poly_int: operand_subword
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
152 {
153 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
154
155 static hashval_t hash (rtx x);
156 static bool equal (rtx x, const compare_type &y);
157 };
158
159 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
160
161 /* A hash table storing register attribute structures. */
162 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
163 {
164 static hashval_t hash (reg_attrs *x);
165 static bool equal (reg_attrs *a, reg_attrs *b);
166 };
167
168 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
169
170 /* A hash table storing all CONST_DOUBLEs. */
171 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
172 {
173 static hashval_t hash (rtx x);
174 static bool equal (rtx x, rtx y);
175 };
176
177 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
178
179 /* A hash table storing all CONST_FIXEDs. */
180 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
181 {
182 static hashval_t hash (rtx x);
183 static bool equal (rtx x, rtx y);
184 };
185
186 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
187
188 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
189 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
190 #define first_label_num (crtl->emit.x_first_label_num)
191
192 static void set_used_decls (tree);
193 static void mark_label_nuses (rtx);
194 #if TARGET_SUPPORTS_WIDE_INT
195 static rtx lookup_const_wide_int (rtx);
196 #endif
197 static rtx lookup_const_double (rtx);
198 static rtx lookup_const_fixed (rtx);
199 static rtx gen_const_vector (machine_mode, int);
200 static void copy_rtx_if_shared_1 (rtx *orig);
201
202 /* Probability of the conditional branch currently proceeded by try_split. */
203 profile_probability split_branch_probability;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 hashval_t
208 const_int_hasher::hash (rtx x)
209 {
210 return (hashval_t) INTVAL (x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 bool
218 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
219 {
220 return (INTVAL (x) == y);
221 }
222
223 #if TARGET_SUPPORTS_WIDE_INT
224 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
225
226 hashval_t
227 const_wide_int_hasher::hash (rtx x)
228 {
229 int i;
230 unsigned HOST_WIDE_INT hash = 0;
231 const_rtx xr = x;
232
233 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
234 hash += CONST_WIDE_INT_ELT (xr, i);
235
236 return (hashval_t) hash;
237 }
238
239 /* Returns nonzero if the value represented by X (which is really a
240 CONST_WIDE_INT) is the same as that given by Y (which is really a
241 CONST_WIDE_INT). */
242
243 bool
244 const_wide_int_hasher::equal (rtx x, rtx y)
245 {
246 int i;
247 const_rtx xr = x;
248 const_rtx yr = y;
249 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
250 return false;
251
252 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
253 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
254 return false;
255
256 return true;
257 }
258 #endif
259
260 /* Returns a hash code for CONST_POLY_INT X. */
261
262 hashval_t
263 const_poly_int_hasher::hash (rtx x)
264 {
265 inchash::hash h;
266 h.add_int (GET_MODE (x));
267 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
268 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
269 return h.end ();
270 }
271
272 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
273
274 bool
275 const_poly_int_hasher::equal (rtx x, const compare_type &y)
276 {
277 if (GET_MODE (x) != y.first)
278 return false;
279 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
280 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
281 return false;
282 return true;
283 }
284
285 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
286 hashval_t
287 const_double_hasher::hash (rtx x)
288 {
289 const_rtx const value = x;
290 hashval_t h;
291
292 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
293 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
294 else
295 {
296 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
297 /* MODE is used in the comparison, so it should be in the hash. */
298 h ^= GET_MODE (value);
299 }
300 return h;
301 }
302
303 /* Returns nonzero if the value represented by X (really a ...)
304 is the same as that represented by Y (really a ...) */
305 bool
306 const_double_hasher::equal (rtx x, rtx y)
307 {
308 const_rtx const a = x, b = y;
309
310 if (GET_MODE (a) != GET_MODE (b))
311 return 0;
312 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
313 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
314 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
315 else
316 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
317 CONST_DOUBLE_REAL_VALUE (b));
318 }
319
320 /* Returns a hash code for X (which is really a CONST_FIXED). */
321
322 hashval_t
323 const_fixed_hasher::hash (rtx x)
324 {
325 const_rtx const value = x;
326 hashval_t h;
327
328 h = fixed_hash (CONST_FIXED_VALUE (value));
329 /* MODE is used in the comparison, so it should be in the hash. */
330 h ^= GET_MODE (value);
331 return h;
332 }
333
334 /* Returns nonzero if the value represented by X is the same as that
335 represented by Y. */
336
337 bool
338 const_fixed_hasher::equal (rtx x, rtx y)
339 {
340 const_rtx const a = x, b = y;
341
342 if (GET_MODE (a) != GET_MODE (b))
343 return 0;
344 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
345 }
346
347 /* Return true if the given memory attributes are equal. */
348
349 bool
350 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
351 {
352 if (p == q)
353 return true;
354 if (!p || !q)
355 return false;
356 return (p->alias == q->alias
357 && p->offset_known_p == q->offset_known_p
358 && (!p->offset_known_p || known_eq (p->offset, q->offset))
359 && p->size_known_p == q->size_known_p
360 && (!p->size_known_p || known_eq (p->size, q->size))
361 && p->align == q->align
362 && p->addrspace == q->addrspace
363 && (p->expr == q->expr
364 || (p->expr != NULL_TREE && q->expr != NULL_TREE
365 && operand_equal_p (p->expr, q->expr, 0))));
366 }
367
368 /* Set MEM's memory attributes so that they are the same as ATTRS. */
369
370 static void
371 set_mem_attrs (rtx mem, mem_attrs *attrs)
372 {
373 /* If everything is the default, we can just clear the attributes. */
374 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
375 {
376 MEM_ATTRS (mem) = 0;
377 return;
378 }
379
380 if (!MEM_ATTRS (mem)
381 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
382 {
383 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
384 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
385 }
386 }
387
388 /* Returns a hash code for X (which is a really a reg_attrs *). */
389
390 hashval_t
391 reg_attr_hasher::hash (reg_attrs *x)
392 {
393 const reg_attrs *const p = x;
394
395 inchash::hash h;
396 h.add_ptr (p->decl);
397 h.add_poly_hwi (p->offset);
398 return h.end ();
399 }
400
401 /* Returns nonzero if the value represented by X is the same as that given by
402 Y. */
403
404 bool
405 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
406 {
407 const reg_attrs *const p = x;
408 const reg_attrs *const q = y;
409
410 return (p->decl == q->decl && known_eq (p->offset, q->offset));
411 }
412 /* Allocate a new reg_attrs structure and insert it into the hash table if
413 one identical to it is not already in the table. We are doing this for
414 MEM of mode MODE. */
415
416 static reg_attrs *
417 get_reg_attrs (tree decl, poly_int64 offset)
418 {
419 reg_attrs attrs;
420
421 /* If everything is the default, we can just return zero. */
422 if (decl == 0 && known_eq (offset, 0))
423 return 0;
424
425 attrs.decl = decl;
426 attrs.offset = offset;
427
428 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
429 if (*slot == 0)
430 {
431 *slot = ggc_alloc<reg_attrs> ();
432 memcpy (*slot, &attrs, sizeof (reg_attrs));
433 }
434
435 return *slot;
436 }
437
438
439 #if !HAVE_blockage
440 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
441 and to block register equivalences to be seen across this insn. */
442
443 rtx
444 gen_blockage (void)
445 {
446 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
447 MEM_VOLATILE_P (x) = true;
448 return x;
449 }
450 #endif
451
452
453 /* Set the mode and register number of X to MODE and REGNO. */
454
455 void
456 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
457 {
458 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
459 ? hard_regno_nregs (regno, mode)
460 : 1);
461 PUT_MODE_RAW (x, mode);
462 set_regno_raw (x, regno, nregs);
463 }
464
465 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
466 don't attempt to share with the various global pieces of rtl (such as
467 frame_pointer_rtx). */
468
469 rtx
470 gen_raw_REG (machine_mode mode, unsigned int regno)
471 {
472 rtx x = rtx_alloc (REG MEM_STAT_INFO);
473 set_mode_and_regno (x, mode, regno);
474 REG_ATTRS (x) = NULL;
475 ORIGINAL_REGNO (x) = regno;
476 return x;
477 }
478
479 /* There are some RTL codes that require special attention; the generation
480 functions do the raw handling. If you add to this list, modify
481 special_rtx in gengenrtl.c as well. */
482
483 rtx_expr_list *
484 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
485 {
486 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
487 expr_list));
488 }
489
490 rtx_insn_list *
491 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
492 {
493 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
494 insn_list));
495 }
496
497 rtx_insn *
498 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
499 basic_block bb, rtx pattern, int location, int code,
500 rtx reg_notes)
501 {
502 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
503 prev_insn, next_insn,
504 bb, pattern, location, code,
505 reg_notes));
506 }
507
508 rtx
509 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
510 {
511 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
512 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
513
514 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
515 if (const_true_rtx && arg == STORE_FLAG_VALUE)
516 return const_true_rtx;
517 #endif
518
519 /* Look up the CONST_INT in the hash table. */
520 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
521 INSERT);
522 if (*slot == 0)
523 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
524
525 return *slot;
526 }
527
528 rtx
529 gen_int_mode (poly_int64 c, machine_mode mode)
530 {
531 c = trunc_int_for_mode (c, mode);
532 if (c.is_constant ())
533 return GEN_INT (c.coeffs[0]);
534 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
535 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
536 }
537
538 /* CONST_DOUBLEs might be created from pairs of integers, or from
539 REAL_VALUE_TYPEs. Also, their length is known only at run time,
540 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
541
542 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
543 hash table. If so, return its counterpart; otherwise add it
544 to the hash table and return it. */
545 static rtx
546 lookup_const_double (rtx real)
547 {
548 rtx *slot = const_double_htab->find_slot (real, INSERT);
549 if (*slot == 0)
550 *slot = real;
551
552 return *slot;
553 }
554
555 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
556 VALUE in mode MODE. */
557 rtx
558 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
559 {
560 rtx real = rtx_alloc (CONST_DOUBLE);
561 PUT_MODE (real, mode);
562
563 real->u.rv = value;
564
565 return lookup_const_double (real);
566 }
567
568 /* Determine whether FIXED, a CONST_FIXED, already exists in the
569 hash table. If so, return its counterpart; otherwise add it
570 to the hash table and return it. */
571
572 static rtx
573 lookup_const_fixed (rtx fixed)
574 {
575 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
576 if (*slot == 0)
577 *slot = fixed;
578
579 return *slot;
580 }
581
582 /* Return a CONST_FIXED rtx for a fixed-point value specified by
583 VALUE in mode MODE. */
584
585 rtx
586 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
587 {
588 rtx fixed = rtx_alloc (CONST_FIXED);
589 PUT_MODE (fixed, mode);
590
591 fixed->u.fv = value;
592
593 return lookup_const_fixed (fixed);
594 }
595
596 #if TARGET_SUPPORTS_WIDE_INT == 0
597 /* Constructs double_int from rtx CST. */
598
599 double_int
600 rtx_to_double_int (const_rtx cst)
601 {
602 double_int r;
603
604 if (CONST_INT_P (cst))
605 r = double_int::from_shwi (INTVAL (cst));
606 else if (CONST_DOUBLE_AS_INT_P (cst))
607 {
608 r.low = CONST_DOUBLE_LOW (cst);
609 r.high = CONST_DOUBLE_HIGH (cst);
610 }
611 else
612 gcc_unreachable ();
613
614 return r;
615 }
616 #endif
617
618 #if TARGET_SUPPORTS_WIDE_INT
619 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
620 If so, return its counterpart; otherwise add it to the hash table and
621 return it. */
622
623 static rtx
624 lookup_const_wide_int (rtx wint)
625 {
626 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
627 if (*slot == 0)
628 *slot = wint;
629
630 return *slot;
631 }
632 #endif
633
634 /* Return an rtx constant for V, given that the constant has mode MODE.
635 The returned rtx will be a CONST_INT if V fits, otherwise it will be
636 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
637 (if TARGET_SUPPORTS_WIDE_INT). */
638
639 static rtx
640 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
641 {
642 unsigned int len = v.get_len ();
643 /* Not scalar_int_mode because we also allow pointer bound modes. */
644 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
645
646 /* Allow truncation but not extension since we do not know if the
647 number is signed or unsigned. */
648 gcc_assert (prec <= v.get_precision ());
649
650 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
651 return gen_int_mode (v.elt (0), mode);
652
653 #if TARGET_SUPPORTS_WIDE_INT
654 {
655 unsigned int i;
656 rtx value;
657 unsigned int blocks_needed
658 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
659
660 if (len > blocks_needed)
661 len = blocks_needed;
662
663 value = const_wide_int_alloc (len);
664
665 /* It is so tempting to just put the mode in here. Must control
666 myself ... */
667 PUT_MODE (value, VOIDmode);
668 CWI_PUT_NUM_ELEM (value, len);
669
670 for (i = 0; i < len; i++)
671 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
672
673 return lookup_const_wide_int (value);
674 }
675 #else
676 return immed_double_const (v.elt (0), v.elt (1), mode);
677 #endif
678 }
679
680 #if TARGET_SUPPORTS_WIDE_INT == 0
681 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
682 of ints: I0 is the low-order word and I1 is the high-order word.
683 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
684 implied upper bits are copies of the high bit of i1. The value
685 itself is neither signed nor unsigned. Do not use this routine for
686 non-integer modes; convert to REAL_VALUE_TYPE and use
687 const_double_from_real_value. */
688
689 rtx
690 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
691 {
692 rtx value;
693 unsigned int i;
694
695 /* There are the following cases (note that there are no modes with
696 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
697
698 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
699 gen_int_mode.
700 2) If the value of the integer fits into HOST_WIDE_INT anyway
701 (i.e., i1 consists only from copies of the sign bit, and sign
702 of i0 and i1 are the same), then we return a CONST_INT for i0.
703 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
704 scalar_mode smode;
705 if (is_a <scalar_mode> (mode, &smode)
706 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
707 return gen_int_mode (i0, mode);
708
709 /* If this integer fits in one word, return a CONST_INT. */
710 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
711 return GEN_INT (i0);
712
713 /* We use VOIDmode for integers. */
714 value = rtx_alloc (CONST_DOUBLE);
715 PUT_MODE (value, VOIDmode);
716
717 CONST_DOUBLE_LOW (value) = i0;
718 CONST_DOUBLE_HIGH (value) = i1;
719
720 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
721 XWINT (value, i) = 0;
722
723 return lookup_const_double (value);
724 }
725 #endif
726
727 /* Return an rtx representation of C in mode MODE. */
728
729 rtx
730 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
731 {
732 if (c.is_constant ())
733 return immed_wide_int_const_1 (c.coeffs[0], mode);
734
735 /* Not scalar_int_mode because we also allow pointer bound modes. */
736 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
737
738 /* Allow truncation but not extension since we do not know if the
739 number is signed or unsigned. */
740 gcc_assert (prec <= c.coeffs[0].get_precision ());
741 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
742
743 /* See whether we already have an rtx for this constant. */
744 inchash::hash h;
745 h.add_int (mode);
746 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
747 h.add_wide_int (newc.coeffs[i]);
748 const_poly_int_hasher::compare_type typed_value (mode, newc);
749 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
750 h.end (), INSERT);
751 rtx x = *slot;
752 if (x)
753 return x;
754
755 /* Create a new rtx. There's a choice to be made here between installing
756 the actual mode of the rtx or leaving it as VOIDmode (for consistency
757 with CONST_INT). In practice the handling of the codes is different
758 enough that we get no benefit from using VOIDmode, and various places
759 assume that VOIDmode implies CONST_INT. Using the real mode seems like
760 the right long-term direction anyway. */
761 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
762 size_t extra_size = twi::extra_size (prec);
763 x = rtx_alloc_v (CONST_POLY_INT,
764 sizeof (struct const_poly_int_def) + extra_size);
765 PUT_MODE (x, mode);
766 CONST_POLY_INT_COEFFS (x).set_precision (prec);
767 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
768 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
769
770 *slot = x;
771 return x;
772 }
773
774 rtx
775 gen_rtx_REG (machine_mode mode, unsigned int regno)
776 {
777 /* In case the MD file explicitly references the frame pointer, have
778 all such references point to the same frame pointer. This is
779 used during frame pointer elimination to distinguish the explicit
780 references to these registers from pseudos that happened to be
781 assigned to them.
782
783 If we have eliminated the frame pointer or arg pointer, we will
784 be using it as a normal register, for example as a spill
785 register. In such cases, we might be accessing it in a mode that
786 is not Pmode and therefore cannot use the pre-allocated rtx.
787
788 Also don't do this when we are making new REGs in reload, since
789 we don't want to get confused with the real pointers. */
790
791 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
792 {
793 if (regno == FRAME_POINTER_REGNUM
794 && (!reload_completed || frame_pointer_needed))
795 return frame_pointer_rtx;
796
797 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
798 && regno == HARD_FRAME_POINTER_REGNUM
799 && (!reload_completed || frame_pointer_needed))
800 return hard_frame_pointer_rtx;
801 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
802 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
803 && regno == ARG_POINTER_REGNUM)
804 return arg_pointer_rtx;
805 #endif
806 #ifdef RETURN_ADDRESS_POINTER_REGNUM
807 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
808 return return_address_pointer_rtx;
809 #endif
810 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
811 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
812 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
813 return pic_offset_table_rtx;
814 if (regno == STACK_POINTER_REGNUM)
815 return stack_pointer_rtx;
816 }
817
818 #if 0
819 /* If the per-function register table has been set up, try to re-use
820 an existing entry in that table to avoid useless generation of RTL.
821
822 This code is disabled for now until we can fix the various backends
823 which depend on having non-shared hard registers in some cases. Long
824 term we want to re-enable this code as it can significantly cut down
825 on the amount of useless RTL that gets generated.
826
827 We'll also need to fix some code that runs after reload that wants to
828 set ORIGINAL_REGNO. */
829
830 if (cfun
831 && cfun->emit
832 && regno_reg_rtx
833 && regno < FIRST_PSEUDO_REGISTER
834 && reg_raw_mode[regno] == mode)
835 return regno_reg_rtx[regno];
836 #endif
837
838 return gen_raw_REG (mode, regno);
839 }
840
841 rtx
842 gen_rtx_MEM (machine_mode mode, rtx addr)
843 {
844 rtx rt = gen_rtx_raw_MEM (mode, addr);
845
846 /* This field is not cleared by the mere allocation of the rtx, so
847 we clear it here. */
848 MEM_ATTRS (rt) = 0;
849
850 return rt;
851 }
852
853 /* Generate a memory referring to non-trapping constant memory. */
854
855 rtx
856 gen_const_mem (machine_mode mode, rtx addr)
857 {
858 rtx mem = gen_rtx_MEM (mode, addr);
859 MEM_READONLY_P (mem) = 1;
860 MEM_NOTRAP_P (mem) = 1;
861 return mem;
862 }
863
864 /* Generate a MEM referring to fixed portions of the frame, e.g., register
865 save areas. */
866
867 rtx
868 gen_frame_mem (machine_mode mode, rtx addr)
869 {
870 rtx mem = gen_rtx_MEM (mode, addr);
871 MEM_NOTRAP_P (mem) = 1;
872 set_mem_alias_set (mem, get_frame_alias_set ());
873 return mem;
874 }
875
876 /* Generate a MEM referring to a temporary use of the stack, not part
877 of the fixed stack frame. For example, something which is pushed
878 by a target splitter. */
879 rtx
880 gen_tmp_stack_mem (machine_mode mode, rtx addr)
881 {
882 rtx mem = gen_rtx_MEM (mode, addr);
883 MEM_NOTRAP_P (mem) = 1;
884 if (!cfun->calls_alloca)
885 set_mem_alias_set (mem, get_frame_alias_set ());
886 return mem;
887 }
888
889 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
890 this construct would be valid, and false otherwise. */
891
892 bool
893 validate_subreg (machine_mode omode, machine_mode imode,
894 const_rtx reg, poly_uint64 offset)
895 {
896 unsigned int isize = GET_MODE_SIZE (imode);
897 unsigned int osize = GET_MODE_SIZE (omode);
898
899 /* All subregs must be aligned. */
900 if (!multiple_p (offset, osize))
901 return false;
902
903 /* The subreg offset cannot be outside the inner object. */
904 if (maybe_ge (offset, isize))
905 return false;
906
907 unsigned int regsize = REGMODE_NATURAL_SIZE (imode);
908
909 /* ??? This should not be here. Temporarily continue to allow word_mode
910 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
911 Generally, backends are doing something sketchy but it'll take time to
912 fix them all. */
913 if (omode == word_mode)
914 ;
915 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
916 is the culprit here, and not the backends. */
917 else if (osize >= regsize && isize >= osize)
918 ;
919 /* Allow component subregs of complex and vector. Though given the below
920 extraction rules, it's not always clear what that means. */
921 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
922 && GET_MODE_INNER (imode) == omode)
923 ;
924 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
925 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
926 represent this. It's questionable if this ought to be represented at
927 all -- why can't this all be hidden in post-reload splitters that make
928 arbitrarily mode changes to the registers themselves. */
929 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
930 ;
931 /* Subregs involving floating point modes are not allowed to
932 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
933 (subreg:SI (reg:DF) 0) isn't. */
934 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
935 {
936 if (! (isize == osize
937 /* LRA can use subreg to store a floating point value in
938 an integer mode. Although the floating point and the
939 integer modes need the same number of hard registers,
940 the size of floating point mode can be less than the
941 integer mode. LRA also uses subregs for a register
942 should be used in different mode in on insn. */
943 || lra_in_progress))
944 return false;
945 }
946
947 /* Paradoxical subregs must have offset zero. */
948 if (osize > isize)
949 return known_eq (offset, 0U);
950
951 /* This is a normal subreg. Verify that the offset is representable. */
952
953 /* For hard registers, we already have most of these rules collected in
954 subreg_offset_representable_p. */
955 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
956 {
957 unsigned int regno = REGNO (reg);
958
959 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
960 && GET_MODE_INNER (imode) == omode)
961 ;
962 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
963 return false;
964
965 return subreg_offset_representable_p (regno, imode, offset, omode);
966 }
967
968 /* For pseudo registers, we want most of the same checks. Namely:
969
970 Assume that the pseudo register will be allocated to hard registers
971 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
972 the remainder must correspond to the lowpart of the containing hard
973 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
974 otherwise it is at the lowest offset.
975
976 Given that we've already checked the mode and offset alignment,
977 we only have to check subblock subregs here. */
978 if (osize < regsize
979 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
980 {
981 poly_uint64 block_size = MIN (isize, regsize);
982 unsigned int start_reg;
983 poly_uint64 offset_within_reg;
984 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
985 || (BYTES_BIG_ENDIAN
986 ? maybe_ne (offset_within_reg, block_size - osize)
987 : maybe_ne (offset_within_reg, 0U)))
988 return false;
989 }
990 return true;
991 }
992
993 rtx
994 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
995 {
996 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
997 return gen_rtx_raw_SUBREG (mode, reg, offset);
998 }
999
1000 /* Generate a SUBREG representing the least-significant part of REG if MODE
1001 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1002
1003 rtx
1004 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1005 {
1006 machine_mode inmode;
1007
1008 inmode = GET_MODE (reg);
1009 if (inmode == VOIDmode)
1010 inmode = mode;
1011 return gen_rtx_SUBREG (mode, reg,
1012 subreg_lowpart_offset (mode, inmode));
1013 }
1014
1015 rtx
1016 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1017 enum var_init_status status)
1018 {
1019 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1020 PAT_VAR_LOCATION_STATUS (x) = status;
1021 return x;
1022 }
1023 \f
1024
1025 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1026
1027 rtvec
1028 gen_rtvec (int n, ...)
1029 {
1030 int i;
1031 rtvec rt_val;
1032 va_list p;
1033
1034 va_start (p, n);
1035
1036 /* Don't allocate an empty rtvec... */
1037 if (n == 0)
1038 {
1039 va_end (p);
1040 return NULL_RTVEC;
1041 }
1042
1043 rt_val = rtvec_alloc (n);
1044
1045 for (i = 0; i < n; i++)
1046 rt_val->elem[i] = va_arg (p, rtx);
1047
1048 va_end (p);
1049 return rt_val;
1050 }
1051
1052 rtvec
1053 gen_rtvec_v (int n, rtx *argp)
1054 {
1055 int i;
1056 rtvec rt_val;
1057
1058 /* Don't allocate an empty rtvec... */
1059 if (n == 0)
1060 return NULL_RTVEC;
1061
1062 rt_val = rtvec_alloc (n);
1063
1064 for (i = 0; i < n; i++)
1065 rt_val->elem[i] = *argp++;
1066
1067 return rt_val;
1068 }
1069
1070 rtvec
1071 gen_rtvec_v (int n, rtx_insn **argp)
1072 {
1073 int i;
1074 rtvec rt_val;
1075
1076 /* Don't allocate an empty rtvec... */
1077 if (n == 0)
1078 return NULL_RTVEC;
1079
1080 rt_val = rtvec_alloc (n);
1081
1082 for (i = 0; i < n; i++)
1083 rt_val->elem[i] = *argp++;
1084
1085 return rt_val;
1086 }
1087
1088 \f
1089 /* Return the number of bytes between the start of an OUTER_MODE
1090 in-memory value and the start of an INNER_MODE in-memory value,
1091 given that the former is a lowpart of the latter. It may be a
1092 paradoxical lowpart, in which case the offset will be negative
1093 on big-endian targets. */
1094
1095 poly_int64
1096 byte_lowpart_offset (machine_mode outer_mode,
1097 machine_mode inner_mode)
1098 {
1099 if (paradoxical_subreg_p (outer_mode, inner_mode))
1100 return -subreg_lowpart_offset (inner_mode, outer_mode);
1101 else
1102 return subreg_lowpart_offset (outer_mode, inner_mode);
1103 }
1104
1105 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1106 from address X. For paradoxical big-endian subregs this is a
1107 negative value, otherwise it's the same as OFFSET. */
1108
1109 poly_int64
1110 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1111 poly_uint64 offset)
1112 {
1113 if (paradoxical_subreg_p (outer_mode, inner_mode))
1114 {
1115 gcc_assert (known_eq (offset, 0U));
1116 return -subreg_lowpart_offset (inner_mode, outer_mode);
1117 }
1118 return offset;
1119 }
1120
1121 /* As above, but return the offset that existing subreg X would have
1122 if SUBREG_REG (X) were stored in memory. The only significant thing
1123 about the current SUBREG_REG is its mode. */
1124
1125 poly_int64
1126 subreg_memory_offset (const_rtx x)
1127 {
1128 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1129 SUBREG_BYTE (x));
1130 }
1131 \f
1132 /* Generate a REG rtx for a new pseudo register of mode MODE.
1133 This pseudo is assigned the next sequential register number. */
1134
1135 rtx
1136 gen_reg_rtx (machine_mode mode)
1137 {
1138 rtx val;
1139 unsigned int align = GET_MODE_ALIGNMENT (mode);
1140
1141 gcc_assert (can_create_pseudo_p ());
1142
1143 /* If a virtual register with bigger mode alignment is generated,
1144 increase stack alignment estimation because it might be spilled
1145 to stack later. */
1146 if (SUPPORTS_STACK_ALIGNMENT
1147 && crtl->stack_alignment_estimated < align
1148 && !crtl->stack_realign_processed)
1149 {
1150 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1151 if (crtl->stack_alignment_estimated < min_align)
1152 crtl->stack_alignment_estimated = min_align;
1153 }
1154
1155 if (generating_concat_p
1156 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1157 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1158 {
1159 /* For complex modes, don't make a single pseudo.
1160 Instead, make a CONCAT of two pseudos.
1161 This allows noncontiguous allocation of the real and imaginary parts,
1162 which makes much better code. Besides, allocating DCmode
1163 pseudos overstrains reload on some machines like the 386. */
1164 rtx realpart, imagpart;
1165 machine_mode partmode = GET_MODE_INNER (mode);
1166
1167 realpart = gen_reg_rtx (partmode);
1168 imagpart = gen_reg_rtx (partmode);
1169 return gen_rtx_CONCAT (mode, realpart, imagpart);
1170 }
1171
1172 /* Do not call gen_reg_rtx with uninitialized crtl. */
1173 gcc_assert (crtl->emit.regno_pointer_align_length);
1174
1175 crtl->emit.ensure_regno_capacity ();
1176 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1177
1178 val = gen_raw_REG (mode, reg_rtx_no);
1179 regno_reg_rtx[reg_rtx_no++] = val;
1180 return val;
1181 }
1182
1183 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1184 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1185
1186 void
1187 emit_status::ensure_regno_capacity ()
1188 {
1189 int old_size = regno_pointer_align_length;
1190
1191 if (reg_rtx_no < old_size)
1192 return;
1193
1194 int new_size = old_size * 2;
1195 while (reg_rtx_no >= new_size)
1196 new_size *= 2;
1197
1198 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1199 memset (tmp + old_size, 0, new_size - old_size);
1200 regno_pointer_align = (unsigned char *) tmp;
1201
1202 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1203 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1204 regno_reg_rtx = new1;
1205
1206 crtl->emit.regno_pointer_align_length = new_size;
1207 }
1208
1209 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1210
1211 bool
1212 reg_is_parm_p (rtx reg)
1213 {
1214 tree decl;
1215
1216 gcc_assert (REG_P (reg));
1217 decl = REG_EXPR (reg);
1218 return (decl && TREE_CODE (decl) == PARM_DECL);
1219 }
1220
1221 /* Update NEW with the same attributes as REG, but with OFFSET added
1222 to the REG_OFFSET. */
1223
1224 static void
1225 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1226 {
1227 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1228 REG_OFFSET (reg) + offset);
1229 }
1230
1231 /* Generate a register with same attributes as REG, but with OFFSET
1232 added to the REG_OFFSET. */
1233
1234 rtx
1235 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1236 poly_int64 offset)
1237 {
1238 rtx new_rtx = gen_rtx_REG (mode, regno);
1239
1240 update_reg_offset (new_rtx, reg, offset);
1241 return new_rtx;
1242 }
1243
1244 /* Generate a new pseudo-register with the same attributes as REG, but
1245 with OFFSET added to the REG_OFFSET. */
1246
1247 rtx
1248 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1249 {
1250 rtx new_rtx = gen_reg_rtx (mode);
1251
1252 update_reg_offset (new_rtx, reg, offset);
1253 return new_rtx;
1254 }
1255
1256 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1257 new register is a (possibly paradoxical) lowpart of the old one. */
1258
1259 void
1260 adjust_reg_mode (rtx reg, machine_mode mode)
1261 {
1262 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1263 PUT_MODE (reg, mode);
1264 }
1265
1266 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1267 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1268
1269 void
1270 set_reg_attrs_from_value (rtx reg, rtx x)
1271 {
1272 poly_int64 offset;
1273 bool can_be_reg_pointer = true;
1274
1275 /* Don't call mark_reg_pointer for incompatible pointer sign
1276 extension. */
1277 while (GET_CODE (x) == SIGN_EXTEND
1278 || GET_CODE (x) == ZERO_EXTEND
1279 || GET_CODE (x) == TRUNCATE
1280 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1281 {
1282 #if defined(POINTERS_EXTEND_UNSIGNED)
1283 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1284 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1285 || (paradoxical_subreg_p (x)
1286 && ! (SUBREG_PROMOTED_VAR_P (x)
1287 && SUBREG_CHECK_PROMOTED_SIGN (x,
1288 POINTERS_EXTEND_UNSIGNED))))
1289 && !targetm.have_ptr_extend ())
1290 can_be_reg_pointer = false;
1291 #endif
1292 x = XEXP (x, 0);
1293 }
1294
1295 /* Hard registers can be reused for multiple purposes within the same
1296 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1297 on them is wrong. */
1298 if (HARD_REGISTER_P (reg))
1299 return;
1300
1301 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1302 if (MEM_P (x))
1303 {
1304 if (MEM_OFFSET_KNOWN_P (x))
1305 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1306 MEM_OFFSET (x) + offset);
1307 if (can_be_reg_pointer && MEM_POINTER (x))
1308 mark_reg_pointer (reg, 0);
1309 }
1310 else if (REG_P (x))
1311 {
1312 if (REG_ATTRS (x))
1313 update_reg_offset (reg, x, offset);
1314 if (can_be_reg_pointer && REG_POINTER (x))
1315 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1316 }
1317 }
1318
1319 /* Generate a REG rtx for a new pseudo register, copying the mode
1320 and attributes from X. */
1321
1322 rtx
1323 gen_reg_rtx_and_attrs (rtx x)
1324 {
1325 rtx reg = gen_reg_rtx (GET_MODE (x));
1326 set_reg_attrs_from_value (reg, x);
1327 return reg;
1328 }
1329
1330 /* Set the register attributes for registers contained in PARM_RTX.
1331 Use needed values from memory attributes of MEM. */
1332
1333 void
1334 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1335 {
1336 if (REG_P (parm_rtx))
1337 set_reg_attrs_from_value (parm_rtx, mem);
1338 else if (GET_CODE (parm_rtx) == PARALLEL)
1339 {
1340 /* Check for a NULL entry in the first slot, used to indicate that the
1341 parameter goes both on the stack and in registers. */
1342 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1343 for (; i < XVECLEN (parm_rtx, 0); i++)
1344 {
1345 rtx x = XVECEXP (parm_rtx, 0, i);
1346 if (REG_P (XEXP (x, 0)))
1347 REG_ATTRS (XEXP (x, 0))
1348 = get_reg_attrs (MEM_EXPR (mem),
1349 INTVAL (XEXP (x, 1)));
1350 }
1351 }
1352 }
1353
1354 /* Set the REG_ATTRS for registers in value X, given that X represents
1355 decl T. */
1356
1357 void
1358 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1359 {
1360 if (!t)
1361 return;
1362 tree tdecl = t;
1363 if (GET_CODE (x) == SUBREG)
1364 {
1365 gcc_assert (subreg_lowpart_p (x));
1366 x = SUBREG_REG (x);
1367 }
1368 if (REG_P (x))
1369 REG_ATTRS (x)
1370 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1371 DECL_P (tdecl)
1372 ? DECL_MODE (tdecl)
1373 : TYPE_MODE (TREE_TYPE (tdecl))));
1374 if (GET_CODE (x) == CONCAT)
1375 {
1376 if (REG_P (XEXP (x, 0)))
1377 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1378 if (REG_P (XEXP (x, 1)))
1379 REG_ATTRS (XEXP (x, 1))
1380 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1381 }
1382 if (GET_CODE (x) == PARALLEL)
1383 {
1384 int i, start;
1385
1386 /* Check for a NULL entry, used to indicate that the parameter goes
1387 both on the stack and in registers. */
1388 if (XEXP (XVECEXP (x, 0, 0), 0))
1389 start = 0;
1390 else
1391 start = 1;
1392
1393 for (i = start; i < XVECLEN (x, 0); i++)
1394 {
1395 rtx y = XVECEXP (x, 0, i);
1396 if (REG_P (XEXP (y, 0)))
1397 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1398 }
1399 }
1400 }
1401
1402 /* Assign the RTX X to declaration T. */
1403
1404 void
1405 set_decl_rtl (tree t, rtx x)
1406 {
1407 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1408 if (x)
1409 set_reg_attrs_for_decl_rtl (t, x);
1410 }
1411
1412 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1413 if the ABI requires the parameter to be passed by reference. */
1414
1415 void
1416 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1417 {
1418 DECL_INCOMING_RTL (t) = x;
1419 if (x && !by_reference_p)
1420 set_reg_attrs_for_decl_rtl (t, x);
1421 }
1422
1423 /* Identify REG (which may be a CONCAT) as a user register. */
1424
1425 void
1426 mark_user_reg (rtx reg)
1427 {
1428 if (GET_CODE (reg) == CONCAT)
1429 {
1430 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1431 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1432 }
1433 else
1434 {
1435 gcc_assert (REG_P (reg));
1436 REG_USERVAR_P (reg) = 1;
1437 }
1438 }
1439
1440 /* Identify REG as a probable pointer register and show its alignment
1441 as ALIGN, if nonzero. */
1442
1443 void
1444 mark_reg_pointer (rtx reg, int align)
1445 {
1446 if (! REG_POINTER (reg))
1447 {
1448 REG_POINTER (reg) = 1;
1449
1450 if (align)
1451 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1452 }
1453 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1454 /* We can no-longer be sure just how aligned this pointer is. */
1455 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1456 }
1457
1458 /* Return 1 plus largest pseudo reg number used in the current function. */
1459
1460 int
1461 max_reg_num (void)
1462 {
1463 return reg_rtx_no;
1464 }
1465
1466 /* Return 1 + the largest label number used so far in the current function. */
1467
1468 int
1469 max_label_num (void)
1470 {
1471 return label_num;
1472 }
1473
1474 /* Return first label number used in this function (if any were used). */
1475
1476 int
1477 get_first_label_num (void)
1478 {
1479 return first_label_num;
1480 }
1481
1482 /* If the rtx for label was created during the expansion of a nested
1483 function, then first_label_num won't include this label number.
1484 Fix this now so that array indices work later. */
1485
1486 void
1487 maybe_set_first_label_num (rtx_code_label *x)
1488 {
1489 if (CODE_LABEL_NUMBER (x) < first_label_num)
1490 first_label_num = CODE_LABEL_NUMBER (x);
1491 }
1492
1493 /* For use by the RTL function loader, when mingling with normal
1494 functions.
1495 Ensure that label_num is greater than the label num of X, to avoid
1496 duplicate labels in the generated assembler. */
1497
1498 void
1499 maybe_set_max_label_num (rtx_code_label *x)
1500 {
1501 if (CODE_LABEL_NUMBER (x) >= label_num)
1502 label_num = CODE_LABEL_NUMBER (x) + 1;
1503 }
1504
1505 \f
1506 /* Return a value representing some low-order bits of X, where the number
1507 of low-order bits is given by MODE. Note that no conversion is done
1508 between floating-point and fixed-point values, rather, the bit
1509 representation is returned.
1510
1511 This function handles the cases in common between gen_lowpart, below,
1512 and two variants in cse.c and combine.c. These are the cases that can
1513 be safely handled at all points in the compilation.
1514
1515 If this is not a case we can handle, return 0. */
1516
1517 rtx
1518 gen_lowpart_common (machine_mode mode, rtx x)
1519 {
1520 int msize = GET_MODE_SIZE (mode);
1521 int xsize;
1522 machine_mode innermode;
1523
1524 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1525 so we have to make one up. Yuk. */
1526 innermode = GET_MODE (x);
1527 if (CONST_INT_P (x)
1528 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1529 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1530 else if (innermode == VOIDmode)
1531 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1532
1533 xsize = GET_MODE_SIZE (innermode);
1534
1535 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1536
1537 if (innermode == mode)
1538 return x;
1539
1540 if (SCALAR_FLOAT_MODE_P (mode))
1541 {
1542 /* Don't allow paradoxical FLOAT_MODE subregs. */
1543 if (msize > xsize)
1544 return 0;
1545 }
1546 else
1547 {
1548 /* MODE must occupy no more of the underlying registers than X. */
1549 unsigned int regsize = REGMODE_NATURAL_SIZE (innermode);
1550 unsigned int mregs = CEIL (msize, regsize);
1551 unsigned int xregs = CEIL (xsize, regsize);
1552 if (mregs > xregs)
1553 return 0;
1554 }
1555
1556 scalar_int_mode int_mode, int_innermode, from_mode;
1557 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1558 && is_a <scalar_int_mode> (mode, &int_mode)
1559 && is_a <scalar_int_mode> (innermode, &int_innermode)
1560 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1561 {
1562 /* If we are getting the low-order part of something that has been
1563 sign- or zero-extended, we can either just use the object being
1564 extended or make a narrower extension. If we want an even smaller
1565 piece than the size of the object being extended, call ourselves
1566 recursively.
1567
1568 This case is used mostly by combine and cse. */
1569
1570 if (from_mode == int_mode)
1571 return XEXP (x, 0);
1572 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1573 return gen_lowpart_common (int_mode, XEXP (x, 0));
1574 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1575 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1576 }
1577 else if (GET_CODE (x) == SUBREG || REG_P (x)
1578 || GET_CODE (x) == CONCAT || const_vec_p (x)
1579 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1580 || CONST_POLY_INT_P (x))
1581 return lowpart_subreg (mode, x, innermode);
1582
1583 /* Otherwise, we can't do this. */
1584 return 0;
1585 }
1586 \f
1587 rtx
1588 gen_highpart (machine_mode mode, rtx x)
1589 {
1590 unsigned int msize = GET_MODE_SIZE (mode);
1591 rtx result;
1592
1593 /* This case loses if X is a subreg. To catch bugs early,
1594 complain if an invalid MODE is used even in other cases. */
1595 gcc_assert (msize <= UNITS_PER_WORD
1596 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1597
1598 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1599 subreg_highpart_offset (mode, GET_MODE (x)));
1600 gcc_assert (result);
1601
1602 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1603 the target if we have a MEM. gen_highpart must return a valid operand,
1604 emitting code if necessary to do so. */
1605 if (MEM_P (result))
1606 {
1607 result = validize_mem (result);
1608 gcc_assert (result);
1609 }
1610
1611 return result;
1612 }
1613
1614 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1615 be VOIDmode constant. */
1616 rtx
1617 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1618 {
1619 if (GET_MODE (exp) != VOIDmode)
1620 {
1621 gcc_assert (GET_MODE (exp) == innermode);
1622 return gen_highpart (outermode, exp);
1623 }
1624 return simplify_gen_subreg (outermode, exp, innermode,
1625 subreg_highpart_offset (outermode, innermode));
1626 }
1627
1628 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1629 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1630
1631 poly_uint64
1632 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1633 {
1634 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1635 if (maybe_gt (outer_bytes, inner_bytes))
1636 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1637 return 0;
1638
1639 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1640 return inner_bytes - outer_bytes;
1641 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1642 return 0;
1643 else
1644 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1645 }
1646
1647 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1648 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1649
1650 poly_uint64
1651 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1652 {
1653 gcc_assert (known_ge (inner_bytes, outer_bytes));
1654
1655 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1656 return 0;
1657 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1658 return inner_bytes - outer_bytes;
1659 else
1660 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1661 (inner_bytes - outer_bytes)
1662 * BITS_PER_UNIT);
1663 }
1664
1665 /* Return 1 iff X, assumed to be a SUBREG,
1666 refers to the least significant part of its containing reg.
1667 If X is not a SUBREG, always return 1 (it is its own low part!). */
1668
1669 int
1670 subreg_lowpart_p (const_rtx x)
1671 {
1672 if (GET_CODE (x) != SUBREG)
1673 return 1;
1674 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1675 return 0;
1676
1677 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1678 GET_MODE (SUBREG_REG (x))),
1679 SUBREG_BYTE (x));
1680 }
1681 \f
1682 /* Return subword OFFSET of operand OP.
1683 The word number, OFFSET, is interpreted as the word number starting
1684 at the low-order address. OFFSET 0 is the low-order word if not
1685 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1686
1687 If we cannot extract the required word, we return zero. Otherwise,
1688 an rtx corresponding to the requested word will be returned.
1689
1690 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1691 reload has completed, a valid address will always be returned. After
1692 reload, if a valid address cannot be returned, we return zero.
1693
1694 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1695 it is the responsibility of the caller.
1696
1697 MODE is the mode of OP in case it is a CONST_INT.
1698
1699 ??? This is still rather broken for some cases. The problem for the
1700 moment is that all callers of this thing provide no 'goal mode' to
1701 tell us to work with. This exists because all callers were written
1702 in a word based SUBREG world.
1703 Now use of this function can be deprecated by simplify_subreg in most
1704 cases.
1705 */
1706
1707 rtx
1708 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1709 machine_mode mode)
1710 {
1711 if (mode == VOIDmode)
1712 mode = GET_MODE (op);
1713
1714 gcc_assert (mode != VOIDmode);
1715
1716 /* If OP is narrower than a word, fail. */
1717 if (mode != BLKmode
1718 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1719 return 0;
1720
1721 /* If we want a word outside OP, return zero. */
1722 if (mode != BLKmode
1723 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1724 return const0_rtx;
1725
1726 /* Form a new MEM at the requested address. */
1727 if (MEM_P (op))
1728 {
1729 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1730
1731 if (! validate_address)
1732 return new_rtx;
1733
1734 else if (reload_completed)
1735 {
1736 if (! strict_memory_address_addr_space_p (word_mode,
1737 XEXP (new_rtx, 0),
1738 MEM_ADDR_SPACE (op)))
1739 return 0;
1740 }
1741 else
1742 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1743 }
1744
1745 /* Rest can be handled by simplify_subreg. */
1746 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1747 }
1748
1749 /* Similar to `operand_subword', but never return 0. If we can't
1750 extract the required subword, put OP into a register and try again.
1751 The second attempt must succeed. We always validate the address in
1752 this case.
1753
1754 MODE is the mode of OP, in case it is CONST_INT. */
1755
1756 rtx
1757 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1758 {
1759 rtx result = operand_subword (op, offset, 1, mode);
1760
1761 if (result)
1762 return result;
1763
1764 if (mode != BLKmode && mode != VOIDmode)
1765 {
1766 /* If this is a register which can not be accessed by words, copy it
1767 to a pseudo register. */
1768 if (REG_P (op))
1769 op = copy_to_reg (op);
1770 else
1771 op = force_reg (mode, op);
1772 }
1773
1774 result = operand_subword (op, offset, 1, mode);
1775 gcc_assert (result);
1776
1777 return result;
1778 }
1779 \f
1780 mem_attrs::mem_attrs ()
1781 : expr (NULL_TREE),
1782 offset (0),
1783 size (0),
1784 alias (0),
1785 align (0),
1786 addrspace (ADDR_SPACE_GENERIC),
1787 offset_known_p (false),
1788 size_known_p (false)
1789 {}
1790
1791 /* Returns 1 if both MEM_EXPR can be considered equal
1792 and 0 otherwise. */
1793
1794 int
1795 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1796 {
1797 if (expr1 == expr2)
1798 return 1;
1799
1800 if (! expr1 || ! expr2)
1801 return 0;
1802
1803 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1804 return 0;
1805
1806 return operand_equal_p (expr1, expr2, 0);
1807 }
1808
1809 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1810 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1811 -1 if not known. */
1812
1813 int
1814 get_mem_align_offset (rtx mem, unsigned int align)
1815 {
1816 tree expr;
1817 poly_uint64 offset;
1818
1819 /* This function can't use
1820 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1821 || (MAX (MEM_ALIGN (mem),
1822 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1823 < align))
1824 return -1;
1825 else
1826 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1827 for two reasons:
1828 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1829 for <variable>. get_inner_reference doesn't handle it and
1830 even if it did, the alignment in that case needs to be determined
1831 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1832 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1833 isn't sufficiently aligned, the object it is in might be. */
1834 gcc_assert (MEM_P (mem));
1835 expr = MEM_EXPR (mem);
1836 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1837 return -1;
1838
1839 offset = MEM_OFFSET (mem);
1840 if (DECL_P (expr))
1841 {
1842 if (DECL_ALIGN (expr) < align)
1843 return -1;
1844 }
1845 else if (INDIRECT_REF_P (expr))
1846 {
1847 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1848 return -1;
1849 }
1850 else if (TREE_CODE (expr) == COMPONENT_REF)
1851 {
1852 while (1)
1853 {
1854 tree inner = TREE_OPERAND (expr, 0);
1855 tree field = TREE_OPERAND (expr, 1);
1856 tree byte_offset = component_ref_field_offset (expr);
1857 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1858
1859 poly_uint64 suboffset;
1860 if (!byte_offset
1861 || !poly_int_tree_p (byte_offset, &suboffset)
1862 || !tree_fits_uhwi_p (bit_offset))
1863 return -1;
1864
1865 offset += suboffset;
1866 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1867
1868 if (inner == NULL_TREE)
1869 {
1870 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1871 < (unsigned int) align)
1872 return -1;
1873 break;
1874 }
1875 else if (DECL_P (inner))
1876 {
1877 if (DECL_ALIGN (inner) < align)
1878 return -1;
1879 break;
1880 }
1881 else if (TREE_CODE (inner) != COMPONENT_REF)
1882 return -1;
1883 expr = inner;
1884 }
1885 }
1886 else
1887 return -1;
1888
1889 HOST_WIDE_INT misalign;
1890 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1891 return -1;
1892 return misalign;
1893 }
1894
1895 /* Given REF (a MEM) and T, either the type of X or the expression
1896 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1897 if we are making a new object of this type. BITPOS is nonzero if
1898 there is an offset outstanding on T that will be applied later. */
1899
1900 void
1901 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1902 poly_int64 bitpos)
1903 {
1904 poly_int64 apply_bitpos = 0;
1905 tree type;
1906 struct mem_attrs attrs, *defattrs, *refattrs;
1907 addr_space_t as;
1908
1909 /* It can happen that type_for_mode was given a mode for which there
1910 is no language-level type. In which case it returns NULL, which
1911 we can see here. */
1912 if (t == NULL_TREE)
1913 return;
1914
1915 type = TYPE_P (t) ? t : TREE_TYPE (t);
1916 if (type == error_mark_node)
1917 return;
1918
1919 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1920 wrong answer, as it assumes that DECL_RTL already has the right alias
1921 info. Callers should not set DECL_RTL until after the call to
1922 set_mem_attributes. */
1923 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1924
1925 /* Get the alias set from the expression or type (perhaps using a
1926 front-end routine) and use it. */
1927 attrs.alias = get_alias_set (t);
1928
1929 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1930 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1931
1932 /* Default values from pre-existing memory attributes if present. */
1933 refattrs = MEM_ATTRS (ref);
1934 if (refattrs)
1935 {
1936 /* ??? Can this ever happen? Calling this routine on a MEM that
1937 already carries memory attributes should probably be invalid. */
1938 attrs.expr = refattrs->expr;
1939 attrs.offset_known_p = refattrs->offset_known_p;
1940 attrs.offset = refattrs->offset;
1941 attrs.size_known_p = refattrs->size_known_p;
1942 attrs.size = refattrs->size;
1943 attrs.align = refattrs->align;
1944 }
1945
1946 /* Otherwise, default values from the mode of the MEM reference. */
1947 else
1948 {
1949 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1950 gcc_assert (!defattrs->expr);
1951 gcc_assert (!defattrs->offset_known_p);
1952
1953 /* Respect mode size. */
1954 attrs.size_known_p = defattrs->size_known_p;
1955 attrs.size = defattrs->size;
1956 /* ??? Is this really necessary? We probably should always get
1957 the size from the type below. */
1958
1959 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1960 if T is an object, always compute the object alignment below. */
1961 if (TYPE_P (t))
1962 attrs.align = defattrs->align;
1963 else
1964 attrs.align = BITS_PER_UNIT;
1965 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1966 e.g. if the type carries an alignment attribute. Should we be
1967 able to simply always use TYPE_ALIGN? */
1968 }
1969
1970 /* We can set the alignment from the type if we are making an object or if
1971 this is an INDIRECT_REF. */
1972 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1973 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1974
1975 /* If the size is known, we can set that. */
1976 tree new_size = TYPE_SIZE_UNIT (type);
1977
1978 /* The address-space is that of the type. */
1979 as = TYPE_ADDR_SPACE (type);
1980
1981 /* If T is not a type, we may be able to deduce some more information about
1982 the expression. */
1983 if (! TYPE_P (t))
1984 {
1985 tree base;
1986
1987 if (TREE_THIS_VOLATILE (t))
1988 MEM_VOLATILE_P (ref) = 1;
1989
1990 /* Now remove any conversions: they don't change what the underlying
1991 object is. Likewise for SAVE_EXPR. */
1992 while (CONVERT_EXPR_P (t)
1993 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1994 || TREE_CODE (t) == SAVE_EXPR)
1995 t = TREE_OPERAND (t, 0);
1996
1997 /* Note whether this expression can trap. */
1998 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1999
2000 base = get_base_address (t);
2001 if (base)
2002 {
2003 if (DECL_P (base)
2004 && TREE_READONLY (base)
2005 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2006 && !TREE_THIS_VOLATILE (base))
2007 MEM_READONLY_P (ref) = 1;
2008
2009 /* Mark static const strings readonly as well. */
2010 if (TREE_CODE (base) == STRING_CST
2011 && TREE_READONLY (base)
2012 && TREE_STATIC (base))
2013 MEM_READONLY_P (ref) = 1;
2014
2015 /* Address-space information is on the base object. */
2016 if (TREE_CODE (base) == MEM_REF
2017 || TREE_CODE (base) == TARGET_MEM_REF)
2018 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2019 0))));
2020 else
2021 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2022 }
2023
2024 /* If this expression uses it's parent's alias set, mark it such
2025 that we won't change it. */
2026 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2027 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2028
2029 /* If this is a decl, set the attributes of the MEM from it. */
2030 if (DECL_P (t))
2031 {
2032 attrs.expr = t;
2033 attrs.offset_known_p = true;
2034 attrs.offset = 0;
2035 apply_bitpos = bitpos;
2036 new_size = DECL_SIZE_UNIT (t);
2037 }
2038
2039 /* ??? If we end up with a constant here do record a MEM_EXPR. */
2040 else if (CONSTANT_CLASS_P (t))
2041 ;
2042
2043 /* If this is a field reference, record it. */
2044 else if (TREE_CODE (t) == COMPONENT_REF)
2045 {
2046 attrs.expr = t;
2047 attrs.offset_known_p = true;
2048 attrs.offset = 0;
2049 apply_bitpos = bitpos;
2050 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2051 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2052 }
2053
2054 /* If this is an array reference, look for an outer field reference. */
2055 else if (TREE_CODE (t) == ARRAY_REF)
2056 {
2057 tree off_tree = size_zero_node;
2058 /* We can't modify t, because we use it at the end of the
2059 function. */
2060 tree t2 = t;
2061
2062 do
2063 {
2064 tree index = TREE_OPERAND (t2, 1);
2065 tree low_bound = array_ref_low_bound (t2);
2066 tree unit_size = array_ref_element_size (t2);
2067
2068 /* We assume all arrays have sizes that are a multiple of a byte.
2069 First subtract the lower bound, if any, in the type of the
2070 index, then convert to sizetype and multiply by the size of
2071 the array element. */
2072 if (! integer_zerop (low_bound))
2073 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2074 index, low_bound);
2075
2076 off_tree = size_binop (PLUS_EXPR,
2077 size_binop (MULT_EXPR,
2078 fold_convert (sizetype,
2079 index),
2080 unit_size),
2081 off_tree);
2082 t2 = TREE_OPERAND (t2, 0);
2083 }
2084 while (TREE_CODE (t2) == ARRAY_REF);
2085
2086 if (DECL_P (t2)
2087 || (TREE_CODE (t2) == COMPONENT_REF
2088 /* For trailing arrays t2 doesn't have a size that
2089 covers all valid accesses. */
2090 && ! array_at_struct_end_p (t)))
2091 {
2092 attrs.expr = t2;
2093 attrs.offset_known_p = false;
2094 if (poly_int_tree_p (off_tree, &attrs.offset))
2095 {
2096 attrs.offset_known_p = true;
2097 apply_bitpos = bitpos;
2098 }
2099 }
2100 /* Else do not record a MEM_EXPR. */
2101 }
2102
2103 /* If this is an indirect reference, record it. */
2104 else if (TREE_CODE (t) == MEM_REF
2105 || TREE_CODE (t) == TARGET_MEM_REF)
2106 {
2107 attrs.expr = t;
2108 attrs.offset_known_p = true;
2109 attrs.offset = 0;
2110 apply_bitpos = bitpos;
2111 }
2112
2113 /* Compute the alignment. */
2114 unsigned int obj_align;
2115 unsigned HOST_WIDE_INT obj_bitpos;
2116 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2117 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2118 if (diff_align != 0)
2119 obj_align = MIN (obj_align, diff_align);
2120 attrs.align = MAX (attrs.align, obj_align);
2121 }
2122
2123 poly_uint64 const_size;
2124 if (poly_int_tree_p (new_size, &const_size))
2125 {
2126 attrs.size_known_p = true;
2127 attrs.size = const_size;
2128 }
2129
2130 /* If we modified OFFSET based on T, then subtract the outstanding
2131 bit position offset. Similarly, increase the size of the accessed
2132 object to contain the negative offset. */
2133 if (maybe_ne (apply_bitpos, 0))
2134 {
2135 gcc_assert (attrs.offset_known_p);
2136 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2137 attrs.offset -= bytepos;
2138 if (attrs.size_known_p)
2139 attrs.size += bytepos;
2140 }
2141
2142 /* Now set the attributes we computed above. */
2143 attrs.addrspace = as;
2144 set_mem_attrs (ref, &attrs);
2145 }
2146
2147 void
2148 set_mem_attributes (rtx ref, tree t, int objectp)
2149 {
2150 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2151 }
2152
2153 /* Set the alias set of MEM to SET. */
2154
2155 void
2156 set_mem_alias_set (rtx mem, alias_set_type set)
2157 {
2158 /* If the new and old alias sets don't conflict, something is wrong. */
2159 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2160 mem_attrs attrs (*get_mem_attrs (mem));
2161 attrs.alias = set;
2162 set_mem_attrs (mem, &attrs);
2163 }
2164
2165 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2166
2167 void
2168 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2169 {
2170 mem_attrs attrs (*get_mem_attrs (mem));
2171 attrs.addrspace = addrspace;
2172 set_mem_attrs (mem, &attrs);
2173 }
2174
2175 /* Set the alignment of MEM to ALIGN bits. */
2176
2177 void
2178 set_mem_align (rtx mem, unsigned int align)
2179 {
2180 mem_attrs attrs (*get_mem_attrs (mem));
2181 attrs.align = align;
2182 set_mem_attrs (mem, &attrs);
2183 }
2184
2185 /* Set the expr for MEM to EXPR. */
2186
2187 void
2188 set_mem_expr (rtx mem, tree expr)
2189 {
2190 mem_attrs attrs (*get_mem_attrs (mem));
2191 attrs.expr = expr;
2192 set_mem_attrs (mem, &attrs);
2193 }
2194
2195 /* Set the offset of MEM to OFFSET. */
2196
2197 void
2198 set_mem_offset (rtx mem, poly_int64 offset)
2199 {
2200 mem_attrs attrs (*get_mem_attrs (mem));
2201 attrs.offset_known_p = true;
2202 attrs.offset = offset;
2203 set_mem_attrs (mem, &attrs);
2204 }
2205
2206 /* Clear the offset of MEM. */
2207
2208 void
2209 clear_mem_offset (rtx mem)
2210 {
2211 mem_attrs attrs (*get_mem_attrs (mem));
2212 attrs.offset_known_p = false;
2213 set_mem_attrs (mem, &attrs);
2214 }
2215
2216 /* Set the size of MEM to SIZE. */
2217
2218 void
2219 set_mem_size (rtx mem, poly_int64 size)
2220 {
2221 mem_attrs attrs (*get_mem_attrs (mem));
2222 attrs.size_known_p = true;
2223 attrs.size = size;
2224 set_mem_attrs (mem, &attrs);
2225 }
2226
2227 /* Clear the size of MEM. */
2228
2229 void
2230 clear_mem_size (rtx mem)
2231 {
2232 mem_attrs attrs (*get_mem_attrs (mem));
2233 attrs.size_known_p = false;
2234 set_mem_attrs (mem, &attrs);
2235 }
2236 \f
2237 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2238 and its address changed to ADDR. (VOIDmode means don't change the mode.
2239 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2240 returned memory location is required to be valid. INPLACE is true if any
2241 changes can be made directly to MEMREF or false if MEMREF must be treated
2242 as immutable.
2243
2244 The memory attributes are not changed. */
2245
2246 static rtx
2247 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2248 bool inplace)
2249 {
2250 addr_space_t as;
2251 rtx new_rtx;
2252
2253 gcc_assert (MEM_P (memref));
2254 as = MEM_ADDR_SPACE (memref);
2255 if (mode == VOIDmode)
2256 mode = GET_MODE (memref);
2257 if (addr == 0)
2258 addr = XEXP (memref, 0);
2259 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2260 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2261 return memref;
2262
2263 /* Don't validate address for LRA. LRA can make the address valid
2264 by itself in most efficient way. */
2265 if (validate && !lra_in_progress)
2266 {
2267 if (reload_in_progress || reload_completed)
2268 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2269 else
2270 addr = memory_address_addr_space (mode, addr, as);
2271 }
2272
2273 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2274 return memref;
2275
2276 if (inplace)
2277 {
2278 XEXP (memref, 0) = addr;
2279 return memref;
2280 }
2281
2282 new_rtx = gen_rtx_MEM (mode, addr);
2283 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2284 return new_rtx;
2285 }
2286
2287 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2288 way we are changing MEMREF, so we only preserve the alias set. */
2289
2290 rtx
2291 change_address (rtx memref, machine_mode mode, rtx addr)
2292 {
2293 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2294 machine_mode mmode = GET_MODE (new_rtx);
2295 struct mem_attrs *defattrs;
2296
2297 mem_attrs attrs (*get_mem_attrs (memref));
2298 defattrs = mode_mem_attrs[(int) mmode];
2299 attrs.expr = NULL_TREE;
2300 attrs.offset_known_p = false;
2301 attrs.size_known_p = defattrs->size_known_p;
2302 attrs.size = defattrs->size;
2303 attrs.align = defattrs->align;
2304
2305 /* If there are no changes, just return the original memory reference. */
2306 if (new_rtx == memref)
2307 {
2308 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2309 return new_rtx;
2310
2311 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2312 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2313 }
2314
2315 set_mem_attrs (new_rtx, &attrs);
2316 return new_rtx;
2317 }
2318
2319 /* Return a memory reference like MEMREF, but with its mode changed
2320 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2321 nonzero, the memory address is forced to be valid.
2322 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2323 and the caller is responsible for adjusting MEMREF base register.
2324 If ADJUST_OBJECT is zero, the underlying object associated with the
2325 memory reference is left unchanged and the caller is responsible for
2326 dealing with it. Otherwise, if the new memory reference is outside
2327 the underlying object, even partially, then the object is dropped.
2328 SIZE, if nonzero, is the size of an access in cases where MODE
2329 has no inherent size. */
2330
2331 rtx
2332 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2333 int validate, int adjust_address, int adjust_object,
2334 poly_int64 size)
2335 {
2336 rtx addr = XEXP (memref, 0);
2337 rtx new_rtx;
2338 scalar_int_mode address_mode;
2339 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2340 unsigned HOST_WIDE_INT max_align;
2341 #ifdef POINTERS_EXTEND_UNSIGNED
2342 scalar_int_mode pointer_mode
2343 = targetm.addr_space.pointer_mode (attrs.addrspace);
2344 #endif
2345
2346 /* VOIDmode means no mode change for change_address_1. */
2347 if (mode == VOIDmode)
2348 mode = GET_MODE (memref);
2349
2350 /* Take the size of non-BLKmode accesses from the mode. */
2351 defattrs = mode_mem_attrs[(int) mode];
2352 if (defattrs->size_known_p)
2353 size = defattrs->size;
2354
2355 /* If there are no changes, just return the original memory reference. */
2356 if (mode == GET_MODE (memref)
2357 && known_eq (offset, 0)
2358 && (known_eq (size, 0)
2359 || (attrs.size_known_p && known_eq (attrs.size, size)))
2360 && (!validate || memory_address_addr_space_p (mode, addr,
2361 attrs.addrspace)))
2362 return memref;
2363
2364 /* ??? Prefer to create garbage instead of creating shared rtl.
2365 This may happen even if offset is nonzero -- consider
2366 (plus (plus reg reg) const_int) -- so do this always. */
2367 addr = copy_rtx (addr);
2368
2369 /* Convert a possibly large offset to a signed value within the
2370 range of the target address space. */
2371 address_mode = get_address_mode (memref);
2372 offset = trunc_int_for_mode (offset, address_mode);
2373
2374 if (adjust_address)
2375 {
2376 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2377 object, we can merge it into the LO_SUM. */
2378 if (GET_MODE (memref) != BLKmode
2379 && GET_CODE (addr) == LO_SUM
2380 && known_in_range_p (offset,
2381 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2382 / BITS_PER_UNIT)))
2383 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2384 plus_constant (address_mode,
2385 XEXP (addr, 1), offset));
2386 #ifdef POINTERS_EXTEND_UNSIGNED
2387 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2388 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2389 the fact that pointers are not allowed to overflow. */
2390 else if (POINTERS_EXTEND_UNSIGNED > 0
2391 && GET_CODE (addr) == ZERO_EXTEND
2392 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2393 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2394 addr = gen_rtx_ZERO_EXTEND (address_mode,
2395 plus_constant (pointer_mode,
2396 XEXP (addr, 0), offset));
2397 #endif
2398 else
2399 addr = plus_constant (address_mode, addr, offset);
2400 }
2401
2402 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2403
2404 /* If the address is a REG, change_address_1 rightfully returns memref,
2405 but this would destroy memref's MEM_ATTRS. */
2406 if (new_rtx == memref && maybe_ne (offset, 0))
2407 new_rtx = copy_rtx (new_rtx);
2408
2409 /* Conservatively drop the object if we don't know where we start from. */
2410 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2411 {
2412 attrs.expr = NULL_TREE;
2413 attrs.alias = 0;
2414 }
2415
2416 /* Compute the new values of the memory attributes due to this adjustment.
2417 We add the offsets and update the alignment. */
2418 if (attrs.offset_known_p)
2419 {
2420 attrs.offset += offset;
2421
2422 /* Drop the object if the new left end is not within its bounds. */
2423 if (adjust_object && maybe_lt (attrs.offset, 0))
2424 {
2425 attrs.expr = NULL_TREE;
2426 attrs.alias = 0;
2427 }
2428 }
2429
2430 /* Compute the new alignment by taking the MIN of the alignment and the
2431 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2432 if zero. */
2433 if (maybe_ne (offset, 0))
2434 {
2435 max_align = known_alignment (offset) * BITS_PER_UNIT;
2436 attrs.align = MIN (attrs.align, max_align);
2437 }
2438
2439 if (maybe_ne (size, 0))
2440 {
2441 /* Drop the object if the new right end is not within its bounds. */
2442 if (adjust_object && maybe_gt (offset + size, attrs.size))
2443 {
2444 attrs.expr = NULL_TREE;
2445 attrs.alias = 0;
2446 }
2447 attrs.size_known_p = true;
2448 attrs.size = size;
2449 }
2450 else if (attrs.size_known_p)
2451 {
2452 gcc_assert (!adjust_object);
2453 attrs.size -= offset;
2454 /* ??? The store_by_pieces machinery generates negative sizes,
2455 so don't assert for that here. */
2456 }
2457
2458 set_mem_attrs (new_rtx, &attrs);
2459
2460 return new_rtx;
2461 }
2462
2463 /* Return a memory reference like MEMREF, but with its mode changed
2464 to MODE and its address changed to ADDR, which is assumed to be
2465 MEMREF offset by OFFSET bytes. If VALIDATE is
2466 nonzero, the memory address is forced to be valid. */
2467
2468 rtx
2469 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2470 poly_int64 offset, int validate)
2471 {
2472 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2473 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2474 }
2475
2476 /* Return a memory reference like MEMREF, but whose address is changed by
2477 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2478 known to be in OFFSET (possibly 1). */
2479
2480 rtx
2481 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2482 {
2483 rtx new_rtx, addr = XEXP (memref, 0);
2484 machine_mode address_mode;
2485 struct mem_attrs *defattrs;
2486
2487 mem_attrs attrs (*get_mem_attrs (memref));
2488 address_mode = get_address_mode (memref);
2489 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2490
2491 /* At this point we don't know _why_ the address is invalid. It
2492 could have secondary memory references, multiplies or anything.
2493
2494 However, if we did go and rearrange things, we can wind up not
2495 being able to recognize the magic around pic_offset_table_rtx.
2496 This stuff is fragile, and is yet another example of why it is
2497 bad to expose PIC machinery too early. */
2498 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2499 attrs.addrspace)
2500 && GET_CODE (addr) == PLUS
2501 && XEXP (addr, 0) == pic_offset_table_rtx)
2502 {
2503 addr = force_reg (GET_MODE (addr), addr);
2504 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2505 }
2506
2507 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2508 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2509
2510 /* If there are no changes, just return the original memory reference. */
2511 if (new_rtx == memref)
2512 return new_rtx;
2513
2514 /* Update the alignment to reflect the offset. Reset the offset, which
2515 we don't know. */
2516 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2517 attrs.offset_known_p = false;
2518 attrs.size_known_p = defattrs->size_known_p;
2519 attrs.size = defattrs->size;
2520 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2521 set_mem_attrs (new_rtx, &attrs);
2522 return new_rtx;
2523 }
2524
2525 /* Return a memory reference like MEMREF, but with its address changed to
2526 ADDR. The caller is asserting that the actual piece of memory pointed
2527 to is the same, just the form of the address is being changed, such as
2528 by putting something into a register. INPLACE is true if any changes
2529 can be made directly to MEMREF or false if MEMREF must be treated as
2530 immutable. */
2531
2532 rtx
2533 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2534 {
2535 /* change_address_1 copies the memory attribute structure without change
2536 and that's exactly what we want here. */
2537 update_temp_slot_address (XEXP (memref, 0), addr);
2538 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2539 }
2540
2541 /* Likewise, but the reference is not required to be valid. */
2542
2543 rtx
2544 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2545 {
2546 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2547 }
2548
2549 /* Return a memory reference like MEMREF, but with its mode widened to
2550 MODE and offset by OFFSET. This would be used by targets that e.g.
2551 cannot issue QImode memory operations and have to use SImode memory
2552 operations plus masking logic. */
2553
2554 rtx
2555 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2556 {
2557 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2558 unsigned int size = GET_MODE_SIZE (mode);
2559
2560 /* If there are no changes, just return the original memory reference. */
2561 if (new_rtx == memref)
2562 return new_rtx;
2563
2564 mem_attrs attrs (*get_mem_attrs (new_rtx));
2565
2566 /* If we don't know what offset we were at within the expression, then
2567 we can't know if we've overstepped the bounds. */
2568 if (! attrs.offset_known_p)
2569 attrs.expr = NULL_TREE;
2570
2571 while (attrs.expr)
2572 {
2573 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2574 {
2575 tree field = TREE_OPERAND (attrs.expr, 1);
2576 tree offset = component_ref_field_offset (attrs.expr);
2577
2578 if (! DECL_SIZE_UNIT (field))
2579 {
2580 attrs.expr = NULL_TREE;
2581 break;
2582 }
2583
2584 /* Is the field at least as large as the access? If so, ok,
2585 otherwise strip back to the containing structure. */
2586 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2587 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2588 && known_ge (attrs.offset, 0))
2589 break;
2590
2591 poly_uint64 suboffset;
2592 if (!poly_int_tree_p (offset, &suboffset))
2593 {
2594 attrs.expr = NULL_TREE;
2595 break;
2596 }
2597
2598 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2599 attrs.offset += suboffset;
2600 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2601 / BITS_PER_UNIT);
2602 }
2603 /* Similarly for the decl. */
2604 else if (DECL_P (attrs.expr)
2605 && DECL_SIZE_UNIT (attrs.expr)
2606 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2607 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2608 size)
2609 && known_ge (attrs.offset, 0))
2610 break;
2611 else
2612 {
2613 /* The widened memory access overflows the expression, which means
2614 that it could alias another expression. Zap it. */
2615 attrs.expr = NULL_TREE;
2616 break;
2617 }
2618 }
2619
2620 if (! attrs.expr)
2621 attrs.offset_known_p = false;
2622
2623 /* The widened memory may alias other stuff, so zap the alias set. */
2624 /* ??? Maybe use get_alias_set on any remaining expression. */
2625 attrs.alias = 0;
2626 attrs.size_known_p = true;
2627 attrs.size = size;
2628 set_mem_attrs (new_rtx, &attrs);
2629 return new_rtx;
2630 }
2631 \f
2632 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2633 static GTY(()) tree spill_slot_decl;
2634
2635 tree
2636 get_spill_slot_decl (bool force_build_p)
2637 {
2638 tree d = spill_slot_decl;
2639 rtx rd;
2640
2641 if (d || !force_build_p)
2642 return d;
2643
2644 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2645 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2646 DECL_ARTIFICIAL (d) = 1;
2647 DECL_IGNORED_P (d) = 1;
2648 TREE_USED (d) = 1;
2649 spill_slot_decl = d;
2650
2651 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2652 MEM_NOTRAP_P (rd) = 1;
2653 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2654 attrs.alias = new_alias_set ();
2655 attrs.expr = d;
2656 set_mem_attrs (rd, &attrs);
2657 SET_DECL_RTL (d, rd);
2658
2659 return d;
2660 }
2661
2662 /* Given MEM, a result from assign_stack_local, fill in the memory
2663 attributes as appropriate for a register allocator spill slot.
2664 These slots are not aliasable by other memory. We arrange for
2665 them all to use a single MEM_EXPR, so that the aliasing code can
2666 work properly in the case of shared spill slots. */
2667
2668 void
2669 set_mem_attrs_for_spill (rtx mem)
2670 {
2671 rtx addr;
2672
2673 mem_attrs attrs (*get_mem_attrs (mem));
2674 attrs.expr = get_spill_slot_decl (true);
2675 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2676 attrs.addrspace = ADDR_SPACE_GENERIC;
2677
2678 /* We expect the incoming memory to be of the form:
2679 (mem:MODE (plus (reg sfp) (const_int offset)))
2680 with perhaps the plus missing for offset = 0. */
2681 addr = XEXP (mem, 0);
2682 attrs.offset_known_p = true;
2683 strip_offset (addr, &attrs.offset);
2684
2685 set_mem_attrs (mem, &attrs);
2686 MEM_NOTRAP_P (mem) = 1;
2687 }
2688 \f
2689 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2690
2691 rtx_code_label *
2692 gen_label_rtx (void)
2693 {
2694 return as_a <rtx_code_label *> (
2695 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2696 NULL, label_num++, NULL));
2697 }
2698 \f
2699 /* For procedure integration. */
2700
2701 /* Install new pointers to the first and last insns in the chain.
2702 Also, set cur_insn_uid to one higher than the last in use.
2703 Used for an inline-procedure after copying the insn chain. */
2704
2705 void
2706 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2707 {
2708 rtx_insn *insn;
2709
2710 set_first_insn (first);
2711 set_last_insn (last);
2712 cur_insn_uid = 0;
2713
2714 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2715 {
2716 int debug_count = 0;
2717
2718 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2719 cur_debug_insn_uid = 0;
2720
2721 for (insn = first; insn; insn = NEXT_INSN (insn))
2722 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2723 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2724 else
2725 {
2726 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2727 if (DEBUG_INSN_P (insn))
2728 debug_count++;
2729 }
2730
2731 if (debug_count)
2732 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2733 else
2734 cur_debug_insn_uid++;
2735 }
2736 else
2737 for (insn = first; insn; insn = NEXT_INSN (insn))
2738 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2739
2740 cur_insn_uid++;
2741 }
2742 \f
2743 /* Go through all the RTL insn bodies and copy any invalid shared
2744 structure. This routine should only be called once. */
2745
2746 static void
2747 unshare_all_rtl_1 (rtx_insn *insn)
2748 {
2749 /* Unshare just about everything else. */
2750 unshare_all_rtl_in_chain (insn);
2751
2752 /* Make sure the addresses of stack slots found outside the insn chain
2753 (such as, in DECL_RTL of a variable) are not shared
2754 with the insn chain.
2755
2756 This special care is necessary when the stack slot MEM does not
2757 actually appear in the insn chain. If it does appear, its address
2758 is unshared from all else at that point. */
2759 unsigned int i;
2760 rtx temp;
2761 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2762 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2763 }
2764
2765 /* Go through all the RTL insn bodies and copy any invalid shared
2766 structure, again. This is a fairly expensive thing to do so it
2767 should be done sparingly. */
2768
2769 void
2770 unshare_all_rtl_again (rtx_insn *insn)
2771 {
2772 rtx_insn *p;
2773 tree decl;
2774
2775 for (p = insn; p; p = NEXT_INSN (p))
2776 if (INSN_P (p))
2777 {
2778 reset_used_flags (PATTERN (p));
2779 reset_used_flags (REG_NOTES (p));
2780 if (CALL_P (p))
2781 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2782 }
2783
2784 /* Make sure that virtual stack slots are not shared. */
2785 set_used_decls (DECL_INITIAL (cfun->decl));
2786
2787 /* Make sure that virtual parameters are not shared. */
2788 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2789 set_used_flags (DECL_RTL (decl));
2790
2791 rtx temp;
2792 unsigned int i;
2793 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2794 reset_used_flags (temp);
2795
2796 unshare_all_rtl_1 (insn);
2797 }
2798
2799 unsigned int
2800 unshare_all_rtl (void)
2801 {
2802 unshare_all_rtl_1 (get_insns ());
2803
2804 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2805 {
2806 if (DECL_RTL_SET_P (decl))
2807 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2808 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2809 }
2810
2811 return 0;
2812 }
2813
2814
2815 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2816 Recursively does the same for subexpressions. */
2817
2818 static void
2819 verify_rtx_sharing (rtx orig, rtx insn)
2820 {
2821 rtx x = orig;
2822 int i;
2823 enum rtx_code code;
2824 const char *format_ptr;
2825
2826 if (x == 0)
2827 return;
2828
2829 code = GET_CODE (x);
2830
2831 /* These types may be freely shared. */
2832
2833 switch (code)
2834 {
2835 case REG:
2836 case DEBUG_EXPR:
2837 case VALUE:
2838 CASE_CONST_ANY:
2839 case SYMBOL_REF:
2840 case LABEL_REF:
2841 case CODE_LABEL:
2842 case PC:
2843 case CC0:
2844 case RETURN:
2845 case SIMPLE_RETURN:
2846 case SCRATCH:
2847 /* SCRATCH must be shared because they represent distinct values. */
2848 return;
2849 case CLOBBER:
2850 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2851 clobbers or clobbers of hard registers that originated as pseudos.
2852 This is needed to allow safe register renaming. */
2853 if (REG_P (XEXP (x, 0))
2854 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2855 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2856 return;
2857 break;
2858
2859 case CONST:
2860 if (shared_const_p (orig))
2861 return;
2862 break;
2863
2864 case MEM:
2865 /* A MEM is allowed to be shared if its address is constant. */
2866 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2867 || reload_completed || reload_in_progress)
2868 return;
2869
2870 break;
2871
2872 default:
2873 break;
2874 }
2875
2876 /* This rtx may not be shared. If it has already been seen,
2877 replace it with a copy of itself. */
2878 if (flag_checking && RTX_FLAG (x, used))
2879 {
2880 error ("invalid rtl sharing found in the insn");
2881 debug_rtx (insn);
2882 error ("shared rtx");
2883 debug_rtx (x);
2884 internal_error ("internal consistency failure");
2885 }
2886 gcc_assert (!RTX_FLAG (x, used));
2887
2888 RTX_FLAG (x, used) = 1;
2889
2890 /* Now scan the subexpressions recursively. */
2891
2892 format_ptr = GET_RTX_FORMAT (code);
2893
2894 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2895 {
2896 switch (*format_ptr++)
2897 {
2898 case 'e':
2899 verify_rtx_sharing (XEXP (x, i), insn);
2900 break;
2901
2902 case 'E':
2903 if (XVEC (x, i) != NULL)
2904 {
2905 int j;
2906 int len = XVECLEN (x, i);
2907
2908 for (j = 0; j < len; j++)
2909 {
2910 /* We allow sharing of ASM_OPERANDS inside single
2911 instruction. */
2912 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2913 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2914 == ASM_OPERANDS))
2915 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2916 else
2917 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2918 }
2919 }
2920 break;
2921 }
2922 }
2923 return;
2924 }
2925
2926 /* Reset used-flags for INSN. */
2927
2928 static void
2929 reset_insn_used_flags (rtx insn)
2930 {
2931 gcc_assert (INSN_P (insn));
2932 reset_used_flags (PATTERN (insn));
2933 reset_used_flags (REG_NOTES (insn));
2934 if (CALL_P (insn))
2935 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2936 }
2937
2938 /* Go through all the RTL insn bodies and clear all the USED bits. */
2939
2940 static void
2941 reset_all_used_flags (void)
2942 {
2943 rtx_insn *p;
2944
2945 for (p = get_insns (); p; p = NEXT_INSN (p))
2946 if (INSN_P (p))
2947 {
2948 rtx pat = PATTERN (p);
2949 if (GET_CODE (pat) != SEQUENCE)
2950 reset_insn_used_flags (p);
2951 else
2952 {
2953 gcc_assert (REG_NOTES (p) == NULL);
2954 for (int i = 0; i < XVECLEN (pat, 0); i++)
2955 {
2956 rtx insn = XVECEXP (pat, 0, i);
2957 if (INSN_P (insn))
2958 reset_insn_used_flags (insn);
2959 }
2960 }
2961 }
2962 }
2963
2964 /* Verify sharing in INSN. */
2965
2966 static void
2967 verify_insn_sharing (rtx insn)
2968 {
2969 gcc_assert (INSN_P (insn));
2970 verify_rtx_sharing (PATTERN (insn), insn);
2971 verify_rtx_sharing (REG_NOTES (insn), insn);
2972 if (CALL_P (insn))
2973 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2974 }
2975
2976 /* Go through all the RTL insn bodies and check that there is no unexpected
2977 sharing in between the subexpressions. */
2978
2979 DEBUG_FUNCTION void
2980 verify_rtl_sharing (void)
2981 {
2982 rtx_insn *p;
2983
2984 timevar_push (TV_VERIFY_RTL_SHARING);
2985
2986 reset_all_used_flags ();
2987
2988 for (p = get_insns (); p; p = NEXT_INSN (p))
2989 if (INSN_P (p))
2990 {
2991 rtx pat = PATTERN (p);
2992 if (GET_CODE (pat) != SEQUENCE)
2993 verify_insn_sharing (p);
2994 else
2995 for (int i = 0; i < XVECLEN (pat, 0); i++)
2996 {
2997 rtx insn = XVECEXP (pat, 0, i);
2998 if (INSN_P (insn))
2999 verify_insn_sharing (insn);
3000 }
3001 }
3002
3003 reset_all_used_flags ();
3004
3005 timevar_pop (TV_VERIFY_RTL_SHARING);
3006 }
3007
3008 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3009 Assumes the mark bits are cleared at entry. */
3010
3011 void
3012 unshare_all_rtl_in_chain (rtx_insn *insn)
3013 {
3014 for (; insn; insn = NEXT_INSN (insn))
3015 if (INSN_P (insn))
3016 {
3017 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3018 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3019 if (CALL_P (insn))
3020 CALL_INSN_FUNCTION_USAGE (insn)
3021 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3022 }
3023 }
3024
3025 /* Go through all virtual stack slots of a function and mark them as
3026 shared. We never replace the DECL_RTLs themselves with a copy,
3027 but expressions mentioned into a DECL_RTL cannot be shared with
3028 expressions in the instruction stream.
3029
3030 Note that reload may convert pseudo registers into memories in-place.
3031 Pseudo registers are always shared, but MEMs never are. Thus if we
3032 reset the used flags on MEMs in the instruction stream, we must set
3033 them again on MEMs that appear in DECL_RTLs. */
3034
3035 static void
3036 set_used_decls (tree blk)
3037 {
3038 tree t;
3039
3040 /* Mark decls. */
3041 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3042 if (DECL_RTL_SET_P (t))
3043 set_used_flags (DECL_RTL (t));
3044
3045 /* Now process sub-blocks. */
3046 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3047 set_used_decls (t);
3048 }
3049
3050 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3051 Recursively does the same for subexpressions. Uses
3052 copy_rtx_if_shared_1 to reduce stack space. */
3053
3054 rtx
3055 copy_rtx_if_shared (rtx orig)
3056 {
3057 copy_rtx_if_shared_1 (&orig);
3058 return orig;
3059 }
3060
3061 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3062 use. Recursively does the same for subexpressions. */
3063
3064 static void
3065 copy_rtx_if_shared_1 (rtx *orig1)
3066 {
3067 rtx x;
3068 int i;
3069 enum rtx_code code;
3070 rtx *last_ptr;
3071 const char *format_ptr;
3072 int copied = 0;
3073 int length;
3074
3075 /* Repeat is used to turn tail-recursion into iteration. */
3076 repeat:
3077 x = *orig1;
3078
3079 if (x == 0)
3080 return;
3081
3082 code = GET_CODE (x);
3083
3084 /* These types may be freely shared. */
3085
3086 switch (code)
3087 {
3088 case REG:
3089 case DEBUG_EXPR:
3090 case VALUE:
3091 CASE_CONST_ANY:
3092 case SYMBOL_REF:
3093 case LABEL_REF:
3094 case CODE_LABEL:
3095 case PC:
3096 case CC0:
3097 case RETURN:
3098 case SIMPLE_RETURN:
3099 case SCRATCH:
3100 /* SCRATCH must be shared because they represent distinct values. */
3101 return;
3102 case CLOBBER:
3103 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3104 clobbers or clobbers of hard registers that originated as pseudos.
3105 This is needed to allow safe register renaming. */
3106 if (REG_P (XEXP (x, 0))
3107 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3108 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3109 return;
3110 break;
3111
3112 case CONST:
3113 if (shared_const_p (x))
3114 return;
3115 break;
3116
3117 case DEBUG_INSN:
3118 case INSN:
3119 case JUMP_INSN:
3120 case CALL_INSN:
3121 case NOTE:
3122 case BARRIER:
3123 /* The chain of insns is not being copied. */
3124 return;
3125
3126 default:
3127 break;
3128 }
3129
3130 /* This rtx may not be shared. If it has already been seen,
3131 replace it with a copy of itself. */
3132
3133 if (RTX_FLAG (x, used))
3134 {
3135 x = shallow_copy_rtx (x);
3136 copied = 1;
3137 }
3138 RTX_FLAG (x, used) = 1;
3139
3140 /* Now scan the subexpressions recursively.
3141 We can store any replaced subexpressions directly into X
3142 since we know X is not shared! Any vectors in X
3143 must be copied if X was copied. */
3144
3145 format_ptr = GET_RTX_FORMAT (code);
3146 length = GET_RTX_LENGTH (code);
3147 last_ptr = NULL;
3148
3149 for (i = 0; i < length; i++)
3150 {
3151 switch (*format_ptr++)
3152 {
3153 case 'e':
3154 if (last_ptr)
3155 copy_rtx_if_shared_1 (last_ptr);
3156 last_ptr = &XEXP (x, i);
3157 break;
3158
3159 case 'E':
3160 if (XVEC (x, i) != NULL)
3161 {
3162 int j;
3163 int len = XVECLEN (x, i);
3164
3165 /* Copy the vector iff I copied the rtx and the length
3166 is nonzero. */
3167 if (copied && len > 0)
3168 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3169
3170 /* Call recursively on all inside the vector. */
3171 for (j = 0; j < len; j++)
3172 {
3173 if (last_ptr)
3174 copy_rtx_if_shared_1 (last_ptr);
3175 last_ptr = &XVECEXP (x, i, j);
3176 }
3177 }
3178 break;
3179 }
3180 }
3181 *orig1 = x;
3182 if (last_ptr)
3183 {
3184 orig1 = last_ptr;
3185 goto repeat;
3186 }
3187 return;
3188 }
3189
3190 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3191
3192 static void
3193 mark_used_flags (rtx x, int flag)
3194 {
3195 int i, j;
3196 enum rtx_code code;
3197 const char *format_ptr;
3198 int length;
3199
3200 /* Repeat is used to turn tail-recursion into iteration. */
3201 repeat:
3202 if (x == 0)
3203 return;
3204
3205 code = GET_CODE (x);
3206
3207 /* These types may be freely shared so we needn't do any resetting
3208 for them. */
3209
3210 switch (code)
3211 {
3212 case REG:
3213 case DEBUG_EXPR:
3214 case VALUE:
3215 CASE_CONST_ANY:
3216 case SYMBOL_REF:
3217 case CODE_LABEL:
3218 case PC:
3219 case CC0:
3220 case RETURN:
3221 case SIMPLE_RETURN:
3222 return;
3223
3224 case DEBUG_INSN:
3225 case INSN:
3226 case JUMP_INSN:
3227 case CALL_INSN:
3228 case NOTE:
3229 case LABEL_REF:
3230 case BARRIER:
3231 /* The chain of insns is not being copied. */
3232 return;
3233
3234 default:
3235 break;
3236 }
3237
3238 RTX_FLAG (x, used) = flag;
3239
3240 format_ptr = GET_RTX_FORMAT (code);
3241 length = GET_RTX_LENGTH (code);
3242
3243 for (i = 0; i < length; i++)
3244 {
3245 switch (*format_ptr++)
3246 {
3247 case 'e':
3248 if (i == length-1)
3249 {
3250 x = XEXP (x, i);
3251 goto repeat;
3252 }
3253 mark_used_flags (XEXP (x, i), flag);
3254 break;
3255
3256 case 'E':
3257 for (j = 0; j < XVECLEN (x, i); j++)
3258 mark_used_flags (XVECEXP (x, i, j), flag);
3259 break;
3260 }
3261 }
3262 }
3263
3264 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3265 to look for shared sub-parts. */
3266
3267 void
3268 reset_used_flags (rtx x)
3269 {
3270 mark_used_flags (x, 0);
3271 }
3272
3273 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3274 to look for shared sub-parts. */
3275
3276 void
3277 set_used_flags (rtx x)
3278 {
3279 mark_used_flags (x, 1);
3280 }
3281 \f
3282 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3283 Return X or the rtx for the pseudo reg the value of X was copied into.
3284 OTHER must be valid as a SET_DEST. */
3285
3286 rtx
3287 make_safe_from (rtx x, rtx other)
3288 {
3289 while (1)
3290 switch (GET_CODE (other))
3291 {
3292 case SUBREG:
3293 other = SUBREG_REG (other);
3294 break;
3295 case STRICT_LOW_PART:
3296 case SIGN_EXTEND:
3297 case ZERO_EXTEND:
3298 other = XEXP (other, 0);
3299 break;
3300 default:
3301 goto done;
3302 }
3303 done:
3304 if ((MEM_P (other)
3305 && ! CONSTANT_P (x)
3306 && !REG_P (x)
3307 && GET_CODE (x) != SUBREG)
3308 || (REG_P (other)
3309 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3310 || reg_mentioned_p (other, x))))
3311 {
3312 rtx temp = gen_reg_rtx (GET_MODE (x));
3313 emit_move_insn (temp, x);
3314 return temp;
3315 }
3316 return x;
3317 }
3318 \f
3319 /* Emission of insns (adding them to the doubly-linked list). */
3320
3321 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3322
3323 rtx_insn *
3324 get_last_insn_anywhere (void)
3325 {
3326 struct sequence_stack *seq;
3327 for (seq = get_current_sequence (); seq; seq = seq->next)
3328 if (seq->last != 0)
3329 return seq->last;
3330 return 0;
3331 }
3332
3333 /* Return the first nonnote insn emitted in current sequence or current
3334 function. This routine looks inside SEQUENCEs. */
3335
3336 rtx_insn *
3337 get_first_nonnote_insn (void)
3338 {
3339 rtx_insn *insn = get_insns ();
3340
3341 if (insn)
3342 {
3343 if (NOTE_P (insn))
3344 for (insn = next_insn (insn);
3345 insn && NOTE_P (insn);
3346 insn = next_insn (insn))
3347 continue;
3348 else
3349 {
3350 if (NONJUMP_INSN_P (insn)
3351 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3352 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3353 }
3354 }
3355
3356 return insn;
3357 }
3358
3359 /* Return the last nonnote insn emitted in current sequence or current
3360 function. This routine looks inside SEQUENCEs. */
3361
3362 rtx_insn *
3363 get_last_nonnote_insn (void)
3364 {
3365 rtx_insn *insn = get_last_insn ();
3366
3367 if (insn)
3368 {
3369 if (NOTE_P (insn))
3370 for (insn = previous_insn (insn);
3371 insn && NOTE_P (insn);
3372 insn = previous_insn (insn))
3373 continue;
3374 else
3375 {
3376 if (NONJUMP_INSN_P (insn))
3377 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3378 insn = seq->insn (seq->len () - 1);
3379 }
3380 }
3381
3382 return insn;
3383 }
3384
3385 /* Return the number of actual (non-debug) insns emitted in this
3386 function. */
3387
3388 int
3389 get_max_insn_count (void)
3390 {
3391 int n = cur_insn_uid;
3392
3393 /* The table size must be stable across -g, to avoid codegen
3394 differences due to debug insns, and not be affected by
3395 -fmin-insn-uid, to avoid excessive table size and to simplify
3396 debugging of -fcompare-debug failures. */
3397 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3398 n -= cur_debug_insn_uid;
3399 else
3400 n -= MIN_NONDEBUG_INSN_UID;
3401
3402 return n;
3403 }
3404
3405 \f
3406 /* Return the next insn. If it is a SEQUENCE, return the first insn
3407 of the sequence. */
3408
3409 rtx_insn *
3410 next_insn (rtx_insn *insn)
3411 {
3412 if (insn)
3413 {
3414 insn = NEXT_INSN (insn);
3415 if (insn && NONJUMP_INSN_P (insn)
3416 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3417 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3418 }
3419
3420 return insn;
3421 }
3422
3423 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3424 of the sequence. */
3425
3426 rtx_insn *
3427 previous_insn (rtx_insn *insn)
3428 {
3429 if (insn)
3430 {
3431 insn = PREV_INSN (insn);
3432 if (insn && NONJUMP_INSN_P (insn))
3433 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3434 insn = seq->insn (seq->len () - 1);
3435 }
3436
3437 return insn;
3438 }
3439
3440 /* Return the next insn after INSN that is not a NOTE. This routine does not
3441 look inside SEQUENCEs. */
3442
3443 rtx_insn *
3444 next_nonnote_insn (rtx_insn *insn)
3445 {
3446 while (insn)
3447 {
3448 insn = NEXT_INSN (insn);
3449 if (insn == 0 || !NOTE_P (insn))
3450 break;
3451 }
3452
3453 return insn;
3454 }
3455
3456 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3457 routine does not look inside SEQUENCEs. */
3458
3459 rtx_insn *
3460 next_nondebug_insn (rtx_insn *insn)
3461 {
3462 while (insn)
3463 {
3464 insn = NEXT_INSN (insn);
3465 if (insn == 0 || !DEBUG_INSN_P (insn))
3466 break;
3467 }
3468
3469 return insn;
3470 }
3471
3472 /* Return the previous insn before INSN that is not a NOTE. This routine does
3473 not look inside SEQUENCEs. */
3474
3475 rtx_insn *
3476 prev_nonnote_insn (rtx_insn *insn)
3477 {
3478 while (insn)
3479 {
3480 insn = PREV_INSN (insn);
3481 if (insn == 0 || !NOTE_P (insn))
3482 break;
3483 }
3484
3485 return insn;
3486 }
3487
3488 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3489 This routine does not look inside SEQUENCEs. */
3490
3491 rtx_insn *
3492 prev_nondebug_insn (rtx_insn *insn)
3493 {
3494 while (insn)
3495 {
3496 insn = PREV_INSN (insn);
3497 if (insn == 0 || !DEBUG_INSN_P (insn))
3498 break;
3499 }
3500
3501 return insn;
3502 }
3503
3504 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3505 This routine does not look inside SEQUENCEs. */
3506
3507 rtx_insn *
3508 next_nonnote_nondebug_insn (rtx_insn *insn)
3509 {
3510 while (insn)
3511 {
3512 insn = NEXT_INSN (insn);
3513 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3514 break;
3515 }
3516
3517 return insn;
3518 }
3519
3520 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3521 but stop the search before we enter another basic block. This
3522 routine does not look inside SEQUENCEs. */
3523
3524 rtx_insn *
3525 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3526 {
3527 while (insn)
3528 {
3529 insn = NEXT_INSN (insn);
3530 if (insn == 0)
3531 break;
3532 if (DEBUG_INSN_P (insn))
3533 continue;
3534 if (!NOTE_P (insn))
3535 break;
3536 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3537 return NULL;
3538 }
3539
3540 return insn;
3541 }
3542
3543 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3544 This routine does not look inside SEQUENCEs. */
3545
3546 rtx_insn *
3547 prev_nonnote_nondebug_insn (rtx_insn *insn)
3548 {
3549 while (insn)
3550 {
3551 insn = PREV_INSN (insn);
3552 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3553 break;
3554 }
3555
3556 return insn;
3557 }
3558
3559 /* Return the previous insn before INSN that is not a NOTE nor
3560 DEBUG_INSN, but stop the search before we enter another basic
3561 block. This routine does not look inside SEQUENCEs. */
3562
3563 rtx_insn *
3564 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3565 {
3566 while (insn)
3567 {
3568 insn = PREV_INSN (insn);
3569 if (insn == 0)
3570 break;
3571 if (DEBUG_INSN_P (insn))
3572 continue;
3573 if (!NOTE_P (insn))
3574 break;
3575 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3576 return NULL;
3577 }
3578
3579 return insn;
3580 }
3581
3582 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3583 or 0, if there is none. This routine does not look inside
3584 SEQUENCEs. */
3585
3586 rtx_insn *
3587 next_real_insn (rtx uncast_insn)
3588 {
3589 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3590
3591 while (insn)
3592 {
3593 insn = NEXT_INSN (insn);
3594 if (insn == 0 || INSN_P (insn))
3595 break;
3596 }
3597
3598 return insn;
3599 }
3600
3601 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3602 or 0, if there is none. This routine does not look inside
3603 SEQUENCEs. */
3604
3605 rtx_insn *
3606 prev_real_insn (rtx_insn *insn)
3607 {
3608 while (insn)
3609 {
3610 insn = PREV_INSN (insn);
3611 if (insn == 0 || INSN_P (insn))
3612 break;
3613 }
3614
3615 return insn;
3616 }
3617
3618 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3619 This routine does not look inside SEQUENCEs. */
3620
3621 rtx_call_insn *
3622 last_call_insn (void)
3623 {
3624 rtx_insn *insn;
3625
3626 for (insn = get_last_insn ();
3627 insn && !CALL_P (insn);
3628 insn = PREV_INSN (insn))
3629 ;
3630
3631 return safe_as_a <rtx_call_insn *> (insn);
3632 }
3633
3634 /* Find the next insn after INSN that really does something. This routine
3635 does not look inside SEQUENCEs. After reload this also skips over
3636 standalone USE and CLOBBER insn. */
3637
3638 int
3639 active_insn_p (const rtx_insn *insn)
3640 {
3641 return (CALL_P (insn) || JUMP_P (insn)
3642 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3643 || (NONJUMP_INSN_P (insn)
3644 && (! reload_completed
3645 || (GET_CODE (PATTERN (insn)) != USE
3646 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3647 }
3648
3649 rtx_insn *
3650 next_active_insn (rtx_insn *insn)
3651 {
3652 while (insn)
3653 {
3654 insn = NEXT_INSN (insn);
3655 if (insn == 0 || active_insn_p (insn))
3656 break;
3657 }
3658
3659 return insn;
3660 }
3661
3662 /* Find the last insn before INSN that really does something. This routine
3663 does not look inside SEQUENCEs. After reload this also skips over
3664 standalone USE and CLOBBER insn. */
3665
3666 rtx_insn *
3667 prev_active_insn (rtx_insn *insn)
3668 {
3669 while (insn)
3670 {
3671 insn = PREV_INSN (insn);
3672 if (insn == 0 || active_insn_p (insn))
3673 break;
3674 }
3675
3676 return insn;
3677 }
3678 \f
3679 /* Return the next insn that uses CC0 after INSN, which is assumed to
3680 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3681 applied to the result of this function should yield INSN).
3682
3683 Normally, this is simply the next insn. However, if a REG_CC_USER note
3684 is present, it contains the insn that uses CC0.
3685
3686 Return 0 if we can't find the insn. */
3687
3688 rtx_insn *
3689 next_cc0_user (rtx_insn *insn)
3690 {
3691 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3692
3693 if (note)
3694 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3695
3696 insn = next_nonnote_insn (insn);
3697 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3698 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3699
3700 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3701 return insn;
3702
3703 return 0;
3704 }
3705
3706 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3707 note, it is the previous insn. */
3708
3709 rtx_insn *
3710 prev_cc0_setter (rtx_insn *insn)
3711 {
3712 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3713
3714 if (note)
3715 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3716
3717 insn = prev_nonnote_insn (insn);
3718 gcc_assert (sets_cc0_p (PATTERN (insn)));
3719
3720 return insn;
3721 }
3722
3723 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3724
3725 static int
3726 find_auto_inc (const_rtx x, const_rtx reg)
3727 {
3728 subrtx_iterator::array_type array;
3729 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3730 {
3731 const_rtx x = *iter;
3732 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3733 && rtx_equal_p (reg, XEXP (x, 0)))
3734 return true;
3735 }
3736 return false;
3737 }
3738
3739 /* Increment the label uses for all labels present in rtx. */
3740
3741 static void
3742 mark_label_nuses (rtx x)
3743 {
3744 enum rtx_code code;
3745 int i, j;
3746 const char *fmt;
3747
3748 code = GET_CODE (x);
3749 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3750 LABEL_NUSES (label_ref_label (x))++;
3751
3752 fmt = GET_RTX_FORMAT (code);
3753 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3754 {
3755 if (fmt[i] == 'e')
3756 mark_label_nuses (XEXP (x, i));
3757 else if (fmt[i] == 'E')
3758 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3759 mark_label_nuses (XVECEXP (x, i, j));
3760 }
3761 }
3762
3763 \f
3764 /* Try splitting insns that can be split for better scheduling.
3765 PAT is the pattern which might split.
3766 TRIAL is the insn providing PAT.
3767 LAST is nonzero if we should return the last insn of the sequence produced.
3768
3769 If this routine succeeds in splitting, it returns the first or last
3770 replacement insn depending on the value of LAST. Otherwise, it
3771 returns TRIAL. If the insn to be returned can be split, it will be. */
3772
3773 rtx_insn *
3774 try_split (rtx pat, rtx_insn *trial, int last)
3775 {
3776 rtx_insn *before, *after;
3777 rtx note;
3778 rtx_insn *seq, *tem;
3779 profile_probability probability;
3780 rtx_insn *insn_last, *insn;
3781 int njumps = 0;
3782 rtx_insn *call_insn = NULL;
3783
3784 /* We're not good at redistributing frame information. */
3785 if (RTX_FRAME_RELATED_P (trial))
3786 return trial;
3787
3788 if (any_condjump_p (trial)
3789 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3790 split_branch_probability
3791 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3792 else
3793 split_branch_probability = profile_probability::uninitialized ();
3794
3795 probability = split_branch_probability;
3796
3797 seq = split_insns (pat, trial);
3798
3799 split_branch_probability = profile_probability::uninitialized ();
3800
3801 if (!seq)
3802 return trial;
3803
3804 /* Avoid infinite loop if any insn of the result matches
3805 the original pattern. */
3806 insn_last = seq;
3807 while (1)
3808 {
3809 if (INSN_P (insn_last)
3810 && rtx_equal_p (PATTERN (insn_last), pat))
3811 return trial;
3812 if (!NEXT_INSN (insn_last))
3813 break;
3814 insn_last = NEXT_INSN (insn_last);
3815 }
3816
3817 /* We will be adding the new sequence to the function. The splitters
3818 may have introduced invalid RTL sharing, so unshare the sequence now. */
3819 unshare_all_rtl_in_chain (seq);
3820
3821 /* Mark labels and copy flags. */
3822 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3823 {
3824 if (JUMP_P (insn))
3825 {
3826 if (JUMP_P (trial))
3827 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3828 mark_jump_label (PATTERN (insn), insn, 0);
3829 njumps++;
3830 if (probability.initialized_p ()
3831 && any_condjump_p (insn)
3832 && !find_reg_note (insn, REG_BR_PROB, 0))
3833 {
3834 /* We can preserve the REG_BR_PROB notes only if exactly
3835 one jump is created, otherwise the machine description
3836 is responsible for this step using
3837 split_branch_probability variable. */
3838 gcc_assert (njumps == 1);
3839 add_reg_br_prob_note (insn, probability);
3840 }
3841 }
3842 }
3843
3844 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3845 in SEQ and copy any additional information across. */
3846 if (CALL_P (trial))
3847 {
3848 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3849 if (CALL_P (insn))
3850 {
3851 rtx_insn *next;
3852 rtx *p;
3853
3854 gcc_assert (call_insn == NULL_RTX);
3855 call_insn = insn;
3856
3857 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3858 target may have explicitly specified. */
3859 p = &CALL_INSN_FUNCTION_USAGE (insn);
3860 while (*p)
3861 p = &XEXP (*p, 1);
3862 *p = CALL_INSN_FUNCTION_USAGE (trial);
3863
3864 /* If the old call was a sibling call, the new one must
3865 be too. */
3866 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3867
3868 /* If the new call is the last instruction in the sequence,
3869 it will effectively replace the old call in-situ. Otherwise
3870 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3871 so that it comes immediately after the new call. */
3872 if (NEXT_INSN (insn))
3873 for (next = NEXT_INSN (trial);
3874 next && NOTE_P (next);
3875 next = NEXT_INSN (next))
3876 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3877 {
3878 remove_insn (next);
3879 add_insn_after (next, insn, NULL);
3880 break;
3881 }
3882 }
3883 }
3884
3885 /* Copy notes, particularly those related to the CFG. */
3886 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3887 {
3888 switch (REG_NOTE_KIND (note))
3889 {
3890 case REG_EH_REGION:
3891 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3892 break;
3893
3894 case REG_NORETURN:
3895 case REG_SETJMP:
3896 case REG_TM:
3897 case REG_CALL_NOCF_CHECK:
3898 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3899 {
3900 if (CALL_P (insn))
3901 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3902 }
3903 break;
3904
3905 case REG_NON_LOCAL_GOTO:
3906 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3907 {
3908 if (JUMP_P (insn))
3909 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3910 }
3911 break;
3912
3913 case REG_INC:
3914 if (!AUTO_INC_DEC)
3915 break;
3916
3917 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3918 {
3919 rtx reg = XEXP (note, 0);
3920 if (!FIND_REG_INC_NOTE (insn, reg)
3921 && find_auto_inc (PATTERN (insn), reg))
3922 add_reg_note (insn, REG_INC, reg);
3923 }
3924 break;
3925
3926 case REG_ARGS_SIZE:
3927 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3928 break;
3929
3930 case REG_CALL_DECL:
3931 gcc_assert (call_insn != NULL_RTX);
3932 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3933 break;
3934
3935 default:
3936 break;
3937 }
3938 }
3939
3940 /* If there are LABELS inside the split insns increment the
3941 usage count so we don't delete the label. */
3942 if (INSN_P (trial))
3943 {
3944 insn = insn_last;
3945 while (insn != NULL_RTX)
3946 {
3947 /* JUMP_P insns have already been "marked" above. */
3948 if (NONJUMP_INSN_P (insn))
3949 mark_label_nuses (PATTERN (insn));
3950
3951 insn = PREV_INSN (insn);
3952 }
3953 }
3954
3955 before = PREV_INSN (trial);
3956 after = NEXT_INSN (trial);
3957
3958 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3959
3960 delete_insn (trial);
3961
3962 /* Recursively call try_split for each new insn created; by the
3963 time control returns here that insn will be fully split, so
3964 set LAST and continue from the insn after the one returned.
3965 We can't use next_active_insn here since AFTER may be a note.
3966 Ignore deleted insns, which can be occur if not optimizing. */
3967 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3968 if (! tem->deleted () && INSN_P (tem))
3969 tem = try_split (PATTERN (tem), tem, 1);
3970
3971 /* Return either the first or the last insn, depending on which was
3972 requested. */
3973 return last
3974 ? (after ? PREV_INSN (after) : get_last_insn ())
3975 : NEXT_INSN (before);
3976 }
3977 \f
3978 /* Make and return an INSN rtx, initializing all its slots.
3979 Store PATTERN in the pattern slots. */
3980
3981 rtx_insn *
3982 make_insn_raw (rtx pattern)
3983 {
3984 rtx_insn *insn;
3985
3986 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3987
3988 INSN_UID (insn) = cur_insn_uid++;
3989 PATTERN (insn) = pattern;
3990 INSN_CODE (insn) = -1;
3991 REG_NOTES (insn) = NULL;
3992 INSN_LOCATION (insn) = curr_insn_location ();
3993 BLOCK_FOR_INSN (insn) = NULL;
3994
3995 #ifdef ENABLE_RTL_CHECKING
3996 if (insn
3997 && INSN_P (insn)
3998 && (returnjump_p (insn)
3999 || (GET_CODE (insn) == SET
4000 && SET_DEST (insn) == pc_rtx)))
4001 {
4002 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4003 debug_rtx (insn);
4004 }
4005 #endif
4006
4007 return insn;
4008 }
4009
4010 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4011
4012 static rtx_insn *
4013 make_debug_insn_raw (rtx pattern)
4014 {
4015 rtx_debug_insn *insn;
4016
4017 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4018 INSN_UID (insn) = cur_debug_insn_uid++;
4019 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
4020 INSN_UID (insn) = cur_insn_uid++;
4021
4022 PATTERN (insn) = pattern;
4023 INSN_CODE (insn) = -1;
4024 REG_NOTES (insn) = NULL;
4025 INSN_LOCATION (insn) = curr_insn_location ();
4026 BLOCK_FOR_INSN (insn) = NULL;
4027
4028 return insn;
4029 }
4030
4031 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4032
4033 static rtx_insn *
4034 make_jump_insn_raw (rtx pattern)
4035 {
4036 rtx_jump_insn *insn;
4037
4038 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4039 INSN_UID (insn) = cur_insn_uid++;
4040
4041 PATTERN (insn) = pattern;
4042 INSN_CODE (insn) = -1;
4043 REG_NOTES (insn) = NULL;
4044 JUMP_LABEL (insn) = NULL;
4045 INSN_LOCATION (insn) = curr_insn_location ();
4046 BLOCK_FOR_INSN (insn) = NULL;
4047
4048 return insn;
4049 }
4050
4051 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4052
4053 static rtx_insn *
4054 make_call_insn_raw (rtx pattern)
4055 {
4056 rtx_call_insn *insn;
4057
4058 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4059 INSN_UID (insn) = cur_insn_uid++;
4060
4061 PATTERN (insn) = pattern;
4062 INSN_CODE (insn) = -1;
4063 REG_NOTES (insn) = NULL;
4064 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4065 INSN_LOCATION (insn) = curr_insn_location ();
4066 BLOCK_FOR_INSN (insn) = NULL;
4067
4068 return insn;
4069 }
4070
4071 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4072
4073 static rtx_note *
4074 make_note_raw (enum insn_note subtype)
4075 {
4076 /* Some notes are never created this way at all. These notes are
4077 only created by patching out insns. */
4078 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4079 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4080
4081 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4082 INSN_UID (note) = cur_insn_uid++;
4083 NOTE_KIND (note) = subtype;
4084 BLOCK_FOR_INSN (note) = NULL;
4085 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4086 return note;
4087 }
4088 \f
4089 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4090 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4091 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4092
4093 static inline void
4094 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4095 {
4096 SET_PREV_INSN (insn) = prev;
4097 SET_NEXT_INSN (insn) = next;
4098 if (prev != NULL)
4099 {
4100 SET_NEXT_INSN (prev) = insn;
4101 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4102 {
4103 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4104 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4105 }
4106 }
4107 if (next != NULL)
4108 {
4109 SET_PREV_INSN (next) = insn;
4110 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4111 {
4112 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4113 SET_PREV_INSN (sequence->insn (0)) = insn;
4114 }
4115 }
4116
4117 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4118 {
4119 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4120 SET_PREV_INSN (sequence->insn (0)) = prev;
4121 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4122 }
4123 }
4124
4125 /* Add INSN to the end of the doubly-linked list.
4126 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4127
4128 void
4129 add_insn (rtx_insn *insn)
4130 {
4131 rtx_insn *prev = get_last_insn ();
4132 link_insn_into_chain (insn, prev, NULL);
4133 if (get_insns () == NULL)
4134 set_first_insn (insn);
4135 set_last_insn (insn);
4136 }
4137
4138 /* Add INSN into the doubly-linked list after insn AFTER. */
4139
4140 static void
4141 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4142 {
4143 rtx_insn *next = NEXT_INSN (after);
4144
4145 gcc_assert (!optimize || !after->deleted ());
4146
4147 link_insn_into_chain (insn, after, next);
4148
4149 if (next == NULL)
4150 {
4151 struct sequence_stack *seq;
4152
4153 for (seq = get_current_sequence (); seq; seq = seq->next)
4154 if (after == seq->last)
4155 {
4156 seq->last = insn;
4157 break;
4158 }
4159 }
4160 }
4161
4162 /* Add INSN into the doubly-linked list before insn BEFORE. */
4163
4164 static void
4165 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4166 {
4167 rtx_insn *prev = PREV_INSN (before);
4168
4169 gcc_assert (!optimize || !before->deleted ());
4170
4171 link_insn_into_chain (insn, prev, before);
4172
4173 if (prev == NULL)
4174 {
4175 struct sequence_stack *seq;
4176
4177 for (seq = get_current_sequence (); seq; seq = seq->next)
4178 if (before == seq->first)
4179 {
4180 seq->first = insn;
4181 break;
4182 }
4183
4184 gcc_assert (seq);
4185 }
4186 }
4187
4188 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4189 If BB is NULL, an attempt is made to infer the bb from before.
4190
4191 This and the next function should be the only functions called
4192 to insert an insn once delay slots have been filled since only
4193 they know how to update a SEQUENCE. */
4194
4195 void
4196 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4197 {
4198 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4199 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4200 add_insn_after_nobb (insn, after);
4201 if (!BARRIER_P (after)
4202 && !BARRIER_P (insn)
4203 && (bb = BLOCK_FOR_INSN (after)))
4204 {
4205 set_block_for_insn (insn, bb);
4206 if (INSN_P (insn))
4207 df_insn_rescan (insn);
4208 /* Should not happen as first in the BB is always
4209 either NOTE or LABEL. */
4210 if (BB_END (bb) == after
4211 /* Avoid clobbering of structure when creating new BB. */
4212 && !BARRIER_P (insn)
4213 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4214 BB_END (bb) = insn;
4215 }
4216 }
4217
4218 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4219 If BB is NULL, an attempt is made to infer the bb from before.
4220
4221 This and the previous function should be the only functions called
4222 to insert an insn once delay slots have been filled since only
4223 they know how to update a SEQUENCE. */
4224
4225 void
4226 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4227 {
4228 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4229 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4230 add_insn_before_nobb (insn, before);
4231
4232 if (!bb
4233 && !BARRIER_P (before)
4234 && !BARRIER_P (insn))
4235 bb = BLOCK_FOR_INSN (before);
4236
4237 if (bb)
4238 {
4239 set_block_for_insn (insn, bb);
4240 if (INSN_P (insn))
4241 df_insn_rescan (insn);
4242 /* Should not happen as first in the BB is always either NOTE or
4243 LABEL. */
4244 gcc_assert (BB_HEAD (bb) != insn
4245 /* Avoid clobbering of structure when creating new BB. */
4246 || BARRIER_P (insn)
4247 || NOTE_INSN_BASIC_BLOCK_P (insn));
4248 }
4249 }
4250
4251 /* Replace insn with an deleted instruction note. */
4252
4253 void
4254 set_insn_deleted (rtx insn)
4255 {
4256 if (INSN_P (insn))
4257 df_insn_delete (as_a <rtx_insn *> (insn));
4258 PUT_CODE (insn, NOTE);
4259 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4260 }
4261
4262
4263 /* Unlink INSN from the insn chain.
4264
4265 This function knows how to handle sequences.
4266
4267 This function does not invalidate data flow information associated with
4268 INSN (i.e. does not call df_insn_delete). That makes this function
4269 usable for only disconnecting an insn from the chain, and re-emit it
4270 elsewhere later.
4271
4272 To later insert INSN elsewhere in the insn chain via add_insn and
4273 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4274 the caller. Nullifying them here breaks many insn chain walks.
4275
4276 To really delete an insn and related DF information, use delete_insn. */
4277
4278 void
4279 remove_insn (rtx uncast_insn)
4280 {
4281 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4282 rtx_insn *next = NEXT_INSN (insn);
4283 rtx_insn *prev = PREV_INSN (insn);
4284 basic_block bb;
4285
4286 if (prev)
4287 {
4288 SET_NEXT_INSN (prev) = next;
4289 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4290 {
4291 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4292 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4293 }
4294 }
4295 else
4296 {
4297 struct sequence_stack *seq;
4298
4299 for (seq = get_current_sequence (); seq; seq = seq->next)
4300 if (insn == seq->first)
4301 {
4302 seq->first = next;
4303 break;
4304 }
4305
4306 gcc_assert (seq);
4307 }
4308
4309 if (next)
4310 {
4311 SET_PREV_INSN (next) = prev;
4312 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4313 {
4314 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4315 SET_PREV_INSN (sequence->insn (0)) = prev;
4316 }
4317 }
4318 else
4319 {
4320 struct sequence_stack *seq;
4321
4322 for (seq = get_current_sequence (); seq; seq = seq->next)
4323 if (insn == seq->last)
4324 {
4325 seq->last = prev;
4326 break;
4327 }
4328
4329 gcc_assert (seq);
4330 }
4331
4332 /* Fix up basic block boundaries, if necessary. */
4333 if (!BARRIER_P (insn)
4334 && (bb = BLOCK_FOR_INSN (insn)))
4335 {
4336 if (BB_HEAD (bb) == insn)
4337 {
4338 /* Never ever delete the basic block note without deleting whole
4339 basic block. */
4340 gcc_assert (!NOTE_P (insn));
4341 BB_HEAD (bb) = next;
4342 }
4343 if (BB_END (bb) == insn)
4344 BB_END (bb) = prev;
4345 }
4346 }
4347
4348 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4349
4350 void
4351 add_function_usage_to (rtx call_insn, rtx call_fusage)
4352 {
4353 gcc_assert (call_insn && CALL_P (call_insn));
4354
4355 /* Put the register usage information on the CALL. If there is already
4356 some usage information, put ours at the end. */
4357 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4358 {
4359 rtx link;
4360
4361 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4362 link = XEXP (link, 1))
4363 ;
4364
4365 XEXP (link, 1) = call_fusage;
4366 }
4367 else
4368 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4369 }
4370
4371 /* Delete all insns made since FROM.
4372 FROM becomes the new last instruction. */
4373
4374 void
4375 delete_insns_since (rtx_insn *from)
4376 {
4377 if (from == 0)
4378 set_first_insn (0);
4379 else
4380 SET_NEXT_INSN (from) = 0;
4381 set_last_insn (from);
4382 }
4383
4384 /* This function is deprecated, please use sequences instead.
4385
4386 Move a consecutive bunch of insns to a different place in the chain.
4387 The insns to be moved are those between FROM and TO.
4388 They are moved to a new position after the insn AFTER.
4389 AFTER must not be FROM or TO or any insn in between.
4390
4391 This function does not know about SEQUENCEs and hence should not be
4392 called after delay-slot filling has been done. */
4393
4394 void
4395 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4396 {
4397 if (flag_checking)
4398 {
4399 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4400 gcc_assert (after != x);
4401 gcc_assert (after != to);
4402 }
4403
4404 /* Splice this bunch out of where it is now. */
4405 if (PREV_INSN (from))
4406 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4407 if (NEXT_INSN (to))
4408 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4409 if (get_last_insn () == to)
4410 set_last_insn (PREV_INSN (from));
4411 if (get_insns () == from)
4412 set_first_insn (NEXT_INSN (to));
4413
4414 /* Make the new neighbors point to it and it to them. */
4415 if (NEXT_INSN (after))
4416 SET_PREV_INSN (NEXT_INSN (after)) = to;
4417
4418 SET_NEXT_INSN (to) = NEXT_INSN (after);
4419 SET_PREV_INSN (from) = after;
4420 SET_NEXT_INSN (after) = from;
4421 if (after == get_last_insn ())
4422 set_last_insn (to);
4423 }
4424
4425 /* Same as function above, but take care to update BB boundaries. */
4426 void
4427 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4428 {
4429 rtx_insn *prev = PREV_INSN (from);
4430 basic_block bb, bb2;
4431
4432 reorder_insns_nobb (from, to, after);
4433
4434 if (!BARRIER_P (after)
4435 && (bb = BLOCK_FOR_INSN (after)))
4436 {
4437 rtx_insn *x;
4438 df_set_bb_dirty (bb);
4439
4440 if (!BARRIER_P (from)
4441 && (bb2 = BLOCK_FOR_INSN (from)))
4442 {
4443 if (BB_END (bb2) == to)
4444 BB_END (bb2) = prev;
4445 df_set_bb_dirty (bb2);
4446 }
4447
4448 if (BB_END (bb) == after)
4449 BB_END (bb) = to;
4450
4451 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4452 if (!BARRIER_P (x))
4453 df_insn_change_bb (x, bb);
4454 }
4455 }
4456
4457 \f
4458 /* Emit insn(s) of given code and pattern
4459 at a specified place within the doubly-linked list.
4460
4461 All of the emit_foo global entry points accept an object
4462 X which is either an insn list or a PATTERN of a single
4463 instruction.
4464
4465 There are thus a few canonical ways to generate code and
4466 emit it at a specific place in the instruction stream. For
4467 example, consider the instruction named SPOT and the fact that
4468 we would like to emit some instructions before SPOT. We might
4469 do it like this:
4470
4471 start_sequence ();
4472 ... emit the new instructions ...
4473 insns_head = get_insns ();
4474 end_sequence ();
4475
4476 emit_insn_before (insns_head, SPOT);
4477
4478 It used to be common to generate SEQUENCE rtl instead, but that
4479 is a relic of the past which no longer occurs. The reason is that
4480 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4481 generated would almost certainly die right after it was created. */
4482
4483 static rtx_insn *
4484 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4485 rtx_insn *(*make_raw) (rtx))
4486 {
4487 rtx_insn *insn;
4488
4489 gcc_assert (before);
4490
4491 if (x == NULL_RTX)
4492 return safe_as_a <rtx_insn *> (last);
4493
4494 switch (GET_CODE (x))
4495 {
4496 case DEBUG_INSN:
4497 case INSN:
4498 case JUMP_INSN:
4499 case CALL_INSN:
4500 case CODE_LABEL:
4501 case BARRIER:
4502 case NOTE:
4503 insn = as_a <rtx_insn *> (x);
4504 while (insn)
4505 {
4506 rtx_insn *next = NEXT_INSN (insn);
4507 add_insn_before (insn, before, bb);
4508 last = insn;
4509 insn = next;
4510 }
4511 break;
4512
4513 #ifdef ENABLE_RTL_CHECKING
4514 case SEQUENCE:
4515 gcc_unreachable ();
4516 break;
4517 #endif
4518
4519 default:
4520 last = (*make_raw) (x);
4521 add_insn_before (last, before, bb);
4522 break;
4523 }
4524
4525 return safe_as_a <rtx_insn *> (last);
4526 }
4527
4528 /* Make X be output before the instruction BEFORE. */
4529
4530 rtx_insn *
4531 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4532 {
4533 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4534 }
4535
4536 /* Make an instruction with body X and code JUMP_INSN
4537 and output it before the instruction BEFORE. */
4538
4539 rtx_jump_insn *
4540 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4541 {
4542 return as_a <rtx_jump_insn *> (
4543 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4544 make_jump_insn_raw));
4545 }
4546
4547 /* Make an instruction with body X and code CALL_INSN
4548 and output it before the instruction BEFORE. */
4549
4550 rtx_insn *
4551 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4552 {
4553 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4554 make_call_insn_raw);
4555 }
4556
4557 /* Make an instruction with body X and code DEBUG_INSN
4558 and output it before the instruction BEFORE. */
4559
4560 rtx_insn *
4561 emit_debug_insn_before_noloc (rtx x, rtx before)
4562 {
4563 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4564 make_debug_insn_raw);
4565 }
4566
4567 /* Make an insn of code BARRIER
4568 and output it before the insn BEFORE. */
4569
4570 rtx_barrier *
4571 emit_barrier_before (rtx before)
4572 {
4573 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4574
4575 INSN_UID (insn) = cur_insn_uid++;
4576
4577 add_insn_before (insn, before, NULL);
4578 return insn;
4579 }
4580
4581 /* Emit the label LABEL before the insn BEFORE. */
4582
4583 rtx_code_label *
4584 emit_label_before (rtx label, rtx_insn *before)
4585 {
4586 gcc_checking_assert (INSN_UID (label) == 0);
4587 INSN_UID (label) = cur_insn_uid++;
4588 add_insn_before (label, before, NULL);
4589 return as_a <rtx_code_label *> (label);
4590 }
4591 \f
4592 /* Helper for emit_insn_after, handles lists of instructions
4593 efficiently. */
4594
4595 static rtx_insn *
4596 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4597 {
4598 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4599 rtx_insn *last;
4600 rtx_insn *after_after;
4601 if (!bb && !BARRIER_P (after))
4602 bb = BLOCK_FOR_INSN (after);
4603
4604 if (bb)
4605 {
4606 df_set_bb_dirty (bb);
4607 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4608 if (!BARRIER_P (last))
4609 {
4610 set_block_for_insn (last, bb);
4611 df_insn_rescan (last);
4612 }
4613 if (!BARRIER_P (last))
4614 {
4615 set_block_for_insn (last, bb);
4616 df_insn_rescan (last);
4617 }
4618 if (BB_END (bb) == after)
4619 BB_END (bb) = last;
4620 }
4621 else
4622 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4623 continue;
4624
4625 after_after = NEXT_INSN (after);
4626
4627 SET_NEXT_INSN (after) = first;
4628 SET_PREV_INSN (first) = after;
4629 SET_NEXT_INSN (last) = after_after;
4630 if (after_after)
4631 SET_PREV_INSN (after_after) = last;
4632
4633 if (after == get_last_insn ())
4634 set_last_insn (last);
4635
4636 return last;
4637 }
4638
4639 static rtx_insn *
4640 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4641 rtx_insn *(*make_raw)(rtx))
4642 {
4643 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4644 rtx_insn *last = after;
4645
4646 gcc_assert (after);
4647
4648 if (x == NULL_RTX)
4649 return last;
4650
4651 switch (GET_CODE (x))
4652 {
4653 case DEBUG_INSN:
4654 case INSN:
4655 case JUMP_INSN:
4656 case CALL_INSN:
4657 case CODE_LABEL:
4658 case BARRIER:
4659 case NOTE:
4660 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4661 break;
4662
4663 #ifdef ENABLE_RTL_CHECKING
4664 case SEQUENCE:
4665 gcc_unreachable ();
4666 break;
4667 #endif
4668
4669 default:
4670 last = (*make_raw) (x);
4671 add_insn_after (last, after, bb);
4672 break;
4673 }
4674
4675 return last;
4676 }
4677
4678 /* Make X be output after the insn AFTER and set the BB of insn. If
4679 BB is NULL, an attempt is made to infer the BB from AFTER. */
4680
4681 rtx_insn *
4682 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4683 {
4684 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4685 }
4686
4687
4688 /* Make an insn of code JUMP_INSN with body X
4689 and output it after the insn AFTER. */
4690
4691 rtx_jump_insn *
4692 emit_jump_insn_after_noloc (rtx x, rtx after)
4693 {
4694 return as_a <rtx_jump_insn *> (
4695 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4696 }
4697
4698 /* Make an instruction with body X and code CALL_INSN
4699 and output it after the instruction AFTER. */
4700
4701 rtx_insn *
4702 emit_call_insn_after_noloc (rtx x, rtx after)
4703 {
4704 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4705 }
4706
4707 /* Make an instruction with body X and code CALL_INSN
4708 and output it after the instruction AFTER. */
4709
4710 rtx_insn *
4711 emit_debug_insn_after_noloc (rtx x, rtx after)
4712 {
4713 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4714 }
4715
4716 /* Make an insn of code BARRIER
4717 and output it after the insn AFTER. */
4718
4719 rtx_barrier *
4720 emit_barrier_after (rtx after)
4721 {
4722 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4723
4724 INSN_UID (insn) = cur_insn_uid++;
4725
4726 add_insn_after (insn, after, NULL);
4727 return insn;
4728 }
4729
4730 /* Emit the label LABEL after the insn AFTER. */
4731
4732 rtx_insn *
4733 emit_label_after (rtx label, rtx_insn *after)
4734 {
4735 gcc_checking_assert (INSN_UID (label) == 0);
4736 INSN_UID (label) = cur_insn_uid++;
4737 add_insn_after (label, after, NULL);
4738 return as_a <rtx_insn *> (label);
4739 }
4740 \f
4741 /* Notes require a bit of special handling: Some notes need to have their
4742 BLOCK_FOR_INSN set, others should never have it set, and some should
4743 have it set or clear depending on the context. */
4744
4745 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4746 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4747 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4748
4749 static bool
4750 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4751 {
4752 switch (subtype)
4753 {
4754 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4755 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4756 return true;
4757
4758 /* Notes for var tracking and EH region markers can appear between or
4759 inside basic blocks. If the caller is emitting on the basic block
4760 boundary, do not set BLOCK_FOR_INSN on the new note. */
4761 case NOTE_INSN_VAR_LOCATION:
4762 case NOTE_INSN_CALL_ARG_LOCATION:
4763 case NOTE_INSN_EH_REGION_BEG:
4764 case NOTE_INSN_EH_REGION_END:
4765 return on_bb_boundary_p;
4766
4767 /* Otherwise, BLOCK_FOR_INSN must be set. */
4768 default:
4769 return false;
4770 }
4771 }
4772
4773 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4774
4775 rtx_note *
4776 emit_note_after (enum insn_note subtype, rtx_insn *after)
4777 {
4778 rtx_note *note = make_note_raw (subtype);
4779 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4780 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4781
4782 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4783 add_insn_after_nobb (note, after);
4784 else
4785 add_insn_after (note, after, bb);
4786 return note;
4787 }
4788
4789 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4790
4791 rtx_note *
4792 emit_note_before (enum insn_note subtype, rtx_insn *before)
4793 {
4794 rtx_note *note = make_note_raw (subtype);
4795 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4796 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4797
4798 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4799 add_insn_before_nobb (note, before);
4800 else
4801 add_insn_before (note, before, bb);
4802 return note;
4803 }
4804 \f
4805 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4806 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4807
4808 static rtx_insn *
4809 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4810 rtx_insn *(*make_raw) (rtx))
4811 {
4812 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4813 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4814
4815 if (pattern == NULL_RTX || !loc)
4816 return last;
4817
4818 after = NEXT_INSN (after);
4819 while (1)
4820 {
4821 if (active_insn_p (after)
4822 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4823 && !INSN_LOCATION (after))
4824 INSN_LOCATION (after) = loc;
4825 if (after == last)
4826 break;
4827 after = NEXT_INSN (after);
4828 }
4829 return last;
4830 }
4831
4832 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4833 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4834 any DEBUG_INSNs. */
4835
4836 static rtx_insn *
4837 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4838 rtx_insn *(*make_raw) (rtx))
4839 {
4840 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4841 rtx_insn *prev = after;
4842
4843 if (skip_debug_insns)
4844 while (DEBUG_INSN_P (prev))
4845 prev = PREV_INSN (prev);
4846
4847 if (INSN_P (prev))
4848 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4849 make_raw);
4850 else
4851 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4852 }
4853
4854 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4855 rtx_insn *
4856 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4857 {
4858 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4859 }
4860
4861 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4862 rtx_insn *
4863 emit_insn_after (rtx pattern, rtx after)
4864 {
4865 return emit_pattern_after (pattern, after, true, make_insn_raw);
4866 }
4867
4868 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4869 rtx_jump_insn *
4870 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4871 {
4872 return as_a <rtx_jump_insn *> (
4873 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4874 }
4875
4876 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4877 rtx_jump_insn *
4878 emit_jump_insn_after (rtx pattern, rtx after)
4879 {
4880 return as_a <rtx_jump_insn *> (
4881 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4882 }
4883
4884 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4885 rtx_insn *
4886 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4887 {
4888 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4889 }
4890
4891 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4892 rtx_insn *
4893 emit_call_insn_after (rtx pattern, rtx after)
4894 {
4895 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4896 }
4897
4898 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4899 rtx_insn *
4900 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4901 {
4902 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4903 }
4904
4905 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4906 rtx_insn *
4907 emit_debug_insn_after (rtx pattern, rtx after)
4908 {
4909 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4910 }
4911
4912 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4913 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4914 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4915 CALL_INSN, etc. */
4916
4917 static rtx_insn *
4918 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4919 rtx_insn *(*make_raw) (rtx))
4920 {
4921 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4922 rtx_insn *first = PREV_INSN (before);
4923 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4924 insnp ? before : NULL_RTX,
4925 NULL, make_raw);
4926
4927 if (pattern == NULL_RTX || !loc)
4928 return last;
4929
4930 if (!first)
4931 first = get_insns ();
4932 else
4933 first = NEXT_INSN (first);
4934 while (1)
4935 {
4936 if (active_insn_p (first)
4937 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4938 && !INSN_LOCATION (first))
4939 INSN_LOCATION (first) = loc;
4940 if (first == last)
4941 break;
4942 first = NEXT_INSN (first);
4943 }
4944 return last;
4945 }
4946
4947 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4948 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4949 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4950 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4951
4952 static rtx_insn *
4953 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4954 bool insnp, rtx_insn *(*make_raw) (rtx))
4955 {
4956 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4957 rtx_insn *next = before;
4958
4959 if (skip_debug_insns)
4960 while (DEBUG_INSN_P (next))
4961 next = PREV_INSN (next);
4962
4963 if (INSN_P (next))
4964 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4965 insnp, make_raw);
4966 else
4967 return emit_pattern_before_noloc (pattern, before,
4968 insnp ? before : NULL_RTX,
4969 NULL, make_raw);
4970 }
4971
4972 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4973 rtx_insn *
4974 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4975 {
4976 return emit_pattern_before_setloc (pattern, before, loc, true,
4977 make_insn_raw);
4978 }
4979
4980 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4981 rtx_insn *
4982 emit_insn_before (rtx pattern, rtx before)
4983 {
4984 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4985 }
4986
4987 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4988 rtx_jump_insn *
4989 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4990 {
4991 return as_a <rtx_jump_insn *> (
4992 emit_pattern_before_setloc (pattern, before, loc, false,
4993 make_jump_insn_raw));
4994 }
4995
4996 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4997 rtx_jump_insn *
4998 emit_jump_insn_before (rtx pattern, rtx before)
4999 {
5000 return as_a <rtx_jump_insn *> (
5001 emit_pattern_before (pattern, before, true, false,
5002 make_jump_insn_raw));
5003 }
5004
5005 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5006 rtx_insn *
5007 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
5008 {
5009 return emit_pattern_before_setloc (pattern, before, loc, false,
5010 make_call_insn_raw);
5011 }
5012
5013 /* Like emit_call_insn_before_noloc,
5014 but set insn_location according to BEFORE. */
5015 rtx_insn *
5016 emit_call_insn_before (rtx pattern, rtx_insn *before)
5017 {
5018 return emit_pattern_before (pattern, before, true, false,
5019 make_call_insn_raw);
5020 }
5021
5022 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5023 rtx_insn *
5024 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
5025 {
5026 return emit_pattern_before_setloc (pattern, before, loc, false,
5027 make_debug_insn_raw);
5028 }
5029
5030 /* Like emit_debug_insn_before_noloc,
5031 but set insn_location according to BEFORE. */
5032 rtx_insn *
5033 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5034 {
5035 return emit_pattern_before (pattern, before, false, false,
5036 make_debug_insn_raw);
5037 }
5038 \f
5039 /* Take X and emit it at the end of the doubly-linked
5040 INSN list.
5041
5042 Returns the last insn emitted. */
5043
5044 rtx_insn *
5045 emit_insn (rtx x)
5046 {
5047 rtx_insn *last = get_last_insn ();
5048 rtx_insn *insn;
5049
5050 if (x == NULL_RTX)
5051 return last;
5052
5053 switch (GET_CODE (x))
5054 {
5055 case DEBUG_INSN:
5056 case INSN:
5057 case JUMP_INSN:
5058 case CALL_INSN:
5059 case CODE_LABEL:
5060 case BARRIER:
5061 case NOTE:
5062 insn = as_a <rtx_insn *> (x);
5063 while (insn)
5064 {
5065 rtx_insn *next = NEXT_INSN (insn);
5066 add_insn (insn);
5067 last = insn;
5068 insn = next;
5069 }
5070 break;
5071
5072 #ifdef ENABLE_RTL_CHECKING
5073 case JUMP_TABLE_DATA:
5074 case SEQUENCE:
5075 gcc_unreachable ();
5076 break;
5077 #endif
5078
5079 default:
5080 last = make_insn_raw (x);
5081 add_insn (last);
5082 break;
5083 }
5084
5085 return last;
5086 }
5087
5088 /* Make an insn of code DEBUG_INSN with pattern X
5089 and add it to the end of the doubly-linked list. */
5090
5091 rtx_insn *
5092 emit_debug_insn (rtx x)
5093 {
5094 rtx_insn *last = get_last_insn ();
5095 rtx_insn *insn;
5096
5097 if (x == NULL_RTX)
5098 return last;
5099
5100 switch (GET_CODE (x))
5101 {
5102 case DEBUG_INSN:
5103 case INSN:
5104 case JUMP_INSN:
5105 case CALL_INSN:
5106 case CODE_LABEL:
5107 case BARRIER:
5108 case NOTE:
5109 insn = as_a <rtx_insn *> (x);
5110 while (insn)
5111 {
5112 rtx_insn *next = NEXT_INSN (insn);
5113 add_insn (insn);
5114 last = insn;
5115 insn = next;
5116 }
5117 break;
5118
5119 #ifdef ENABLE_RTL_CHECKING
5120 case JUMP_TABLE_DATA:
5121 case SEQUENCE:
5122 gcc_unreachable ();
5123 break;
5124 #endif
5125
5126 default:
5127 last = make_debug_insn_raw (x);
5128 add_insn (last);
5129 break;
5130 }
5131
5132 return last;
5133 }
5134
5135 /* Make an insn of code JUMP_INSN with pattern X
5136 and add it to the end of the doubly-linked list. */
5137
5138 rtx_insn *
5139 emit_jump_insn (rtx x)
5140 {
5141 rtx_insn *last = NULL;
5142 rtx_insn *insn;
5143
5144 switch (GET_CODE (x))
5145 {
5146 case DEBUG_INSN:
5147 case INSN:
5148 case JUMP_INSN:
5149 case CALL_INSN:
5150 case CODE_LABEL:
5151 case BARRIER:
5152 case NOTE:
5153 insn = as_a <rtx_insn *> (x);
5154 while (insn)
5155 {
5156 rtx_insn *next = NEXT_INSN (insn);
5157 add_insn (insn);
5158 last = insn;
5159 insn = next;
5160 }
5161 break;
5162
5163 #ifdef ENABLE_RTL_CHECKING
5164 case JUMP_TABLE_DATA:
5165 case SEQUENCE:
5166 gcc_unreachable ();
5167 break;
5168 #endif
5169
5170 default:
5171 last = make_jump_insn_raw (x);
5172 add_insn (last);
5173 break;
5174 }
5175
5176 return last;
5177 }
5178
5179 /* Make an insn of code CALL_INSN with pattern X
5180 and add it to the end of the doubly-linked list. */
5181
5182 rtx_insn *
5183 emit_call_insn (rtx x)
5184 {
5185 rtx_insn *insn;
5186
5187 switch (GET_CODE (x))
5188 {
5189 case DEBUG_INSN:
5190 case INSN:
5191 case JUMP_INSN:
5192 case CALL_INSN:
5193 case CODE_LABEL:
5194 case BARRIER:
5195 case NOTE:
5196 insn = emit_insn (x);
5197 break;
5198
5199 #ifdef ENABLE_RTL_CHECKING
5200 case SEQUENCE:
5201 case JUMP_TABLE_DATA:
5202 gcc_unreachable ();
5203 break;
5204 #endif
5205
5206 default:
5207 insn = make_call_insn_raw (x);
5208 add_insn (insn);
5209 break;
5210 }
5211
5212 return insn;
5213 }
5214
5215 /* Add the label LABEL to the end of the doubly-linked list. */
5216
5217 rtx_code_label *
5218 emit_label (rtx uncast_label)
5219 {
5220 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5221
5222 gcc_checking_assert (INSN_UID (label) == 0);
5223 INSN_UID (label) = cur_insn_uid++;
5224 add_insn (label);
5225 return label;
5226 }
5227
5228 /* Make an insn of code JUMP_TABLE_DATA
5229 and add it to the end of the doubly-linked list. */
5230
5231 rtx_jump_table_data *
5232 emit_jump_table_data (rtx table)
5233 {
5234 rtx_jump_table_data *jump_table_data =
5235 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5236 INSN_UID (jump_table_data) = cur_insn_uid++;
5237 PATTERN (jump_table_data) = table;
5238 BLOCK_FOR_INSN (jump_table_data) = NULL;
5239 add_insn (jump_table_data);
5240 return jump_table_data;
5241 }
5242
5243 /* Make an insn of code BARRIER
5244 and add it to the end of the doubly-linked list. */
5245
5246 rtx_barrier *
5247 emit_barrier (void)
5248 {
5249 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5250 INSN_UID (barrier) = cur_insn_uid++;
5251 add_insn (barrier);
5252 return barrier;
5253 }
5254
5255 /* Emit a copy of note ORIG. */
5256
5257 rtx_note *
5258 emit_note_copy (rtx_note *orig)
5259 {
5260 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5261 rtx_note *note = make_note_raw (kind);
5262 NOTE_DATA (note) = NOTE_DATA (orig);
5263 add_insn (note);
5264 return note;
5265 }
5266
5267 /* Make an insn of code NOTE or type NOTE_NO
5268 and add it to the end of the doubly-linked list. */
5269
5270 rtx_note *
5271 emit_note (enum insn_note kind)
5272 {
5273 rtx_note *note = make_note_raw (kind);
5274 add_insn (note);
5275 return note;
5276 }
5277
5278 /* Emit a clobber of lvalue X. */
5279
5280 rtx_insn *
5281 emit_clobber (rtx x)
5282 {
5283 /* CONCATs should not appear in the insn stream. */
5284 if (GET_CODE (x) == CONCAT)
5285 {
5286 emit_clobber (XEXP (x, 0));
5287 return emit_clobber (XEXP (x, 1));
5288 }
5289 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5290 }
5291
5292 /* Return a sequence of insns to clobber lvalue X. */
5293
5294 rtx_insn *
5295 gen_clobber (rtx x)
5296 {
5297 rtx_insn *seq;
5298
5299 start_sequence ();
5300 emit_clobber (x);
5301 seq = get_insns ();
5302 end_sequence ();
5303 return seq;
5304 }
5305
5306 /* Emit a use of rvalue X. */
5307
5308 rtx_insn *
5309 emit_use (rtx x)
5310 {
5311 /* CONCATs should not appear in the insn stream. */
5312 if (GET_CODE (x) == CONCAT)
5313 {
5314 emit_use (XEXP (x, 0));
5315 return emit_use (XEXP (x, 1));
5316 }
5317 return emit_insn (gen_rtx_USE (VOIDmode, x));
5318 }
5319
5320 /* Return a sequence of insns to use rvalue X. */
5321
5322 rtx_insn *
5323 gen_use (rtx x)
5324 {
5325 rtx_insn *seq;
5326
5327 start_sequence ();
5328 emit_use (x);
5329 seq = get_insns ();
5330 end_sequence ();
5331 return seq;
5332 }
5333
5334 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5335 Return the set in INSN that such notes describe, or NULL if the notes
5336 have no meaning for INSN. */
5337
5338 rtx
5339 set_for_reg_notes (rtx insn)
5340 {
5341 rtx pat, reg;
5342
5343 if (!INSN_P (insn))
5344 return NULL_RTX;
5345
5346 pat = PATTERN (insn);
5347 if (GET_CODE (pat) == PARALLEL)
5348 {
5349 /* We do not use single_set because that ignores SETs of unused
5350 registers. REG_EQUAL and REG_EQUIV notes really do require the
5351 PARALLEL to have a single SET. */
5352 if (multiple_sets (insn))
5353 return NULL_RTX;
5354 pat = XVECEXP (pat, 0, 0);
5355 }
5356
5357 if (GET_CODE (pat) != SET)
5358 return NULL_RTX;
5359
5360 reg = SET_DEST (pat);
5361
5362 /* Notes apply to the contents of a STRICT_LOW_PART. */
5363 if (GET_CODE (reg) == STRICT_LOW_PART
5364 || GET_CODE (reg) == ZERO_EXTRACT)
5365 reg = XEXP (reg, 0);
5366
5367 /* Check that we have a register. */
5368 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5369 return NULL_RTX;
5370
5371 return pat;
5372 }
5373
5374 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5375 note of this type already exists, remove it first. */
5376
5377 rtx
5378 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5379 {
5380 rtx note = find_reg_note (insn, kind, NULL_RTX);
5381
5382 switch (kind)
5383 {
5384 case REG_EQUAL:
5385 case REG_EQUIV:
5386 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5387 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5388 return NULL_RTX;
5389
5390 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5391 It serves no useful purpose and breaks eliminate_regs. */
5392 if (GET_CODE (datum) == ASM_OPERANDS)
5393 return NULL_RTX;
5394
5395 /* Notes with side effects are dangerous. Even if the side-effect
5396 initially mirrors one in PATTERN (INSN), later optimizations
5397 might alter the way that the final register value is calculated
5398 and so move or alter the side-effect in some way. The note would
5399 then no longer be a valid substitution for SET_SRC. */
5400 if (side_effects_p (datum))
5401 return NULL_RTX;
5402 break;
5403
5404 default:
5405 break;
5406 }
5407
5408 if (note)
5409 XEXP (note, 0) = datum;
5410 else
5411 {
5412 add_reg_note (insn, kind, datum);
5413 note = REG_NOTES (insn);
5414 }
5415
5416 switch (kind)
5417 {
5418 case REG_EQUAL:
5419 case REG_EQUIV:
5420 df_notes_rescan (as_a <rtx_insn *> (insn));
5421 break;
5422 default:
5423 break;
5424 }
5425
5426 return note;
5427 }
5428
5429 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5430 rtx
5431 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5432 {
5433 rtx set = set_for_reg_notes (insn);
5434
5435 if (set && SET_DEST (set) == dst)
5436 return set_unique_reg_note (insn, kind, datum);
5437 return NULL_RTX;
5438 }
5439 \f
5440 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5441 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5442 is true.
5443
5444 If X is a label, it is simply added into the insn chain. */
5445
5446 rtx_insn *
5447 emit (rtx x, bool allow_barrier_p)
5448 {
5449 enum rtx_code code = classify_insn (x);
5450
5451 switch (code)
5452 {
5453 case CODE_LABEL:
5454 return emit_label (x);
5455 case INSN:
5456 return emit_insn (x);
5457 case JUMP_INSN:
5458 {
5459 rtx_insn *insn = emit_jump_insn (x);
5460 if (allow_barrier_p
5461 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5462 return emit_barrier ();
5463 return insn;
5464 }
5465 case CALL_INSN:
5466 return emit_call_insn (x);
5467 case DEBUG_INSN:
5468 return emit_debug_insn (x);
5469 default:
5470 gcc_unreachable ();
5471 }
5472 }
5473 \f
5474 /* Space for free sequence stack entries. */
5475 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5476
5477 /* Begin emitting insns to a sequence. If this sequence will contain
5478 something that might cause the compiler to pop arguments to function
5479 calls (because those pops have previously been deferred; see
5480 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5481 before calling this function. That will ensure that the deferred
5482 pops are not accidentally emitted in the middle of this sequence. */
5483
5484 void
5485 start_sequence (void)
5486 {
5487 struct sequence_stack *tem;
5488
5489 if (free_sequence_stack != NULL)
5490 {
5491 tem = free_sequence_stack;
5492 free_sequence_stack = tem->next;
5493 }
5494 else
5495 tem = ggc_alloc<sequence_stack> ();
5496
5497 tem->next = get_current_sequence ()->next;
5498 tem->first = get_insns ();
5499 tem->last = get_last_insn ();
5500 get_current_sequence ()->next = tem;
5501
5502 set_first_insn (0);
5503 set_last_insn (0);
5504 }
5505
5506 /* Set up the insn chain starting with FIRST as the current sequence,
5507 saving the previously current one. See the documentation for
5508 start_sequence for more information about how to use this function. */
5509
5510 void
5511 push_to_sequence (rtx_insn *first)
5512 {
5513 rtx_insn *last;
5514
5515 start_sequence ();
5516
5517 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5518 ;
5519
5520 set_first_insn (first);
5521 set_last_insn (last);
5522 }
5523
5524 /* Like push_to_sequence, but take the last insn as an argument to avoid
5525 looping through the list. */
5526
5527 void
5528 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5529 {
5530 start_sequence ();
5531
5532 set_first_insn (first);
5533 set_last_insn (last);
5534 }
5535
5536 /* Set up the outer-level insn chain
5537 as the current sequence, saving the previously current one. */
5538
5539 void
5540 push_topmost_sequence (void)
5541 {
5542 struct sequence_stack *top;
5543
5544 start_sequence ();
5545
5546 top = get_topmost_sequence ();
5547 set_first_insn (top->first);
5548 set_last_insn (top->last);
5549 }
5550
5551 /* After emitting to the outer-level insn chain, update the outer-level
5552 insn chain, and restore the previous saved state. */
5553
5554 void
5555 pop_topmost_sequence (void)
5556 {
5557 struct sequence_stack *top;
5558
5559 top = get_topmost_sequence ();
5560 top->first = get_insns ();
5561 top->last = get_last_insn ();
5562
5563 end_sequence ();
5564 }
5565
5566 /* After emitting to a sequence, restore previous saved state.
5567
5568 To get the contents of the sequence just made, you must call
5569 `get_insns' *before* calling here.
5570
5571 If the compiler might have deferred popping arguments while
5572 generating this sequence, and this sequence will not be immediately
5573 inserted into the instruction stream, use do_pending_stack_adjust
5574 before calling get_insns. That will ensure that the deferred
5575 pops are inserted into this sequence, and not into some random
5576 location in the instruction stream. See INHIBIT_DEFER_POP for more
5577 information about deferred popping of arguments. */
5578
5579 void
5580 end_sequence (void)
5581 {
5582 struct sequence_stack *tem = get_current_sequence ()->next;
5583
5584 set_first_insn (tem->first);
5585 set_last_insn (tem->last);
5586 get_current_sequence ()->next = tem->next;
5587
5588 memset (tem, 0, sizeof (*tem));
5589 tem->next = free_sequence_stack;
5590 free_sequence_stack = tem;
5591 }
5592
5593 /* Return 1 if currently emitting into a sequence. */
5594
5595 int
5596 in_sequence_p (void)
5597 {
5598 return get_current_sequence ()->next != 0;
5599 }
5600 \f
5601 /* Put the various virtual registers into REGNO_REG_RTX. */
5602
5603 static void
5604 init_virtual_regs (void)
5605 {
5606 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5607 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5608 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5609 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5610 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5611 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5612 = virtual_preferred_stack_boundary_rtx;
5613 }
5614
5615 \f
5616 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5617 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5618 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5619 static int copy_insn_n_scratches;
5620
5621 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5622 copied an ASM_OPERANDS.
5623 In that case, it is the original input-operand vector. */
5624 static rtvec orig_asm_operands_vector;
5625
5626 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5627 copied an ASM_OPERANDS.
5628 In that case, it is the copied input-operand vector. */
5629 static rtvec copy_asm_operands_vector;
5630
5631 /* Likewise for the constraints vector. */
5632 static rtvec orig_asm_constraints_vector;
5633 static rtvec copy_asm_constraints_vector;
5634
5635 /* Recursively create a new copy of an rtx for copy_insn.
5636 This function differs from copy_rtx in that it handles SCRATCHes and
5637 ASM_OPERANDs properly.
5638 Normally, this function is not used directly; use copy_insn as front end.
5639 However, you could first copy an insn pattern with copy_insn and then use
5640 this function afterwards to properly copy any REG_NOTEs containing
5641 SCRATCHes. */
5642
5643 rtx
5644 copy_insn_1 (rtx orig)
5645 {
5646 rtx copy;
5647 int i, j;
5648 RTX_CODE code;
5649 const char *format_ptr;
5650
5651 if (orig == NULL)
5652 return NULL;
5653
5654 code = GET_CODE (orig);
5655
5656 switch (code)
5657 {
5658 case REG:
5659 case DEBUG_EXPR:
5660 CASE_CONST_ANY:
5661 case SYMBOL_REF:
5662 case CODE_LABEL:
5663 case PC:
5664 case CC0:
5665 case RETURN:
5666 case SIMPLE_RETURN:
5667 return orig;
5668 case CLOBBER:
5669 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5670 clobbers or clobbers of hard registers that originated as pseudos.
5671 This is needed to allow safe register renaming. */
5672 if (REG_P (XEXP (orig, 0))
5673 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5674 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5675 return orig;
5676 break;
5677
5678 case SCRATCH:
5679 for (i = 0; i < copy_insn_n_scratches; i++)
5680 if (copy_insn_scratch_in[i] == orig)
5681 return copy_insn_scratch_out[i];
5682 break;
5683
5684 case CONST:
5685 if (shared_const_p (orig))
5686 return orig;
5687 break;
5688
5689 /* A MEM with a constant address is not sharable. The problem is that
5690 the constant address may need to be reloaded. If the mem is shared,
5691 then reloading one copy of this mem will cause all copies to appear
5692 to have been reloaded. */
5693
5694 default:
5695 break;
5696 }
5697
5698 /* Copy the various flags, fields, and other information. We assume
5699 that all fields need copying, and then clear the fields that should
5700 not be copied. That is the sensible default behavior, and forces
5701 us to explicitly document why we are *not* copying a flag. */
5702 copy = shallow_copy_rtx (orig);
5703
5704 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5705 if (INSN_P (orig))
5706 {
5707 RTX_FLAG (copy, jump) = 0;
5708 RTX_FLAG (copy, call) = 0;
5709 RTX_FLAG (copy, frame_related) = 0;
5710 }
5711
5712 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5713
5714 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5715 switch (*format_ptr++)
5716 {
5717 case 'e':
5718 if (XEXP (orig, i) != NULL)
5719 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5720 break;
5721
5722 case 'E':
5723 case 'V':
5724 if (XVEC (orig, i) == orig_asm_constraints_vector)
5725 XVEC (copy, i) = copy_asm_constraints_vector;
5726 else if (XVEC (orig, i) == orig_asm_operands_vector)
5727 XVEC (copy, i) = copy_asm_operands_vector;
5728 else if (XVEC (orig, i) != NULL)
5729 {
5730 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5731 for (j = 0; j < XVECLEN (copy, i); j++)
5732 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5733 }
5734 break;
5735
5736 case 't':
5737 case 'w':
5738 case 'i':
5739 case 'p':
5740 case 's':
5741 case 'S':
5742 case 'u':
5743 case '0':
5744 /* These are left unchanged. */
5745 break;
5746
5747 default:
5748 gcc_unreachable ();
5749 }
5750
5751 if (code == SCRATCH)
5752 {
5753 i = copy_insn_n_scratches++;
5754 gcc_assert (i < MAX_RECOG_OPERANDS);
5755 copy_insn_scratch_in[i] = orig;
5756 copy_insn_scratch_out[i] = copy;
5757 }
5758 else if (code == ASM_OPERANDS)
5759 {
5760 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5761 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5762 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5763 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5764 }
5765
5766 return copy;
5767 }
5768
5769 /* Create a new copy of an rtx.
5770 This function differs from copy_rtx in that it handles SCRATCHes and
5771 ASM_OPERANDs properly.
5772 INSN doesn't really have to be a full INSN; it could be just the
5773 pattern. */
5774 rtx
5775 copy_insn (rtx insn)
5776 {
5777 copy_insn_n_scratches = 0;
5778 orig_asm_operands_vector = 0;
5779 orig_asm_constraints_vector = 0;
5780 copy_asm_operands_vector = 0;
5781 copy_asm_constraints_vector = 0;
5782 return copy_insn_1 (insn);
5783 }
5784
5785 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5786 on that assumption that INSN itself remains in its original place. */
5787
5788 rtx_insn *
5789 copy_delay_slot_insn (rtx_insn *insn)
5790 {
5791 /* Copy INSN with its rtx_code, all its notes, location etc. */
5792 insn = as_a <rtx_insn *> (copy_rtx (insn));
5793 INSN_UID (insn) = cur_insn_uid++;
5794 return insn;
5795 }
5796
5797 /* Initialize data structures and variables in this file
5798 before generating rtl for each function. */
5799
5800 void
5801 init_emit (void)
5802 {
5803 set_first_insn (NULL);
5804 set_last_insn (NULL);
5805 if (MIN_NONDEBUG_INSN_UID)
5806 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5807 else
5808 cur_insn_uid = 1;
5809 cur_debug_insn_uid = 1;
5810 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5811 first_label_num = label_num;
5812 get_current_sequence ()->next = NULL;
5813
5814 /* Init the tables that describe all the pseudo regs. */
5815
5816 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5817
5818 crtl->emit.regno_pointer_align
5819 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5820
5821 regno_reg_rtx
5822 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5823
5824 /* Put copies of all the hard registers into regno_reg_rtx. */
5825 memcpy (regno_reg_rtx,
5826 initial_regno_reg_rtx,
5827 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5828
5829 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5830 init_virtual_regs ();
5831
5832 /* Indicate that the virtual registers and stack locations are
5833 all pointers. */
5834 REG_POINTER (stack_pointer_rtx) = 1;
5835 REG_POINTER (frame_pointer_rtx) = 1;
5836 REG_POINTER (hard_frame_pointer_rtx) = 1;
5837 REG_POINTER (arg_pointer_rtx) = 1;
5838
5839 REG_POINTER (virtual_incoming_args_rtx) = 1;
5840 REG_POINTER (virtual_stack_vars_rtx) = 1;
5841 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5842 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5843 REG_POINTER (virtual_cfa_rtx) = 1;
5844
5845 #ifdef STACK_BOUNDARY
5846 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5847 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5848 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5849 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5850
5851 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5852 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5853 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5854 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5855
5856 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5857 #endif
5858
5859 #ifdef INIT_EXPANDERS
5860 INIT_EXPANDERS;
5861 #endif
5862 }
5863
5864 /* Return true if X is a valid element for a duplicated vector constant
5865 of the given mode. */
5866
5867 bool
5868 valid_for_const_vec_duplicate_p (machine_mode, rtx x)
5869 {
5870 return (CONST_SCALAR_INT_P (x)
5871 || CONST_DOUBLE_AS_FLOAT_P (x)
5872 || CONST_FIXED_P (x));
5873 }
5874
5875 /* Like gen_const_vec_duplicate, but ignore const_tiny_rtx. */
5876
5877 static rtx
5878 gen_const_vec_duplicate_1 (machine_mode mode, rtx el)
5879 {
5880 int nunits = GET_MODE_NUNITS (mode);
5881 rtvec v = rtvec_alloc (nunits);
5882 for (int i = 0; i < nunits; ++i)
5883 RTVEC_ELT (v, i) = el;
5884 return gen_rtx_raw_CONST_VECTOR (mode, v);
5885 }
5886
5887 /* Generate a vector constant of mode MODE in which every element has
5888 value ELT. */
5889
5890 rtx
5891 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5892 {
5893 scalar_mode inner_mode = GET_MODE_INNER (mode);
5894 if (elt == CONST0_RTX (inner_mode))
5895 return CONST0_RTX (mode);
5896 else if (elt == CONST1_RTX (inner_mode))
5897 return CONST1_RTX (mode);
5898 else if (elt == CONSTM1_RTX (inner_mode))
5899 return CONSTM1_RTX (mode);
5900
5901 return gen_const_vec_duplicate_1 (mode, elt);
5902 }
5903
5904 /* Return a vector rtx of mode MODE in which every element has value X.
5905 The result will be a constant if X is constant. */
5906
5907 rtx
5908 gen_vec_duplicate (machine_mode mode, rtx x)
5909 {
5910 if (valid_for_const_vec_duplicate_p (mode, x))
5911 return gen_const_vec_duplicate (mode, x);
5912 return gen_rtx_VEC_DUPLICATE (mode, x);
5913 }
5914
5915 /* A subroutine of const_vec_series_p that handles the case in which
5916 X is known to be an integer CONST_VECTOR. */
5917
5918 bool
5919 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5920 {
5921 unsigned int nelts = CONST_VECTOR_NUNITS (x);
5922 if (nelts < 2)
5923 return false;
5924
5925 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5926 rtx base = CONST_VECTOR_ELT (x, 0);
5927 rtx step = simplify_binary_operation (MINUS, inner,
5928 CONST_VECTOR_ELT (x, 1), base);
5929 if (rtx_equal_p (step, CONST0_RTX (inner)))
5930 return false;
5931
5932 for (unsigned int i = 2; i < nelts; ++i)
5933 {
5934 rtx diff = simplify_binary_operation (MINUS, inner,
5935 CONST_VECTOR_ELT (x, i),
5936 CONST_VECTOR_ELT (x, i - 1));
5937 if (!rtx_equal_p (step, diff))
5938 return false;
5939 }
5940
5941 *base_out = base;
5942 *step_out = step;
5943 return true;
5944 }
5945
5946 /* Generate a vector constant of mode MODE in which element I has
5947 the value BASE + I * STEP. */
5948
5949 rtx
5950 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5951 {
5952 gcc_assert (CONSTANT_P (base) && CONSTANT_P (step));
5953
5954 int nunits = GET_MODE_NUNITS (mode);
5955 rtvec v = rtvec_alloc (nunits);
5956 scalar_mode inner_mode = GET_MODE_INNER (mode);
5957 RTVEC_ELT (v, 0) = base;
5958 for (int i = 1; i < nunits; ++i)
5959 RTVEC_ELT (v, i) = simplify_gen_binary (PLUS, inner_mode,
5960 RTVEC_ELT (v, i - 1), step);
5961 return gen_rtx_raw_CONST_VECTOR (mode, v);
5962 }
5963
5964 /* Generate a vector of mode MODE in which element I has the value
5965 BASE + I * STEP. The result will be a constant if BASE and STEP
5966 are both constants. */
5967
5968 rtx
5969 gen_vec_series (machine_mode mode, rtx base, rtx step)
5970 {
5971 if (step == const0_rtx)
5972 return gen_vec_duplicate (mode, base);
5973 if (CONSTANT_P (base) && CONSTANT_P (step))
5974 return gen_const_vec_series (mode, base, step);
5975 return gen_rtx_VEC_SERIES (mode, base, step);
5976 }
5977
5978 /* Generate a new vector constant for mode MODE and constant value
5979 CONSTANT. */
5980
5981 static rtx
5982 gen_const_vector (machine_mode mode, int constant)
5983 {
5984 machine_mode inner = GET_MODE_INNER (mode);
5985
5986 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5987
5988 rtx el = const_tiny_rtx[constant][(int) inner];
5989 gcc_assert (el);
5990
5991 return gen_const_vec_duplicate_1 (mode, el);
5992 }
5993
5994 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5995 all elements are zero, and the one vector when all elements are one. */
5996 rtx
5997 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5998 {
5999 gcc_assert (GET_MODE_NUNITS (mode) == GET_NUM_ELEM (v));
6000
6001 /* If the values are all the same, check to see if we can use one of the
6002 standard constant vectors. */
6003 if (rtvec_all_equal_p (v))
6004 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6005
6006 return gen_rtx_raw_CONST_VECTOR (mode, v);
6007 }
6008
6009 /* Initialise global register information required by all functions. */
6010
6011 void
6012 init_emit_regs (void)
6013 {
6014 int i;
6015 machine_mode mode;
6016 mem_attrs *attrs;
6017
6018 /* Reset register attributes */
6019 reg_attrs_htab->empty ();
6020
6021 /* We need reg_raw_mode, so initialize the modes now. */
6022 init_reg_modes_target ();
6023
6024 /* Assign register numbers to the globally defined register rtx. */
6025 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6026 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6027 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6028 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6029 virtual_incoming_args_rtx =
6030 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6031 virtual_stack_vars_rtx =
6032 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6033 virtual_stack_dynamic_rtx =
6034 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6035 virtual_outgoing_args_rtx =
6036 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6037 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6038 virtual_preferred_stack_boundary_rtx =
6039 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6040
6041 /* Initialize RTL for commonly used hard registers. These are
6042 copied into regno_reg_rtx as we begin to compile each function. */
6043 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6044 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6045
6046 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6047 return_address_pointer_rtx
6048 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6049 #endif
6050
6051 pic_offset_table_rtx = NULL_RTX;
6052 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6053 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6054
6055 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6056 {
6057 mode = (machine_mode) i;
6058 attrs = ggc_cleared_alloc<mem_attrs> ();
6059 attrs->align = BITS_PER_UNIT;
6060 attrs->addrspace = ADDR_SPACE_GENERIC;
6061 if (mode != BLKmode)
6062 {
6063 attrs->size_known_p = true;
6064 attrs->size = GET_MODE_SIZE (mode);
6065 if (STRICT_ALIGNMENT)
6066 attrs->align = GET_MODE_ALIGNMENT (mode);
6067 }
6068 mode_mem_attrs[i] = attrs;
6069 }
6070
6071 split_branch_probability = profile_probability::uninitialized ();
6072 }
6073
6074 /* Initialize global machine_mode variables. */
6075
6076 void
6077 init_derived_machine_modes (void)
6078 {
6079 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6080 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6081 {
6082 scalar_int_mode mode = mode_iter.require ();
6083
6084 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6085 && !opt_byte_mode.exists ())
6086 opt_byte_mode = mode;
6087
6088 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6089 && !opt_word_mode.exists ())
6090 opt_word_mode = mode;
6091 }
6092
6093 byte_mode = opt_byte_mode.require ();
6094 word_mode = opt_word_mode.require ();
6095 ptr_mode = as_a <scalar_int_mode>
6096 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6097 }
6098
6099 /* Create some permanent unique rtl objects shared between all functions. */
6100
6101 void
6102 init_emit_once (void)
6103 {
6104 int i;
6105 machine_mode mode;
6106 scalar_float_mode double_mode;
6107 opt_scalar_mode smode_iter;
6108
6109 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6110 CONST_FIXED, and memory attribute hash tables. */
6111 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6112
6113 #if TARGET_SUPPORTS_WIDE_INT
6114 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6115 #endif
6116 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6117
6118 if (NUM_POLY_INT_COEFFS > 1)
6119 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6120
6121 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6122
6123 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6124
6125 #ifdef INIT_EXPANDERS
6126 /* This is to initialize {init|mark|free}_machine_status before the first
6127 call to push_function_context_to. This is needed by the Chill front
6128 end which calls push_function_context_to before the first call to
6129 init_function_start. */
6130 INIT_EXPANDERS;
6131 #endif
6132
6133 /* Create the unique rtx's for certain rtx codes and operand values. */
6134
6135 /* Process stack-limiting command-line options. */
6136 if (opt_fstack_limit_symbol_arg != NULL)
6137 stack_limit_rtx
6138 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6139 if (opt_fstack_limit_register_no >= 0)
6140 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6141
6142 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6143 tries to use these variables. */
6144 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6145 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6146 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6147
6148 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6149 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6150 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6151 else
6152 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6153
6154 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6155
6156 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6157 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6158 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6159
6160 dconstm1 = dconst1;
6161 dconstm1.sign = 1;
6162
6163 dconsthalf = dconst1;
6164 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6165
6166 for (i = 0; i < 3; i++)
6167 {
6168 const REAL_VALUE_TYPE *const r =
6169 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6170
6171 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6172 const_tiny_rtx[i][(int) mode] =
6173 const_double_from_real_value (*r, mode);
6174
6175 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6176 const_tiny_rtx[i][(int) mode] =
6177 const_double_from_real_value (*r, mode);
6178
6179 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6180
6181 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6182 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6183
6184 for (mode = MIN_MODE_PARTIAL_INT;
6185 mode <= MAX_MODE_PARTIAL_INT;
6186 mode = (machine_mode)((int)(mode) + 1))
6187 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6188 }
6189
6190 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6191
6192 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6193 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6194
6195 for (mode = MIN_MODE_PARTIAL_INT;
6196 mode <= MAX_MODE_PARTIAL_INT;
6197 mode = (machine_mode)((int)(mode) + 1))
6198 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6199
6200 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6201 {
6202 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6203 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6204 }
6205
6206 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6207 {
6208 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6209 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6210 }
6211
6212 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6213 {
6214 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6215 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6216 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6217 }
6218
6219 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6220 {
6221 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6222 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6223 }
6224
6225 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6226 {
6227 scalar_mode smode = smode_iter.require ();
6228 FCONST0 (smode).data.high = 0;
6229 FCONST0 (smode).data.low = 0;
6230 FCONST0 (smode).mode = smode;
6231 const_tiny_rtx[0][(int) smode]
6232 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6233 }
6234
6235 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6236 {
6237 scalar_mode smode = smode_iter.require ();
6238 FCONST0 (smode).data.high = 0;
6239 FCONST0 (smode).data.low = 0;
6240 FCONST0 (smode).mode = smode;
6241 const_tiny_rtx[0][(int) smode]
6242 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6243 }
6244
6245 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6246 {
6247 scalar_mode smode = smode_iter.require ();
6248 FCONST0 (smode).data.high = 0;
6249 FCONST0 (smode).data.low = 0;
6250 FCONST0 (smode).mode = smode;
6251 const_tiny_rtx[0][(int) smode]
6252 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6253
6254 /* We store the value 1. */
6255 FCONST1 (smode).data.high = 0;
6256 FCONST1 (smode).data.low = 0;
6257 FCONST1 (smode).mode = smode;
6258 FCONST1 (smode).data
6259 = double_int_one.lshift (GET_MODE_FBIT (smode),
6260 HOST_BITS_PER_DOUBLE_INT,
6261 SIGNED_FIXED_POINT_MODE_P (smode));
6262 const_tiny_rtx[1][(int) smode]
6263 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6264 }
6265
6266 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6267 {
6268 scalar_mode smode = smode_iter.require ();
6269 FCONST0 (smode).data.high = 0;
6270 FCONST0 (smode).data.low = 0;
6271 FCONST0 (smode).mode = smode;
6272 const_tiny_rtx[0][(int) smode]
6273 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6274
6275 /* We store the value 1. */
6276 FCONST1 (smode).data.high = 0;
6277 FCONST1 (smode).data.low = 0;
6278 FCONST1 (smode).mode = smode;
6279 FCONST1 (smode).data
6280 = double_int_one.lshift (GET_MODE_FBIT (smode),
6281 HOST_BITS_PER_DOUBLE_INT,
6282 SIGNED_FIXED_POINT_MODE_P (smode));
6283 const_tiny_rtx[1][(int) smode]
6284 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6285 }
6286
6287 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6288 {
6289 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6290 }
6291
6292 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6293 {
6294 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6295 }
6296
6297 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6298 {
6299 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6300 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6301 }
6302
6303 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6304 {
6305 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6306 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6307 }
6308
6309 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6310 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6311 const_tiny_rtx[0][i] = const0_rtx;
6312
6313 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6314 if (STORE_FLAG_VALUE == 1)
6315 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6316
6317 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
6318 {
6319 scalar_mode smode = smode_iter.require ();
6320 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6321 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
6322 }
6323
6324 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6325 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6326 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6327 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6328 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6329 /*prev_insn=*/NULL,
6330 /*next_insn=*/NULL,
6331 /*bb=*/NULL,
6332 /*pattern=*/NULL_RTX,
6333 /*location=*/-1,
6334 CODE_FOR_nothing,
6335 /*reg_notes=*/NULL_RTX);
6336 }
6337 \f
6338 /* Produce exact duplicate of insn INSN after AFTER.
6339 Care updating of libcall regions if present. */
6340
6341 rtx_insn *
6342 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6343 {
6344 rtx_insn *new_rtx;
6345 rtx link;
6346
6347 switch (GET_CODE (insn))
6348 {
6349 case INSN:
6350 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6351 break;
6352
6353 case JUMP_INSN:
6354 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6355 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6356 break;
6357
6358 case DEBUG_INSN:
6359 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6360 break;
6361
6362 case CALL_INSN:
6363 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6364 if (CALL_INSN_FUNCTION_USAGE (insn))
6365 CALL_INSN_FUNCTION_USAGE (new_rtx)
6366 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6367 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6368 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6369 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6370 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6371 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6372 break;
6373
6374 default:
6375 gcc_unreachable ();
6376 }
6377
6378 /* Update LABEL_NUSES. */
6379 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6380
6381 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6382
6383 /* If the old insn is frame related, then so is the new one. This is
6384 primarily needed for IA-64 unwind info which marks epilogue insns,
6385 which may be duplicated by the basic block reordering code. */
6386 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6387
6388 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6389 rtx *ptail = &REG_NOTES (new_rtx);
6390 while (*ptail != NULL_RTX)
6391 ptail = &XEXP (*ptail, 1);
6392
6393 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6394 will make them. REG_LABEL_TARGETs are created there too, but are
6395 supposed to be sticky, so we copy them. */
6396 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6397 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6398 {
6399 *ptail = duplicate_reg_note (link);
6400 ptail = &XEXP (*ptail, 1);
6401 }
6402
6403 INSN_CODE (new_rtx) = INSN_CODE (insn);
6404 return new_rtx;
6405 }
6406
6407 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6408 rtx
6409 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6410 {
6411 if (hard_reg_clobbers[mode][regno])
6412 return hard_reg_clobbers[mode][regno];
6413 else
6414 return (hard_reg_clobbers[mode][regno] =
6415 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6416 }
6417
6418 location_t prologue_location;
6419 location_t epilogue_location;
6420
6421 /* Hold current location information and last location information, so the
6422 datastructures are built lazily only when some instructions in given
6423 place are needed. */
6424 static location_t curr_location;
6425
6426 /* Allocate insn location datastructure. */
6427 void
6428 insn_locations_init (void)
6429 {
6430 prologue_location = epilogue_location = 0;
6431 curr_location = UNKNOWN_LOCATION;
6432 }
6433
6434 /* At the end of emit stage, clear current location. */
6435 void
6436 insn_locations_finalize (void)
6437 {
6438 epilogue_location = curr_location;
6439 curr_location = UNKNOWN_LOCATION;
6440 }
6441
6442 /* Set current location. */
6443 void
6444 set_curr_insn_location (location_t location)
6445 {
6446 curr_location = location;
6447 }
6448
6449 /* Get current location. */
6450 location_t
6451 curr_insn_location (void)
6452 {
6453 return curr_location;
6454 }
6455
6456 /* Return lexical scope block insn belongs to. */
6457 tree
6458 insn_scope (const rtx_insn *insn)
6459 {
6460 return LOCATION_BLOCK (INSN_LOCATION (insn));
6461 }
6462
6463 /* Return line number of the statement that produced this insn. */
6464 int
6465 insn_line (const rtx_insn *insn)
6466 {
6467 return LOCATION_LINE (INSN_LOCATION (insn));
6468 }
6469
6470 /* Return source file of the statement that produced this insn. */
6471 const char *
6472 insn_file (const rtx_insn *insn)
6473 {
6474 return LOCATION_FILE (INSN_LOCATION (insn));
6475 }
6476
6477 /* Return expanded location of the statement that produced this insn. */
6478 expanded_location
6479 insn_location (const rtx_insn *insn)
6480 {
6481 return expand_location (INSN_LOCATION (insn));
6482 }
6483
6484 /* Return true if memory model MODEL requires a pre-operation (release-style)
6485 barrier or a post-operation (acquire-style) barrier. While not universal,
6486 this function matches behavior of several targets. */
6487
6488 bool
6489 need_atomic_barrier_p (enum memmodel model, bool pre)
6490 {
6491 switch (model & MEMMODEL_BASE_MASK)
6492 {
6493 case MEMMODEL_RELAXED:
6494 case MEMMODEL_CONSUME:
6495 return false;
6496 case MEMMODEL_RELEASE:
6497 return pre;
6498 case MEMMODEL_ACQUIRE:
6499 return !pre;
6500 case MEMMODEL_ACQ_REL:
6501 case MEMMODEL_SEQ_CST:
6502 return true;
6503 default:
6504 gcc_unreachable ();
6505 }
6506 }
6507
6508 /* Return a constant shift amount for shifting a value of mode MODE
6509 by VALUE bits. */
6510
6511 rtx
6512 gen_int_shift_amount (machine_mode, poly_int64 value)
6513 {
6514 /* Use a 64-bit mode, to avoid any truncation.
6515
6516 ??? Perhaps this should be automatically derived from the .md files
6517 instead, or perhaps have a target hook. */
6518 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6519 ? DImode
6520 : int_mode_for_size (64, 0).require ());
6521 return gen_int_mode (value, shift_mode);
6522 }
6523
6524 /* Initialize fields of rtl_data related to stack alignment. */
6525
6526 void
6527 rtl_data::init_stack_alignment ()
6528 {
6529 stack_alignment_needed = STACK_BOUNDARY;
6530 max_used_stack_slot_alignment = STACK_BOUNDARY;
6531 stack_alignment_estimated = 0;
6532 preferred_stack_boundary = STACK_BOUNDARY;
6533 }
6534
6535 \f
6536 #include "gt-emit-rtl.h"