tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / et-forest.c
1 /* ET-trees data structure implementation.
2 Contributed by Pavel Nejedly
3 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
20
21 The ET-forest structure is described in:
22 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23 J. G'omput. System Sci., 26(3):362 381, 1983.
24 */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "et-forest.h"
31 #include "alloc-pool.h"
32
33 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
34 #undef DEBUG_ET
35
36 #ifdef DEBUG_ET
37 #include "basic-block.h"
38 #endif
39
40 /* The occurrence of a node in the et tree. */
41 struct et_occ
42 {
43 struct et_node *of; /* The node. */
44
45 struct et_occ *parent; /* Parent in the splay-tree. */
46 struct et_occ *prev; /* Left son in the splay-tree. */
47 struct et_occ *next; /* Right son in the splay-tree. */
48
49 int depth; /* The depth of the node is the sum of depth
50 fields on the path to the root. */
51 int min; /* The minimum value of the depth in the subtree
52 is obtained by adding sum of depth fields
53 on the path to the root. */
54 struct et_occ *min_occ; /* The occurrence in the subtree with the minimal
55 depth. */
56 };
57
58 static alloc_pool et_nodes;
59 static alloc_pool et_occurrences;
60
61 /* Changes depth of OCC to D. */
62
63 static inline void
64 set_depth (struct et_occ *occ, int d)
65 {
66 if (!occ)
67 return;
68
69 occ->min += d - occ->depth;
70 occ->depth = d;
71 }
72
73 /* Adds D to the depth of OCC. */
74
75 static inline void
76 set_depth_add (struct et_occ *occ, int d)
77 {
78 if (!occ)
79 return;
80
81 occ->min += d;
82 occ->depth += d;
83 }
84
85 /* Sets prev field of OCC to P. */
86
87 static inline void
88 set_prev (struct et_occ *occ, struct et_occ *t)
89 {
90 #ifdef DEBUG_ET
91 if (occ == t)
92 abort ();
93 #endif
94
95 occ->prev = t;
96 if (t)
97 t->parent = occ;
98 }
99
100 /* Sets next field of OCC to P. */
101
102 static inline void
103 set_next (struct et_occ *occ, struct et_occ *t)
104 {
105 #ifdef DEBUG_ET
106 if (occ == t)
107 abort ();
108 #endif
109
110 occ->next = t;
111 if (t)
112 t->parent = occ;
113 }
114
115 /* Recompute minimum for occurrence OCC. */
116
117 static inline void
118 et_recomp_min (struct et_occ *occ)
119 {
120 struct et_occ *mson = occ->prev;
121
122 if (!mson
123 || (occ->next
124 && mson->min > occ->next->min))
125 mson = occ->next;
126
127 if (mson && mson->min < 0)
128 {
129 occ->min = mson->min + occ->depth;
130 occ->min_occ = mson->min_occ;
131 }
132 else
133 {
134 occ->min = occ->depth;
135 occ->min_occ = occ;
136 }
137 }
138
139 #ifdef DEBUG_ET
140 /* Checks whether neighbourhood of OCC seems sane. */
141
142 static void
143 et_check_occ_sanity (struct et_occ *occ)
144 {
145 if (!occ)
146 return;
147
148 if (occ->parent == occ)
149 abort ();
150
151 if (occ->prev == occ)
152 abort ();
153
154 if (occ->next == occ)
155 abort ();
156
157 if (occ->next && occ->next == occ->prev)
158 abort ();
159
160 if (occ->next)
161 {
162 if (occ->next == occ->parent)
163 abort ();
164
165 if (occ->next->parent != occ)
166 abort ();
167 }
168
169 if (occ->prev)
170 {
171 if (occ->prev == occ->parent)
172 abort ();
173
174 if (occ->prev->parent != occ)
175 abort ();
176 }
177
178 if (occ->parent
179 && occ->parent->prev != occ
180 && occ->parent->next != occ)
181 abort ();
182 }
183
184 /* Checks whether tree rooted at OCC is sane. */
185
186 static void
187 et_check_sanity (struct et_occ *occ)
188 {
189 et_check_occ_sanity (occ);
190 if (occ->prev)
191 et_check_sanity (occ->prev);
192 if (occ->next)
193 et_check_sanity (occ->next);
194 }
195
196 /* Checks whether tree containing OCC is sane. */
197
198 static void
199 et_check_tree_sanity (struct et_occ *occ)
200 {
201 while (occ->parent)
202 occ = occ->parent;
203
204 et_check_sanity (occ);
205 }
206
207 /* For recording the paths. */
208
209 /* An ad-hoc constant; if the function has more blocks, this won't work,
210 but since it is used for debugging only, it does not matter. */
211 #define MAX_NODES 100000
212
213 static int len;
214 static void *datas[MAX_NODES];
215 static int depths[MAX_NODES];
216
217 /* Records the path represented by OCC, with depth incremented by DEPTH. */
218
219 static int
220 record_path_before_1 (struct et_occ *occ, int depth)
221 {
222 int mn, m;
223
224 depth += occ->depth;
225 mn = depth;
226
227 if (occ->prev)
228 {
229 m = record_path_before_1 (occ->prev, depth);
230 if (m < mn)
231 mn = m;
232 }
233
234 fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
235
236 if (len >= MAX_NODES)
237 abort ();
238
239 depths[len] = depth;
240 datas[len] = occ->of;
241 len++;
242
243 if (occ->next)
244 {
245 m = record_path_before_1 (occ->next, depth);
246 if (m < mn)
247 mn = m;
248 }
249
250 if (mn != occ->min + depth - occ->depth)
251 abort ();
252
253 return mn;
254 }
255
256 /* Records the path represented by a tree containing OCC. */
257
258 static void
259 record_path_before (struct et_occ *occ)
260 {
261 while (occ->parent)
262 occ = occ->parent;
263
264 len = 0;
265 record_path_before_1 (occ, 0);
266 fprintf (stderr, "\n");
267 }
268
269 /* Checks whether the path represented by OCC, with depth incremented by DEPTH,
270 was not changed since the last recording. */
271
272 static int
273 check_path_after_1 (struct et_occ *occ, int depth)
274 {
275 int mn, m;
276
277 depth += occ->depth;
278 mn = depth;
279
280 if (occ->next)
281 {
282 m = check_path_after_1 (occ->next, depth);
283 if (m < mn)
284 mn = m;
285 }
286
287 len--;
288 if (depths[len] != depth
289 || datas[len] != occ->of)
290 abort ();
291
292 if (occ->prev)
293 {
294 m = check_path_after_1 (occ->prev, depth);
295 if (m < mn)
296 mn = m;
297 }
298
299 if (mn != occ->min + depth - occ->depth)
300 abort ();
301
302 return mn;
303 }
304
305 /* Checks whether the path represented by a tree containing OCC was
306 not changed since the last recording. */
307
308 static void
309 check_path_after (struct et_occ *occ)
310 {
311 while (occ->parent)
312 occ = occ->parent;
313
314 check_path_after_1 (occ, 0);
315 if (len != 0)
316 abort ();
317 }
318
319 #endif
320
321 /* Splay the occurrence OCC to the root of the tree. */
322
323 static void
324 et_splay (struct et_occ *occ)
325 {
326 struct et_occ *f, *gf, *ggf;
327 int occ_depth, f_depth, gf_depth;
328
329 #ifdef DEBUG_ET
330 record_path_before (occ);
331 et_check_tree_sanity (occ);
332 #endif
333
334 while (occ->parent)
335 {
336 occ_depth = occ->depth;
337
338 f = occ->parent;
339 f_depth = f->depth;
340
341 gf = f->parent;
342
343 if (!gf)
344 {
345 set_depth_add (occ, f_depth);
346 occ->min_occ = f->min_occ;
347 occ->min = f->min;
348
349 if (f->prev == occ)
350 {
351 /* zig */
352 set_prev (f, occ->next);
353 set_next (occ, f);
354 set_depth_add (f->prev, occ_depth);
355 }
356 else
357 {
358 /* zag */
359 set_next (f, occ->prev);
360 set_prev (occ, f);
361 set_depth_add (f->next, occ_depth);
362 }
363 set_depth (f, -occ_depth);
364 occ->parent = NULL;
365
366 et_recomp_min (f);
367 #ifdef DEBUG_ET
368 et_check_tree_sanity (occ);
369 check_path_after (occ);
370 #endif
371 return;
372 }
373
374 gf_depth = gf->depth;
375
376 set_depth_add (occ, f_depth + gf_depth);
377 occ->min_occ = gf->min_occ;
378 occ->min = gf->min;
379
380 ggf = gf->parent;
381
382 if (gf->prev == f)
383 {
384 if (f->prev == occ)
385 {
386 /* zig zig */
387 set_prev (gf, f->next);
388 set_prev (f, occ->next);
389 set_next (occ, f);
390 set_next (f, gf);
391
392 set_depth (f, -occ_depth);
393 set_depth_add (f->prev, occ_depth);
394 set_depth (gf, -f_depth);
395 set_depth_add (gf->prev, f_depth);
396 }
397 else
398 {
399 /* zag zig */
400 set_prev (gf, occ->next);
401 set_next (f, occ->prev);
402 set_prev (occ, f);
403 set_next (occ, gf);
404
405 set_depth (f, -occ_depth);
406 set_depth_add (f->next, occ_depth);
407 set_depth (gf, -occ_depth - f_depth);
408 set_depth_add (gf->prev, occ_depth + f_depth);
409 }
410 }
411 else
412 {
413 if (f->prev == occ)
414 {
415 /* zig zag */
416 set_next (gf, occ->prev);
417 set_prev (f, occ->next);
418 set_prev (occ, gf);
419 set_next (occ, f);
420
421 set_depth (f, -occ_depth);
422 set_depth_add (f->prev, occ_depth);
423 set_depth (gf, -occ_depth - f_depth);
424 set_depth_add (gf->next, occ_depth + f_depth);
425 }
426 else
427 {
428 /* zag zag */
429 set_next (gf, f->prev);
430 set_next (f, occ->prev);
431 set_prev (occ, f);
432 set_prev (f, gf);
433
434 set_depth (f, -occ_depth);
435 set_depth_add (f->next, occ_depth);
436 set_depth (gf, -f_depth);
437 set_depth_add (gf->next, f_depth);
438 }
439 }
440
441 occ->parent = ggf;
442 if (ggf)
443 {
444 if (ggf->prev == gf)
445 ggf->prev = occ;
446 else
447 ggf->next = occ;
448 }
449
450 et_recomp_min (gf);
451 et_recomp_min (f);
452 #ifdef DEBUG_ET
453 et_check_tree_sanity (occ);
454 #endif
455 }
456
457 #ifdef DEBUG_ET
458 et_check_sanity (occ);
459 check_path_after (occ);
460 #endif
461 }
462
463 /* Create a new et tree occurrence of NODE. */
464
465 static struct et_occ *
466 et_new_occ (struct et_node *node)
467 {
468 struct et_occ *nw;
469
470 if (!et_occurrences)
471 et_occurrences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
472 nw = pool_alloc (et_occurrences);
473
474 nw->of = node;
475 nw->parent = NULL;
476 nw->prev = NULL;
477 nw->next = NULL;
478
479 nw->depth = 0;
480 nw->min_occ = nw;
481 nw->min = 0;
482
483 return nw;
484 }
485
486 /* Create a new et tree containing DATA. */
487
488 struct et_node *
489 et_new_tree (void *data)
490 {
491 struct et_node *nw;
492
493 if (!et_nodes)
494 et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
495 nw = pool_alloc (et_nodes);
496
497 nw->data = data;
498 nw->father = NULL;
499 nw->left = NULL;
500 nw->right = NULL;
501 nw->son = NULL;
502
503 nw->rightmost_occ = et_new_occ (nw);
504 nw->parent_occ = NULL;
505
506 return nw;
507 }
508
509 /* Releases et tree T. */
510
511 void
512 et_free_tree (struct et_node *t)
513 {
514 while (t->son)
515 et_split (t->son);
516
517 if (t->father)
518 et_split (t);
519
520 pool_free (et_occurrences, t->rightmost_occ);
521 pool_free (et_nodes, t);
522 }
523
524 /* Sets father of et tree T to FATHER. */
525
526 void
527 et_set_father (struct et_node *t, struct et_node *father)
528 {
529 struct et_node *left, *right;
530 struct et_occ *rmost, *left_part, *new_f_occ, *p;
531
532 /* Update the path represented in the splay tree. */
533 new_f_occ = et_new_occ (father);
534
535 rmost = father->rightmost_occ;
536 et_splay (rmost);
537
538 left_part = rmost->prev;
539
540 p = t->rightmost_occ;
541 et_splay (p);
542
543 set_prev (new_f_occ, left_part);
544 set_next (new_f_occ, p);
545
546 p->depth++;
547 p->min++;
548 et_recomp_min (new_f_occ);
549
550 set_prev (rmost, new_f_occ);
551
552 if (new_f_occ->min + rmost->depth < rmost->min)
553 {
554 rmost->min = new_f_occ->min + rmost->depth;
555 rmost->min_occ = new_f_occ->min_occ;
556 }
557
558 t->parent_occ = new_f_occ;
559
560 /* Update the tree. */
561 t->father = father;
562 right = father->son;
563 if (right)
564 left = right->left;
565 else
566 left = right = t;
567
568 left->right = t;
569 right->left = t;
570 t->left = left;
571 t->right = right;
572
573 father->son = t;
574
575 #ifdef DEBUG_ET
576 et_check_tree_sanity (rmost);
577 record_path_before (rmost);
578 #endif
579 }
580
581 /* Splits the edge from T to its father. */
582
583 void
584 et_split (struct et_node *t)
585 {
586 struct et_node *father = t->father;
587 struct et_occ *r, *l, *rmost, *p_occ;
588
589 /* Update the path represented by the splay tree. */
590 rmost = t->rightmost_occ;
591 et_splay (rmost);
592
593 for (r = rmost->next; r->prev; r = r->prev)
594 continue;
595 et_splay (r);
596
597 r->prev->parent = NULL;
598 p_occ = t->parent_occ;
599 et_splay (p_occ);
600 t->parent_occ = NULL;
601
602 l = p_occ->prev;
603 p_occ->next->parent = NULL;
604
605 set_prev (r, l);
606
607 et_recomp_min (r);
608
609 et_splay (rmost);
610 rmost->depth = 0;
611 rmost->min = 0;
612
613 pool_free (et_occurrences, p_occ);
614
615 /* Update the tree. */
616 if (father->son == t)
617 father->son = t->right;
618 if (father->son == t)
619 father->son = NULL;
620 else
621 {
622 t->left->right = t->right;
623 t->right->left = t->left;
624 }
625 t->left = t->right = NULL;
626 t->father = NULL;
627
628 #ifdef DEBUG_ET
629 et_check_tree_sanity (rmost);
630 record_path_before (rmost);
631
632 et_check_tree_sanity (r);
633 record_path_before (r);
634 #endif
635 }
636
637 /* Finds the nearest common ancestor of the nodes N1 and N2. */
638
639 struct et_node *
640 et_nca (struct et_node *n1, struct et_node *n2)
641 {
642 struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
643 struct et_occ *l, *r, *ret;
644 int mn;
645
646 if (n1 == n2)
647 return n1;
648
649 et_splay (o1);
650 l = o1->prev;
651 r = o1->next;
652 if (l)
653 l->parent = NULL;
654 if (r)
655 r->parent = NULL;
656 et_splay (o2);
657
658 if (l == o2 || (l && l->parent != NULL))
659 {
660 ret = o2->next;
661
662 set_prev (o1, o2);
663 if (r)
664 r->parent = o1;
665 }
666 else
667 {
668 ret = o2->prev;
669
670 set_next (o1, o2);
671 if (l)
672 l->parent = o1;
673 }
674
675 if (0 < o2->depth)
676 {
677 om = o1;
678 mn = o1->depth;
679 }
680 else
681 {
682 om = o2;
683 mn = o2->depth + o1->depth;
684 }
685
686 #ifdef DEBUG_ET
687 et_check_tree_sanity (o2);
688 #endif
689
690 if (ret && ret->min + o1->depth + o2->depth < mn)
691 return ret->min_occ->of;
692 else
693 return om->of;
694 }
695
696 /* Checks whether the node UP is an ancestor of the node DOWN. */
697
698 bool
699 et_below (struct et_node *down, struct et_node *up)
700 {
701 struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
702 struct et_occ *l, *r;
703
704 if (up == down)
705 return true;
706
707 et_splay (u);
708 l = u->prev;
709 r = u->next;
710
711 if (!l)
712 return false;
713
714 l->parent = NULL;
715
716 if (r)
717 r->parent = NULL;
718
719 et_splay (d);
720
721 if (l == d || l->parent != NULL)
722 {
723 if (r)
724 r->parent = u;
725 set_prev (u, d);
726 #ifdef DEBUG_ET
727 et_check_tree_sanity (u);
728 #endif
729 }
730 else
731 {
732 l->parent = u;
733
734 /* In case O1 and O2 are in two different trees, we must just restore the
735 original state. */
736 if (r && r->parent != NULL)
737 set_next (u, d);
738 else
739 set_next (u, r);
740
741 #ifdef DEBUG_ET
742 et_check_tree_sanity (u);
743 #endif
744 return false;
745 }
746
747 if (0 >= d->depth)
748 return false;
749
750 return !d->next || d->next->min + d->depth >= 0;
751 }