Introduce emit_status::ensure_regno_capacity
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
67
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69
70 /* Commonly used modes. */
71
72 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split.
194 Set to -1 otherwise. */
195 int split_branch_probability = -1;
196 \f
197 /* Returns a hash code for X (which is a really a CONST_INT). */
198
199 hashval_t
200 const_int_hasher::hash (rtx x)
201 {
202 return (hashval_t) INTVAL (x);
203 }
204
205 /* Returns nonzero if the value represented by X (which is really a
206 CONST_INT) is the same as that given by Y (which is really a
207 HOST_WIDE_INT *). */
208
209 bool
210 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
211 {
212 return (INTVAL (x) == y);
213 }
214
215 #if TARGET_SUPPORTS_WIDE_INT
216 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
217
218 hashval_t
219 const_wide_int_hasher::hash (rtx x)
220 {
221 int i;
222 unsigned HOST_WIDE_INT hash = 0;
223 const_rtx xr = x;
224
225 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
226 hash += CONST_WIDE_INT_ELT (xr, i);
227
228 return (hashval_t) hash;
229 }
230
231 /* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
233 CONST_WIDE_INT). */
234
235 bool
236 const_wide_int_hasher::equal (rtx x, rtx y)
237 {
238 int i;
239 const_rtx xr = x;
240 const_rtx yr = y;
241 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
242 return false;
243
244 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
245 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
246 return false;
247
248 return true;
249 }
250 #endif
251
252 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
253 hashval_t
254 const_double_hasher::hash (rtx x)
255 {
256 const_rtx const value = x;
257 hashval_t h;
258
259 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
260 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
261 else
262 {
263 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
264 /* MODE is used in the comparison, so it should be in the hash. */
265 h ^= GET_MODE (value);
266 }
267 return h;
268 }
269
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...) */
272 bool
273 const_double_hasher::equal (rtx x, rtx y)
274 {
275 const_rtx const a = x, b = y;
276
277 if (GET_MODE (a) != GET_MODE (b))
278 return 0;
279 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
280 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
281 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
282 else
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
284 CONST_DOUBLE_REAL_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is really a CONST_FIXED). */
288
289 hashval_t
290 const_fixed_hasher::hash (rtx x)
291 {
292 const_rtx const value = x;
293 hashval_t h;
294
295 h = fixed_hash (CONST_FIXED_VALUE (value));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h ^= GET_MODE (value);
298 return h;
299 }
300
301 /* Returns nonzero if the value represented by X is the same as that
302 represented by Y. */
303
304 bool
305 const_fixed_hasher::equal (rtx x, rtx y)
306 {
307 const_rtx const a = x, b = y;
308
309 if (GET_MODE (a) != GET_MODE (b))
310 return 0;
311 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
312 }
313
314 /* Return true if the given memory attributes are equal. */
315
316 bool
317 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
318 {
319 if (p == q)
320 return true;
321 if (!p || !q)
322 return false;
323 return (p->alias == q->alias
324 && p->offset_known_p == q->offset_known_p
325 && (!p->offset_known_p || p->offset == q->offset)
326 && p->size_known_p == q->size_known_p
327 && (!p->size_known_p || p->size == q->size)
328 && p->align == q->align
329 && p->addrspace == q->addrspace
330 && (p->expr == q->expr
331 || (p->expr != NULL_TREE && q->expr != NULL_TREE
332 && operand_equal_p (p->expr, q->expr, 0))));
333 }
334
335 /* Set MEM's memory attributes so that they are the same as ATTRS. */
336
337 static void
338 set_mem_attrs (rtx mem, mem_attrs *attrs)
339 {
340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
342 {
343 MEM_ATTRS (mem) = 0;
344 return;
345 }
346
347 if (!MEM_ATTRS (mem)
348 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
349 {
350 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
351 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
352 }
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 hashval_t
358 reg_attr_hasher::hash (reg_attrs *x)
359 {
360 const reg_attrs *const p = x;
361
362 return ((p->offset * 1000) ^ (intptr_t) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X is the same as that given by
366 Y. */
367
368 bool
369 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
370 {
371 const reg_attrs *const p = x;
372 const reg_attrs *const q = y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384
385 /* If everything is the default, we can just return zero. */
386 if (decl == 0 && offset == 0)
387 return 0;
388
389 attrs.decl = decl;
390 attrs.offset = offset;
391
392 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
393 if (*slot == 0)
394 {
395 *slot = ggc_alloc<reg_attrs> ();
396 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 }
398
399 return *slot;
400 }
401
402
403 #if !HAVE_blockage
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
406
407 rtx
408 gen_blockage (void)
409 {
410 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
411 MEM_VOLATILE_P (x) = true;
412 return x;
413 }
414 #endif
415
416
417 /* Set the mode and register number of X to MODE and REGNO. */
418
419 void
420 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
421 {
422 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
423 ? hard_regno_nregs[regno][mode]
424 : 1);
425 PUT_MODE_RAW (x, mode);
426 set_regno_raw (x, regno, nregs);
427 }
428
429 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
432
433 rtx
434 gen_raw_REG (machine_mode mode, unsigned int regno)
435 {
436 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
437 set_mode_and_regno (x, mode, regno);
438 REG_ATTRS (x) = NULL;
439 ORIGINAL_REGNO (x) = regno;
440 return x;
441 }
442
443 /* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
446
447 rtx_expr_list *
448 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
449 {
450 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
451 expr_list));
452 }
453
454 rtx_insn_list *
455 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
456 {
457 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
458 insn_list));
459 }
460
461 rtx_insn *
462 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
463 basic_block bb, rtx pattern, int location, int code,
464 rtx reg_notes)
465 {
466 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
467 prev_insn, next_insn,
468 bb, pattern, location, code,
469 reg_notes));
470 }
471
472 rtx
473 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
474 {
475 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
476 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
477
478 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx && arg == STORE_FLAG_VALUE)
480 return const_true_rtx;
481 #endif
482
483 /* Look up the CONST_INT in the hash table. */
484 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
485 INSERT);
486 if (*slot == 0)
487 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
488
489 return *slot;
490 }
491
492 rtx
493 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
494 {
495 return GEN_INT (trunc_int_for_mode (c, mode));
496 }
497
498 /* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501
502 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
505 static rtx
506 lookup_const_double (rtx real)
507 {
508 rtx *slot = const_double_htab->find_slot (real, INSERT);
509 if (*slot == 0)
510 *slot = real;
511
512 return *slot;
513 }
514
515 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
517 rtx
518 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
519 {
520 rtx real = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (real, mode);
522
523 real->u.rv = value;
524
525 return lookup_const_double (real);
526 }
527
528 /* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
531
532 static rtx
533 lookup_const_fixed (rtx fixed)
534 {
535 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
536 if (*slot == 0)
537 *slot = fixed;
538
539 return *slot;
540 }
541
542 /* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
544
545 rtx
546 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
547 {
548 rtx fixed = rtx_alloc (CONST_FIXED);
549 PUT_MODE (fixed, mode);
550
551 fixed->u.fv = value;
552
553 return lookup_const_fixed (fixed);
554 }
555
556 #if TARGET_SUPPORTS_WIDE_INT == 0
557 /* Constructs double_int from rtx CST. */
558
559 double_int
560 rtx_to_double_int (const_rtx cst)
561 {
562 double_int r;
563
564 if (CONST_INT_P (cst))
565 r = double_int::from_shwi (INTVAL (cst));
566 else if (CONST_DOUBLE_AS_INT_P (cst))
567 {
568 r.low = CONST_DOUBLE_LOW (cst);
569 r.high = CONST_DOUBLE_HIGH (cst);
570 }
571 else
572 gcc_unreachable ();
573
574 return r;
575 }
576 #endif
577
578 #if TARGET_SUPPORTS_WIDE_INT
579 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
581 return it. */
582
583 static rtx
584 lookup_const_wide_int (rtx wint)
585 {
586 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
587 if (*slot == 0)
588 *slot = wint;
589
590 return *slot;
591 }
592 #endif
593
594 /* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
598
599 rtx
600 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
601 {
602 unsigned int len = v.get_len ();
603 unsigned int prec = GET_MODE_PRECISION (mode);
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 if (mode != VOIDmode)
664 {
665 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
666 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
669 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
671
672 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
673 return gen_int_mode (i0, mode);
674 }
675
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
678 return GEN_INT (i0);
679
680 /* We use VOIDmode for integers. */
681 value = rtx_alloc (CONST_DOUBLE);
682 PUT_MODE (value, VOIDmode);
683
684 CONST_DOUBLE_LOW (value) = i0;
685 CONST_DOUBLE_HIGH (value) = i1;
686
687 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
688 XWINT (value, i) = 0;
689
690 return lookup_const_double (value);
691 }
692 #endif
693
694 rtx
695 gen_rtx_REG (machine_mode mode, unsigned int regno)
696 {
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
701 assigned to them.
702
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
707
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
710
711 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
712 {
713 if (regno == FRAME_POINTER_REGNUM
714 && (!reload_completed || frame_pointer_needed))
715 return frame_pointer_rtx;
716
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno == HARD_FRAME_POINTER_REGNUM
719 && (!reload_completed || frame_pointer_needed))
720 return hard_frame_pointer_rtx;
721 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
723 && regno == ARG_POINTER_REGNUM)
724 return arg_pointer_rtx;
725 #endif
726 #ifdef RETURN_ADDRESS_POINTER_REGNUM
727 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
728 return return_address_pointer_rtx;
729 #endif
730 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
731 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
732 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
733 return pic_offset_table_rtx;
734 if (regno == STACK_POINTER_REGNUM)
735 return stack_pointer_rtx;
736 }
737
738 #if 0
739 /* If the per-function register table has been set up, try to re-use
740 an existing entry in that table to avoid useless generation of RTL.
741
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
745 on the amount of useless RTL that gets generated.
746
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
749
750 if (cfun
751 && cfun->emit
752 && regno_reg_rtx
753 && regno < FIRST_PSEUDO_REGISTER
754 && reg_raw_mode[regno] == mode)
755 return regno_reg_rtx[regno];
756 #endif
757
758 return gen_raw_REG (mode, regno);
759 }
760
761 rtx
762 gen_rtx_MEM (machine_mode mode, rtx addr)
763 {
764 rtx rt = gen_rtx_raw_MEM (mode, addr);
765
766 /* This field is not cleared by the mere allocation of the rtx, so
767 we clear it here. */
768 MEM_ATTRS (rt) = 0;
769
770 return rt;
771 }
772
773 /* Generate a memory referring to non-trapping constant memory. */
774
775 rtx
776 gen_const_mem (machine_mode mode, rtx addr)
777 {
778 rtx mem = gen_rtx_MEM (mode, addr);
779 MEM_READONLY_P (mem) = 1;
780 MEM_NOTRAP_P (mem) = 1;
781 return mem;
782 }
783
784 /* Generate a MEM referring to fixed portions of the frame, e.g., register
785 save areas. */
786
787 rtx
788 gen_frame_mem (machine_mode mode, rtx addr)
789 {
790 rtx mem = gen_rtx_MEM (mode, addr);
791 MEM_NOTRAP_P (mem) = 1;
792 set_mem_alias_set (mem, get_frame_alias_set ());
793 return mem;
794 }
795
796 /* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
799 rtx
800 gen_tmp_stack_mem (machine_mode mode, rtx addr)
801 {
802 rtx mem = gen_rtx_MEM (mode, addr);
803 MEM_NOTRAP_P (mem) = 1;
804 if (!cfun->calls_alloca)
805 set_mem_alias_set (mem, get_frame_alias_set ());
806 return mem;
807 }
808
809 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
811
812 bool
813 validate_subreg (machine_mode omode, machine_mode imode,
814 const_rtx reg, unsigned int offset)
815 {
816 unsigned int isize = GET_MODE_SIZE (imode);
817 unsigned int osize = GET_MODE_SIZE (omode);
818
819 /* All subregs must be aligned. */
820 if (offset % osize != 0)
821 return false;
822
823 /* The subreg offset cannot be outside the inner object. */
824 if (offset >= isize)
825 return false;
826
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
830 fix them all. */
831 if (omode == word_mode)
832 ;
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize >= UNITS_PER_WORD && isize >= osize)
836 ;
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
840 && GET_MODE_INNER (imode) == omode)
841 ;
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
848 ;
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
853 {
854 if (! (isize == osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
861 || lra_in_progress))
862 return false;
863 }
864
865 /* Paradoxical subregs must have offset zero. */
866 if (osize > isize)
867 return offset == 0;
868
869 /* This is a normal subreg. Verify that the offset is representable. */
870
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
874 {
875 unsigned int regno = REGNO (reg);
876
877 #ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
879 && GET_MODE_INNER (imode) == omode)
880 ;
881 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
882 return false;
883 #endif
884
885 return subreg_offset_representable_p (regno, imode, offset, omode);
886 }
887
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
894 if (osize < UNITS_PER_WORD
895 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
896 {
897 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
898 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
899 if (offset % UNITS_PER_WORD != low_off)
900 return false;
901 }
902 return true;
903 }
904
905 rtx
906 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
907 {
908 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
909 return gen_rtx_raw_SUBREG (mode, reg, offset);
910 }
911
912 /* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
914
915 rtx
916 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
917 {
918 machine_mode inmode;
919
920 inmode = GET_MODE (reg);
921 if (inmode == VOIDmode)
922 inmode = mode;
923 return gen_rtx_SUBREG (mode, reg,
924 subreg_lowpart_offset (mode, inmode));
925 }
926
927 rtx
928 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
929 enum var_init_status status)
930 {
931 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
932 PAT_VAR_LOCATION_STATUS (x) = status;
933 return x;
934 }
935 \f
936
937 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
938
939 rtvec
940 gen_rtvec (int n, ...)
941 {
942 int i;
943 rtvec rt_val;
944 va_list p;
945
946 va_start (p, n);
947
948 /* Don't allocate an empty rtvec... */
949 if (n == 0)
950 {
951 va_end (p);
952 return NULL_RTVEC;
953 }
954
955 rt_val = rtvec_alloc (n);
956
957 for (i = 0; i < n; i++)
958 rt_val->elem[i] = va_arg (p, rtx);
959
960 va_end (p);
961 return rt_val;
962 }
963
964 rtvec
965 gen_rtvec_v (int n, rtx *argp)
966 {
967 int i;
968 rtvec rt_val;
969
970 /* Don't allocate an empty rtvec... */
971 if (n == 0)
972 return NULL_RTVEC;
973
974 rt_val = rtvec_alloc (n);
975
976 for (i = 0; i < n; i++)
977 rt_val->elem[i] = *argp++;
978
979 return rt_val;
980 }
981
982 rtvec
983 gen_rtvec_v (int n, rtx_insn **argp)
984 {
985 int i;
986 rtvec rt_val;
987
988 /* Don't allocate an empty rtvec... */
989 if (n == 0)
990 return NULL_RTVEC;
991
992 rt_val = rtvec_alloc (n);
993
994 for (i = 0; i < n; i++)
995 rt_val->elem[i] = *argp++;
996
997 return rt_val;
998 }
999
1000 \f
1001 /* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1006
1007 int
1008 byte_lowpart_offset (machine_mode outer_mode,
1009 machine_mode inner_mode)
1010 {
1011 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1012 return subreg_lowpart_offset (outer_mode, inner_mode);
1013 else
1014 return -subreg_lowpart_offset (inner_mode, outer_mode);
1015 }
1016 \f
1017 /* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1019
1020 rtx
1021 gen_reg_rtx (machine_mode mode)
1022 {
1023 rtx val;
1024 unsigned int align = GET_MODE_ALIGNMENT (mode);
1025
1026 gcc_assert (can_create_pseudo_p ());
1027
1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1030 to stack later. */
1031 if (SUPPORTS_STACK_ALIGNMENT
1032 && crtl->stack_alignment_estimated < align
1033 && !crtl->stack_realign_processed)
1034 {
1035 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1036 if (crtl->stack_alignment_estimated < min_align)
1037 crtl->stack_alignment_estimated = min_align;
1038 }
1039
1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1043 {
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart, imagpart;
1050 machine_mode partmode = GET_MODE_INNER (mode);
1051
1052 realpart = gen_reg_rtx (partmode);
1053 imagpart = gen_reg_rtx (partmode);
1054 return gen_rtx_CONCAT (mode, realpart, imagpart);
1055 }
1056
1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl->emit.regno_pointer_align_length);
1059
1060 crtl->emit.ensure_regno_capacity ();
1061 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1062
1063 val = gen_raw_REG (mode, reg_rtx_no);
1064 regno_reg_rtx[reg_rtx_no++] = val;
1065 return val;
1066 }
1067
1068 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1069 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1070
1071 void
1072 emit_status::ensure_regno_capacity ()
1073 {
1074 int old_size = regno_pointer_align_length;
1075
1076 if (reg_rtx_no < old_size)
1077 return;
1078
1079 int new_size = old_size * 2;
1080 while (reg_rtx_no >= new_size)
1081 new_size *= 2;
1082
1083 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1084 memset (tmp + old_size, 0, new_size - old_size);
1085 regno_pointer_align = (unsigned char *) tmp;
1086
1087 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1088 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1089 regno_reg_rtx = new1;
1090
1091 crtl->emit.regno_pointer_align_length = new_size;
1092 }
1093
1094 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1095
1096 bool
1097 reg_is_parm_p (rtx reg)
1098 {
1099 tree decl;
1100
1101 gcc_assert (REG_P (reg));
1102 decl = REG_EXPR (reg);
1103 return (decl && TREE_CODE (decl) == PARM_DECL);
1104 }
1105
1106 /* Update NEW with the same attributes as REG, but with OFFSET added
1107 to the REG_OFFSET. */
1108
1109 static void
1110 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1111 {
1112 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1113 REG_OFFSET (reg) + offset);
1114 }
1115
1116 /* Generate a register with same attributes as REG, but with OFFSET
1117 added to the REG_OFFSET. */
1118
1119 rtx
1120 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1121 int offset)
1122 {
1123 rtx new_rtx = gen_rtx_REG (mode, regno);
1124
1125 update_reg_offset (new_rtx, reg, offset);
1126 return new_rtx;
1127 }
1128
1129 /* Generate a new pseudo-register with the same attributes as REG, but
1130 with OFFSET added to the REG_OFFSET. */
1131
1132 rtx
1133 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1134 {
1135 rtx new_rtx = gen_reg_rtx (mode);
1136
1137 update_reg_offset (new_rtx, reg, offset);
1138 return new_rtx;
1139 }
1140
1141 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1142 new register is a (possibly paradoxical) lowpart of the old one. */
1143
1144 void
1145 adjust_reg_mode (rtx reg, machine_mode mode)
1146 {
1147 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1148 PUT_MODE (reg, mode);
1149 }
1150
1151 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1152 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1153
1154 void
1155 set_reg_attrs_from_value (rtx reg, rtx x)
1156 {
1157 int offset;
1158 bool can_be_reg_pointer = true;
1159
1160 /* Don't call mark_reg_pointer for incompatible pointer sign
1161 extension. */
1162 while (GET_CODE (x) == SIGN_EXTEND
1163 || GET_CODE (x) == ZERO_EXTEND
1164 || GET_CODE (x) == TRUNCATE
1165 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1166 {
1167 #if defined(POINTERS_EXTEND_UNSIGNED)
1168 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1169 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1170 || (paradoxical_subreg_p (x)
1171 && ! (SUBREG_PROMOTED_VAR_P (x)
1172 && SUBREG_CHECK_PROMOTED_SIGN (x,
1173 POINTERS_EXTEND_UNSIGNED))))
1174 && !targetm.have_ptr_extend ())
1175 can_be_reg_pointer = false;
1176 #endif
1177 x = XEXP (x, 0);
1178 }
1179
1180 /* Hard registers can be reused for multiple purposes within the same
1181 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1182 on them is wrong. */
1183 if (HARD_REGISTER_P (reg))
1184 return;
1185
1186 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1187 if (MEM_P (x))
1188 {
1189 if (MEM_OFFSET_KNOWN_P (x))
1190 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1191 MEM_OFFSET (x) + offset);
1192 if (can_be_reg_pointer && MEM_POINTER (x))
1193 mark_reg_pointer (reg, 0);
1194 }
1195 else if (REG_P (x))
1196 {
1197 if (REG_ATTRS (x))
1198 update_reg_offset (reg, x, offset);
1199 if (can_be_reg_pointer && REG_POINTER (x))
1200 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1201 }
1202 }
1203
1204 /* Generate a REG rtx for a new pseudo register, copying the mode
1205 and attributes from X. */
1206
1207 rtx
1208 gen_reg_rtx_and_attrs (rtx x)
1209 {
1210 rtx reg = gen_reg_rtx (GET_MODE (x));
1211 set_reg_attrs_from_value (reg, x);
1212 return reg;
1213 }
1214
1215 /* Set the register attributes for registers contained in PARM_RTX.
1216 Use needed values from memory attributes of MEM. */
1217
1218 void
1219 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1220 {
1221 if (REG_P (parm_rtx))
1222 set_reg_attrs_from_value (parm_rtx, mem);
1223 else if (GET_CODE (parm_rtx) == PARALLEL)
1224 {
1225 /* Check for a NULL entry in the first slot, used to indicate that the
1226 parameter goes both on the stack and in registers. */
1227 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1228 for (; i < XVECLEN (parm_rtx, 0); i++)
1229 {
1230 rtx x = XVECEXP (parm_rtx, 0, i);
1231 if (REG_P (XEXP (x, 0)))
1232 REG_ATTRS (XEXP (x, 0))
1233 = get_reg_attrs (MEM_EXPR (mem),
1234 INTVAL (XEXP (x, 1)));
1235 }
1236 }
1237 }
1238
1239 /* Set the REG_ATTRS for registers in value X, given that X represents
1240 decl T. */
1241
1242 void
1243 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1244 {
1245 if (!t)
1246 return;
1247 tree tdecl = t;
1248 if (GET_CODE (x) == SUBREG)
1249 {
1250 gcc_assert (subreg_lowpart_p (x));
1251 x = SUBREG_REG (x);
1252 }
1253 if (REG_P (x))
1254 REG_ATTRS (x)
1255 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1256 DECL_P (tdecl)
1257 ? DECL_MODE (tdecl)
1258 : TYPE_MODE (TREE_TYPE (tdecl))));
1259 if (GET_CODE (x) == CONCAT)
1260 {
1261 if (REG_P (XEXP (x, 0)))
1262 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1263 if (REG_P (XEXP (x, 1)))
1264 REG_ATTRS (XEXP (x, 1))
1265 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1266 }
1267 if (GET_CODE (x) == PARALLEL)
1268 {
1269 int i, start;
1270
1271 /* Check for a NULL entry, used to indicate that the parameter goes
1272 both on the stack and in registers. */
1273 if (XEXP (XVECEXP (x, 0, 0), 0))
1274 start = 0;
1275 else
1276 start = 1;
1277
1278 for (i = start; i < XVECLEN (x, 0); i++)
1279 {
1280 rtx y = XVECEXP (x, 0, i);
1281 if (REG_P (XEXP (y, 0)))
1282 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1283 }
1284 }
1285 }
1286
1287 /* Assign the RTX X to declaration T. */
1288
1289 void
1290 set_decl_rtl (tree t, rtx x)
1291 {
1292 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1293 if (x)
1294 set_reg_attrs_for_decl_rtl (t, x);
1295 }
1296
1297 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1298 if the ABI requires the parameter to be passed by reference. */
1299
1300 void
1301 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1302 {
1303 DECL_INCOMING_RTL (t) = x;
1304 if (x && !by_reference_p)
1305 set_reg_attrs_for_decl_rtl (t, x);
1306 }
1307
1308 /* Identify REG (which may be a CONCAT) as a user register. */
1309
1310 void
1311 mark_user_reg (rtx reg)
1312 {
1313 if (GET_CODE (reg) == CONCAT)
1314 {
1315 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1316 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1317 }
1318 else
1319 {
1320 gcc_assert (REG_P (reg));
1321 REG_USERVAR_P (reg) = 1;
1322 }
1323 }
1324
1325 /* Identify REG as a probable pointer register and show its alignment
1326 as ALIGN, if nonzero. */
1327
1328 void
1329 mark_reg_pointer (rtx reg, int align)
1330 {
1331 if (! REG_POINTER (reg))
1332 {
1333 REG_POINTER (reg) = 1;
1334
1335 if (align)
1336 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1337 }
1338 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1339 /* We can no-longer be sure just how aligned this pointer is. */
1340 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1341 }
1342
1343 /* Return 1 plus largest pseudo reg number used in the current function. */
1344
1345 int
1346 max_reg_num (void)
1347 {
1348 return reg_rtx_no;
1349 }
1350
1351 /* Return 1 + the largest label number used so far in the current function. */
1352
1353 int
1354 max_label_num (void)
1355 {
1356 return label_num;
1357 }
1358
1359 /* Return first label number used in this function (if any were used). */
1360
1361 int
1362 get_first_label_num (void)
1363 {
1364 return first_label_num;
1365 }
1366
1367 /* If the rtx for label was created during the expansion of a nested
1368 function, then first_label_num won't include this label number.
1369 Fix this now so that array indices work later. */
1370
1371 void
1372 maybe_set_first_label_num (rtx_code_label *x)
1373 {
1374 if (CODE_LABEL_NUMBER (x) < first_label_num)
1375 first_label_num = CODE_LABEL_NUMBER (x);
1376 }
1377 \f
1378 /* Return a value representing some low-order bits of X, where the number
1379 of low-order bits is given by MODE. Note that no conversion is done
1380 between floating-point and fixed-point values, rather, the bit
1381 representation is returned.
1382
1383 This function handles the cases in common between gen_lowpart, below,
1384 and two variants in cse.c and combine.c. These are the cases that can
1385 be safely handled at all points in the compilation.
1386
1387 If this is not a case we can handle, return 0. */
1388
1389 rtx
1390 gen_lowpart_common (machine_mode mode, rtx x)
1391 {
1392 int msize = GET_MODE_SIZE (mode);
1393 int xsize;
1394 machine_mode innermode;
1395
1396 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1397 so we have to make one up. Yuk. */
1398 innermode = GET_MODE (x);
1399 if (CONST_INT_P (x)
1400 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1401 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1402 else if (innermode == VOIDmode)
1403 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1404
1405 xsize = GET_MODE_SIZE (innermode);
1406
1407 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1408
1409 if (innermode == mode)
1410 return x;
1411
1412 /* MODE must occupy no more words than the mode of X. */
1413 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1414 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1415 return 0;
1416
1417 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1418 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1419 return 0;
1420
1421 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1422 && (GET_MODE_CLASS (mode) == MODE_INT
1423 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1424 {
1425 /* If we are getting the low-order part of something that has been
1426 sign- or zero-extended, we can either just use the object being
1427 extended or make a narrower extension. If we want an even smaller
1428 piece than the size of the object being extended, call ourselves
1429 recursively.
1430
1431 This case is used mostly by combine and cse. */
1432
1433 if (GET_MODE (XEXP (x, 0)) == mode)
1434 return XEXP (x, 0);
1435 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1436 return gen_lowpart_common (mode, XEXP (x, 0));
1437 else if (msize < xsize)
1438 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1439 }
1440 else if (GET_CODE (x) == SUBREG || REG_P (x)
1441 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1442 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1443 return lowpart_subreg (mode, x, innermode);
1444
1445 /* Otherwise, we can't do this. */
1446 return 0;
1447 }
1448 \f
1449 rtx
1450 gen_highpart (machine_mode mode, rtx x)
1451 {
1452 unsigned int msize = GET_MODE_SIZE (mode);
1453 rtx result;
1454
1455 /* This case loses if X is a subreg. To catch bugs early,
1456 complain if an invalid MODE is used even in other cases. */
1457 gcc_assert (msize <= UNITS_PER_WORD
1458 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1459
1460 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1461 subreg_highpart_offset (mode, GET_MODE (x)));
1462 gcc_assert (result);
1463
1464 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1465 the target if we have a MEM. gen_highpart must return a valid operand,
1466 emitting code if necessary to do so. */
1467 if (MEM_P (result))
1468 {
1469 result = validize_mem (result);
1470 gcc_assert (result);
1471 }
1472
1473 return result;
1474 }
1475
1476 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1477 be VOIDmode constant. */
1478 rtx
1479 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1480 {
1481 if (GET_MODE (exp) != VOIDmode)
1482 {
1483 gcc_assert (GET_MODE (exp) == innermode);
1484 return gen_highpart (outermode, exp);
1485 }
1486 return simplify_gen_subreg (outermode, exp, innermode,
1487 subreg_highpart_offset (outermode, innermode));
1488 }
1489
1490 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1491 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1492
1493 unsigned int
1494 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1495 {
1496 if (outer_bytes > inner_bytes)
1497 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1498 return 0;
1499
1500 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1501 return inner_bytes - outer_bytes;
1502 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1503 return 0;
1504 else
1505 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1506 }
1507
1508 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1509 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1510
1511 unsigned int
1512 subreg_size_highpart_offset (unsigned int outer_bytes,
1513 unsigned int inner_bytes)
1514 {
1515 gcc_assert (inner_bytes >= outer_bytes);
1516
1517 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1518 return 0;
1519 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1520 return inner_bytes - outer_bytes;
1521 else
1522 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1523 (inner_bytes - outer_bytes)
1524 * BITS_PER_UNIT);
1525 }
1526
1527 /* Return 1 iff X, assumed to be a SUBREG,
1528 refers to the least significant part of its containing reg.
1529 If X is not a SUBREG, always return 1 (it is its own low part!). */
1530
1531 int
1532 subreg_lowpart_p (const_rtx x)
1533 {
1534 if (GET_CODE (x) != SUBREG)
1535 return 1;
1536 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1537 return 0;
1538
1539 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1540 == SUBREG_BYTE (x));
1541 }
1542
1543 /* Return true if X is a paradoxical subreg, false otherwise. */
1544 bool
1545 paradoxical_subreg_p (const_rtx x)
1546 {
1547 if (GET_CODE (x) != SUBREG)
1548 return false;
1549 return (GET_MODE_PRECISION (GET_MODE (x))
1550 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1551 }
1552 \f
1553 /* Return subword OFFSET of operand OP.
1554 The word number, OFFSET, is interpreted as the word number starting
1555 at the low-order address. OFFSET 0 is the low-order word if not
1556 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1557
1558 If we cannot extract the required word, we return zero. Otherwise,
1559 an rtx corresponding to the requested word will be returned.
1560
1561 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1562 reload has completed, a valid address will always be returned. After
1563 reload, if a valid address cannot be returned, we return zero.
1564
1565 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1566 it is the responsibility of the caller.
1567
1568 MODE is the mode of OP in case it is a CONST_INT.
1569
1570 ??? This is still rather broken for some cases. The problem for the
1571 moment is that all callers of this thing provide no 'goal mode' to
1572 tell us to work with. This exists because all callers were written
1573 in a word based SUBREG world.
1574 Now use of this function can be deprecated by simplify_subreg in most
1575 cases.
1576 */
1577
1578 rtx
1579 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1580 {
1581 if (mode == VOIDmode)
1582 mode = GET_MODE (op);
1583
1584 gcc_assert (mode != VOIDmode);
1585
1586 /* If OP is narrower than a word, fail. */
1587 if (mode != BLKmode
1588 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1589 return 0;
1590
1591 /* If we want a word outside OP, return zero. */
1592 if (mode != BLKmode
1593 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1594 return const0_rtx;
1595
1596 /* Form a new MEM at the requested address. */
1597 if (MEM_P (op))
1598 {
1599 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1600
1601 if (! validate_address)
1602 return new_rtx;
1603
1604 else if (reload_completed)
1605 {
1606 if (! strict_memory_address_addr_space_p (word_mode,
1607 XEXP (new_rtx, 0),
1608 MEM_ADDR_SPACE (op)))
1609 return 0;
1610 }
1611 else
1612 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1613 }
1614
1615 /* Rest can be handled by simplify_subreg. */
1616 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1617 }
1618
1619 /* Similar to `operand_subword', but never return 0. If we can't
1620 extract the required subword, put OP into a register and try again.
1621 The second attempt must succeed. We always validate the address in
1622 this case.
1623
1624 MODE is the mode of OP, in case it is CONST_INT. */
1625
1626 rtx
1627 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1628 {
1629 rtx result = operand_subword (op, offset, 1, mode);
1630
1631 if (result)
1632 return result;
1633
1634 if (mode != BLKmode && mode != VOIDmode)
1635 {
1636 /* If this is a register which can not be accessed by words, copy it
1637 to a pseudo register. */
1638 if (REG_P (op))
1639 op = copy_to_reg (op);
1640 else
1641 op = force_reg (mode, op);
1642 }
1643
1644 result = operand_subword (op, offset, 1, mode);
1645 gcc_assert (result);
1646
1647 return result;
1648 }
1649 \f
1650 /* Returns 1 if both MEM_EXPR can be considered equal
1651 and 0 otherwise. */
1652
1653 int
1654 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1655 {
1656 if (expr1 == expr2)
1657 return 1;
1658
1659 if (! expr1 || ! expr2)
1660 return 0;
1661
1662 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1663 return 0;
1664
1665 return operand_equal_p (expr1, expr2, 0);
1666 }
1667
1668 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1669 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1670 -1 if not known. */
1671
1672 int
1673 get_mem_align_offset (rtx mem, unsigned int align)
1674 {
1675 tree expr;
1676 unsigned HOST_WIDE_INT offset;
1677
1678 /* This function can't use
1679 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1680 || (MAX (MEM_ALIGN (mem),
1681 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1682 < align))
1683 return -1;
1684 else
1685 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1686 for two reasons:
1687 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1688 for <variable>. get_inner_reference doesn't handle it and
1689 even if it did, the alignment in that case needs to be determined
1690 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1691 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1692 isn't sufficiently aligned, the object it is in might be. */
1693 gcc_assert (MEM_P (mem));
1694 expr = MEM_EXPR (mem);
1695 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1696 return -1;
1697
1698 offset = MEM_OFFSET (mem);
1699 if (DECL_P (expr))
1700 {
1701 if (DECL_ALIGN (expr) < align)
1702 return -1;
1703 }
1704 else if (INDIRECT_REF_P (expr))
1705 {
1706 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1707 return -1;
1708 }
1709 else if (TREE_CODE (expr) == COMPONENT_REF)
1710 {
1711 while (1)
1712 {
1713 tree inner = TREE_OPERAND (expr, 0);
1714 tree field = TREE_OPERAND (expr, 1);
1715 tree byte_offset = component_ref_field_offset (expr);
1716 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1717
1718 if (!byte_offset
1719 || !tree_fits_uhwi_p (byte_offset)
1720 || !tree_fits_uhwi_p (bit_offset))
1721 return -1;
1722
1723 offset += tree_to_uhwi (byte_offset);
1724 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1725
1726 if (inner == NULL_TREE)
1727 {
1728 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1729 < (unsigned int) align)
1730 return -1;
1731 break;
1732 }
1733 else if (DECL_P (inner))
1734 {
1735 if (DECL_ALIGN (inner) < align)
1736 return -1;
1737 break;
1738 }
1739 else if (TREE_CODE (inner) != COMPONENT_REF)
1740 return -1;
1741 expr = inner;
1742 }
1743 }
1744 else
1745 return -1;
1746
1747 return offset & ((align / BITS_PER_UNIT) - 1);
1748 }
1749
1750 /* Given REF (a MEM) and T, either the type of X or the expression
1751 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1752 if we are making a new object of this type. BITPOS is nonzero if
1753 there is an offset outstanding on T that will be applied later. */
1754
1755 void
1756 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1757 HOST_WIDE_INT bitpos)
1758 {
1759 HOST_WIDE_INT apply_bitpos = 0;
1760 tree type;
1761 struct mem_attrs attrs, *defattrs, *refattrs;
1762 addr_space_t as;
1763
1764 /* It can happen that type_for_mode was given a mode for which there
1765 is no language-level type. In which case it returns NULL, which
1766 we can see here. */
1767 if (t == NULL_TREE)
1768 return;
1769
1770 type = TYPE_P (t) ? t : TREE_TYPE (t);
1771 if (type == error_mark_node)
1772 return;
1773
1774 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1775 wrong answer, as it assumes that DECL_RTL already has the right alias
1776 info. Callers should not set DECL_RTL until after the call to
1777 set_mem_attributes. */
1778 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1779
1780 memset (&attrs, 0, sizeof (attrs));
1781
1782 /* Get the alias set from the expression or type (perhaps using a
1783 front-end routine) and use it. */
1784 attrs.alias = get_alias_set (t);
1785
1786 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1787 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1788
1789 /* Default values from pre-existing memory attributes if present. */
1790 refattrs = MEM_ATTRS (ref);
1791 if (refattrs)
1792 {
1793 /* ??? Can this ever happen? Calling this routine on a MEM that
1794 already carries memory attributes should probably be invalid. */
1795 attrs.expr = refattrs->expr;
1796 attrs.offset_known_p = refattrs->offset_known_p;
1797 attrs.offset = refattrs->offset;
1798 attrs.size_known_p = refattrs->size_known_p;
1799 attrs.size = refattrs->size;
1800 attrs.align = refattrs->align;
1801 }
1802
1803 /* Otherwise, default values from the mode of the MEM reference. */
1804 else
1805 {
1806 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1807 gcc_assert (!defattrs->expr);
1808 gcc_assert (!defattrs->offset_known_p);
1809
1810 /* Respect mode size. */
1811 attrs.size_known_p = defattrs->size_known_p;
1812 attrs.size = defattrs->size;
1813 /* ??? Is this really necessary? We probably should always get
1814 the size from the type below. */
1815
1816 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1817 if T is an object, always compute the object alignment below. */
1818 if (TYPE_P (t))
1819 attrs.align = defattrs->align;
1820 else
1821 attrs.align = BITS_PER_UNIT;
1822 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1823 e.g. if the type carries an alignment attribute. Should we be
1824 able to simply always use TYPE_ALIGN? */
1825 }
1826
1827 /* We can set the alignment from the type if we are making an object or if
1828 this is an INDIRECT_REF. */
1829 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1830 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1831
1832 /* If the size is known, we can set that. */
1833 tree new_size = TYPE_SIZE_UNIT (type);
1834
1835 /* The address-space is that of the type. */
1836 as = TYPE_ADDR_SPACE (type);
1837
1838 /* If T is not a type, we may be able to deduce some more information about
1839 the expression. */
1840 if (! TYPE_P (t))
1841 {
1842 tree base;
1843
1844 if (TREE_THIS_VOLATILE (t))
1845 MEM_VOLATILE_P (ref) = 1;
1846
1847 /* Now remove any conversions: they don't change what the underlying
1848 object is. Likewise for SAVE_EXPR. */
1849 while (CONVERT_EXPR_P (t)
1850 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1851 || TREE_CODE (t) == SAVE_EXPR)
1852 t = TREE_OPERAND (t, 0);
1853
1854 /* Note whether this expression can trap. */
1855 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1856
1857 base = get_base_address (t);
1858 if (base)
1859 {
1860 if (DECL_P (base)
1861 && TREE_READONLY (base)
1862 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1863 && !TREE_THIS_VOLATILE (base))
1864 MEM_READONLY_P (ref) = 1;
1865
1866 /* Mark static const strings readonly as well. */
1867 if (TREE_CODE (base) == STRING_CST
1868 && TREE_READONLY (base)
1869 && TREE_STATIC (base))
1870 MEM_READONLY_P (ref) = 1;
1871
1872 /* Address-space information is on the base object. */
1873 if (TREE_CODE (base) == MEM_REF
1874 || TREE_CODE (base) == TARGET_MEM_REF)
1875 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1876 0))));
1877 else
1878 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1879 }
1880
1881 /* If this expression uses it's parent's alias set, mark it such
1882 that we won't change it. */
1883 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1884 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1885
1886 /* If this is a decl, set the attributes of the MEM from it. */
1887 if (DECL_P (t))
1888 {
1889 attrs.expr = t;
1890 attrs.offset_known_p = true;
1891 attrs.offset = 0;
1892 apply_bitpos = bitpos;
1893 new_size = DECL_SIZE_UNIT (t);
1894 }
1895
1896 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1897 else if (CONSTANT_CLASS_P (t))
1898 ;
1899
1900 /* If this is a field reference, record it. */
1901 else if (TREE_CODE (t) == COMPONENT_REF)
1902 {
1903 attrs.expr = t;
1904 attrs.offset_known_p = true;
1905 attrs.offset = 0;
1906 apply_bitpos = bitpos;
1907 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1908 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1909 }
1910
1911 /* If this is an array reference, look for an outer field reference. */
1912 else if (TREE_CODE (t) == ARRAY_REF)
1913 {
1914 tree off_tree = size_zero_node;
1915 /* We can't modify t, because we use it at the end of the
1916 function. */
1917 tree t2 = t;
1918
1919 do
1920 {
1921 tree index = TREE_OPERAND (t2, 1);
1922 tree low_bound = array_ref_low_bound (t2);
1923 tree unit_size = array_ref_element_size (t2);
1924
1925 /* We assume all arrays have sizes that are a multiple of a byte.
1926 First subtract the lower bound, if any, in the type of the
1927 index, then convert to sizetype and multiply by the size of
1928 the array element. */
1929 if (! integer_zerop (low_bound))
1930 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1931 index, low_bound);
1932
1933 off_tree = size_binop (PLUS_EXPR,
1934 size_binop (MULT_EXPR,
1935 fold_convert (sizetype,
1936 index),
1937 unit_size),
1938 off_tree);
1939 t2 = TREE_OPERAND (t2, 0);
1940 }
1941 while (TREE_CODE (t2) == ARRAY_REF);
1942
1943 if (DECL_P (t2)
1944 || TREE_CODE (t2) == COMPONENT_REF)
1945 {
1946 attrs.expr = t2;
1947 attrs.offset_known_p = false;
1948 if (tree_fits_uhwi_p (off_tree))
1949 {
1950 attrs.offset_known_p = true;
1951 attrs.offset = tree_to_uhwi (off_tree);
1952 apply_bitpos = bitpos;
1953 }
1954 }
1955 /* Else do not record a MEM_EXPR. */
1956 }
1957
1958 /* If this is an indirect reference, record it. */
1959 else if (TREE_CODE (t) == MEM_REF
1960 || TREE_CODE (t) == TARGET_MEM_REF)
1961 {
1962 attrs.expr = t;
1963 attrs.offset_known_p = true;
1964 attrs.offset = 0;
1965 apply_bitpos = bitpos;
1966 }
1967
1968 /* Compute the alignment. */
1969 unsigned int obj_align;
1970 unsigned HOST_WIDE_INT obj_bitpos;
1971 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1972 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1973 if (obj_bitpos != 0)
1974 obj_align = least_bit_hwi (obj_bitpos);
1975 attrs.align = MAX (attrs.align, obj_align);
1976 }
1977
1978 if (tree_fits_uhwi_p (new_size))
1979 {
1980 attrs.size_known_p = true;
1981 attrs.size = tree_to_uhwi (new_size);
1982 }
1983
1984 /* If we modified OFFSET based on T, then subtract the outstanding
1985 bit position offset. Similarly, increase the size of the accessed
1986 object to contain the negative offset. */
1987 if (apply_bitpos)
1988 {
1989 gcc_assert (attrs.offset_known_p);
1990 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1991 if (attrs.size_known_p)
1992 attrs.size += apply_bitpos / BITS_PER_UNIT;
1993 }
1994
1995 /* Now set the attributes we computed above. */
1996 attrs.addrspace = as;
1997 set_mem_attrs (ref, &attrs);
1998 }
1999
2000 void
2001 set_mem_attributes (rtx ref, tree t, int objectp)
2002 {
2003 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2004 }
2005
2006 /* Set the alias set of MEM to SET. */
2007
2008 void
2009 set_mem_alias_set (rtx mem, alias_set_type set)
2010 {
2011 struct mem_attrs attrs;
2012
2013 /* If the new and old alias sets don't conflict, something is wrong. */
2014 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2015 attrs = *get_mem_attrs (mem);
2016 attrs.alias = set;
2017 set_mem_attrs (mem, &attrs);
2018 }
2019
2020 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2021
2022 void
2023 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2024 {
2025 struct mem_attrs attrs;
2026
2027 attrs = *get_mem_attrs (mem);
2028 attrs.addrspace = addrspace;
2029 set_mem_attrs (mem, &attrs);
2030 }
2031
2032 /* Set the alignment of MEM to ALIGN bits. */
2033
2034 void
2035 set_mem_align (rtx mem, unsigned int align)
2036 {
2037 struct mem_attrs attrs;
2038
2039 attrs = *get_mem_attrs (mem);
2040 attrs.align = align;
2041 set_mem_attrs (mem, &attrs);
2042 }
2043
2044 /* Set the expr for MEM to EXPR. */
2045
2046 void
2047 set_mem_expr (rtx mem, tree expr)
2048 {
2049 struct mem_attrs attrs;
2050
2051 attrs = *get_mem_attrs (mem);
2052 attrs.expr = expr;
2053 set_mem_attrs (mem, &attrs);
2054 }
2055
2056 /* Set the offset of MEM to OFFSET. */
2057
2058 void
2059 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2060 {
2061 struct mem_attrs attrs;
2062
2063 attrs = *get_mem_attrs (mem);
2064 attrs.offset_known_p = true;
2065 attrs.offset = offset;
2066 set_mem_attrs (mem, &attrs);
2067 }
2068
2069 /* Clear the offset of MEM. */
2070
2071 void
2072 clear_mem_offset (rtx mem)
2073 {
2074 struct mem_attrs attrs;
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.offset_known_p = false;
2078 set_mem_attrs (mem, &attrs);
2079 }
2080
2081 /* Set the size of MEM to SIZE. */
2082
2083 void
2084 set_mem_size (rtx mem, HOST_WIDE_INT size)
2085 {
2086 struct mem_attrs attrs;
2087
2088 attrs = *get_mem_attrs (mem);
2089 attrs.size_known_p = true;
2090 attrs.size = size;
2091 set_mem_attrs (mem, &attrs);
2092 }
2093
2094 /* Clear the size of MEM. */
2095
2096 void
2097 clear_mem_size (rtx mem)
2098 {
2099 struct mem_attrs attrs;
2100
2101 attrs = *get_mem_attrs (mem);
2102 attrs.size_known_p = false;
2103 set_mem_attrs (mem, &attrs);
2104 }
2105 \f
2106 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2107 and its address changed to ADDR. (VOIDmode means don't change the mode.
2108 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2109 returned memory location is required to be valid. INPLACE is true if any
2110 changes can be made directly to MEMREF or false if MEMREF must be treated
2111 as immutable.
2112
2113 The memory attributes are not changed. */
2114
2115 static rtx
2116 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2117 bool inplace)
2118 {
2119 addr_space_t as;
2120 rtx new_rtx;
2121
2122 gcc_assert (MEM_P (memref));
2123 as = MEM_ADDR_SPACE (memref);
2124 if (mode == VOIDmode)
2125 mode = GET_MODE (memref);
2126 if (addr == 0)
2127 addr = XEXP (memref, 0);
2128 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2129 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2130 return memref;
2131
2132 /* Don't validate address for LRA. LRA can make the address valid
2133 by itself in most efficient way. */
2134 if (validate && !lra_in_progress)
2135 {
2136 if (reload_in_progress || reload_completed)
2137 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2138 else
2139 addr = memory_address_addr_space (mode, addr, as);
2140 }
2141
2142 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2143 return memref;
2144
2145 if (inplace)
2146 {
2147 XEXP (memref, 0) = addr;
2148 return memref;
2149 }
2150
2151 new_rtx = gen_rtx_MEM (mode, addr);
2152 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2153 return new_rtx;
2154 }
2155
2156 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2157 way we are changing MEMREF, so we only preserve the alias set. */
2158
2159 rtx
2160 change_address (rtx memref, machine_mode mode, rtx addr)
2161 {
2162 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2163 machine_mode mmode = GET_MODE (new_rtx);
2164 struct mem_attrs attrs, *defattrs;
2165
2166 attrs = *get_mem_attrs (memref);
2167 defattrs = mode_mem_attrs[(int) mmode];
2168 attrs.expr = NULL_TREE;
2169 attrs.offset_known_p = false;
2170 attrs.size_known_p = defattrs->size_known_p;
2171 attrs.size = defattrs->size;
2172 attrs.align = defattrs->align;
2173
2174 /* If there are no changes, just return the original memory reference. */
2175 if (new_rtx == memref)
2176 {
2177 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2178 return new_rtx;
2179
2180 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2181 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2182 }
2183
2184 set_mem_attrs (new_rtx, &attrs);
2185 return new_rtx;
2186 }
2187
2188 /* Return a memory reference like MEMREF, but with its mode changed
2189 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2190 nonzero, the memory address is forced to be valid.
2191 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2192 and the caller is responsible for adjusting MEMREF base register.
2193 If ADJUST_OBJECT is zero, the underlying object associated with the
2194 memory reference is left unchanged and the caller is responsible for
2195 dealing with it. Otherwise, if the new memory reference is outside
2196 the underlying object, even partially, then the object is dropped.
2197 SIZE, if nonzero, is the size of an access in cases where MODE
2198 has no inherent size. */
2199
2200 rtx
2201 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2202 int validate, int adjust_address, int adjust_object,
2203 HOST_WIDE_INT size)
2204 {
2205 rtx addr = XEXP (memref, 0);
2206 rtx new_rtx;
2207 machine_mode address_mode;
2208 int pbits;
2209 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2210 unsigned HOST_WIDE_INT max_align;
2211 #ifdef POINTERS_EXTEND_UNSIGNED
2212 machine_mode pointer_mode
2213 = targetm.addr_space.pointer_mode (attrs.addrspace);
2214 #endif
2215
2216 /* VOIDmode means no mode change for change_address_1. */
2217 if (mode == VOIDmode)
2218 mode = GET_MODE (memref);
2219
2220 /* Take the size of non-BLKmode accesses from the mode. */
2221 defattrs = mode_mem_attrs[(int) mode];
2222 if (defattrs->size_known_p)
2223 size = defattrs->size;
2224
2225 /* If there are no changes, just return the original memory reference. */
2226 if (mode == GET_MODE (memref) && !offset
2227 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2228 && (!validate || memory_address_addr_space_p (mode, addr,
2229 attrs.addrspace)))
2230 return memref;
2231
2232 /* ??? Prefer to create garbage instead of creating shared rtl.
2233 This may happen even if offset is nonzero -- consider
2234 (plus (plus reg reg) const_int) -- so do this always. */
2235 addr = copy_rtx (addr);
2236
2237 /* Convert a possibly large offset to a signed value within the
2238 range of the target address space. */
2239 address_mode = get_address_mode (memref);
2240 pbits = GET_MODE_BITSIZE (address_mode);
2241 if (HOST_BITS_PER_WIDE_INT > pbits)
2242 {
2243 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2244 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2245 >> shift);
2246 }
2247
2248 if (adjust_address)
2249 {
2250 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2251 object, we can merge it into the LO_SUM. */
2252 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2253 && offset >= 0
2254 && (unsigned HOST_WIDE_INT) offset
2255 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2256 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2257 plus_constant (address_mode,
2258 XEXP (addr, 1), offset));
2259 #ifdef POINTERS_EXTEND_UNSIGNED
2260 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2261 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2262 the fact that pointers are not allowed to overflow. */
2263 else if (POINTERS_EXTEND_UNSIGNED > 0
2264 && GET_CODE (addr) == ZERO_EXTEND
2265 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2266 && trunc_int_for_mode (offset, pointer_mode) == offset)
2267 addr = gen_rtx_ZERO_EXTEND (address_mode,
2268 plus_constant (pointer_mode,
2269 XEXP (addr, 0), offset));
2270 #endif
2271 else
2272 addr = plus_constant (address_mode, addr, offset);
2273 }
2274
2275 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2276
2277 /* If the address is a REG, change_address_1 rightfully returns memref,
2278 but this would destroy memref's MEM_ATTRS. */
2279 if (new_rtx == memref && offset != 0)
2280 new_rtx = copy_rtx (new_rtx);
2281
2282 /* Conservatively drop the object if we don't know where we start from. */
2283 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2284 {
2285 attrs.expr = NULL_TREE;
2286 attrs.alias = 0;
2287 }
2288
2289 /* Compute the new values of the memory attributes due to this adjustment.
2290 We add the offsets and update the alignment. */
2291 if (attrs.offset_known_p)
2292 {
2293 attrs.offset += offset;
2294
2295 /* Drop the object if the new left end is not within its bounds. */
2296 if (adjust_object && attrs.offset < 0)
2297 {
2298 attrs.expr = NULL_TREE;
2299 attrs.alias = 0;
2300 }
2301 }
2302
2303 /* Compute the new alignment by taking the MIN of the alignment and the
2304 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2305 if zero. */
2306 if (offset != 0)
2307 {
2308 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2309 attrs.align = MIN (attrs.align, max_align);
2310 }
2311
2312 if (size)
2313 {
2314 /* Drop the object if the new right end is not within its bounds. */
2315 if (adjust_object && (offset + size) > attrs.size)
2316 {
2317 attrs.expr = NULL_TREE;
2318 attrs.alias = 0;
2319 }
2320 attrs.size_known_p = true;
2321 attrs.size = size;
2322 }
2323 else if (attrs.size_known_p)
2324 {
2325 gcc_assert (!adjust_object);
2326 attrs.size -= offset;
2327 /* ??? The store_by_pieces machinery generates negative sizes,
2328 so don't assert for that here. */
2329 }
2330
2331 set_mem_attrs (new_rtx, &attrs);
2332
2333 return new_rtx;
2334 }
2335
2336 /* Return a memory reference like MEMREF, but with its mode changed
2337 to MODE and its address changed to ADDR, which is assumed to be
2338 MEMREF offset by OFFSET bytes. If VALIDATE is
2339 nonzero, the memory address is forced to be valid. */
2340
2341 rtx
2342 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2343 HOST_WIDE_INT offset, int validate)
2344 {
2345 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2346 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2347 }
2348
2349 /* Return a memory reference like MEMREF, but whose address is changed by
2350 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2351 known to be in OFFSET (possibly 1). */
2352
2353 rtx
2354 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2355 {
2356 rtx new_rtx, addr = XEXP (memref, 0);
2357 machine_mode address_mode;
2358 struct mem_attrs attrs, *defattrs;
2359
2360 attrs = *get_mem_attrs (memref);
2361 address_mode = get_address_mode (memref);
2362 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2363
2364 /* At this point we don't know _why_ the address is invalid. It
2365 could have secondary memory references, multiplies or anything.
2366
2367 However, if we did go and rearrange things, we can wind up not
2368 being able to recognize the magic around pic_offset_table_rtx.
2369 This stuff is fragile, and is yet another example of why it is
2370 bad to expose PIC machinery too early. */
2371 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2372 attrs.addrspace)
2373 && GET_CODE (addr) == PLUS
2374 && XEXP (addr, 0) == pic_offset_table_rtx)
2375 {
2376 addr = force_reg (GET_MODE (addr), addr);
2377 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2378 }
2379
2380 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2381 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2382
2383 /* If there are no changes, just return the original memory reference. */
2384 if (new_rtx == memref)
2385 return new_rtx;
2386
2387 /* Update the alignment to reflect the offset. Reset the offset, which
2388 we don't know. */
2389 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2390 attrs.offset_known_p = false;
2391 attrs.size_known_p = defattrs->size_known_p;
2392 attrs.size = defattrs->size;
2393 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2394 set_mem_attrs (new_rtx, &attrs);
2395 return new_rtx;
2396 }
2397
2398 /* Return a memory reference like MEMREF, but with its address changed to
2399 ADDR. The caller is asserting that the actual piece of memory pointed
2400 to is the same, just the form of the address is being changed, such as
2401 by putting something into a register. INPLACE is true if any changes
2402 can be made directly to MEMREF or false if MEMREF must be treated as
2403 immutable. */
2404
2405 rtx
2406 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2407 {
2408 /* change_address_1 copies the memory attribute structure without change
2409 and that's exactly what we want here. */
2410 update_temp_slot_address (XEXP (memref, 0), addr);
2411 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2412 }
2413
2414 /* Likewise, but the reference is not required to be valid. */
2415
2416 rtx
2417 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2418 {
2419 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2420 }
2421
2422 /* Return a memory reference like MEMREF, but with its mode widened to
2423 MODE and offset by OFFSET. This would be used by targets that e.g.
2424 cannot issue QImode memory operations and have to use SImode memory
2425 operations plus masking logic. */
2426
2427 rtx
2428 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2429 {
2430 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2431 struct mem_attrs attrs;
2432 unsigned int size = GET_MODE_SIZE (mode);
2433
2434 /* If there are no changes, just return the original memory reference. */
2435 if (new_rtx == memref)
2436 return new_rtx;
2437
2438 attrs = *get_mem_attrs (new_rtx);
2439
2440 /* If we don't know what offset we were at within the expression, then
2441 we can't know if we've overstepped the bounds. */
2442 if (! attrs.offset_known_p)
2443 attrs.expr = NULL_TREE;
2444
2445 while (attrs.expr)
2446 {
2447 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2448 {
2449 tree field = TREE_OPERAND (attrs.expr, 1);
2450 tree offset = component_ref_field_offset (attrs.expr);
2451
2452 if (! DECL_SIZE_UNIT (field))
2453 {
2454 attrs.expr = NULL_TREE;
2455 break;
2456 }
2457
2458 /* Is the field at least as large as the access? If so, ok,
2459 otherwise strip back to the containing structure. */
2460 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2461 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2462 && attrs.offset >= 0)
2463 break;
2464
2465 if (! tree_fits_uhwi_p (offset))
2466 {
2467 attrs.expr = NULL_TREE;
2468 break;
2469 }
2470
2471 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2472 attrs.offset += tree_to_uhwi (offset);
2473 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2474 / BITS_PER_UNIT);
2475 }
2476 /* Similarly for the decl. */
2477 else if (DECL_P (attrs.expr)
2478 && DECL_SIZE_UNIT (attrs.expr)
2479 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2480 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2481 && (! attrs.offset_known_p || attrs.offset >= 0))
2482 break;
2483 else
2484 {
2485 /* The widened memory access overflows the expression, which means
2486 that it could alias another expression. Zap it. */
2487 attrs.expr = NULL_TREE;
2488 break;
2489 }
2490 }
2491
2492 if (! attrs.expr)
2493 attrs.offset_known_p = false;
2494
2495 /* The widened memory may alias other stuff, so zap the alias set. */
2496 /* ??? Maybe use get_alias_set on any remaining expression. */
2497 attrs.alias = 0;
2498 attrs.size_known_p = true;
2499 attrs.size = size;
2500 set_mem_attrs (new_rtx, &attrs);
2501 return new_rtx;
2502 }
2503 \f
2504 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2505 static GTY(()) tree spill_slot_decl;
2506
2507 tree
2508 get_spill_slot_decl (bool force_build_p)
2509 {
2510 tree d = spill_slot_decl;
2511 rtx rd;
2512 struct mem_attrs attrs;
2513
2514 if (d || !force_build_p)
2515 return d;
2516
2517 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2518 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2519 DECL_ARTIFICIAL (d) = 1;
2520 DECL_IGNORED_P (d) = 1;
2521 TREE_USED (d) = 1;
2522 spill_slot_decl = d;
2523
2524 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2525 MEM_NOTRAP_P (rd) = 1;
2526 attrs = *mode_mem_attrs[(int) BLKmode];
2527 attrs.alias = new_alias_set ();
2528 attrs.expr = d;
2529 set_mem_attrs (rd, &attrs);
2530 SET_DECL_RTL (d, rd);
2531
2532 return d;
2533 }
2534
2535 /* Given MEM, a result from assign_stack_local, fill in the memory
2536 attributes as appropriate for a register allocator spill slot.
2537 These slots are not aliasable by other memory. We arrange for
2538 them all to use a single MEM_EXPR, so that the aliasing code can
2539 work properly in the case of shared spill slots. */
2540
2541 void
2542 set_mem_attrs_for_spill (rtx mem)
2543 {
2544 struct mem_attrs attrs;
2545 rtx addr;
2546
2547 attrs = *get_mem_attrs (mem);
2548 attrs.expr = get_spill_slot_decl (true);
2549 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2550 attrs.addrspace = ADDR_SPACE_GENERIC;
2551
2552 /* We expect the incoming memory to be of the form:
2553 (mem:MODE (plus (reg sfp) (const_int offset)))
2554 with perhaps the plus missing for offset = 0. */
2555 addr = XEXP (mem, 0);
2556 attrs.offset_known_p = true;
2557 attrs.offset = 0;
2558 if (GET_CODE (addr) == PLUS
2559 && CONST_INT_P (XEXP (addr, 1)))
2560 attrs.offset = INTVAL (XEXP (addr, 1));
2561
2562 set_mem_attrs (mem, &attrs);
2563 MEM_NOTRAP_P (mem) = 1;
2564 }
2565 \f
2566 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2567
2568 rtx_code_label *
2569 gen_label_rtx (void)
2570 {
2571 return as_a <rtx_code_label *> (
2572 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2573 NULL, label_num++, NULL));
2574 }
2575 \f
2576 /* For procedure integration. */
2577
2578 /* Install new pointers to the first and last insns in the chain.
2579 Also, set cur_insn_uid to one higher than the last in use.
2580 Used for an inline-procedure after copying the insn chain. */
2581
2582 void
2583 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2584 {
2585 rtx_insn *insn;
2586
2587 set_first_insn (first);
2588 set_last_insn (last);
2589 cur_insn_uid = 0;
2590
2591 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2592 {
2593 int debug_count = 0;
2594
2595 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2596 cur_debug_insn_uid = 0;
2597
2598 for (insn = first; insn; insn = NEXT_INSN (insn))
2599 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2600 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2601 else
2602 {
2603 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2604 if (DEBUG_INSN_P (insn))
2605 debug_count++;
2606 }
2607
2608 if (debug_count)
2609 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2610 else
2611 cur_debug_insn_uid++;
2612 }
2613 else
2614 for (insn = first; insn; insn = NEXT_INSN (insn))
2615 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2616
2617 cur_insn_uid++;
2618 }
2619 \f
2620 /* Go through all the RTL insn bodies and copy any invalid shared
2621 structure. This routine should only be called once. */
2622
2623 static void
2624 unshare_all_rtl_1 (rtx_insn *insn)
2625 {
2626 /* Unshare just about everything else. */
2627 unshare_all_rtl_in_chain (insn);
2628
2629 /* Make sure the addresses of stack slots found outside the insn chain
2630 (such as, in DECL_RTL of a variable) are not shared
2631 with the insn chain.
2632
2633 This special care is necessary when the stack slot MEM does not
2634 actually appear in the insn chain. If it does appear, its address
2635 is unshared from all else at that point. */
2636 unsigned int i;
2637 rtx temp;
2638 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2639 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2640 }
2641
2642 /* Go through all the RTL insn bodies and copy any invalid shared
2643 structure, again. This is a fairly expensive thing to do so it
2644 should be done sparingly. */
2645
2646 void
2647 unshare_all_rtl_again (rtx_insn *insn)
2648 {
2649 rtx_insn *p;
2650 tree decl;
2651
2652 for (p = insn; p; p = NEXT_INSN (p))
2653 if (INSN_P (p))
2654 {
2655 reset_used_flags (PATTERN (p));
2656 reset_used_flags (REG_NOTES (p));
2657 if (CALL_P (p))
2658 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2659 }
2660
2661 /* Make sure that virtual stack slots are not shared. */
2662 set_used_decls (DECL_INITIAL (cfun->decl));
2663
2664 /* Make sure that virtual parameters are not shared. */
2665 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2666 set_used_flags (DECL_RTL (decl));
2667
2668 rtx temp;
2669 unsigned int i;
2670 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2671 reset_used_flags (temp);
2672
2673 unshare_all_rtl_1 (insn);
2674 }
2675
2676 unsigned int
2677 unshare_all_rtl (void)
2678 {
2679 unshare_all_rtl_1 (get_insns ());
2680
2681 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2682 {
2683 if (DECL_RTL_SET_P (decl))
2684 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2685 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2686 }
2687
2688 return 0;
2689 }
2690
2691
2692 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2693 Recursively does the same for subexpressions. */
2694
2695 static void
2696 verify_rtx_sharing (rtx orig, rtx insn)
2697 {
2698 rtx x = orig;
2699 int i;
2700 enum rtx_code code;
2701 const char *format_ptr;
2702
2703 if (x == 0)
2704 return;
2705
2706 code = GET_CODE (x);
2707
2708 /* These types may be freely shared. */
2709
2710 switch (code)
2711 {
2712 case REG:
2713 case DEBUG_EXPR:
2714 case VALUE:
2715 CASE_CONST_ANY:
2716 case SYMBOL_REF:
2717 case LABEL_REF:
2718 case CODE_LABEL:
2719 case PC:
2720 case CC0:
2721 case RETURN:
2722 case SIMPLE_RETURN:
2723 case SCRATCH:
2724 /* SCRATCH must be shared because they represent distinct values. */
2725 return;
2726 case CLOBBER:
2727 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2728 clobbers or clobbers of hard registers that originated as pseudos.
2729 This is needed to allow safe register renaming. */
2730 if (REG_P (XEXP (x, 0))
2731 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2732 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2733 return;
2734 break;
2735
2736 case CONST:
2737 if (shared_const_p (orig))
2738 return;
2739 break;
2740
2741 case MEM:
2742 /* A MEM is allowed to be shared if its address is constant. */
2743 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2744 || reload_completed || reload_in_progress)
2745 return;
2746
2747 break;
2748
2749 default:
2750 break;
2751 }
2752
2753 /* This rtx may not be shared. If it has already been seen,
2754 replace it with a copy of itself. */
2755 if (flag_checking && RTX_FLAG (x, used))
2756 {
2757 error ("invalid rtl sharing found in the insn");
2758 debug_rtx (insn);
2759 error ("shared rtx");
2760 debug_rtx (x);
2761 internal_error ("internal consistency failure");
2762 }
2763 gcc_assert (!RTX_FLAG (x, used));
2764
2765 RTX_FLAG (x, used) = 1;
2766
2767 /* Now scan the subexpressions recursively. */
2768
2769 format_ptr = GET_RTX_FORMAT (code);
2770
2771 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2772 {
2773 switch (*format_ptr++)
2774 {
2775 case 'e':
2776 verify_rtx_sharing (XEXP (x, i), insn);
2777 break;
2778
2779 case 'E':
2780 if (XVEC (x, i) != NULL)
2781 {
2782 int j;
2783 int len = XVECLEN (x, i);
2784
2785 for (j = 0; j < len; j++)
2786 {
2787 /* We allow sharing of ASM_OPERANDS inside single
2788 instruction. */
2789 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2790 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2791 == ASM_OPERANDS))
2792 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2793 else
2794 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2795 }
2796 }
2797 break;
2798 }
2799 }
2800 return;
2801 }
2802
2803 /* Reset used-flags for INSN. */
2804
2805 static void
2806 reset_insn_used_flags (rtx insn)
2807 {
2808 gcc_assert (INSN_P (insn));
2809 reset_used_flags (PATTERN (insn));
2810 reset_used_flags (REG_NOTES (insn));
2811 if (CALL_P (insn))
2812 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2813 }
2814
2815 /* Go through all the RTL insn bodies and clear all the USED bits. */
2816
2817 static void
2818 reset_all_used_flags (void)
2819 {
2820 rtx_insn *p;
2821
2822 for (p = get_insns (); p; p = NEXT_INSN (p))
2823 if (INSN_P (p))
2824 {
2825 rtx pat = PATTERN (p);
2826 if (GET_CODE (pat) != SEQUENCE)
2827 reset_insn_used_flags (p);
2828 else
2829 {
2830 gcc_assert (REG_NOTES (p) == NULL);
2831 for (int i = 0; i < XVECLEN (pat, 0); i++)
2832 {
2833 rtx insn = XVECEXP (pat, 0, i);
2834 if (INSN_P (insn))
2835 reset_insn_used_flags (insn);
2836 }
2837 }
2838 }
2839 }
2840
2841 /* Verify sharing in INSN. */
2842
2843 static void
2844 verify_insn_sharing (rtx insn)
2845 {
2846 gcc_assert (INSN_P (insn));
2847 verify_rtx_sharing (PATTERN (insn), insn);
2848 verify_rtx_sharing (REG_NOTES (insn), insn);
2849 if (CALL_P (insn))
2850 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2851 }
2852
2853 /* Go through all the RTL insn bodies and check that there is no unexpected
2854 sharing in between the subexpressions. */
2855
2856 DEBUG_FUNCTION void
2857 verify_rtl_sharing (void)
2858 {
2859 rtx_insn *p;
2860
2861 timevar_push (TV_VERIFY_RTL_SHARING);
2862
2863 reset_all_used_flags ();
2864
2865 for (p = get_insns (); p; p = NEXT_INSN (p))
2866 if (INSN_P (p))
2867 {
2868 rtx pat = PATTERN (p);
2869 if (GET_CODE (pat) != SEQUENCE)
2870 verify_insn_sharing (p);
2871 else
2872 for (int i = 0; i < XVECLEN (pat, 0); i++)
2873 {
2874 rtx insn = XVECEXP (pat, 0, i);
2875 if (INSN_P (insn))
2876 verify_insn_sharing (insn);
2877 }
2878 }
2879
2880 reset_all_used_flags ();
2881
2882 timevar_pop (TV_VERIFY_RTL_SHARING);
2883 }
2884
2885 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2886 Assumes the mark bits are cleared at entry. */
2887
2888 void
2889 unshare_all_rtl_in_chain (rtx_insn *insn)
2890 {
2891 for (; insn; insn = NEXT_INSN (insn))
2892 if (INSN_P (insn))
2893 {
2894 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2895 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2896 if (CALL_P (insn))
2897 CALL_INSN_FUNCTION_USAGE (insn)
2898 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2899 }
2900 }
2901
2902 /* Go through all virtual stack slots of a function and mark them as
2903 shared. We never replace the DECL_RTLs themselves with a copy,
2904 but expressions mentioned into a DECL_RTL cannot be shared with
2905 expressions in the instruction stream.
2906
2907 Note that reload may convert pseudo registers into memories in-place.
2908 Pseudo registers are always shared, but MEMs never are. Thus if we
2909 reset the used flags on MEMs in the instruction stream, we must set
2910 them again on MEMs that appear in DECL_RTLs. */
2911
2912 static void
2913 set_used_decls (tree blk)
2914 {
2915 tree t;
2916
2917 /* Mark decls. */
2918 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2919 if (DECL_RTL_SET_P (t))
2920 set_used_flags (DECL_RTL (t));
2921
2922 /* Now process sub-blocks. */
2923 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2924 set_used_decls (t);
2925 }
2926
2927 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2928 Recursively does the same for subexpressions. Uses
2929 copy_rtx_if_shared_1 to reduce stack space. */
2930
2931 rtx
2932 copy_rtx_if_shared (rtx orig)
2933 {
2934 copy_rtx_if_shared_1 (&orig);
2935 return orig;
2936 }
2937
2938 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2939 use. Recursively does the same for subexpressions. */
2940
2941 static void
2942 copy_rtx_if_shared_1 (rtx *orig1)
2943 {
2944 rtx x;
2945 int i;
2946 enum rtx_code code;
2947 rtx *last_ptr;
2948 const char *format_ptr;
2949 int copied = 0;
2950 int length;
2951
2952 /* Repeat is used to turn tail-recursion into iteration. */
2953 repeat:
2954 x = *orig1;
2955
2956 if (x == 0)
2957 return;
2958
2959 code = GET_CODE (x);
2960
2961 /* These types may be freely shared. */
2962
2963 switch (code)
2964 {
2965 case REG:
2966 case DEBUG_EXPR:
2967 case VALUE:
2968 CASE_CONST_ANY:
2969 case SYMBOL_REF:
2970 case LABEL_REF:
2971 case CODE_LABEL:
2972 case PC:
2973 case CC0:
2974 case RETURN:
2975 case SIMPLE_RETURN:
2976 case SCRATCH:
2977 /* SCRATCH must be shared because they represent distinct values. */
2978 return;
2979 case CLOBBER:
2980 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2981 clobbers or clobbers of hard registers that originated as pseudos.
2982 This is needed to allow safe register renaming. */
2983 if (REG_P (XEXP (x, 0))
2984 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2985 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2986 return;
2987 break;
2988
2989 case CONST:
2990 if (shared_const_p (x))
2991 return;
2992 break;
2993
2994 case DEBUG_INSN:
2995 case INSN:
2996 case JUMP_INSN:
2997 case CALL_INSN:
2998 case NOTE:
2999 case BARRIER:
3000 /* The chain of insns is not being copied. */
3001 return;
3002
3003 default:
3004 break;
3005 }
3006
3007 /* This rtx may not be shared. If it has already been seen,
3008 replace it with a copy of itself. */
3009
3010 if (RTX_FLAG (x, used))
3011 {
3012 x = shallow_copy_rtx (x);
3013 copied = 1;
3014 }
3015 RTX_FLAG (x, used) = 1;
3016
3017 /* Now scan the subexpressions recursively.
3018 We can store any replaced subexpressions directly into X
3019 since we know X is not shared! Any vectors in X
3020 must be copied if X was copied. */
3021
3022 format_ptr = GET_RTX_FORMAT (code);
3023 length = GET_RTX_LENGTH (code);
3024 last_ptr = NULL;
3025
3026 for (i = 0; i < length; i++)
3027 {
3028 switch (*format_ptr++)
3029 {
3030 case 'e':
3031 if (last_ptr)
3032 copy_rtx_if_shared_1 (last_ptr);
3033 last_ptr = &XEXP (x, i);
3034 break;
3035
3036 case 'E':
3037 if (XVEC (x, i) != NULL)
3038 {
3039 int j;
3040 int len = XVECLEN (x, i);
3041
3042 /* Copy the vector iff I copied the rtx and the length
3043 is nonzero. */
3044 if (copied && len > 0)
3045 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3046
3047 /* Call recursively on all inside the vector. */
3048 for (j = 0; j < len; j++)
3049 {
3050 if (last_ptr)
3051 copy_rtx_if_shared_1 (last_ptr);
3052 last_ptr = &XVECEXP (x, i, j);
3053 }
3054 }
3055 break;
3056 }
3057 }
3058 *orig1 = x;
3059 if (last_ptr)
3060 {
3061 orig1 = last_ptr;
3062 goto repeat;
3063 }
3064 return;
3065 }
3066
3067 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3068
3069 static void
3070 mark_used_flags (rtx x, int flag)
3071 {
3072 int i, j;
3073 enum rtx_code code;
3074 const char *format_ptr;
3075 int length;
3076
3077 /* Repeat is used to turn tail-recursion into iteration. */
3078 repeat:
3079 if (x == 0)
3080 return;
3081
3082 code = GET_CODE (x);
3083
3084 /* These types may be freely shared so we needn't do any resetting
3085 for them. */
3086
3087 switch (code)
3088 {
3089 case REG:
3090 case DEBUG_EXPR:
3091 case VALUE:
3092 CASE_CONST_ANY:
3093 case SYMBOL_REF:
3094 case CODE_LABEL:
3095 case PC:
3096 case CC0:
3097 case RETURN:
3098 case SIMPLE_RETURN:
3099 return;
3100
3101 case DEBUG_INSN:
3102 case INSN:
3103 case JUMP_INSN:
3104 case CALL_INSN:
3105 case NOTE:
3106 case LABEL_REF:
3107 case BARRIER:
3108 /* The chain of insns is not being copied. */
3109 return;
3110
3111 default:
3112 break;
3113 }
3114
3115 RTX_FLAG (x, used) = flag;
3116
3117 format_ptr = GET_RTX_FORMAT (code);
3118 length = GET_RTX_LENGTH (code);
3119
3120 for (i = 0; i < length; i++)
3121 {
3122 switch (*format_ptr++)
3123 {
3124 case 'e':
3125 if (i == length-1)
3126 {
3127 x = XEXP (x, i);
3128 goto repeat;
3129 }
3130 mark_used_flags (XEXP (x, i), flag);
3131 break;
3132
3133 case 'E':
3134 for (j = 0; j < XVECLEN (x, i); j++)
3135 mark_used_flags (XVECEXP (x, i, j), flag);
3136 break;
3137 }
3138 }
3139 }
3140
3141 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3142 to look for shared sub-parts. */
3143
3144 void
3145 reset_used_flags (rtx x)
3146 {
3147 mark_used_flags (x, 0);
3148 }
3149
3150 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3151 to look for shared sub-parts. */
3152
3153 void
3154 set_used_flags (rtx x)
3155 {
3156 mark_used_flags (x, 1);
3157 }
3158 \f
3159 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3160 Return X or the rtx for the pseudo reg the value of X was copied into.
3161 OTHER must be valid as a SET_DEST. */
3162
3163 rtx
3164 make_safe_from (rtx x, rtx other)
3165 {
3166 while (1)
3167 switch (GET_CODE (other))
3168 {
3169 case SUBREG:
3170 other = SUBREG_REG (other);
3171 break;
3172 case STRICT_LOW_PART:
3173 case SIGN_EXTEND:
3174 case ZERO_EXTEND:
3175 other = XEXP (other, 0);
3176 break;
3177 default:
3178 goto done;
3179 }
3180 done:
3181 if ((MEM_P (other)
3182 && ! CONSTANT_P (x)
3183 && !REG_P (x)
3184 && GET_CODE (x) != SUBREG)
3185 || (REG_P (other)
3186 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3187 || reg_mentioned_p (other, x))))
3188 {
3189 rtx temp = gen_reg_rtx (GET_MODE (x));
3190 emit_move_insn (temp, x);
3191 return temp;
3192 }
3193 return x;
3194 }
3195 \f
3196 /* Emission of insns (adding them to the doubly-linked list). */
3197
3198 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3199
3200 rtx_insn *
3201 get_last_insn_anywhere (void)
3202 {
3203 struct sequence_stack *seq;
3204 for (seq = get_current_sequence (); seq; seq = seq->next)
3205 if (seq->last != 0)
3206 return seq->last;
3207 return 0;
3208 }
3209
3210 /* Return the first nonnote insn emitted in current sequence or current
3211 function. This routine looks inside SEQUENCEs. */
3212
3213 rtx_insn *
3214 get_first_nonnote_insn (void)
3215 {
3216 rtx_insn *insn = get_insns ();
3217
3218 if (insn)
3219 {
3220 if (NOTE_P (insn))
3221 for (insn = next_insn (insn);
3222 insn && NOTE_P (insn);
3223 insn = next_insn (insn))
3224 continue;
3225 else
3226 {
3227 if (NONJUMP_INSN_P (insn)
3228 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3229 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3230 }
3231 }
3232
3233 return insn;
3234 }
3235
3236 /* Return the last nonnote insn emitted in current sequence or current
3237 function. This routine looks inside SEQUENCEs. */
3238
3239 rtx_insn *
3240 get_last_nonnote_insn (void)
3241 {
3242 rtx_insn *insn = get_last_insn ();
3243
3244 if (insn)
3245 {
3246 if (NOTE_P (insn))
3247 for (insn = previous_insn (insn);
3248 insn && NOTE_P (insn);
3249 insn = previous_insn (insn))
3250 continue;
3251 else
3252 {
3253 if (NONJUMP_INSN_P (insn))
3254 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3255 insn = seq->insn (seq->len () - 1);
3256 }
3257 }
3258
3259 return insn;
3260 }
3261
3262 /* Return the number of actual (non-debug) insns emitted in this
3263 function. */
3264
3265 int
3266 get_max_insn_count (void)
3267 {
3268 int n = cur_insn_uid;
3269
3270 /* The table size must be stable across -g, to avoid codegen
3271 differences due to debug insns, and not be affected by
3272 -fmin-insn-uid, to avoid excessive table size and to simplify
3273 debugging of -fcompare-debug failures. */
3274 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3275 n -= cur_debug_insn_uid;
3276 else
3277 n -= MIN_NONDEBUG_INSN_UID;
3278
3279 return n;
3280 }
3281
3282 \f
3283 /* Return the next insn. If it is a SEQUENCE, return the first insn
3284 of the sequence. */
3285
3286 rtx_insn *
3287 next_insn (rtx_insn *insn)
3288 {
3289 if (insn)
3290 {
3291 insn = NEXT_INSN (insn);
3292 if (insn && NONJUMP_INSN_P (insn)
3293 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3294 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3295 }
3296
3297 return insn;
3298 }
3299
3300 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3301 of the sequence. */
3302
3303 rtx_insn *
3304 previous_insn (rtx_insn *insn)
3305 {
3306 if (insn)
3307 {
3308 insn = PREV_INSN (insn);
3309 if (insn && NONJUMP_INSN_P (insn))
3310 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3311 insn = seq->insn (seq->len () - 1);
3312 }
3313
3314 return insn;
3315 }
3316
3317 /* Return the next insn after INSN that is not a NOTE. This routine does not
3318 look inside SEQUENCEs. */
3319
3320 rtx_insn *
3321 next_nonnote_insn (rtx_insn *insn)
3322 {
3323 while (insn)
3324 {
3325 insn = NEXT_INSN (insn);
3326 if (insn == 0 || !NOTE_P (insn))
3327 break;
3328 }
3329
3330 return insn;
3331 }
3332
3333 /* Return the next insn after INSN that is not a NOTE, but stop the
3334 search before we enter another basic block. This routine does not
3335 look inside SEQUENCEs. */
3336
3337 rtx_insn *
3338 next_nonnote_insn_bb (rtx_insn *insn)
3339 {
3340 while (insn)
3341 {
3342 insn = NEXT_INSN (insn);
3343 if (insn == 0 || !NOTE_P (insn))
3344 break;
3345 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3346 return NULL;
3347 }
3348
3349 return insn;
3350 }
3351
3352 /* Return the previous insn before INSN that is not a NOTE. This routine does
3353 not look inside SEQUENCEs. */
3354
3355 rtx_insn *
3356 prev_nonnote_insn (rtx_insn *insn)
3357 {
3358 while (insn)
3359 {
3360 insn = PREV_INSN (insn);
3361 if (insn == 0 || !NOTE_P (insn))
3362 break;
3363 }
3364
3365 return insn;
3366 }
3367
3368 /* Return the previous insn before INSN that is not a NOTE, but stop
3369 the search before we enter another basic block. This routine does
3370 not look inside SEQUENCEs. */
3371
3372 rtx_insn *
3373 prev_nonnote_insn_bb (rtx_insn *insn)
3374 {
3375
3376 while (insn)
3377 {
3378 insn = PREV_INSN (insn);
3379 if (insn == 0 || !NOTE_P (insn))
3380 break;
3381 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3382 return NULL;
3383 }
3384
3385 return insn;
3386 }
3387
3388 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3389 routine does not look inside SEQUENCEs. */
3390
3391 rtx_insn *
3392 next_nondebug_insn (rtx_insn *insn)
3393 {
3394 while (insn)
3395 {
3396 insn = NEXT_INSN (insn);
3397 if (insn == 0 || !DEBUG_INSN_P (insn))
3398 break;
3399 }
3400
3401 return insn;
3402 }
3403
3404 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3405 This routine does not look inside SEQUENCEs. */
3406
3407 rtx_insn *
3408 prev_nondebug_insn (rtx_insn *insn)
3409 {
3410 while (insn)
3411 {
3412 insn = PREV_INSN (insn);
3413 if (insn == 0 || !DEBUG_INSN_P (insn))
3414 break;
3415 }
3416
3417 return insn;
3418 }
3419
3420 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3421 This routine does not look inside SEQUENCEs. */
3422
3423 rtx_insn *
3424 next_nonnote_nondebug_insn (rtx_insn *insn)
3425 {
3426 while (insn)
3427 {
3428 insn = NEXT_INSN (insn);
3429 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3430 break;
3431 }
3432
3433 return insn;
3434 }
3435
3436 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3437 This routine does not look inside SEQUENCEs. */
3438
3439 rtx_insn *
3440 prev_nonnote_nondebug_insn (rtx_insn *insn)
3441 {
3442 while (insn)
3443 {
3444 insn = PREV_INSN (insn);
3445 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3446 break;
3447 }
3448
3449 return insn;
3450 }
3451
3452 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3453 or 0, if there is none. This routine does not look inside
3454 SEQUENCEs. */
3455
3456 rtx_insn *
3457 next_real_insn (rtx uncast_insn)
3458 {
3459 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3460
3461 while (insn)
3462 {
3463 insn = NEXT_INSN (insn);
3464 if (insn == 0 || INSN_P (insn))
3465 break;
3466 }
3467
3468 return insn;
3469 }
3470
3471 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3472 or 0, if there is none. This routine does not look inside
3473 SEQUENCEs. */
3474
3475 rtx_insn *
3476 prev_real_insn (rtx_insn *insn)
3477 {
3478 while (insn)
3479 {
3480 insn = PREV_INSN (insn);
3481 if (insn == 0 || INSN_P (insn))
3482 break;
3483 }
3484
3485 return insn;
3486 }
3487
3488 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3489 This routine does not look inside SEQUENCEs. */
3490
3491 rtx_call_insn *
3492 last_call_insn (void)
3493 {
3494 rtx_insn *insn;
3495
3496 for (insn = get_last_insn ();
3497 insn && !CALL_P (insn);
3498 insn = PREV_INSN (insn))
3499 ;
3500
3501 return safe_as_a <rtx_call_insn *> (insn);
3502 }
3503
3504 /* Find the next insn after INSN that really does something. This routine
3505 does not look inside SEQUENCEs. After reload this also skips over
3506 standalone USE and CLOBBER insn. */
3507
3508 int
3509 active_insn_p (const rtx_insn *insn)
3510 {
3511 return (CALL_P (insn) || JUMP_P (insn)
3512 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3513 || (NONJUMP_INSN_P (insn)
3514 && (! reload_completed
3515 || (GET_CODE (PATTERN (insn)) != USE
3516 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3517 }
3518
3519 rtx_insn *
3520 next_active_insn (rtx_insn *insn)
3521 {
3522 while (insn)
3523 {
3524 insn = NEXT_INSN (insn);
3525 if (insn == 0 || active_insn_p (insn))
3526 break;
3527 }
3528
3529 return insn;
3530 }
3531
3532 /* Find the last insn before INSN that really does something. This routine
3533 does not look inside SEQUENCEs. After reload this also skips over
3534 standalone USE and CLOBBER insn. */
3535
3536 rtx_insn *
3537 prev_active_insn (rtx_insn *insn)
3538 {
3539 while (insn)
3540 {
3541 insn = PREV_INSN (insn);
3542 if (insn == 0 || active_insn_p (insn))
3543 break;
3544 }
3545
3546 return insn;
3547 }
3548 \f
3549 /* Return the next insn that uses CC0 after INSN, which is assumed to
3550 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3551 applied to the result of this function should yield INSN).
3552
3553 Normally, this is simply the next insn. However, if a REG_CC_USER note
3554 is present, it contains the insn that uses CC0.
3555
3556 Return 0 if we can't find the insn. */
3557
3558 rtx_insn *
3559 next_cc0_user (rtx_insn *insn)
3560 {
3561 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3562
3563 if (note)
3564 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3565
3566 insn = next_nonnote_insn (insn);
3567 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3568 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3569
3570 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3571 return insn;
3572
3573 return 0;
3574 }
3575
3576 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3577 note, it is the previous insn. */
3578
3579 rtx_insn *
3580 prev_cc0_setter (rtx_insn *insn)
3581 {
3582 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3583
3584 if (note)
3585 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3586
3587 insn = prev_nonnote_insn (insn);
3588 gcc_assert (sets_cc0_p (PATTERN (insn)));
3589
3590 return insn;
3591 }
3592
3593 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3594
3595 static int
3596 find_auto_inc (const_rtx x, const_rtx reg)
3597 {
3598 subrtx_iterator::array_type array;
3599 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3600 {
3601 const_rtx x = *iter;
3602 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3603 && rtx_equal_p (reg, XEXP (x, 0)))
3604 return true;
3605 }
3606 return false;
3607 }
3608
3609 /* Increment the label uses for all labels present in rtx. */
3610
3611 static void
3612 mark_label_nuses (rtx x)
3613 {
3614 enum rtx_code code;
3615 int i, j;
3616 const char *fmt;
3617
3618 code = GET_CODE (x);
3619 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3620 LABEL_NUSES (label_ref_label (x))++;
3621
3622 fmt = GET_RTX_FORMAT (code);
3623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3624 {
3625 if (fmt[i] == 'e')
3626 mark_label_nuses (XEXP (x, i));
3627 else if (fmt[i] == 'E')
3628 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3629 mark_label_nuses (XVECEXP (x, i, j));
3630 }
3631 }
3632
3633 \f
3634 /* Try splitting insns that can be split for better scheduling.
3635 PAT is the pattern which might split.
3636 TRIAL is the insn providing PAT.
3637 LAST is nonzero if we should return the last insn of the sequence produced.
3638
3639 If this routine succeeds in splitting, it returns the first or last
3640 replacement insn depending on the value of LAST. Otherwise, it
3641 returns TRIAL. If the insn to be returned can be split, it will be. */
3642
3643 rtx_insn *
3644 try_split (rtx pat, rtx_insn *trial, int last)
3645 {
3646 rtx_insn *before = PREV_INSN (trial);
3647 rtx_insn *after = NEXT_INSN (trial);
3648 rtx note;
3649 rtx_insn *seq, *tem;
3650 int probability;
3651 rtx_insn *insn_last, *insn;
3652 int njumps = 0;
3653 rtx_insn *call_insn = NULL;
3654
3655 /* We're not good at redistributing frame information. */
3656 if (RTX_FRAME_RELATED_P (trial))
3657 return trial;
3658
3659 if (any_condjump_p (trial)
3660 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3661 split_branch_probability = XINT (note, 0);
3662 probability = split_branch_probability;
3663
3664 seq = split_insns (pat, trial);
3665
3666 split_branch_probability = -1;
3667
3668 if (!seq)
3669 return trial;
3670
3671 /* Avoid infinite loop if any insn of the result matches
3672 the original pattern. */
3673 insn_last = seq;
3674 while (1)
3675 {
3676 if (INSN_P (insn_last)
3677 && rtx_equal_p (PATTERN (insn_last), pat))
3678 return trial;
3679 if (!NEXT_INSN (insn_last))
3680 break;
3681 insn_last = NEXT_INSN (insn_last);
3682 }
3683
3684 /* We will be adding the new sequence to the function. The splitters
3685 may have introduced invalid RTL sharing, so unshare the sequence now. */
3686 unshare_all_rtl_in_chain (seq);
3687
3688 /* Mark labels and copy flags. */
3689 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3690 {
3691 if (JUMP_P (insn))
3692 {
3693 if (JUMP_P (trial))
3694 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3695 mark_jump_label (PATTERN (insn), insn, 0);
3696 njumps++;
3697 if (probability != -1
3698 && any_condjump_p (insn)
3699 && !find_reg_note (insn, REG_BR_PROB, 0))
3700 {
3701 /* We can preserve the REG_BR_PROB notes only if exactly
3702 one jump is created, otherwise the machine description
3703 is responsible for this step using
3704 split_branch_probability variable. */
3705 gcc_assert (njumps == 1);
3706 add_int_reg_note (insn, REG_BR_PROB, probability);
3707 }
3708 }
3709 }
3710
3711 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3712 in SEQ and copy any additional information across. */
3713 if (CALL_P (trial))
3714 {
3715 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3716 if (CALL_P (insn))
3717 {
3718 rtx_insn *next;
3719 rtx *p;
3720
3721 gcc_assert (call_insn == NULL_RTX);
3722 call_insn = insn;
3723
3724 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3725 target may have explicitly specified. */
3726 p = &CALL_INSN_FUNCTION_USAGE (insn);
3727 while (*p)
3728 p = &XEXP (*p, 1);
3729 *p = CALL_INSN_FUNCTION_USAGE (trial);
3730
3731 /* If the old call was a sibling call, the new one must
3732 be too. */
3733 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3734
3735 /* If the new call is the last instruction in the sequence,
3736 it will effectively replace the old call in-situ. Otherwise
3737 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3738 so that it comes immediately after the new call. */
3739 if (NEXT_INSN (insn))
3740 for (next = NEXT_INSN (trial);
3741 next && NOTE_P (next);
3742 next = NEXT_INSN (next))
3743 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3744 {
3745 remove_insn (next);
3746 add_insn_after (next, insn, NULL);
3747 break;
3748 }
3749 }
3750 }
3751
3752 /* Copy notes, particularly those related to the CFG. */
3753 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3754 {
3755 switch (REG_NOTE_KIND (note))
3756 {
3757 case REG_EH_REGION:
3758 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3759 break;
3760
3761 case REG_NORETURN:
3762 case REG_SETJMP:
3763 case REG_TM:
3764 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3765 {
3766 if (CALL_P (insn))
3767 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3768 }
3769 break;
3770
3771 case REG_NON_LOCAL_GOTO:
3772 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3773 {
3774 if (JUMP_P (insn))
3775 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3776 }
3777 break;
3778
3779 case REG_INC:
3780 if (!AUTO_INC_DEC)
3781 break;
3782
3783 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3784 {
3785 rtx reg = XEXP (note, 0);
3786 if (!FIND_REG_INC_NOTE (insn, reg)
3787 && find_auto_inc (PATTERN (insn), reg))
3788 add_reg_note (insn, REG_INC, reg);
3789 }
3790 break;
3791
3792 case REG_ARGS_SIZE:
3793 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3794 break;
3795
3796 case REG_CALL_DECL:
3797 gcc_assert (call_insn != NULL_RTX);
3798 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3799 break;
3800
3801 default:
3802 break;
3803 }
3804 }
3805
3806 /* If there are LABELS inside the split insns increment the
3807 usage count so we don't delete the label. */
3808 if (INSN_P (trial))
3809 {
3810 insn = insn_last;
3811 while (insn != NULL_RTX)
3812 {
3813 /* JUMP_P insns have already been "marked" above. */
3814 if (NONJUMP_INSN_P (insn))
3815 mark_label_nuses (PATTERN (insn));
3816
3817 insn = PREV_INSN (insn);
3818 }
3819 }
3820
3821 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3822
3823 delete_insn (trial);
3824
3825 /* Recursively call try_split for each new insn created; by the
3826 time control returns here that insn will be fully split, so
3827 set LAST and continue from the insn after the one returned.
3828 We can't use next_active_insn here since AFTER may be a note.
3829 Ignore deleted insns, which can be occur if not optimizing. */
3830 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3831 if (! tem->deleted () && INSN_P (tem))
3832 tem = try_split (PATTERN (tem), tem, 1);
3833
3834 /* Return either the first or the last insn, depending on which was
3835 requested. */
3836 return last
3837 ? (after ? PREV_INSN (after) : get_last_insn ())
3838 : NEXT_INSN (before);
3839 }
3840 \f
3841 /* Make and return an INSN rtx, initializing all its slots.
3842 Store PATTERN in the pattern slots. */
3843
3844 rtx_insn *
3845 make_insn_raw (rtx pattern)
3846 {
3847 rtx_insn *insn;
3848
3849 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3850
3851 INSN_UID (insn) = cur_insn_uid++;
3852 PATTERN (insn) = pattern;
3853 INSN_CODE (insn) = -1;
3854 REG_NOTES (insn) = NULL;
3855 INSN_LOCATION (insn) = curr_insn_location ();
3856 BLOCK_FOR_INSN (insn) = NULL;
3857
3858 #ifdef ENABLE_RTL_CHECKING
3859 if (insn
3860 && INSN_P (insn)
3861 && (returnjump_p (insn)
3862 || (GET_CODE (insn) == SET
3863 && SET_DEST (insn) == pc_rtx)))
3864 {
3865 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3866 debug_rtx (insn);
3867 }
3868 #endif
3869
3870 return insn;
3871 }
3872
3873 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3874
3875 static rtx_insn *
3876 make_debug_insn_raw (rtx pattern)
3877 {
3878 rtx_debug_insn *insn;
3879
3880 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3881 INSN_UID (insn) = cur_debug_insn_uid++;
3882 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3883 INSN_UID (insn) = cur_insn_uid++;
3884
3885 PATTERN (insn) = pattern;
3886 INSN_CODE (insn) = -1;
3887 REG_NOTES (insn) = NULL;
3888 INSN_LOCATION (insn) = curr_insn_location ();
3889 BLOCK_FOR_INSN (insn) = NULL;
3890
3891 return insn;
3892 }
3893
3894 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3895
3896 static rtx_insn *
3897 make_jump_insn_raw (rtx pattern)
3898 {
3899 rtx_jump_insn *insn;
3900
3901 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3902 INSN_UID (insn) = cur_insn_uid++;
3903
3904 PATTERN (insn) = pattern;
3905 INSN_CODE (insn) = -1;
3906 REG_NOTES (insn) = NULL;
3907 JUMP_LABEL (insn) = NULL;
3908 INSN_LOCATION (insn) = curr_insn_location ();
3909 BLOCK_FOR_INSN (insn) = NULL;
3910
3911 return insn;
3912 }
3913
3914 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3915
3916 static rtx_insn *
3917 make_call_insn_raw (rtx pattern)
3918 {
3919 rtx_call_insn *insn;
3920
3921 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3922 INSN_UID (insn) = cur_insn_uid++;
3923
3924 PATTERN (insn) = pattern;
3925 INSN_CODE (insn) = -1;
3926 REG_NOTES (insn) = NULL;
3927 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3928 INSN_LOCATION (insn) = curr_insn_location ();
3929 BLOCK_FOR_INSN (insn) = NULL;
3930
3931 return insn;
3932 }
3933
3934 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3935
3936 static rtx_note *
3937 make_note_raw (enum insn_note subtype)
3938 {
3939 /* Some notes are never created this way at all. These notes are
3940 only created by patching out insns. */
3941 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3942 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3943
3944 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3945 INSN_UID (note) = cur_insn_uid++;
3946 NOTE_KIND (note) = subtype;
3947 BLOCK_FOR_INSN (note) = NULL;
3948 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3949 return note;
3950 }
3951 \f
3952 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3953 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3954 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3955
3956 static inline void
3957 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3958 {
3959 SET_PREV_INSN (insn) = prev;
3960 SET_NEXT_INSN (insn) = next;
3961 if (prev != NULL)
3962 {
3963 SET_NEXT_INSN (prev) = insn;
3964 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3965 {
3966 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3967 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3968 }
3969 }
3970 if (next != NULL)
3971 {
3972 SET_PREV_INSN (next) = insn;
3973 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3974 {
3975 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3976 SET_PREV_INSN (sequence->insn (0)) = insn;
3977 }
3978 }
3979
3980 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3981 {
3982 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3983 SET_PREV_INSN (sequence->insn (0)) = prev;
3984 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3985 }
3986 }
3987
3988 /* Add INSN to the end of the doubly-linked list.
3989 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3990
3991 void
3992 add_insn (rtx_insn *insn)
3993 {
3994 rtx_insn *prev = get_last_insn ();
3995 link_insn_into_chain (insn, prev, NULL);
3996 if (NULL == get_insns ())
3997 set_first_insn (insn);
3998 set_last_insn (insn);
3999 }
4000
4001 /* Add INSN into the doubly-linked list after insn AFTER. */
4002
4003 static void
4004 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4005 {
4006 rtx_insn *next = NEXT_INSN (after);
4007
4008 gcc_assert (!optimize || !after->deleted ());
4009
4010 link_insn_into_chain (insn, after, next);
4011
4012 if (next == NULL)
4013 {
4014 struct sequence_stack *seq;
4015
4016 for (seq = get_current_sequence (); seq; seq = seq->next)
4017 if (after == seq->last)
4018 {
4019 seq->last = insn;
4020 break;
4021 }
4022 }
4023 }
4024
4025 /* Add INSN into the doubly-linked list before insn BEFORE. */
4026
4027 static void
4028 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4029 {
4030 rtx_insn *prev = PREV_INSN (before);
4031
4032 gcc_assert (!optimize || !before->deleted ());
4033
4034 link_insn_into_chain (insn, prev, before);
4035
4036 if (prev == NULL)
4037 {
4038 struct sequence_stack *seq;
4039
4040 for (seq = get_current_sequence (); seq; seq = seq->next)
4041 if (before == seq->first)
4042 {
4043 seq->first = insn;
4044 break;
4045 }
4046
4047 gcc_assert (seq);
4048 }
4049 }
4050
4051 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4052 If BB is NULL, an attempt is made to infer the bb from before.
4053
4054 This and the next function should be the only functions called
4055 to insert an insn once delay slots have been filled since only
4056 they know how to update a SEQUENCE. */
4057
4058 void
4059 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4060 {
4061 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4062 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4063 add_insn_after_nobb (insn, after);
4064 if (!BARRIER_P (after)
4065 && !BARRIER_P (insn)
4066 && (bb = BLOCK_FOR_INSN (after)))
4067 {
4068 set_block_for_insn (insn, bb);
4069 if (INSN_P (insn))
4070 df_insn_rescan (insn);
4071 /* Should not happen as first in the BB is always
4072 either NOTE or LABEL. */
4073 if (BB_END (bb) == after
4074 /* Avoid clobbering of structure when creating new BB. */
4075 && !BARRIER_P (insn)
4076 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4077 BB_END (bb) = insn;
4078 }
4079 }
4080
4081 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4082 If BB is NULL, an attempt is made to infer the bb from before.
4083
4084 This and the previous function should be the only functions called
4085 to insert an insn once delay slots have been filled since only
4086 they know how to update a SEQUENCE. */
4087
4088 void
4089 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4090 {
4091 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4092 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4093 add_insn_before_nobb (insn, before);
4094
4095 if (!bb
4096 && !BARRIER_P (before)
4097 && !BARRIER_P (insn))
4098 bb = BLOCK_FOR_INSN (before);
4099
4100 if (bb)
4101 {
4102 set_block_for_insn (insn, bb);
4103 if (INSN_P (insn))
4104 df_insn_rescan (insn);
4105 /* Should not happen as first in the BB is always either NOTE or
4106 LABEL. */
4107 gcc_assert (BB_HEAD (bb) != insn
4108 /* Avoid clobbering of structure when creating new BB. */
4109 || BARRIER_P (insn)
4110 || NOTE_INSN_BASIC_BLOCK_P (insn));
4111 }
4112 }
4113
4114 /* Replace insn with an deleted instruction note. */
4115
4116 void
4117 set_insn_deleted (rtx insn)
4118 {
4119 if (INSN_P (insn))
4120 df_insn_delete (as_a <rtx_insn *> (insn));
4121 PUT_CODE (insn, NOTE);
4122 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4123 }
4124
4125
4126 /* Unlink INSN from the insn chain.
4127
4128 This function knows how to handle sequences.
4129
4130 This function does not invalidate data flow information associated with
4131 INSN (i.e. does not call df_insn_delete). That makes this function
4132 usable for only disconnecting an insn from the chain, and re-emit it
4133 elsewhere later.
4134
4135 To later insert INSN elsewhere in the insn chain via add_insn and
4136 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4137 the caller. Nullifying them here breaks many insn chain walks.
4138
4139 To really delete an insn and related DF information, use delete_insn. */
4140
4141 void
4142 remove_insn (rtx uncast_insn)
4143 {
4144 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4145 rtx_insn *next = NEXT_INSN (insn);
4146 rtx_insn *prev = PREV_INSN (insn);
4147 basic_block bb;
4148
4149 if (prev)
4150 {
4151 SET_NEXT_INSN (prev) = next;
4152 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4153 {
4154 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4155 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4156 }
4157 }
4158 else
4159 {
4160 struct sequence_stack *seq;
4161
4162 for (seq = get_current_sequence (); seq; seq = seq->next)
4163 if (insn == seq->first)
4164 {
4165 seq->first = next;
4166 break;
4167 }
4168
4169 gcc_assert (seq);
4170 }
4171
4172 if (next)
4173 {
4174 SET_PREV_INSN (next) = prev;
4175 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4176 {
4177 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4178 SET_PREV_INSN (sequence->insn (0)) = prev;
4179 }
4180 }
4181 else
4182 {
4183 struct sequence_stack *seq;
4184
4185 for (seq = get_current_sequence (); seq; seq = seq->next)
4186 if (insn == seq->last)
4187 {
4188 seq->last = prev;
4189 break;
4190 }
4191
4192 gcc_assert (seq);
4193 }
4194
4195 /* Fix up basic block boundaries, if necessary. */
4196 if (!BARRIER_P (insn)
4197 && (bb = BLOCK_FOR_INSN (insn)))
4198 {
4199 if (BB_HEAD (bb) == insn)
4200 {
4201 /* Never ever delete the basic block note without deleting whole
4202 basic block. */
4203 gcc_assert (!NOTE_P (insn));
4204 BB_HEAD (bb) = next;
4205 }
4206 if (BB_END (bb) == insn)
4207 BB_END (bb) = prev;
4208 }
4209 }
4210
4211 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4212
4213 void
4214 add_function_usage_to (rtx call_insn, rtx call_fusage)
4215 {
4216 gcc_assert (call_insn && CALL_P (call_insn));
4217
4218 /* Put the register usage information on the CALL. If there is already
4219 some usage information, put ours at the end. */
4220 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4221 {
4222 rtx link;
4223
4224 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4225 link = XEXP (link, 1))
4226 ;
4227
4228 XEXP (link, 1) = call_fusage;
4229 }
4230 else
4231 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4232 }
4233
4234 /* Delete all insns made since FROM.
4235 FROM becomes the new last instruction. */
4236
4237 void
4238 delete_insns_since (rtx_insn *from)
4239 {
4240 if (from == 0)
4241 set_first_insn (0);
4242 else
4243 SET_NEXT_INSN (from) = 0;
4244 set_last_insn (from);
4245 }
4246
4247 /* This function is deprecated, please use sequences instead.
4248
4249 Move a consecutive bunch of insns to a different place in the chain.
4250 The insns to be moved are those between FROM and TO.
4251 They are moved to a new position after the insn AFTER.
4252 AFTER must not be FROM or TO or any insn in between.
4253
4254 This function does not know about SEQUENCEs and hence should not be
4255 called after delay-slot filling has been done. */
4256
4257 void
4258 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4259 {
4260 if (flag_checking)
4261 {
4262 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4263 gcc_assert (after != x);
4264 gcc_assert (after != to);
4265 }
4266
4267 /* Splice this bunch out of where it is now. */
4268 if (PREV_INSN (from))
4269 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4270 if (NEXT_INSN (to))
4271 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4272 if (get_last_insn () == to)
4273 set_last_insn (PREV_INSN (from));
4274 if (get_insns () == from)
4275 set_first_insn (NEXT_INSN (to));
4276
4277 /* Make the new neighbors point to it and it to them. */
4278 if (NEXT_INSN (after))
4279 SET_PREV_INSN (NEXT_INSN (after)) = to;
4280
4281 SET_NEXT_INSN (to) = NEXT_INSN (after);
4282 SET_PREV_INSN (from) = after;
4283 SET_NEXT_INSN (after) = from;
4284 if (after == get_last_insn ())
4285 set_last_insn (to);
4286 }
4287
4288 /* Same as function above, but take care to update BB boundaries. */
4289 void
4290 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4291 {
4292 rtx_insn *prev = PREV_INSN (from);
4293 basic_block bb, bb2;
4294
4295 reorder_insns_nobb (from, to, after);
4296
4297 if (!BARRIER_P (after)
4298 && (bb = BLOCK_FOR_INSN (after)))
4299 {
4300 rtx_insn *x;
4301 df_set_bb_dirty (bb);
4302
4303 if (!BARRIER_P (from)
4304 && (bb2 = BLOCK_FOR_INSN (from)))
4305 {
4306 if (BB_END (bb2) == to)
4307 BB_END (bb2) = prev;
4308 df_set_bb_dirty (bb2);
4309 }
4310
4311 if (BB_END (bb) == after)
4312 BB_END (bb) = to;
4313
4314 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4315 if (!BARRIER_P (x))
4316 df_insn_change_bb (x, bb);
4317 }
4318 }
4319
4320 \f
4321 /* Emit insn(s) of given code and pattern
4322 at a specified place within the doubly-linked list.
4323
4324 All of the emit_foo global entry points accept an object
4325 X which is either an insn list or a PATTERN of a single
4326 instruction.
4327
4328 There are thus a few canonical ways to generate code and
4329 emit it at a specific place in the instruction stream. For
4330 example, consider the instruction named SPOT and the fact that
4331 we would like to emit some instructions before SPOT. We might
4332 do it like this:
4333
4334 start_sequence ();
4335 ... emit the new instructions ...
4336 insns_head = get_insns ();
4337 end_sequence ();
4338
4339 emit_insn_before (insns_head, SPOT);
4340
4341 It used to be common to generate SEQUENCE rtl instead, but that
4342 is a relic of the past which no longer occurs. The reason is that
4343 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4344 generated would almost certainly die right after it was created. */
4345
4346 static rtx_insn *
4347 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4348 rtx_insn *(*make_raw) (rtx))
4349 {
4350 rtx_insn *insn;
4351
4352 gcc_assert (before);
4353
4354 if (x == NULL_RTX)
4355 return safe_as_a <rtx_insn *> (last);
4356
4357 switch (GET_CODE (x))
4358 {
4359 case DEBUG_INSN:
4360 case INSN:
4361 case JUMP_INSN:
4362 case CALL_INSN:
4363 case CODE_LABEL:
4364 case BARRIER:
4365 case NOTE:
4366 insn = as_a <rtx_insn *> (x);
4367 while (insn)
4368 {
4369 rtx_insn *next = NEXT_INSN (insn);
4370 add_insn_before (insn, before, bb);
4371 last = insn;
4372 insn = next;
4373 }
4374 break;
4375
4376 #ifdef ENABLE_RTL_CHECKING
4377 case SEQUENCE:
4378 gcc_unreachable ();
4379 break;
4380 #endif
4381
4382 default:
4383 last = (*make_raw) (x);
4384 add_insn_before (last, before, bb);
4385 break;
4386 }
4387
4388 return safe_as_a <rtx_insn *> (last);
4389 }
4390
4391 /* Make X be output before the instruction BEFORE. */
4392
4393 rtx_insn *
4394 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4395 {
4396 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4397 }
4398
4399 /* Make an instruction with body X and code JUMP_INSN
4400 and output it before the instruction BEFORE. */
4401
4402 rtx_jump_insn *
4403 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4404 {
4405 return as_a <rtx_jump_insn *> (
4406 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4407 make_jump_insn_raw));
4408 }
4409
4410 /* Make an instruction with body X and code CALL_INSN
4411 and output it before the instruction BEFORE. */
4412
4413 rtx_insn *
4414 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4415 {
4416 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4417 make_call_insn_raw);
4418 }
4419
4420 /* Make an instruction with body X and code DEBUG_INSN
4421 and output it before the instruction BEFORE. */
4422
4423 rtx_insn *
4424 emit_debug_insn_before_noloc (rtx x, rtx before)
4425 {
4426 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4427 make_debug_insn_raw);
4428 }
4429
4430 /* Make an insn of code BARRIER
4431 and output it before the insn BEFORE. */
4432
4433 rtx_barrier *
4434 emit_barrier_before (rtx before)
4435 {
4436 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4437
4438 INSN_UID (insn) = cur_insn_uid++;
4439
4440 add_insn_before (insn, before, NULL);
4441 return insn;
4442 }
4443
4444 /* Emit the label LABEL before the insn BEFORE. */
4445
4446 rtx_code_label *
4447 emit_label_before (rtx label, rtx_insn *before)
4448 {
4449 gcc_checking_assert (INSN_UID (label) == 0);
4450 INSN_UID (label) = cur_insn_uid++;
4451 add_insn_before (label, before, NULL);
4452 return as_a <rtx_code_label *> (label);
4453 }
4454 \f
4455 /* Helper for emit_insn_after, handles lists of instructions
4456 efficiently. */
4457
4458 static rtx_insn *
4459 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4460 {
4461 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4462 rtx_insn *last;
4463 rtx_insn *after_after;
4464 if (!bb && !BARRIER_P (after))
4465 bb = BLOCK_FOR_INSN (after);
4466
4467 if (bb)
4468 {
4469 df_set_bb_dirty (bb);
4470 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4471 if (!BARRIER_P (last))
4472 {
4473 set_block_for_insn (last, bb);
4474 df_insn_rescan (last);
4475 }
4476 if (!BARRIER_P (last))
4477 {
4478 set_block_for_insn (last, bb);
4479 df_insn_rescan (last);
4480 }
4481 if (BB_END (bb) == after)
4482 BB_END (bb) = last;
4483 }
4484 else
4485 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4486 continue;
4487
4488 after_after = NEXT_INSN (after);
4489
4490 SET_NEXT_INSN (after) = first;
4491 SET_PREV_INSN (first) = after;
4492 SET_NEXT_INSN (last) = after_after;
4493 if (after_after)
4494 SET_PREV_INSN (after_after) = last;
4495
4496 if (after == get_last_insn ())
4497 set_last_insn (last);
4498
4499 return last;
4500 }
4501
4502 static rtx_insn *
4503 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4504 rtx_insn *(*make_raw)(rtx))
4505 {
4506 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4507 rtx_insn *last = after;
4508
4509 gcc_assert (after);
4510
4511 if (x == NULL_RTX)
4512 return last;
4513
4514 switch (GET_CODE (x))
4515 {
4516 case DEBUG_INSN:
4517 case INSN:
4518 case JUMP_INSN:
4519 case CALL_INSN:
4520 case CODE_LABEL:
4521 case BARRIER:
4522 case NOTE:
4523 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4524 break;
4525
4526 #ifdef ENABLE_RTL_CHECKING
4527 case SEQUENCE:
4528 gcc_unreachable ();
4529 break;
4530 #endif
4531
4532 default:
4533 last = (*make_raw) (x);
4534 add_insn_after (last, after, bb);
4535 break;
4536 }
4537
4538 return last;
4539 }
4540
4541 /* Make X be output after the insn AFTER and set the BB of insn. If
4542 BB is NULL, an attempt is made to infer the BB from AFTER. */
4543
4544 rtx_insn *
4545 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4546 {
4547 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4548 }
4549
4550
4551 /* Make an insn of code JUMP_INSN with body X
4552 and output it after the insn AFTER. */
4553
4554 rtx_jump_insn *
4555 emit_jump_insn_after_noloc (rtx x, rtx after)
4556 {
4557 return as_a <rtx_jump_insn *> (
4558 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4559 }
4560
4561 /* Make an instruction with body X and code CALL_INSN
4562 and output it after the instruction AFTER. */
4563
4564 rtx_insn *
4565 emit_call_insn_after_noloc (rtx x, rtx after)
4566 {
4567 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4568 }
4569
4570 /* Make an instruction with body X and code CALL_INSN
4571 and output it after the instruction AFTER. */
4572
4573 rtx_insn *
4574 emit_debug_insn_after_noloc (rtx x, rtx after)
4575 {
4576 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4577 }
4578
4579 /* Make an insn of code BARRIER
4580 and output it after the insn AFTER. */
4581
4582 rtx_barrier *
4583 emit_barrier_after (rtx after)
4584 {
4585 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4586
4587 INSN_UID (insn) = cur_insn_uid++;
4588
4589 add_insn_after (insn, after, NULL);
4590 return insn;
4591 }
4592
4593 /* Emit the label LABEL after the insn AFTER. */
4594
4595 rtx_insn *
4596 emit_label_after (rtx label, rtx_insn *after)
4597 {
4598 gcc_checking_assert (INSN_UID (label) == 0);
4599 INSN_UID (label) = cur_insn_uid++;
4600 add_insn_after (label, after, NULL);
4601 return as_a <rtx_insn *> (label);
4602 }
4603 \f
4604 /* Notes require a bit of special handling: Some notes need to have their
4605 BLOCK_FOR_INSN set, others should never have it set, and some should
4606 have it set or clear depending on the context. */
4607
4608 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4609 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4610 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4611
4612 static bool
4613 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4614 {
4615 switch (subtype)
4616 {
4617 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4618 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4619 return true;
4620
4621 /* Notes for var tracking and EH region markers can appear between or
4622 inside basic blocks. If the caller is emitting on the basic block
4623 boundary, do not set BLOCK_FOR_INSN on the new note. */
4624 case NOTE_INSN_VAR_LOCATION:
4625 case NOTE_INSN_CALL_ARG_LOCATION:
4626 case NOTE_INSN_EH_REGION_BEG:
4627 case NOTE_INSN_EH_REGION_END:
4628 return on_bb_boundary_p;
4629
4630 /* Otherwise, BLOCK_FOR_INSN must be set. */
4631 default:
4632 return false;
4633 }
4634 }
4635
4636 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4637
4638 rtx_note *
4639 emit_note_after (enum insn_note subtype, rtx_insn *after)
4640 {
4641 rtx_note *note = make_note_raw (subtype);
4642 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4643 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4644
4645 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4646 add_insn_after_nobb (note, after);
4647 else
4648 add_insn_after (note, after, bb);
4649 return note;
4650 }
4651
4652 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4653
4654 rtx_note *
4655 emit_note_before (enum insn_note subtype, rtx_insn *before)
4656 {
4657 rtx_note *note = make_note_raw (subtype);
4658 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4659 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4660
4661 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4662 add_insn_before_nobb (note, before);
4663 else
4664 add_insn_before (note, before, bb);
4665 return note;
4666 }
4667 \f
4668 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4669 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4670
4671 static rtx_insn *
4672 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4673 rtx_insn *(*make_raw) (rtx))
4674 {
4675 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4676 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4677
4678 if (pattern == NULL_RTX || !loc)
4679 return last;
4680
4681 after = NEXT_INSN (after);
4682 while (1)
4683 {
4684 if (active_insn_p (after)
4685 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4686 && !INSN_LOCATION (after))
4687 INSN_LOCATION (after) = loc;
4688 if (after == last)
4689 break;
4690 after = NEXT_INSN (after);
4691 }
4692 return last;
4693 }
4694
4695 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4696 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4697 any DEBUG_INSNs. */
4698
4699 static rtx_insn *
4700 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4701 rtx_insn *(*make_raw) (rtx))
4702 {
4703 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4704 rtx_insn *prev = after;
4705
4706 if (skip_debug_insns)
4707 while (DEBUG_INSN_P (prev))
4708 prev = PREV_INSN (prev);
4709
4710 if (INSN_P (prev))
4711 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4712 make_raw);
4713 else
4714 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4715 }
4716
4717 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4718 rtx_insn *
4719 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4720 {
4721 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4722 }
4723
4724 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4725 rtx_insn *
4726 emit_insn_after (rtx pattern, rtx after)
4727 {
4728 return emit_pattern_after (pattern, after, true, make_insn_raw);
4729 }
4730
4731 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4732 rtx_jump_insn *
4733 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4734 {
4735 return as_a <rtx_jump_insn *> (
4736 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4737 }
4738
4739 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4740 rtx_jump_insn *
4741 emit_jump_insn_after (rtx pattern, rtx after)
4742 {
4743 return as_a <rtx_jump_insn *> (
4744 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4745 }
4746
4747 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4748 rtx_insn *
4749 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4750 {
4751 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4752 }
4753
4754 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4755 rtx_insn *
4756 emit_call_insn_after (rtx pattern, rtx after)
4757 {
4758 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4759 }
4760
4761 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4762 rtx_insn *
4763 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4764 {
4765 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4766 }
4767
4768 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4769 rtx_insn *
4770 emit_debug_insn_after (rtx pattern, rtx after)
4771 {
4772 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4773 }
4774
4775 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4776 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4777 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4778 CALL_INSN, etc. */
4779
4780 static rtx_insn *
4781 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4782 rtx_insn *(*make_raw) (rtx))
4783 {
4784 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4785 rtx_insn *first = PREV_INSN (before);
4786 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4787 insnp ? before : NULL_RTX,
4788 NULL, make_raw);
4789
4790 if (pattern == NULL_RTX || !loc)
4791 return last;
4792
4793 if (!first)
4794 first = get_insns ();
4795 else
4796 first = NEXT_INSN (first);
4797 while (1)
4798 {
4799 if (active_insn_p (first)
4800 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4801 && !INSN_LOCATION (first))
4802 INSN_LOCATION (first) = loc;
4803 if (first == last)
4804 break;
4805 first = NEXT_INSN (first);
4806 }
4807 return last;
4808 }
4809
4810 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4811 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4812 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4813 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4814
4815 static rtx_insn *
4816 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4817 bool insnp, rtx_insn *(*make_raw) (rtx))
4818 {
4819 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4820 rtx_insn *next = before;
4821
4822 if (skip_debug_insns)
4823 while (DEBUG_INSN_P (next))
4824 next = PREV_INSN (next);
4825
4826 if (INSN_P (next))
4827 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4828 insnp, make_raw);
4829 else
4830 return emit_pattern_before_noloc (pattern, before,
4831 insnp ? before : NULL_RTX,
4832 NULL, make_raw);
4833 }
4834
4835 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4836 rtx_insn *
4837 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4838 {
4839 return emit_pattern_before_setloc (pattern, before, loc, true,
4840 make_insn_raw);
4841 }
4842
4843 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4844 rtx_insn *
4845 emit_insn_before (rtx pattern, rtx before)
4846 {
4847 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4848 }
4849
4850 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4851 rtx_jump_insn *
4852 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4853 {
4854 return as_a <rtx_jump_insn *> (
4855 emit_pattern_before_setloc (pattern, before, loc, false,
4856 make_jump_insn_raw));
4857 }
4858
4859 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4860 rtx_jump_insn *
4861 emit_jump_insn_before (rtx pattern, rtx before)
4862 {
4863 return as_a <rtx_jump_insn *> (
4864 emit_pattern_before (pattern, before, true, false,
4865 make_jump_insn_raw));
4866 }
4867
4868 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4869 rtx_insn *
4870 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4871 {
4872 return emit_pattern_before_setloc (pattern, before, loc, false,
4873 make_call_insn_raw);
4874 }
4875
4876 /* Like emit_call_insn_before_noloc,
4877 but set insn_location according to BEFORE. */
4878 rtx_insn *
4879 emit_call_insn_before (rtx pattern, rtx_insn *before)
4880 {
4881 return emit_pattern_before (pattern, before, true, false,
4882 make_call_insn_raw);
4883 }
4884
4885 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4886 rtx_insn *
4887 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4888 {
4889 return emit_pattern_before_setloc (pattern, before, loc, false,
4890 make_debug_insn_raw);
4891 }
4892
4893 /* Like emit_debug_insn_before_noloc,
4894 but set insn_location according to BEFORE. */
4895 rtx_insn *
4896 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4897 {
4898 return emit_pattern_before (pattern, before, false, false,
4899 make_debug_insn_raw);
4900 }
4901 \f
4902 /* Take X and emit it at the end of the doubly-linked
4903 INSN list.
4904
4905 Returns the last insn emitted. */
4906
4907 rtx_insn *
4908 emit_insn (rtx x)
4909 {
4910 rtx_insn *last = get_last_insn ();
4911 rtx_insn *insn;
4912
4913 if (x == NULL_RTX)
4914 return last;
4915
4916 switch (GET_CODE (x))
4917 {
4918 case DEBUG_INSN:
4919 case INSN:
4920 case JUMP_INSN:
4921 case CALL_INSN:
4922 case CODE_LABEL:
4923 case BARRIER:
4924 case NOTE:
4925 insn = as_a <rtx_insn *> (x);
4926 while (insn)
4927 {
4928 rtx_insn *next = NEXT_INSN (insn);
4929 add_insn (insn);
4930 last = insn;
4931 insn = next;
4932 }
4933 break;
4934
4935 #ifdef ENABLE_RTL_CHECKING
4936 case JUMP_TABLE_DATA:
4937 case SEQUENCE:
4938 gcc_unreachable ();
4939 break;
4940 #endif
4941
4942 default:
4943 last = make_insn_raw (x);
4944 add_insn (last);
4945 break;
4946 }
4947
4948 return last;
4949 }
4950
4951 /* Make an insn of code DEBUG_INSN with pattern X
4952 and add it to the end of the doubly-linked list. */
4953
4954 rtx_insn *
4955 emit_debug_insn (rtx x)
4956 {
4957 rtx_insn *last = get_last_insn ();
4958 rtx_insn *insn;
4959
4960 if (x == NULL_RTX)
4961 return last;
4962
4963 switch (GET_CODE (x))
4964 {
4965 case DEBUG_INSN:
4966 case INSN:
4967 case JUMP_INSN:
4968 case CALL_INSN:
4969 case CODE_LABEL:
4970 case BARRIER:
4971 case NOTE:
4972 insn = as_a <rtx_insn *> (x);
4973 while (insn)
4974 {
4975 rtx_insn *next = NEXT_INSN (insn);
4976 add_insn (insn);
4977 last = insn;
4978 insn = next;
4979 }
4980 break;
4981
4982 #ifdef ENABLE_RTL_CHECKING
4983 case JUMP_TABLE_DATA:
4984 case SEQUENCE:
4985 gcc_unreachable ();
4986 break;
4987 #endif
4988
4989 default:
4990 last = make_debug_insn_raw (x);
4991 add_insn (last);
4992 break;
4993 }
4994
4995 return last;
4996 }
4997
4998 /* Make an insn of code JUMP_INSN with pattern X
4999 and add it to the end of the doubly-linked list. */
5000
5001 rtx_insn *
5002 emit_jump_insn (rtx x)
5003 {
5004 rtx_insn *last = NULL;
5005 rtx_insn *insn;
5006
5007 switch (GET_CODE (x))
5008 {
5009 case DEBUG_INSN:
5010 case INSN:
5011 case JUMP_INSN:
5012 case CALL_INSN:
5013 case CODE_LABEL:
5014 case BARRIER:
5015 case NOTE:
5016 insn = as_a <rtx_insn *> (x);
5017 while (insn)
5018 {
5019 rtx_insn *next = NEXT_INSN (insn);
5020 add_insn (insn);
5021 last = insn;
5022 insn = next;
5023 }
5024 break;
5025
5026 #ifdef ENABLE_RTL_CHECKING
5027 case JUMP_TABLE_DATA:
5028 case SEQUENCE:
5029 gcc_unreachable ();
5030 break;
5031 #endif
5032
5033 default:
5034 last = make_jump_insn_raw (x);
5035 add_insn (last);
5036 break;
5037 }
5038
5039 return last;
5040 }
5041
5042 /* Make an insn of code CALL_INSN with pattern X
5043 and add it to the end of the doubly-linked list. */
5044
5045 rtx_insn *
5046 emit_call_insn (rtx x)
5047 {
5048 rtx_insn *insn;
5049
5050 switch (GET_CODE (x))
5051 {
5052 case DEBUG_INSN:
5053 case INSN:
5054 case JUMP_INSN:
5055 case CALL_INSN:
5056 case CODE_LABEL:
5057 case BARRIER:
5058 case NOTE:
5059 insn = emit_insn (x);
5060 break;
5061
5062 #ifdef ENABLE_RTL_CHECKING
5063 case SEQUENCE:
5064 case JUMP_TABLE_DATA:
5065 gcc_unreachable ();
5066 break;
5067 #endif
5068
5069 default:
5070 insn = make_call_insn_raw (x);
5071 add_insn (insn);
5072 break;
5073 }
5074
5075 return insn;
5076 }
5077
5078 /* Add the label LABEL to the end of the doubly-linked list. */
5079
5080 rtx_code_label *
5081 emit_label (rtx uncast_label)
5082 {
5083 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5084
5085 gcc_checking_assert (INSN_UID (label) == 0);
5086 INSN_UID (label) = cur_insn_uid++;
5087 add_insn (label);
5088 return label;
5089 }
5090
5091 /* Make an insn of code JUMP_TABLE_DATA
5092 and add it to the end of the doubly-linked list. */
5093
5094 rtx_jump_table_data *
5095 emit_jump_table_data (rtx table)
5096 {
5097 rtx_jump_table_data *jump_table_data =
5098 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5099 INSN_UID (jump_table_data) = cur_insn_uid++;
5100 PATTERN (jump_table_data) = table;
5101 BLOCK_FOR_INSN (jump_table_data) = NULL;
5102 add_insn (jump_table_data);
5103 return jump_table_data;
5104 }
5105
5106 /* Make an insn of code BARRIER
5107 and add it to the end of the doubly-linked list. */
5108
5109 rtx_barrier *
5110 emit_barrier (void)
5111 {
5112 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5113 INSN_UID (barrier) = cur_insn_uid++;
5114 add_insn (barrier);
5115 return barrier;
5116 }
5117
5118 /* Emit a copy of note ORIG. */
5119
5120 rtx_note *
5121 emit_note_copy (rtx_note *orig)
5122 {
5123 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5124 rtx_note *note = make_note_raw (kind);
5125 NOTE_DATA (note) = NOTE_DATA (orig);
5126 add_insn (note);
5127 return note;
5128 }
5129
5130 /* Make an insn of code NOTE or type NOTE_NO
5131 and add it to the end of the doubly-linked list. */
5132
5133 rtx_note *
5134 emit_note (enum insn_note kind)
5135 {
5136 rtx_note *note = make_note_raw (kind);
5137 add_insn (note);
5138 return note;
5139 }
5140
5141 /* Emit a clobber of lvalue X. */
5142
5143 rtx_insn *
5144 emit_clobber (rtx x)
5145 {
5146 /* CONCATs should not appear in the insn stream. */
5147 if (GET_CODE (x) == CONCAT)
5148 {
5149 emit_clobber (XEXP (x, 0));
5150 return emit_clobber (XEXP (x, 1));
5151 }
5152 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5153 }
5154
5155 /* Return a sequence of insns to clobber lvalue X. */
5156
5157 rtx_insn *
5158 gen_clobber (rtx x)
5159 {
5160 rtx_insn *seq;
5161
5162 start_sequence ();
5163 emit_clobber (x);
5164 seq = get_insns ();
5165 end_sequence ();
5166 return seq;
5167 }
5168
5169 /* Emit a use of rvalue X. */
5170
5171 rtx_insn *
5172 emit_use (rtx x)
5173 {
5174 /* CONCATs should not appear in the insn stream. */
5175 if (GET_CODE (x) == CONCAT)
5176 {
5177 emit_use (XEXP (x, 0));
5178 return emit_use (XEXP (x, 1));
5179 }
5180 return emit_insn (gen_rtx_USE (VOIDmode, x));
5181 }
5182
5183 /* Return a sequence of insns to use rvalue X. */
5184
5185 rtx_insn *
5186 gen_use (rtx x)
5187 {
5188 rtx_insn *seq;
5189
5190 start_sequence ();
5191 emit_use (x);
5192 seq = get_insns ();
5193 end_sequence ();
5194 return seq;
5195 }
5196
5197 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5198 Return the set in INSN that such notes describe, or NULL if the notes
5199 have no meaning for INSN. */
5200
5201 rtx
5202 set_for_reg_notes (rtx insn)
5203 {
5204 rtx pat, reg;
5205
5206 if (!INSN_P (insn))
5207 return NULL_RTX;
5208
5209 pat = PATTERN (insn);
5210 if (GET_CODE (pat) == PARALLEL)
5211 {
5212 /* We do not use single_set because that ignores SETs of unused
5213 registers. REG_EQUAL and REG_EQUIV notes really do require the
5214 PARALLEL to have a single SET. */
5215 if (multiple_sets (insn))
5216 return NULL_RTX;
5217 pat = XVECEXP (pat, 0, 0);
5218 }
5219
5220 if (GET_CODE (pat) != SET)
5221 return NULL_RTX;
5222
5223 reg = SET_DEST (pat);
5224
5225 /* Notes apply to the contents of a STRICT_LOW_PART. */
5226 if (GET_CODE (reg) == STRICT_LOW_PART
5227 || GET_CODE (reg) == ZERO_EXTRACT)
5228 reg = XEXP (reg, 0);
5229
5230 /* Check that we have a register. */
5231 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5232 return NULL_RTX;
5233
5234 return pat;
5235 }
5236
5237 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5238 note of this type already exists, remove it first. */
5239
5240 rtx
5241 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5242 {
5243 rtx note = find_reg_note (insn, kind, NULL_RTX);
5244
5245 switch (kind)
5246 {
5247 case REG_EQUAL:
5248 case REG_EQUIV:
5249 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5250 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5251 return NULL_RTX;
5252
5253 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5254 It serves no useful purpose and breaks eliminate_regs. */
5255 if (GET_CODE (datum) == ASM_OPERANDS)
5256 return NULL_RTX;
5257
5258 /* Notes with side effects are dangerous. Even if the side-effect
5259 initially mirrors one in PATTERN (INSN), later optimizations
5260 might alter the way that the final register value is calculated
5261 and so move or alter the side-effect in some way. The note would
5262 then no longer be a valid substitution for SET_SRC. */
5263 if (side_effects_p (datum))
5264 return NULL_RTX;
5265 break;
5266
5267 default:
5268 break;
5269 }
5270
5271 if (note)
5272 XEXP (note, 0) = datum;
5273 else
5274 {
5275 add_reg_note (insn, kind, datum);
5276 note = REG_NOTES (insn);
5277 }
5278
5279 switch (kind)
5280 {
5281 case REG_EQUAL:
5282 case REG_EQUIV:
5283 df_notes_rescan (as_a <rtx_insn *> (insn));
5284 break;
5285 default:
5286 break;
5287 }
5288
5289 return note;
5290 }
5291
5292 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5293 rtx
5294 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5295 {
5296 rtx set = set_for_reg_notes (insn);
5297
5298 if (set && SET_DEST (set) == dst)
5299 return set_unique_reg_note (insn, kind, datum);
5300 return NULL_RTX;
5301 }
5302 \f
5303 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5304 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5305 is true.
5306
5307 If X is a label, it is simply added into the insn chain. */
5308
5309 rtx_insn *
5310 emit (rtx x, bool allow_barrier_p)
5311 {
5312 enum rtx_code code = classify_insn (x);
5313
5314 switch (code)
5315 {
5316 case CODE_LABEL:
5317 return emit_label (x);
5318 case INSN:
5319 return emit_insn (x);
5320 case JUMP_INSN:
5321 {
5322 rtx_insn *insn = emit_jump_insn (x);
5323 if (allow_barrier_p
5324 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5325 return emit_barrier ();
5326 return insn;
5327 }
5328 case CALL_INSN:
5329 return emit_call_insn (x);
5330 case DEBUG_INSN:
5331 return emit_debug_insn (x);
5332 default:
5333 gcc_unreachable ();
5334 }
5335 }
5336 \f
5337 /* Space for free sequence stack entries. */
5338 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5339
5340 /* Begin emitting insns to a sequence. If this sequence will contain
5341 something that might cause the compiler to pop arguments to function
5342 calls (because those pops have previously been deferred; see
5343 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5344 before calling this function. That will ensure that the deferred
5345 pops are not accidentally emitted in the middle of this sequence. */
5346
5347 void
5348 start_sequence (void)
5349 {
5350 struct sequence_stack *tem;
5351
5352 if (free_sequence_stack != NULL)
5353 {
5354 tem = free_sequence_stack;
5355 free_sequence_stack = tem->next;
5356 }
5357 else
5358 tem = ggc_alloc<sequence_stack> ();
5359
5360 tem->next = get_current_sequence ()->next;
5361 tem->first = get_insns ();
5362 tem->last = get_last_insn ();
5363 get_current_sequence ()->next = tem;
5364
5365 set_first_insn (0);
5366 set_last_insn (0);
5367 }
5368
5369 /* Set up the insn chain starting with FIRST as the current sequence,
5370 saving the previously current one. See the documentation for
5371 start_sequence for more information about how to use this function. */
5372
5373 void
5374 push_to_sequence (rtx_insn *first)
5375 {
5376 rtx_insn *last;
5377
5378 start_sequence ();
5379
5380 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5381 ;
5382
5383 set_first_insn (first);
5384 set_last_insn (last);
5385 }
5386
5387 /* Like push_to_sequence, but take the last insn as an argument to avoid
5388 looping through the list. */
5389
5390 void
5391 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5392 {
5393 start_sequence ();
5394
5395 set_first_insn (first);
5396 set_last_insn (last);
5397 }
5398
5399 /* Set up the outer-level insn chain
5400 as the current sequence, saving the previously current one. */
5401
5402 void
5403 push_topmost_sequence (void)
5404 {
5405 struct sequence_stack *top;
5406
5407 start_sequence ();
5408
5409 top = get_topmost_sequence ();
5410 set_first_insn (top->first);
5411 set_last_insn (top->last);
5412 }
5413
5414 /* After emitting to the outer-level insn chain, update the outer-level
5415 insn chain, and restore the previous saved state. */
5416
5417 void
5418 pop_topmost_sequence (void)
5419 {
5420 struct sequence_stack *top;
5421
5422 top = get_topmost_sequence ();
5423 top->first = get_insns ();
5424 top->last = get_last_insn ();
5425
5426 end_sequence ();
5427 }
5428
5429 /* After emitting to a sequence, restore previous saved state.
5430
5431 To get the contents of the sequence just made, you must call
5432 `get_insns' *before* calling here.
5433
5434 If the compiler might have deferred popping arguments while
5435 generating this sequence, and this sequence will not be immediately
5436 inserted into the instruction stream, use do_pending_stack_adjust
5437 before calling get_insns. That will ensure that the deferred
5438 pops are inserted into this sequence, and not into some random
5439 location in the instruction stream. See INHIBIT_DEFER_POP for more
5440 information about deferred popping of arguments. */
5441
5442 void
5443 end_sequence (void)
5444 {
5445 struct sequence_stack *tem = get_current_sequence ()->next;
5446
5447 set_first_insn (tem->first);
5448 set_last_insn (tem->last);
5449 get_current_sequence ()->next = tem->next;
5450
5451 memset (tem, 0, sizeof (*tem));
5452 tem->next = free_sequence_stack;
5453 free_sequence_stack = tem;
5454 }
5455
5456 /* Return 1 if currently emitting into a sequence. */
5457
5458 int
5459 in_sequence_p (void)
5460 {
5461 return get_current_sequence ()->next != 0;
5462 }
5463 \f
5464 /* Put the various virtual registers into REGNO_REG_RTX. */
5465
5466 static void
5467 init_virtual_regs (void)
5468 {
5469 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5470 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5471 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5472 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5473 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5474 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5475 = virtual_preferred_stack_boundary_rtx;
5476 }
5477
5478 \f
5479 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5480 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5481 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5482 static int copy_insn_n_scratches;
5483
5484 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5485 copied an ASM_OPERANDS.
5486 In that case, it is the original input-operand vector. */
5487 static rtvec orig_asm_operands_vector;
5488
5489 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5490 copied an ASM_OPERANDS.
5491 In that case, it is the copied input-operand vector. */
5492 static rtvec copy_asm_operands_vector;
5493
5494 /* Likewise for the constraints vector. */
5495 static rtvec orig_asm_constraints_vector;
5496 static rtvec copy_asm_constraints_vector;
5497
5498 /* Recursively create a new copy of an rtx for copy_insn.
5499 This function differs from copy_rtx in that it handles SCRATCHes and
5500 ASM_OPERANDs properly.
5501 Normally, this function is not used directly; use copy_insn as front end.
5502 However, you could first copy an insn pattern with copy_insn and then use
5503 this function afterwards to properly copy any REG_NOTEs containing
5504 SCRATCHes. */
5505
5506 rtx
5507 copy_insn_1 (rtx orig)
5508 {
5509 rtx copy;
5510 int i, j;
5511 RTX_CODE code;
5512 const char *format_ptr;
5513
5514 if (orig == NULL)
5515 return NULL;
5516
5517 code = GET_CODE (orig);
5518
5519 switch (code)
5520 {
5521 case REG:
5522 case DEBUG_EXPR:
5523 CASE_CONST_ANY:
5524 case SYMBOL_REF:
5525 case CODE_LABEL:
5526 case PC:
5527 case CC0:
5528 case RETURN:
5529 case SIMPLE_RETURN:
5530 return orig;
5531 case CLOBBER:
5532 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5533 clobbers or clobbers of hard registers that originated as pseudos.
5534 This is needed to allow safe register renaming. */
5535 if (REG_P (XEXP (orig, 0))
5536 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5537 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5538 return orig;
5539 break;
5540
5541 case SCRATCH:
5542 for (i = 0; i < copy_insn_n_scratches; i++)
5543 if (copy_insn_scratch_in[i] == orig)
5544 return copy_insn_scratch_out[i];
5545 break;
5546
5547 case CONST:
5548 if (shared_const_p (orig))
5549 return orig;
5550 break;
5551
5552 /* A MEM with a constant address is not sharable. The problem is that
5553 the constant address may need to be reloaded. If the mem is shared,
5554 then reloading one copy of this mem will cause all copies to appear
5555 to have been reloaded. */
5556
5557 default:
5558 break;
5559 }
5560
5561 /* Copy the various flags, fields, and other information. We assume
5562 that all fields need copying, and then clear the fields that should
5563 not be copied. That is the sensible default behavior, and forces
5564 us to explicitly document why we are *not* copying a flag. */
5565 copy = shallow_copy_rtx (orig);
5566
5567 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5568 if (INSN_P (orig))
5569 {
5570 RTX_FLAG (copy, jump) = 0;
5571 RTX_FLAG (copy, call) = 0;
5572 RTX_FLAG (copy, frame_related) = 0;
5573 }
5574
5575 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5576
5577 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5578 switch (*format_ptr++)
5579 {
5580 case 'e':
5581 if (XEXP (orig, i) != NULL)
5582 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5583 break;
5584
5585 case 'E':
5586 case 'V':
5587 if (XVEC (orig, i) == orig_asm_constraints_vector)
5588 XVEC (copy, i) = copy_asm_constraints_vector;
5589 else if (XVEC (orig, i) == orig_asm_operands_vector)
5590 XVEC (copy, i) = copy_asm_operands_vector;
5591 else if (XVEC (orig, i) != NULL)
5592 {
5593 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5594 for (j = 0; j < XVECLEN (copy, i); j++)
5595 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5596 }
5597 break;
5598
5599 case 't':
5600 case 'w':
5601 case 'i':
5602 case 's':
5603 case 'S':
5604 case 'u':
5605 case '0':
5606 /* These are left unchanged. */
5607 break;
5608
5609 default:
5610 gcc_unreachable ();
5611 }
5612
5613 if (code == SCRATCH)
5614 {
5615 i = copy_insn_n_scratches++;
5616 gcc_assert (i < MAX_RECOG_OPERANDS);
5617 copy_insn_scratch_in[i] = orig;
5618 copy_insn_scratch_out[i] = copy;
5619 }
5620 else if (code == ASM_OPERANDS)
5621 {
5622 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5623 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5624 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5625 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5626 }
5627
5628 return copy;
5629 }
5630
5631 /* Create a new copy of an rtx.
5632 This function differs from copy_rtx in that it handles SCRATCHes and
5633 ASM_OPERANDs properly.
5634 INSN doesn't really have to be a full INSN; it could be just the
5635 pattern. */
5636 rtx
5637 copy_insn (rtx insn)
5638 {
5639 copy_insn_n_scratches = 0;
5640 orig_asm_operands_vector = 0;
5641 orig_asm_constraints_vector = 0;
5642 copy_asm_operands_vector = 0;
5643 copy_asm_constraints_vector = 0;
5644 return copy_insn_1 (insn);
5645 }
5646
5647 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5648 on that assumption that INSN itself remains in its original place. */
5649
5650 rtx_insn *
5651 copy_delay_slot_insn (rtx_insn *insn)
5652 {
5653 /* Copy INSN with its rtx_code, all its notes, location etc. */
5654 insn = as_a <rtx_insn *> (copy_rtx (insn));
5655 INSN_UID (insn) = cur_insn_uid++;
5656 return insn;
5657 }
5658
5659 /* Initialize data structures and variables in this file
5660 before generating rtl for each function. */
5661
5662 void
5663 init_emit (void)
5664 {
5665 set_first_insn (NULL);
5666 set_last_insn (NULL);
5667 if (MIN_NONDEBUG_INSN_UID)
5668 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5669 else
5670 cur_insn_uid = 1;
5671 cur_debug_insn_uid = 1;
5672 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5673 first_label_num = label_num;
5674 get_current_sequence ()->next = NULL;
5675
5676 /* Init the tables that describe all the pseudo regs. */
5677
5678 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5679
5680 crtl->emit.regno_pointer_align
5681 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5682
5683 regno_reg_rtx
5684 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5685
5686 /* Put copies of all the hard registers into regno_reg_rtx. */
5687 memcpy (regno_reg_rtx,
5688 initial_regno_reg_rtx,
5689 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5690
5691 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5692 init_virtual_regs ();
5693
5694 /* Indicate that the virtual registers and stack locations are
5695 all pointers. */
5696 REG_POINTER (stack_pointer_rtx) = 1;
5697 REG_POINTER (frame_pointer_rtx) = 1;
5698 REG_POINTER (hard_frame_pointer_rtx) = 1;
5699 REG_POINTER (arg_pointer_rtx) = 1;
5700
5701 REG_POINTER (virtual_incoming_args_rtx) = 1;
5702 REG_POINTER (virtual_stack_vars_rtx) = 1;
5703 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5704 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5705 REG_POINTER (virtual_cfa_rtx) = 1;
5706
5707 #ifdef STACK_BOUNDARY
5708 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5709 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5711 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5712
5713 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5714 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5717 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5718 #endif
5719
5720 #ifdef INIT_EXPANDERS
5721 INIT_EXPANDERS;
5722 #endif
5723 }
5724
5725 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5726
5727 static rtx
5728 gen_const_vector (machine_mode mode, int constant)
5729 {
5730 rtx tem;
5731 rtvec v;
5732 int units, i;
5733 machine_mode inner;
5734
5735 units = GET_MODE_NUNITS (mode);
5736 inner = GET_MODE_INNER (mode);
5737
5738 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5739
5740 v = rtvec_alloc (units);
5741
5742 /* We need to call this function after we set the scalar const_tiny_rtx
5743 entries. */
5744 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5745
5746 for (i = 0; i < units; ++i)
5747 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5748
5749 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5750 return tem;
5751 }
5752
5753 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5754 all elements are zero, and the one vector when all elements are one. */
5755 rtx
5756 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5757 {
5758 machine_mode inner = GET_MODE_INNER (mode);
5759 int nunits = GET_MODE_NUNITS (mode);
5760 rtx x;
5761 int i;
5762
5763 /* Check to see if all of the elements have the same value. */
5764 x = RTVEC_ELT (v, nunits - 1);
5765 for (i = nunits - 2; i >= 0; i--)
5766 if (RTVEC_ELT (v, i) != x)
5767 break;
5768
5769 /* If the values are all the same, check to see if we can use one of the
5770 standard constant vectors. */
5771 if (i == -1)
5772 {
5773 if (x == CONST0_RTX (inner))
5774 return CONST0_RTX (mode);
5775 else if (x == CONST1_RTX (inner))
5776 return CONST1_RTX (mode);
5777 else if (x == CONSTM1_RTX (inner))
5778 return CONSTM1_RTX (mode);
5779 }
5780
5781 return gen_rtx_raw_CONST_VECTOR (mode, v);
5782 }
5783
5784 /* Initialise global register information required by all functions. */
5785
5786 void
5787 init_emit_regs (void)
5788 {
5789 int i;
5790 machine_mode mode;
5791 mem_attrs *attrs;
5792
5793 /* Reset register attributes */
5794 reg_attrs_htab->empty ();
5795
5796 /* We need reg_raw_mode, so initialize the modes now. */
5797 init_reg_modes_target ();
5798
5799 /* Assign register numbers to the globally defined register rtx. */
5800 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5801 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5802 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5803 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5804 virtual_incoming_args_rtx =
5805 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5806 virtual_stack_vars_rtx =
5807 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5808 virtual_stack_dynamic_rtx =
5809 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5810 virtual_outgoing_args_rtx =
5811 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5812 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5813 virtual_preferred_stack_boundary_rtx =
5814 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5815
5816 /* Initialize RTL for commonly used hard registers. These are
5817 copied into regno_reg_rtx as we begin to compile each function. */
5818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5819 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5820
5821 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5822 return_address_pointer_rtx
5823 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5824 #endif
5825
5826 pic_offset_table_rtx = NULL_RTX;
5827 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5828 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5829
5830 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5831 {
5832 mode = (machine_mode) i;
5833 attrs = ggc_cleared_alloc<mem_attrs> ();
5834 attrs->align = BITS_PER_UNIT;
5835 attrs->addrspace = ADDR_SPACE_GENERIC;
5836 if (mode != BLKmode)
5837 {
5838 attrs->size_known_p = true;
5839 attrs->size = GET_MODE_SIZE (mode);
5840 if (STRICT_ALIGNMENT)
5841 attrs->align = GET_MODE_ALIGNMENT (mode);
5842 }
5843 mode_mem_attrs[i] = attrs;
5844 }
5845 }
5846
5847 /* Initialize global machine_mode variables. */
5848
5849 void
5850 init_derived_machine_modes (void)
5851 {
5852 byte_mode = VOIDmode;
5853 word_mode = VOIDmode;
5854
5855 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5856 mode != VOIDmode;
5857 mode = GET_MODE_WIDER_MODE (mode))
5858 {
5859 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5860 && byte_mode == VOIDmode)
5861 byte_mode = mode;
5862
5863 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5864 && word_mode == VOIDmode)
5865 word_mode = mode;
5866 }
5867
5868 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5869 }
5870
5871 /* Create some permanent unique rtl objects shared between all functions. */
5872
5873 void
5874 init_emit_once (void)
5875 {
5876 int i;
5877 machine_mode mode;
5878 machine_mode double_mode;
5879
5880 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5881 CONST_FIXED, and memory attribute hash tables. */
5882 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5883
5884 #if TARGET_SUPPORTS_WIDE_INT
5885 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5886 #endif
5887 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5888
5889 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5890
5891 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5892
5893 #ifdef INIT_EXPANDERS
5894 /* This is to initialize {init|mark|free}_machine_status before the first
5895 call to push_function_context_to. This is needed by the Chill front
5896 end which calls push_function_context_to before the first call to
5897 init_function_start. */
5898 INIT_EXPANDERS;
5899 #endif
5900
5901 /* Create the unique rtx's for certain rtx codes and operand values. */
5902
5903 /* Process stack-limiting command-line options. */
5904 if (opt_fstack_limit_symbol_arg != NULL)
5905 stack_limit_rtx
5906 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5907 if (opt_fstack_limit_register_no >= 0)
5908 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5909
5910 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5911 tries to use these variables. */
5912 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5913 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5914 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5915
5916 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5917 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5918 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5919 else
5920 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5921
5922 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5923
5924 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5925 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5926 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5927
5928 dconstm1 = dconst1;
5929 dconstm1.sign = 1;
5930
5931 dconsthalf = dconst1;
5932 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5933
5934 for (i = 0; i < 3; i++)
5935 {
5936 const REAL_VALUE_TYPE *const r =
5937 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5938
5939 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5940 mode != VOIDmode;
5941 mode = GET_MODE_WIDER_MODE (mode))
5942 const_tiny_rtx[i][(int) mode] =
5943 const_double_from_real_value (*r, mode);
5944
5945 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5946 mode != VOIDmode;
5947 mode = GET_MODE_WIDER_MODE (mode))
5948 const_tiny_rtx[i][(int) mode] =
5949 const_double_from_real_value (*r, mode);
5950
5951 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5952
5953 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5954 mode != VOIDmode;
5955 mode = GET_MODE_WIDER_MODE (mode))
5956 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5957
5958 for (mode = MIN_MODE_PARTIAL_INT;
5959 mode <= MAX_MODE_PARTIAL_INT;
5960 mode = (machine_mode)((int)(mode) + 1))
5961 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5962 }
5963
5964 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5965
5966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5967 mode != VOIDmode;
5968 mode = GET_MODE_WIDER_MODE (mode))
5969 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5970
5971 for (mode = MIN_MODE_PARTIAL_INT;
5972 mode <= MAX_MODE_PARTIAL_INT;
5973 mode = (machine_mode)((int)(mode) + 1))
5974 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5975
5976 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5977 mode != VOIDmode;
5978 mode = GET_MODE_WIDER_MODE (mode))
5979 {
5980 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5981 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5982 }
5983
5984 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5985 mode != VOIDmode;
5986 mode = GET_MODE_WIDER_MODE (mode))
5987 {
5988 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5989 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5990 }
5991
5992 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5993 mode != VOIDmode;
5994 mode = GET_MODE_WIDER_MODE (mode))
5995 {
5996 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5997 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5998 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5999 }
6000
6001 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6002 mode != VOIDmode;
6003 mode = GET_MODE_WIDER_MODE (mode))
6004 {
6005 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6006 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6007 }
6008
6009 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6010 mode != VOIDmode;
6011 mode = GET_MODE_WIDER_MODE (mode))
6012 {
6013 FCONST0 (mode).data.high = 0;
6014 FCONST0 (mode).data.low = 0;
6015 FCONST0 (mode).mode = mode;
6016 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6017 FCONST0 (mode), mode);
6018 }
6019
6020 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6021 mode != VOIDmode;
6022 mode = GET_MODE_WIDER_MODE (mode))
6023 {
6024 FCONST0 (mode).data.high = 0;
6025 FCONST0 (mode).data.low = 0;
6026 FCONST0 (mode).mode = mode;
6027 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6028 FCONST0 (mode), mode);
6029 }
6030
6031 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6032 mode != VOIDmode;
6033 mode = GET_MODE_WIDER_MODE (mode))
6034 {
6035 FCONST0 (mode).data.high = 0;
6036 FCONST0 (mode).data.low = 0;
6037 FCONST0 (mode).mode = mode;
6038 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6039 FCONST0 (mode), mode);
6040
6041 /* We store the value 1. */
6042 FCONST1 (mode).data.high = 0;
6043 FCONST1 (mode).data.low = 0;
6044 FCONST1 (mode).mode = mode;
6045 FCONST1 (mode).data
6046 = double_int_one.lshift (GET_MODE_FBIT (mode),
6047 HOST_BITS_PER_DOUBLE_INT,
6048 SIGNED_FIXED_POINT_MODE_P (mode));
6049 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6050 FCONST1 (mode), mode);
6051 }
6052
6053 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6054 mode != VOIDmode;
6055 mode = GET_MODE_WIDER_MODE (mode))
6056 {
6057 FCONST0 (mode).data.high = 0;
6058 FCONST0 (mode).data.low = 0;
6059 FCONST0 (mode).mode = mode;
6060 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6061 FCONST0 (mode), mode);
6062
6063 /* We store the value 1. */
6064 FCONST1 (mode).data.high = 0;
6065 FCONST1 (mode).data.low = 0;
6066 FCONST1 (mode).mode = mode;
6067 FCONST1 (mode).data
6068 = double_int_one.lshift (GET_MODE_FBIT (mode),
6069 HOST_BITS_PER_DOUBLE_INT,
6070 SIGNED_FIXED_POINT_MODE_P (mode));
6071 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6072 FCONST1 (mode), mode);
6073 }
6074
6075 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6076 mode != VOIDmode;
6077 mode = GET_MODE_WIDER_MODE (mode))
6078 {
6079 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6080 }
6081
6082 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6083 mode != VOIDmode;
6084 mode = GET_MODE_WIDER_MODE (mode))
6085 {
6086 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6087 }
6088
6089 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6090 mode != VOIDmode;
6091 mode = GET_MODE_WIDER_MODE (mode))
6092 {
6093 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6094 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6095 }
6096
6097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6098 mode != VOIDmode;
6099 mode = GET_MODE_WIDER_MODE (mode))
6100 {
6101 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6102 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6103 }
6104
6105 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6106 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6107 const_tiny_rtx[0][i] = const0_rtx;
6108
6109 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6110 if (STORE_FLAG_VALUE == 1)
6111 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6112
6113 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6114 mode != VOIDmode;
6115 mode = GET_MODE_WIDER_MODE (mode))
6116 {
6117 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6118 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6119 }
6120
6121 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6122 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6123 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6124 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6125 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6126 /*prev_insn=*/NULL,
6127 /*next_insn=*/NULL,
6128 /*bb=*/NULL,
6129 /*pattern=*/NULL_RTX,
6130 /*location=*/-1,
6131 CODE_FOR_nothing,
6132 /*reg_notes=*/NULL_RTX);
6133 }
6134 \f
6135 /* Produce exact duplicate of insn INSN after AFTER.
6136 Care updating of libcall regions if present. */
6137
6138 rtx_insn *
6139 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6140 {
6141 rtx_insn *new_rtx;
6142 rtx link;
6143
6144 switch (GET_CODE (insn))
6145 {
6146 case INSN:
6147 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6148 break;
6149
6150 case JUMP_INSN:
6151 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6152 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6153 break;
6154
6155 case DEBUG_INSN:
6156 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6157 break;
6158
6159 case CALL_INSN:
6160 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6161 if (CALL_INSN_FUNCTION_USAGE (insn))
6162 CALL_INSN_FUNCTION_USAGE (new_rtx)
6163 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6164 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6165 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6166 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6167 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6168 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6169 break;
6170
6171 default:
6172 gcc_unreachable ();
6173 }
6174
6175 /* Update LABEL_NUSES. */
6176 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6177
6178 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6179
6180 /* If the old insn is frame related, then so is the new one. This is
6181 primarily needed for IA-64 unwind info which marks epilogue insns,
6182 which may be duplicated by the basic block reordering code. */
6183 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6184
6185 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6186 rtx *ptail = &REG_NOTES (new_rtx);
6187 while (*ptail != NULL_RTX)
6188 ptail = &XEXP (*ptail, 1);
6189
6190 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6191 will make them. REG_LABEL_TARGETs are created there too, but are
6192 supposed to be sticky, so we copy them. */
6193 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6194 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6195 {
6196 *ptail = duplicate_reg_note (link);
6197 ptail = &XEXP (*ptail, 1);
6198 }
6199
6200 INSN_CODE (new_rtx) = INSN_CODE (insn);
6201 return new_rtx;
6202 }
6203
6204 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6205 rtx
6206 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6207 {
6208 if (hard_reg_clobbers[mode][regno])
6209 return hard_reg_clobbers[mode][regno];
6210 else
6211 return (hard_reg_clobbers[mode][regno] =
6212 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6213 }
6214
6215 location_t prologue_location;
6216 location_t epilogue_location;
6217
6218 /* Hold current location information and last location information, so the
6219 datastructures are built lazily only when some instructions in given
6220 place are needed. */
6221 static location_t curr_location;
6222
6223 /* Allocate insn location datastructure. */
6224 void
6225 insn_locations_init (void)
6226 {
6227 prologue_location = epilogue_location = 0;
6228 curr_location = UNKNOWN_LOCATION;
6229 }
6230
6231 /* At the end of emit stage, clear current location. */
6232 void
6233 insn_locations_finalize (void)
6234 {
6235 epilogue_location = curr_location;
6236 curr_location = UNKNOWN_LOCATION;
6237 }
6238
6239 /* Set current location. */
6240 void
6241 set_curr_insn_location (location_t location)
6242 {
6243 curr_location = location;
6244 }
6245
6246 /* Get current location. */
6247 location_t
6248 curr_insn_location (void)
6249 {
6250 return curr_location;
6251 }
6252
6253 /* Return lexical scope block insn belongs to. */
6254 tree
6255 insn_scope (const rtx_insn *insn)
6256 {
6257 return LOCATION_BLOCK (INSN_LOCATION (insn));
6258 }
6259
6260 /* Return line number of the statement that produced this insn. */
6261 int
6262 insn_line (const rtx_insn *insn)
6263 {
6264 return LOCATION_LINE (INSN_LOCATION (insn));
6265 }
6266
6267 /* Return source file of the statement that produced this insn. */
6268 const char *
6269 insn_file (const rtx_insn *insn)
6270 {
6271 return LOCATION_FILE (INSN_LOCATION (insn));
6272 }
6273
6274 /* Return expanded location of the statement that produced this insn. */
6275 expanded_location
6276 insn_location (const rtx_insn *insn)
6277 {
6278 return expand_location (INSN_LOCATION (insn));
6279 }
6280
6281 /* Return true if memory model MODEL requires a pre-operation (release-style)
6282 barrier or a post-operation (acquire-style) barrier. While not universal,
6283 this function matches behavior of several targets. */
6284
6285 bool
6286 need_atomic_barrier_p (enum memmodel model, bool pre)
6287 {
6288 switch (model & MEMMODEL_BASE_MASK)
6289 {
6290 case MEMMODEL_RELAXED:
6291 case MEMMODEL_CONSUME:
6292 return false;
6293 case MEMMODEL_RELEASE:
6294 return pre;
6295 case MEMMODEL_ACQUIRE:
6296 return !pre;
6297 case MEMMODEL_ACQ_REL:
6298 case MEMMODEL_SEQ_CST:
6299 return true;
6300 default:
6301 gcc_unreachable ();
6302 }
6303 }
6304
6305 /* Initialize fields of rtl_data related to stack alignment. */
6306
6307 void
6308 rtl_data::init_stack_alignment ()
6309 {
6310 stack_alignment_needed = STACK_BOUNDARY;
6311 max_used_stack_slot_alignment = STACK_BOUNDARY;
6312 stack_alignment_estimated = 0;
6313 preferred_stack_boundary = STACK_BOUNDARY;
6314 }
6315
6316 \f
6317 #include "gt-emit-rtl.h"