise paradoxical SUBREG. */
854
855 rtx
856 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
857 {
858 enum machine_mode inmode;
859
860 inmode = GET_MODE (reg);
861 if (inmode == VOIDmode)
862 inmode = mode;
863 return gen_rtx_SUBREG (mode, reg,
864 subreg_lowpart_offset (mode, inmode));
865 }
866
867 rtx
868 gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
869 enum var_init_status status)
870 {
871 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
872 PAT_VAR_LOCATION_STATUS (x) = status;
873 return x;
874 }
875 \f
876
877 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
878
879 rtvec
880 gen_rtvec (int n, ...)
881 {
882 int i;
883 rtvec rt_val;
884 va_list p;
885
886 va_start (p, n);
887
888 /* Don't allocate an empty rtvec... */
889 if (n == 0)
890 {
891 va_end (p);
892 return NULL_RTVEC;
893 }
894
895 rt_val = rtvec_alloc (n);
896
897 for (i = 0; i < n; i++)
898 rt_val->elem[i] = va_arg (p, rtx);
899
900 va_end (p);
901 return rt_val;
902 }
903
904 rtvec
905 gen_rtvec_v (int n, rtx *argp)
906 {
907 int i;
908 rtvec rt_val;
909
910 /* Don't allocate an empty rtvec... */
911 if (n == 0)
912 return NULL_RTVEC;
913
914 rt_val = rtvec_alloc (n);
915
916 for (i = 0; i < n; i++)
917 rt_val->elem[i] = *argp++;
918
919 return rt_val;
920 }
921 \f
922 /* Return the number of bytes between the start of an OUTER_MODE
923 in-memory value and the start of an INNER_MODE in-memory value,
924 given that the former is a lowpart of the latter. It may be a
925 paradoxical lowpart, in which case the offset will be negative
926 on big-endian targets. */
927
928 int
929 byte_lowpart_offset (enum machine_mode outer_mode,
930 enum machine_mode inner_mode)
931 {
932 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
933 return subreg_lowpart_offset (outer_mode, inner_mode);
934 else
935 return -subreg_lowpart_offset (inner_mode, outer_mode);
936 }
937 \f
938 /* Generate a REG rtx for a new pseudo register of mode MODE.
939 This pseudo is assigned the next sequential register number. */
940
941 rtx
942 gen_reg_rtx (enum machine_mode mode)
943 {
944 rtx val;
945 unsigned int align = GET_MODE_ALIGNMENT (mode);
946
947 gcc_assert (can_create_pseudo_p ());
948
949 /* If a virtual register with bigger mode alignment is generated,
950 increase stack alignment estimation because it might be spilled
951 to stack later. */
952 if (SUPPORTS_STACK_ALIGNMENT
953 && crtl->stack_alignment_estimated < align
954 && !crtl->stack_realign_processed)
955 {
956 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
957 if (crtl->stack_alignment_estimated < min_align)
958 crtl->stack_alignment_estimated = min_align;
959 }
960
961 if (generating_concat_p
962 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
963 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
964 {
965 /* For complex modes, don't make a single pseudo.
966 Instead, make a CONCAT of two pseudos.
967 This allows noncontiguous allocation of the real and imaginary parts,
968 which makes much better code. Besides, allocating DCmode
969 pseudos overstrains reload on some machines like the 386. */
970 rtx realpart, imagpart;
971 enum machine_mode partmode = GET_MODE_INNER (mode);
972
973 realpart = gen_reg_rtx (partmode);
974 imagpart = gen_reg_rtx (partmode);
975 return gen_rtx_CONCAT (mode, realpart, imagpart);
976 }
977
978 /* Do not call gen_reg_rtx with uninitialized crtl. */
979 gcc_assert (crtl->emit.regno_pointer_align_length);
980
981 /* Make sure regno_pointer_align, and regno_reg_rtx are large
982 enough to have an element for this pseudo reg number. */
983
984 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
985 {
986 int old_size = crtl->emit.regno_pointer_align_length;
987 char *tmp;
988 rtx *new1;
989
990 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
991 memset (tmp + old_size, 0, old_size);
992 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
993
994 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
995 memset (new1 + old_size, 0, old_size * sizeof (rtx));
996 regno_reg_rtx = new1;
997
998 crtl->emit.regno_pointer_align_length = old_size * 2;
999 }
1000
1001 val = gen_raw_REG (mode, reg_rtx_no);
1002 regno_reg_rtx[reg_rtx_no++] = val;
1003 return val;
1004 }
1005
1006 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1007
1008 bool
1009 reg_is_parm_p (rtx reg)
1010 {
1011 tree decl;
1012
1013 gcc_assert (REG_P (reg));
1014 decl = REG_EXPR (reg);
1015 return (decl && TREE_CODE (decl) == PARM_DECL);
1016 }
1017
1018 /* Update NEW with the same attributes as REG, but with OFFSET added
1019 to the REG_OFFSET. */
1020
1021 static void
1022 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1023 {
1024 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1025 REG_OFFSET (reg) + offset);
1026 }
1027
1028 /* Generate a register with same attributes as REG, but with OFFSET
1029 added to the REG_OFFSET. */
1030
1031 rtx
1032 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1033 int offset)
1034 {
1035 rtx new_rtx = gen_rtx_REG (mode, regno);
1036
1037 update_reg_offset (new_rtx, reg, offset);
1038 return new_rtx;
1039 }
1040
1041 /* Generate a new pseudo-register with the same attributes as REG, but
1042 with OFFSET added to the REG_OFFSET. */
1043
1044 rtx
1045 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1046 {
1047 rtx new_rtx = gen_reg_rtx (mode);
1048
1049 update_reg_offset (new_rtx, reg, offset);
1050 return new_rtx;
1051 }
1052
1053 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1054 new register is a (possibly paradoxical) lowpart of the old one. */
1055
1056 void
1057 adjust_reg_mode (rtx reg, enum machine_mode mode)
1058 {
1059 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1060 PUT_MODE (reg, mode);
1061 }
1062
1063 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1064 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1065
1066 void
1067 set_reg_attrs_from_value (rtx reg, rtx x)
1068 {
1069 int offset;
1070 bool can_be_reg_pointer = true;
1071
1072 /* Don't call mark_reg_pointer for incompatible pointer sign
1073 extension. */
1074 while (GET_CODE (x) == SIGN_EXTEND
1075 || GET_CODE (x) == ZERO_EXTEND
1076 || GET_CODE (x) == TRUNCATE
1077 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1078 {
1079 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1080 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1081 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1082 can_be_reg_pointer = false;
1083 #endif
1084 x = XEXP (x, 0);
1085 }
1086
1087 /* Hard registers can be reused for multiple purposes within the same
1088 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1089 on them is wrong. */
1090 if (HARD_REGISTER_P (reg))
1091 return;
1092
1093 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1094 if (MEM_P (x))
1095 {
1096 if (MEM_OFFSET_KNOWN_P (x))
1097 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1098 MEM_OFFSET (x) + offset);
1099 if (can_be_reg_pointer && MEM_POINTER (x))
1100 mark_reg_pointer (reg, 0);
1101 }
1102 else if (REG_P (x))
1103 {
1104 if (REG_ATTRS (x))
1105 update_reg_offset (reg, x, offset);
1106 if (can_be_reg_pointer && REG_POINTER (x))
1107 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1108 }
1109 }
1110
1111 /* Generate a REG rtx for a new pseudo register, copying the mode
1112 and attributes from X. */
1113
1114 rtx
1115 gen_reg_rtx_and_attrs (rtx x)
1116 {
1117 rtx reg = gen_reg_rtx (GET_MODE (x));
1118 set_reg_attrs_from_value (reg, x);
1119 return reg;
1120 }
1121
1122 /* Set the register attributes for registers contained in PARM_RTX.
1123 Use needed values from memory attributes of MEM. */
1124
1125 void
1126 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1127 {
1128 if (REG_P (parm_rtx))
1129 set_reg_attrs_from_value (parm_rtx, mem);
1130 else if (GET_CODE (parm_rtx) == PARALLEL)
1131 {
1132 /* Check for a NULL entry in the first slot, used to indicate that the
1133 parameter goes both on the stack and in registers. */
1134 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1135 for (; i < XVECLEN (parm_rtx, 0); i++)
1136 {
1137 rtx x = XVECEXP (parm_rtx, 0, i);
1138 if (REG_P (XEXP (x, 0)))
1139 REG_ATTRS (XEXP (x, 0))
1140 = get_reg_attrs (MEM_EXPR (mem),
1141 INTVAL (XEXP (x, 1)));
1142 }
1143 }
1144 }
1145
1146 /* Set the REG_ATTRS for registers in value X, given that X represents
1147 decl T. */
1148
1149 void
1150 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1151 {
1152 if (GET_CODE (x) == SUBREG)
1153 {
1154 gcc_assert (subreg_lowpart_p (x));
1155 x = SUBREG_REG (x);
1156 }
1157 if (REG_P (x))
1158 REG_ATTRS (x)
1159 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1160 DECL_MODE (t)));
1161 if (GET_CODE (x) == CONCAT)
1162 {
1163 if (REG_P (XEXP (x, 0)))
1164 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1165 if (REG_P (XEXP (x, 1)))
1166 REG_ATTRS (XEXP (x, 1))
1167 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1168 }
1169 if (GET_CODE (x) == PARALLEL)
1170 {
1171 int i, start;
1172
1173 /* Check for a NULL entry, used to indicate that the parameter goes
1174 both on the stack and in registers. */
1175 if (XEXP (XVECEXP (x, 0, 0), 0))
1176 start = 0;
1177 else
1178 start = 1;
1179
1180 for (i = start; i < XVECLEN (x, 0); i++)
1181 {
1182 rtx y = XVECEXP (x, 0, i);
1183 if (REG_P (XEXP (y, 0)))
1184 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1185 }
1186 }
1187 }
1188
1189 /* Assign the RTX X to declaration T. */
1190
1191 void
1192 set_decl_rtl (tree t, rtx x)
1193 {
1194 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1195 if (x)
1196 set_reg_attrs_for_decl_rtl (t, x);
1197 }
1198
1199 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1200 if the ABI requires the parameter to be passed by reference. */
1201
1202 void
1203 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1204 {
1205 DECL_INCOMING_RTL (t) = x;
1206 if (x && !by_reference_p)
1207 set_reg_attrs_for_decl_rtl (t, x);
1208 }
1209
1210 /* Identify REG (which may be a CONCAT) as a user register. */
1211
1212 void
1213 mark_user_reg (rtx reg)
1214 {
1215 if (GET_CODE (reg) == CONCAT)
1216 {
1217 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1218 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1219 }
1220 else
1221 {
1222 gcc_assert (REG_P (reg));
1223 REG_USERVAR_P (reg) = 1;
1224 }
1225 }
1226
1227 /* Identify REG as a probable pointer register and show its alignment
1228 as ALIGN, if nonzero. */
1229
1230 void
1231 mark_reg_pointer (rtx reg, int align)
1232 {
1233 if (! REG_POINTER (reg))
1234 {
1235 REG_POINTER (reg) = 1;
1236
1237 if (align)
1238 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1239 }
1240 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1241 /* We can no-longer be sure just how aligned this pointer is. */
1242 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1243 }
1244
1245 /* Return 1 plus largest pseudo reg number used in the current function. */
1246
1247 int
1248 max_reg_num (void)
1249 {
1250 return reg_rtx_no;
1251 }
1252
1253 /* Return 1 + the largest label number used so far in the current function. */
1254
1255 int
1256 max_label_num (void)
1257 {
1258 return label_num;
1259 }
1260
1261 /* Return first label number used in this function (if any were used). */
1262
1263 int
1264 get_first_label_num (void)
1265 {
1266 return first_label_num;
1267 }
1268
1269 /* If the rtx for label was created during the expansion of a nested
1270 function, then first_label_num won't include this label number.
1271 Fix this now so that array indices work later. */
1272
1273 void
1274 maybe_set_first_label_num (rtx x)
1275 {
1276 if (CODE_LABEL_NUMBER (x) < first_label_num)
1277 first_label_num = CODE_LABEL_NUMBER (x);
1278 }
1279 \f
1280 /* Return a value representing some low-order bits of X, where the number
1281 of low-order bits is given by MODE. Note that no conversion is done
1282 between floating-point and fixed-point values, rather, the bit
1283 representation is returned.
1284
1285 This function handles the cases in common between gen_lowpart, below,
1286 and two variants in cse.c and combine.c. These are the cases that can
1287 be safely handled at all points in the compilation.
1288
1289 If this is not a case we can handle, return 0. */
1290
1291 rtx
1292 gen_lowpart_common (enum machine_mode mode, rtx x)
1293 {
1294 int msize = GET_MODE_SIZE (mode);
1295 int xsize;
1296 int offset = 0;
1297 enum machine_mode innermode;
1298
1299 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1300 so we have to make one up. Yuk. */
1301 innermode = GET_MODE (x);
1302 if (CONST_INT_P (x)
1303 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1304 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1305 else if (innermode == VOIDmode)
1306 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1307
1308 xsize = GET_MODE_SIZE (innermode);
1309
1310 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1311
1312 if (innermode == mode)
1313 return x;
1314
1315 /* MODE must occupy no more words than the mode of X. */
1316 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1317 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1318 return 0;
1319
1320 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1321 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1322 return 0;
1323
1324 offset = subreg_lowpart_offset (mode, innermode);
1325
1326 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1327 && (GET_MODE_CLASS (mode) == MODE_INT
1328 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1329 {
1330 /* If we are getting the low-order part of something that has been
1331 sign- or zero-extended, we can either just use the object being
1332 extended or make a narrower extension. If we want an even smaller
1333 piece than the size of the object being extended, call ourselves
1334 recursively.
1335
1336 This case is used mostly by combine and cse. */
1337
1338 if (GET_MODE (XEXP (x, 0)) == mode)
1339 return XEXP (x, 0);
1340 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1341 return gen_lowpart_common (mode, XEXP (x, 0));
1342 else if (msize < xsize)
1343 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1344 }
1345 else if (GET_CODE (x) == SUBREG || REG_P (x)
1346 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1347 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1348 return simplify_gen_subreg (mode, x, innermode, offset);
1349
1350 /* Otherwise, we can't do this. */
1351 return 0;
1352 }
1353 \f
1354 rtx
1355 gen_highpart (enum machine_mode mode, rtx x)
1356 {
1357 unsigned int msize = GET_MODE_SIZE (mode);
1358 rtx result;
1359
1360 /* This case loses if X is a subreg. To catch bugs early,
1361 complain if an invalid MODE is used even in other cases. */
1362 gcc_assert (msize <= UNITS_PER_WORD
1363 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1364
1365 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1366 subreg_highpart_offset (mode, GET_MODE (x)));
1367 gcc_assert (result);
1368
1369 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1370 the target if we have a MEM. gen_highpart must return a valid operand,
1371 emitting code if necessary to do so. */
1372 if (MEM_P (result))
1373 {
1374 result = validize_mem (result);
1375 gcc_assert (result);
1376 }
1377
1378 return result;
1379 }
1380
1381 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1382 be VOIDmode constant. */
1383 rtx
1384 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1385 {
1386 if (GET_MODE (exp) != VOIDmode)
1387 {
1388 gcc_assert (GET_MODE (exp) == innermode);
1389 return gen_highpart (outermode, exp);
1390 }
1391 return simplify_gen_subreg (outermode, exp, innermode,
1392 subreg_highpart_offset (outermode, innermode));
1393 }
1394
1395 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1396
1397 unsigned int
1398 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1399 {
1400 unsigned int offset = 0;
1401 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1402
1403 if (difference > 0)
1404 {
1405 if (WORDS_BIG_ENDIAN)
1406 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1407 if (BYTES_BIG_ENDIAN)
1408 offset += difference % UNITS_PER_WORD;
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Return offset in bytes to get OUTERMODE high part
1415 of the value in mode INNERMODE stored in memory in target format. */
1416 unsigned int
1417 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1418 {
1419 unsigned int offset = 0;
1420 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1421
1422 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1423
1424 if (difference > 0)
1425 {
1426 if (! WORDS_BIG_ENDIAN)
1427 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1428 if (! BYTES_BIG_ENDIAN)
1429 offset += difference % UNITS_PER_WORD;
1430 }
1431
1432 return offset;
1433 }
1434
1435 /* Return 1 iff X, assumed to be a SUBREG,
1436 refers to the least significant part of its containing reg.
1437 If X is not a SUBREG, always return 1 (it is its own low part!). */
1438
1439 int
1440 subreg_lowpart_p (const_rtx x)
1441 {
1442 if (GET_CODE (x) != SUBREG)
1443 return 1;
1444 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1445 return 0;
1446
1447 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1448 == SUBREG_BYTE (x));
1449 }
1450
1451 /* Return true if X is a paradoxical subreg, false otherwise. */
1452 bool
1453 paradoxical_subreg_p (const_rtx x)
1454 {
1455 if (GET_CODE (x) != SUBREG)
1456 return false;
1457 return (GET_MODE_PRECISION (GET_MODE (x))
1458 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1459 }
1460 \f
1461 /* Return subword OFFSET of operand OP.
1462 The word number, OFFSET, is interpreted as the word number starting
1463 at the low-order address. OFFSET 0 is the low-order word if not
1464 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1465
1466 If we cannot extract the required word, we return zero. Otherwise,
1467 an rtx corresponding to the requested word will be returned.
1468
1469 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1470 reload has completed, a valid address will always be returned. After
1471 reload, if a valid address cannot be returned, we return zero.
1472
1473 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1474 it is the responsibility of the caller.
1475
1476 MODE is the mode of OP in case it is a CONST_INT.
1477
1478 ??? This is still rather broken for some cases. The problem for the
1479 moment is that all callers of this thing provide no 'goal mode' to
1480 tell us to work with. This exists because all callers were written
1481 in a word based SUBREG world.
1482 Now use of this function can be deprecated by simplify_subreg in most
1483 cases.
1484 */
1485
1486 rtx
1487 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1488 {
1489 if (mode == VOIDmode)
1490 mode = GET_MODE (op);
1491
1492 gcc_assert (mode != VOIDmode);
1493
1494 /* If OP is narrower than a word, fail. */
1495 if (mode != BLKmode
1496 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1497 return 0;
1498
1499 /* If we want a word outside OP, return zero. */
1500 if (mode != BLKmode
1501 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1502 return const0_rtx;
1503
1504 /* Form a new MEM at the requested address. */
1505 if (MEM_P (op))
1506 {
1507 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1508
1509 if (! validate_address)
1510 return new_rtx;
1511
1512 else if (reload_completed)
1513 {
1514 if (! strict_memory_address_addr_space_p (word_mode,
1515 XEXP (new_rtx, 0),
1516 MEM_ADDR_SPACE (op)))
1517 return 0;
1518 }
1519 else
1520 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1521 }
1522
1523 /* Rest can be handled by simplify_subreg. */
1524 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1525 }
1526
1527 /* Similar to `operand_subword', but never return 0. If we can't
1528 extract the required subword, put OP into a register and try again.
1529 The second attempt must succeed. We always validate the address in
1530 this case.
1531
1532 MODE is the mode of OP, in case it is CONST_INT. */
1533
1534 rtx
1535 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1536 {
1537 rtx result = operand_subword (op, offset, 1, mode);
1538
1539 if (result)
1540 return result;
1541
1542 if (mode != BLKmode && mode != VOIDmode)
1543 {
1544 /* If this is a register which can not be accessed by words, copy it
1545 to a pseudo register. */
1546 if (REG_P (op))
1547 op = copy_to_reg (op);
1548 else
1549 op = force_reg (mode, op);
1550 }
1551
1552 result = operand_subword (op, offset, 1, mode);
1553 gcc_assert (result);
1554
1555 return result;
1556 }
1557 \f
1558 /* Returns 1 if both MEM_EXPR can be considered equal
1559 and 0 otherwise. */
1560
1561 int
1562 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1563 {
1564 if (expr1 == expr2)
1565 return 1;
1566
1567 if (! expr1 || ! expr2)
1568 return 0;
1569
1570 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1571 return 0;
1572
1573 return operand_equal_p (expr1, expr2, 0);
1574 }
1575
1576 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1577 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1578 -1 if not known. */
1579
1580 int
1581 get_mem_align_offset (rtx mem, unsigned int align)
1582 {
1583 tree expr;
1584 unsigned HOST_WIDE_INT offset;
1585
1586 /* This function can't use
1587 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1588 || (MAX (MEM_ALIGN (mem),
1589 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1590 < align))
1591 return -1;
1592 else
1593 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1594 for two reasons:
1595 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1596 for <variable>. get_inner_reference doesn't handle it and
1597 even if it did, the alignment in that case needs to be determined
1598 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1599 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1600 isn't sufficiently aligned, the object it is in might be. */
1601 gcc_assert (MEM_P (mem));
1602 expr = MEM_EXPR (mem);
1603 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1604 return -1;
1605
1606 offset = MEM_OFFSET (mem);
1607 if (DECL_P (expr))
1608 {
1609 if (DECL_ALIGN (expr) < align)
1610 return -1;
1611 }
1612 else if (INDIRECT_REF_P (expr))
1613 {
1614 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1615 return -1;
1616 }
1617 else if (TREE_CODE (expr) == COMPONENT_REF)
1618 {
1619 while (1)
1620 {
1621 tree inner = TREE_OPERAND (expr, 0);
1622 tree field = TREE_OPERAND (expr, 1);
1623 tree byte_offset = component_ref_field_offset (expr);
1624 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1625
1626 if (!byte_offset
1627 || !tree_fits_uhwi_p (byte_offset)
1628 || !tree_fits_uhwi_p (bit_offset))
1629 return -1;
1630
1631 offset += tree_to_uhwi (byte_offset);
1632 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1633
1634 if (inner == NULL_TREE)
1635 {
1636 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1637 < (unsigned int) align)
1638 return -1;
1639 break;
1640 }
1641 else if (DECL_P (inner))
1642 {
1643 if (DECL_ALIGN (inner) < align)
1644 return -1;
1645 break;
1646 }
1647 else if (TREE_CODE (inner) != COMPONENT_REF)
1648 return -1;
1649 expr = inner;
1650 }
1651 }
1652 else
1653 return -1;
1654
1655 return offset & ((align / BITS_PER_UNIT) - 1);
1656 }
1657
1658 /* Given REF (a MEM) and T, either the type of X or the expression
1659 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1660 if we are making a new object of this type. BITPOS is nonzero if
1661 there is an offset outstanding on T that will be applied later. */
1662
1663 void
1664 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1665 HOST_WIDE_INT bitpos)
1666 {
1667 HOST_WIDE_INT apply_bitpos = 0;
1668 tree type;
1669 struct mem_attrs attrs, *defattrs, *refattrs;
1670 addr_space_t as;
1671
1672 /* It can happen that type_for_mode was given a mode for which there
1673 is no language-level type. In which case it returns NULL, which
1674 we can see here. */
1675 if (t == NULL_TREE)
1676 return;
1677
1678 type = TYPE_P (t) ? t : TREE_TYPE (t);
1679 if (type == error_mark_node)
1680 return;
1681
1682 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1683 wrong answer, as it assumes that DECL_RTL already has the right alias
1684 info. Callers should not set DECL_RTL until after the call to
1685 set_mem_attributes. */
1686 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1687
1688 memset (&attrs, 0, sizeof (attrs));
1689
1690 /* Get the alias set from the expression or type (perhaps using a
1691 front-end routine) and use it. */
1692 attrs.alias = get_alias_set (t);
1693
1694 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1695 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1696
1697 /* Default values from pre-existing memory attributes if present. */
1698 refattrs = MEM_ATTRS (ref);
1699 if (refattrs)
1700 {
1701 /* ??? Can this ever happen? Calling this routine on a MEM that
1702 already carries memory attributes should probably be invalid. */
1703 attrs.expr = refattrs->expr;
1704 attrs.offset_known_p = refattrs->offset_known_p;
1705 attrs.offset = refattrs->offset;
1706 attrs.size_known_p = refattrs->size_known_p;
1707 attrs.size = refattrs->size;
1708 attrs.align = refattrs->align;
1709 }
1710
1711 /* Otherwise, default values from the mode of the MEM reference. */
1712 else
1713 {
1714 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1715 gcc_assert (!defattrs->expr);
1716 gcc_assert (!defattrs->offset_known_p);
1717
1718 /* Respect mode size. */
1719 attrs.size_known_p = defattrs->size_known_p;
1720 attrs.size = defattrs->size;
1721 /* ??? Is this really necessary? We probably should always get
1722 the size from the type below. */
1723
1724 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1725 if T is an object, always compute the object alignment below. */
1726 if (TYPE_P (t))
1727 attrs.align = defattrs->align;
1728 else
1729 attrs.align = BITS_PER_UNIT;
1730 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1731 e.g. if the type carries an alignment attribute. Should we be
1732 able to simply always use TYPE_ALIGN? */
1733 }
1734
1735 /* We can set the alignment from the type if we are making an object,
1736 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1737 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1738 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1739
1740 /* If the size is known, we can set that. */
1741 tree new_size = TYPE_SIZE_UNIT (type);
1742
1743 /* The address-space is that of the type. */
1744 as = TYPE_ADDR_SPACE (type);
1745
1746 /* If T is not a type, we may be able to deduce some more information about
1747 the expression. */
1748 if (! TYPE_P (t))
1749 {
1750 tree base;
1751
1752 if (TREE_THIS_VOLATILE (t))
1753 MEM_VOLATILE_P (ref) = 1;
1754
1755 /* Now remove any conversions: they don't change what the underlying
1756 object is. Likewise for SAVE_EXPR. */
1757 while (CONVERT_EXPR_P (t)
1758 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1759 || TREE_CODE (t) == SAVE_EXPR)
1760 t = TREE_OPERAND (t, 0);
1761
1762 /* Note whether this expression can trap. */
1763 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1764
1765 base = get_base_address (t);
1766 if (base)
1767 {
1768 if (DECL_P (base)
1769 && TREE_READONLY (base)
1770 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1771 && !TREE_THIS_VOLATILE (base))
1772 MEM_READONLY_P (ref) = 1;
1773
1774 /* Mark static const strings readonly as well. */
1775 if (TREE_CODE (base) == STRING_CST
1776 && TREE_READONLY (base)
1777 && TREE_STATIC (base))
1778 MEM_READONLY_P (ref) = 1;
1779
1780 /* Address-space information is on the base object. */
1781 if (TREE_CODE (base) == MEM_REF
1782 || TREE_CODE (base) == TARGET_MEM_REF)
1783 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1784 0))));
1785 else
1786 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1787 }
1788
1789 /* If this expression uses it's parent's alias set, mark it such
1790 that we won't change it. */
1791 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1792 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1793
1794 /* If this is a decl, set the attributes of the MEM from it. */
1795 if (DECL_P (t))
1796 {
1797 attrs.expr = t;
1798 attrs.offset_known_p = true;
1799 attrs.offset = 0;
1800 apply_bitpos = bitpos;
1801 new_size = DECL_SIZE_UNIT (t);
1802 }
1803
1804 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1805 else if (CONSTANT_CLASS_P (t))
1806 ;
1807
1808 /* If this is a field reference, record it. */
1809 else if (TREE_CODE (t) == COMPONENT_REF)
1810 {
1811 attrs.expr = t;
1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
1814 apply_bitpos = bitpos;
1815 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1816 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1817 }
1818
1819 /* If this is an array reference, look for an outer field reference. */
1820 else if (TREE_CODE (t) == ARRAY_REF)
1821 {
1822 tree off_tree = size_zero_node;
1823 /* We can't modify t, because we use it at the end of the
1824 function. */
1825 tree t2 = t;
1826
1827 do
1828 {
1829 tree index = TREE_OPERAND (t2, 1);
1830 tree low_bound = array_ref_low_bound (t2);
1831 tree unit_size = array_ref_element_size (t2);
1832
1833 /* We assume all arrays have sizes that are a multiple of a byte.
1834 First subtract the lower bound, if any, in the type of the
1835 index, then convert to sizetype and multiply by the size of
1836 the array element. */
1837 if (! integer_zerop (low_bound))
1838 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1839 index, low_bound);
1840
1841 off_tree = size_binop (PLUS_EXPR,
1842 size_binop (MULT_EXPR,
1843 fold_convert (sizetype,
1844 index),
1845 unit_size),
1846 off_tree);
1847 t2 = TREE_OPERAND (t2, 0);
1848 }
1849 while (TREE_CODE (t2) == ARRAY_REF);
1850
1851 if (DECL_P (t2)
1852 || TREE_CODE (t2) == COMPONENT_REF)
1853 {
1854 attrs.expr = t2;
1855 attrs.offset_known_p = false;
1856 if (tree_fits_uhwi_p (off_tree))
1857 {
1858 attrs.offset_known_p = true;
1859 attrs.offset = tree_to_uhwi (off_tree);
1860 apply_bitpos = bitpos;
1861 }
1862 }
1863 /* Else do not record a MEM_EXPR. */
1864 }
1865
1866 /* If this is an indirect reference, record it. */
1867 else if (TREE_CODE (t) == MEM_REF
1868 || TREE_CODE (t) == TARGET_MEM_REF)
1869 {
1870 attrs.expr = t;
1871 attrs.offset_known_p = true;
1872 attrs.offset = 0;
1873 apply_bitpos = bitpos;
1874 }
1875
1876 /* Compute the alignment. */
1877 unsigned int obj_align;
1878 unsigned HOST_WIDE_INT obj_bitpos;
1879 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1880 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1881 if (obj_bitpos != 0)
1882 obj_align = (obj_bitpos & -obj_bitpos);
1883 attrs.align = MAX (attrs.align, obj_align);
1884 }
1885
1886 if (tree_fits_uhwi_p (new_size))
1887 {
1888 attrs.size_known_p = true;
1889 attrs.size = tree_to_uhwi (new_size);
1890 }
1891
1892 /* If we modified OFFSET based on T, then subtract the outstanding
1893 bit position offset. Similarly, increase the size of the accessed
1894 object to contain the negative offset. */
1895 if (apply_bitpos)
1896 {
1897 gcc_assert (attrs.offset_known_p);
1898 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1899 if (attrs.size_known_p)
1900 attrs.size += apply_bitpos / BITS_PER_UNIT;
1901 }
1902
1903 /* Now set the attributes we computed above. */
1904 attrs.addrspace = as;
1905 set_mem_attrs (ref, &attrs);
1906 }
1907
1908 void
1909 set_mem_attributes (rtx ref, tree t, int objectp)
1910 {
1911 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1912 }
1913
1914 /* Set the alias set of MEM to SET. */
1915
1916 void
1917 set_mem_alias_set (rtx mem, alias_set_type set)
1918 {
1919 struct mem_attrs attrs;
1920
1921 /* If the new and old alias sets don't conflict, something is wrong. */
1922 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1923 attrs = *get_mem_attrs (mem);
1924 attrs.alias = set;
1925 set_mem_attrs (mem, &attrs);
1926 }
1927
1928 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1929
1930 void
1931 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1932 {
1933 struct mem_attrs attrs;
1934
1935 attrs = *get_mem_attrs (mem);
1936 attrs.addrspace = addrspace;
1937 set_mem_attrs (mem, &attrs);
1938 }
1939
1940 /* Set the alignment of MEM to ALIGN bits. */
1941
1942 void
1943 set_mem_align (rtx mem, unsigned int align)
1944 {
1945 struct mem_attrs attrs;
1946
1947 attrs = *get_mem_attrs (mem);
1948 attrs.align = align;
1949 set_mem_attrs (mem, &attrs);
1950 }
1951
1952 /* Set the expr for MEM to EXPR. */
1953
1954 void
1955 set_mem_expr (rtx mem, tree expr)
1956 {
1957 struct mem_attrs attrs;
1958
1959 attrs = *get_mem_attrs (mem);
1960 attrs.expr = expr;
1961 set_mem_attrs (mem, &attrs);
1962 }
1963
1964 /* Set the offset of MEM to OFFSET. */
1965
1966 void
1967 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1968 {
1969 struct mem_attrs attrs;
1970
1971 attrs = *get_mem_attrs (mem);
1972 attrs.offset_known_p = true;
1973 attrs.offset = offset;
1974 set_mem_attrs (mem, &attrs);
1975 }
1976
1977 /* Clear the offset of MEM. */
1978
1979 void
1980 clear_mem_offset (rtx mem)
1981 {
1982 struct mem_attrs attrs;
1983
1984 attrs = *get_mem_attrs (mem);
1985 attrs.offset_known_p = false;
1986 set_mem_attrs (mem, &attrs);
1987 }
1988
1989 /* Set the size of MEM to SIZE. */
1990
1991 void
1992 set_mem_size (rtx mem, HOST_WIDE_INT size)
1993 {
1994 struct mem_attrs attrs;
1995
1996 attrs = *get_mem_attrs (mem);
1997 attrs.size_known_p = true;
1998 attrs.size = size;
1999 set_mem_attrs (mem, &attrs);
2000 }
2001
2002 /* Clear the size of MEM. */
2003
2004 void
2005 clear_mem_size (rtx mem)
2006 {
2007 struct mem_attrs attrs;
2008
2009 attrs = *get_mem_attrs (mem);
2010 attrs.size_known_p = false;
2011 set_mem_attrs (mem, &attrs);
2012 }
2013 \f
2014 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2015 and its address changed to ADDR. (VOIDmode means don't change the mode.
2016 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2017 returned memory location is required to be valid. INPLACE is true if any
2018 changes can be made directly to MEMREF or false if MEMREF must be treated
2019 as immutable.
2020
2021 The memory attributes are not changed. */
2022
2023 static rtx
2024 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2025 bool inplace)
2026 {
2027 addr_space_t as;
2028 rtx new_rtx;
2029
2030 gcc_assert (MEM_P (memref));
2031 as = MEM_ADDR_SPACE (memref);
2032 if (mode == VOIDmode)
2033 mode = GET_MODE (memref);
2034 if (addr == 0)
2035 addr = XEXP (memref, 0);
2036 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2037 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2038 return memref;
2039
2040 /* Don't validate address for LRA. LRA can make the address valid
2041 by itself in most efficient way. */
2042 if (validate && !lra_in_progress)
2043 {
2044 if (reload_in_progress || reload_completed)
2045 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2046 else
2047 addr = memory_address_addr_space (mode, addr, as);
2048 }
2049
2050 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2051 return memref;
2052
2053 if (inplace)
2054 {
2055 XEXP (memref, 0) = addr;
2056 return memref;
2057 }
2058
2059 new_rtx = gen_rtx_MEM (mode, addr);
2060 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2061 return new_rtx;
2062 }
2063
2064 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2065 way we are changing MEMREF, so we only preserve the alias set. */
2066
2067 rtx
2068 change_address (rtx memref, enum machine_mode mode, rtx addr)
2069 {
2070 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2071 enum machine_mode mmode = GET_MODE (new_rtx);
2072 struct mem_attrs attrs, *defattrs;
2073
2074 attrs = *get_mem_attrs (memref);
2075 defattrs = mode_mem_attrs[(int) mmode];
2076 attrs.expr = NULL_TREE;
2077 attrs.offset_known_p = false;
2078 attrs.size_known_p = defattrs->size_known_p;
2079 attrs.size = defattrs->size;
2080 attrs.align = defattrs->align;
2081
2082 /* If there are no changes, just return the original memory reference. */
2083 if (new_rtx == memref)
2084 {
2085 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2086 return new_rtx;
2087
2088 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2089 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2090 }
2091
2092 set_mem_attrs (new_rtx, &attrs);
2093 return new_rtx;
2094 }
2095
2096 /* Return a memory reference like MEMREF, but with its mode changed
2097 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2098 nonzero, the memory address is forced to be valid.
2099 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2100 and the caller is responsible for adjusting MEMREF base register.
2101 If ADJUST_OBJECT is zero, the underlying object associated with the
2102 memory reference is left unchanged and the caller is responsible for
2103 dealing with it. Otherwise, if the new memory reference is outside
2104 the underlying object, even partially, then the object is dropped.
2105 SIZE, if nonzero, is the size of an access in cases where MODE
2106 has no inherent size. */
2107
2108 rtx
2109 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2110 int validate, int adjust_address, int adjust_object,
2111 HOST_WIDE_INT size)
2112 {
2113 rtx addr = XEXP (memref, 0);
2114 rtx new_rtx;
2115 enum machine_mode address_mode;
2116 int pbits;
2117 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2118 unsigned HOST_WIDE_INT max_align;
2119 #ifdef POINTERS_EXTEND_UNSIGNED
2120 enum machine_mode pointer_mode
2121 = targetm.addr_space.pointer_mode (attrs.addrspace);
2122 #endif
2123
2124 /* VOIDmode means no mode change for change_address_1. */
2125 if (mode == VOIDmode)
2126 mode = GET_MODE (memref);
2127
2128 /* Take the size of non-BLKmode accesses from the mode. */
2129 defattrs = mode_mem_attrs[(int) mode];
2130 if (defattrs->size_known_p)
2131 size = defattrs->size;
2132
2133 /* If there are no changes, just return the original memory reference. */
2134 if (mode == GET_MODE (memref) && !offset
2135 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2136 && (!validate || memory_address_addr_space_p (mode, addr,
2137 attrs.addrspace)))
2138 return memref;
2139
2140 /* ??? Prefer to create garbage instead of creating shared rtl.
2141 This may happen even if offset is nonzero -- consider
2142 (plus (plus reg reg) const_int) -- so do this always. */
2143 addr = copy_rtx (addr);
2144
2145 /* Convert a possibly large offset to a signed value within the
2146 range of the target address space. */
2147 address_mode = get_address_mode (memref);
2148 pbits = GET_MODE_BITSIZE (address_mode);
2149 if (HOST_BITS_PER_WIDE_INT > pbits)
2150 {
2151 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2152 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2153 >> shift);
2154 }
2155
2156 if (adjust_address)
2157 {
2158 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2159 object, we can merge it into the LO_SUM. */
2160 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2161 && offset >= 0
2162 && (unsigned HOST_WIDE_INT) offset
2163 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2164 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2165 plus_constant (address_mode,
2166 XEXP (addr, 1), offset));
2167 #ifdef POINTERS_EXTEND_UNSIGNED
2168 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2169 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2170 the fact that pointers are not allowed to overflow. */
2171 else if (POINTERS_EXTEND_UNSIGNED > 0
2172 && GET_CODE (addr) == ZERO_EXTEND
2173 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2174 && trunc_int_for_mode (offset, pointer_mode) == offset)
2175 addr = gen_rtx_ZERO_EXTEND (address_mode,
2176 plus_constant (pointer_mode,
2177 XEXP (addr, 0), offset));
2178 #endif
2179 else
2180 addr = plus_constant (address_mode, addr, offset);
2181 }
2182
2183 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2184
2185 /* If the address is a REG, change_address_1 rightfully returns memref,
2186 but this would destroy memref's MEM_ATTRS. */
2187 if (new_rtx == memref && offset != 0)
2188 new_rtx = copy_rtx (new_rtx);
2189
2190 /* Conservatively drop the object if we don't know where we start from. */
2191 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2192 {
2193 attrs.expr = NULL_TREE;
2194 attrs.alias = 0;
2195 }
2196
2197 /* Compute the new values of the memory attributes due to this adjustment.
2198 We add the offsets and update the alignment. */
2199 if (attrs.offset_known_p)
2200 {
2201 attrs.offset += offset;
2202
2203 /* Drop the object if the new left end is not within its bounds. */
2204 if (adjust_object && attrs.offset < 0)
2205 {
2206 attrs.expr = NULL_TREE;
2207 attrs.alias = 0;
2208 }
2209 }
2210
2211 /* Compute the new alignment by taking the MIN of the alignment and the
2212 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2213 if zero. */
2214 if (offset != 0)
2215 {
2216 max_align = (offset & -offset) * BITS_PER_UNIT;
2217 attrs.align = MIN (attrs.align, max_align);
2218 }
2219
2220 if (size)
2221 {
2222 /* Drop the object if the new right end is not within its bounds. */
2223 if (adjust_object && (offset + size) > attrs.size)
2224 {
2225 attrs.expr = NULL_TREE;
2226 attrs.alias = 0;
2227 }
2228 attrs.size_known_p = true;
2229 attrs.size = size;
2230 }
2231 else if (attrs.size_known_p)
2232 {
2233 gcc_assert (!adjust_object);
2234 attrs.size -= offset;
2235 /* ??? The store_by_pieces machinery generates negative sizes,
2236 so don't assert for that here. */
2237 }
2238
2239 set_mem_attrs (new_rtx, &attrs);
2240
2241 return new_rtx;
2242 }
2243
2244 /* Return a memory reference like MEMREF, but with its mode changed
2245 to MODE and its address changed to ADDR, which is assumed to be
2246 MEMREF offset by OFFSET bytes. If VALIDATE is
2247 nonzero, the memory address is forced to be valid. */
2248
2249 rtx
2250 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2251 HOST_WIDE_INT offset, int validate)
2252 {
2253 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2254 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2255 }
2256
2257 /* Return a memory reference like MEMREF, but whose address is changed by
2258 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2259 known to be in OFFSET (possibly 1). */
2260
2261 rtx
2262 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2263 {
2264 rtx new_rtx, addr = XEXP (memref, 0);
2265 enum machine_mode address_mode;
2266 struct mem_attrs attrs, *defattrs;
2267
2268 attrs = *get_mem_attrs (memref);
2269 address_mode = get_address_mode (memref);
2270 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2271
2272 /* At this point we don't know _why_ the address is invalid. It
2273 could have secondary memory references, multiplies or anything.
2274
2275 However, if we did go and rearrange things, we can wind up not
2276 being able to recognize the magic around pic_offset_table_rtx.
2277 This stuff is fragile, and is yet another example of why it is
2278 bad to expose PIC machinery too early. */
2279 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2280 attrs.addrspace)
2281 && GET_CODE (addr) == PLUS
2282 && XEXP (addr, 0) == pic_offset_table_rtx)
2283 {
2284 addr = force_reg (GET_MODE (addr), addr);
2285 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2286 }
2287
2288 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2289 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2290
2291 /* If there are no changes, just return the original memory reference. */
2292 if (new_rtx == memref)
2293 return new_rtx;
2294
2295 /* Update the alignment to reflect the offset. Reset the offset, which
2296 we don't know. */
2297 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2298 attrs.offset_known_p = false;
2299 attrs.size_known_p = defattrs->size_known_p;
2300 attrs.size = defattrs->size;
2301 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2302 set_mem_attrs (new_rtx, &attrs);
2303 return new_rtx;
2304 }
2305
2306 /* Return a memory reference like MEMREF, but with its address changed to
2307 ADDR. The caller is asserting that the actual piece of memory pointed
2308 to is the same, just the form of the address is being changed, such as
2309 by putting something into a register. INPLACE is true if any changes
2310 can be made directly to MEMREF or false if MEMREF must be treated as
2311 immutable. */
2312
2313 rtx
2314 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2315 {
2316 /* change_address_1 copies the memory attribute structure without change
2317 and that's exactly what we want here. */
2318 update_temp_slot_address (XEXP (memref, 0), addr);
2319 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2320 }
2321
2322 /* Likewise, but the reference is not required to be valid. */
2323
2324 rtx
2325 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2326 {
2327 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2328 }
2329
2330 /* Return a memory reference like MEMREF, but with its mode widened to
2331 MODE and offset by OFFSET. This would be used by targets that e.g.
2332 cannot issue QImode memory operations and have to use SImode memory
2333 operations plus masking logic. */
2334
2335 rtx
2336 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2337 {
2338 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2339 struct mem_attrs attrs;
2340 unsigned int size = GET_MODE_SIZE (mode);
2341
2342 /* If there are no changes, just return the original memory reference. */
2343 if (new_rtx == memref)
2344 return new_rtx;
2345
2346 attrs = *get_mem_attrs (new_rtx);
2347
2348 /* If we don't know what offset we were at within the expression, then
2349 we can't know if we've overstepped the bounds. */
2350 if (! attrs.offset_known_p)
2351 attrs.expr = NULL_TREE;
2352
2353 while (attrs.expr)
2354 {
2355 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2356 {
2357 tree field = TREE_OPERAND (attrs.expr, 1);
2358 tree offset = component_ref_field_offset (attrs.expr);
2359
2360 if (! DECL_SIZE_UNIT (field))
2361 {
2362 attrs.expr = NULL_TREE;
2363 break;
2364 }
2365
2366 /* Is the field at least as large as the access? If so, ok,
2367 otherwise strip back to the containing structure. */
2368 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2369 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2370 && attrs.offset >= 0)
2371 break;
2372
2373 if (! tree_fits_uhwi_p (offset))
2374 {
2375 attrs.expr = NULL_TREE;
2376 break;
2377 }
2378
2379 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2380 attrs.offset += tree_to_uhwi (offset);
2381 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2382 / BITS_PER_UNIT);
2383 }
2384 /* Similarly for the decl. */
2385 else if (DECL_P (attrs.expr)
2386 && DECL_SIZE_UNIT (attrs.expr)
2387 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2388 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2389 && (! attrs.offset_known_p || attrs.offset >= 0))
2390 break;
2391 else
2392 {
2393 /* The widened memory access overflows the expression, which means
2394 that it could alias another expression. Zap it. */
2395 attrs.expr = NULL_TREE;
2396 break;
2397 }
2398 }
2399
2400 if (! attrs.expr)
2401 attrs.offset_known_p = false;
2402
2403 /* The widened memory may alias other stuff, so zap the alias set. */
2404 /* ??? Maybe use get_alias_set on any remaining expression. */
2405 attrs.alias = 0;
2406 attrs.size_known_p = true;
2407 attrs.size = size;
2408 set_mem_attrs (new_rtx, &attrs);
2409 return new_rtx;
2410 }
2411 \f
2412 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2413 static GTY(()) tree spill_slot_decl;
2414
2415 tree
2416 get_spill_slot_decl (bool force_build_p)
2417 {
2418 tree d = spill_slot_decl;
2419 rtx rd;
2420 struct mem_attrs attrs;
2421
2422 if (d || !force_build_p)
2423 return d;
2424
2425 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2426 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2427 DECL_ARTIFICIAL (d) = 1;
2428 DECL_IGNORED_P (d) = 1;
2429 TREE_USED (d) = 1;
2430 spill_slot_decl = d;
2431
2432 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2433 MEM_NOTRAP_P (rd) = 1;
2434 attrs = *mode_mem_attrs[(int) BLKmode];
2435 attrs.alias = new_alias_set ();
2436 attrs.expr = d;
2437 set_mem_attrs (rd, &attrs);
2438 SET_DECL_RTL (d, rd);
2439
2440 return d;
2441 }
2442
2443 /* Given MEM, a result from assign_stack_local, fill in the memory
2444 attributes as appropriate for a register allocator spill slot.
2445 These slots are not aliasable by other memory. We arrange for
2446 them all to use a single MEM_EXPR, so that the aliasing code can
2447 work properly in the case of shared spill slots. */
2448
2449 void
2450 set_mem_attrs_for_spill (rtx mem)
2451 {
2452 struct mem_attrs attrs;
2453 rtx addr;
2454
2455 attrs = *get_mem_attrs (mem);
2456 attrs.expr = get_spill_slot_decl (true);
2457 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2458 attrs.addrspace = ADDR_SPACE_GENERIC;
2459
2460 /* We expect the incoming memory to be of the form:
2461 (mem:MODE (plus (reg sfp) (const_int offset)))
2462 with perhaps the plus missing for offset = 0. */
2463 addr = XEXP (mem, 0);
2464 attrs.offset_known_p = true;
2465 attrs.offset = 0;
2466 if (GET_CODE (addr) == PLUS
2467 && CONST_INT_P (XEXP (addr, 1)))
2468 attrs.offset = INTVAL (XEXP (addr, 1));
2469
2470 set_mem_attrs (mem, &attrs);
2471 MEM_NOTRAP_P (mem) = 1;
2472 }
2473 \f
2474 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2475
2476 rtx
2477 gen_label_rtx (void)
2478 {
2479 return gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2480 NULL, label_num++, NULL);
2481 }
2482 \f
2483 /* For procedure integration. */
2484
2485 /* Install new pointers to the first and last insns in the chain.
2486 Also, set cur_insn_uid to one higher than the last in use.
2487 Used for an inline-procedure after copying the insn chain. */
2488
2489 void
2490 set_new_first_and_last_insn (rtx first, rtx last)
2491 {
2492 rtx insn;
2493
2494 set_first_insn (first);
2495 set_last_insn (last);
2496 cur_insn_uid = 0;
2497
2498 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2499 {
2500 int debug_count = 0;
2501
2502 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2503 cur_debug_insn_uid = 0;
2504
2505 for (insn = first; insn; insn = NEXT_INSN (insn))
2506 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2507 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2508 else
2509 {
2510 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2511 if (DEBUG_INSN_P (insn))
2512 debug_count++;
2513 }
2514
2515 if (debug_count)
2516 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2517 else
2518 cur_debug_insn_uid++;
2519 }
2520 else
2521 for (insn = first; insn; insn = NEXT_INSN (insn))
2522 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2523
2524 cur_insn_uid++;
2525 }
2526 \f
2527 /* Go through all the RTL insn bodies and copy any invalid shared
2528 structure. This routine should only be called once. */
2529
2530 static void
2531 unshare_all_rtl_1 (rtx insn)
2532 {
2533 /* Unshare just about everything else. */
2534 unshare_all_rtl_in_chain (insn);
2535
2536 /* Make sure the addresses of stack slots found outside the insn chain
2537 (such as, in DECL_RTL of a variable) are not shared
2538 with the insn chain.
2539
2540 This special care is necessary when the stack slot MEM does not
2541 actually appear in the insn chain. If it does appear, its address
2542 is unshared from all else at that point. */
2543 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2544 }
2545
2546 /* Go through all the RTL insn bodies and copy any invalid shared
2547 structure, again. This is a fairly expensive thing to do so it
2548 should be done sparingly. */
2549
2550 void
2551 unshare_all_rtl_again (rtx insn)
2552 {
2553 rtx p;
2554 tree decl;
2555
2556 for (p = insn; p; p = NEXT_INSN (p))
2557 if (INSN_P (p))
2558 {
2559 reset_used_flags (PATTERN (p));
2560 reset_used_flags (REG_NOTES (p));
2561 if (CALL_P (p))
2562 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2563 }
2564
2565 /* Make sure that virtual stack slots are not shared. */
2566 set_used_decls (DECL_INITIAL (cfun->decl));
2567
2568 /* Make sure that virtual parameters are not shared. */
2569 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2570 set_used_flags (DECL_RTL (decl));
2571
2572 reset_used_flags (stack_slot_list);
2573
2574 unshare_all_rtl_1 (insn);
2575 }
2576
2577 unsigned int
2578 unshare_all_rtl (void)
2579 {
2580 unshare_all_rtl_1 (get_insns ());
2581 return 0;
2582 }
2583
2584
2585 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2586 Recursively does the same for subexpressions. */
2587
2588 static void
2589 verify_rtx_sharing (rtx orig, rtx insn)
2590 {
2591 rtx x = orig;
2592 int i;
2593 enum rtx_code code;
2594 const char *format_ptr;
2595
2596 if (x == 0)
2597 return;
2598
2599 code = GET_CODE (x);
2600
2601 /* These types may be freely shared. */
2602
2603 switch (code)
2604 {
2605 case REG:
2606 case DEBUG_EXPR:
2607 case VALUE:
2608 CASE_CONST_ANY:
2609 case SYMBOL_REF:
2610 case LABEL_REF:
2611 case CODE_LABEL:
2612 case PC:
2613 case CC0:
2614 case RETURN:
2615 case SIMPLE_RETURN:
2616 case SCRATCH:
2617 /* SCRATCH must be shared because they represent distinct values. */
2618 return;
2619 case CLOBBER:
2620 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2621 clobbers or clobbers of hard registers that originated as pseudos.
2622 This is needed to allow safe register renaming. */
2623 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2625 return;
2626 break;
2627
2628 case CONST:
2629 if (shared_const_p (orig))
2630 return;
2631 break;
2632
2633 case MEM:
2634 /* A MEM is allowed to be shared if its address is constant. */
2635 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2636 || reload_completed || reload_in_progress)
2637 return;
2638
2639 break;
2640
2641 default:
2642 break;
2643 }
2644
2645 /* This rtx may not be shared. If it has already been seen,
2646 replace it with a copy of itself. */
2647 #ifdef ENABLE_CHECKING
2648 if (RTX_FLAG (x, used))
2649 {
2650 error ("invalid rtl sharing found in the insn");
2651 debug_rtx (insn);
2652 error ("shared rtx");
2653 debug_rtx (x);
2654 internal_error ("internal consistency failure");
2655 }
2656 #endif
2657 gcc_assert (!RTX_FLAG (x, used));
2658
2659 RTX_FLAG (x, used) = 1;
2660
2661 /* Now scan the subexpressions recursively. */
2662
2663 format_ptr = GET_RTX_FORMAT (code);
2664
2665 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2666 {
2667 switch (*format_ptr++)
2668 {
2669 case 'e':
2670 verify_rtx_sharing (XEXP (x, i), insn);
2671 break;
2672
2673 case 'E':
2674 if (XVEC (x, i) != NULL)
2675 {
2676 int j;
2677 int len = XVECLEN (x, i);
2678
2679 for (j = 0; j < len; j++)
2680 {
2681 /* We allow sharing of ASM_OPERANDS inside single
2682 instruction. */
2683 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2684 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2685 == ASM_OPERANDS))
2686 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2687 else
2688 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2689 }
2690 }
2691 break;
2692 }
2693 }
2694 return;
2695 }
2696
2697 /* Reset used-flags for INSN. */
2698
2699 static void
2700 reset_insn_used_flags (rtx insn)
2701 {
2702 gcc_assert (INSN_P (insn));
2703 reset_used_flags (PATTERN (insn));
2704 reset_used_flags (REG_NOTES (insn));
2705 if (CALL_P (insn))
2706 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2707 }
2708
2709 /* Go through all the RTL insn bodies and clear all the USED bits. */
2710
2711 static void
2712 reset_all_used_flags (void)
2713 {
2714 rtx p;
2715
2716 for (p = get_insns (); p; p = NEXT_INSN (p))
2717 if (INSN_P (p))
2718 {
2719 rtx pat = PATTERN (p);
2720 if (GET_CODE (pat) != SEQUENCE)
2721 reset_insn_used_flags (p);
2722 else
2723 {
2724 gcc_assert (REG_NOTES (p) == NULL);
2725 for (int i = 0; i < XVECLEN (pat, 0); i++)
2726 {
2727 rtx insn = XVECEXP (pat, 0, i);
2728 if (INSN_P (insn))
2729 reset_insn_used_flags (insn);
2730 }
2731 }
2732 }
2733 }
2734
2735 /* Verify sharing in INSN. */
2736
2737 static void
2738 verify_insn_sharing (rtx insn)
2739 {
2740 gcc_assert (INSN_P (insn));
2741 reset_used_flags (PATTERN (insn));
2742 reset_used_flags (REG_NOTES (insn));
2743 if (CALL_P (insn))
2744 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2745 }
2746
2747 /* Go through all the RTL insn bodies and check that there is no unexpected
2748 sharing in between the subexpressions. */
2749
2750 DEBUG_FUNCTION void
2751 verify_rtl_sharing (void)
2752 {
2753 rtx p;
2754
2755 timevar_push (TV_VERIFY_RTL_SHARING);
2756
2757 reset_all_used_flags ();
2758
2759 for (p = get_insns (); p; p = NEXT_INSN (p))
2760 if (INSN_P (p))
2761 {
2762 rtx pat = PATTERN (p);
2763 if (GET_CODE (pat) != SEQUENCE)
2764 verify_insn_sharing (p);
2765 else
2766 for (int i = 0; i < XVECLEN (pat, 0); i++)
2767 {
2768 rtx insn = XVECEXP (pat, 0, i);
2769 if (INSN_P (insn))
2770 verify_insn_sharing (insn);
2771 }
2772 }
2773
2774 reset_all_used_flags ();
2775
2776 timevar_pop (TV_VERIFY_RTL_SHARING);
2777 }
2778
2779 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2780 Assumes the mark bits are cleared at entry. */
2781
2782 void
2783 unshare_all_rtl_in_chain (rtx insn)
2784 {
2785 for (; insn; insn = NEXT_INSN (insn))
2786 if (INSN_P (insn))
2787 {
2788 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2789 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2790 if (CALL_P (insn))
2791 CALL_INSN_FUNCTION_USAGE (insn)
2792 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2793 }
2794 }
2795
2796 /* Go through all virtual stack slots of a function and mark them as
2797 shared. We never replace the DECL_RTLs themselves with a copy,
2798 but expressions mentioned into a DECL_RTL cannot be shared with
2799 expressions in the instruction stream.
2800
2801 Note that reload may convert pseudo registers into memories in-place.
2802 Pseudo registers are always shared, but MEMs never are. Thus if we
2803 reset the used flags on MEMs in the instruction stream, we must set
2804 them again on MEMs that appear in DECL_RTLs. */
2805
2806 static void
2807 set_used_decls (tree blk)
2808 {
2809 tree t;
2810
2811 /* Mark decls. */
2812 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2813 if (DECL_RTL_SET_P (t))
2814 set_used_flags (DECL_RTL (t));
2815
2816 /* Now process sub-blocks. */
2817 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2818 set_used_decls (t);
2819 }
2820
2821 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2822 Recursively does the same for subexpressions. Uses
2823 copy_rtx_if_shared_1 to reduce stack space. */
2824
2825 rtx
2826 copy_rtx_if_shared (rtx orig)
2827 {
2828 copy_rtx_if_shared_1 (&orig);
2829 return orig;
2830 }
2831
2832 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2833 use. Recursively does the same for subexpressions. */
2834
2835 static void
2836 copy_rtx_if_shared_1 (rtx *orig1)
2837 {
2838 rtx x;
2839 int i;
2840 enum rtx_code code;
2841 rtx *last_ptr;
2842 const char *format_ptr;
2843 int copied = 0;
2844 int length;
2845
2846 /* Repeat is used to turn tail-recursion into iteration. */
2847 repeat:
2848 x = *orig1;
2849
2850 if (x == 0)
2851 return;
2852
2853 code = GET_CODE (x);
2854
2855 /* These types may be freely shared. */
2856
2857 switch (code)
2858 {
2859 case REG:
2860 case DEBUG_EXPR:
2861 case VALUE:
2862 CASE_CONST_ANY:
2863 case SYMBOL_REF:
2864 case LABEL_REF:
2865 case CODE_LABEL:
2866 case PC:
2867 case CC0:
2868 case RETURN:
2869 case SIMPLE_RETURN:
2870 case SCRATCH:
2871 /* SCRATCH must be shared because they represent distinct values. */
2872 return;
2873 case CLOBBER:
2874 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2875 clobbers or clobbers of hard registers that originated as pseudos.
2876 This is needed to allow safe register renaming. */
2877 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2878 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2879 return;
2880 break;
2881
2882 case CONST:
2883 if (shared_const_p (x))
2884 return;
2885 break;
2886
2887 case DEBUG_INSN:
2888 case INSN:
2889 case JUMP_INSN:
2890 case CALL_INSN:
2891 case NOTE:
2892 case BARRIER:
2893 /* The chain of insns is not being copied. */
2894 return;
2895
2896 default:
2897 break;
2898 }
2899
2900 /* This rtx may not be shared. If it has already been seen,
2901 replace it with a copy of itself. */
2902
2903 if (RTX_FLAG (x, used))
2904 {
2905 x = shallow_copy_rtx (x);
2906 copied = 1;
2907 }
2908 RTX_FLAG (x, used) = 1;
2909
2910 /* Now scan the subexpressions recursively.
2911 We can store any replaced subexpressions directly into X
2912 since we know X is not shared! Any vectors in X
2913 must be copied if X was copied. */
2914
2915 format_ptr = GET_RTX_FORMAT (code);
2916 length = GET_RTX_LENGTH (code);
2917 last_ptr = NULL;
2918
2919 for (i = 0; i < length; i++)
2920 {
2921 switch (*format_ptr++)
2922 {
2923 case 'e':
2924 if (last_ptr)
2925 copy_rtx_if_shared_1 (last_ptr);
2926 last_ptr = &XEXP (x, i);
2927 break;
2928
2929 case 'E':
2930 if (XVEC (x, i) != NULL)
2931 {
2932 int j;
2933 int len = XVECLEN (x, i);
2934
2935 /* Copy the vector iff I copied the rtx and the length
2936 is nonzero. */
2937 if (copied && len > 0)
2938 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2939
2940 /* Call recursively on all inside the vector. */
2941 for (j = 0; j < len; j++)
2942 {
2943 if (last_ptr)
2944 copy_rtx_if_shared_1 (last_ptr);
2945 last_ptr = &XVECEXP (x, i, j);
2946 }
2947 }
2948 break;
2949 }
2950 }
2951 *orig1 = x;
2952 if (last_ptr)
2953 {
2954 orig1 = last_ptr;
2955 goto repeat;
2956 }
2957 return;
2958 }
2959
2960 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2961
2962 static void
2963 mark_used_flags (rtx x, int flag)
2964 {
2965 int i, j;
2966 enum rtx_code code;
2967 const char *format_ptr;
2968 int length;
2969
2970 /* Repeat is used to turn tail-recursion into iteration. */
2971 repeat:
2972 if (x == 0)
2973 return;
2974
2975 code = GET_CODE (x);
2976
2977 /* These types may be freely shared so we needn't do any resetting
2978 for them. */
2979
2980 switch (code)
2981 {
2982 case REG:
2983 case DEBUG_EXPR:
2984 case VALUE:
2985 CASE_CONST_ANY:
2986 case SYMBOL_REF:
2987 case CODE_LABEL:
2988 case PC:
2989 case CC0:
2990 case RETURN:
2991 case SIMPLE_RETURN:
2992 return;
2993
2994 case DEBUG_INSN:
2995 case INSN:
2996 case JUMP_INSN:
2997 case CALL_INSN:
2998 case NOTE:
2999 case LABEL_REF:
3000 case BARRIER:
3001 /* The chain of insns is not being copied. */
3002 return;
3003
3004 default:
3005 break;
3006 }
3007
3008 RTX_FLAG (x, used) = flag;
3009
3010 format_ptr = GET_RTX_FORMAT (code);
3011 length = GET_RTX_LENGTH (code);
3012
3013 for (i = 0; i < length; i++)
3014 {
3015 switch (*format_ptr++)
3016 {
3017 case 'e':
3018 if (i == length-1)
3019 {
3020 x = XEXP (x, i);
3021 goto repeat;
3022 }
3023 mark_used_flags (XEXP (x, i), flag);
3024 break;
3025
3026 case 'E':
3027 for (j = 0; j < XVECLEN (x, i); j++)
3028 mark_used_flags (XVECEXP (x, i, j), flag);
3029 break;
3030 }
3031 }
3032 }
3033
3034 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3035 to look for shared sub-parts. */
3036
3037 void
3038 reset_used_flags (rtx x)
3039 {
3040 mark_used_flags (x, 0);
3041 }
3042
3043 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3044 to look for shared sub-parts. */
3045
3046 void
3047 set_used_flags (rtx x)
3048 {
3049 mark_used_flags (x, 1);
3050 }
3051 \f
3052 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3053 Return X or the rtx for the pseudo reg the value of X was copied into.
3054 OTHER must be valid as a SET_DEST. */
3055
3056 rtx
3057 make_safe_from (rtx x, rtx other)
3058 {
3059 while (1)
3060 switch (GET_CODE (other))
3061 {
3062 case SUBREG:
3063 other = SUBREG_REG (other);
3064 break;
3065 case STRICT_LOW_PART:
3066 case SIGN_EXTEND:
3067 case ZERO_EXTEND:
3068 other = XEXP (other, 0);
3069 break;
3070 default:
3071 goto done;
3072 }
3073 done:
3074 if ((MEM_P (other)
3075 && ! CONSTANT_P (x)
3076 && !REG_P (x)
3077 && GET_CODE (x) != SUBREG)
3078 || (REG_P (other)
3079 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3080 || reg_mentioned_p (other, x))))
3081 {
3082 rtx temp = gen_reg_rtx (GET_MODE (x));
3083 emit_move_insn (temp, x);
3084 return temp;
3085 }
3086 return x;
3087 }
3088 \f
3089 /* Emission of insns (adding them to the doubly-linked list). */
3090
3091 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3092
3093 rtx
3094 get_last_insn_anywhere (void)
3095 {
3096 struct sequence_stack *stack;
3097 if (get_last_insn ())
3098 return get_last_insn ();
3099 for (stack = seq_stack; stack; stack = stack->next)
3100 if (stack->last != 0)
3101 return stack->last;
3102 return 0;
3103 }
3104
3105 /* Return the first nonnote insn emitted in current sequence or current
3106 function. This routine looks inside SEQUENCEs. */
3107
3108 rtx
3109 get_first_nonnote_insn (void)
3110 {
3111 rtx insn = get_insns ();
3112
3113 if (insn)
3114 {
3115 if (NOTE_P (insn))
3116 for (insn = next_insn (insn);
3117 insn && NOTE_P (insn);
3118 insn = next_insn (insn))
3119 continue;
3120 else
3121 {
3122 if (NONJUMP_INSN_P (insn)
3123 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3124 insn = XVECEXP (PATTERN (insn), 0, 0);
3125 }
3126 }
3127
3128 return insn;
3129 }
3130
3131 /* Return the last nonnote insn emitted in current sequence or current
3132 function. This routine looks inside SEQUENCEs. */
3133
3134 rtx
3135 get_last_nonnote_insn (void)
3136 {
3137 rtx insn = get_last_insn ();
3138
3139 if (insn)
3140 {
3141 if (NOTE_P (insn))
3142 for (insn = previous_insn (insn);
3143 insn && NOTE_P (insn);
3144 insn = previous_insn (insn))
3145 continue;
3146 else
3147 {
3148 if (NONJUMP_INSN_P (insn)
3149 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3150 insn = XVECEXP (PATTERN (insn), 0,
3151 XVECLEN (PATTERN (insn), 0) - 1);
3152 }
3153 }
3154
3155 return insn;
3156 }
3157
3158 /* Return the number of actual (non-debug) insns emitted in this
3159 function. */
3160
3161 int
3162 get_max_insn_count (void)
3163 {
3164 int n = cur_insn_uid;
3165
3166 /* The table size must be stable across -g, to avoid codegen
3167 differences due to debug insns, and not be affected by
3168 -fmin-insn-uid, to avoid excessive table size and to simplify
3169 debugging of -fcompare-debug failures. */
3170 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3171 n -= cur_debug_insn_uid;
3172 else
3173 n -= MIN_NONDEBUG_INSN_UID;
3174
3175 return n;
3176 }
3177
3178 \f
3179 /* Return the next insn. If it is a SEQUENCE, return the first insn
3180 of the sequence. */
3181
3182 rtx_insn *
3183 next_insn (rtx insn)
3184 {
3185 if (insn)
3186 {
3187 insn = NEXT_INSN (insn);
3188 if (insn && NONJUMP_INSN_P (insn)
3189 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3190 insn = XVECEXP (PATTERN (insn), 0, 0);
3191 }
3192
3193 return safe_as_a <rtx_insn *> (insn);
3194 }
3195
3196 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3197 of the sequence. */
3198
3199 rtx_insn *
3200 previous_insn (rtx insn)
3201 {
3202 if (insn)
3203 {
3204 insn = PREV_INSN (insn);
3205 if (insn && NONJUMP_INSN_P (insn)
3206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3207 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3208 }
3209
3210 return safe_as_a <rtx_insn *> (insn);
3211 }
3212
3213 /* Return the next insn after INSN that is not a NOTE. This routine does not
3214 look inside SEQUENCEs. */
3215
3216 rtx_insn *
3217 next_nonnote_insn (rtx insn)
3218 {
3219 while (insn)
3220 {
3221 insn = NEXT_INSN (insn);
3222 if (insn == 0 || !NOTE_P (insn))
3223 break;
3224 }
3225
3226 return safe_as_a <rtx_insn *> (insn);
3227 }
3228
3229 /* Return the next insn after INSN that is not a NOTE, but stop the
3230 search before we enter another basic block. This routine does not
3231 look inside SEQUENCEs. */
3232
3233 rtx_insn *
3234 next_nonnote_insn_bb (rtx insn)
3235 {
3236 while (insn)
3237 {
3238 insn = NEXT_INSN (insn);
3239 if (insn == 0 || !NOTE_P (insn))
3240 break;
3241 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3242 return NULL;
3243 }
3244
3245 return safe_as_a <rtx_insn *> (insn);
3246 }
3247
3248 /* Return the previous insn before INSN that is not a NOTE. This routine does
3249 not look inside SEQUENCEs. */
3250
3251 rtx_insn *
3252 prev_nonnote_insn (rtx insn)
3253 {
3254 while (insn)
3255 {
3256 insn = PREV_INSN (insn);
3257 if (insn == 0 || !NOTE_P (insn))
3258 break;
3259 }
3260
3261 return safe_as_a <rtx_insn *> (insn);
3262 }
3263
3264 /* Return the previous insn before INSN that is not a NOTE, but stop
3265 the search before we enter another basic block. This routine does
3266 not look inside SEQUENCEs. */
3267
3268 rtx_insn *
3269 prev_nonnote_insn_bb (rtx insn)
3270 {
3271 while (insn)
3272 {
3273 insn = PREV_INSN (insn);
3274 if (insn == 0 || !NOTE_P (insn))
3275 break;
3276 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3277 return NULL;
3278 }
3279
3280 return safe_as_a <rtx_insn *> (insn);
3281 }
3282
3283 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3284 routine does not look inside SEQUENCEs. */
3285
3286 rtx_insn *
3287 next_nondebug_insn (rtx insn)
3288 {
3289 while (insn)
3290 {
3291 insn = NEXT_INSN (insn);
3292 if (insn == 0 || !DEBUG_INSN_P (insn))
3293 break;
3294 }
3295
3296 return safe_as_a <rtx_insn *> (insn);
3297 }
3298
3299 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3300 This routine does not look inside SEQUENCEs. */
3301
3302 rtx_insn *
3303 prev_nondebug_insn (rtx insn)
3304 {
3305 while (insn)
3306 {
3307 insn = PREV_INSN (insn);
3308 if (insn == 0 || !DEBUG_INSN_P (insn))
3309 break;
3310 }
3311
3312 return safe_as_a <rtx_insn *> (insn);
3313 }
3314
3315 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3316 This routine does not look inside SEQUENCEs. */
3317
3318 rtx_insn *
3319 next_nonnote_nondebug_insn (rtx insn)
3320 {
3321 while (insn)
3322 {
3323 insn = NEXT_INSN (insn);
3324 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3325 break;
3326 }
3327
3328 return safe_as_a <rtx_insn *> (insn);
3329 }
3330
3331 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3332 This routine does not look inside SEQUENCEs. */
3333
3334 rtx_insn *
3335 prev_nonnote_nondebug_insn (rtx insn)
3336 {
3337 while (insn)
3338 {
3339 insn = PREV_INSN (insn);
3340 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3341 break;
3342 }
3343
3344 return safe_as_a <rtx_insn *> (insn);
3345 }
3346
3347 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3348 or 0, if there is none. This routine does not look inside
3349 SEQUENCEs. */
3350
3351 rtx_insn *
3352 next_real_insn (rtx insn)
3353 {
3354 while (insn)
3355 {
3356 insn = NEXT_INSN (insn);
3357 if (insn == 0 || INSN_P (insn))
3358 break;
3359 }
3360
3361 return safe_as_a <rtx_insn *> (insn);
3362 }
3363
3364 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3365 or 0, if there is none. This routine does not look inside
3366 SEQUENCEs. */
3367
3368 rtx_insn *
3369 prev_real_insn (rtx insn)
3370 {
3371 while (insn)
3372 {
3373 insn = PREV_INSN (insn);
3374 if (insn == 0 || INSN_P (insn))
3375 break;
3376 }
3377
3378 return safe_as_a <rtx_insn *> (insn);
3379 }
3380
3381 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3382 This routine does not look inside SEQUENCEs. */
3383
3384 rtx
3385 last_call_insn (void)
3386 {
3387 rtx insn;
3388
3389 for (insn = get_last_insn ();
3390 insn && !CALL_P (insn);
3391 insn = PREV_INSN (insn))
3392 ;
3393
3394 return insn;
3395 }
3396
3397 /* Find the next insn after INSN that really does something. This routine
3398 does not look inside SEQUENCEs. After reload this also skips over
3399 standalone USE and CLOBBER insn. */
3400
3401 int
3402 active_insn_p (const_rtx insn)
3403 {
3404 return (CALL_P (insn) || JUMP_P (insn)
3405 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3406 || (NONJUMP_INSN_P (insn)
3407 && (! reload_completed
3408 || (GET_CODE (PATTERN (insn)) != USE
3409 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3410 }
3411
3412 rtx_insn *
3413 next_active_insn (rtx insn)
3414 {
3415 while (insn)
3416 {
3417 insn = NEXT_INSN (insn);
3418 if (insn == 0 || active_insn_p (insn))
3419 break;
3420 }
3421
3422 return safe_as_a <rtx_insn *> (insn);
3423 }
3424
3425 /* Find the last insn before INSN that really does something. This routine
3426 does not look inside SEQUENCEs. After reload this also skips over
3427 standalone USE and CLOBBER insn. */
3428
3429 rtx_insn *
3430 prev_active_insn (rtx insn)
3431 {
3432 while (insn)
3433 {
3434 insn = PREV_INSN (insn);
3435 if (insn == 0 || active_insn_p (insn))
3436 break;
3437 }
3438
3439 return safe_as_a <rtx_insn *> (insn);
3440 }
3441 \f
3442 #ifdef HAVE_cc0
3443 /* Return the next insn that uses CC0 after INSN, which is assumed to
3444 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3445 applied to the result of this function should yield INSN).
3446
3447 Normally, this is simply the next insn. However, if a REG_CC_USER note
3448 is present, it contains the insn that uses CC0.
3449
3450 Return 0 if we can't find the insn. */
3451
3452 rtx
3453 next_cc0_user (rtx insn)
3454 {
3455 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3456
3457 if (note)
3458 return XEXP (note, 0);
3459
3460 insn = next_nonnote_insn (insn);
3461 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3462 insn = XVECEXP (PATTERN (insn), 0, 0);
3463
3464 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3465 return insn;
3466
3467 return 0;
3468 }
3469
3470 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3471 note, it is the previous insn. */
3472
3473 rtx
3474 prev_cc0_setter (rtx insn)
3475 {
3476 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3477
3478 if (note)
3479 return XEXP (note, 0);
3480
3481 insn = prev_nonnote_insn (insn);
3482 gcc_assert (sets_cc0_p (PATTERN (insn)));
3483
3484 return insn;
3485 }
3486 #endif
3487
3488 #ifdef AUTO_INC_DEC
3489 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3490
3491 static int
3492 find_auto_inc (rtx *xp, void *data)
3493 {
3494 rtx x = *xp;
3495 rtx reg = (rtx) data;
3496
3497 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3498 return 0;
3499
3500 switch (GET_CODE (x))
3501 {
3502 case PRE_DEC:
3503 case PRE_INC:
3504 case POST_DEC:
3505 case POST_INC:
3506 case PRE_MODIFY:
3507 case POST_MODIFY:
3508 if (rtx_equal_p (reg, XEXP (x, 0)))
3509 return 1;
3510 break;
3511
3512 default:
3513 gcc_unreachable ();
3514 }
3515 return -1;
3516 }
3517 #endif
3518
3519 /* Increment the label uses for all labels present in rtx. */
3520
3521 static void
3522 mark_label_nuses (rtx x)
3523 {
3524 enum rtx_code code;
3525 int i, j;
3526 const char *fmt;
3527
3528 code = GET_CODE (x);
3529 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3530 LABEL_NUSES (XEXP (x, 0))++;
3531
3532 fmt = GET_RTX_FORMAT (code);
3533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3534 {
3535 if (fmt[i] == 'e')
3536 mark_label_nuses (XEXP (x, i));
3537 else if (fmt[i] == 'E')
3538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3539 mark_label_nuses (XVECEXP (x, i, j));
3540 }
3541 }
3542
3543 \f
3544 /* Try splitting insns that can be split for better scheduling.
3545 PAT is the pattern which might split.
3546 TRIAL is the insn providing PAT.
3547 LAST is nonzero if we should return the last insn of the sequence produced.
3548
3549 If this routine succeeds in splitting, it returns the first or last
3550 replacement insn depending on the value of LAST. Otherwise, it
3551 returns TRIAL. If the insn to be returned can be split, it will be. */
3552
3553 rtx
3554 try_split (rtx pat, rtx trial, int last)
3555 {
3556 rtx before = PREV_INSN (trial);
3557 rtx after = NEXT_INSN (trial);
3558 int has_barrier = 0;
3559 rtx note, seq, tem;
3560 int probability;
3561 rtx insn_last, insn;
3562 int njumps = 0;
3563 rtx call_insn = NULL_RTX;
3564
3565 /* We're not good at redistributing frame information. */
3566 if (RTX_FRAME_RELATED_P (trial))
3567 return trial;
3568
3569 if (any_condjump_p (trial)
3570 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3571 split_branch_probability = XINT (note, 0);
3572 probability = split_branch_probability;
3573
3574 seq = split_insns (pat, trial);
3575
3576 split_branch_probability = -1;
3577
3578 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3579 We may need to handle this specially. */
3580 if (after && BARRIER_P (after))
3581 {
3582 has_barrier = 1;
3583 after = NEXT_INSN (after);
3584 }
3585
3586 if (!seq)
3587 return trial;
3588
3589 /* Avoid infinite loop if any insn of the result matches
3590 the original pattern. */
3591 insn_last = seq;
3592 while (1)
3593 {
3594 if (INSN_P (insn_last)
3595 && rtx_equal_p (PATTERN (insn_last), pat))
3596 return trial;
3597 if (!NEXT_INSN (insn_last))
3598 break;
3599 insn_last = NEXT_INSN (insn_last);
3600 }
3601
3602 /* We will be adding the new sequence to the function. The splitters
3603 may have introduced invalid RTL sharing, so unshare the sequence now. */
3604 unshare_all_rtl_in_chain (seq);
3605
3606 /* Mark labels and copy flags. */
3607 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3608 {
3609 if (JUMP_P (insn))
3610 {
3611 if (JUMP_P (trial))
3612 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3613 mark_jump_label (PATTERN (insn), insn, 0);
3614 njumps++;
3615 if (probability != -1
3616 && any_condjump_p (insn)
3617 && !find_reg_note (insn, REG_BR_PROB, 0))
3618 {
3619 /* We can preserve the REG_BR_PROB notes only if exactly
3620 one jump is created, otherwise the machine description
3621 is responsible for this step using
3622 split_branch_probability variable. */
3623 gcc_assert (njumps == 1);
3624 add_int_reg_note (insn, REG_BR_PROB, probability);
3625 }
3626 }
3627 }
3628
3629 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3630 in SEQ and copy any additional information across. */
3631 if (CALL_P (trial))
3632 {
3633 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3634 if (CALL_P (insn))
3635 {
3636 rtx next, *p;
3637
3638 gcc_assert (call_insn == NULL_RTX);
3639 call_insn = insn;
3640
3641 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3642 target may have explicitly specified. */
3643 p = &CALL_INSN_FUNCTION_USAGE (insn);
3644 while (*p)
3645 p = &XEXP (*p, 1);
3646 *p = CALL_INSN_FUNCTION_USAGE (trial);
3647
3648 /* If the old call was a sibling call, the new one must
3649 be too. */
3650 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3651
3652 /* If the new call is the last instruction in the sequence,
3653 it will effectively replace the old call in-situ. Otherwise
3654 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3655 so that it comes immediately after the new call. */
3656 if (NEXT_INSN (insn))
3657 for (next = NEXT_INSN (trial);
3658 next && NOTE_P (next);
3659 next = NEXT_INSN (next))
3660 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3661 {
3662 remove_insn (next);
3663 add_insn_after (next, insn, NULL);
3664 break;
3665 }
3666 }
3667 }
3668
3669 /* Copy notes, particularly those related to the CFG. */
3670 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3671 {
3672 switch (REG_NOTE_KIND (note))
3673 {
3674 case REG_EH_REGION:
3675 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3676 break;
3677
3678 case REG_NORETURN:
3679 case REG_SETJMP:
3680 case REG_TM:
3681 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3682 {
3683 if (CALL_P (insn))
3684 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3685 }
3686 break;
3687
3688 case REG_NON_LOCAL_GOTO:
3689 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3690 {
3691 if (JUMP_P (insn))
3692 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3693 }
3694 break;
3695
3696 #ifdef AUTO_INC_DEC
3697 case REG_INC:
3698 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3699 {
3700 rtx reg = XEXP (note, 0);
3701 if (!FIND_REG_INC_NOTE (insn, reg)
3702 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3703 add_reg_note (insn, REG_INC, reg);
3704 }
3705 break;
3706 #endif
3707
3708 case REG_ARGS_SIZE:
3709 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3710 break;
3711
3712 case REG_CALL_DECL:
3713 gcc_assert (call_insn != NULL_RTX);
3714 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3715 break;
3716
3717 default:
3718 break;
3719 }
3720 }
3721
3722 /* If there are LABELS inside the split insns increment the
3723 usage count so we don't delete the label. */
3724 if (INSN_P (trial))
3725 {
3726 insn = insn_last;
3727 while (insn != NULL_RTX)
3728 {
3729 /* JUMP_P insns have already been "marked" above. */
3730 if (NONJUMP_INSN_P (insn))
3731 mark_label_nuses (PATTERN (insn));
3732
3733 insn = PREV_INSN (insn);
3734 }
3735 }
3736
3737 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3738
3739 delete_insn (trial);
3740 if (has_barrier)
3741 emit_barrier_after (tem);
3742
3743 /* Recursively call try_split for each new insn created; by the
3744 time control returns here that insn will be fully split, so
3745 set LAST and continue from the insn after the one returned.
3746 We can't use next_active_insn here since AFTER may be a note.
3747 Ignore deleted insns, which can be occur if not optimizing. */
3748 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3749 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3750 tem = try_split (PATTERN (tem), tem, 1);
3751
3752 /* Return either the first or the last insn, depending on which was
3753 requested. */
3754 return last
3755 ? (after ? PREV_INSN (after) : get_last_insn ())
3756 : NEXT_INSN (before);
3757 }
3758 \f
3759 /* Make and return an INSN rtx, initializing all its slots.
3760 Store PATTERN in the pattern slots. */
3761
3762 rtx
3763 make_insn_raw (rtx pattern)
3764 {
3765 rtx insn;
3766
3767 insn = rtx_alloc (INSN);
3768
3769 INSN_UID (insn) = cur_insn_uid++;
3770 PATTERN (insn) = pattern;
3771 INSN_CODE (insn) = -1;
3772 REG_NOTES (insn) = NULL;
3773 INSN_LOCATION (insn) = curr_insn_location ();
3774 BLOCK_FOR_INSN (insn) = NULL;
3775
3776 #ifdef ENABLE_RTL_CHECKING
3777 if (insn
3778 && INSN_P (insn)
3779 && (returnjump_p (insn)
3780 || (GET_CODE (insn) == SET
3781 && SET_DEST (insn) == pc_rtx)))
3782 {
3783 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3784 debug_rtx (insn);
3785 }
3786 #endif
3787
3788 return insn;
3789 }
3790
3791 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3792
3793 static rtx
3794 make_debug_insn_raw (rtx pattern)
3795 {
3796 rtx insn;
3797
3798 insn = rtx_alloc (DEBUG_INSN);
3799 INSN_UID (insn) = cur_debug_insn_uid++;
3800 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3801 INSN_UID (insn) = cur_insn_uid++;
3802
3803 PATTERN (insn) = pattern;
3804 INSN_CODE (insn) = -1;
3805 REG_NOTES (insn) = NULL;
3806 INSN_LOCATION (insn) = curr_insn_location ();
3807 BLOCK_FOR_INSN (insn) = NULL;
3808
3809 return insn;
3810 }
3811
3812 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3813
3814 static rtx
3815 make_jump_insn_raw (rtx pattern)
3816 {
3817 rtx insn;
3818
3819 insn = rtx_alloc (JUMP_INSN);
3820 INSN_UID (insn) = cur_insn_uid++;
3821
3822 PATTERN (insn) = pattern;
3823 INSN_CODE (insn) = -1;
3824 REG_NOTES (insn) = NULL;
3825 JUMP_LABEL (insn) = NULL;
3826 INSN_LOCATION (insn) = curr_insn_location ();
3827 BLOCK_FOR_INSN (insn) = NULL;
3828
3829 return insn;
3830 }
3831
3832 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3833
3834 static rtx
3835 make_call_insn_raw (rtx pattern)
3836 {
3837 rtx insn;
3838
3839 insn = rtx_alloc (CALL_INSN);
3840 INSN_UID (insn) = cur_insn_uid++;
3841
3842 PATTERN (insn) = pattern;
3843 INSN_CODE (insn) = -1;
3844 REG_NOTES (insn) = NULL;
3845 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3846 INSN_LOCATION (insn) = curr_insn_location ();
3847 BLOCK_FOR_INSN (insn) = NULL;
3848
3849 return insn;
3850 }
3851
3852 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3853
3854 static rtx
3855 make_note_raw (enum insn_note subtype)
3856 {
3857 /* Some notes are never created this way at all. These notes are
3858 only created by patching out insns. */
3859 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3860 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3861
3862 rtx note = rtx_alloc (NOTE);
3863 INSN_UID (note) = cur_insn_uid++;
3864 NOTE_KIND (note) = subtype;
3865 BLOCK_FOR_INSN (note) = NULL;
3866 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3867 return note;
3868 }
3869 \f
3870 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3871 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3872 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3873
3874 static inline void
3875 link_insn_into_chain (rtx insn, rtx prev, rtx next)
3876 {
3877 SET_PREV_INSN (insn) = prev;
3878 SET_NEXT_INSN (insn) = next;
3879 if (prev != NULL)
3880 {
3881 SET_NEXT_INSN (prev) = insn;
3882 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3883 {
3884 rtx sequence = PATTERN (prev);
3885 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3886 }
3887 }
3888 if (next != NULL)
3889 {
3890 SET_PREV_INSN (next) = insn;
3891 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3892 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3893 }
3894
3895 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3896 {
3897 rtx sequence = PATTERN (insn);
3898 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3899 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3900 }
3901 }
3902
3903 /* Add INSN to the end of the doubly-linked list.
3904 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3905
3906 void
3907 add_insn (rtx insn)
3908 {
3909 rtx prev = get_last_insn ();
3910 link_insn_into_chain (insn, prev, NULL);
3911 if (NULL == get_insns ())
3912 set_first_insn (insn);
3913 set_last_insn (insn);
3914 }
3915
3916 /* Add INSN into the doubly-linked list after insn AFTER. */
3917
3918 static void
3919 add_insn_after_nobb (rtx insn, rtx after)
3920 {
3921 rtx next = NEXT_INSN (after);
3922
3923 gcc_assert (!optimize || !INSN_DELETED_P (after));
3924
3925 link_insn_into_chain (insn, after, next);
3926
3927 if (next == NULL)
3928 {
3929 if (get_last_insn () == after)
3930 set_last_insn (insn);
3931 else
3932 {
3933 struct sequence_stack *stack = seq_stack;
3934 /* Scan all pending sequences too. */
3935 for (; stack; stack = stack->next)
3936 if (after == stack->last)
3937 {
3938 stack->last = insn;
3939 break;
3940 }
3941 }
3942 }
3943 }
3944
3945 /* Add INSN into the doubly-linked list before insn BEFORE. */
3946
3947 static void
3948 add_insn_before_nobb (rtx insn, rtx before)
3949 {
3950 rtx prev = PREV_INSN (before);
3951
3952 gcc_assert (!optimize || !INSN_DELETED_P (before));
3953
3954 link_insn_into_chain (insn, prev, before);
3955
3956 if (prev == NULL)
3957 {
3958 if (get_insns () == before)
3959 set_first_insn (insn);
3960 else
3961 {
3962 struct sequence_stack *stack = seq_stack;
3963 /* Scan all pending sequences too. */
3964 for (; stack; stack = stack->next)
3965 if (before == stack->first)
3966 {
3967 stack->first = insn;
3968 break;
3969 }
3970
3971 gcc_assert (stack);
3972 }
3973 }
3974 }
3975
3976 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3977 If BB is NULL, an attempt is made to infer the bb from before.
3978
3979 This and the next function should be the only functions called
3980 to insert an insn once delay slots have been filled since only
3981 they know how to update a SEQUENCE. */
3982
3983 void
3984 add_insn_after (rtx insn, rtx after, basic_block bb)
3985 {
3986 add_insn_after_nobb (insn, after);
3987 if (!BARRIER_P (after)
3988 && !BARRIER_P (insn)
3989 && (bb = BLOCK_FOR_INSN (after)))
3990 {
3991 set_block_for_insn (insn, bb);
3992 if (INSN_P (insn))
3993 df_insn_rescan (insn);
3994 /* Should not happen as first in the BB is always
3995 either NOTE or LABEL. */
3996 if (BB_END (bb) == after
3997 /* Avoid clobbering of structure when creating new BB. */
3998 && !BARRIER_P (insn)
3999 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4000 SET_BB_END (bb) = insn;
4001 }
4002 }
4003
4004 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4005 If BB is NULL, an attempt is made to infer the bb from before.
4006
4007 This and the previous function should be the only functions called
4008 to insert an insn once delay slots have been filled since only
4009 they know how to update a SEQUENCE. */
4010
4011 void
4012 add_insn_before (rtx insn, rtx before, basic_block bb)
4013 {
4014 add_insn_before_nobb (insn, before);
4015
4016 if (!bb
4017 && !BARRIER_P (before)
4018 && !BARRIER_P (insn))
4019 bb = BLOCK_FOR_INSN (before);
4020
4021 if (bb)
4022 {
4023 set_block_for_insn (insn, bb);
4024 if (INSN_P (insn))
4025 df_insn_rescan (insn);
4026 /* Should not happen as first in the BB is always either NOTE or
4027 LABEL. */
4028 gcc_assert (BB_HEAD (bb) != insn
4029 /* Avoid clobbering of structure when creating new BB. */
4030 || BARRIER_P (insn)
4031 || NOTE_INSN_BASIC_BLOCK_P (insn));
4032 }
4033 }
4034
4035 /* Replace insn with an deleted instruction note. */
4036
4037 void
4038 set_insn_deleted (rtx insn)
4039 {
4040 if (INSN_P (insn))
4041 df_insn_delete (insn);
4042 PUT_CODE (insn, NOTE);
4043 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4044 }
4045
4046
4047 /* Unlink INSN from the insn chain.
4048
4049 This function knows how to handle sequences.
4050
4051 This function does not invalidate data flow information associated with
4052 INSN (i.e. does not call df_insn_delete). That makes this function
4053 usable for only disconnecting an insn from the chain, and re-emit it
4054 elsewhere later.
4055
4056 To later insert INSN elsewhere in the insn chain via add_insn and
4057 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4058 the caller. Nullifying them here breaks many insn chain walks.
4059
4060 To really delete an insn and related DF information, use delete_insn. */
4061
4062 void
4063 remove_insn (rtx insn)
4064 {
4065 rtx next = NEXT_INSN (insn);
4066 rtx prev = PREV_INSN (insn);
4067 basic_block bb;
4068
4069 if (prev)
4070 {
4071 SET_NEXT_INSN (prev) = next;
4072 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4073 {
4074 rtx sequence = PATTERN (prev);
4075 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
4076 }
4077 }
4078 else if (get_insns () == insn)
4079 {
4080 if (next)
4081 SET_PREV_INSN (next) = NULL;
4082 set_first_insn (next);
4083 }
4084 else
4085 {
4086 struct sequence_stack *stack = seq_stack;
4087 /* Scan all pending sequences too. */
4088 for (; stack; stack = stack->next)
4089 if (insn == stack->first)
4090 {
4091 stack->first = next;
4092 break;
4093 }
4094
4095 gcc_assert (stack);
4096 }
4097
4098 if (next)
4099 {
4100 SET_PREV_INSN (next) = prev;
4101 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4102 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4103 }
4104 else if (get_last_insn () == insn)
4105 set_last_insn (prev);
4106 else
4107 {
4108 struct sequence_stack *stack = seq_stack;
4109 /* Scan all pending sequences too. */
4110 for (; stack; stack = stack->next)
4111 if (insn == stack->last)
4112 {
4113 stack->last = prev;
4114 break;
4115 }
4116
4117 gcc_assert (stack);
4118 }
4119
4120 /* Fix up basic block boundaries, if necessary. */
4121 if (!BARRIER_P (insn)
4122 && (bb = BLOCK_FOR_INSN (insn)))
4123 {
4124 if (BB_HEAD (bb) == insn)
4125 {
4126 /* Never ever delete the basic block note without deleting whole
4127 basic block. */
4128 gcc_assert (!NOTE_P (insn));
4129 SET_BB_HEAD (bb) = next;
4130 }
4131 if (BB_END (bb) == insn)
4132 SET_BB_END (bb) = prev;
4133 }
4134 }
4135
4136 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4137
4138 void
4139 add_function_usage_to (rtx call_insn, rtx call_fusage)
4140 {
4141 gcc_assert (call_insn && CALL_P (call_insn));
4142
4143 /* Put the register usage information on the CALL. If there is already
4144 some usage information, put ours at the end. */
4145 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4146 {
4147 rtx link;
4148
4149 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4150 link = XEXP (link, 1))
4151 ;
4152
4153 XEXP (link, 1) = call_fusage;
4154 }
4155 else
4156 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4157 }
4158
4159 /* Delete all insns made since FROM.
4160 FROM becomes the new last instruction. */
4161
4162 void
4163 delete_insns_since (rtx from)
4164 {
4165 if (from == 0)
4166 set_first_insn (0);
4167 else
4168 SET_NEXT_INSN (from) = 0;
4169 set_last_insn (from);
4170 }
4171
4172 /* This function is deprecated, please use sequences instead.
4173
4174 Move a consecutive bunch of insns to a different place in the chain.
4175 The insns to be moved are those between FROM and TO.
4176 They are moved to a new position after the insn AFTER.
4177 AFTER must not be FROM or TO or any insn in between.
4178
4179 This function does not know about SEQUENCEs and hence should not be
4180 called after delay-slot filling has been done. */
4181
4182 void
4183 reorder_insns_nobb (rtx from, rtx to, rtx after)
4184 {
4185 #ifdef ENABLE_CHECKING
4186 rtx x;
4187 for (x = from; x != to; x = NEXT_INSN (x))
4188 gcc_assert (after != x);
4189 gcc_assert (after != to);
4190 #endif
4191
4192 /* Splice this bunch out of where it is now. */
4193 if (PREV_INSN (from))
4194 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4195 if (NEXT_INSN (to))
4196 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4197 if (get_last_insn () == to)
4198 set_last_insn (PREV_INSN (from));
4199 if (get_insns () == from)
4200 set_first_insn (NEXT_INSN (to));
4201
4202 /* Make the new neighbors point to it and it to them. */
4203 if (NEXT_INSN (after))
4204 SET_PREV_INSN (NEXT_INSN (after)) = to;
4205
4206 SET_NEXT_INSN (to) = NEXT_INSN (after);
4207 SET_PREV_INSN (from) = after;
4208 SET_NEXT_INSN (after) = from;
4209 if (after == get_last_insn ())
4210 set_last_insn (to);
4211 }
4212
4213 /* Same as function above, but take care to update BB boundaries. */
4214 void
4215 reorder_insns (rtx from, rtx to, rtx after)
4216 {
4217 rtx prev = PREV_INSN (from);
4218 basic_block bb, bb2;
4219
4220 reorder_insns_nobb (from, to, after);
4221
4222 if (!BARRIER_P (after)
4223 && (bb = BLOCK_FOR_INSN (after)))
4224 {
4225 rtx x;
4226 df_set_bb_dirty (bb);
4227
4228 if (!BARRIER_P (from)
4229 && (bb2 = BLOCK_FOR_INSN (from)))
4230 {
4231 if (BB_END (bb2) == to)
4232 SET_BB_END (bb2) = prev;
4233 df_set_bb_dirty (bb2);
4234 }
4235
4236 if (BB_END (bb) == after)
4237 SET_BB_END (bb) = to;
4238
4239 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4240 if (!BARRIER_P (x))
4241 df_insn_change_bb (x, bb);
4242 }
4243 }
4244
4245 \f
4246 /* Emit insn(s) of given code and pattern
4247 at a specified place within the doubly-linked list.
4248
4249 All of the emit_foo global entry points accept an object
4250 X which is either an insn list or a PATTERN of a single
4251 instruction.
4252
4253 There are thus a few canonical ways to generate code and
4254 emit it at a specific place in the instruction stream. For
4255 example, consider the instruction named SPOT and the fact that
4256 we would like to emit some instructions before SPOT. We might
4257 do it like this:
4258
4259 start_sequence ();
4260 ... emit the new instructions ...
4261 insns_head = get_insns ();
4262 end_sequence ();
4263
4264 emit_insn_before (insns_head, SPOT);
4265
4266 It used to be common to generate SEQUENCE rtl instead, but that
4267 is a relic of the past which no longer occurs. The reason is that
4268 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4269 generated would almost certainly die right after it was created. */
4270
4271 static rtx
4272 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4273 rtx (*make_raw) (rtx))
4274 {
4275 rtx insn;
4276
4277 gcc_assert (before);
4278
4279 if (x == NULL_RTX)
4280 return last;
4281
4282 switch (GET_CODE (x))
4283 {
4284 case DEBUG_INSN:
4285 case INSN:
4286 case JUMP_INSN:
4287 case CALL_INSN:
4288 case CODE_LABEL:
4289 case BARRIER:
4290 case NOTE:
4291 insn = x;
4292 while (insn)
4293 {
4294 rtx next = NEXT_INSN (insn);
4295 add_insn_before (insn, before, bb);
4296 last = insn;
4297 insn = next;
4298 }
4299 break;
4300
4301 #ifdef ENABLE_RTL_CHECKING
4302 case SEQUENCE:
4303 gcc_unreachable ();
4304 break;
4305 #endif
4306
4307 default:
4308 last = (*make_raw) (x);
4309 add_insn_before (last, before, bb);
4310 break;
4311 }
4312
4313 return last;
4314 }
4315
4316 /* Make X be output before the instruction BEFORE. */
4317
4318 rtx
4319 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4320 {
4321 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4322 }
4323
4324 /* Make an instruction with body X and code JUMP_INSN
4325 and output it before the instruction BEFORE. */
4326
4327 rtx
4328 emit_jump_insn_before_noloc (rtx x, rtx before)
4329 {
4330 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4331 make_jump_insn_raw);
4332 }
4333
4334 /* Make an instruction with body X and code CALL_INSN
4335 and output it before the instruction BEFORE. */
4336
4337 rtx
4338 emit_call_insn_before_noloc (rtx x, rtx before)
4339 {
4340 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4341 make_call_insn_raw);
4342 }
4343
4344 /* Make an instruction with body X and code DEBUG_INSN
4345 and output it before the instruction BEFORE. */
4346
4347 rtx
4348 emit_debug_insn_before_noloc (rtx x, rtx before)
4349 {
4350 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4351 make_debug_insn_raw);
4352 }
4353
4354 /* Make an insn of code BARRIER
4355 and output it before the insn BEFORE. */
4356
4357 rtx
4358 emit_barrier_before (rtx before)
4359 {
4360 rtx insn = rtx_alloc (BARRIER);
4361
4362 INSN_UID (insn) = cur_insn_uid++;
4363
4364 add_insn_before (insn, before, NULL);
4365 return insn;
4366 }
4367
4368 /* Emit the label LABEL before the insn BEFORE. */
4369
4370 rtx
4371 emit_label_before (rtx label, rtx before)
4372 {
4373 gcc_checking_assert (INSN_UID (label) == 0);
4374 INSN_UID (label) = cur_insn_uid++;
4375 add_insn_before (label, before, NULL);
4376 return label;
4377 }
4378 \f
4379 /* Helper for emit_insn_after, handles lists of instructions
4380 efficiently. */
4381
4382 static rtx
4383 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4384 {
4385 rtx last;
4386 rtx after_after;
4387 if (!bb && !BARRIER_P (after))
4388 bb = BLOCK_FOR_INSN (after);
4389
4390 if (bb)
4391 {
4392 df_set_bb_dirty (bb);
4393 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4394 if (!BARRIER_P (last))
4395 {
4396 set_block_for_insn (last, bb);
4397 df_insn_rescan (last);
4398 }
4399 if (!BARRIER_P (last))
4400 {
4401 set_block_for_insn (last, bb);
4402 df_insn_rescan (last);
4403 }
4404 if (BB_END (bb) == after)
4405 SET_BB_END (bb) = last;
4406 }
4407 else
4408 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4409 continue;
4410
4411 after_after = NEXT_INSN (after);
4412
4413 SET_NEXT_INSN (after) = first;
4414 SET_PREV_INSN (first) = after;
4415 SET_NEXT_INSN (last) = after_after;
4416 if (after_after)
4417 SET_PREV_INSN (after_after) = last;
4418
4419 if (after == get_last_insn ())
4420 set_last_insn (last);
4421
4422 return last;
4423 }
4424
4425 static rtx
4426 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4427 rtx (*make_raw)(rtx))
4428 {
4429 rtx last = after;
4430
4431 gcc_assert (after);
4432
4433 if (x == NULL_RTX)
4434 return last;
4435
4436 switch (GET_CODE (x))
4437 {
4438 case DEBUG_INSN:
4439 case INSN:
4440 case JUMP_INSN:
4441 case CALL_INSN:
4442 case CODE_LABEL:
4443 case BARRIER:
4444 case NOTE:
4445 last = emit_insn_after_1 (x, after, bb);
4446 break;
4447
4448 #ifdef ENABLE_RTL_CHECKING
4449 case SEQUENCE:
4450 gcc_unreachable ();
4451 break;
4452 #endif
4453
4454 default:
4455 last = (*make_raw) (x);
4456 add_insn_after (last, after, bb);
4457 break;
4458 }
4459
4460 return last;
4461 }
4462
4463 /* Make X be output after the insn AFTER and set the BB of insn. If
4464 BB is NULL, an attempt is made to infer the BB from AFTER. */
4465
4466 rtx
4467 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4468 {
4469 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4470 }
4471
4472
4473 /* Make an insn of code JUMP_INSN with body X
4474 and output it after the insn AFTER. */
4475
4476 rtx
4477 emit_jump_insn_after_noloc (rtx x, rtx after)
4478 {
4479 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4480 }
4481
4482 /* Make an instruction with body X and code CALL_INSN
4483 and output it after the instruction AFTER. */
4484
4485 rtx
4486 emit_call_insn_after_noloc (rtx x, rtx after)
4487 {
4488 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4489 }
4490
4491 /* Make an instruction with body X and code CALL_INSN
4492 and output it after the instruction AFTER. */
4493
4494 rtx
4495 emit_debug_insn_after_noloc (rtx x, rtx after)
4496 {
4497 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4498 }
4499
4500 /* Make an insn of code BARRIER
4501 and output it after the insn AFTER. */
4502
4503 rtx
4504 emit_barrier_after (rtx after)
4505 {
4506 rtx insn = rtx_alloc (BARRIER);
4507
4508 INSN_UID (insn) = cur_insn_uid++;
4509
4510 add_insn_after (insn, after, NULL);
4511 return insn;
4512 }
4513
4514 /* Emit the label LABEL after the insn AFTER. */
4515
4516 rtx
4517 emit_label_after (rtx label, rtx after)
4518 {
4519 gcc_checking_assert (INSN_UID (label) == 0);
4520 INSN_UID (label) = cur_insn_uid++;
4521 add_insn_after (label, after, NULL);
4522 return label;
4523 }
4524 \f
4525 /* Notes require a bit of special handling: Some notes need to have their
4526 BLOCK_FOR_INSN set, others should never have it set, and some should
4527 have it set or clear depending on the context. */
4528
4529 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4530 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4531 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4532
4533 static bool
4534 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4535 {
4536 switch (subtype)
4537 {
4538 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4539 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4540 return true;
4541
4542 /* Notes for var tracking and EH region markers can appear between or
4543 inside basic blocks. If the caller is emitting on the basic block
4544 boundary, do not set BLOCK_FOR_INSN on the new note. */
4545 case NOTE_INSN_VAR_LOCATION:
4546 case NOTE_INSN_CALL_ARG_LOCATION:
4547 case NOTE_INSN_EH_REGION_BEG:
4548 case NOTE_INSN_EH_REGION_END:
4549 return on_bb_boundary_p;
4550
4551 /* Otherwise, BLOCK_FOR_INSN must be set. */
4552 default:
4553 return false;
4554 }
4555 }
4556
4557 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4558
4559 rtx
4560 emit_note_after (enum insn_note subtype, rtx after)
4561 {
4562 rtx note = make_note_raw (subtype);
4563 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4564 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4565
4566 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4567 add_insn_after_nobb (note, after);
4568 else
4569 add_insn_after (note, after, bb);
4570 return note;
4571 }
4572
4573 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4574
4575 rtx
4576 emit_note_before (enum insn_note subtype, rtx before)
4577 {
4578 rtx note = make_note_raw (subtype);
4579 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4580 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4581
4582 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4583 add_insn_before_nobb (note, before);
4584 else
4585 add_insn_before (note, before, bb);
4586 return note;
4587 }
4588 \f
4589 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4590 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4591
4592 static rtx
4593 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4594 rtx (*make_raw) (rtx))
4595 {
4596 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4597
4598 if (pattern == NULL_RTX || !loc)
4599 return last;
4600
4601 after = NEXT_INSN (after);
4602 while (1)
4603 {
4604 if (active_insn_p (after) && !INSN_LOCATION (after))
4605 INSN_LOCATION (after) = loc;
4606 if (after == last)
4607 break;
4608 after = NEXT_INSN (after);
4609 }
4610 return last;
4611 }
4612
4613 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4614 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4615 any DEBUG_INSNs. */
4616
4617 static rtx
4618 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4619 rtx (*make_raw) (rtx))
4620 {
4621 rtx prev = after;
4622
4623 if (skip_debug_insns)
4624 while (DEBUG_INSN_P (prev))
4625 prev = PREV_INSN (prev);
4626
4627 if (INSN_P (prev))
4628 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4629 make_raw);
4630 else
4631 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4632 }
4633
4634 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4635 rtx
4636 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4637 {
4638 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4639 }
4640
4641 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4642 rtx
4643 emit_insn_after (rtx pattern, rtx after)
4644 {
4645 return emit_pattern_after (pattern, after, true, make_insn_raw);
4646 }
4647
4648 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4649 rtx
4650 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4651 {
4652 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4653 }
4654
4655 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4656 rtx
4657 emit_jump_insn_after (rtx pattern, rtx after)
4658 {
4659 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4660 }
4661
4662 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4663 rtx
4664 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4665 {
4666 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4667 }
4668
4669 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4670 rtx
4671 emit_call_insn_after (rtx pattern, rtx after)
4672 {
4673 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4674 }
4675
4676 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4677 rtx
4678 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4679 {
4680 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4681 }
4682
4683 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4684 rtx
4685 emit_debug_insn_after (rtx pattern, rtx after)
4686 {
4687 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4688 }
4689
4690 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4691 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4692 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4693 CALL_INSN, etc. */
4694
4695 static rtx
4696 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4697 rtx (*make_raw) (rtx))
4698 {
4699 rtx first = PREV_INSN (before);
4700 rtx last = emit_pattern_before_noloc (pattern, before,
4701 insnp ? before : NULL_RTX,
4702 NULL, make_raw);
4703
4704 if (pattern == NULL_RTX || !loc)
4705 return last;
4706
4707 if (!first)
4708 first = get_insns ();
4709 else
4710 first = NEXT_INSN (first);
4711 while (1)
4712 {
4713 if (active_insn_p (first) && !INSN_LOCATION (first))
4714 INSN_LOCATION (first) = loc;
4715 if (first == last)
4716 break;
4717 first = NEXT_INSN (first);
4718 }
4719 return last;
4720 }
4721
4722 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4723 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4724 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4725 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4726
4727 static rtx
4728 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4729 bool insnp, rtx (*make_raw) (rtx))
4730 {
4731 rtx next = before;
4732
4733 if (skip_debug_insns)
4734 while (DEBUG_INSN_P (next))
4735 next = PREV_INSN (next);
4736
4737 if (INSN_P (next))
4738 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4739 insnp, make_raw);
4740 else
4741 return emit_pattern_before_noloc (pattern, before,
4742 insnp ? before : NULL_RTX,
4743 NULL, make_raw);
4744 }
4745
4746 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4747 rtx
4748 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4749 {
4750 return emit_pattern_before_setloc (pattern, before, loc, true,
4751 make_insn_raw);
4752 }
4753
4754 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4755 rtx
4756 emit_insn_before (rtx pattern, rtx before)
4757 {
4758 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4759 }
4760
4761 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4762 rtx
4763 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4764 {
4765 return emit_pattern_before_setloc (pattern, before, loc, false,
4766 make_jump_insn_raw);
4767 }
4768
4769 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4770 rtx
4771 emit_jump_insn_before (rtx pattern, rtx before)
4772 {
4773 return emit_pattern_before (pattern, before, true, false,
4774 make_jump_insn_raw);
4775 }
4776
4777 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4778 rtx
4779 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4780 {
4781 return emit_pattern_before_setloc (pattern, before, loc, false,
4782 make_call_insn_raw);
4783 }
4784
4785 /* Like emit_call_insn_before_noloc,
4786 but set insn_location according to BEFORE. */
4787 rtx
4788 emit_call_insn_before (rtx pattern, rtx before)
4789 {
4790 return emit_pattern_before (pattern, before, true, false,
4791 make_call_insn_raw);
4792 }
4793
4794 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4795 rtx
4796 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4797 {
4798 return emit_pattern_before_setloc (pattern, before, loc, false,
4799 make_debug_insn_raw);
4800 }
4801
4802 /* Like emit_debug_insn_before_noloc,
4803 but set insn_location according to BEFORE. */
4804 rtx
4805 emit_debug_insn_before (rtx pattern, rtx before)
4806 {
4807 return emit_pattern_before (pattern, before, false, false,
4808 make_debug_insn_raw);
4809 }
4810 \f
4811 /* Take X and emit it at the end of the doubly-linked
4812 INSN list.
4813
4814 Returns the last insn emitted. */
4815
4816 rtx
4817 emit_insn (rtx x)
4818 {
4819 rtx last = get_last_insn ();
4820 rtx insn;
4821
4822 if (x == NULL_RTX)
4823 return last;
4824
4825 switch (GET_CODE (x))
4826 {
4827 case DEBUG_INSN:
4828 case INSN:
4829 case JUMP_INSN:
4830 case CALL_INSN:
4831 case CODE_LABEL:
4832 case BARRIER:
4833 case NOTE:
4834 insn = x;
4835 while (insn)
4836 {
4837 rtx next = NEXT_INSN (insn);
4838 add_insn (insn);
4839 last = insn;
4840 insn = next;
4841 }
4842 break;
4843
4844 #ifdef ENABLE_RTL_CHECKING
4845 case JUMP_TABLE_DATA:
4846 case SEQUENCE:
4847 gcc_unreachable ();
4848 break;
4849 #endif
4850
4851 default:
4852 last = make_insn_raw (x);
4853 add_insn (last);
4854 break;
4855 }
4856
4857 return last;
4858 }
4859
4860 /* Make an insn of code DEBUG_INSN with pattern X
4861 and add it to the end of the doubly-linked list. */
4862
4863 rtx
4864 emit_debug_insn (rtx x)
4865 {
4866 rtx last = get_last_insn ();
4867 rtx insn;
4868
4869 if (x == NULL_RTX)
4870 return last;
4871
4872 switch (GET_CODE (x))
4873 {
4874 case DEBUG_INSN:
4875 case INSN:
4876 case JUMP_INSN:
4877 case CALL_INSN:
4878 case CODE_LABEL:
4879 case BARRIER:
4880 case NOTE:
4881 insn = x;
4882 while (insn)
4883 {
4884 rtx next = NEXT_INSN (insn);
4885 add_insn (insn);
4886 last = insn;
4887 insn = next;
4888 }
4889 break;
4890
4891 #ifdef ENABLE_RTL_CHECKING
4892 case JUMP_TABLE_DATA:
4893 case SEQUENCE:
4894 gcc_unreachable ();
4895 break;
4896 #endif
4897
4898 default:
4899 last = make_debug_insn_raw (x);
4900 add_insn (last);
4901 break;
4902 }
4903
4904 return last;
4905 }
4906
4907 /* Make an insn of code JUMP_INSN with pattern X
4908 and add it to the end of the doubly-linked list. */
4909
4910 rtx
4911 emit_jump_insn (rtx x)
4912 {
4913 rtx last = NULL_RTX, insn;
4914
4915 switch (GET_CODE (x))
4916 {
4917 case DEBUG_INSN:
4918 case INSN:
4919 case JUMP_INSN:
4920 case CALL_INSN:
4921 case CODE_LABEL:
4922 case BARRIER:
4923 case NOTE:
4924 insn = x;
4925 while (insn)
4926 {
4927 rtx next = NEXT_INSN (insn);
4928 add_insn (insn);
4929 last = insn;
4930 insn = next;
4931 }
4932 break;
4933
4934 #ifdef ENABLE_RTL_CHECKING
4935 case JUMP_TABLE_DATA:
4936 case SEQUENCE:
4937 gcc_unreachable ();
4938 break;
4939 #endif
4940
4941 default:
4942 last = make_jump_insn_raw (x);
4943 add_insn (last);
4944 break;
4945 }
4946
4947 return last;
4948 }
4949
4950 /* Make an insn of code CALL_INSN with pattern X
4951 and add it to the end of the doubly-linked list. */
4952
4953 rtx
4954 emit_call_insn (rtx x)
4955 {
4956 rtx insn;
4957
4958 switch (GET_CODE (x))
4959 {
4960 case DEBUG_INSN:
4961 case INSN:
4962 case JUMP_INSN:
4963 case CALL_INSN:
4964 case CODE_LABEL:
4965 case BARRIER:
4966 case NOTE:
4967 insn = emit_insn (x);
4968 break;
4969
4970 #ifdef ENABLE_RTL_CHECKING
4971 case SEQUENCE:
4972 case JUMP_TABLE_DATA:
4973 gcc_unreachable ();
4974 break;
4975 #endif
4976
4977 default:
4978 insn = make_call_insn_raw (x);
4979 add_insn (insn);
4980 break;
4981 }
4982
4983 return insn;
4984 }
4985
4986 /* Add the label LABEL to the end of the doubly-linked list. */
4987
4988 rtx
4989 emit_label (rtx label)
4990 {
4991 gcc_checking_assert (INSN_UID (label) == 0);
4992 INSN_UID (label) = cur_insn_uid++;
4993 add_insn (label);
4994 return label;
4995 }
4996
4997 /* Make an insn of code JUMP_TABLE_DATA
4998 and add it to the end of the doubly-linked list. */
4999
5000 rtx
5001 emit_jump_table_data (rtx table)
5002 {
5003 rtx jump_table_data = rtx_alloc (JUMP_TABLE_DATA);
5004 INSN_UID (jump_table_data) = cur_insn_uid++;
5005 PATTERN (jump_table_data) = table;
5006 BLOCK_FOR_INSN (jump_table_data) = NULL;
5007 add_insn (jump_table_data);
5008 return jump_table_data;
5009 }
5010
5011 /* Make an insn of code BARRIER
5012 and add it to the end of the doubly-linked list. */
5013
5014 rtx
5015 emit_barrier (void)
5016 {
5017 rtx barrier = rtx_alloc (BARRIER);
5018 INSN_UID (barrier) = cur_insn_uid++;
5019 add_insn (barrier);
5020 return barrier;
5021 }
5022
5023 /* Emit a copy of note ORIG. */
5024
5025 rtx
5026 emit_note_copy (rtx orig)
5027 {
5028 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5029 rtx note = make_note_raw (kind);
5030 NOTE_DATA (note) = NOTE_DATA (orig);
5031 add_insn (note);
5032 return note;
5033 }
5034
5035 /* Make an insn of code NOTE or type NOTE_NO
5036 and add it to the end of the doubly-linked list. */
5037
5038 rtx
5039 emit_note (enum insn_note kind)
5040 {
5041 rtx note = make_note_raw (kind);
5042 add_insn (note);
5043 return note;
5044 }
5045
5046 /* Emit a clobber of lvalue X. */
5047
5048 rtx
5049 emit_clobber (rtx x)
5050 {
5051 /* CONCATs should not appear in the insn stream. */
5052 if (GET_CODE (x) == CONCAT)
5053 {
5054 emit_clobber (XEXP (x, 0));
5055 return emit_clobber (XEXP (x, 1));
5056 }
5057 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5058 }
5059
5060 /* Return a sequence of insns to clobber lvalue X. */
5061
5062 rtx
5063 gen_clobber (rtx x)
5064 {
5065 rtx seq;
5066
5067 start_sequence ();
5068 emit_clobber (x);
5069 seq = get_insns ();
5070 end_sequence ();
5071 return seq;
5072 }
5073
5074 /* Emit a use of rvalue X. */
5075
5076 rtx
5077 emit_use (rtx x)
5078 {
5079 /* CONCATs should not appear in the insn stream. */
5080 if (GET_CODE (x) == CONCAT)
5081 {
5082 emit_use (XEXP (x, 0));
5083 return emit_use (XEXP (x, 1));
5084 }
5085 return emit_insn (gen_rtx_USE (VOIDmode, x));
5086 }
5087
5088 /* Return a sequence of insns to use rvalue X. */
5089
5090 rtx
5091 gen_use (rtx x)
5092 {
5093 rtx seq;
5094
5095 start_sequence ();
5096 emit_use (x);
5097 seq = get_insns ();
5098 end_sequence ();
5099 return seq;
5100 }
5101
5102 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5103 Return the set in INSN that such notes describe, or NULL if the notes
5104 have no meaning for INSN. */
5105
5106 rtx
5107 set_for_reg_notes (rtx insn)
5108 {
5109 rtx pat, reg;
5110
5111 if (!INSN_P (insn))
5112 return NULL_RTX;
5113
5114 pat = PATTERN (insn);
5115 if (GET_CODE (pat) == PARALLEL)
5116 {
5117 /* We do not use single_set because that ignores SETs of unused
5118 registers. REG_EQUAL and REG_EQUIV notes really do require the
5119 PARALLEL to have a single SET. */
5120 if (multiple_sets (insn))
5121 return NULL_RTX;
5122 pat = XVECEXP (pat, 0, 0);
5123 }
5124
5125 if (GET_CODE (pat) != SET)
5126 return NULL_RTX;
5127
5128 reg = SET_DEST (pat);
5129
5130 /* Notes apply to the contents of a STRICT_LOW_PART. */
5131 if (GET_CODE (reg) == STRICT_LOW_PART)
5132 reg = XEXP (reg, 0);
5133
5134 /* Check that we have a register. */
5135 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5136 return NULL_RTX;
5137
5138 return pat;
5139 }
5140
5141 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5142 note of this type already exists, remove it first. */
5143
5144 rtx
5145 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5146 {
5147 rtx note = find_reg_note (insn, kind, NULL_RTX);
5148
5149 switch (kind)
5150 {
5151 case REG_EQUAL:
5152 case REG_EQUIV:
5153 if (!set_for_reg_notes (insn))
5154 return NULL_RTX;
5155
5156 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5157 It serves no useful purpose and breaks eliminate_regs. */
5158 if (GET_CODE (datum) == ASM_OPERANDS)
5159 return NULL_RTX;
5160 break;
5161
5162 default:
5163 break;
5164 }
5165
5166 if (note)
5167 XEXP (note, 0) = datum;
5168 else
5169 {
5170 add_reg_note (insn, kind, datum);
5171 note = REG_NOTES (insn);
5172 }
5173
5174 switch (kind)
5175 {
5176 case REG_EQUAL:
5177 case REG_EQUIV:
5178 df_notes_rescan (insn);
5179 break;
5180 default:
5181 break;
5182 }
5183
5184 return note;
5185 }
5186
5187 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5188 rtx
5189 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5190 {
5191 rtx set = set_for_reg_notes (insn);
5192
5193 if (set && SET_DEST (set) == dst)
5194 return set_unique_reg_note (insn, kind, datum);
5195 return NULL_RTX;
5196 }
5197 \f
5198 /* Return an indication of which type of insn should have X as a body.
5199 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5200
5201 static enum rtx_code
5202 classify_insn (rtx x)
5203 {
5204 if (LABEL_P (x))
5205 return CODE_LABEL;
5206 if (GET_CODE (x) == CALL)
5207 return CALL_INSN;
5208 if (ANY_RETURN_P (x))
5209 return JUMP_INSN;
5210 if (GET_CODE (x) == SET)
5211 {
5212 if (SET_DEST (x) == pc_rtx)
5213 return JUMP_INSN;
5214 else if (GET_CODE (SET_SRC (x)) == CALL)
5215 return CALL_INSN;
5216 else
5217 return INSN;
5218 }
5219 if (GET_CODE (x) == PARALLEL)
5220 {
5221 int j;
5222 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5223 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5224 return CALL_INSN;
5225 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5226 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5227 return JUMP_INSN;
5228 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5229 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5230 return CALL_INSN;
5231 }
5232 return INSN;
5233 }
5234
5235 /* Emit the rtl pattern X as an appropriate kind of insn.
5236 If X is a label, it is simply added into the insn chain. */
5237
5238 rtx
5239 emit (rtx x)
5240 {
5241 enum rtx_code code = classify_insn (x);
5242
5243 switch (code)
5244 {
5245 case CODE_LABEL:
5246 return emit_label (x);
5247 case INSN:
5248 return emit_insn (x);
5249 case JUMP_INSN:
5250 {
5251 rtx insn = emit_jump_insn (x);
5252 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5253 return emit_barrier ();
5254 return insn;
5255 }
5256 case CALL_INSN:
5257 return emit_call_insn (x);
5258 case DEBUG_INSN:
5259 return emit_debug_insn (x);
5260 default:
5261 gcc_unreachable ();
5262 }
5263 }
5264 \f
5265 /* Space for free sequence stack entries. */
5266 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5267
5268 /* Begin emitting insns to a sequence. If this sequence will contain
5269 something that might cause the compiler to pop arguments to function
5270 calls (because those pops have previously been deferred; see
5271 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5272 before calling this function. That will ensure that the deferred
5273 pops are not accidentally emitted in the middle of this sequence. */
5274
5275 void
5276 start_sequence (void)
5277 {
5278 struct sequence_stack *tem;
5279
5280 if (free_sequence_stack != NULL)
5281 {
5282 tem = free_sequence_stack;
5283 free_sequence_stack = tem->next;
5284 }
5285 else
5286 tem = ggc_alloc<sequence_stack> ();
5287
5288 tem->next = seq_stack;
5289 tem->first = get_insns ();
5290 tem->last = get_last_insn ();
5291
5292 seq_stack = tem;
5293
5294 set_first_insn (0);
5295 set_last_insn (0);
5296 }
5297
5298 /* Set up the insn chain starting with FIRST as the current sequence,
5299 saving the previously current one. See the documentation for
5300 start_sequence for more information about how to use this function. */
5301
5302 void
5303 push_to_sequence (rtx first)
5304 {
5305 rtx last;
5306
5307 start_sequence ();
5308
5309 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5310 ;
5311
5312 set_first_insn (first);
5313 set_last_insn (last);
5314 }
5315
5316 /* Like push_to_sequence, but take the last insn as an argument to avoid
5317 looping through the list. */
5318
5319 void
5320 push_to_sequence2 (rtx first, rtx last)
5321 {
5322 start_sequence ();
5323
5324 set_first_insn (first);
5325 set_last_insn (last);
5326 }
5327
5328 /* Set up the outer-level insn chain
5329 as the current sequence, saving the previously current one. */
5330
5331 void
5332 push_topmost_sequence (void)
5333 {
5334 struct sequence_stack *stack, *top = NULL;
5335
5336 start_sequence ();
5337
5338 for (stack = seq_stack; stack; stack = stack->next)
5339 top = stack;
5340
5341 set_first_insn (top->first);
5342 set_last_insn (top->last);
5343 }
5344
5345 /* After emitting to the outer-level insn chain, update the outer-level
5346 insn chain, and restore the previous saved state. */
5347
5348 void
5349 pop_topmost_sequence (void)
5350 {
5351 struct sequence_stack *stack, *top = NULL;
5352
5353 for (stack = seq_stack; stack; stack = stack->next)
5354 top = stack;
5355
5356 top->first = get_insns ();
5357 top->last = get_last_insn ();
5358
5359 end_sequence ();
5360 }
5361
5362 /* After emitting to a sequence, restore previous saved state.
5363
5364 To get the contents of the sequence just made, you must call
5365 `get_insns' *before* calling here.
5366
5367 If the compiler might have deferred popping arguments while
5368 generating this sequence, and this sequence will not be immediately
5369 inserted into the instruction stream, use do_pending_stack_adjust
5370 before calling get_insns. That will ensure that the deferred
5371 pops are inserted into this sequence, and not into some random
5372 location in the instruction stream. See INHIBIT_DEFER_POP for more
5373 information about deferred popping of arguments. */
5374
5375 void
5376 end_sequence (void)
5377 {
5378 struct sequence_stack *tem = seq_stack;
5379
5380 set_first_insn (tem->first);
5381 set_last_insn (tem->last);
5382 seq_stack = tem->next;
5383
5384 memset (tem, 0, sizeof (*tem));
5385 tem->next = free_sequence_stack;
5386 free_sequence_stack = tem;
5387 }
5388
5389 /* Return 1 if currently emitting into a sequence. */
5390
5391 int
5392 in_sequence_p (void)
5393 {
5394 return seq_stack != 0;
5395 }
5396 \f
5397 /* Put the various virtual registers into REGNO_REG_RTX. */
5398
5399 static void
5400 init_virtual_regs (void)
5401 {
5402 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5403 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5404 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5405 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5406 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5407 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5408 = virtual_preferred_stack_boundary_rtx;
5409 }
5410
5411 \f
5412 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5413 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5414 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5415 static int copy_insn_n_scratches;
5416
5417 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5418 copied an ASM_OPERANDS.
5419 In that case, it is the original input-operand vector. */
5420 static rtvec orig_asm_operands_vector;
5421
5422 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5423 copied an ASM_OPERANDS.
5424 In that case, it is the copied input-operand vector. */
5425 static rtvec copy_asm_operands_vector;
5426
5427 /* Likewise for the constraints vector. */
5428 static rtvec orig_asm_constraints_vector;
5429 static rtvec copy_asm_constraints_vector;
5430
5431 /* Recursively create a new copy of an rtx for copy_insn.
5432 This function differs from copy_rtx in that it handles SCRATCHes and
5433 ASM_OPERANDs properly.
5434 Normally, this function is not used directly; use copy_insn as front end.
5435 However, you could first copy an insn pattern with copy_insn and then use
5436 this function afterwards to properly copy any REG_NOTEs containing
5437 SCRATCHes. */
5438
5439 rtx
5440 copy_insn_1 (rtx orig)
5441 {
5442 rtx copy;
5443 int i, j;
5444 RTX_CODE code;
5445 const char *format_ptr;
5446
5447 if (orig == NULL)
5448 return NULL;
5449
5450 code = GET_CODE (orig);
5451
5452 switch (code)
5453 {
5454 case REG:
5455 case DEBUG_EXPR:
5456 CASE_CONST_ANY:
5457 case SYMBOL_REF:
5458 case CODE_LABEL:
5459 case PC:
5460 case CC0:
5461 case RETURN:
5462 case SIMPLE_RETURN:
5463 return orig;
5464 case CLOBBER:
5465 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5466 clobbers or clobbers of hard registers that originated as pseudos.
5467 This is needed to allow safe register renaming. */
5468 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5469 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5470 return orig;
5471 break;
5472
5473 case SCRATCH:
5474 for (i = 0; i < copy_insn_n_scratches; i++)
5475 if (copy_insn_scratch_in[i] == orig)
5476 return copy_insn_scratch_out[i];
5477 break;
5478
5479 case CONST:
5480 if (shared_const_p (orig))
5481 return orig;
5482 break;
5483
5484 /* A MEM with a constant address is not sharable. The problem is that
5485 the constant address may need to be reloaded. If the mem is shared,
5486 then reloading one copy of this mem will cause all copies to appear
5487 to have been reloaded. */
5488
5489 default:
5490 break;
5491 }
5492
5493 /* Copy the various flags, fields, and other information. We assume
5494 that all fields need copying, and then clear the fields that should
5495 not be copied. That is the sensible default behavior, and forces
5496 us to explicitly document why we are *not* copying a flag. */
5497 copy = shallow_copy_rtx (orig);
5498
5499 /* We do not copy the USED flag, which is used as a mark bit during
5500 walks over the RTL. */
5501 RTX_FLAG (copy, used) = 0;
5502
5503 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5504 if (INSN_P (orig))
5505 {
5506 RTX_FLAG (copy, jump) = 0;
5507 RTX_FLAG (copy, call) = 0;
5508 RTX_FLAG (copy, frame_related) = 0;
5509 }
5510
5511 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5512
5513 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5514 switch (*format_ptr++)
5515 {
5516 case 'e':
5517 if (XEXP (orig, i) != NULL)
5518 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5519 break;
5520
5521 case 'E':
5522 case 'V':
5523 if (XVEC (orig, i) == orig_asm_constraints_vector)
5524 XVEC (copy, i) = copy_asm_constraints_vector;
5525 else if (XVEC (orig, i) == orig_asm_operands_vector)
5526 XVEC (copy, i) = copy_asm_operands_vector;
5527 else if (XVEC (orig, i) != NULL)
5528 {
5529 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5530 for (j = 0; j < XVECLEN (copy, i); j++)
5531 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5532 }
5533 break;
5534
5535 case 't':
5536 case 'w':
5537 case 'i':
5538 case 's':
5539 case 'S':
5540 case 'u':
5541 case '0':
5542 /* These are left unchanged. */
5543 break;
5544
5545 default:
5546 gcc_unreachable ();
5547 }
5548
5549 if (code == SCRATCH)
5550 {
5551 i = copy_insn_n_scratches++;
5552 gcc_assert (i < MAX_RECOG_OPERANDS);
5553 copy_insn_scratch_in[i] = orig;
5554 copy_insn_scratch_out[i] = copy;
5555 }
5556 else if (code == ASM_OPERANDS)
5557 {
5558 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5559 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5560 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5561 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5562 }
5563
5564 return copy;
5565 }
5566
5567 /* Create a new copy of an rtx.
5568 This function differs from copy_rtx in that it handles SCRATCHes and
5569 ASM_OPERANDs properly.
5570 INSN doesn't really have to be a full INSN; it could be just the
5571 pattern. */
5572 rtx
5573 copy_insn (rtx insn)
5574 {
5575 copy_insn_n_scratches = 0;
5576 orig_asm_operands_vector = 0;
5577 orig_asm_constraints_vector = 0;
5578 copy_asm_operands_vector = 0;
5579 copy_asm_constraints_vector = 0;
5580 return copy_insn_1 (insn);
5581 }
5582
5583 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5584 on that assumption that INSN itself remains in its original place. */
5585
5586 rtx
5587 copy_delay_slot_insn (rtx insn)
5588 {
5589 /* Copy INSN with its rtx_code, all its notes, location etc. */
5590 insn = copy_rtx (insn);
5591 INSN_UID (insn) = cur_insn_uid++;
5592 return insn;
5593 }
5594
5595 /* Initialize data structures and variables in this file
5596 before generating rtl for each function. */
5597
5598 void
5599 init_emit (void)
5600 {
5601 set_first_insn (NULL);
5602 set_last_insn (NULL);
5603 if (MIN_NONDEBUG_INSN_UID)
5604 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5605 else
5606 cur_insn_uid = 1;
5607 cur_debug_insn_uid = 1;
5608 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5609 first_label_num = label_num;
5610 seq_stack = NULL;
5611
5612 /* Init the tables that describe all the pseudo regs. */
5613
5614 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5615
5616 crtl->emit.regno_pointer_align
5617 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5618
5619 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5620
5621 /* Put copies of all the hard registers into regno_reg_rtx. */
5622 memcpy (regno_reg_rtx,
5623 initial_regno_reg_rtx,
5624 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5625
5626 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5627 init_virtual_regs ();
5628
5629 /* Indicate that the virtual registers and stack locations are
5630 all pointers. */
5631 REG_POINTER (stack_pointer_rtx) = 1;
5632 REG_POINTER (frame_pointer_rtx) = 1;
5633 REG_POINTER (hard_frame_pointer_rtx) = 1;
5634 REG_POINTER (arg_pointer_rtx) = 1;
5635
5636 REG_POINTER (virtual_incoming_args_rtx) = 1;
5637 REG_POINTER (virtual_stack_vars_rtx) = 1;
5638 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5639 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5640 REG_POINTER (virtual_cfa_rtx) = 1;
5641
5642 #ifdef STACK_BOUNDARY
5643 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5644 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5645 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5646 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5647
5648 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5649 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5650 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5651 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5652 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5653 #endif
5654
5655 #ifdef INIT_EXPANDERS
5656 INIT_EXPANDERS;
5657 #endif
5658 }
5659
5660 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5661
5662 static rtx
5663 gen_const_vector (enum machine_mode mode, int constant)
5664 {
5665 rtx tem;
5666 rtvec v;
5667 int units, i;
5668 enum machine_mode inner;
5669
5670 units = GET_MODE_NUNITS (mode);
5671 inner = GET_MODE_INNER (mode);
5672
5673 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5674
5675 v = rtvec_alloc (units);
5676
5677 /* We need to call this function after we set the scalar const_tiny_rtx
5678 entries. */
5679 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5680
5681 for (i = 0; i < units; ++i)
5682 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5683
5684 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5685 return tem;
5686 }
5687
5688 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5689 all elements are zero, and the one vector when all elements are one. */
5690 rtx
5691 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5692 {
5693 enum machine_mode inner = GET_MODE_INNER (mode);
5694 int nunits = GET_MODE_NUNITS (mode);
5695 rtx x;
5696 int i;
5697
5698 /* Check to see if all of the elements have the same value. */
5699 x = RTVEC_ELT (v, nunits - 1);
5700 for (i = nunits - 2; i >= 0; i--)
5701 if (RTVEC_ELT (v, i) != x)
5702 break;
5703
5704 /* If the values are all the same, check to see if we can use one of the
5705 standard constant vectors. */
5706 if (i == -1)
5707 {
5708 if (x == CONST0_RTX (inner))
5709 return CONST0_RTX (mode);
5710 else if (x == CONST1_RTX (inner))
5711 return CONST1_RTX (mode);
5712 else if (x == CONSTM1_RTX (inner))
5713 return CONSTM1_RTX (mode);
5714 }
5715
5716 return gen_rtx_raw_CONST_VECTOR (mode, v);
5717 }
5718
5719 /* Initialise global register information required by all functions. */
5720
5721 void
5722 init_emit_regs (void)
5723 {
5724 int i;
5725 enum machine_mode mode;
5726 mem_attrs *attrs;
5727
5728 /* Reset register attributes */
5729 htab_empty (reg_attrs_htab);
5730
5731 /* We need reg_raw_mode, so initialize the modes now. */
5732 init_reg_modes_target ();
5733
5734 /* Assign register numbers to the globally defined register rtx. */
5735 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5736 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5737 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5738 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5739 virtual_incoming_args_rtx =
5740 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5741 virtual_stack_vars_rtx =
5742 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5743 virtual_stack_dynamic_rtx =
5744 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5745 virtual_outgoing_args_rtx =
5746 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5747 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5748 virtual_preferred_stack_boundary_rtx =
5749 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5750
5751 /* Initialize RTL for commonly used hard registers. These are
5752 copied into regno_reg_rtx as we begin to compile each function. */
5753 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5754 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5755
5756 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5757 return_address_pointer_rtx
5758 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5759 #endif
5760
5761 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5762 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5763 else
5764 pic_offset_table_rtx = NULL_RTX;
5765
5766 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5767 {
5768 mode = (enum machine_mode) i;
5769 attrs = ggc_cleared_alloc<mem_attrs> ();
5770 attrs->align = BITS_PER_UNIT;
5771 attrs->addrspace = ADDR_SPACE_GENERIC;
5772 if (mode != BLKmode)
5773 {
5774 attrs->size_known_p = true;
5775 attrs->size = GET_MODE_SIZE (mode);
5776 if (STRICT_ALIGNMENT)
5777 attrs->align = GET_MODE_ALIGNMENT (mode);
5778 }
5779 mode_mem_attrs[i] = attrs;
5780 }
5781 }
5782
5783 /* Initialize global machine_mode variables. */
5784
5785 void
5786 init_derived_machine_modes (void)
5787 {
5788 byte_mode = VOIDmode;
5789 word_mode = VOIDmode;
5790
5791 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5792 mode != VOIDmode;
5793 mode = GET_MODE_WIDER_MODE (mode))
5794 {
5795 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5796 && byte_mode == VOIDmode)
5797 byte_mode = mode;
5798
5799 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5800 && word_mode == VOIDmode)
5801 word_mode = mode;
5802 }
5803
5804 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5805 }
5806
5807 /* Create some permanent unique rtl objects shared between all functions. */
5808
5809 void
5810 init_emit_once (void)
5811 {
5812 int i;
5813 enum machine_mode mode;
5814 enum machine_mode double_mode;
5815
5816 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5817 CONST_FIXED, and memory attribute hash tables. */
5818 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5819 const_int_htab_eq, NULL);
5820
5821 #if TARGET_SUPPORTS_WIDE_INT
5822 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5823 const_wide_int_htab_eq, NULL);
5824 #endif
5825 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5826 const_double_htab_eq, NULL);
5827
5828 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5829 const_fixed_htab_eq, NULL);
5830
5831 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5832 reg_attrs_htab_eq, NULL);
5833
5834 #ifdef INIT_EXPANDERS
5835 /* This is to initialize {init|mark|free}_machine_status before the first
5836 call to push_function_context_to. This is needed by the Chill front
5837 end which calls push_function_context_to before the first call to
5838 init_function_start. */
5839 INIT_EXPANDERS;
5840 #endif
5841
5842 /* Create the unique rtx's for certain rtx codes and operand values. */
5843
5844 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5845 tries to use these variables. */
5846 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5847 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5848 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5849
5850 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5851 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5852 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5853 else
5854 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5855
5856 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5857
5858 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5859 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5860 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5861
5862 dconstm1 = dconst1;
5863 dconstm1.sign = 1;
5864
5865 dconsthalf = dconst1;
5866 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5867
5868 for (i = 0; i < 3; i++)
5869 {
5870 const REAL_VALUE_TYPE *const r =
5871 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5872
5873 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5874 mode != VOIDmode;
5875 mode = GET_MODE_WIDER_MODE (mode))
5876 const_tiny_rtx[i][(int) mode] =
5877 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5878
5879 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5880 mode != VOIDmode;
5881 mode = GET_MODE_WIDER_MODE (mode))
5882 const_tiny_rtx[i][(int) mode] =
5883 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5884
5885 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5886
5887 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5888 mode != VOIDmode;
5889 mode = GET_MODE_WIDER_MODE (mode))
5890 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5891
5892 for (mode = MIN_MODE_PARTIAL_INT;
5893 mode <= MAX_MODE_PARTIAL_INT;
5894 mode = (enum machine_mode)((int)(mode) + 1))
5895 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5896 }
5897
5898 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5899
5900 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5901 mode != VOIDmode;
5902 mode = GET_MODE_WIDER_MODE (mode))
5903 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5904
5905 for (mode = MIN_MODE_PARTIAL_INT;
5906 mode <= MAX_MODE_PARTIAL_INT;
5907 mode = (enum machine_mode)((int)(mode) + 1))
5908 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5909
5910 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5911 mode != VOIDmode;
5912 mode = GET_MODE_WIDER_MODE (mode))
5913 {
5914 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5915 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5916 }
5917
5918 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5919 mode != VOIDmode;
5920 mode = GET_MODE_WIDER_MODE (mode))
5921 {
5922 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5923 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5924 }
5925
5926 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5927 mode != VOIDmode;
5928 mode = GET_MODE_WIDER_MODE (mode))
5929 {
5930 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5931 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5932 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5933 }
5934
5935 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5936 mode != VOIDmode;
5937 mode = GET_MODE_WIDER_MODE (mode))
5938 {
5939 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5940 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5941 }
5942
5943 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5944 mode != VOIDmode;
5945 mode = GET_MODE_WIDER_MODE (mode))
5946 {
5947 FCONST0 (mode).data.high = 0;
5948 FCONST0 (mode).data.low = 0;
5949 FCONST0 (mode).mode = mode;
5950 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5951 FCONST0 (mode), mode);
5952 }
5953
5954 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5955 mode != VOIDmode;
5956 mode = GET_MODE_WIDER_MODE (mode))
5957 {
5958 FCONST0 (mode).data.high = 0;
5959 FCONST0 (mode).data.low = 0;
5960 FCONST0 (mode).mode = mode;
5961 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5962 FCONST0 (mode), mode);
5963 }
5964
5965 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5966 mode != VOIDmode;
5967 mode = GET_MODE_WIDER_MODE (mode))
5968 {
5969 FCONST0 (mode).data.high = 0;
5970 FCONST0 (mode).data.low = 0;
5971 FCONST0 (mode).mode = mode;
5972 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5973 FCONST0 (mode), mode);
5974
5975 /* We store the value 1. */
5976 FCONST1 (mode).data.high = 0;
5977 FCONST1 (mode).data.low = 0;
5978 FCONST1 (mode).mode = mode;
5979 FCONST1 (mode).data
5980 = double_int_one.lshift (GET_MODE_FBIT (mode),
5981 HOST_BITS_PER_DOUBLE_INT,
5982 SIGNED_FIXED_POINT_MODE_P (mode));
5983 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5984 FCONST1 (mode), mode);
5985 }
5986
5987 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5988 mode != VOIDmode;
5989 mode = GET_MODE_WIDER_MODE (mode))
5990 {
5991 FCONST0 (mode).data.high = 0;
5992 FCONST0 (mode).data.low = 0;
5993 FCONST0 (mode).mode = mode;
5994 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5995 FCONST0 (mode), mode);
5996
5997 /* We store the value 1. */
5998 FCONST1 (mode).data.high = 0;
5999 FCONST1 (mode).data.low = 0;
6000 FCONST1 (mode).mode = mode;
6001 FCONST1 (mode).data
6002 = double_int_one.lshift (GET_MODE_FBIT (mode),
6003 HOST_BITS_PER_DOUBLE_INT,
6004 SIGNED_FIXED_POINT_MODE_P (mode));
6005 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6006 FCONST1 (mode), mode);
6007 }
6008
6009 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6010 mode != VOIDmode;
6011 mode = GET_MODE_WIDER_MODE (mode))
6012 {
6013 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6014 }
6015
6016 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6017 mode != VOIDmode;
6018 mode = GET_MODE_WIDER_MODE (mode))
6019 {
6020 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6021 }
6022
6023 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6024 mode != VOIDmode;
6025 mode = GET_MODE_WIDER_MODE (mode))
6026 {
6027 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6028 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6029 }
6030
6031 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6032 mode != VOIDmode;
6033 mode = GET_MODE_WIDER_MODE (mode))
6034 {
6035 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6036 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6037 }
6038
6039 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6040 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6041 const_tiny_rtx[0][i] = const0_rtx;
6042
6043 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6044 if (STORE_FLAG_VALUE == 1)
6045 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6046
6047 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6048 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6049 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6050 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6051 }
6052 \f
6053 /* Produce exact duplicate of insn INSN after AFTER.
6054 Care updating of libcall regions if present. */
6055
6056 rtx
6057 emit_copy_of_insn_after (rtx insn, rtx after)
6058 {
6059 rtx new_rtx, link;
6060
6061 switch (GET_CODE (insn))
6062 {
6063 case INSN:
6064 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6065 break;
6066
6067 case JUMP_INSN:
6068 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6069 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6070 break;
6071
6072 case DEBUG_INSN:
6073 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6074 break;
6075
6076 case CALL_INSN:
6077 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6078 if (CALL_INSN_FUNCTION_USAGE (insn))
6079 CALL_INSN_FUNCTION_USAGE (new_rtx)
6080 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6081 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6082 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6083 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6084 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6085 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6086 break;
6087
6088 default:
6089 gcc_unreachable ();
6090 }
6091
6092 /* Update LABEL_NUSES. */
6093 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6094
6095 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6096
6097 /* If the old insn is frame related, then so is the new one. This is
6098 primarily needed for IA-64 unwind info which marks epilogue insns,
6099 which may be duplicated by the basic block reordering code. */
6100 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6101
6102 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6103 will make them. REG_LABEL_TARGETs are created there too, but are
6104 supposed to be sticky, so we copy them. */
6105 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6106 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6107 {
6108 if (GET_CODE (link) == EXPR_LIST)
6109 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6110 copy_insn_1 (XEXP (link, 0)));
6111 else
6112 add_shallow_copy_of_reg_note (new_rtx, link);
6113 }
6114
6115 INSN_CODE (new_rtx) = INSN_CODE (insn);
6116 return new_rtx;
6117 }
6118
6119 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6120 rtx
6121 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6122 {
6123 if (hard_reg_clobbers[mode][regno])
6124 return hard_reg_clobbers[mode][regno];
6125 else
6126 return (hard_reg_clobbers[mode][regno] =
6127 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6128 }
6129
6130 location_t prologue_location;
6131 location_t epilogue_location;
6132
6133 /* Hold current location information and last location information, so the
6134 datastructures are built lazily only when some instructions in given
6135 place are needed. */
6136 static location_t curr_location;
6137
6138 /* Allocate insn location datastructure. */
6139 void
6140 insn_locations_init (void)
6141 {
6142 prologue_location = epilogue_location = 0;
6143 curr_location = UNKNOWN_LOCATION;
6144 }
6145
6146 /* At the end of emit stage, clear current location. */
6147 void
6148 insn_locations_finalize (void)
6149 {
6150 epilogue_location = curr_location;
6151 curr_location = UNKNOWN_LOCATION;
6152 }
6153
6154 /* Set current location. */
6155 void
6156 set_curr_insn_location (location_t location)
6157 {
6158 curr_location = location;
6159 }
6160
6161 /* Get current location. */
6162 location_t
6163 curr_insn_location (void)
6164 {
6165 return curr_location;
6166 }
6167
6168 /* Return lexical scope block insn belongs to. */
6169 tree
6170 insn_scope (const_rtx insn)
6171 {
6172 return LOCATION_BLOCK (INSN_LOCATION (insn));
6173 }
6174
6175 /* Return line number of the statement that produced this insn. */
6176 int
6177 insn_line (const_rtx insn)
6178 {
6179 return LOCATION_LINE (INSN_LOCATION (insn));
6180 }
6181
6182 /* Return source file of the statement that produced this insn. */
6183 const char *
6184 insn_file (const_rtx insn)
6185 {
6186 return LOCATION_FILE (INSN_LOCATION (insn));
6187 }
6188
6189 /* Return expanded location of the statement that produced this insn. */
6190 expanded_location
6191 insn_location (const_rtx insn)
6192 {
6193 return expand_location (INSN_LOCATION (insn));
6194 }
6195
6196 /* Return true if memory model MODEL requires a pre-operation (release-style)
6197 barrier or a post-operation (acquire-style) barrier. While not universal,
6198 this function matches behavior of several targets. */
6199
6200 bool
6201 need_atomic_barrier_p (enum memmodel model, bool pre)
6202 {
6203 switch (model & MEMMODEL_MASK)
6204 {
6205 case MEMMODEL_RELAXED:
6206 case MEMMODEL_CONSUME:
6207 return false;
6208 case MEMMODEL_RELEASE:
6209 return pre;
6210 case MEMMODEL_ACQUIRE:
6211 return !pre;
6212 case MEMMODEL_ACQ_REL:
6213 case MEMMODEL_SEQ_CST:
6214 return true;
6215 default:
6216 gcc_unreachable ();
6217 }
6218 }
6219 \f
6220 #include "gt-emit-rtl.h"