* emit-rtl.c (init_emit_once): Add missing cast to HOST_WIDE_INT.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static int label_num = 1;
72
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77 static int last_label_num;
78
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82 static int base_label_num;
83
84 /* Nonzero means do not generate NOTEs for source line numbers. */
85
86 static int no_line_numbers;
87
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these are unique; no other rtx-object will be equal to any
91 of these. */
92
93 rtx global_rtl[GR_MAX];
94
95 /* Commonly used RTL for hard registers. These objects are not necessarily
96 unique, so we allocate them separately from global_rtl. They are
97 initialized once per compilation unit, then copied into regno_reg_rtx
98 at the beginning of each function. */
99 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100
101 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
102 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
103 record a copy of const[012]_rtx. */
104
105 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
106
107 rtx const_true_rtx;
108
109 REAL_VALUE_TYPE dconst0;
110 REAL_VALUE_TYPE dconst1;
111 REAL_VALUE_TYPE dconst2;
112 REAL_VALUE_TYPE dconstm1;
113
114 /* All references to the following fixed hard registers go through
115 these unique rtl objects. On machines where the frame-pointer and
116 arg-pointer are the same register, they use the same unique object.
117
118 After register allocation, other rtl objects which used to be pseudo-regs
119 may be clobbered to refer to the frame-pointer register.
120 But references that were originally to the frame-pointer can be
121 distinguished from the others because they contain frame_pointer_rtx.
122
123 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
124 tricky: until register elimination has taken place hard_frame_pointer_rtx
125 should be used if it is being set, and frame_pointer_rtx otherwise. After
126 register elimination hard_frame_pointer_rtx should always be used.
127 On machines where the two registers are same (most) then these are the
128 same.
129
130 In an inline procedure, the stack and frame pointer rtxs may not be
131 used for anything else. */
132 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
133 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
134 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
146
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
151
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
154
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
158
159 /* A hash table storing all CONST_DOUBLEs. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
161 htab_t const_double_htab;
162
163 #define first_insn (cfun->emit->x_first_insn)
164 #define last_insn (cfun->emit->x_last_insn)
165 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
166 #define last_linenum (cfun->emit->x_last_linenum)
167 #define last_filename (cfun->emit->x_last_filename)
168 #define first_label_num (cfun->emit->x_first_label_num)
169
170 static rtx make_jump_insn_raw PARAMS ((rtx));
171 static rtx make_call_insn_raw PARAMS ((rtx));
172 static rtx find_line_note PARAMS ((rtx));
173 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
174 int));
175 static void unshare_all_rtl_1 PARAMS ((rtx));
176 static void unshare_all_decls PARAMS ((tree));
177 static void reset_used_decls PARAMS ((tree));
178 static void mark_label_nuses PARAMS ((rtx));
179 static hashval_t const_int_htab_hash PARAMS ((const void *));
180 static int const_int_htab_eq PARAMS ((const void *,
181 const void *));
182 static hashval_t const_double_htab_hash PARAMS ((const void *));
183 static int const_double_htab_eq PARAMS ((const void *,
184 const void *));
185 static rtx lookup_const_double PARAMS ((rtx));
186 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
187 static int mem_attrs_htab_eq PARAMS ((const void *,
188 const void *));
189 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
190 rtx, unsigned int,
191 enum machine_mode));
192 static tree component_ref_for_mem_expr PARAMS ((tree));
193 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
194
195 /* Probability of the conditional branch currently proceeded by try_split.
196 Set to -1 otherwise. */
197 int split_branch_probability = -1;
198 \f
199 /* Returns a hash code for X (which is a really a CONST_INT). */
200
201 static hashval_t
202 const_int_htab_hash (x)
203 const void *x;
204 {
205 return (hashval_t) INTVAL ((struct rtx_def *) x);
206 }
207
208 /* Returns non-zero if the value represented by X (which is really a
209 CONST_INT) is the same as that given by Y (which is really a
210 HOST_WIDE_INT *). */
211
212 static int
213 const_int_htab_eq (x, y)
214 const void *x;
215 const void *y;
216 {
217 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
218 }
219
220 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
221 static hashval_t
222 const_double_htab_hash (x)
223 const void *x;
224 {
225 hashval_t h = 0;
226 size_t i;
227 rtx value = (rtx) x;
228
229 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
230 h ^= XWINT (value, i);
231 return h;
232 }
233
234 /* Returns non-zero if the value represented by X (really a ...)
235 is the same as that represented by Y (really a ...) */
236 static int
237 const_double_htab_eq (x, y)
238 const void *x;
239 const void *y;
240 {
241 rtx a = (rtx)x, b = (rtx)y;
242 size_t i;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
247 if (XWINT (a, i) != XWINT (b, i))
248 return 0;
249
250 return 1;
251 }
252
253 /* Returns a hash code for X (which is a really a mem_attrs *). */
254
255 static hashval_t
256 mem_attrs_htab_hash (x)
257 const void *x;
258 {
259 mem_attrs *p = (mem_attrs *) x;
260
261 return (p->alias ^ (p->align * 1000)
262 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
263 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
264 ^ (size_t) p->expr);
265 }
266
267 /* Returns non-zero if the value represented by X (which is really a
268 mem_attrs *) is the same as that given by Y (which is also really a
269 mem_attrs *). */
270
271 static int
272 mem_attrs_htab_eq (x, y)
273 const void *x;
274 const void *y;
275 {
276 mem_attrs *p = (mem_attrs *) x;
277 mem_attrs *q = (mem_attrs *) y;
278
279 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
280 && p->size == q->size && p->align == q->align);
281 }
282
283 /* Allocate a new mem_attrs structure and insert it into the hash table if
284 one identical to it is not already in the table. We are doing this for
285 MEM of mode MODE. */
286
287 static mem_attrs *
288 get_mem_attrs (alias, expr, offset, size, align, mode)
289 HOST_WIDE_INT alias;
290 tree expr;
291 rtx offset;
292 rtx size;
293 unsigned int align;
294 enum machine_mode mode;
295 {
296 mem_attrs attrs;
297 void **slot;
298
299 /* If everything is the default, we can just return zero. */
300 if (alias == 0 && expr == 0 && offset == 0
301 && (size == 0
302 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
303 && (align == BITS_PER_UNIT
304 || (STRICT_ALIGNMENT
305 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
325 don't attempt to share with the various global pieces of rtl (such as
326 frame_pointer_rtx). */
327
328 rtx
329 gen_raw_REG (mode, regno)
330 enum machine_mode mode;
331 int regno;
332 {
333 rtx x = gen_rtx_raw_REG (mode, regno);
334 ORIGINAL_REGNO (x) = regno;
335 return x;
336 }
337
338 /* There are some RTL codes that require special attention; the generation
339 functions do the raw handling. If you add to this list, modify
340 special_rtx in gengenrtl.c as well. */
341
342 rtx
343 gen_rtx_CONST_INT (mode, arg)
344 enum machine_mode mode ATTRIBUTE_UNUSED;
345 HOST_WIDE_INT arg;
346 {
347 void **slot;
348
349 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
350 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
351
352 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
353 if (const_true_rtx && arg == STORE_FLAG_VALUE)
354 return const_true_rtx;
355 #endif
356
357 /* Look up the CONST_INT in the hash table. */
358 slot = htab_find_slot_with_hash (const_int_htab, &arg,
359 (hashval_t) arg, INSERT);
360 if (*slot == 0)
361 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
362
363 return (rtx) *slot;
364 }
365
366 rtx
367 gen_int_mode (c, mode)
368 HOST_WIDE_INT c;
369 enum machine_mode mode;
370 {
371 return GEN_INT (trunc_int_for_mode (c, mode));
372 }
373
374 /* CONST_DOUBLEs might be created from pairs of integers, or from
375 REAL_VALUE_TYPEs. Also, their length is known only at run time,
376 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
377
378 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
379 hash table. If so, return its counterpart; otherwise add it
380 to the hash table and return it. */
381 static rtx
382 lookup_const_double (real)
383 rtx real;
384 {
385 void **slot = htab_find_slot (const_double_htab, real, INSERT);
386 if (*slot == 0)
387 *slot = real;
388
389 return (rtx) *slot;
390 }
391
392 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
393 VALUE in mode MODE. */
394 rtx
395 const_double_from_real_value (value, mode)
396 REAL_VALUE_TYPE value;
397 enum machine_mode mode;
398 {
399 rtx real = rtx_alloc (CONST_DOUBLE);
400 PUT_MODE (real, mode);
401
402 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
403
404 return lookup_const_double (real);
405 }
406
407 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
408 of ints: I0 is the low-order word and I1 is the high-order word.
409 Do not use this routine for non-integer modes; convert to
410 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
411
412 rtx
413 immed_double_const (i0, i1, mode)
414 HOST_WIDE_INT i0, i1;
415 enum machine_mode mode;
416 {
417 rtx value;
418 unsigned int i;
419
420 if (mode != VOIDmode)
421 {
422 int width;
423 if (GET_MODE_CLASS (mode) != MODE_INT
424 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
425 /* We can get a 0 for an error mark. */
426 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
427 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
428 abort ();
429
430 /* We clear out all bits that don't belong in MODE, unless they and
431 our sign bit are all one. So we get either a reasonable negative
432 value or a reasonable unsigned value for this mode. */
433 width = GET_MODE_BITSIZE (mode);
434 if (width < HOST_BITS_PER_WIDE_INT
435 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
436 != ((HOST_WIDE_INT) (-1) << (width - 1))))
437 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
438 else if (width == HOST_BITS_PER_WIDE_INT
439 && ! (i1 == ~0 && i0 < 0))
440 i1 = 0;
441 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
442 /* We cannot represent this value as a constant. */
443 abort ();
444
445 /* If this would be an entire word for the target, but is not for
446 the host, then sign-extend on the host so that the number will
447 look the same way on the host that it would on the target.
448
449 For example, when building a 64 bit alpha hosted 32 bit sparc
450 targeted compiler, then we want the 32 bit unsigned value -1 to be
451 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
452 The latter confuses the sparc backend. */
453
454 if (width < HOST_BITS_PER_WIDE_INT
455 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
456 i0 |= ((HOST_WIDE_INT) (-1) << width);
457
458 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
459 CONST_INT.
460
461 ??? Strictly speaking, this is wrong if we create a CONST_INT for
462 a large unsigned constant with the size of MODE being
463 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
464 in a wider mode. In that case we will mis-interpret it as a
465 negative number.
466
467 Unfortunately, the only alternative is to make a CONST_DOUBLE for
468 any constant in any mode if it is an unsigned constant larger
469 than the maximum signed integer in an int on the host. However,
470 doing this will break everyone that always expects to see a
471 CONST_INT for SImode and smaller.
472
473 We have always been making CONST_INTs in this case, so nothing
474 new is being broken. */
475
476 if (width <= HOST_BITS_PER_WIDE_INT)
477 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
478 }
479
480 /* If this integer fits in one word, return a CONST_INT. */
481 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
482 return GEN_INT (i0);
483
484 /* We use VOIDmode for integers. */
485 value = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (value, VOIDmode);
487
488 CONST_DOUBLE_LOW (value) = i0;
489 CONST_DOUBLE_HIGH (value) = i1;
490
491 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
492 XWINT (value, i) = 0;
493
494 return lookup_const_double (value);
495 }
496
497 rtx
498 gen_rtx_REG (mode, regno)
499 enum machine_mode mode;
500 unsigned int regno;
501 {
502 /* In case the MD file explicitly references the frame pointer, have
503 all such references point to the same frame pointer. This is
504 used during frame pointer elimination to distinguish the explicit
505 references to these registers from pseudos that happened to be
506 assigned to them.
507
508 If we have eliminated the frame pointer or arg pointer, we will
509 be using it as a normal register, for example as a spill
510 register. In such cases, we might be accessing it in a mode that
511 is not Pmode and therefore cannot use the pre-allocated rtx.
512
513 Also don't do this when we are making new REGs in reload, since
514 we don't want to get confused with the real pointers. */
515
516 if (mode == Pmode && !reload_in_progress)
517 {
518 if (regno == FRAME_POINTER_REGNUM)
519 return frame_pointer_rtx;
520 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
521 if (regno == HARD_FRAME_POINTER_REGNUM)
522 return hard_frame_pointer_rtx;
523 #endif
524 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
525 if (regno == ARG_POINTER_REGNUM)
526 return arg_pointer_rtx;
527 #endif
528 #ifdef RETURN_ADDRESS_POINTER_REGNUM
529 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
530 return return_address_pointer_rtx;
531 #endif
532 if (regno == PIC_OFFSET_TABLE_REGNUM
533 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
534 return pic_offset_table_rtx;
535 if (regno == STACK_POINTER_REGNUM)
536 return stack_pointer_rtx;
537 }
538
539 #if 0
540 /* If the per-function register table has been set up, try to re-use
541 an existing entry in that table to avoid useless generation of RTL.
542
543 This code is disabled for now until we can fix the various backends
544 which depend on having non-shared hard registers in some cases. Long
545 term we want to re-enable this code as it can significantly cut down
546 on the amount of useless RTL that gets generated. */
547 if (cfun
548 && cfun->emit
549 && regno_reg_rtx
550 && regno < FIRST_PSEUDO_REGISTER
551 && reg_raw_mode[regno] == mode)
552 return regno_reg_rtx[regno];
553 #endif
554
555 return gen_raw_REG (mode, regno);
556 }
557
558 rtx
559 gen_rtx_MEM (mode, addr)
560 enum machine_mode mode;
561 rtx addr;
562 {
563 rtx rt = gen_rtx_raw_MEM (mode, addr);
564
565 /* This field is not cleared by the mere allocation of the rtx, so
566 we clear it here. */
567 MEM_ATTRS (rt) = 0;
568
569 return rt;
570 }
571
572 rtx
573 gen_rtx_SUBREG (mode, reg, offset)
574 enum machine_mode mode;
575 rtx reg;
576 int offset;
577 {
578 /* This is the most common failure type.
579 Catch it early so we can see who does it. */
580 if ((offset % GET_MODE_SIZE (mode)) != 0)
581 abort ();
582
583 /* This check isn't usable right now because combine will
584 throw arbitrary crap like a CALL into a SUBREG in
585 gen_lowpart_for_combine so we must just eat it. */
586 #if 0
587 /* Check for this too. */
588 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
589 abort ();
590 #endif
591 return gen_rtx_raw_SUBREG (mode, reg, offset);
592 }
593
594 /* Generate a SUBREG representing the least-significant part of REG if MODE
595 is smaller than mode of REG, otherwise paradoxical SUBREG. */
596
597 rtx
598 gen_lowpart_SUBREG (mode, reg)
599 enum machine_mode mode;
600 rtx reg;
601 {
602 enum machine_mode inmode;
603
604 inmode = GET_MODE (reg);
605 if (inmode == VOIDmode)
606 inmode = mode;
607 return gen_rtx_SUBREG (mode, reg,
608 subreg_lowpart_offset (mode, inmode));
609 }
610 \f
611 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
612 **
613 ** This routine generates an RTX of the size specified by
614 ** <code>, which is an RTX code. The RTX structure is initialized
615 ** from the arguments <element1> through <elementn>, which are
616 ** interpreted according to the specific RTX type's format. The
617 ** special machine mode associated with the rtx (if any) is specified
618 ** in <mode>.
619 **
620 ** gen_rtx can be invoked in a way which resembles the lisp-like
621 ** rtx it will generate. For example, the following rtx structure:
622 **
623 ** (plus:QI (mem:QI (reg:SI 1))
624 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
625 **
626 ** ...would be generated by the following C code:
627 **
628 ** gen_rtx (PLUS, QImode,
629 ** gen_rtx (MEM, QImode,
630 ** gen_rtx (REG, SImode, 1)),
631 ** gen_rtx (MEM, QImode,
632 ** gen_rtx (PLUS, SImode,
633 ** gen_rtx (REG, SImode, 2),
634 ** gen_rtx (REG, SImode, 3)))),
635 */
636
637 /*VARARGS2*/
638 rtx
639 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
640 {
641 int i; /* Array indices... */
642 const char *fmt; /* Current rtx's format... */
643 rtx rt_val; /* RTX to return to caller... */
644
645 VA_OPEN (p, mode);
646 VA_FIXEDARG (p, enum rtx_code, code);
647 VA_FIXEDARG (p, enum machine_mode, mode);
648
649 switch (code)
650 {
651 case CONST_INT:
652 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
653 break;
654
655 case CONST_DOUBLE:
656 {
657 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
658 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
659
660 rt_val = immed_double_const (arg0, arg1, mode);
661 }
662 break;
663
664 case REG:
665 rt_val = gen_rtx_REG (mode, va_arg (p, int));
666 break;
667
668 case MEM:
669 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
670 break;
671
672 default:
673 rt_val = rtx_alloc (code); /* Allocate the storage space. */
674 rt_val->mode = mode; /* Store the machine mode... */
675
676 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
677 for (i = 0; i < GET_RTX_LENGTH (code); i++)
678 {
679 switch (*fmt++)
680 {
681 case '0': /* Unused field. */
682 break;
683
684 case 'i': /* An integer? */
685 XINT (rt_val, i) = va_arg (p, int);
686 break;
687
688 case 'w': /* A wide integer? */
689 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
690 break;
691
692 case 's': /* A string? */
693 XSTR (rt_val, i) = va_arg (p, char *);
694 break;
695
696 case 'e': /* An expression? */
697 case 'u': /* An insn? Same except when printing. */
698 XEXP (rt_val, i) = va_arg (p, rtx);
699 break;
700
701 case 'E': /* An RTX vector? */
702 XVEC (rt_val, i) = va_arg (p, rtvec);
703 break;
704
705 case 'b': /* A bitmap? */
706 XBITMAP (rt_val, i) = va_arg (p, bitmap);
707 break;
708
709 case 't': /* A tree? */
710 XTREE (rt_val, i) = va_arg (p, tree);
711 break;
712
713 default:
714 abort ();
715 }
716 }
717 break;
718 }
719
720 VA_CLOSE (p);
721 return rt_val;
722 }
723
724 /* gen_rtvec (n, [rt1, ..., rtn])
725 **
726 ** This routine creates an rtvec and stores within it the
727 ** pointers to rtx's which are its arguments.
728 */
729
730 /*VARARGS1*/
731 rtvec
732 gen_rtvec VPARAMS ((int n, ...))
733 {
734 int i, save_n;
735 rtx *vector;
736
737 VA_OPEN (p, n);
738 VA_FIXEDARG (p, int, n);
739
740 if (n == 0)
741 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
742
743 vector = (rtx *) alloca (n * sizeof (rtx));
744
745 for (i = 0; i < n; i++)
746 vector[i] = va_arg (p, rtx);
747
748 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
749 save_n = n;
750 VA_CLOSE (p);
751
752 return gen_rtvec_v (save_n, vector);
753 }
754
755 rtvec
756 gen_rtvec_v (n, argp)
757 int n;
758 rtx *argp;
759 {
760 int i;
761 rtvec rt_val;
762
763 if (n == 0)
764 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
765
766 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
767
768 for (i = 0; i < n; i++)
769 rt_val->elem[i] = *argp++;
770
771 return rt_val;
772 }
773 \f
774 /* Generate a REG rtx for a new pseudo register of mode MODE.
775 This pseudo is assigned the next sequential register number. */
776
777 rtx
778 gen_reg_rtx (mode)
779 enum machine_mode mode;
780 {
781 struct function *f = cfun;
782 rtx val;
783
784 /* Don't let anything called after initial flow analysis create new
785 registers. */
786 if (no_new_pseudos)
787 abort ();
788
789 if (generating_concat_p
790 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
791 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
792 {
793 /* For complex modes, don't make a single pseudo.
794 Instead, make a CONCAT of two pseudos.
795 This allows noncontiguous allocation of the real and imaginary parts,
796 which makes much better code. Besides, allocating DCmode
797 pseudos overstrains reload on some machines like the 386. */
798 rtx realpart, imagpart;
799 int size = GET_MODE_UNIT_SIZE (mode);
800 enum machine_mode partmode
801 = mode_for_size (size * BITS_PER_UNIT,
802 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
803 ? MODE_FLOAT : MODE_INT),
804 0);
805
806 realpart = gen_reg_rtx (partmode);
807 imagpart = gen_reg_rtx (partmode);
808 return gen_rtx_CONCAT (mode, realpart, imagpart);
809 }
810
811 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
812 enough to have an element for this pseudo reg number. */
813
814 if (reg_rtx_no == f->emit->regno_pointer_align_length)
815 {
816 int old_size = f->emit->regno_pointer_align_length;
817 char *new;
818 rtx *new1;
819 tree *new2;
820
821 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
822 memset (new + old_size, 0, old_size);
823 f->emit->regno_pointer_align = (unsigned char *) new;
824
825 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
826 old_size * 2 * sizeof (rtx));
827 memset (new1 + old_size, 0, old_size * sizeof (rtx));
828 regno_reg_rtx = new1;
829
830 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
831 old_size * 2 * sizeof (tree));
832 memset (new2 + old_size, 0, old_size * sizeof (tree));
833 f->emit->regno_decl = new2;
834
835 f->emit->regno_pointer_align_length = old_size * 2;
836 }
837
838 val = gen_raw_REG (mode, reg_rtx_no);
839 regno_reg_rtx[reg_rtx_no++] = val;
840 return val;
841 }
842
843 /* Identify REG (which may be a CONCAT) as a user register. */
844
845 void
846 mark_user_reg (reg)
847 rtx reg;
848 {
849 if (GET_CODE (reg) == CONCAT)
850 {
851 REG_USERVAR_P (XEXP (reg, 0)) = 1;
852 REG_USERVAR_P (XEXP (reg, 1)) = 1;
853 }
854 else if (GET_CODE (reg) == REG)
855 REG_USERVAR_P (reg) = 1;
856 else
857 abort ();
858 }
859
860 /* Identify REG as a probable pointer register and show its alignment
861 as ALIGN, if nonzero. */
862
863 void
864 mark_reg_pointer (reg, align)
865 rtx reg;
866 int align;
867 {
868 if (! REG_POINTER (reg))
869 {
870 REG_POINTER (reg) = 1;
871
872 if (align)
873 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
874 }
875 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
876 /* We can no-longer be sure just how aligned this pointer is */
877 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
878 }
879
880 /* Return 1 plus largest pseudo reg number used in the current function. */
881
882 int
883 max_reg_num ()
884 {
885 return reg_rtx_no;
886 }
887
888 /* Return 1 + the largest label number used so far in the current function. */
889
890 int
891 max_label_num ()
892 {
893 if (last_label_num && label_num == base_label_num)
894 return last_label_num;
895 return label_num;
896 }
897
898 /* Return first label number used in this function (if any were used). */
899
900 int
901 get_first_label_num ()
902 {
903 return first_label_num;
904 }
905 \f
906 /* Return the final regno of X, which is a SUBREG of a hard
907 register. */
908 int
909 subreg_hard_regno (x, check_mode)
910 rtx x;
911 int check_mode;
912 {
913 enum machine_mode mode = GET_MODE (x);
914 unsigned int byte_offset, base_regno, final_regno;
915 rtx reg = SUBREG_REG (x);
916
917 /* This is where we attempt to catch illegal subregs
918 created by the compiler. */
919 if (GET_CODE (x) != SUBREG
920 || GET_CODE (reg) != REG)
921 abort ();
922 base_regno = REGNO (reg);
923 if (base_regno >= FIRST_PSEUDO_REGISTER)
924 abort ();
925 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
926 abort ();
927
928 /* Catch non-congruent offsets too. */
929 byte_offset = SUBREG_BYTE (x);
930 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
931 abort ();
932
933 final_regno = subreg_regno (x);
934
935 return final_regno;
936 }
937
938 /* Return a value representing some low-order bits of X, where the number
939 of low-order bits is given by MODE. Note that no conversion is done
940 between floating-point and fixed-point values, rather, the bit
941 representation is returned.
942
943 This function handles the cases in common between gen_lowpart, below,
944 and two variants in cse.c and combine.c. These are the cases that can
945 be safely handled at all points in the compilation.
946
947 If this is not a case we can handle, return 0. */
948
949 rtx
950 gen_lowpart_common (mode, x)
951 enum machine_mode mode;
952 rtx x;
953 {
954 int msize = GET_MODE_SIZE (mode);
955 int xsize = GET_MODE_SIZE (GET_MODE (x));
956 int offset = 0;
957
958 if (GET_MODE (x) == mode)
959 return x;
960
961 /* MODE must occupy no more words than the mode of X. */
962 if (GET_MODE (x) != VOIDmode
963 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
964 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
965 return 0;
966
967 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
968 if (GET_MODE_CLASS (mode) == MODE_FLOAT
969 && GET_MODE (x) != VOIDmode && msize > xsize)
970 return 0;
971
972 offset = subreg_lowpart_offset (mode, GET_MODE (x));
973
974 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
975 && (GET_MODE_CLASS (mode) == MODE_INT
976 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
977 {
978 /* If we are getting the low-order part of something that has been
979 sign- or zero-extended, we can either just use the object being
980 extended or make a narrower extension. If we want an even smaller
981 piece than the size of the object being extended, call ourselves
982 recursively.
983
984 This case is used mostly by combine and cse. */
985
986 if (GET_MODE (XEXP (x, 0)) == mode)
987 return XEXP (x, 0);
988 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
989 return gen_lowpart_common (mode, XEXP (x, 0));
990 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
991 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
992 }
993 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
994 || GET_CODE (x) == CONCAT)
995 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
996 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
997 from the low-order part of the constant. */
998 else if ((GET_MODE_CLASS (mode) == MODE_INT
999 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1000 && GET_MODE (x) == VOIDmode
1001 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1002 {
1003 /* If MODE is twice the host word size, X is already the desired
1004 representation. Otherwise, if MODE is wider than a word, we can't
1005 do this. If MODE is exactly a word, return just one CONST_INT. */
1006
1007 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1008 return x;
1009 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1010 return 0;
1011 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1012 return (GET_CODE (x) == CONST_INT ? x
1013 : GEN_INT (CONST_DOUBLE_LOW (x)));
1014 else
1015 {
1016 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1017 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1018 : CONST_DOUBLE_LOW (x));
1019
1020 /* Sign extend to HOST_WIDE_INT. */
1021 val = trunc_int_for_mode (val, mode);
1022
1023 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1024 : GEN_INT (val));
1025 }
1026 }
1027
1028 /* The floating-point emulator can handle all conversions between
1029 FP and integer operands. This simplifies reload because it
1030 doesn't have to deal with constructs like (subreg:DI
1031 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1032 /* Single-precision floats are always 32-bits and double-precision
1033 floats are always 64-bits. */
1034
1035 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1036 && GET_MODE_BITSIZE (mode) == 32
1037 && GET_CODE (x) == CONST_INT)
1038 {
1039 REAL_VALUE_TYPE r;
1040 HOST_WIDE_INT i;
1041
1042 i = INTVAL (x);
1043 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
1044 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1045 }
1046 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1047 && GET_MODE_BITSIZE (mode) == 64
1048 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1049 && GET_MODE (x) == VOIDmode)
1050 {
1051 REAL_VALUE_TYPE r;
1052 HOST_WIDE_INT i[2];
1053 HOST_WIDE_INT low, high;
1054
1055 if (GET_CODE (x) == CONST_INT)
1056 {
1057 low = INTVAL (x);
1058 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1059 }
1060 else
1061 {
1062 low = CONST_DOUBLE_LOW (x);
1063 high = CONST_DOUBLE_HIGH (x);
1064 }
1065
1066 #if HOST_BITS_PER_WIDE_INT == 32
1067 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1068 target machine. */
1069 if (WORDS_BIG_ENDIAN)
1070 i[0] = high, i[1] = low;
1071 else
1072 i[0] = low, i[1] = high;
1073 #else
1074 i[0] = low;
1075 #endif
1076
1077 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1078 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1079 }
1080 else if ((GET_MODE_CLASS (mode) == MODE_INT
1081 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1082 && GET_CODE (x) == CONST_DOUBLE
1083 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1084 {
1085 REAL_VALUE_TYPE r;
1086 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1087 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1088
1089 /* Convert 'r' into an array of four 32-bit words in target word
1090 order. */
1091 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1092 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1093 {
1094 case 32:
1095 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1096 i[1] = 0;
1097 i[2] = 0;
1098 i[3 - 3 * endian] = 0;
1099 break;
1100 case 64:
1101 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1102 i[2 - 2 * endian] = 0;
1103 i[3 - 2 * endian] = 0;
1104 break;
1105 case 96:
1106 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1107 i[3 - 3 * endian] = 0;
1108 break;
1109 case 128:
1110 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1111 break;
1112 default:
1113 abort ();
1114 }
1115 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1116 and return it. */
1117 #if HOST_BITS_PER_WIDE_INT == 32
1118 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1119 #else
1120 if (HOST_BITS_PER_WIDE_INT != 64)
1121 abort ();
1122
1123 return immed_double_const ((((unsigned long) i[3 * endian])
1124 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1125 (((unsigned long) i[2 - endian])
1126 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1127 mode);
1128 #endif
1129 }
1130
1131 /* Otherwise, we can't do this. */
1132 return 0;
1133 }
1134 \f
1135 /* Return the real part (which has mode MODE) of a complex value X.
1136 This always comes at the low address in memory. */
1137
1138 rtx
1139 gen_realpart (mode, x)
1140 enum machine_mode mode;
1141 rtx x;
1142 {
1143 if (WORDS_BIG_ENDIAN
1144 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1145 && REG_P (x)
1146 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1147 internal_error
1148 ("can't access real part of complex value in hard register");
1149 else if (WORDS_BIG_ENDIAN)
1150 return gen_highpart (mode, x);
1151 else
1152 return gen_lowpart (mode, x);
1153 }
1154
1155 /* Return the imaginary part (which has mode MODE) of a complex value X.
1156 This always comes at the high address in memory. */
1157
1158 rtx
1159 gen_imagpart (mode, x)
1160 enum machine_mode mode;
1161 rtx x;
1162 {
1163 if (WORDS_BIG_ENDIAN)
1164 return gen_lowpart (mode, x);
1165 else if (! WORDS_BIG_ENDIAN
1166 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1167 && REG_P (x)
1168 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1169 internal_error
1170 ("can't access imaginary part of complex value in hard register");
1171 else
1172 return gen_highpart (mode, x);
1173 }
1174
1175 /* Return 1 iff X, assumed to be a SUBREG,
1176 refers to the real part of the complex value in its containing reg.
1177 Complex values are always stored with the real part in the first word,
1178 regardless of WORDS_BIG_ENDIAN. */
1179
1180 int
1181 subreg_realpart_p (x)
1182 rtx x;
1183 {
1184 if (GET_CODE (x) != SUBREG)
1185 abort ();
1186
1187 return ((unsigned int) SUBREG_BYTE (x)
1188 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1189 }
1190 \f
1191 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1192 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1193 least-significant part of X.
1194 MODE specifies how big a part of X to return;
1195 it usually should not be larger than a word.
1196 If X is a MEM whose address is a QUEUED, the value may be so also. */
1197
1198 rtx
1199 gen_lowpart (mode, x)
1200 enum machine_mode mode;
1201 rtx x;
1202 {
1203 rtx result = gen_lowpart_common (mode, x);
1204
1205 if (result)
1206 return result;
1207 else if (GET_CODE (x) == REG)
1208 {
1209 /* Must be a hard reg that's not valid in MODE. */
1210 result = gen_lowpart_common (mode, copy_to_reg (x));
1211 if (result == 0)
1212 abort ();
1213 return result;
1214 }
1215 else if (GET_CODE (x) == MEM)
1216 {
1217 /* The only additional case we can do is MEM. */
1218 int offset = 0;
1219 if (WORDS_BIG_ENDIAN)
1220 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1221 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1222
1223 if (BYTES_BIG_ENDIAN)
1224 /* Adjust the address so that the address-after-the-data
1225 is unchanged. */
1226 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1227 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1228
1229 return adjust_address (x, mode, offset);
1230 }
1231 else if (GET_CODE (x) == ADDRESSOF)
1232 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1233 else
1234 abort ();
1235 }
1236
1237 /* Like `gen_lowpart', but refer to the most significant part.
1238 This is used to access the imaginary part of a complex number. */
1239
1240 rtx
1241 gen_highpart (mode, x)
1242 enum machine_mode mode;
1243 rtx x;
1244 {
1245 unsigned int msize = GET_MODE_SIZE (mode);
1246 rtx result;
1247
1248 /* This case loses if X is a subreg. To catch bugs early,
1249 complain if an invalid MODE is used even in other cases. */
1250 if (msize > UNITS_PER_WORD
1251 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1252 abort ();
1253
1254 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1255 subreg_highpart_offset (mode, GET_MODE (x)));
1256
1257 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1258 the target if we have a MEM. gen_highpart must return a valid operand,
1259 emitting code if necessary to do so. */
1260 if (result != NULL_RTX && GET_CODE (result) == MEM)
1261 result = validize_mem (result);
1262
1263 if (!result)
1264 abort ();
1265 return result;
1266 }
1267
1268 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1270 rtx
1271 gen_highpart_mode (outermode, innermode, exp)
1272 enum machine_mode outermode, innermode;
1273 rtx exp;
1274 {
1275 if (GET_MODE (exp) != VOIDmode)
1276 {
1277 if (GET_MODE (exp) != innermode)
1278 abort ();
1279 return gen_highpart (outermode, exp);
1280 }
1281 return simplify_gen_subreg (outermode, exp, innermode,
1282 subreg_highpart_offset (outermode, innermode));
1283 }
1284
1285 /* Return offset in bytes to get OUTERMODE low part
1286 of the value in mode INNERMODE stored in memory in target format. */
1287
1288 unsigned int
1289 subreg_lowpart_offset (outermode, innermode)
1290 enum machine_mode outermode, innermode;
1291 {
1292 unsigned int offset = 0;
1293 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1294
1295 if (difference > 0)
1296 {
1297 if (WORDS_BIG_ENDIAN)
1298 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1299 if (BYTES_BIG_ENDIAN)
1300 offset += difference % UNITS_PER_WORD;
1301 }
1302
1303 return offset;
1304 }
1305
1306 /* Return offset in bytes to get OUTERMODE high part
1307 of the value in mode INNERMODE stored in memory in target format. */
1308 unsigned int
1309 subreg_highpart_offset (outermode, innermode)
1310 enum machine_mode outermode, innermode;
1311 {
1312 unsigned int offset = 0;
1313 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1314
1315 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1316 abort ();
1317
1318 if (difference > 0)
1319 {
1320 if (! WORDS_BIG_ENDIAN)
1321 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1322 if (! BYTES_BIG_ENDIAN)
1323 offset += difference % UNITS_PER_WORD;
1324 }
1325
1326 return offset;
1327 }
1328
1329 /* Return 1 iff X, assumed to be a SUBREG,
1330 refers to the least significant part of its containing reg.
1331 If X is not a SUBREG, always return 1 (it is its own low part!). */
1332
1333 int
1334 subreg_lowpart_p (x)
1335 rtx x;
1336 {
1337 if (GET_CODE (x) != SUBREG)
1338 return 1;
1339 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1340 return 0;
1341
1342 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1343 == SUBREG_BYTE (x));
1344 }
1345 \f
1346
1347 /* Helper routine for all the constant cases of operand_subword.
1348 Some places invoke this directly. */
1349
1350 rtx
1351 constant_subword (op, offset, mode)
1352 rtx op;
1353 int offset;
1354 enum machine_mode mode;
1355 {
1356 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1357 HOST_WIDE_INT val;
1358
1359 /* If OP is already an integer word, return it. */
1360 if (GET_MODE_CLASS (mode) == MODE_INT
1361 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1362 return op;
1363
1364 /* The output is some bits, the width of the target machine's word.
1365 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1366 host can't. */
1367 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1368 && GET_MODE_CLASS (mode) == MODE_FLOAT
1369 && GET_MODE_BITSIZE (mode) == 64
1370 && GET_CODE (op) == CONST_DOUBLE)
1371 {
1372 long k[2];
1373 REAL_VALUE_TYPE rv;
1374
1375 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1376 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1377
1378 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1379 which the words are written depends on the word endianness.
1380 ??? This is a potential portability problem and should
1381 be fixed at some point.
1382
1383 We must exercise caution with the sign bit. By definition there
1384 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1385 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1386 So we explicitly mask and sign-extend as necessary. */
1387 if (BITS_PER_WORD == 32)
1388 {
1389 val = k[offset];
1390 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1391 return GEN_INT (val);
1392 }
1393 #if HOST_BITS_PER_WIDE_INT >= 64
1394 else if (BITS_PER_WORD >= 64 && offset == 0)
1395 {
1396 val = k[! WORDS_BIG_ENDIAN];
1397 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1398 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1399 return GEN_INT (val);
1400 }
1401 #endif
1402 else if (BITS_PER_WORD == 16)
1403 {
1404 val = k[offset >> 1];
1405 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1406 val >>= 16;
1407 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1408 return GEN_INT (val);
1409 }
1410 else
1411 abort ();
1412 }
1413 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1414 && GET_MODE_CLASS (mode) == MODE_FLOAT
1415 && GET_MODE_BITSIZE (mode) > 64
1416 && GET_CODE (op) == CONST_DOUBLE)
1417 {
1418 long k[4];
1419 REAL_VALUE_TYPE rv;
1420
1421 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1422 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1423
1424 if (BITS_PER_WORD == 32)
1425 {
1426 val = k[offset];
1427 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1428 return GEN_INT (val);
1429 }
1430 #if HOST_BITS_PER_WIDE_INT >= 64
1431 else if (BITS_PER_WORD >= 64 && offset <= 1)
1432 {
1433 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1434 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1435 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1436 return GEN_INT (val);
1437 }
1438 #endif
1439 else
1440 abort ();
1441 }
1442
1443 /* Single word float is a little harder, since single- and double-word
1444 values often do not have the same high-order bits. We have already
1445 verified that we want the only defined word of the single-word value. */
1446 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1447 && GET_MODE_BITSIZE (mode) == 32
1448 && GET_CODE (op) == CONST_DOUBLE)
1449 {
1450 long l;
1451 REAL_VALUE_TYPE rv;
1452
1453 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1454 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1455
1456 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1457 val = l;
1458 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1459
1460 if (BITS_PER_WORD == 16)
1461 {
1462 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1463 val >>= 16;
1464 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1465 }
1466
1467 return GEN_INT (val);
1468 }
1469
1470 /* The only remaining cases that we can handle are integers.
1471 Convert to proper endianness now since these cases need it.
1472 At this point, offset == 0 means the low-order word.
1473
1474 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1475 in general. However, if OP is (const_int 0), we can just return
1476 it for any word. */
1477
1478 if (op == const0_rtx)
1479 return op;
1480
1481 if (GET_MODE_CLASS (mode) != MODE_INT
1482 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1483 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1484 return 0;
1485
1486 if (WORDS_BIG_ENDIAN)
1487 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1488
1489 /* Find out which word on the host machine this value is in and get
1490 it from the constant. */
1491 val = (offset / size_ratio == 0
1492 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1493 : (GET_CODE (op) == CONST_INT
1494 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1495
1496 /* Get the value we want into the low bits of val. */
1497 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1498 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1499
1500 val = trunc_int_for_mode (val, word_mode);
1501
1502 return GEN_INT (val);
1503 }
1504
1505 /* Return subword OFFSET of operand OP.
1506 The word number, OFFSET, is interpreted as the word number starting
1507 at the low-order address. OFFSET 0 is the low-order word if not
1508 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1509
1510 If we cannot extract the required word, we return zero. Otherwise,
1511 an rtx corresponding to the requested word will be returned.
1512
1513 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1514 reload has completed, a valid address will always be returned. After
1515 reload, if a valid address cannot be returned, we return zero.
1516
1517 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1518 it is the responsibility of the caller.
1519
1520 MODE is the mode of OP in case it is a CONST_INT.
1521
1522 ??? This is still rather broken for some cases. The problem for the
1523 moment is that all callers of this thing provide no 'goal mode' to
1524 tell us to work with. This exists because all callers were written
1525 in a word based SUBREG world.
1526 Now use of this function can be deprecated by simplify_subreg in most
1527 cases.
1528 */
1529
1530 rtx
1531 operand_subword (op, offset, validate_address, mode)
1532 rtx op;
1533 unsigned int offset;
1534 int validate_address;
1535 enum machine_mode mode;
1536 {
1537 if (mode == VOIDmode)
1538 mode = GET_MODE (op);
1539
1540 if (mode == VOIDmode)
1541 abort ();
1542
1543 /* If OP is narrower than a word, fail. */
1544 if (mode != BLKmode
1545 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1546 return 0;
1547
1548 /* If we want a word outside OP, return zero. */
1549 if (mode != BLKmode
1550 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1551 return const0_rtx;
1552
1553 /* Form a new MEM at the requested address. */
1554 if (GET_CODE (op) == MEM)
1555 {
1556 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1557
1558 if (! validate_address)
1559 return new;
1560
1561 else if (reload_completed)
1562 {
1563 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1564 return 0;
1565 }
1566 else
1567 return replace_equiv_address (new, XEXP (new, 0));
1568 }
1569
1570 /* Rest can be handled by simplify_subreg. */
1571 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1572 }
1573
1574 /* Similar to `operand_subword', but never return 0. If we can't extract
1575 the required subword, put OP into a register and try again. If that fails,
1576 abort. We always validate the address in this case.
1577
1578 MODE is the mode of OP, in case it is CONST_INT. */
1579
1580 rtx
1581 operand_subword_force (op, offset, mode)
1582 rtx op;
1583 unsigned int offset;
1584 enum machine_mode mode;
1585 {
1586 rtx result = operand_subword (op, offset, 1, mode);
1587
1588 if (result)
1589 return result;
1590
1591 if (mode != BLKmode && mode != VOIDmode)
1592 {
1593 /* If this is a register which can not be accessed by words, copy it
1594 to a pseudo register. */
1595 if (GET_CODE (op) == REG)
1596 op = copy_to_reg (op);
1597 else
1598 op = force_reg (mode, op);
1599 }
1600
1601 result = operand_subword (op, offset, 1, mode);
1602 if (result == 0)
1603 abort ();
1604
1605 return result;
1606 }
1607 \f
1608 /* Given a compare instruction, swap the operands.
1609 A test instruction is changed into a compare of 0 against the operand. */
1610
1611 void
1612 reverse_comparison (insn)
1613 rtx insn;
1614 {
1615 rtx body = PATTERN (insn);
1616 rtx comp;
1617
1618 if (GET_CODE (body) == SET)
1619 comp = SET_SRC (body);
1620 else
1621 comp = SET_SRC (XVECEXP (body, 0, 0));
1622
1623 if (GET_CODE (comp) == COMPARE)
1624 {
1625 rtx op0 = XEXP (comp, 0);
1626 rtx op1 = XEXP (comp, 1);
1627 XEXP (comp, 0) = op1;
1628 XEXP (comp, 1) = op0;
1629 }
1630 else
1631 {
1632 rtx new = gen_rtx_COMPARE (VOIDmode,
1633 CONST0_RTX (GET_MODE (comp)), comp);
1634 if (GET_CODE (body) == SET)
1635 SET_SRC (body) = new;
1636 else
1637 SET_SRC (XVECEXP (body, 0, 0)) = new;
1638 }
1639 }
1640 \f
1641 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1642 or (2) a component ref of something variable. Represent the later with
1643 a NULL expression. */
1644
1645 static tree
1646 component_ref_for_mem_expr (ref)
1647 tree ref;
1648 {
1649 tree inner = TREE_OPERAND (ref, 0);
1650
1651 if (TREE_CODE (inner) == COMPONENT_REF)
1652 inner = component_ref_for_mem_expr (inner);
1653 else
1654 {
1655 tree placeholder_ptr = 0;
1656
1657 /* Now remove any conversions: they don't change what the underlying
1658 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1659 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1660 || TREE_CODE (inner) == NON_LVALUE_EXPR
1661 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1662 || TREE_CODE (inner) == SAVE_EXPR
1663 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1664 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1665 inner = find_placeholder (inner, &placeholder_ptr);
1666 else
1667 inner = TREE_OPERAND (inner, 0);
1668
1669 if (! DECL_P (inner))
1670 inner = NULL_TREE;
1671 }
1672
1673 if (inner == TREE_OPERAND (ref, 0))
1674 return ref;
1675 else
1676 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1677 TREE_OPERAND (ref, 1));
1678 }
1679
1680 /* Given REF, a MEM, and T, either the type of X or the expression
1681 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1682 if we are making a new object of this type. */
1683
1684 void
1685 set_mem_attributes (ref, t, objectp)
1686 rtx ref;
1687 tree t;
1688 int objectp;
1689 {
1690 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1691 tree expr = MEM_EXPR (ref);
1692 rtx offset = MEM_OFFSET (ref);
1693 rtx size = MEM_SIZE (ref);
1694 unsigned int align = MEM_ALIGN (ref);
1695 tree type;
1696
1697 /* It can happen that type_for_mode was given a mode for which there
1698 is no language-level type. In which case it returns NULL, which
1699 we can see here. */
1700 if (t == NULL_TREE)
1701 return;
1702
1703 type = TYPE_P (t) ? t : TREE_TYPE (t);
1704
1705 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1706 wrong answer, as it assumes that DECL_RTL already has the right alias
1707 info. Callers should not set DECL_RTL until after the call to
1708 set_mem_attributes. */
1709 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1710 abort ();
1711
1712 /* Get the alias set from the expression or type (perhaps using a
1713 front-end routine) and use it. */
1714 alias = get_alias_set (t);
1715
1716 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1717 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1718 RTX_UNCHANGING_P (ref)
1719 |= ((lang_hooks.honor_readonly
1720 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1721 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1722
1723 /* If we are making an object of this type, or if this is a DECL, we know
1724 that it is a scalar if the type is not an aggregate. */
1725 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1726 MEM_SCALAR_P (ref) = 1;
1727
1728 /* We can set the alignment from the type if we are making an object,
1729 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1730 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1731 align = MAX (align, TYPE_ALIGN (type));
1732
1733 /* If the size is known, we can set that. */
1734 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1735 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1736
1737 /* If T is not a type, we may be able to deduce some more information about
1738 the expression. */
1739 if (! TYPE_P (t))
1740 {
1741 maybe_set_unchanging (ref, t);
1742 if (TREE_THIS_VOLATILE (t))
1743 MEM_VOLATILE_P (ref) = 1;
1744
1745 /* Now remove any conversions: they don't change what the underlying
1746 object is. Likewise for SAVE_EXPR. */
1747 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1748 || TREE_CODE (t) == NON_LVALUE_EXPR
1749 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1750 || TREE_CODE (t) == SAVE_EXPR)
1751 t = TREE_OPERAND (t, 0);
1752
1753 /* If this expression can't be addressed (e.g., it contains a reference
1754 to a non-addressable field), show we don't change its alias set. */
1755 if (! can_address_p (t))
1756 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1757
1758 /* If this is a decl, set the attributes of the MEM from it. */
1759 if (DECL_P (t))
1760 {
1761 expr = t;
1762 offset = const0_rtx;
1763 size = (DECL_SIZE_UNIT (t)
1764 && host_integerp (DECL_SIZE_UNIT (t), 1)
1765 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1766 align = DECL_ALIGN (t);
1767 }
1768
1769 /* If this is a constant, we know the alignment. */
1770 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1771 {
1772 align = TYPE_ALIGN (type);
1773 #ifdef CONSTANT_ALIGNMENT
1774 align = CONSTANT_ALIGNMENT (t, align);
1775 #endif
1776 }
1777
1778 /* If this is a field reference and not a bit-field, record it. */
1779 /* ??? There is some information that can be gleened from bit-fields,
1780 such as the word offset in the structure that might be modified.
1781 But skip it for now. */
1782 else if (TREE_CODE (t) == COMPONENT_REF
1783 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1784 {
1785 expr = component_ref_for_mem_expr (t);
1786 offset = const0_rtx;
1787 /* ??? Any reason the field size would be different than
1788 the size we got from the type? */
1789 }
1790
1791 /* If this is an array reference, look for an outer field reference. */
1792 else if (TREE_CODE (t) == ARRAY_REF)
1793 {
1794 tree off_tree = size_zero_node;
1795
1796 do
1797 {
1798 off_tree
1799 = fold (build (PLUS_EXPR, sizetype,
1800 fold (build (MULT_EXPR, sizetype,
1801 TREE_OPERAND (t, 1),
1802 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1803 off_tree));
1804 t = TREE_OPERAND (t, 0);
1805 }
1806 while (TREE_CODE (t) == ARRAY_REF);
1807
1808 if (TREE_CODE (t) == COMPONENT_REF)
1809 {
1810 expr = component_ref_for_mem_expr (t);
1811 if (host_integerp (off_tree, 1))
1812 offset = GEN_INT (tree_low_cst (off_tree, 1));
1813 /* ??? Any reason the field size would be different than
1814 the size we got from the type? */
1815 }
1816 }
1817 }
1818
1819 /* Now set the attributes we computed above. */
1820 MEM_ATTRS (ref)
1821 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1822
1823 /* If this is already known to be a scalar or aggregate, we are done. */
1824 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1825 return;
1826
1827 /* If it is a reference into an aggregate, this is part of an aggregate.
1828 Otherwise we don't know. */
1829 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1830 || TREE_CODE (t) == ARRAY_RANGE_REF
1831 || TREE_CODE (t) == BIT_FIELD_REF)
1832 MEM_IN_STRUCT_P (ref) = 1;
1833 }
1834
1835 /* Set the alias set of MEM to SET. */
1836
1837 void
1838 set_mem_alias_set (mem, set)
1839 rtx mem;
1840 HOST_WIDE_INT set;
1841 {
1842 #ifdef ENABLE_CHECKING
1843 /* If the new and old alias sets don't conflict, something is wrong. */
1844 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1845 abort ();
1846 #endif
1847
1848 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1849 MEM_SIZE (mem), MEM_ALIGN (mem),
1850 GET_MODE (mem));
1851 }
1852
1853 /* Set the alignment of MEM to ALIGN bits. */
1854
1855 void
1856 set_mem_align (mem, align)
1857 rtx mem;
1858 unsigned int align;
1859 {
1860 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1861 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1862 GET_MODE (mem));
1863 }
1864
1865 /* Set the expr for MEM to EXPR. */
1866
1867 void
1868 set_mem_expr (mem, expr)
1869 rtx mem;
1870 tree expr;
1871 {
1872 MEM_ATTRS (mem)
1873 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1874 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1875 }
1876
1877 /* Set the offset of MEM to OFFSET. */
1878
1879 void
1880 set_mem_offset (mem, offset)
1881 rtx mem, offset;
1882 {
1883 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1884 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1885 GET_MODE (mem));
1886 }
1887 \f
1888 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1889 and its address changed to ADDR. (VOIDmode means don't change the mode.
1890 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1891 returned memory location is required to be valid. The memory
1892 attributes are not changed. */
1893
1894 static rtx
1895 change_address_1 (memref, mode, addr, validate)
1896 rtx memref;
1897 enum machine_mode mode;
1898 rtx addr;
1899 int validate;
1900 {
1901 rtx new;
1902
1903 if (GET_CODE (memref) != MEM)
1904 abort ();
1905 if (mode == VOIDmode)
1906 mode = GET_MODE (memref);
1907 if (addr == 0)
1908 addr = XEXP (memref, 0);
1909
1910 if (validate)
1911 {
1912 if (reload_in_progress || reload_completed)
1913 {
1914 if (! memory_address_p (mode, addr))
1915 abort ();
1916 }
1917 else
1918 addr = memory_address (mode, addr);
1919 }
1920
1921 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1922 return memref;
1923
1924 new = gen_rtx_MEM (mode, addr);
1925 MEM_COPY_ATTRIBUTES (new, memref);
1926 return new;
1927 }
1928
1929 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1930 way we are changing MEMREF, so we only preserve the alias set. */
1931
1932 rtx
1933 change_address (memref, mode, addr)
1934 rtx memref;
1935 enum machine_mode mode;
1936 rtx addr;
1937 {
1938 rtx new = change_address_1 (memref, mode, addr, 1);
1939 enum machine_mode mmode = GET_MODE (new);
1940
1941 MEM_ATTRS (new)
1942 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1943 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1944 (mmode == BLKmode ? BITS_PER_UNIT
1945 : GET_MODE_ALIGNMENT (mmode)),
1946 mmode);
1947
1948 return new;
1949 }
1950
1951 /* Return a memory reference like MEMREF, but with its mode changed
1952 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1953 nonzero, the memory address is forced to be valid.
1954 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1955 and caller is responsible for adjusting MEMREF base register. */
1956
1957 rtx
1958 adjust_address_1 (memref, mode, offset, validate, adjust)
1959 rtx memref;
1960 enum machine_mode mode;
1961 HOST_WIDE_INT offset;
1962 int validate, adjust;
1963 {
1964 rtx addr = XEXP (memref, 0);
1965 rtx new;
1966 rtx memoffset = MEM_OFFSET (memref);
1967 rtx size = 0;
1968 unsigned int memalign = MEM_ALIGN (memref);
1969
1970 /* ??? Prefer to create garbage instead of creating shared rtl.
1971 This may happen even if offset is non-zero -- consider
1972 (plus (plus reg reg) const_int) -- so do this always. */
1973 addr = copy_rtx (addr);
1974
1975 if (adjust)
1976 {
1977 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1978 object, we can merge it into the LO_SUM. */
1979 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1980 && offset >= 0
1981 && (unsigned HOST_WIDE_INT) offset
1982 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1983 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1984 plus_constant (XEXP (addr, 1), offset));
1985 else
1986 addr = plus_constant (addr, offset);
1987 }
1988
1989 new = change_address_1 (memref, mode, addr, validate);
1990
1991 /* Compute the new values of the memory attributes due to this adjustment.
1992 We add the offsets and update the alignment. */
1993 if (memoffset)
1994 memoffset = GEN_INT (offset + INTVAL (memoffset));
1995
1996 /* Compute the new alignment by taking the MIN of the alignment and the
1997 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1998 if zero. */
1999 if (offset != 0)
2000 memalign
2001 = MIN (memalign,
2002 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2003
2004 /* We can compute the size in a number of ways. */
2005 if (GET_MODE (new) != BLKmode)
2006 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2007 else if (MEM_SIZE (memref))
2008 size = plus_constant (MEM_SIZE (memref), -offset);
2009
2010 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2011 memoffset, size, memalign, GET_MODE (new));
2012
2013 /* At some point, we should validate that this offset is within the object,
2014 if all the appropriate values are known. */
2015 return new;
2016 }
2017
2018 /* Return a memory reference like MEMREF, but with its mode changed
2019 to MODE and its address changed to ADDR, which is assumed to be
2020 MEMREF offseted by OFFSET bytes. If VALIDATE is
2021 nonzero, the memory address is forced to be valid. */
2022
2023 rtx
2024 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2025 rtx memref;
2026 enum machine_mode mode;
2027 rtx addr;
2028 HOST_WIDE_INT offset;
2029 int validate;
2030 {
2031 memref = change_address_1 (memref, VOIDmode, addr, validate);
2032 return adjust_address_1 (memref, mode, offset, validate, 0);
2033 }
2034
2035 /* Return a memory reference like MEMREF, but whose address is changed by
2036 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2037 known to be in OFFSET (possibly 1). */
2038
2039 rtx
2040 offset_address (memref, offset, pow2)
2041 rtx memref;
2042 rtx offset;
2043 HOST_WIDE_INT pow2;
2044 {
2045 rtx new, addr = XEXP (memref, 0);
2046
2047 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2048
2049 /* At this point we don't know _why_ the address is invalid. It
2050 could have secondary memory refereces, multiplies or anything.
2051
2052 However, if we did go and rearrange things, we can wind up not
2053 being able to recognize the magic around pic_offset_table_rtx.
2054 This stuff is fragile, and is yet another example of why it is
2055 bad to expose PIC machinery too early. */
2056 if (! memory_address_p (GET_MODE (memref), new)
2057 && GET_CODE (addr) == PLUS
2058 && XEXP (addr, 0) == pic_offset_table_rtx)
2059 {
2060 addr = force_reg (GET_MODE (addr), addr);
2061 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2062 }
2063
2064 update_temp_slot_address (XEXP (memref, 0), new);
2065 new = change_address_1 (memref, VOIDmode, new, 1);
2066
2067 /* Update the alignment to reflect the offset. Reset the offset, which
2068 we don't know. */
2069 MEM_ATTRS (new)
2070 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2071 MIN (MEM_ALIGN (memref),
2072 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2073 GET_MODE (new));
2074 return new;
2075 }
2076
2077 /* Return a memory reference like MEMREF, but with its address changed to
2078 ADDR. The caller is asserting that the actual piece of memory pointed
2079 to is the same, just the form of the address is being changed, such as
2080 by putting something into a register. */
2081
2082 rtx
2083 replace_equiv_address (memref, addr)
2084 rtx memref;
2085 rtx addr;
2086 {
2087 /* change_address_1 copies the memory attribute structure without change
2088 and that's exactly what we want here. */
2089 update_temp_slot_address (XEXP (memref, 0), addr);
2090 return change_address_1 (memref, VOIDmode, addr, 1);
2091 }
2092
2093 /* Likewise, but the reference is not required to be valid. */
2094
2095 rtx
2096 replace_equiv_address_nv (memref, addr)
2097 rtx memref;
2098 rtx addr;
2099 {
2100 return change_address_1 (memref, VOIDmode, addr, 0);
2101 }
2102
2103 /* Return a memory reference like MEMREF, but with its mode widened to
2104 MODE and offset by OFFSET. This would be used by targets that e.g.
2105 cannot issue QImode memory operations and have to use SImode memory
2106 operations plus masking logic. */
2107
2108 rtx
2109 widen_memory_access (memref, mode, offset)
2110 rtx memref;
2111 enum machine_mode mode;
2112 HOST_WIDE_INT offset;
2113 {
2114 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2115 tree expr = MEM_EXPR (new);
2116 rtx memoffset = MEM_OFFSET (new);
2117 unsigned int size = GET_MODE_SIZE (mode);
2118
2119 /* If we don't know what offset we were at within the expression, then
2120 we can't know if we've overstepped the bounds. */
2121 if (! memoffset)
2122 expr = NULL_TREE;
2123
2124 while (expr)
2125 {
2126 if (TREE_CODE (expr) == COMPONENT_REF)
2127 {
2128 tree field = TREE_OPERAND (expr, 1);
2129
2130 if (! DECL_SIZE_UNIT (field))
2131 {
2132 expr = NULL_TREE;
2133 break;
2134 }
2135
2136 /* Is the field at least as large as the access? If so, ok,
2137 otherwise strip back to the containing structure. */
2138 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2139 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2140 && INTVAL (memoffset) >= 0)
2141 break;
2142
2143 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2144 {
2145 expr = NULL_TREE;
2146 break;
2147 }
2148
2149 expr = TREE_OPERAND (expr, 0);
2150 memoffset = (GEN_INT (INTVAL (memoffset)
2151 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2152 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2153 / BITS_PER_UNIT)));
2154 }
2155 /* Similarly for the decl. */
2156 else if (DECL_P (expr)
2157 && DECL_SIZE_UNIT (expr)
2158 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2159 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2160 && (! memoffset || INTVAL (memoffset) >= 0))
2161 break;
2162 else
2163 {
2164 /* The widened memory access overflows the expression, which means
2165 that it could alias another expression. Zap it. */
2166 expr = NULL_TREE;
2167 break;
2168 }
2169 }
2170
2171 if (! expr)
2172 memoffset = NULL_RTX;
2173
2174 /* The widened memory may alias other stuff, so zap the alias set. */
2175 /* ??? Maybe use get_alias_set on any remaining expression. */
2176
2177 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2178 MEM_ALIGN (new), mode);
2179
2180 return new;
2181 }
2182 \f
2183 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2184
2185 rtx
2186 gen_label_rtx ()
2187 {
2188 rtx label;
2189
2190 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2191 NULL, label_num++, NULL, NULL);
2192
2193 LABEL_NUSES (label) = 0;
2194 LABEL_ALTERNATE_NAME (label) = NULL;
2195 return label;
2196 }
2197 \f
2198 /* For procedure integration. */
2199
2200 /* Install new pointers to the first and last insns in the chain.
2201 Also, set cur_insn_uid to one higher than the last in use.
2202 Used for an inline-procedure after copying the insn chain. */
2203
2204 void
2205 set_new_first_and_last_insn (first, last)
2206 rtx first, last;
2207 {
2208 rtx insn;
2209
2210 first_insn = first;
2211 last_insn = last;
2212 cur_insn_uid = 0;
2213
2214 for (insn = first; insn; insn = NEXT_INSN (insn))
2215 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2216
2217 cur_insn_uid++;
2218 }
2219
2220 /* Set the range of label numbers found in the current function.
2221 This is used when belatedly compiling an inline function. */
2222
2223 void
2224 set_new_first_and_last_label_num (first, last)
2225 int first, last;
2226 {
2227 base_label_num = label_num;
2228 first_label_num = first;
2229 last_label_num = last;
2230 }
2231
2232 /* Set the last label number found in the current function.
2233 This is used when belatedly compiling an inline function. */
2234
2235 void
2236 set_new_last_label_num (last)
2237 int last;
2238 {
2239 base_label_num = label_num;
2240 last_label_num = last;
2241 }
2242 \f
2243 /* Restore all variables describing the current status from the structure *P.
2244 This is used after a nested function. */
2245
2246 void
2247 restore_emit_status (p)
2248 struct function *p ATTRIBUTE_UNUSED;
2249 {
2250 last_label_num = 0;
2251 }
2252 \f
2253 /* Go through all the RTL insn bodies and copy any invalid shared
2254 structure. This routine should only be called once. */
2255
2256 void
2257 unshare_all_rtl (fndecl, insn)
2258 tree fndecl;
2259 rtx insn;
2260 {
2261 tree decl;
2262
2263 /* Make sure that virtual parameters are not shared. */
2264 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2265 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2266
2267 /* Make sure that virtual stack slots are not shared. */
2268 unshare_all_decls (DECL_INITIAL (fndecl));
2269
2270 /* Unshare just about everything else. */
2271 unshare_all_rtl_1 (insn);
2272
2273 /* Make sure the addresses of stack slots found outside the insn chain
2274 (such as, in DECL_RTL of a variable) are not shared
2275 with the insn chain.
2276
2277 This special care is necessary when the stack slot MEM does not
2278 actually appear in the insn chain. If it does appear, its address
2279 is unshared from all else at that point. */
2280 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2281 }
2282
2283 /* Go through all the RTL insn bodies and copy any invalid shared
2284 structure, again. This is a fairly expensive thing to do so it
2285 should be done sparingly. */
2286
2287 void
2288 unshare_all_rtl_again (insn)
2289 rtx insn;
2290 {
2291 rtx p;
2292 tree decl;
2293
2294 for (p = insn; p; p = NEXT_INSN (p))
2295 if (INSN_P (p))
2296 {
2297 reset_used_flags (PATTERN (p));
2298 reset_used_flags (REG_NOTES (p));
2299 reset_used_flags (LOG_LINKS (p));
2300 }
2301
2302 /* Make sure that virtual stack slots are not shared. */
2303 reset_used_decls (DECL_INITIAL (cfun->decl));
2304
2305 /* Make sure that virtual parameters are not shared. */
2306 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2307 reset_used_flags (DECL_RTL (decl));
2308
2309 reset_used_flags (stack_slot_list);
2310
2311 unshare_all_rtl (cfun->decl, insn);
2312 }
2313
2314 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2315 Assumes the mark bits are cleared at entry. */
2316
2317 static void
2318 unshare_all_rtl_1 (insn)
2319 rtx insn;
2320 {
2321 for (; insn; insn = NEXT_INSN (insn))
2322 if (INSN_P (insn))
2323 {
2324 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2325 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2326 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2327 }
2328 }
2329
2330 /* Go through all virtual stack slots of a function and copy any
2331 shared structure. */
2332 static void
2333 unshare_all_decls (blk)
2334 tree blk;
2335 {
2336 tree t;
2337
2338 /* Copy shared decls. */
2339 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2340 if (DECL_RTL_SET_P (t))
2341 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2342
2343 /* Now process sub-blocks. */
2344 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2345 unshare_all_decls (t);
2346 }
2347
2348 /* Go through all virtual stack slots of a function and mark them as
2349 not shared. */
2350 static void
2351 reset_used_decls (blk)
2352 tree blk;
2353 {
2354 tree t;
2355
2356 /* Mark decls. */
2357 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2358 if (DECL_RTL_SET_P (t))
2359 reset_used_flags (DECL_RTL (t));
2360
2361 /* Now process sub-blocks. */
2362 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2363 reset_used_decls (t);
2364 }
2365
2366 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2367 placed in the result directly, rather than being copied. MAY_SHARE is
2368 either a MEM of an EXPR_LIST of MEMs. */
2369
2370 rtx
2371 copy_most_rtx (orig, may_share)
2372 rtx orig;
2373 rtx may_share;
2374 {
2375 rtx copy;
2376 int i, j;
2377 RTX_CODE code;
2378 const char *format_ptr;
2379
2380 if (orig == may_share
2381 || (GET_CODE (may_share) == EXPR_LIST
2382 && in_expr_list_p (may_share, orig)))
2383 return orig;
2384
2385 code = GET_CODE (orig);
2386
2387 switch (code)
2388 {
2389 case REG:
2390 case QUEUED:
2391 case CONST_INT:
2392 case CONST_DOUBLE:
2393 case CONST_VECTOR:
2394 case SYMBOL_REF:
2395 case CODE_LABEL:
2396 case PC:
2397 case CC0:
2398 return orig;
2399 default:
2400 break;
2401 }
2402
2403 copy = rtx_alloc (code);
2404 PUT_MODE (copy, GET_MODE (orig));
2405 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2406 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2407 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2408 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2409 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2410
2411 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2412
2413 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2414 {
2415 switch (*format_ptr++)
2416 {
2417 case 'e':
2418 XEXP (copy, i) = XEXP (orig, i);
2419 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2420 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2421 break;
2422
2423 case 'u':
2424 XEXP (copy, i) = XEXP (orig, i);
2425 break;
2426
2427 case 'E':
2428 case 'V':
2429 XVEC (copy, i) = XVEC (orig, i);
2430 if (XVEC (orig, i) != NULL)
2431 {
2432 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2433 for (j = 0; j < XVECLEN (copy, i); j++)
2434 XVECEXP (copy, i, j)
2435 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2436 }
2437 break;
2438
2439 case 'w':
2440 XWINT (copy, i) = XWINT (orig, i);
2441 break;
2442
2443 case 'n':
2444 case 'i':
2445 XINT (copy, i) = XINT (orig, i);
2446 break;
2447
2448 case 't':
2449 XTREE (copy, i) = XTREE (orig, i);
2450 break;
2451
2452 case 's':
2453 case 'S':
2454 XSTR (copy, i) = XSTR (orig, i);
2455 break;
2456
2457 case '0':
2458 /* Copy this through the wide int field; that's safest. */
2459 X0WINT (copy, i) = X0WINT (orig, i);
2460 break;
2461
2462 default:
2463 abort ();
2464 }
2465 }
2466 return copy;
2467 }
2468
2469 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2470 Recursively does the same for subexpressions. */
2471
2472 rtx
2473 copy_rtx_if_shared (orig)
2474 rtx orig;
2475 {
2476 rtx x = orig;
2477 int i;
2478 enum rtx_code code;
2479 const char *format_ptr;
2480 int copied = 0;
2481
2482 if (x == 0)
2483 return 0;
2484
2485 code = GET_CODE (x);
2486
2487 /* These types may be freely shared. */
2488
2489 switch (code)
2490 {
2491 case REG:
2492 case QUEUED:
2493 case CONST_INT:
2494 case CONST_DOUBLE:
2495 case CONST_VECTOR:
2496 case SYMBOL_REF:
2497 case CODE_LABEL:
2498 case PC:
2499 case CC0:
2500 case SCRATCH:
2501 /* SCRATCH must be shared because they represent distinct values. */
2502 return x;
2503
2504 case CONST:
2505 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2506 a LABEL_REF, it isn't sharable. */
2507 if (GET_CODE (XEXP (x, 0)) == PLUS
2508 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2509 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2510 return x;
2511 break;
2512
2513 case INSN:
2514 case JUMP_INSN:
2515 case CALL_INSN:
2516 case NOTE:
2517 case BARRIER:
2518 /* The chain of insns is not being copied. */
2519 return x;
2520
2521 case MEM:
2522 /* A MEM is allowed to be shared if its address is constant.
2523
2524 We used to allow sharing of MEMs which referenced
2525 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2526 that can lose. instantiate_virtual_regs will not unshare
2527 the MEMs, and combine may change the structure of the address
2528 because it looks safe and profitable in one context, but
2529 in some other context it creates unrecognizable RTL. */
2530 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2531 return x;
2532
2533 break;
2534
2535 default:
2536 break;
2537 }
2538
2539 /* This rtx may not be shared. If it has already been seen,
2540 replace it with a copy of itself. */
2541
2542 if (RTX_FLAG (x, used))
2543 {
2544 rtx copy;
2545
2546 copy = rtx_alloc (code);
2547 memcpy (copy, x,
2548 (sizeof (*copy) - sizeof (copy->fld)
2549 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2550 x = copy;
2551 copied = 1;
2552 }
2553 RTX_FLAG (x, used) = 1;
2554
2555 /* Now scan the subexpressions recursively.
2556 We can store any replaced subexpressions directly into X
2557 since we know X is not shared! Any vectors in X
2558 must be copied if X was copied. */
2559
2560 format_ptr = GET_RTX_FORMAT (code);
2561
2562 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2563 {
2564 switch (*format_ptr++)
2565 {
2566 case 'e':
2567 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2568 break;
2569
2570 case 'E':
2571 if (XVEC (x, i) != NULL)
2572 {
2573 int j;
2574 int len = XVECLEN (x, i);
2575
2576 if (copied && len > 0)
2577 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2578 for (j = 0; j < len; j++)
2579 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2580 }
2581 break;
2582 }
2583 }
2584 return x;
2585 }
2586
2587 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2588 to look for shared sub-parts. */
2589
2590 void
2591 reset_used_flags (x)
2592 rtx x;
2593 {
2594 int i, j;
2595 enum rtx_code code;
2596 const char *format_ptr;
2597
2598 if (x == 0)
2599 return;
2600
2601 code = GET_CODE (x);
2602
2603 /* These types may be freely shared so we needn't do any resetting
2604 for them. */
2605
2606 switch (code)
2607 {
2608 case REG:
2609 case QUEUED:
2610 case CONST_INT:
2611 case CONST_DOUBLE:
2612 case CONST_VECTOR:
2613 case SYMBOL_REF:
2614 case CODE_LABEL:
2615 case PC:
2616 case CC0:
2617 return;
2618
2619 case INSN:
2620 case JUMP_INSN:
2621 case CALL_INSN:
2622 case NOTE:
2623 case LABEL_REF:
2624 case BARRIER:
2625 /* The chain of insns is not being copied. */
2626 return;
2627
2628 default:
2629 break;
2630 }
2631
2632 RTX_FLAG (x, used) = 0;
2633
2634 format_ptr = GET_RTX_FORMAT (code);
2635 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2636 {
2637 switch (*format_ptr++)
2638 {
2639 case 'e':
2640 reset_used_flags (XEXP (x, i));
2641 break;
2642
2643 case 'E':
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 reset_used_flags (XVECEXP (x, i, j));
2646 break;
2647 }
2648 }
2649 }
2650 \f
2651 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2652 Return X or the rtx for the pseudo reg the value of X was copied into.
2653 OTHER must be valid as a SET_DEST. */
2654
2655 rtx
2656 make_safe_from (x, other)
2657 rtx x, other;
2658 {
2659 while (1)
2660 switch (GET_CODE (other))
2661 {
2662 case SUBREG:
2663 other = SUBREG_REG (other);
2664 break;
2665 case STRICT_LOW_PART:
2666 case SIGN_EXTEND:
2667 case ZERO_EXTEND:
2668 other = XEXP (other, 0);
2669 break;
2670 default:
2671 goto done;
2672 }
2673 done:
2674 if ((GET_CODE (other) == MEM
2675 && ! CONSTANT_P (x)
2676 && GET_CODE (x) != REG
2677 && GET_CODE (x) != SUBREG)
2678 || (GET_CODE (other) == REG
2679 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2680 || reg_mentioned_p (other, x))))
2681 {
2682 rtx temp = gen_reg_rtx (GET_MODE (x));
2683 emit_move_insn (temp, x);
2684 return temp;
2685 }
2686 return x;
2687 }
2688 \f
2689 /* Emission of insns (adding them to the doubly-linked list). */
2690
2691 /* Return the first insn of the current sequence or current function. */
2692
2693 rtx
2694 get_insns ()
2695 {
2696 return first_insn;
2697 }
2698
2699 /* Specify a new insn as the first in the chain. */
2700
2701 void
2702 set_first_insn (insn)
2703 rtx insn;
2704 {
2705 if (PREV_INSN (insn) != 0)
2706 abort ();
2707 first_insn = insn;
2708 }
2709
2710 /* Return the last insn emitted in current sequence or current function. */
2711
2712 rtx
2713 get_last_insn ()
2714 {
2715 return last_insn;
2716 }
2717
2718 /* Specify a new insn as the last in the chain. */
2719
2720 void
2721 set_last_insn (insn)
2722 rtx insn;
2723 {
2724 if (NEXT_INSN (insn) != 0)
2725 abort ();
2726 last_insn = insn;
2727 }
2728
2729 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2730
2731 rtx
2732 get_last_insn_anywhere ()
2733 {
2734 struct sequence_stack *stack;
2735 if (last_insn)
2736 return last_insn;
2737 for (stack = seq_stack; stack; stack = stack->next)
2738 if (stack->last != 0)
2739 return stack->last;
2740 return 0;
2741 }
2742
2743 /* Return the first nonnote insn emitted in current sequence or current
2744 function. This routine looks inside SEQUENCEs. */
2745
2746 rtx
2747 get_first_nonnote_insn ()
2748 {
2749 rtx insn = first_insn;
2750
2751 while (insn)
2752 {
2753 insn = next_insn (insn);
2754 if (insn == 0 || GET_CODE (insn) != NOTE)
2755 break;
2756 }
2757
2758 return insn;
2759 }
2760
2761 /* Return the last nonnote insn emitted in current sequence or current
2762 function. This routine looks inside SEQUENCEs. */
2763
2764 rtx
2765 get_last_nonnote_insn ()
2766 {
2767 rtx insn = last_insn;
2768
2769 while (insn)
2770 {
2771 insn = previous_insn (insn);
2772 if (insn == 0 || GET_CODE (insn) != NOTE)
2773 break;
2774 }
2775
2776 return insn;
2777 }
2778
2779 /* Return a number larger than any instruction's uid in this function. */
2780
2781 int
2782 get_max_uid ()
2783 {
2784 return cur_insn_uid;
2785 }
2786
2787 /* Renumber instructions so that no instruction UIDs are wasted. */
2788
2789 void
2790 renumber_insns (stream)
2791 FILE *stream;
2792 {
2793 rtx insn;
2794
2795 /* If we're not supposed to renumber instructions, don't. */
2796 if (!flag_renumber_insns)
2797 return;
2798
2799 /* If there aren't that many instructions, then it's not really
2800 worth renumbering them. */
2801 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2802 return;
2803
2804 cur_insn_uid = 1;
2805
2806 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2807 {
2808 if (stream)
2809 fprintf (stream, "Renumbering insn %d to %d\n",
2810 INSN_UID (insn), cur_insn_uid);
2811 INSN_UID (insn) = cur_insn_uid++;
2812 }
2813 }
2814 \f
2815 /* Return the next insn. If it is a SEQUENCE, return the first insn
2816 of the sequence. */
2817
2818 rtx
2819 next_insn (insn)
2820 rtx insn;
2821 {
2822 if (insn)
2823 {
2824 insn = NEXT_INSN (insn);
2825 if (insn && GET_CODE (insn) == INSN
2826 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2827 insn = XVECEXP (PATTERN (insn), 0, 0);
2828 }
2829
2830 return insn;
2831 }
2832
2833 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2834 of the sequence. */
2835
2836 rtx
2837 previous_insn (insn)
2838 rtx insn;
2839 {
2840 if (insn)
2841 {
2842 insn = PREV_INSN (insn);
2843 if (insn && GET_CODE (insn) == INSN
2844 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2845 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2846 }
2847
2848 return insn;
2849 }
2850
2851 /* Return the next insn after INSN that is not a NOTE. This routine does not
2852 look inside SEQUENCEs. */
2853
2854 rtx
2855 next_nonnote_insn (insn)
2856 rtx insn;
2857 {
2858 while (insn)
2859 {
2860 insn = NEXT_INSN (insn);
2861 if (insn == 0 || GET_CODE (insn) != NOTE)
2862 break;
2863 }
2864
2865 return insn;
2866 }
2867
2868 /* Return the previous insn before INSN that is not a NOTE. This routine does
2869 not look inside SEQUENCEs. */
2870
2871 rtx
2872 prev_nonnote_insn (insn)
2873 rtx insn;
2874 {
2875 while (insn)
2876 {
2877 insn = PREV_INSN (insn);
2878 if (insn == 0 || GET_CODE (insn) != NOTE)
2879 break;
2880 }
2881
2882 return insn;
2883 }
2884
2885 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2886 or 0, if there is none. This routine does not look inside
2887 SEQUENCEs. */
2888
2889 rtx
2890 next_real_insn (insn)
2891 rtx insn;
2892 {
2893 while (insn)
2894 {
2895 insn = NEXT_INSN (insn);
2896 if (insn == 0 || GET_CODE (insn) == INSN
2897 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2898 break;
2899 }
2900
2901 return insn;
2902 }
2903
2904 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2905 or 0, if there is none. This routine does not look inside
2906 SEQUENCEs. */
2907
2908 rtx
2909 prev_real_insn (insn)
2910 rtx insn;
2911 {
2912 while (insn)
2913 {
2914 insn = PREV_INSN (insn);
2915 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2916 || GET_CODE (insn) == JUMP_INSN)
2917 break;
2918 }
2919
2920 return insn;
2921 }
2922
2923 /* Find the next insn after INSN that really does something. This routine
2924 does not look inside SEQUENCEs. Until reload has completed, this is the
2925 same as next_real_insn. */
2926
2927 int
2928 active_insn_p (insn)
2929 rtx insn;
2930 {
2931 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2932 || (GET_CODE (insn) == INSN
2933 && (! reload_completed
2934 || (GET_CODE (PATTERN (insn)) != USE
2935 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2936 }
2937
2938 rtx
2939 next_active_insn (insn)
2940 rtx insn;
2941 {
2942 while (insn)
2943 {
2944 insn = NEXT_INSN (insn);
2945 if (insn == 0 || active_insn_p (insn))
2946 break;
2947 }
2948
2949 return insn;
2950 }
2951
2952 /* Find the last insn before INSN that really does something. This routine
2953 does not look inside SEQUENCEs. Until reload has completed, this is the
2954 same as prev_real_insn. */
2955
2956 rtx
2957 prev_active_insn (insn)
2958 rtx insn;
2959 {
2960 while (insn)
2961 {
2962 insn = PREV_INSN (insn);
2963 if (insn == 0 || active_insn_p (insn))
2964 break;
2965 }
2966
2967 return insn;
2968 }
2969
2970 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2971
2972 rtx
2973 next_label (insn)
2974 rtx insn;
2975 {
2976 while (insn)
2977 {
2978 insn = NEXT_INSN (insn);
2979 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2980 break;
2981 }
2982
2983 return insn;
2984 }
2985
2986 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2987
2988 rtx
2989 prev_label (insn)
2990 rtx insn;
2991 {
2992 while (insn)
2993 {
2994 insn = PREV_INSN (insn);
2995 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2996 break;
2997 }
2998
2999 return insn;
3000 }
3001 \f
3002 #ifdef HAVE_cc0
3003 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3004 and REG_CC_USER notes so we can find it. */
3005
3006 void
3007 link_cc0_insns (insn)
3008 rtx insn;
3009 {
3010 rtx user = next_nonnote_insn (insn);
3011
3012 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3013 user = XVECEXP (PATTERN (user), 0, 0);
3014
3015 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3016 REG_NOTES (user));
3017 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3018 }
3019
3020 /* Return the next insn that uses CC0 after INSN, which is assumed to
3021 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3022 applied to the result of this function should yield INSN).
3023
3024 Normally, this is simply the next insn. However, if a REG_CC_USER note
3025 is present, it contains the insn that uses CC0.
3026
3027 Return 0 if we can't find the insn. */
3028
3029 rtx
3030 next_cc0_user (insn)
3031 rtx insn;
3032 {
3033 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3034
3035 if (note)
3036 return XEXP (note, 0);
3037
3038 insn = next_nonnote_insn (insn);
3039 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040 insn = XVECEXP (PATTERN (insn), 0, 0);
3041
3042 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3043 return insn;
3044
3045 return 0;
3046 }
3047
3048 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3049 note, it is the previous insn. */
3050
3051 rtx
3052 prev_cc0_setter (insn)
3053 rtx insn;
3054 {
3055 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3056
3057 if (note)
3058 return XEXP (note, 0);
3059
3060 insn = prev_nonnote_insn (insn);
3061 if (! sets_cc0_p (PATTERN (insn)))
3062 abort ();
3063
3064 return insn;
3065 }
3066 #endif
3067
3068 /* Increment the label uses for all labels present in rtx. */
3069
3070 static void
3071 mark_label_nuses (x)
3072 rtx x;
3073 {
3074 enum rtx_code code;
3075 int i, j;
3076 const char *fmt;
3077
3078 code = GET_CODE (x);
3079 if (code == LABEL_REF)
3080 LABEL_NUSES (XEXP (x, 0))++;
3081
3082 fmt = GET_RTX_FORMAT (code);
3083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3084 {
3085 if (fmt[i] == 'e')
3086 mark_label_nuses (XEXP (x, i));
3087 else if (fmt[i] == 'E')
3088 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3089 mark_label_nuses (XVECEXP (x, i, j));
3090 }
3091 }
3092
3093 \f
3094 /* Try splitting insns that can be split for better scheduling.
3095 PAT is the pattern which might split.
3096 TRIAL is the insn providing PAT.
3097 LAST is non-zero if we should return the last insn of the sequence produced.
3098
3099 If this routine succeeds in splitting, it returns the first or last
3100 replacement insn depending on the value of LAST. Otherwise, it
3101 returns TRIAL. If the insn to be returned can be split, it will be. */
3102
3103 rtx
3104 try_split (pat, trial, last)
3105 rtx pat, trial;
3106 int last;
3107 {
3108 rtx before = PREV_INSN (trial);
3109 rtx after = NEXT_INSN (trial);
3110 int has_barrier = 0;
3111 rtx tem;
3112 rtx note, seq;
3113 int probability;
3114
3115 if (any_condjump_p (trial)
3116 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3117 split_branch_probability = INTVAL (XEXP (note, 0));
3118 probability = split_branch_probability;
3119
3120 seq = split_insns (pat, trial);
3121
3122 split_branch_probability = -1;
3123
3124 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3125 We may need to handle this specially. */
3126 if (after && GET_CODE (after) == BARRIER)
3127 {
3128 has_barrier = 1;
3129 after = NEXT_INSN (after);
3130 }
3131
3132 if (seq)
3133 {
3134 /* Sometimes there will be only one insn in that list, this case will
3135 normally arise only when we want it in turn to be split (SFmode on
3136 the 29k is an example). */
3137 if (NEXT_INSN (seq) != NULL_RTX)
3138 {
3139 rtx insn_last, insn;
3140 int njumps = 0;
3141
3142 /* Avoid infinite loop if any insn of the result matches
3143 the original pattern. */
3144 insn_last = seq;
3145 while (1)
3146 {
3147 if (INSN_P (insn_last)
3148 && rtx_equal_p (PATTERN (insn_last), pat))
3149 return trial;
3150 if (NEXT_INSN (insn_last) == NULL_RTX)
3151 break;
3152 insn_last = NEXT_INSN (insn_last);
3153 }
3154
3155 /* Mark labels. */
3156 insn = insn_last;
3157 while (insn != NULL_RTX)
3158 {
3159 if (GET_CODE (insn) == JUMP_INSN)
3160 {
3161 mark_jump_label (PATTERN (insn), insn, 0);
3162 njumps++;
3163 if (probability != -1
3164 && any_condjump_p (insn)
3165 && !find_reg_note (insn, REG_BR_PROB, 0))
3166 {
3167 /* We can preserve the REG_BR_PROB notes only if exactly
3168 one jump is created, otherwise the machine description
3169 is responsible for this step using
3170 split_branch_probability variable. */
3171 if (njumps != 1)
3172 abort ();
3173 REG_NOTES (insn)
3174 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3175 GEN_INT (probability),
3176 REG_NOTES (insn));
3177 }
3178 }
3179
3180 insn = PREV_INSN (insn);
3181 }
3182
3183 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3184 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3185 if (GET_CODE (trial) == CALL_INSN)
3186 {
3187 insn = insn_last;
3188 while (insn != NULL_RTX)
3189 {
3190 if (GET_CODE (insn) == CALL_INSN)
3191 CALL_INSN_FUNCTION_USAGE (insn)
3192 = CALL_INSN_FUNCTION_USAGE (trial);
3193
3194 insn = PREV_INSN (insn);
3195 }
3196 }
3197
3198 /* Copy notes, particularly those related to the CFG. */
3199 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3200 {
3201 switch (REG_NOTE_KIND (note))
3202 {
3203 case REG_EH_REGION:
3204 insn = insn_last;
3205 while (insn != NULL_RTX)
3206 {
3207 if (GET_CODE (insn) == CALL_INSN
3208 || (flag_non_call_exceptions
3209 && may_trap_p (PATTERN (insn))))
3210 REG_NOTES (insn)
3211 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3212 XEXP (note, 0),
3213 REG_NOTES (insn));
3214 insn = PREV_INSN (insn);
3215 }
3216 break;
3217
3218 case REG_NORETURN:
3219 case REG_SETJMP:
3220 case REG_ALWAYS_RETURN:
3221 insn = insn_last;
3222 while (insn != NULL_RTX)
3223 {
3224 if (GET_CODE (insn) == CALL_INSN)
3225 REG_NOTES (insn)
3226 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3227 XEXP (note, 0),
3228 REG_NOTES (insn));
3229 insn = PREV_INSN (insn);
3230 }
3231 break;
3232
3233 case REG_NON_LOCAL_GOTO:
3234 insn = insn_last;
3235 while (insn != NULL_RTX)
3236 {
3237 if (GET_CODE (insn) == JUMP_INSN)
3238 REG_NOTES (insn)
3239 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3240 XEXP (note, 0),
3241 REG_NOTES (insn));
3242 insn = PREV_INSN (insn);
3243 }
3244 break;
3245
3246 default:
3247 break;
3248 }
3249 }
3250
3251 /* If there are LABELS inside the split insns increment the
3252 usage count so we don't delete the label. */
3253 if (GET_CODE (trial) == INSN)
3254 {
3255 insn = insn_last;
3256 while (insn != NULL_RTX)
3257 {
3258 if (GET_CODE (insn) == INSN)
3259 mark_label_nuses (PATTERN (insn));
3260
3261 insn = PREV_INSN (insn);
3262 }
3263 }
3264
3265 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3266
3267 delete_insn (trial);
3268 if (has_barrier)
3269 emit_barrier_after (tem);
3270
3271 /* Recursively call try_split for each new insn created; by the
3272 time control returns here that insn will be fully split, so
3273 set LAST and continue from the insn after the one returned.
3274 We can't use next_active_insn here since AFTER may be a note.
3275 Ignore deleted insns, which can be occur if not optimizing. */
3276 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3277 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3278 tem = try_split (PATTERN (tem), tem, 1);
3279 }
3280 /* Avoid infinite loop if the result matches the original pattern. */
3281 else if (rtx_equal_p (PATTERN (seq), pat))
3282 return trial;
3283 else
3284 {
3285 PATTERN (trial) = PATTERN (seq);
3286 INSN_CODE (trial) = -1;
3287 try_split (PATTERN (trial), trial, last);
3288 }
3289
3290 /* Return either the first or the last insn, depending on which was
3291 requested. */
3292 return last
3293 ? (after ? PREV_INSN (after) : last_insn)
3294 : NEXT_INSN (before);
3295 }
3296
3297 return trial;
3298 }
3299 \f
3300 /* Make and return an INSN rtx, initializing all its slots.
3301 Store PATTERN in the pattern slots. */
3302
3303 rtx
3304 make_insn_raw (pattern)
3305 rtx pattern;
3306 {
3307 rtx insn;
3308
3309 insn = rtx_alloc (INSN);
3310
3311 INSN_UID (insn) = cur_insn_uid++;
3312 PATTERN (insn) = pattern;
3313 INSN_CODE (insn) = -1;
3314 LOG_LINKS (insn) = NULL;
3315 REG_NOTES (insn) = NULL;
3316 INSN_SCOPE (insn) = NULL;
3317 BLOCK_FOR_INSN (insn) = NULL;
3318
3319 #ifdef ENABLE_RTL_CHECKING
3320 if (insn
3321 && INSN_P (insn)
3322 && (returnjump_p (insn)
3323 || (GET_CODE (insn) == SET
3324 && SET_DEST (insn) == pc_rtx)))
3325 {
3326 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3327 debug_rtx (insn);
3328 }
3329 #endif
3330
3331 return insn;
3332 }
3333
3334 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3335
3336 static rtx
3337 make_jump_insn_raw (pattern)
3338 rtx pattern;
3339 {
3340 rtx insn;
3341
3342 insn = rtx_alloc (JUMP_INSN);
3343 INSN_UID (insn) = cur_insn_uid++;
3344
3345 PATTERN (insn) = pattern;
3346 INSN_CODE (insn) = -1;
3347 LOG_LINKS (insn) = NULL;
3348 REG_NOTES (insn) = NULL;
3349 JUMP_LABEL (insn) = NULL;
3350 INSN_SCOPE (insn) = NULL;
3351 BLOCK_FOR_INSN (insn) = NULL;
3352
3353 return insn;
3354 }
3355
3356 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3357
3358 static rtx
3359 make_call_insn_raw (pattern)
3360 rtx pattern;
3361 {
3362 rtx insn;
3363
3364 insn = rtx_alloc (CALL_INSN);
3365 INSN_UID (insn) = cur_insn_uid++;
3366
3367 PATTERN (insn) = pattern;
3368 INSN_CODE (insn) = -1;
3369 LOG_LINKS (insn) = NULL;
3370 REG_NOTES (insn) = NULL;
3371 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3372 INSN_SCOPE (insn) = NULL;
3373 BLOCK_FOR_INSN (insn) = NULL;
3374
3375 return insn;
3376 }
3377 \f
3378 /* Add INSN to the end of the doubly-linked list.
3379 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3380
3381 void
3382 add_insn (insn)
3383 rtx insn;
3384 {
3385 PREV_INSN (insn) = last_insn;
3386 NEXT_INSN (insn) = 0;
3387
3388 if (NULL != last_insn)
3389 NEXT_INSN (last_insn) = insn;
3390
3391 if (NULL == first_insn)
3392 first_insn = insn;
3393
3394 last_insn = insn;
3395 }
3396
3397 /* Add INSN into the doubly-linked list after insn AFTER. This and
3398 the next should be the only functions called to insert an insn once
3399 delay slots have been filled since only they know how to update a
3400 SEQUENCE. */
3401
3402 void
3403 add_insn_after (insn, after)
3404 rtx insn, after;
3405 {
3406 rtx next = NEXT_INSN (after);
3407 basic_block bb;
3408
3409 if (optimize && INSN_DELETED_P (after))
3410 abort ();
3411
3412 NEXT_INSN (insn) = next;
3413 PREV_INSN (insn) = after;
3414
3415 if (next)
3416 {
3417 PREV_INSN (next) = insn;
3418 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3419 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3420 }
3421 else if (last_insn == after)
3422 last_insn = insn;
3423 else
3424 {
3425 struct sequence_stack *stack = seq_stack;
3426 /* Scan all pending sequences too. */
3427 for (; stack; stack = stack->next)
3428 if (after == stack->last)
3429 {
3430 stack->last = insn;
3431 break;
3432 }
3433
3434 if (stack == 0)
3435 abort ();
3436 }
3437
3438 if (GET_CODE (after) != BARRIER
3439 && GET_CODE (insn) != BARRIER
3440 && (bb = BLOCK_FOR_INSN (after)))
3441 {
3442 set_block_for_insn (insn, bb);
3443 if (INSN_P (insn))
3444 bb->flags |= BB_DIRTY;
3445 /* Should not happen as first in the BB is always
3446 either NOTE or LABEL. */
3447 if (bb->end == after
3448 /* Avoid clobbering of structure when creating new BB. */
3449 && GET_CODE (insn) != BARRIER
3450 && (GET_CODE (insn) != NOTE
3451 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3452 bb->end = insn;
3453 }
3454
3455 NEXT_INSN (after) = insn;
3456 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3457 {
3458 rtx sequence = PATTERN (after);
3459 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3460 }
3461 }
3462
3463 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3464 the previous should be the only functions called to insert an insn once
3465 delay slots have been filled since only they know how to update a
3466 SEQUENCE. */
3467
3468 void
3469 add_insn_before (insn, before)
3470 rtx insn, before;
3471 {
3472 rtx prev = PREV_INSN (before);
3473 basic_block bb;
3474
3475 if (optimize && INSN_DELETED_P (before))
3476 abort ();
3477
3478 PREV_INSN (insn) = prev;
3479 NEXT_INSN (insn) = before;
3480
3481 if (prev)
3482 {
3483 NEXT_INSN (prev) = insn;
3484 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3485 {
3486 rtx sequence = PATTERN (prev);
3487 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3488 }
3489 }
3490 else if (first_insn == before)
3491 first_insn = insn;
3492 else
3493 {
3494 struct sequence_stack *stack = seq_stack;
3495 /* Scan all pending sequences too. */
3496 for (; stack; stack = stack->next)
3497 if (before == stack->first)
3498 {
3499 stack->first = insn;
3500 break;
3501 }
3502
3503 if (stack == 0)
3504 abort ();
3505 }
3506
3507 if (GET_CODE (before) != BARRIER
3508 && GET_CODE (insn) != BARRIER
3509 && (bb = BLOCK_FOR_INSN (before)))
3510 {
3511 set_block_for_insn (insn, bb);
3512 if (INSN_P (insn))
3513 bb->flags |= BB_DIRTY;
3514 /* Should not happen as first in the BB is always
3515 either NOTE or LABEl. */
3516 if (bb->head == insn
3517 /* Avoid clobbering of structure when creating new BB. */
3518 && GET_CODE (insn) != BARRIER
3519 && (GET_CODE (insn) != NOTE
3520 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3521 abort ();
3522 }
3523
3524 PREV_INSN (before) = insn;
3525 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3526 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3527 }
3528
3529 /* Remove an insn from its doubly-linked list. This function knows how
3530 to handle sequences. */
3531 void
3532 remove_insn (insn)
3533 rtx insn;
3534 {
3535 rtx next = NEXT_INSN (insn);
3536 rtx prev = PREV_INSN (insn);
3537 basic_block bb;
3538
3539 if (prev)
3540 {
3541 NEXT_INSN (prev) = next;
3542 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3543 {
3544 rtx sequence = PATTERN (prev);
3545 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3546 }
3547 }
3548 else if (first_insn == insn)
3549 first_insn = next;
3550 else
3551 {
3552 struct sequence_stack *stack = seq_stack;
3553 /* Scan all pending sequences too. */
3554 for (; stack; stack = stack->next)
3555 if (insn == stack->first)
3556 {
3557 stack->first = next;
3558 break;
3559 }
3560
3561 if (stack == 0)
3562 abort ();
3563 }
3564
3565 if (next)
3566 {
3567 PREV_INSN (next) = prev;
3568 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3569 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3570 }
3571 else if (last_insn == insn)
3572 last_insn = prev;
3573 else
3574 {
3575 struct sequence_stack *stack = seq_stack;
3576 /* Scan all pending sequences too. */
3577 for (; stack; stack = stack->next)
3578 if (insn == stack->last)
3579 {
3580 stack->last = prev;
3581 break;
3582 }
3583
3584 if (stack == 0)
3585 abort ();
3586 }
3587 if (GET_CODE (insn) != BARRIER
3588 && (bb = BLOCK_FOR_INSN (insn)))
3589 {
3590 if (INSN_P (insn))
3591 bb->flags |= BB_DIRTY;
3592 if (bb->head == insn)
3593 {
3594 /* Never ever delete the basic block note without deleting whole
3595 basic block. */
3596 if (GET_CODE (insn) == NOTE)
3597 abort ();
3598 bb->head = next;
3599 }
3600 if (bb->end == insn)
3601 bb->end = prev;
3602 }
3603 }
3604
3605 /* Delete all insns made since FROM.
3606 FROM becomes the new last instruction. */
3607
3608 void
3609 delete_insns_since (from)
3610 rtx from;
3611 {
3612 if (from == 0)
3613 first_insn = 0;
3614 else
3615 NEXT_INSN (from) = 0;
3616 last_insn = from;
3617 }
3618
3619 /* This function is deprecated, please use sequences instead.
3620
3621 Move a consecutive bunch of insns to a different place in the chain.
3622 The insns to be moved are those between FROM and TO.
3623 They are moved to a new position after the insn AFTER.
3624 AFTER must not be FROM or TO or any insn in between.
3625
3626 This function does not know about SEQUENCEs and hence should not be
3627 called after delay-slot filling has been done. */
3628
3629 void
3630 reorder_insns_nobb (from, to, after)
3631 rtx from, to, after;
3632 {
3633 /* Splice this bunch out of where it is now. */
3634 if (PREV_INSN (from))
3635 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3636 if (NEXT_INSN (to))
3637 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3638 if (last_insn == to)
3639 last_insn = PREV_INSN (from);
3640 if (first_insn == from)
3641 first_insn = NEXT_INSN (to);
3642
3643 /* Make the new neighbors point to it and it to them. */
3644 if (NEXT_INSN (after))
3645 PREV_INSN (NEXT_INSN (after)) = to;
3646
3647 NEXT_INSN (to) = NEXT_INSN (after);
3648 PREV_INSN (from) = after;
3649 NEXT_INSN (after) = from;
3650 if (after == last_insn)
3651 last_insn = to;
3652 }
3653
3654 /* Same as function above, but take care to update BB boundaries. */
3655 void
3656 reorder_insns (from, to, after)
3657 rtx from, to, after;
3658 {
3659 rtx prev = PREV_INSN (from);
3660 basic_block bb, bb2;
3661
3662 reorder_insns_nobb (from, to, after);
3663
3664 if (GET_CODE (after) != BARRIER
3665 && (bb = BLOCK_FOR_INSN (after)))
3666 {
3667 rtx x;
3668 bb->flags |= BB_DIRTY;
3669
3670 if (GET_CODE (from) != BARRIER
3671 && (bb2 = BLOCK_FOR_INSN (from)))
3672 {
3673 if (bb2->end == to)
3674 bb2->end = prev;
3675 bb2->flags |= BB_DIRTY;
3676 }
3677
3678 if (bb->end == after)
3679 bb->end = to;
3680
3681 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3682 set_block_for_insn (x, bb);
3683 }
3684 }
3685
3686 /* Return the line note insn preceding INSN. */
3687
3688 static rtx
3689 find_line_note (insn)
3690 rtx insn;
3691 {
3692 if (no_line_numbers)
3693 return 0;
3694
3695 for (; insn; insn = PREV_INSN (insn))
3696 if (GET_CODE (insn) == NOTE
3697 && NOTE_LINE_NUMBER (insn) >= 0)
3698 break;
3699
3700 return insn;
3701 }
3702
3703 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3704 of the moved insns when debugging. This may insert a note between AFTER
3705 and FROM, and another one after TO. */
3706
3707 void
3708 reorder_insns_with_line_notes (from, to, after)
3709 rtx from, to, after;
3710 {
3711 rtx from_line = find_line_note (from);
3712 rtx after_line = find_line_note (after);
3713
3714 reorder_insns (from, to, after);
3715
3716 if (from_line == after_line)
3717 return;
3718
3719 if (from_line)
3720 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3721 NOTE_LINE_NUMBER (from_line),
3722 after);
3723 if (after_line)
3724 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3725 NOTE_LINE_NUMBER (after_line),
3726 to);
3727 }
3728
3729 /* Remove unnecessary notes from the instruction stream. */
3730
3731 void
3732 remove_unnecessary_notes ()
3733 {
3734 rtx block_stack = NULL_RTX;
3735 rtx eh_stack = NULL_RTX;
3736 rtx insn;
3737 rtx next;
3738 rtx tmp;
3739
3740 /* We must not remove the first instruction in the function because
3741 the compiler depends on the first instruction being a note. */
3742 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3743 {
3744 /* Remember what's next. */
3745 next = NEXT_INSN (insn);
3746
3747 /* We're only interested in notes. */
3748 if (GET_CODE (insn) != NOTE)
3749 continue;
3750
3751 switch (NOTE_LINE_NUMBER (insn))
3752 {
3753 case NOTE_INSN_DELETED:
3754 case NOTE_INSN_LOOP_END_TOP_COND:
3755 remove_insn (insn);
3756 break;
3757
3758 case NOTE_INSN_EH_REGION_BEG:
3759 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3760 break;
3761
3762 case NOTE_INSN_EH_REGION_END:
3763 /* Too many end notes. */
3764 if (eh_stack == NULL_RTX)
3765 abort ();
3766 /* Mismatched nesting. */
3767 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3768 abort ();
3769 tmp = eh_stack;
3770 eh_stack = XEXP (eh_stack, 1);
3771 free_INSN_LIST_node (tmp);
3772 break;
3773
3774 case NOTE_INSN_BLOCK_BEG:
3775 /* By now, all notes indicating lexical blocks should have
3776 NOTE_BLOCK filled in. */
3777 if (NOTE_BLOCK (insn) == NULL_TREE)
3778 abort ();
3779 block_stack = alloc_INSN_LIST (insn, block_stack);
3780 break;
3781
3782 case NOTE_INSN_BLOCK_END:
3783 /* Too many end notes. */
3784 if (block_stack == NULL_RTX)
3785 abort ();
3786 /* Mismatched nesting. */
3787 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3788 abort ();
3789 tmp = block_stack;
3790 block_stack = XEXP (block_stack, 1);
3791 free_INSN_LIST_node (tmp);
3792
3793 /* Scan back to see if there are any non-note instructions
3794 between INSN and the beginning of this block. If not,
3795 then there is no PC range in the generated code that will
3796 actually be in this block, so there's no point in
3797 remembering the existence of the block. */
3798 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3799 {
3800 /* This block contains a real instruction. Note that we
3801 don't include labels; if the only thing in the block
3802 is a label, then there are still no PC values that
3803 lie within the block. */
3804 if (INSN_P (tmp))
3805 break;
3806
3807 /* We're only interested in NOTEs. */
3808 if (GET_CODE (tmp) != NOTE)
3809 continue;
3810
3811 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3812 {
3813 /* We just verified that this BLOCK matches us with
3814 the block_stack check above. Never delete the
3815 BLOCK for the outermost scope of the function; we
3816 can refer to names from that scope even if the
3817 block notes are messed up. */
3818 if (! is_body_block (NOTE_BLOCK (insn))
3819 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3820 {
3821 remove_insn (tmp);
3822 remove_insn (insn);
3823 }
3824 break;
3825 }
3826 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3827 /* There's a nested block. We need to leave the
3828 current block in place since otherwise the debugger
3829 wouldn't be able to show symbols from our block in
3830 the nested block. */
3831 break;
3832 }
3833 }
3834 }
3835
3836 /* Too many begin notes. */
3837 if (block_stack || eh_stack)
3838 abort ();
3839 }
3840
3841 \f
3842 /* Emit insn(s) of given code and pattern
3843 at a specified place within the doubly-linked list.
3844
3845 All of the emit_foo global entry points accept an object
3846 X which is either an insn list or a PATTERN of a single
3847 instruction.
3848
3849 There are thus a few canonical ways to generate code and
3850 emit it at a specific place in the instruction stream. For
3851 example, consider the instruction named SPOT and the fact that
3852 we would like to emit some instructions before SPOT. We might
3853 do it like this:
3854
3855 start_sequence ();
3856 ... emit the new instructions ...
3857 insns_head = get_insns ();
3858 end_sequence ();
3859
3860 emit_insn_before (insns_head, SPOT);
3861
3862 It used to be common to generate SEQUENCE rtl instead, but that
3863 is a relic of the past which no longer occurs. The reason is that
3864 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3865 generated would almost certainly die right after it was created. */
3866
3867 /* Make X be output before the instruction BEFORE. */
3868
3869 rtx
3870 emit_insn_before (x, before)
3871 rtx x, before;
3872 {
3873 rtx last = before;
3874 rtx insn;
3875
3876 #ifdef ENABLE_RTL_CHECKING
3877 if (before == NULL_RTX)
3878 abort ();
3879 #endif
3880
3881 if (x == NULL_RTX)
3882 return last;
3883
3884 switch (GET_CODE (x))
3885 {
3886 case INSN:
3887 case JUMP_INSN:
3888 case CALL_INSN:
3889 case CODE_LABEL:
3890 case BARRIER:
3891 case NOTE:
3892 insn = x;
3893 while (insn)
3894 {
3895 rtx next = NEXT_INSN (insn);
3896 add_insn_before (insn, before);
3897 last = insn;
3898 insn = next;
3899 }
3900 break;
3901
3902 #ifdef ENABLE_RTL_CHECKING
3903 case SEQUENCE:
3904 abort ();
3905 break;
3906 #endif
3907
3908 default:
3909 last = make_insn_raw (x);
3910 add_insn_before (last, before);
3911 break;
3912 }
3913
3914 return last;
3915 }
3916
3917 /* Make an instruction with body X and code JUMP_INSN
3918 and output it before the instruction BEFORE. */
3919
3920 rtx
3921 emit_jump_insn_before (x, before)
3922 rtx x, before;
3923 {
3924 rtx insn, last;
3925
3926 #ifdef ENABLE_RTL_CHECKING
3927 if (before == NULL_RTX)
3928 abort ();
3929 #endif
3930
3931 switch (GET_CODE (x))
3932 {
3933 case INSN:
3934 case JUMP_INSN:
3935 case CALL_INSN:
3936 case CODE_LABEL:
3937 case BARRIER:
3938 case NOTE:
3939 insn = x;
3940 while (insn)
3941 {
3942 rtx next = NEXT_INSN (insn);
3943 add_insn_before (insn, before);
3944 last = insn;
3945 insn = next;
3946 }
3947 break;
3948
3949 #ifdef ENABLE_RTL_CHECKING
3950 case SEQUENCE:
3951 abort ();
3952 break;
3953 #endif
3954
3955 default:
3956 last = make_jump_insn_raw (x);
3957 add_insn_before (last, before);
3958 break;
3959 }
3960
3961 return last;
3962 }
3963
3964 /* Make an instruction with body X and code CALL_INSN
3965 and output it before the instruction BEFORE. */
3966
3967 rtx
3968 emit_call_insn_before (x, before)
3969 rtx x, before;
3970 {
3971 rtx last, insn;
3972
3973 #ifdef ENABLE_RTL_CHECKING
3974 if (before == NULL_RTX)
3975 abort ();
3976 #endif
3977
3978 switch (GET_CODE (x))
3979 {
3980 case INSN:
3981 case JUMP_INSN:
3982 case CALL_INSN:
3983 case CODE_LABEL:
3984 case BARRIER:
3985 case NOTE:
3986 insn = x;
3987 while (insn)
3988 {
3989 rtx next = NEXT_INSN (insn);
3990 add_insn_before (insn, before);
3991 last = insn;
3992 insn = next;
3993 }
3994 break;
3995
3996 #ifdef ENABLE_RTL_CHECKING
3997 case SEQUENCE:
3998 abort ();
3999 break;
4000 #endif
4001
4002 default:
4003 last = make_call_insn_raw (x);
4004 add_insn_before (last, before);
4005 break;
4006 }
4007
4008 return last;
4009 }
4010
4011 /* Make an insn of code BARRIER
4012 and output it before the insn BEFORE. */
4013
4014 rtx
4015 emit_barrier_before (before)
4016 rtx before;
4017 {
4018 rtx insn = rtx_alloc (BARRIER);
4019
4020 INSN_UID (insn) = cur_insn_uid++;
4021
4022 add_insn_before (insn, before);
4023 return insn;
4024 }
4025
4026 /* Emit the label LABEL before the insn BEFORE. */
4027
4028 rtx
4029 emit_label_before (label, before)
4030 rtx label, before;
4031 {
4032 /* This can be called twice for the same label as a result of the
4033 confusion that follows a syntax error! So make it harmless. */
4034 if (INSN_UID (label) == 0)
4035 {
4036 INSN_UID (label) = cur_insn_uid++;
4037 add_insn_before (label, before);
4038 }
4039
4040 return label;
4041 }
4042
4043 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4044
4045 rtx
4046 emit_note_before (subtype, before)
4047 int subtype;
4048 rtx before;
4049 {
4050 rtx note = rtx_alloc (NOTE);
4051 INSN_UID (note) = cur_insn_uid++;
4052 NOTE_SOURCE_FILE (note) = 0;
4053 NOTE_LINE_NUMBER (note) = subtype;
4054 BLOCK_FOR_INSN (note) = NULL;
4055
4056 add_insn_before (note, before);
4057 return note;
4058 }
4059 \f
4060 /* Helper for emit_insn_after, handles lists of instructions
4061 efficiently. */
4062
4063 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4064
4065 static rtx
4066 emit_insn_after_1 (first, after)
4067 rtx first, after;
4068 {
4069 rtx last;
4070 rtx after_after;
4071 basic_block bb;
4072
4073 if (GET_CODE (after) != BARRIER
4074 && (bb = BLOCK_FOR_INSN (after)))
4075 {
4076 bb->flags |= BB_DIRTY;
4077 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4078 if (GET_CODE (last) != BARRIER)
4079 set_block_for_insn (last, bb);
4080 if (GET_CODE (last) != BARRIER)
4081 set_block_for_insn (last, bb);
4082 if (bb->end == after)
4083 bb->end = last;
4084 }
4085 else
4086 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4087 continue;
4088
4089 after_after = NEXT_INSN (after);
4090
4091 NEXT_INSN (after) = first;
4092 PREV_INSN (first) = after;
4093 NEXT_INSN (last) = after_after;
4094 if (after_after)
4095 PREV_INSN (after_after) = last;
4096
4097 if (after == last_insn)
4098 last_insn = last;
4099 return last;
4100 }
4101
4102 /* Make X be output after the insn AFTER. */
4103
4104 rtx
4105 emit_insn_after (x, after)
4106 rtx x, after;
4107 {
4108 rtx last = after;
4109
4110 #ifdef ENABLE_RTL_CHECKING
4111 if (after == NULL_RTX)
4112 abort ();
4113 #endif
4114
4115 if (x == NULL_RTX)
4116 return last;
4117
4118 switch (GET_CODE (x))
4119 {
4120 case INSN:
4121 case JUMP_INSN:
4122 case CALL_INSN:
4123 case CODE_LABEL:
4124 case BARRIER:
4125 case NOTE:
4126 last = emit_insn_after_1 (x, after);
4127 break;
4128
4129 #ifdef ENABLE_RTL_CHECKING
4130 case SEQUENCE:
4131 abort ();
4132 break;
4133 #endif
4134
4135 default:
4136 last = make_insn_raw (x);
4137 add_insn_after (last, after);
4138 break;
4139 }
4140
4141 return last;
4142 }
4143
4144 /* Similar to emit_insn_after, except that line notes are to be inserted so
4145 as to act as if this insn were at FROM. */
4146
4147 void
4148 emit_insn_after_with_line_notes (x, after, from)
4149 rtx x, after, from;
4150 {
4151 rtx from_line = find_line_note (from);
4152 rtx after_line = find_line_note (after);
4153 rtx insn = emit_insn_after (x, after);
4154
4155 if (from_line)
4156 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4157 NOTE_LINE_NUMBER (from_line),
4158 after);
4159
4160 if (after_line)
4161 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4162 NOTE_LINE_NUMBER (after_line),
4163 insn);
4164 }
4165
4166 /* Make an insn of code JUMP_INSN with body X
4167 and output it after the insn AFTER. */
4168
4169 rtx
4170 emit_jump_insn_after (x, after)
4171 rtx x, after;
4172 {
4173 rtx last;
4174
4175 #ifdef ENABLE_RTL_CHECKING
4176 if (after == NULL_RTX)
4177 abort ();
4178 #endif
4179
4180 switch (GET_CODE (x))
4181 {
4182 case INSN:
4183 case JUMP_INSN:
4184 case CALL_INSN:
4185 case CODE_LABEL:
4186 case BARRIER:
4187 case NOTE:
4188 last = emit_insn_after_1 (x, after);
4189 break;
4190
4191 #ifdef ENABLE_RTL_CHECKING
4192 case SEQUENCE:
4193 abort ();
4194 break;
4195 #endif
4196
4197 default:
4198 last = make_jump_insn_raw (x);
4199 add_insn_after (last, after);
4200 break;
4201 }
4202
4203 return last;
4204 }
4205
4206 /* Make an instruction with body X and code CALL_INSN
4207 and output it after the instruction AFTER. */
4208
4209 rtx
4210 emit_call_insn_after (x, after)
4211 rtx x, after;
4212 {
4213 rtx last;
4214
4215 #ifdef ENABLE_RTL_CHECKING
4216 if (after == NULL_RTX)
4217 abort ();
4218 #endif
4219
4220 switch (GET_CODE (x))
4221 {
4222 case INSN:
4223 case JUMP_INSN:
4224 case CALL_INSN:
4225 case CODE_LABEL:
4226 case BARRIER:
4227 case NOTE:
4228 last = emit_insn_after_1 (x, after);
4229 break;
4230
4231 #ifdef ENABLE_RTL_CHECKING
4232 case SEQUENCE:
4233 abort ();
4234 break;
4235 #endif
4236
4237 default:
4238 last = make_call_insn_raw (x);
4239 add_insn_after (last, after);
4240 break;
4241 }
4242
4243 return last;
4244 }
4245
4246 /* Make an insn of code BARRIER
4247 and output it after the insn AFTER. */
4248
4249 rtx
4250 emit_barrier_after (after)
4251 rtx after;
4252 {
4253 rtx insn = rtx_alloc (BARRIER);
4254
4255 INSN_UID (insn) = cur_insn_uid++;
4256
4257 add_insn_after (insn, after);
4258 return insn;
4259 }
4260
4261 /* Emit the label LABEL after the insn AFTER. */
4262
4263 rtx
4264 emit_label_after (label, after)
4265 rtx label, after;
4266 {
4267 /* This can be called twice for the same label
4268 as a result of the confusion that follows a syntax error!
4269 So make it harmless. */
4270 if (INSN_UID (label) == 0)
4271 {
4272 INSN_UID (label) = cur_insn_uid++;
4273 add_insn_after (label, after);
4274 }
4275
4276 return label;
4277 }
4278
4279 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4280
4281 rtx
4282 emit_note_after (subtype, after)
4283 int subtype;
4284 rtx after;
4285 {
4286 rtx note = rtx_alloc (NOTE);
4287 INSN_UID (note) = cur_insn_uid++;
4288 NOTE_SOURCE_FILE (note) = 0;
4289 NOTE_LINE_NUMBER (note) = subtype;
4290 BLOCK_FOR_INSN (note) = NULL;
4291 add_insn_after (note, after);
4292 return note;
4293 }
4294
4295 /* Emit a line note for FILE and LINE after the insn AFTER. */
4296
4297 rtx
4298 emit_line_note_after (file, line, after)
4299 const char *file;
4300 int line;
4301 rtx after;
4302 {
4303 rtx note;
4304
4305 if (no_line_numbers && line > 0)
4306 {
4307 cur_insn_uid++;
4308 return 0;
4309 }
4310
4311 note = rtx_alloc (NOTE);
4312 INSN_UID (note) = cur_insn_uid++;
4313 NOTE_SOURCE_FILE (note) = file;
4314 NOTE_LINE_NUMBER (note) = line;
4315 BLOCK_FOR_INSN (note) = NULL;
4316 add_insn_after (note, after);
4317 return note;
4318 }
4319 \f
4320 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4321 rtx
4322 emit_insn_after_scope (pattern, after, scope)
4323 rtx pattern, after;
4324 tree scope;
4325 {
4326 rtx last = emit_insn_after (pattern, after);
4327
4328 after = NEXT_INSN (after);
4329 while (1)
4330 {
4331 if (active_insn_p (after))
4332 INSN_SCOPE (after) = scope;
4333 if (after == last)
4334 break;
4335 after = NEXT_INSN (after);
4336 }
4337 return last;
4338 }
4339
4340 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4341 rtx
4342 emit_jump_insn_after_scope (pattern, after, scope)
4343 rtx pattern, after;
4344 tree scope;
4345 {
4346 rtx last = emit_jump_insn_after (pattern, after);
4347
4348 after = NEXT_INSN (after);
4349 while (1)
4350 {
4351 if (active_insn_p (after))
4352 INSN_SCOPE (after) = scope;
4353 if (after == last)
4354 break;
4355 after = NEXT_INSN (after);
4356 }
4357 return last;
4358 }
4359
4360 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4361 rtx
4362 emit_call_insn_after_scope (pattern, after, scope)
4363 rtx pattern, after;
4364 tree scope;
4365 {
4366 rtx last = emit_call_insn_after (pattern, after);
4367
4368 after = NEXT_INSN (after);
4369 while (1)
4370 {
4371 if (active_insn_p (after))
4372 INSN_SCOPE (after) = scope;
4373 if (after == last)
4374 break;
4375 after = NEXT_INSN (after);
4376 }
4377 return last;
4378 }
4379
4380 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4381 rtx
4382 emit_insn_before_scope (pattern, before, scope)
4383 rtx pattern, before;
4384 tree scope;
4385 {
4386 rtx first = PREV_INSN (before);
4387 rtx last = emit_insn_before (pattern, before);
4388
4389 first = NEXT_INSN (first);
4390 while (1)
4391 {
4392 if (active_insn_p (first))
4393 INSN_SCOPE (first) = scope;
4394 if (first == last)
4395 break;
4396 first = NEXT_INSN (first);
4397 }
4398 return last;
4399 }
4400 \f
4401 /* Take X and emit it at the end of the doubly-linked
4402 INSN list.
4403
4404 Returns the last insn emitted. */
4405
4406 rtx
4407 emit_insn (x)
4408 rtx x;
4409 {
4410 rtx last = last_insn;
4411 rtx insn;
4412
4413 if (x == NULL_RTX)
4414 return last;
4415
4416 switch (GET_CODE (x))
4417 {
4418 case INSN:
4419 case JUMP_INSN:
4420 case CALL_INSN:
4421 case CODE_LABEL:
4422 case BARRIER:
4423 case NOTE:
4424 insn = x;
4425 while (insn)
4426 {
4427 rtx next = NEXT_INSN (insn);
4428 add_insn (insn);
4429 last = insn;
4430 insn = next;
4431 }
4432 break;
4433
4434 #ifdef ENABLE_RTL_CHECKING
4435 case SEQUENCE:
4436 abort ();
4437 break;
4438 #endif
4439
4440 default:
4441 last = make_insn_raw (x);
4442 add_insn (last);
4443 break;
4444 }
4445
4446 return last;
4447 }
4448
4449 /* Make an insn of code JUMP_INSN with pattern X
4450 and add it to the end of the doubly-linked list. */
4451
4452 rtx
4453 emit_jump_insn (x)
4454 rtx x;
4455 {
4456 rtx last, insn;
4457
4458 switch (GET_CODE (x))
4459 {
4460 case INSN:
4461 case JUMP_INSN:
4462 case CALL_INSN:
4463 case CODE_LABEL:
4464 case BARRIER:
4465 case NOTE:
4466 insn = x;
4467 while (insn)
4468 {
4469 rtx next = NEXT_INSN (insn);
4470 add_insn (insn);
4471 last = insn;
4472 insn = next;
4473 }
4474 break;
4475
4476 #ifdef ENABLE_RTL_CHECKING
4477 case SEQUENCE:
4478 abort ();
4479 break;
4480 #endif
4481
4482 default:
4483 last = make_jump_insn_raw (x);
4484 add_insn (last);
4485 break;
4486 }
4487
4488 return last;
4489 }
4490
4491 /* Make an insn of code CALL_INSN with pattern X
4492 and add it to the end of the doubly-linked list. */
4493
4494 rtx
4495 emit_call_insn (x)
4496 rtx x;
4497 {
4498 rtx insn;
4499
4500 switch (GET_CODE (x))
4501 {
4502 case INSN:
4503 case JUMP_INSN:
4504 case CALL_INSN:
4505 case CODE_LABEL:
4506 case BARRIER:
4507 case NOTE:
4508 insn = emit_insn (x);
4509 break;
4510
4511 #ifdef ENABLE_RTL_CHECKING
4512 case SEQUENCE:
4513 abort ();
4514 break;
4515 #endif
4516
4517 default:
4518 insn = make_call_insn_raw (x);
4519 add_insn (insn);
4520 break;
4521 }
4522
4523 return insn;
4524 }
4525
4526 /* Add the label LABEL to the end of the doubly-linked list. */
4527
4528 rtx
4529 emit_label (label)
4530 rtx label;
4531 {
4532 /* This can be called twice for the same label
4533 as a result of the confusion that follows a syntax error!
4534 So make it harmless. */
4535 if (INSN_UID (label) == 0)
4536 {
4537 INSN_UID (label) = cur_insn_uid++;
4538 add_insn (label);
4539 }
4540 return label;
4541 }
4542
4543 /* Make an insn of code BARRIER
4544 and add it to the end of the doubly-linked list. */
4545
4546 rtx
4547 emit_barrier ()
4548 {
4549 rtx barrier = rtx_alloc (BARRIER);
4550 INSN_UID (barrier) = cur_insn_uid++;
4551 add_insn (barrier);
4552 return barrier;
4553 }
4554
4555 /* Make an insn of code NOTE
4556 with data-fields specified by FILE and LINE
4557 and add it to the end of the doubly-linked list,
4558 but only if line-numbers are desired for debugging info. */
4559
4560 rtx
4561 emit_line_note (file, line)
4562 const char *file;
4563 int line;
4564 {
4565 set_file_and_line_for_stmt (file, line);
4566
4567 #if 0
4568 if (no_line_numbers)
4569 return 0;
4570 #endif
4571
4572 return emit_note (file, line);
4573 }
4574
4575 /* Make an insn of code NOTE
4576 with data-fields specified by FILE and LINE
4577 and add it to the end of the doubly-linked list.
4578 If it is a line-number NOTE, omit it if it matches the previous one. */
4579
4580 rtx
4581 emit_note (file, line)
4582 const char *file;
4583 int line;
4584 {
4585 rtx note;
4586
4587 if (line > 0)
4588 {
4589 if (file && last_filename && !strcmp (file, last_filename)
4590 && line == last_linenum)
4591 return 0;
4592 last_filename = file;
4593 last_linenum = line;
4594 }
4595
4596 if (no_line_numbers && line > 0)
4597 {
4598 cur_insn_uid++;
4599 return 0;
4600 }
4601
4602 note = rtx_alloc (NOTE);
4603 INSN_UID (note) = cur_insn_uid++;
4604 NOTE_SOURCE_FILE (note) = file;
4605 NOTE_LINE_NUMBER (note) = line;
4606 BLOCK_FOR_INSN (note) = NULL;
4607 add_insn (note);
4608 return note;
4609 }
4610
4611 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4612
4613 rtx
4614 emit_line_note_force (file, line)
4615 const char *file;
4616 int line;
4617 {
4618 last_linenum = -1;
4619 return emit_line_note (file, line);
4620 }
4621
4622 /* Cause next statement to emit a line note even if the line number
4623 has not changed. This is used at the beginning of a function. */
4624
4625 void
4626 force_next_line_note ()
4627 {
4628 last_linenum = -1;
4629 }
4630
4631 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4632 note of this type already exists, remove it first. */
4633
4634 rtx
4635 set_unique_reg_note (insn, kind, datum)
4636 rtx insn;
4637 enum reg_note kind;
4638 rtx datum;
4639 {
4640 rtx note = find_reg_note (insn, kind, NULL_RTX);
4641
4642 switch (kind)
4643 {
4644 case REG_EQUAL:
4645 case REG_EQUIV:
4646 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4647 has multiple sets (some callers assume single_set
4648 means the insn only has one set, when in fact it
4649 means the insn only has one * useful * set). */
4650 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4651 {
4652 if (note)
4653 abort ();
4654 return NULL_RTX;
4655 }
4656
4657 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4658 It serves no useful purpose and breaks eliminate_regs. */
4659 if (GET_CODE (datum) == ASM_OPERANDS)
4660 return NULL_RTX;
4661 break;
4662
4663 default:
4664 break;
4665 }
4666
4667 if (note)
4668 {
4669 XEXP (note, 0) = datum;
4670 return note;
4671 }
4672
4673 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4674 return REG_NOTES (insn);
4675 }
4676 \f
4677 /* Return an indication of which type of insn should have X as a body.
4678 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4679
4680 enum rtx_code
4681 classify_insn (x)
4682 rtx x;
4683 {
4684 if (GET_CODE (x) == CODE_LABEL)
4685 return CODE_LABEL;
4686 if (GET_CODE (x) == CALL)
4687 return CALL_INSN;
4688 if (GET_CODE (x) == RETURN)
4689 return JUMP_INSN;
4690 if (GET_CODE (x) == SET)
4691 {
4692 if (SET_DEST (x) == pc_rtx)
4693 return JUMP_INSN;
4694 else if (GET_CODE (SET_SRC (x)) == CALL)
4695 return CALL_INSN;
4696 else
4697 return INSN;
4698 }
4699 if (GET_CODE (x) == PARALLEL)
4700 {
4701 int j;
4702 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4703 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4704 return CALL_INSN;
4705 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4706 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4707 return JUMP_INSN;
4708 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4709 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4710 return CALL_INSN;
4711 }
4712 return INSN;
4713 }
4714
4715 /* Emit the rtl pattern X as an appropriate kind of insn.
4716 If X is a label, it is simply added into the insn chain. */
4717
4718 rtx
4719 emit (x)
4720 rtx x;
4721 {
4722 enum rtx_code code = classify_insn (x);
4723
4724 if (code == CODE_LABEL)
4725 return emit_label (x);
4726 else if (code == INSN)
4727 return emit_insn (x);
4728 else if (code == JUMP_INSN)
4729 {
4730 rtx insn = emit_jump_insn (x);
4731 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4732 return emit_barrier ();
4733 return insn;
4734 }
4735 else if (code == CALL_INSN)
4736 return emit_call_insn (x);
4737 else
4738 abort ();
4739 }
4740 \f
4741 /* Space for free sequence stack entries. */
4742 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4743
4744 /* Begin emitting insns to a sequence which can be packaged in an
4745 RTL_EXPR. If this sequence will contain something that might cause
4746 the compiler to pop arguments to function calls (because those
4747 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4748 details), use do_pending_stack_adjust before calling this function.
4749 That will ensure that the deferred pops are not accidentally
4750 emitted in the middle of this sequence. */
4751
4752 void
4753 start_sequence ()
4754 {
4755 struct sequence_stack *tem;
4756
4757 if (free_sequence_stack != NULL)
4758 {
4759 tem = free_sequence_stack;
4760 free_sequence_stack = tem->next;
4761 }
4762 else
4763 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4764
4765 tem->next = seq_stack;
4766 tem->first = first_insn;
4767 tem->last = last_insn;
4768 tem->sequence_rtl_expr = seq_rtl_expr;
4769
4770 seq_stack = tem;
4771
4772 first_insn = 0;
4773 last_insn = 0;
4774 }
4775
4776 /* Similarly, but indicate that this sequence will be placed in T, an
4777 RTL_EXPR. See the documentation for start_sequence for more
4778 information about how to use this function. */
4779
4780 void
4781 start_sequence_for_rtl_expr (t)
4782 tree t;
4783 {
4784 start_sequence ();
4785
4786 seq_rtl_expr = t;
4787 }
4788
4789 /* Set up the insn chain starting with FIRST as the current sequence,
4790 saving the previously current one. See the documentation for
4791 start_sequence for more information about how to use this function. */
4792
4793 void
4794 push_to_sequence (first)
4795 rtx first;
4796 {
4797 rtx last;
4798
4799 start_sequence ();
4800
4801 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4802
4803 first_insn = first;
4804 last_insn = last;
4805 }
4806
4807 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4808
4809 void
4810 push_to_full_sequence (first, last)
4811 rtx first, last;
4812 {
4813 start_sequence ();
4814 first_insn = first;
4815 last_insn = last;
4816 /* We really should have the end of the insn chain here. */
4817 if (last && NEXT_INSN (last))
4818 abort ();
4819 }
4820
4821 /* Set up the outer-level insn chain
4822 as the current sequence, saving the previously current one. */
4823
4824 void
4825 push_topmost_sequence ()
4826 {
4827 struct sequence_stack *stack, *top = NULL;
4828
4829 start_sequence ();
4830
4831 for (stack = seq_stack; stack; stack = stack->next)
4832 top = stack;
4833
4834 first_insn = top->first;
4835 last_insn = top->last;
4836 seq_rtl_expr = top->sequence_rtl_expr;
4837 }
4838
4839 /* After emitting to the outer-level insn chain, update the outer-level
4840 insn chain, and restore the previous saved state. */
4841
4842 void
4843 pop_topmost_sequence ()
4844 {
4845 struct sequence_stack *stack, *top = NULL;
4846
4847 for (stack = seq_stack; stack; stack = stack->next)
4848 top = stack;
4849
4850 top->first = first_insn;
4851 top->last = last_insn;
4852 /* ??? Why don't we save seq_rtl_expr here? */
4853
4854 end_sequence ();
4855 }
4856
4857 /* After emitting to a sequence, restore previous saved state.
4858
4859 To get the contents of the sequence just made, you must call
4860 `get_insns' *before* calling here.
4861
4862 If the compiler might have deferred popping arguments while
4863 generating this sequence, and this sequence will not be immediately
4864 inserted into the instruction stream, use do_pending_stack_adjust
4865 before calling get_insns. That will ensure that the deferred
4866 pops are inserted into this sequence, and not into some random
4867 location in the instruction stream. See INHIBIT_DEFER_POP for more
4868 information about deferred popping of arguments. */
4869
4870 void
4871 end_sequence ()
4872 {
4873 struct sequence_stack *tem = seq_stack;
4874
4875 first_insn = tem->first;
4876 last_insn = tem->last;
4877 seq_rtl_expr = tem->sequence_rtl_expr;
4878 seq_stack = tem->next;
4879
4880 memset (tem, 0, sizeof (*tem));
4881 tem->next = free_sequence_stack;
4882 free_sequence_stack = tem;
4883 }
4884
4885 /* This works like end_sequence, but records the old sequence in FIRST
4886 and LAST. */
4887
4888 void
4889 end_full_sequence (first, last)
4890 rtx *first, *last;
4891 {
4892 *first = first_insn;
4893 *last = last_insn;
4894 end_sequence ();
4895 }
4896
4897 /* Return 1 if currently emitting into a sequence. */
4898
4899 int
4900 in_sequence_p ()
4901 {
4902 return seq_stack != 0;
4903 }
4904 \f
4905 /* Put the various virtual registers into REGNO_REG_RTX. */
4906
4907 void
4908 init_virtual_regs (es)
4909 struct emit_status *es;
4910 {
4911 rtx *ptr = es->x_regno_reg_rtx;
4912 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4913 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4914 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4915 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4916 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4917 }
4918
4919 \f
4920 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4921 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4922 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4923 static int copy_insn_n_scratches;
4924
4925 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4926 copied an ASM_OPERANDS.
4927 In that case, it is the original input-operand vector. */
4928 static rtvec orig_asm_operands_vector;
4929
4930 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4931 copied an ASM_OPERANDS.
4932 In that case, it is the copied input-operand vector. */
4933 static rtvec copy_asm_operands_vector;
4934
4935 /* Likewise for the constraints vector. */
4936 static rtvec orig_asm_constraints_vector;
4937 static rtvec copy_asm_constraints_vector;
4938
4939 /* Recursively create a new copy of an rtx for copy_insn.
4940 This function differs from copy_rtx in that it handles SCRATCHes and
4941 ASM_OPERANDs properly.
4942 Normally, this function is not used directly; use copy_insn as front end.
4943 However, you could first copy an insn pattern with copy_insn and then use
4944 this function afterwards to properly copy any REG_NOTEs containing
4945 SCRATCHes. */
4946
4947 rtx
4948 copy_insn_1 (orig)
4949 rtx orig;
4950 {
4951 rtx copy;
4952 int i, j;
4953 RTX_CODE code;
4954 const char *format_ptr;
4955
4956 code = GET_CODE (orig);
4957
4958 switch (code)
4959 {
4960 case REG:
4961 case QUEUED:
4962 case CONST_INT:
4963 case CONST_DOUBLE:
4964 case CONST_VECTOR:
4965 case SYMBOL_REF:
4966 case CODE_LABEL:
4967 case PC:
4968 case CC0:
4969 case ADDRESSOF:
4970 return orig;
4971
4972 case SCRATCH:
4973 for (i = 0; i < copy_insn_n_scratches; i++)
4974 if (copy_insn_scratch_in[i] == orig)
4975 return copy_insn_scratch_out[i];
4976 break;
4977
4978 case CONST:
4979 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4980 a LABEL_REF, it isn't sharable. */
4981 if (GET_CODE (XEXP (orig, 0)) == PLUS
4982 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4983 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4984 return orig;
4985 break;
4986
4987 /* A MEM with a constant address is not sharable. The problem is that
4988 the constant address may need to be reloaded. If the mem is shared,
4989 then reloading one copy of this mem will cause all copies to appear
4990 to have been reloaded. */
4991
4992 default:
4993 break;
4994 }
4995
4996 copy = rtx_alloc (code);
4997
4998 /* Copy the various flags, and other information. We assume that
4999 all fields need copying, and then clear the fields that should
5000 not be copied. That is the sensible default behavior, and forces
5001 us to explicitly document why we are *not* copying a flag. */
5002 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5003
5004 /* We do not copy the USED flag, which is used as a mark bit during
5005 walks over the RTL. */
5006 RTX_FLAG (copy, used) = 0;
5007
5008 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5009 if (GET_RTX_CLASS (code) == 'i')
5010 {
5011 RTX_FLAG (copy, jump) = 0;
5012 RTX_FLAG (copy, call) = 0;
5013 RTX_FLAG (copy, frame_related) = 0;
5014 }
5015
5016 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5017
5018 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5019 {
5020 copy->fld[i] = orig->fld[i];
5021 switch (*format_ptr++)
5022 {
5023 case 'e':
5024 if (XEXP (orig, i) != NULL)
5025 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5026 break;
5027
5028 case 'E':
5029 case 'V':
5030 if (XVEC (orig, i) == orig_asm_constraints_vector)
5031 XVEC (copy, i) = copy_asm_constraints_vector;
5032 else if (XVEC (orig, i) == orig_asm_operands_vector)
5033 XVEC (copy, i) = copy_asm_operands_vector;
5034 else if (XVEC (orig, i) != NULL)
5035 {
5036 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5037 for (j = 0; j < XVECLEN (copy, i); j++)
5038 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5039 }
5040 break;
5041
5042 case 't':
5043 case 'w':
5044 case 'i':
5045 case 's':
5046 case 'S':
5047 case 'u':
5048 case '0':
5049 /* These are left unchanged. */
5050 break;
5051
5052 default:
5053 abort ();
5054 }
5055 }
5056
5057 if (code == SCRATCH)
5058 {
5059 i = copy_insn_n_scratches++;
5060 if (i >= MAX_RECOG_OPERANDS)
5061 abort ();
5062 copy_insn_scratch_in[i] = orig;
5063 copy_insn_scratch_out[i] = copy;
5064 }
5065 else if (code == ASM_OPERANDS)
5066 {
5067 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5068 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5069 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5070 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5071 }
5072
5073 return copy;
5074 }
5075
5076 /* Create a new copy of an rtx.
5077 This function differs from copy_rtx in that it handles SCRATCHes and
5078 ASM_OPERANDs properly.
5079 INSN doesn't really have to be a full INSN; it could be just the
5080 pattern. */
5081 rtx
5082 copy_insn (insn)
5083 rtx insn;
5084 {
5085 copy_insn_n_scratches = 0;
5086 orig_asm_operands_vector = 0;
5087 orig_asm_constraints_vector = 0;
5088 copy_asm_operands_vector = 0;
5089 copy_asm_constraints_vector = 0;
5090 return copy_insn_1 (insn);
5091 }
5092
5093 /* Initialize data structures and variables in this file
5094 before generating rtl for each function. */
5095
5096 void
5097 init_emit ()
5098 {
5099 struct function *f = cfun;
5100
5101 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5102 first_insn = NULL;
5103 last_insn = NULL;
5104 seq_rtl_expr = NULL;
5105 cur_insn_uid = 1;
5106 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5107 last_linenum = 0;
5108 last_filename = 0;
5109 first_label_num = label_num;
5110 last_label_num = 0;
5111 seq_stack = NULL;
5112
5113 /* Init the tables that describe all the pseudo regs. */
5114
5115 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5116
5117 f->emit->regno_pointer_align
5118 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5119 * sizeof (unsigned char));
5120
5121 regno_reg_rtx
5122 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5123 * sizeof (rtx));
5124
5125 f->emit->regno_decl
5126 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5127 * sizeof (tree));
5128
5129 /* Put copies of all the hard registers into regno_reg_rtx. */
5130 memcpy (regno_reg_rtx,
5131 static_regno_reg_rtx,
5132 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5133
5134 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5135 init_virtual_regs (f->emit);
5136
5137 /* Indicate that the virtual registers and stack locations are
5138 all pointers. */
5139 REG_POINTER (stack_pointer_rtx) = 1;
5140 REG_POINTER (frame_pointer_rtx) = 1;
5141 REG_POINTER (hard_frame_pointer_rtx) = 1;
5142 REG_POINTER (arg_pointer_rtx) = 1;
5143
5144 REG_POINTER (virtual_incoming_args_rtx) = 1;
5145 REG_POINTER (virtual_stack_vars_rtx) = 1;
5146 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5147 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5148 REG_POINTER (virtual_cfa_rtx) = 1;
5149
5150 #ifdef STACK_BOUNDARY
5151 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5152 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5153 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5154 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5155
5156 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5157 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5158 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5159 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5160 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5161 #endif
5162
5163 #ifdef INIT_EXPANDERS
5164 INIT_EXPANDERS;
5165 #endif
5166 }
5167
5168 /* Generate the constant 0. */
5169
5170 static rtx
5171 gen_const_vector_0 (mode)
5172 enum machine_mode mode;
5173 {
5174 rtx tem;
5175 rtvec v;
5176 int units, i;
5177 enum machine_mode inner;
5178
5179 units = GET_MODE_NUNITS (mode);
5180 inner = GET_MODE_INNER (mode);
5181
5182 v = rtvec_alloc (units);
5183
5184 /* We need to call this function after we to set CONST0_RTX first. */
5185 if (!CONST0_RTX (inner))
5186 abort ();
5187
5188 for (i = 0; i < units; ++i)
5189 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5190
5191 tem = gen_rtx_CONST_VECTOR (mode, v);
5192 return tem;
5193 }
5194
5195 /* Create some permanent unique rtl objects shared between all functions.
5196 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5197
5198 void
5199 init_emit_once (line_numbers)
5200 int line_numbers;
5201 {
5202 int i;
5203 enum machine_mode mode;
5204 enum machine_mode double_mode;
5205
5206 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5207 tables. */
5208 const_int_htab = htab_create (37, const_int_htab_hash,
5209 const_int_htab_eq, NULL);
5210
5211 const_double_htab = htab_create (37, const_double_htab_hash,
5212 const_double_htab_eq, NULL);
5213
5214 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5215 mem_attrs_htab_eq, NULL);
5216
5217 no_line_numbers = ! line_numbers;
5218
5219 /* Compute the word and byte modes. */
5220
5221 byte_mode = VOIDmode;
5222 word_mode = VOIDmode;
5223 double_mode = VOIDmode;
5224
5225 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5226 mode = GET_MODE_WIDER_MODE (mode))
5227 {
5228 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5229 && byte_mode == VOIDmode)
5230 byte_mode = mode;
5231
5232 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5233 && word_mode == VOIDmode)
5234 word_mode = mode;
5235 }
5236
5237 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5238 mode = GET_MODE_WIDER_MODE (mode))
5239 {
5240 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5241 && double_mode == VOIDmode)
5242 double_mode = mode;
5243 }
5244
5245 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5246
5247 /* Assign register numbers to the globally defined register rtx.
5248 This must be done at runtime because the register number field
5249 is in a union and some compilers can't initialize unions. */
5250
5251 pc_rtx = gen_rtx (PC, VOIDmode);
5252 cc0_rtx = gen_rtx (CC0, VOIDmode);
5253 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5254 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5255 if (hard_frame_pointer_rtx == 0)
5256 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5257 HARD_FRAME_POINTER_REGNUM);
5258 if (arg_pointer_rtx == 0)
5259 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5260 virtual_incoming_args_rtx =
5261 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5262 virtual_stack_vars_rtx =
5263 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5264 virtual_stack_dynamic_rtx =
5265 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5266 virtual_outgoing_args_rtx =
5267 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5268 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5269
5270 /* Initialize RTL for commonly used hard registers. These are
5271 copied into regno_reg_rtx as we begin to compile each function. */
5272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5273 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5274
5275 #ifdef INIT_EXPANDERS
5276 /* This is to initialize {init|mark|free}_machine_status before the first
5277 call to push_function_context_to. This is needed by the Chill front
5278 end which calls push_function_context_to before the first call to
5279 init_function_start. */
5280 INIT_EXPANDERS;
5281 #endif
5282
5283 /* Create the unique rtx's for certain rtx codes and operand values. */
5284
5285 /* Don't use gen_rtx here since gen_rtx in this case
5286 tries to use these variables. */
5287 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5288 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5289 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5290
5291 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5292 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5293 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5294 else
5295 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5296
5297 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5298 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5299 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5300 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5301
5302 for (i = 0; i <= 2; i++)
5303 {
5304 REAL_VALUE_TYPE *r =
5305 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5306
5307 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5308 mode = GET_MODE_WIDER_MODE (mode))
5309 const_tiny_rtx[i][(int) mode] =
5310 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5311
5312 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5313
5314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5315 mode = GET_MODE_WIDER_MODE (mode))
5316 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5317
5318 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5319 mode != VOIDmode;
5320 mode = GET_MODE_WIDER_MODE (mode))
5321 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5322 }
5323
5324 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5325 mode != VOIDmode;
5326 mode = GET_MODE_WIDER_MODE (mode))
5327 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5328
5329 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5330 mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
5332 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5333
5334 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5335 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5336 const_tiny_rtx[0][i] = const0_rtx;
5337
5338 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5339 if (STORE_FLAG_VALUE == 1)
5340 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5341
5342 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5343 return_address_pointer_rtx
5344 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5345 #endif
5346
5347 #ifdef STRUCT_VALUE
5348 struct_value_rtx = STRUCT_VALUE;
5349 #else
5350 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5351 #endif
5352
5353 #ifdef STRUCT_VALUE_INCOMING
5354 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5355 #else
5356 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5357 struct_value_incoming_rtx
5358 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5359 #else
5360 struct_value_incoming_rtx = struct_value_rtx;
5361 #endif
5362 #endif
5363
5364 #ifdef STATIC_CHAIN_REGNUM
5365 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5366
5367 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5368 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5369 static_chain_incoming_rtx
5370 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5371 else
5372 #endif
5373 static_chain_incoming_rtx = static_chain_rtx;
5374 #endif
5375
5376 #ifdef STATIC_CHAIN
5377 static_chain_rtx = STATIC_CHAIN;
5378
5379 #ifdef STATIC_CHAIN_INCOMING
5380 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5381 #else
5382 static_chain_incoming_rtx = static_chain_rtx;
5383 #endif
5384 #endif
5385
5386 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5387 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5388 }
5389 \f
5390 /* Query and clear/ restore no_line_numbers. This is used by the
5391 switch / case handling in stmt.c to give proper line numbers in
5392 warnings about unreachable code. */
5393
5394 int
5395 force_line_numbers ()
5396 {
5397 int old = no_line_numbers;
5398
5399 no_line_numbers = 0;
5400 if (old)
5401 force_next_line_note ();
5402 return old;
5403 }
5404
5405 void
5406 restore_line_number_status (old_value)
5407 int old_value;
5408 {
5409 no_line_numbers = old_value;
5410 }
5411
5412 /* Produce exact duplicate of insn INSN after AFTER.
5413 Care updating of libcall regions if present. */
5414
5415 rtx
5416 emit_copy_of_insn_after (insn, after)
5417 rtx insn, after;
5418 {
5419 rtx new;
5420 rtx note1, note2, link;
5421
5422 switch (GET_CODE (insn))
5423 {
5424 case INSN:
5425 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5426 break;
5427
5428 case JUMP_INSN:
5429 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5430 break;
5431
5432 case CALL_INSN:
5433 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5434 if (CALL_INSN_FUNCTION_USAGE (insn))
5435 CALL_INSN_FUNCTION_USAGE (new)
5436 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5437 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5438 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5439 break;
5440
5441 default:
5442 abort ();
5443 }
5444
5445 /* Update LABEL_NUSES. */
5446 mark_jump_label (PATTERN (new), new, 0);
5447
5448 INSN_SCOPE (new) = INSN_SCOPE (insn);
5449
5450 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5451 make them. */
5452 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5453 if (REG_NOTE_KIND (link) != REG_LABEL)
5454 {
5455 if (GET_CODE (link) == EXPR_LIST)
5456 REG_NOTES (new)
5457 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5458 XEXP (link, 0),
5459 REG_NOTES (new)));
5460 else
5461 REG_NOTES (new)
5462 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5463 XEXP (link, 0),
5464 REG_NOTES (new)));
5465 }
5466
5467 /* Fix the libcall sequences. */
5468 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5469 {
5470 rtx p = new;
5471 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5472 p = PREV_INSN (p);
5473 XEXP (note1, 0) = p;
5474 XEXP (note2, 0) = new;
5475 }
5476 return new;
5477 }
5478
5479 #include "gt-emit-rtl.h"