re PR target/65697 (__atomic memory barriers not strong enough for __sync builtins)
[gcc.git] / gcc / et-forest.c
1 /* ET-trees data structure implementation.
2 Contributed by Pavel Nejedly
3 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>.
19
20 The ET-forest structure is described in:
21 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
22 J. G'omput. System Sci., 26(3):362 381, 1983.
23 */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "alloc-pool.h"
29 #include "et-forest.h"
30
31 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
32 #undef DEBUG_ET
33
34 #ifdef DEBUG_ET
35 #include "tm.h"
36 #include "hard-reg-set.h"
37 #include "function.h"
38 #include "basic-block.h"
39 #endif
40
41 /* The occurrence of a node in the et tree. */
42 struct et_occ
43 {
44 struct et_node *of; /* The node. */
45
46 struct et_occ *parent; /* Parent in the splay-tree. */
47 struct et_occ *prev; /* Left son in the splay-tree. */
48 struct et_occ *next; /* Right son in the splay-tree. */
49
50 int depth; /* The depth of the node is the sum of depth
51 fields on the path to the root. */
52 int min; /* The minimum value of the depth in the subtree
53 is obtained by adding sum of depth fields
54 on the path to the root. */
55 struct et_occ *min_occ; /* The occurrence in the subtree with the minimal
56 depth. */
57
58 /* Pool allocation new operator. */
59 inline void *operator new (size_t)
60 {
61 return pool.allocate ();
62 }
63
64 /* Delete operator utilizing pool allocation. */
65 inline void operator delete (void *ptr)
66 {
67 pool.remove ((et_occ *) ptr);
68 }
69
70 /* Memory allocation pool. */
71 static pool_allocator<et_occ> pool;
72
73 };
74
75 pool_allocator<et_node> et_node::pool ("et_nodes pool", 300);
76 pool_allocator<et_occ> et_occ::pool ("et_occ pool", 300);
77
78 /* Changes depth of OCC to D. */
79
80 static inline void
81 set_depth (struct et_occ *occ, int d)
82 {
83 if (!occ)
84 return;
85
86 occ->min += d - occ->depth;
87 occ->depth = d;
88 }
89
90 /* Adds D to the depth of OCC. */
91
92 static inline void
93 set_depth_add (struct et_occ *occ, int d)
94 {
95 if (!occ)
96 return;
97
98 occ->min += d;
99 occ->depth += d;
100 }
101
102 /* Sets prev field of OCC to P. */
103
104 static inline void
105 set_prev (struct et_occ *occ, struct et_occ *t)
106 {
107 #ifdef DEBUG_ET
108 gcc_assert (occ != t);
109 #endif
110
111 occ->prev = t;
112 if (t)
113 t->parent = occ;
114 }
115
116 /* Sets next field of OCC to P. */
117
118 static inline void
119 set_next (struct et_occ *occ, struct et_occ *t)
120 {
121 #ifdef DEBUG_ET
122 gcc_assert (occ != t);
123 #endif
124
125 occ->next = t;
126 if (t)
127 t->parent = occ;
128 }
129
130 /* Recompute minimum for occurrence OCC. */
131
132 static inline void
133 et_recomp_min (struct et_occ *occ)
134 {
135 struct et_occ *mson = occ->prev;
136
137 if (!mson
138 || (occ->next
139 && mson->min > occ->next->min))
140 mson = occ->next;
141
142 if (mson && mson->min < 0)
143 {
144 occ->min = mson->min + occ->depth;
145 occ->min_occ = mson->min_occ;
146 }
147 else
148 {
149 occ->min = occ->depth;
150 occ->min_occ = occ;
151 }
152 }
153
154 #ifdef DEBUG_ET
155 /* Checks whether neighborhood of OCC seems sane. */
156
157 static void
158 et_check_occ_sanity (struct et_occ *occ)
159 {
160 if (!occ)
161 return;
162
163 gcc_assert (occ->parent != occ);
164 gcc_assert (occ->prev != occ);
165 gcc_assert (occ->next != occ);
166 gcc_assert (!occ->next || occ->next != occ->prev);
167
168 if (occ->next)
169 {
170 gcc_assert (occ->next != occ->parent);
171 gcc_assert (occ->next->parent == occ);
172 }
173
174 if (occ->prev)
175 {
176 gcc_assert (occ->prev != occ->parent);
177 gcc_assert (occ->prev->parent == occ);
178 }
179
180 gcc_assert (!occ->parent
181 || occ->parent->prev == occ
182 || occ->parent->next == occ);
183 }
184
185 /* Checks whether tree rooted at OCC is sane. */
186
187 static void
188 et_check_sanity (struct et_occ *occ)
189 {
190 et_check_occ_sanity (occ);
191 if (occ->prev)
192 et_check_sanity (occ->prev);
193 if (occ->next)
194 et_check_sanity (occ->next);
195 }
196
197 /* Checks whether tree containing OCC is sane. */
198
199 static void
200 et_check_tree_sanity (struct et_occ *occ)
201 {
202 while (occ->parent)
203 occ = occ->parent;
204
205 et_check_sanity (occ);
206 }
207
208 /* For recording the paths. */
209
210 /* An ad-hoc constant; if the function has more blocks, this won't work,
211 but since it is used for debugging only, it does not matter. */
212 #define MAX_NODES 100000
213
214 static int len;
215 static void *datas[MAX_NODES];
216 static int depths[MAX_NODES];
217
218 /* Records the path represented by OCC, with depth incremented by DEPTH. */
219
220 static int
221 record_path_before_1 (struct et_occ *occ, int depth)
222 {
223 int mn, m;
224
225 depth += occ->depth;
226 mn = depth;
227
228 if (occ->prev)
229 {
230 m = record_path_before_1 (occ->prev, depth);
231 if (m < mn)
232 mn = m;
233 }
234
235 fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
236
237 gcc_assert (len < MAX_NODES);
238
239 depths[len] = depth;
240 datas[len] = occ->of;
241 len++;
242
243 if (occ->next)
244 {
245 m = record_path_before_1 (occ->next, depth);
246 if (m < mn)
247 mn = m;
248 }
249
250 gcc_assert (mn == occ->min + depth - occ->depth);
251
252 return mn;
253 }
254
255 /* Records the path represented by a tree containing OCC. */
256
257 static void
258 record_path_before (struct et_occ *occ)
259 {
260 while (occ->parent)
261 occ = occ->parent;
262
263 len = 0;
264 record_path_before_1 (occ, 0);
265 fprintf (stderr, "\n");
266 }
267
268 /* Checks whether the path represented by OCC, with depth incremented by DEPTH,
269 was not changed since the last recording. */
270
271 static int
272 check_path_after_1 (struct et_occ *occ, int depth)
273 {
274 int mn, m;
275
276 depth += occ->depth;
277 mn = depth;
278
279 if (occ->next)
280 {
281 m = check_path_after_1 (occ->next, depth);
282 if (m < mn)
283 mn = m;
284 }
285
286 len--;
287 gcc_assert (depths[len] == depth && datas[len] == occ->of);
288
289 if (occ->prev)
290 {
291 m = check_path_after_1 (occ->prev, depth);
292 if (m < mn)
293 mn = m;
294 }
295
296 gcc_assert (mn == occ->min + depth - occ->depth);
297
298 return mn;
299 }
300
301 /* Checks whether the path represented by a tree containing OCC was
302 not changed since the last recording. */
303
304 static void
305 check_path_after (struct et_occ *occ)
306 {
307 while (occ->parent)
308 occ = occ->parent;
309
310 check_path_after_1 (occ, 0);
311 gcc_assert (!len);
312 }
313
314 #endif
315
316 /* Splay the occurrence OCC to the root of the tree. */
317
318 static void
319 et_splay (struct et_occ *occ)
320 {
321 struct et_occ *f, *gf, *ggf;
322 int occ_depth, f_depth, gf_depth;
323
324 #ifdef DEBUG_ET
325 record_path_before (occ);
326 et_check_tree_sanity (occ);
327 #endif
328
329 while (occ->parent)
330 {
331 occ_depth = occ->depth;
332
333 f = occ->parent;
334 f_depth = f->depth;
335
336 gf = f->parent;
337
338 if (!gf)
339 {
340 set_depth_add (occ, f_depth);
341 occ->min_occ = f->min_occ;
342 occ->min = f->min;
343
344 if (f->prev == occ)
345 {
346 /* zig */
347 set_prev (f, occ->next);
348 set_next (occ, f);
349 set_depth_add (f->prev, occ_depth);
350 }
351 else
352 {
353 /* zag */
354 set_next (f, occ->prev);
355 set_prev (occ, f);
356 set_depth_add (f->next, occ_depth);
357 }
358 set_depth (f, -occ_depth);
359 occ->parent = NULL;
360
361 et_recomp_min (f);
362 #ifdef DEBUG_ET
363 et_check_tree_sanity (occ);
364 check_path_after (occ);
365 #endif
366 return;
367 }
368
369 gf_depth = gf->depth;
370
371 set_depth_add (occ, f_depth + gf_depth);
372 occ->min_occ = gf->min_occ;
373 occ->min = gf->min;
374
375 ggf = gf->parent;
376
377 if (gf->prev == f)
378 {
379 if (f->prev == occ)
380 {
381 /* zig zig */
382 set_prev (gf, f->next);
383 set_prev (f, occ->next);
384 set_next (occ, f);
385 set_next (f, gf);
386
387 set_depth (f, -occ_depth);
388 set_depth_add (f->prev, occ_depth);
389 set_depth (gf, -f_depth);
390 set_depth_add (gf->prev, f_depth);
391 }
392 else
393 {
394 /* zag zig */
395 set_prev (gf, occ->next);
396 set_next (f, occ->prev);
397 set_prev (occ, f);
398 set_next (occ, gf);
399
400 set_depth (f, -occ_depth);
401 set_depth_add (f->next, occ_depth);
402 set_depth (gf, -occ_depth - f_depth);
403 set_depth_add (gf->prev, occ_depth + f_depth);
404 }
405 }
406 else
407 {
408 if (f->prev == occ)
409 {
410 /* zig zag */
411 set_next (gf, occ->prev);
412 set_prev (f, occ->next);
413 set_prev (occ, gf);
414 set_next (occ, f);
415
416 set_depth (f, -occ_depth);
417 set_depth_add (f->prev, occ_depth);
418 set_depth (gf, -occ_depth - f_depth);
419 set_depth_add (gf->next, occ_depth + f_depth);
420 }
421 else
422 {
423 /* zag zag */
424 set_next (gf, f->prev);
425 set_next (f, occ->prev);
426 set_prev (occ, f);
427 set_prev (f, gf);
428
429 set_depth (f, -occ_depth);
430 set_depth_add (f->next, occ_depth);
431 set_depth (gf, -f_depth);
432 set_depth_add (gf->next, f_depth);
433 }
434 }
435
436 occ->parent = ggf;
437 if (ggf)
438 {
439 if (ggf->prev == gf)
440 ggf->prev = occ;
441 else
442 ggf->next = occ;
443 }
444
445 et_recomp_min (gf);
446 et_recomp_min (f);
447 #ifdef DEBUG_ET
448 et_check_tree_sanity (occ);
449 #endif
450 }
451
452 #ifdef DEBUG_ET
453 et_check_sanity (occ);
454 check_path_after (occ);
455 #endif
456 }
457
458 /* Create a new et tree occurrence of NODE. */
459
460 static struct et_occ *
461 et_new_occ (struct et_node *node)
462 {
463 et_occ *nw = new et_occ;
464
465 nw->of = node;
466 nw->parent = NULL;
467 nw->prev = NULL;
468 nw->next = NULL;
469
470 nw->depth = 0;
471 nw->min_occ = nw;
472 nw->min = 0;
473
474 return nw;
475 }
476
477 /* Create a new et tree containing DATA. */
478
479 struct et_node *
480 et_new_tree (void *data)
481 {
482 struct et_node *nw;
483
484 nw = new et_node;
485
486 nw->data = data;
487 nw->father = NULL;
488 nw->left = NULL;
489 nw->right = NULL;
490 nw->son = NULL;
491
492 nw->rightmost_occ = et_new_occ (nw);
493 nw->parent_occ = NULL;
494
495 return nw;
496 }
497
498 /* Releases et tree T. */
499
500 void
501 et_free_tree (struct et_node *t)
502 {
503 while (t->son)
504 et_split (t->son);
505
506 if (t->father)
507 et_split (t);
508
509 delete t->rightmost_occ;
510 delete t;
511 }
512
513 /* Releases et tree T without maintaining other nodes. */
514
515 void
516 et_free_tree_force (struct et_node *t)
517 {
518 delete t->rightmost_occ;
519 if (t->parent_occ)
520 delete t->parent_occ;
521 delete t;
522 }
523
524 /* Release the alloc pools, if they are empty. */
525
526 void
527 et_free_pools (void)
528 {
529 et_occ::pool.release_if_empty ();
530 et_node::pool.release_if_empty ();
531 }
532
533 /* Sets father of et tree T to FATHER. */
534
535 void
536 et_set_father (struct et_node *t, struct et_node *father)
537 {
538 struct et_node *left, *right;
539 struct et_occ *rmost, *left_part, *new_f_occ, *p;
540
541 /* Update the path represented in the splay tree. */
542 new_f_occ = et_new_occ (father);
543
544 rmost = father->rightmost_occ;
545 et_splay (rmost);
546
547 left_part = rmost->prev;
548
549 p = t->rightmost_occ;
550 et_splay (p);
551
552 set_prev (new_f_occ, left_part);
553 set_next (new_f_occ, p);
554
555 p->depth++;
556 p->min++;
557 et_recomp_min (new_f_occ);
558
559 set_prev (rmost, new_f_occ);
560
561 if (new_f_occ->min + rmost->depth < rmost->min)
562 {
563 rmost->min = new_f_occ->min + rmost->depth;
564 rmost->min_occ = new_f_occ->min_occ;
565 }
566
567 t->parent_occ = new_f_occ;
568
569 /* Update the tree. */
570 t->father = father;
571 right = father->son;
572 if (right)
573 left = right->left;
574 else
575 left = right = t;
576
577 left->right = t;
578 right->left = t;
579 t->left = left;
580 t->right = right;
581
582 father->son = t;
583
584 #ifdef DEBUG_ET
585 et_check_tree_sanity (rmost);
586 record_path_before (rmost);
587 #endif
588 }
589
590 /* Splits the edge from T to its father. */
591
592 void
593 et_split (struct et_node *t)
594 {
595 struct et_node *father = t->father;
596 struct et_occ *r, *l, *rmost, *p_occ;
597
598 /* Update the path represented by the splay tree. */
599 rmost = t->rightmost_occ;
600 et_splay (rmost);
601
602 for (r = rmost->next; r->prev; r = r->prev)
603 continue;
604 et_splay (r);
605
606 r->prev->parent = NULL;
607 p_occ = t->parent_occ;
608 et_splay (p_occ);
609 t->parent_occ = NULL;
610
611 l = p_occ->prev;
612 p_occ->next->parent = NULL;
613
614 set_prev (r, l);
615
616 et_recomp_min (r);
617
618 et_splay (rmost);
619 rmost->depth = 0;
620 rmost->min = 0;
621
622 delete p_occ;
623
624 /* Update the tree. */
625 if (father->son == t)
626 father->son = t->right;
627 if (father->son == t)
628 father->son = NULL;
629 else
630 {
631 t->left->right = t->right;
632 t->right->left = t->left;
633 }
634 t->left = t->right = NULL;
635 t->father = NULL;
636
637 #ifdef DEBUG_ET
638 et_check_tree_sanity (rmost);
639 record_path_before (rmost);
640
641 et_check_tree_sanity (r);
642 record_path_before (r);
643 #endif
644 }
645
646 /* Finds the nearest common ancestor of the nodes N1 and N2. */
647
648 struct et_node *
649 et_nca (struct et_node *n1, struct et_node *n2)
650 {
651 struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
652 struct et_occ *l, *r, *ret;
653 int mn;
654
655 if (n1 == n2)
656 return n1;
657
658 et_splay (o1);
659 l = o1->prev;
660 r = o1->next;
661 if (l)
662 l->parent = NULL;
663 if (r)
664 r->parent = NULL;
665 et_splay (o2);
666
667 if (l == o2 || (l && l->parent != NULL))
668 {
669 ret = o2->next;
670
671 set_prev (o1, o2);
672 if (r)
673 r->parent = o1;
674 }
675 else if (r == o2 || (r && r->parent != NULL))
676 {
677 ret = o2->prev;
678
679 set_next (o1, o2);
680 if (l)
681 l->parent = o1;
682 }
683 else
684 {
685 /* O1 and O2 are in different components of the forest. */
686 if (l)
687 l->parent = o1;
688 if (r)
689 r->parent = o1;
690 return NULL;
691 }
692
693 if (0 < o2->depth)
694 {
695 om = o1;
696 mn = o1->depth;
697 }
698 else
699 {
700 om = o2;
701 mn = o2->depth + o1->depth;
702 }
703
704 #ifdef DEBUG_ET
705 et_check_tree_sanity (o2);
706 #endif
707
708 if (ret && ret->min + o1->depth + o2->depth < mn)
709 return ret->min_occ->of;
710 else
711 return om->of;
712 }
713
714 /* Checks whether the node UP is an ancestor of the node DOWN. */
715
716 bool
717 et_below (struct et_node *down, struct et_node *up)
718 {
719 struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
720 struct et_occ *l, *r;
721
722 if (up == down)
723 return true;
724
725 et_splay (u);
726 l = u->prev;
727 r = u->next;
728
729 if (!l)
730 return false;
731
732 l->parent = NULL;
733
734 if (r)
735 r->parent = NULL;
736
737 et_splay (d);
738
739 if (l == d || l->parent != NULL)
740 {
741 if (r)
742 r->parent = u;
743 set_prev (u, d);
744 #ifdef DEBUG_ET
745 et_check_tree_sanity (u);
746 #endif
747 }
748 else
749 {
750 l->parent = u;
751
752 /* In case O1 and O2 are in two different trees, we must just restore the
753 original state. */
754 if (r && r->parent != NULL)
755 set_next (u, d);
756 else
757 set_next (u, r);
758
759 #ifdef DEBUG_ET
760 et_check_tree_sanity (u);
761 #endif
762 return false;
763 }
764
765 if (0 >= d->depth)
766 return false;
767
768 return !d->next || d->next->min + d->depth >= 0;
769 }
770
771 /* Returns the root of the tree that contains NODE. */
772
773 struct et_node *
774 et_root (struct et_node *node)
775 {
776 struct et_occ *occ = node->rightmost_occ, *r;
777
778 /* The root of the tree corresponds to the rightmost occurrence in the
779 represented path. */
780 et_splay (occ);
781 for (r = occ; r->next; r = r->next)
782 continue;
783 et_splay (r);
784
785 return r->of;
786 }