expr.c (emit_single_push_insn): If padding is needed downward...
[gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
29
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
39
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
46
47 [ Add updated documentation on how to use this. ] */
48
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "flags.h"
57 #include "function.h"
58 #include "expr.h"
59 #include "libfuncs.h"
60 #include "insn-config.h"
61 #include "except.h"
62 #include "integrate.h"
63 #include "hard-reg-set.h"
64 #include "basic-block.h"
65 #include "output.h"
66 #include "dwarf2asm.h"
67 #include "dwarf2out.h"
68 #include "dwarf2.h"
69 #include "toplev.h"
70 #include "hashtab.h"
71 #include "intl.h"
72 #include "ggc.h"
73 #include "tm_p.h"
74 #include "target.h"
75 #include "langhooks.h"
76
77 /* Provide defaults for stuff that may not be defined when using
78 sjlj exceptions. */
79 #ifndef EH_RETURN_DATA_REGNO
80 #define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
81 #endif
82
83
84 /* Nonzero means enable synchronous exceptions for non-call instructions. */
85 int flag_non_call_exceptions;
86
87 /* Protect cleanup actions with must-not-throw regions, with a call
88 to the given failure handler. */
89 tree (*lang_protect_cleanup_actions) PARAMS ((void));
90
91 /* Return true if type A catches type B. */
92 int (*lang_eh_type_covers) PARAMS ((tree a, tree b));
93
94 /* Map a type to a runtime object to match type. */
95 tree (*lang_eh_runtime_type) PARAMS ((tree));
96
97 /* A hash table of label to region number. */
98
99 struct ehl_map_entry GTY(())
100 {
101 rtx label;
102 struct eh_region *region;
103 };
104
105 static GTY(()) int call_site_base;
106 static GTY ((param_is (union tree_node)))
107 htab_t type_to_runtime_map;
108
109 /* Describe the SjLj_Function_Context structure. */
110 static GTY(()) tree sjlj_fc_type_node;
111 static int sjlj_fc_call_site_ofs;
112 static int sjlj_fc_data_ofs;
113 static int sjlj_fc_personality_ofs;
114 static int sjlj_fc_lsda_ofs;
115 static int sjlj_fc_jbuf_ofs;
116 \f
117 /* Describes one exception region. */
118 struct eh_region GTY(())
119 {
120 /* The immediately surrounding region. */
121 struct eh_region *outer;
122
123 /* The list of immediately contained regions. */
124 struct eh_region *inner;
125 struct eh_region *next_peer;
126
127 /* An identifier for this region. */
128 int region_number;
129
130 /* When a region is deleted, its parents inherit the REG_EH_REGION
131 numbers already assigned. */
132 bitmap aka;
133
134 /* Each region does exactly one thing. */
135 enum eh_region_type
136 {
137 ERT_UNKNOWN = 0,
138 ERT_CLEANUP,
139 ERT_TRY,
140 ERT_CATCH,
141 ERT_ALLOWED_EXCEPTIONS,
142 ERT_MUST_NOT_THROW,
143 ERT_THROW,
144 ERT_FIXUP
145 } type;
146
147 /* Holds the action to perform based on the preceding type. */
148 union eh_region_u {
149 /* A list of catch blocks, a surrounding try block,
150 and the label for continuing after a catch. */
151 struct eh_region_u_try {
152 struct eh_region *catch;
153 struct eh_region *last_catch;
154 struct eh_region *prev_try;
155 rtx continue_label;
156 } GTY ((tag ("ERT_TRY"))) try;
157
158 /* The list through the catch handlers, the list of type objects
159 matched, and the list of associated filters. */
160 struct eh_region_u_catch {
161 struct eh_region *next_catch;
162 struct eh_region *prev_catch;
163 tree type_list;
164 tree filter_list;
165 } GTY ((tag ("ERT_CATCH"))) catch;
166
167 /* A tree_list of allowed types. */
168 struct eh_region_u_allowed {
169 tree type_list;
170 int filter;
171 } GTY ((tag ("ERT_ALLOWED_EXCEPTIONS"))) allowed;
172
173 /* The type given by a call to "throw foo();", or discovered
174 for a throw. */
175 struct eh_region_u_throw {
176 tree type;
177 } GTY ((tag ("ERT_THROW"))) throw;
178
179 /* Retain the cleanup expression even after expansion so that
180 we can match up fixup regions. */
181 struct eh_region_u_cleanup {
182 tree exp;
183 struct eh_region *prev_try;
184 } GTY ((tag ("ERT_CLEANUP"))) cleanup;
185
186 /* The real region (by expression and by pointer) that fixup code
187 should live in. */
188 struct eh_region_u_fixup {
189 tree cleanup_exp;
190 struct eh_region *real_region;
191 } GTY ((tag ("ERT_FIXUP"))) fixup;
192 } GTY ((desc ("%0.type"))) u;
193
194 /* Entry point for this region's handler before landing pads are built. */
195 rtx label;
196
197 /* Entry point for this region's handler from the runtime eh library. */
198 rtx landing_pad;
199
200 /* Entry point for this region's handler from an inner region. */
201 rtx post_landing_pad;
202
203 /* The RESX insn for handing off control to the next outermost handler,
204 if appropriate. */
205 rtx resume;
206
207 /* True if something in this region may throw. */
208 unsigned may_contain_throw : 1;
209 };
210
211 struct call_site_record GTY(())
212 {
213 rtx landing_pad;
214 int action;
215 };
216
217 /* Used to save exception status for each function. */
218 struct eh_status GTY(())
219 {
220 /* The tree of all regions for this function. */
221 struct eh_region *region_tree;
222
223 /* The same information as an indexable array. */
224 struct eh_region ** GTY ((length ("%h.last_region_number"))) region_array;
225
226 /* The most recently open region. */
227 struct eh_region *cur_region;
228
229 /* This is the region for which we are processing catch blocks. */
230 struct eh_region *try_region;
231
232 rtx filter;
233 rtx exc_ptr;
234
235 int built_landing_pads;
236 int last_region_number;
237
238 varray_type ttype_data;
239 varray_type ehspec_data;
240 varray_type action_record_data;
241
242 htab_t GTY ((param_is (struct ehl_map_entry))) exception_handler_label_map;
243
244 struct call_site_record * GTY ((length ("%h.call_site_data_used")))
245 call_site_data;
246 int call_site_data_used;
247 int call_site_data_size;
248
249 rtx ehr_stackadj;
250 rtx ehr_handler;
251 rtx ehr_label;
252
253 rtx sjlj_fc;
254 rtx sjlj_exit_after;
255 };
256
257 \f
258 static int t2r_eq PARAMS ((const void *,
259 const void *));
260 static hashval_t t2r_hash PARAMS ((const void *));
261 static void add_type_for_runtime PARAMS ((tree));
262 static tree lookup_type_for_runtime PARAMS ((tree));
263
264 static struct eh_region *expand_eh_region_end PARAMS ((void));
265
266 static rtx get_exception_filter PARAMS ((struct function *));
267
268 static void collect_eh_region_array PARAMS ((void));
269 static void resolve_fixup_regions PARAMS ((void));
270 static void remove_fixup_regions PARAMS ((void));
271 static void remove_unreachable_regions PARAMS ((rtx));
272 static void convert_from_eh_region_ranges_1 PARAMS ((rtx *, int *, int));
273
274 static struct eh_region *duplicate_eh_region_1 PARAMS ((struct eh_region *,
275 struct inline_remap *));
276 static void duplicate_eh_region_2 PARAMS ((struct eh_region *,
277 struct eh_region **));
278 static int ttypes_filter_eq PARAMS ((const void *,
279 const void *));
280 static hashval_t ttypes_filter_hash PARAMS ((const void *));
281 static int ehspec_filter_eq PARAMS ((const void *,
282 const void *));
283 static hashval_t ehspec_filter_hash PARAMS ((const void *));
284 static int add_ttypes_entry PARAMS ((htab_t, tree));
285 static int add_ehspec_entry PARAMS ((htab_t, htab_t,
286 tree));
287 static void assign_filter_values PARAMS ((void));
288 static void build_post_landing_pads PARAMS ((void));
289 static void connect_post_landing_pads PARAMS ((void));
290 static void dw2_build_landing_pads PARAMS ((void));
291
292 struct sjlj_lp_info;
293 static bool sjlj_find_directly_reachable_regions
294 PARAMS ((struct sjlj_lp_info *));
295 static void sjlj_assign_call_site_values
296 PARAMS ((rtx, struct sjlj_lp_info *));
297 static void sjlj_mark_call_sites
298 PARAMS ((struct sjlj_lp_info *));
299 static void sjlj_emit_function_enter PARAMS ((rtx));
300 static void sjlj_emit_function_exit PARAMS ((void));
301 static void sjlj_emit_dispatch_table
302 PARAMS ((rtx, struct sjlj_lp_info *));
303 static void sjlj_build_landing_pads PARAMS ((void));
304
305 static hashval_t ehl_hash PARAMS ((const void *));
306 static int ehl_eq PARAMS ((const void *,
307 const void *));
308 static void add_ehl_entry PARAMS ((rtx,
309 struct eh_region *));
310 static void remove_exception_handler_label PARAMS ((rtx));
311 static void remove_eh_handler PARAMS ((struct eh_region *));
312 static int for_each_eh_label_1 PARAMS ((void **, void *));
313
314 struct reachable_info;
315
316 /* The return value of reachable_next_level. */
317 enum reachable_code
318 {
319 /* The given exception is not processed by the given region. */
320 RNL_NOT_CAUGHT,
321 /* The given exception may need processing by the given region. */
322 RNL_MAYBE_CAUGHT,
323 /* The given exception is completely processed by the given region. */
324 RNL_CAUGHT,
325 /* The given exception is completely processed by the runtime. */
326 RNL_BLOCKED
327 };
328
329 static int check_handled PARAMS ((tree, tree));
330 static void add_reachable_handler
331 PARAMS ((struct reachable_info *, struct eh_region *,
332 struct eh_region *));
333 static enum reachable_code reachable_next_level
334 PARAMS ((struct eh_region *, tree, struct reachable_info *));
335
336 static int action_record_eq PARAMS ((const void *,
337 const void *));
338 static hashval_t action_record_hash PARAMS ((const void *));
339 static int add_action_record PARAMS ((htab_t, int, int));
340 static int collect_one_action_chain PARAMS ((htab_t,
341 struct eh_region *));
342 static int add_call_site PARAMS ((rtx, int));
343
344 static void push_uleb128 PARAMS ((varray_type *,
345 unsigned int));
346 static void push_sleb128 PARAMS ((varray_type *, int));
347 #ifndef HAVE_AS_LEB128
348 static int dw2_size_of_call_site_table PARAMS ((void));
349 static int sjlj_size_of_call_site_table PARAMS ((void));
350 #endif
351 static void dw2_output_call_site_table PARAMS ((void));
352 static void sjlj_output_call_site_table PARAMS ((void));
353
354 \f
355 /* Routine to see if exception handling is turned on.
356 DO_WARN is nonzero if we want to inform the user that exception
357 handling is turned off.
358
359 This is used to ensure that -fexceptions has been specified if the
360 compiler tries to use any exception-specific functions. */
361
362 int
363 doing_eh (do_warn)
364 int do_warn;
365 {
366 if (! flag_exceptions)
367 {
368 static int warned = 0;
369 if (! warned && do_warn)
370 {
371 error ("exception handling disabled, use -fexceptions to enable");
372 warned = 1;
373 }
374 return 0;
375 }
376 return 1;
377 }
378
379 \f
380 void
381 init_eh ()
382 {
383 if (! flag_exceptions)
384 return;
385
386 type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
387
388 /* Create the SjLj_Function_Context structure. This should match
389 the definition in unwind-sjlj.c. */
390 if (USING_SJLJ_EXCEPTIONS)
391 {
392 tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
393
394 sjlj_fc_type_node = (*lang_hooks.types.make_type) (RECORD_TYPE);
395
396 f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
397 build_pointer_type (sjlj_fc_type_node));
398 DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
399
400 f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
401 integer_type_node);
402 DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
403
404 tmp = build_index_type (build_int_2 (4 - 1, 0));
405 tmp = build_array_type ((*lang_hooks.types.type_for_mode) (word_mode, 1),
406 tmp);
407 f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
408 DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
409
410 f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
411 ptr_type_node);
412 DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
413
414 f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
415 ptr_type_node);
416 DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
417
418 #ifdef DONT_USE_BUILTIN_SETJMP
419 #ifdef JMP_BUF_SIZE
420 tmp = build_int_2 (JMP_BUF_SIZE - 1, 0);
421 #else
422 /* Should be large enough for most systems, if it is not,
423 JMP_BUF_SIZE should be defined with the proper value. It will
424 also tend to be larger than necessary for most systems, a more
425 optimal port will define JMP_BUF_SIZE. */
426 tmp = build_int_2 (FIRST_PSEUDO_REGISTER + 2 - 1, 0);
427 #endif
428 #else
429 /* This is 2 for builtin_setjmp, plus whatever the target requires
430 via STACK_SAVEAREA_MODE (SAVE_NONLOCAL). */
431 tmp = build_int_2 ((GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
432 / GET_MODE_SIZE (Pmode)) + 2 - 1, 0);
433 #endif
434 tmp = build_index_type (tmp);
435 tmp = build_array_type (ptr_type_node, tmp);
436 f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
437 #ifdef DONT_USE_BUILTIN_SETJMP
438 /* We don't know what the alignment requirements of the
439 runtime's jmp_buf has. Overestimate. */
440 DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
441 DECL_USER_ALIGN (f_jbuf) = 1;
442 #endif
443 DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
444
445 TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
446 TREE_CHAIN (f_prev) = f_cs;
447 TREE_CHAIN (f_cs) = f_data;
448 TREE_CHAIN (f_data) = f_per;
449 TREE_CHAIN (f_per) = f_lsda;
450 TREE_CHAIN (f_lsda) = f_jbuf;
451
452 layout_type (sjlj_fc_type_node);
453
454 /* Cache the interesting field offsets so that we have
455 easy access from rtl. */
456 sjlj_fc_call_site_ofs
457 = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
458 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
459 sjlj_fc_data_ofs
460 = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
461 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
462 sjlj_fc_personality_ofs
463 = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
464 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
465 sjlj_fc_lsda_ofs
466 = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
467 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
468 sjlj_fc_jbuf_ofs
469 = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
470 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
471 }
472 }
473
474 void
475 init_eh_for_function ()
476 {
477 cfun->eh = (struct eh_status *)
478 ggc_alloc_cleared (sizeof (struct eh_status));
479 }
480 \f
481 /* Start an exception handling region. All instructions emitted
482 after this point are considered to be part of the region until
483 expand_eh_region_end is invoked. */
484
485 void
486 expand_eh_region_start ()
487 {
488 struct eh_region *new_region;
489 struct eh_region *cur_region;
490 rtx note;
491
492 if (! doing_eh (0))
493 return;
494
495 /* Insert a new blank region as a leaf in the tree. */
496 new_region = (struct eh_region *) ggc_alloc_cleared (sizeof (*new_region));
497 cur_region = cfun->eh->cur_region;
498 new_region->outer = cur_region;
499 if (cur_region)
500 {
501 new_region->next_peer = cur_region->inner;
502 cur_region->inner = new_region;
503 }
504 else
505 {
506 new_region->next_peer = cfun->eh->region_tree;
507 cfun->eh->region_tree = new_region;
508 }
509 cfun->eh->cur_region = new_region;
510
511 /* Create a note marking the start of this region. */
512 new_region->region_number = ++cfun->eh->last_region_number;
513 note = emit_note (NOTE_INSN_EH_REGION_BEG);
514 NOTE_EH_HANDLER (note) = new_region->region_number;
515 }
516
517 /* Common code to end a region. Returns the region just ended. */
518
519 static struct eh_region *
520 expand_eh_region_end ()
521 {
522 struct eh_region *cur_region = cfun->eh->cur_region;
523 rtx note;
524
525 /* Create a note marking the end of this region. */
526 note = emit_note (NOTE_INSN_EH_REGION_END);
527 NOTE_EH_HANDLER (note) = cur_region->region_number;
528
529 /* Pop. */
530 cfun->eh->cur_region = cur_region->outer;
531
532 return cur_region;
533 }
534
535 /* End an exception handling region for a cleanup. HANDLER is an
536 expression to expand for the cleanup. */
537
538 void
539 expand_eh_region_end_cleanup (handler)
540 tree handler;
541 {
542 struct eh_region *region;
543 tree protect_cleanup_actions;
544 rtx around_label;
545 rtx data_save[2];
546
547 if (! doing_eh (0))
548 return;
549
550 region = expand_eh_region_end ();
551 region->type = ERT_CLEANUP;
552 region->label = gen_label_rtx ();
553 region->u.cleanup.exp = handler;
554 region->u.cleanup.prev_try = cfun->eh->try_region;
555
556 around_label = gen_label_rtx ();
557 emit_jump (around_label);
558
559 emit_label (region->label);
560
561 if (flag_non_call_exceptions || region->may_contain_throw)
562 {
563 /* Give the language a chance to specify an action to be taken if an
564 exception is thrown that would propagate out of the HANDLER. */
565 protect_cleanup_actions
566 = (lang_protect_cleanup_actions
567 ? (*lang_protect_cleanup_actions) ()
568 : NULL_TREE);
569
570 if (protect_cleanup_actions)
571 expand_eh_region_start ();
572
573 /* In case this cleanup involves an inline destructor with a try block in
574 it, we need to save the EH return data registers around it. */
575 data_save[0] = gen_reg_rtx (ptr_mode);
576 emit_move_insn (data_save[0], get_exception_pointer (cfun));
577 data_save[1] = gen_reg_rtx (word_mode);
578 emit_move_insn (data_save[1], get_exception_filter (cfun));
579
580 expand_expr (handler, const0_rtx, VOIDmode, 0);
581
582 emit_move_insn (cfun->eh->exc_ptr, data_save[0]);
583 emit_move_insn (cfun->eh->filter, data_save[1]);
584
585 if (protect_cleanup_actions)
586 expand_eh_region_end_must_not_throw (protect_cleanup_actions);
587
588 /* We need any stack adjustment complete before the around_label. */
589 do_pending_stack_adjust ();
590 }
591
592 /* We delay the generation of the _Unwind_Resume until we generate
593 landing pads. We emit a marker here so as to get good control
594 flow data in the meantime. */
595 region->resume
596 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
597 emit_barrier ();
598
599 emit_label (around_label);
600 }
601
602 /* End an exception handling region for a try block, and prepares
603 for subsequent calls to expand_start_catch. */
604
605 void
606 expand_start_all_catch ()
607 {
608 struct eh_region *region;
609
610 if (! doing_eh (1))
611 return;
612
613 region = expand_eh_region_end ();
614 region->type = ERT_TRY;
615 region->u.try.prev_try = cfun->eh->try_region;
616 region->u.try.continue_label = gen_label_rtx ();
617
618 cfun->eh->try_region = region;
619
620 emit_jump (region->u.try.continue_label);
621 }
622
623 /* Begin a catch clause. TYPE is the type caught, a list of such types, or
624 null if this is a catch-all clause. Providing a type list enables to
625 associate the catch region with potentially several exception types, which
626 is useful e.g. for Ada. */
627
628 void
629 expand_start_catch (type_or_list)
630 tree type_or_list;
631 {
632 struct eh_region *t, *c, *l;
633 tree type_list;
634
635 if (! doing_eh (0))
636 return;
637
638 type_list = type_or_list;
639
640 if (type_or_list)
641 {
642 /* Ensure to always end up with a type list to normalize further
643 processing, then register each type against the runtime types
644 map. */
645 tree type_node;
646
647 if (TREE_CODE (type_or_list) != TREE_LIST)
648 type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
649
650 type_node = type_list;
651 for (; type_node; type_node = TREE_CHAIN (type_node))
652 add_type_for_runtime (TREE_VALUE (type_node));
653 }
654
655 expand_eh_region_start ();
656
657 t = cfun->eh->try_region;
658 c = cfun->eh->cur_region;
659 c->type = ERT_CATCH;
660 c->u.catch.type_list = type_list;
661 c->label = gen_label_rtx ();
662
663 l = t->u.try.last_catch;
664 c->u.catch.prev_catch = l;
665 if (l)
666 l->u.catch.next_catch = c;
667 else
668 t->u.try.catch = c;
669 t->u.try.last_catch = c;
670
671 emit_label (c->label);
672 }
673
674 /* End a catch clause. Control will resume after the try/catch block. */
675
676 void
677 expand_end_catch ()
678 {
679 struct eh_region *try_region;
680
681 if (! doing_eh (0))
682 return;
683
684 expand_eh_region_end ();
685 try_region = cfun->eh->try_region;
686
687 emit_jump (try_region->u.try.continue_label);
688 }
689
690 /* End a sequence of catch handlers for a try block. */
691
692 void
693 expand_end_all_catch ()
694 {
695 struct eh_region *try_region;
696
697 if (! doing_eh (0))
698 return;
699
700 try_region = cfun->eh->try_region;
701 cfun->eh->try_region = try_region->u.try.prev_try;
702
703 emit_label (try_region->u.try.continue_label);
704 }
705
706 /* End an exception region for an exception type filter. ALLOWED is a
707 TREE_LIST of types to be matched by the runtime. FAILURE is an
708 expression to invoke if a mismatch occurs.
709
710 ??? We could use these semantics for calls to rethrow, too; if we can
711 see the surrounding catch clause, we know that the exception we're
712 rethrowing satisfies the "filter" of the catch type. */
713
714 void
715 expand_eh_region_end_allowed (allowed, failure)
716 tree allowed, failure;
717 {
718 struct eh_region *region;
719 rtx around_label;
720
721 if (! doing_eh (0))
722 return;
723
724 region = expand_eh_region_end ();
725 region->type = ERT_ALLOWED_EXCEPTIONS;
726 region->u.allowed.type_list = allowed;
727 region->label = gen_label_rtx ();
728
729 for (; allowed ; allowed = TREE_CHAIN (allowed))
730 add_type_for_runtime (TREE_VALUE (allowed));
731
732 /* We must emit the call to FAILURE here, so that if this function
733 throws a different exception, that it will be processed by the
734 correct region. */
735
736 around_label = gen_label_rtx ();
737 emit_jump (around_label);
738
739 emit_label (region->label);
740 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
741 /* We must adjust the stack before we reach the AROUND_LABEL because
742 the call to FAILURE does not occur on all paths to the
743 AROUND_LABEL. */
744 do_pending_stack_adjust ();
745
746 emit_label (around_label);
747 }
748
749 /* End an exception region for a must-not-throw filter. FAILURE is an
750 expression invoke if an uncaught exception propagates this far.
751
752 This is conceptually identical to expand_eh_region_end_allowed with
753 an empty allowed list (if you passed "std::terminate" instead of
754 "__cxa_call_unexpected"), but they are represented differently in
755 the C++ LSDA. */
756
757 void
758 expand_eh_region_end_must_not_throw (failure)
759 tree failure;
760 {
761 struct eh_region *region;
762 rtx around_label;
763
764 if (! doing_eh (0))
765 return;
766
767 region = expand_eh_region_end ();
768 region->type = ERT_MUST_NOT_THROW;
769 region->label = gen_label_rtx ();
770
771 /* We must emit the call to FAILURE here, so that if this function
772 throws a different exception, that it will be processed by the
773 correct region. */
774
775 around_label = gen_label_rtx ();
776 emit_jump (around_label);
777
778 emit_label (region->label);
779 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
780
781 emit_label (around_label);
782 }
783
784 /* End an exception region for a throw. No handling goes on here,
785 but it's the easiest way for the front-end to indicate what type
786 is being thrown. */
787
788 void
789 expand_eh_region_end_throw (type)
790 tree type;
791 {
792 struct eh_region *region;
793
794 if (! doing_eh (0))
795 return;
796
797 region = expand_eh_region_end ();
798 region->type = ERT_THROW;
799 region->u.throw.type = type;
800 }
801
802 /* End a fixup region. Within this region the cleanups for the immediately
803 enclosing region are _not_ run. This is used for goto cleanup to avoid
804 destroying an object twice.
805
806 This would be an extraordinarily simple prospect, were it not for the
807 fact that we don't actually know what the immediately enclosing region
808 is. This surprising fact is because expand_cleanups is currently
809 generating a sequence that it will insert somewhere else. We collect
810 the proper notion of "enclosing" in convert_from_eh_region_ranges. */
811
812 void
813 expand_eh_region_end_fixup (handler)
814 tree handler;
815 {
816 struct eh_region *fixup;
817
818 if (! doing_eh (0))
819 return;
820
821 fixup = expand_eh_region_end ();
822 fixup->type = ERT_FIXUP;
823 fixup->u.fixup.cleanup_exp = handler;
824 }
825
826 /* Note that the current EH region (if any) may contain a throw, or a
827 call to a function which itself may contain a throw. */
828
829 void
830 note_eh_region_may_contain_throw ()
831 {
832 struct eh_region *region;
833
834 region = cfun->eh->cur_region;
835 while (region && !region->may_contain_throw)
836 {
837 region->may_contain_throw = 1;
838 region = region->outer;
839 }
840 }
841
842 /* Return an rtl expression for a pointer to the exception object
843 within a handler. */
844
845 rtx
846 get_exception_pointer (fun)
847 struct function *fun;
848 {
849 rtx exc_ptr = fun->eh->exc_ptr;
850 if (fun == cfun && ! exc_ptr)
851 {
852 exc_ptr = gen_reg_rtx (ptr_mode);
853 fun->eh->exc_ptr = exc_ptr;
854 }
855 return exc_ptr;
856 }
857
858 /* Return an rtl expression for the exception dispatch filter
859 within a handler. */
860
861 static rtx
862 get_exception_filter (fun)
863 struct function *fun;
864 {
865 rtx filter = fun->eh->filter;
866 if (fun == cfun && ! filter)
867 {
868 filter = gen_reg_rtx (word_mode);
869 fun->eh->filter = filter;
870 }
871 return filter;
872 }
873 \f
874 /* This section is for the exception handling specific optimization pass. */
875
876 /* Random access the exception region tree. It's just as simple to
877 collect the regions this way as in expand_eh_region_start, but
878 without having to realloc memory. */
879
880 static void
881 collect_eh_region_array ()
882 {
883 struct eh_region **array, *i;
884
885 i = cfun->eh->region_tree;
886 if (! i)
887 return;
888
889 array = ggc_alloc_cleared ((cfun->eh->last_region_number + 1)
890 * sizeof (*array));
891 cfun->eh->region_array = array;
892
893 while (1)
894 {
895 array[i->region_number] = i;
896
897 /* If there are sub-regions, process them. */
898 if (i->inner)
899 i = i->inner;
900 /* If there are peers, process them. */
901 else if (i->next_peer)
902 i = i->next_peer;
903 /* Otherwise, step back up the tree to the next peer. */
904 else
905 {
906 do {
907 i = i->outer;
908 if (i == NULL)
909 return;
910 } while (i->next_peer == NULL);
911 i = i->next_peer;
912 }
913 }
914 }
915
916 static void
917 resolve_fixup_regions ()
918 {
919 int i, j, n = cfun->eh->last_region_number;
920
921 for (i = 1; i <= n; ++i)
922 {
923 struct eh_region *fixup = cfun->eh->region_array[i];
924 struct eh_region *cleanup = 0;
925
926 if (! fixup || fixup->type != ERT_FIXUP)
927 continue;
928
929 for (j = 1; j <= n; ++j)
930 {
931 cleanup = cfun->eh->region_array[j];
932 if (cleanup && cleanup->type == ERT_CLEANUP
933 && cleanup->u.cleanup.exp == fixup->u.fixup.cleanup_exp)
934 break;
935 }
936 if (j > n)
937 abort ();
938
939 fixup->u.fixup.real_region = cleanup->outer;
940 }
941 }
942
943 /* Now that we've discovered what region actually encloses a fixup,
944 we can shuffle pointers and remove them from the tree. */
945
946 static void
947 remove_fixup_regions ()
948 {
949 int i;
950 rtx insn, note;
951 struct eh_region *fixup;
952
953 /* Walk the insn chain and adjust the REG_EH_REGION numbers
954 for instructions referencing fixup regions. This is only
955 strictly necessary for fixup regions with no parent, but
956 doesn't hurt to do it for all regions. */
957 for (insn = get_insns(); insn ; insn = NEXT_INSN (insn))
958 if (INSN_P (insn)
959 && (note = find_reg_note (insn, REG_EH_REGION, NULL))
960 && INTVAL (XEXP (note, 0)) > 0
961 && (fixup = cfun->eh->region_array[INTVAL (XEXP (note, 0))])
962 && fixup->type == ERT_FIXUP)
963 {
964 if (fixup->u.fixup.real_region)
965 XEXP (note, 0) = GEN_INT (fixup->u.fixup.real_region->region_number);
966 else
967 remove_note (insn, note);
968 }
969
970 /* Remove the fixup regions from the tree. */
971 for (i = cfun->eh->last_region_number; i > 0; --i)
972 {
973 fixup = cfun->eh->region_array[i];
974 if (! fixup)
975 continue;
976
977 /* Allow GC to maybe free some memory. */
978 if (fixup->type == ERT_CLEANUP)
979 fixup->u.cleanup.exp = NULL_TREE;
980
981 if (fixup->type != ERT_FIXUP)
982 continue;
983
984 if (fixup->inner)
985 {
986 struct eh_region *parent, *p, **pp;
987
988 parent = fixup->u.fixup.real_region;
989
990 /* Fix up the children's parent pointers; find the end of
991 the list. */
992 for (p = fixup->inner; ; p = p->next_peer)
993 {
994 p->outer = parent;
995 if (! p->next_peer)
996 break;
997 }
998
999 /* In the tree of cleanups, only outer-inner ordering matters.
1000 So link the children back in anywhere at the correct level. */
1001 if (parent)
1002 pp = &parent->inner;
1003 else
1004 pp = &cfun->eh->region_tree;
1005 p->next_peer = *pp;
1006 *pp = fixup->inner;
1007 fixup->inner = NULL;
1008 }
1009
1010 remove_eh_handler (fixup);
1011 }
1012 }
1013
1014 /* Remove all regions whose labels are not reachable from insns. */
1015
1016 static void
1017 remove_unreachable_regions (insns)
1018 rtx insns;
1019 {
1020 int i, *uid_region_num;
1021 bool *reachable;
1022 struct eh_region *r;
1023 rtx insn;
1024
1025 uid_region_num = xcalloc (get_max_uid (), sizeof(int));
1026 reachable = xcalloc (cfun->eh->last_region_number + 1, sizeof(bool));
1027
1028 for (i = cfun->eh->last_region_number; i > 0; --i)
1029 {
1030 r = cfun->eh->region_array[i];
1031 if (!r || r->region_number != i)
1032 continue;
1033
1034 if (r->resume)
1035 {
1036 if (uid_region_num[INSN_UID (r->resume)])
1037 abort ();
1038 uid_region_num[INSN_UID (r->resume)] = i;
1039 }
1040 if (r->label)
1041 {
1042 if (uid_region_num[INSN_UID (r->label)])
1043 abort ();
1044 uid_region_num[INSN_UID (r->label)] = i;
1045 }
1046 if (r->type == ERT_TRY && r->u.try.continue_label)
1047 {
1048 if (uid_region_num[INSN_UID (r->u.try.continue_label)])
1049 abort ();
1050 uid_region_num[INSN_UID (r->u.try.continue_label)] = i;
1051 }
1052 }
1053
1054 for (insn = insns; insn; insn = NEXT_INSN (insn))
1055 reachable[uid_region_num[INSN_UID (insn)]] = true;
1056
1057 for (i = cfun->eh->last_region_number; i > 0; --i)
1058 {
1059 r = cfun->eh->region_array[i];
1060 if (r && r->region_number == i && !reachable[i])
1061 {
1062 /* Don't remove ERT_THROW regions if their outer region
1063 is reachable. */
1064 if (r->type == ERT_THROW
1065 && r->outer
1066 && reachable[r->outer->region_number])
1067 continue;
1068
1069 remove_eh_handler (r);
1070 }
1071 }
1072
1073 free (reachable);
1074 free (uid_region_num);
1075 }
1076
1077 /* Turn NOTE_INSN_EH_REGION notes into REG_EH_REGION notes for each
1078 can_throw instruction in the region. */
1079
1080 static void
1081 convert_from_eh_region_ranges_1 (pinsns, orig_sp, cur)
1082 rtx *pinsns;
1083 int *orig_sp;
1084 int cur;
1085 {
1086 int *sp = orig_sp;
1087 rtx insn, next;
1088
1089 for (insn = *pinsns; insn ; insn = next)
1090 {
1091 next = NEXT_INSN (insn);
1092 if (GET_CODE (insn) == NOTE)
1093 {
1094 int kind = NOTE_LINE_NUMBER (insn);
1095 if (kind == NOTE_INSN_EH_REGION_BEG
1096 || kind == NOTE_INSN_EH_REGION_END)
1097 {
1098 if (kind == NOTE_INSN_EH_REGION_BEG)
1099 {
1100 struct eh_region *r;
1101
1102 *sp++ = cur;
1103 cur = NOTE_EH_HANDLER (insn);
1104
1105 r = cfun->eh->region_array[cur];
1106 if (r->type == ERT_FIXUP)
1107 {
1108 r = r->u.fixup.real_region;
1109 cur = r ? r->region_number : 0;
1110 }
1111 else if (r->type == ERT_CATCH)
1112 {
1113 r = r->outer;
1114 cur = r ? r->region_number : 0;
1115 }
1116 }
1117 else
1118 cur = *--sp;
1119
1120 /* Removing the first insn of a CALL_PLACEHOLDER sequence
1121 requires extra care to adjust sequence start. */
1122 if (insn == *pinsns)
1123 *pinsns = next;
1124 remove_insn (insn);
1125 continue;
1126 }
1127 }
1128 else if (INSN_P (insn))
1129 {
1130 if (cur > 0
1131 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1132 /* Calls can always potentially throw exceptions, unless
1133 they have a REG_EH_REGION note with a value of 0 or less.
1134 Which should be the only possible kind so far. */
1135 && (GET_CODE (insn) == CALL_INSN
1136 /* If we wanted exceptions for non-call insns, then
1137 any may_trap_p instruction could throw. */
1138 || (flag_non_call_exceptions
1139 && GET_CODE (PATTERN (insn)) != CLOBBER
1140 && GET_CODE (PATTERN (insn)) != USE
1141 && may_trap_p (PATTERN (insn)))))
1142 {
1143 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (cur),
1144 REG_NOTES (insn));
1145 }
1146
1147 if (GET_CODE (insn) == CALL_INSN
1148 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1149 {
1150 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 0),
1151 sp, cur);
1152 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 1),
1153 sp, cur);
1154 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 2),
1155 sp, cur);
1156 }
1157 }
1158 }
1159
1160 if (sp != orig_sp)
1161 abort ();
1162 }
1163
1164 void
1165 convert_from_eh_region_ranges ()
1166 {
1167 int *stack;
1168 rtx insns;
1169
1170 collect_eh_region_array ();
1171 resolve_fixup_regions ();
1172
1173 stack = xmalloc (sizeof (int) * (cfun->eh->last_region_number + 1));
1174 insns = get_insns ();
1175 convert_from_eh_region_ranges_1 (&insns, stack, 0);
1176 free (stack);
1177
1178 remove_fixup_regions ();
1179 remove_unreachable_regions (insns);
1180 }
1181
1182 static void
1183 add_ehl_entry (label, region)
1184 rtx label;
1185 struct eh_region *region;
1186 {
1187 struct ehl_map_entry **slot, *entry;
1188
1189 LABEL_PRESERVE_P (label) = 1;
1190
1191 entry = (struct ehl_map_entry *) ggc_alloc (sizeof (*entry));
1192 entry->label = label;
1193 entry->region = region;
1194
1195 slot = (struct ehl_map_entry **)
1196 htab_find_slot (cfun->eh->exception_handler_label_map, entry, INSERT);
1197
1198 /* Before landing pad creation, each exception handler has its own
1199 label. After landing pad creation, the exception handlers may
1200 share landing pads. This is ok, since maybe_remove_eh_handler
1201 only requires the 1-1 mapping before landing pad creation. */
1202 if (*slot && !cfun->eh->built_landing_pads)
1203 abort ();
1204
1205 *slot = entry;
1206 }
1207
1208 void
1209 find_exception_handler_labels ()
1210 {
1211 int i;
1212
1213 if (cfun->eh->exception_handler_label_map)
1214 htab_empty (cfun->eh->exception_handler_label_map);
1215 else
1216 {
1217 /* ??? The expansion factor here (3/2) must be greater than the htab
1218 occupancy factor (4/3) to avoid unnecessary resizing. */
1219 cfun->eh->exception_handler_label_map
1220 = htab_create_ggc (cfun->eh->last_region_number * 3 / 2,
1221 ehl_hash, ehl_eq, NULL);
1222 }
1223
1224 if (cfun->eh->region_tree == NULL)
1225 return;
1226
1227 for (i = cfun->eh->last_region_number; i > 0; --i)
1228 {
1229 struct eh_region *region = cfun->eh->region_array[i];
1230 rtx lab;
1231
1232 if (! region || region->region_number != i)
1233 continue;
1234 if (cfun->eh->built_landing_pads)
1235 lab = region->landing_pad;
1236 else
1237 lab = region->label;
1238
1239 if (lab)
1240 add_ehl_entry (lab, region);
1241 }
1242
1243 /* For sjlj exceptions, need the return label to remain live until
1244 after landing pad generation. */
1245 if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
1246 add_ehl_entry (return_label, NULL);
1247 }
1248
1249 bool
1250 current_function_has_exception_handlers ()
1251 {
1252 int i;
1253
1254 for (i = cfun->eh->last_region_number; i > 0; --i)
1255 {
1256 struct eh_region *region = cfun->eh->region_array[i];
1257
1258 if (! region || region->region_number != i)
1259 continue;
1260 if (region->type != ERT_THROW)
1261 return true;
1262 }
1263
1264 return false;
1265 }
1266 \f
1267 static struct eh_region *
1268 duplicate_eh_region_1 (o, map)
1269 struct eh_region *o;
1270 struct inline_remap *map;
1271 {
1272 struct eh_region *n
1273 = (struct eh_region *) ggc_alloc_cleared (sizeof (struct eh_region));
1274
1275 n->region_number = o->region_number + cfun->eh->last_region_number;
1276 n->type = o->type;
1277
1278 switch (n->type)
1279 {
1280 case ERT_CLEANUP:
1281 case ERT_MUST_NOT_THROW:
1282 break;
1283
1284 case ERT_TRY:
1285 if (o->u.try.continue_label)
1286 n->u.try.continue_label
1287 = get_label_from_map (map,
1288 CODE_LABEL_NUMBER (o->u.try.continue_label));
1289 break;
1290
1291 case ERT_CATCH:
1292 n->u.catch.type_list = o->u.catch.type_list;
1293 break;
1294
1295 case ERT_ALLOWED_EXCEPTIONS:
1296 n->u.allowed.type_list = o->u.allowed.type_list;
1297 break;
1298
1299 case ERT_THROW:
1300 n->u.throw.type = o->u.throw.type;
1301
1302 default:
1303 abort ();
1304 }
1305
1306 if (o->label)
1307 n->label = get_label_from_map (map, CODE_LABEL_NUMBER (o->label));
1308 if (o->resume)
1309 {
1310 n->resume = map->insn_map[INSN_UID (o->resume)];
1311 if (n->resume == NULL)
1312 abort ();
1313 }
1314
1315 return n;
1316 }
1317
1318 static void
1319 duplicate_eh_region_2 (o, n_array)
1320 struct eh_region *o;
1321 struct eh_region **n_array;
1322 {
1323 struct eh_region *n = n_array[o->region_number];
1324
1325 switch (n->type)
1326 {
1327 case ERT_TRY:
1328 n->u.try.catch = n_array[o->u.try.catch->region_number];
1329 n->u.try.last_catch = n_array[o->u.try.last_catch->region_number];
1330 break;
1331
1332 case ERT_CATCH:
1333 if (o->u.catch.next_catch)
1334 n->u.catch.next_catch = n_array[o->u.catch.next_catch->region_number];
1335 if (o->u.catch.prev_catch)
1336 n->u.catch.prev_catch = n_array[o->u.catch.prev_catch->region_number];
1337 break;
1338
1339 default:
1340 break;
1341 }
1342
1343 if (o->outer)
1344 n->outer = n_array[o->outer->region_number];
1345 if (o->inner)
1346 n->inner = n_array[o->inner->region_number];
1347 if (o->next_peer)
1348 n->next_peer = n_array[o->next_peer->region_number];
1349 }
1350
1351 int
1352 duplicate_eh_regions (ifun, map)
1353 struct function *ifun;
1354 struct inline_remap *map;
1355 {
1356 int ifun_last_region_number = ifun->eh->last_region_number;
1357 struct eh_region **n_array, *root, *cur;
1358 int i;
1359
1360 if (ifun_last_region_number == 0)
1361 return 0;
1362
1363 n_array = xcalloc (ifun_last_region_number + 1, sizeof (*n_array));
1364
1365 for (i = 1; i <= ifun_last_region_number; ++i)
1366 {
1367 cur = ifun->eh->region_array[i];
1368 if (!cur || cur->region_number != i)
1369 continue;
1370 n_array[i] = duplicate_eh_region_1 (cur, map);
1371 }
1372 for (i = 1; i <= ifun_last_region_number; ++i)
1373 {
1374 cur = ifun->eh->region_array[i];
1375 if (!cur || cur->region_number != i)
1376 continue;
1377 duplicate_eh_region_2 (cur, n_array);
1378 }
1379
1380 root = n_array[ifun->eh->region_tree->region_number];
1381 cur = cfun->eh->cur_region;
1382 if (cur)
1383 {
1384 struct eh_region *p = cur->inner;
1385 if (p)
1386 {
1387 while (p->next_peer)
1388 p = p->next_peer;
1389 p->next_peer = root;
1390 }
1391 else
1392 cur->inner = root;
1393
1394 for (i = 1; i <= ifun_last_region_number; ++i)
1395 if (n_array[i] && n_array[i]->outer == NULL)
1396 n_array[i]->outer = cur;
1397 }
1398 else
1399 {
1400 struct eh_region *p = cfun->eh->region_tree;
1401 if (p)
1402 {
1403 while (p->next_peer)
1404 p = p->next_peer;
1405 p->next_peer = root;
1406 }
1407 else
1408 cfun->eh->region_tree = root;
1409 }
1410
1411 free (n_array);
1412
1413 i = cfun->eh->last_region_number;
1414 cfun->eh->last_region_number = i + ifun_last_region_number;
1415 return i;
1416 }
1417
1418 \f
1419 static int
1420 t2r_eq (pentry, pdata)
1421 const void *pentry;
1422 const void *pdata;
1423 {
1424 tree entry = (tree) pentry;
1425 tree data = (tree) pdata;
1426
1427 return TREE_PURPOSE (entry) == data;
1428 }
1429
1430 static hashval_t
1431 t2r_hash (pentry)
1432 const void *pentry;
1433 {
1434 tree entry = (tree) pentry;
1435 return TYPE_HASH (TREE_PURPOSE (entry));
1436 }
1437
1438 static void
1439 add_type_for_runtime (type)
1440 tree type;
1441 {
1442 tree *slot;
1443
1444 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1445 TYPE_HASH (type), INSERT);
1446 if (*slot == NULL)
1447 {
1448 tree runtime = (*lang_eh_runtime_type) (type);
1449 *slot = tree_cons (type, runtime, NULL_TREE);
1450 }
1451 }
1452
1453 static tree
1454 lookup_type_for_runtime (type)
1455 tree type;
1456 {
1457 tree *slot;
1458
1459 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1460 TYPE_HASH (type), NO_INSERT);
1461
1462 /* We should have always inserted the data earlier. */
1463 return TREE_VALUE (*slot);
1464 }
1465
1466 \f
1467 /* Represent an entry in @TTypes for either catch actions
1468 or exception filter actions. */
1469 struct ttypes_filter GTY(())
1470 {
1471 tree t;
1472 int filter;
1473 };
1474
1475 /* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
1476 (a tree) for a @TTypes type node we are thinking about adding. */
1477
1478 static int
1479 ttypes_filter_eq (pentry, pdata)
1480 const void *pentry;
1481 const void *pdata;
1482 {
1483 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1484 tree data = (tree) pdata;
1485
1486 return entry->t == data;
1487 }
1488
1489 static hashval_t
1490 ttypes_filter_hash (pentry)
1491 const void *pentry;
1492 {
1493 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1494 return TYPE_HASH (entry->t);
1495 }
1496
1497 /* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
1498 exception specification list we are thinking about adding. */
1499 /* ??? Currently we use the type lists in the order given. Someone
1500 should put these in some canonical order. */
1501
1502 static int
1503 ehspec_filter_eq (pentry, pdata)
1504 const void *pentry;
1505 const void *pdata;
1506 {
1507 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1508 const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
1509
1510 return type_list_equal (entry->t, data->t);
1511 }
1512
1513 /* Hash function for exception specification lists. */
1514
1515 static hashval_t
1516 ehspec_filter_hash (pentry)
1517 const void *pentry;
1518 {
1519 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1520 hashval_t h = 0;
1521 tree list;
1522
1523 for (list = entry->t; list ; list = TREE_CHAIN (list))
1524 h = (h << 5) + (h >> 27) + TYPE_HASH (TREE_VALUE (list));
1525 return h;
1526 }
1527
1528 /* Add TYPE to cfun->eh->ttype_data, using TYPES_HASH to speed
1529 up the search. Return the filter value to be used. */
1530
1531 static int
1532 add_ttypes_entry (ttypes_hash, type)
1533 htab_t ttypes_hash;
1534 tree type;
1535 {
1536 struct ttypes_filter **slot, *n;
1537
1538 slot = (struct ttypes_filter **)
1539 htab_find_slot_with_hash (ttypes_hash, type, TYPE_HASH (type), INSERT);
1540
1541 if ((n = *slot) == NULL)
1542 {
1543 /* Filter value is a 1 based table index. */
1544
1545 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1546 n->t = type;
1547 n->filter = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) + 1;
1548 *slot = n;
1549
1550 VARRAY_PUSH_TREE (cfun->eh->ttype_data, type);
1551 }
1552
1553 return n->filter;
1554 }
1555
1556 /* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
1557 to speed up the search. Return the filter value to be used. */
1558
1559 static int
1560 add_ehspec_entry (ehspec_hash, ttypes_hash, list)
1561 htab_t ehspec_hash;
1562 htab_t ttypes_hash;
1563 tree list;
1564 {
1565 struct ttypes_filter **slot, *n;
1566 struct ttypes_filter dummy;
1567
1568 dummy.t = list;
1569 slot = (struct ttypes_filter **)
1570 htab_find_slot (ehspec_hash, &dummy, INSERT);
1571
1572 if ((n = *slot) == NULL)
1573 {
1574 /* Filter value is a -1 based byte index into a uleb128 buffer. */
1575
1576 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1577 n->t = list;
1578 n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
1579 *slot = n;
1580
1581 /* Look up each type in the list and encode its filter
1582 value as a uleb128. Terminate the list with 0. */
1583 for (; list ; list = TREE_CHAIN (list))
1584 push_uleb128 (&cfun->eh->ehspec_data,
1585 add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
1586 VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
1587 }
1588
1589 return n->filter;
1590 }
1591
1592 /* Generate the action filter values to be used for CATCH and
1593 ALLOWED_EXCEPTIONS regions. When using dwarf2 exception regions,
1594 we use lots of landing pads, and so every type or list can share
1595 the same filter value, which saves table space. */
1596
1597 static void
1598 assign_filter_values ()
1599 {
1600 int i;
1601 htab_t ttypes, ehspec;
1602
1603 VARRAY_TREE_INIT (cfun->eh->ttype_data, 16, "ttype_data");
1604 VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
1605
1606 ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
1607 ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
1608
1609 for (i = cfun->eh->last_region_number; i > 0; --i)
1610 {
1611 struct eh_region *r = cfun->eh->region_array[i];
1612
1613 /* Mind we don't process a region more than once. */
1614 if (!r || r->region_number != i)
1615 continue;
1616
1617 switch (r->type)
1618 {
1619 case ERT_CATCH:
1620 /* Whatever type_list is (NULL or true list), we build a list
1621 of filters for the region. */
1622 r->u.catch.filter_list = NULL_TREE;
1623
1624 if (r->u.catch.type_list != NULL)
1625 {
1626 /* Get a filter value for each of the types caught and store
1627 them in the region's dedicated list. */
1628 tree tp_node = r->u.catch.type_list;
1629
1630 for (;tp_node; tp_node = TREE_CHAIN (tp_node))
1631 {
1632 int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
1633 tree flt_node = build_int_2 (flt, 0);
1634
1635 r->u.catch.filter_list
1636 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1637 }
1638 }
1639 else
1640 {
1641 /* Get a filter value for the NULL list also since it will need
1642 an action record anyway. */
1643 int flt = add_ttypes_entry (ttypes, NULL);
1644 tree flt_node = build_int_2 (flt, 0);
1645
1646 r->u.catch.filter_list
1647 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1648 }
1649
1650 break;
1651
1652 case ERT_ALLOWED_EXCEPTIONS:
1653 r->u.allowed.filter
1654 = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
1655 break;
1656
1657 default:
1658 break;
1659 }
1660 }
1661
1662 htab_delete (ttypes);
1663 htab_delete (ehspec);
1664 }
1665
1666 /* Generate the code to actually handle exceptions, which will follow the
1667 landing pads. */
1668
1669 static void
1670 build_post_landing_pads ()
1671 {
1672 int i;
1673
1674 for (i = cfun->eh->last_region_number; i > 0; --i)
1675 {
1676 struct eh_region *region = cfun->eh->region_array[i];
1677 rtx seq;
1678
1679 /* Mind we don't process a region more than once. */
1680 if (!region || region->region_number != i)
1681 continue;
1682
1683 switch (region->type)
1684 {
1685 case ERT_TRY:
1686 /* ??? Collect the set of all non-overlapping catch handlers
1687 all the way up the chain until blocked by a cleanup. */
1688 /* ??? Outer try regions can share landing pads with inner
1689 try regions if the types are completely non-overlapping,
1690 and there are no intervening cleanups. */
1691
1692 region->post_landing_pad = gen_label_rtx ();
1693
1694 start_sequence ();
1695
1696 emit_label (region->post_landing_pad);
1697
1698 /* ??? It is mighty inconvenient to call back into the
1699 switch statement generation code in expand_end_case.
1700 Rapid prototyping sez a sequence of ifs. */
1701 {
1702 struct eh_region *c;
1703 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
1704 {
1705 if (c->u.catch.type_list == NULL)
1706 emit_jump (c->label);
1707 else
1708 {
1709 /* Need for one cmp/jump per type caught. Each type
1710 list entry has a matching entry in the filter list
1711 (see assign_filter_values). */
1712 tree tp_node = c->u.catch.type_list;
1713 tree flt_node = c->u.catch.filter_list;
1714
1715 for (; tp_node; )
1716 {
1717 emit_cmp_and_jump_insns
1718 (cfun->eh->filter,
1719 GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
1720 EQ, NULL_RTX, word_mode, 0, c->label);
1721
1722 tp_node = TREE_CHAIN (tp_node);
1723 flt_node = TREE_CHAIN (flt_node);
1724 }
1725 }
1726 }
1727 }
1728
1729 /* We delay the generation of the _Unwind_Resume until we generate
1730 landing pads. We emit a marker here so as to get good control
1731 flow data in the meantime. */
1732 region->resume
1733 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1734 emit_barrier ();
1735
1736 seq = get_insns ();
1737 end_sequence ();
1738
1739 emit_insn_before (seq, region->u.try.catch->label);
1740 break;
1741
1742 case ERT_ALLOWED_EXCEPTIONS:
1743 region->post_landing_pad = gen_label_rtx ();
1744
1745 start_sequence ();
1746
1747 emit_label (region->post_landing_pad);
1748
1749 emit_cmp_and_jump_insns (cfun->eh->filter,
1750 GEN_INT (region->u.allowed.filter),
1751 EQ, NULL_RTX, word_mode, 0, region->label);
1752
1753 /* We delay the generation of the _Unwind_Resume until we generate
1754 landing pads. We emit a marker here so as to get good control
1755 flow data in the meantime. */
1756 region->resume
1757 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1758 emit_barrier ();
1759
1760 seq = get_insns ();
1761 end_sequence ();
1762
1763 emit_insn_before (seq, region->label);
1764 break;
1765
1766 case ERT_CLEANUP:
1767 case ERT_MUST_NOT_THROW:
1768 region->post_landing_pad = region->label;
1769 break;
1770
1771 case ERT_CATCH:
1772 case ERT_THROW:
1773 /* Nothing to do. */
1774 break;
1775
1776 default:
1777 abort ();
1778 }
1779 }
1780 }
1781
1782 /* Replace RESX patterns with jumps to the next handler if any, or calls to
1783 _Unwind_Resume otherwise. */
1784
1785 static void
1786 connect_post_landing_pads ()
1787 {
1788 int i;
1789
1790 for (i = cfun->eh->last_region_number; i > 0; --i)
1791 {
1792 struct eh_region *region = cfun->eh->region_array[i];
1793 struct eh_region *outer;
1794 rtx seq;
1795
1796 /* Mind we don't process a region more than once. */
1797 if (!region || region->region_number != i)
1798 continue;
1799
1800 /* If there is no RESX, or it has been deleted by flow, there's
1801 nothing to fix up. */
1802 if (! region->resume || INSN_DELETED_P (region->resume))
1803 continue;
1804
1805 /* Search for another landing pad in this function. */
1806 for (outer = region->outer; outer ; outer = outer->outer)
1807 if (outer->post_landing_pad)
1808 break;
1809
1810 start_sequence ();
1811
1812 if (outer)
1813 emit_jump (outer->post_landing_pad);
1814 else
1815 emit_library_call (unwind_resume_libfunc, LCT_THROW,
1816 VOIDmode, 1, cfun->eh->exc_ptr, ptr_mode);
1817
1818 seq = get_insns ();
1819 end_sequence ();
1820 emit_insn_before (seq, region->resume);
1821 delete_insn (region->resume);
1822 }
1823 }
1824
1825 \f
1826 static void
1827 dw2_build_landing_pads ()
1828 {
1829 int i;
1830 unsigned int j;
1831
1832 for (i = cfun->eh->last_region_number; i > 0; --i)
1833 {
1834 struct eh_region *region = cfun->eh->region_array[i];
1835 rtx seq;
1836 bool clobbers_hard_regs = false;
1837
1838 /* Mind we don't process a region more than once. */
1839 if (!region || region->region_number != i)
1840 continue;
1841
1842 if (region->type != ERT_CLEANUP
1843 && region->type != ERT_TRY
1844 && region->type != ERT_ALLOWED_EXCEPTIONS)
1845 continue;
1846
1847 start_sequence ();
1848
1849 region->landing_pad = gen_label_rtx ();
1850 emit_label (region->landing_pad);
1851
1852 #ifdef HAVE_exception_receiver
1853 if (HAVE_exception_receiver)
1854 emit_insn (gen_exception_receiver ());
1855 else
1856 #endif
1857 #ifdef HAVE_nonlocal_goto_receiver
1858 if (HAVE_nonlocal_goto_receiver)
1859 emit_insn (gen_nonlocal_goto_receiver ());
1860 else
1861 #endif
1862 { /* Nothing */ }
1863
1864 /* If the eh_return data registers are call-saved, then we
1865 won't have considered them clobbered from the call that
1866 threw. Kill them now. */
1867 for (j = 0; ; ++j)
1868 {
1869 unsigned r = EH_RETURN_DATA_REGNO (j);
1870 if (r == INVALID_REGNUM)
1871 break;
1872 if (! call_used_regs[r])
1873 {
1874 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, r)));
1875 clobbers_hard_regs = true;
1876 }
1877 }
1878
1879 if (clobbers_hard_regs)
1880 {
1881 /* @@@ This is a kludge. Not all machine descriptions define a
1882 blockage insn, but we must not allow the code we just generated
1883 to be reordered by scheduling. So emit an ASM_INPUT to act as
1884 blockage insn. */
1885 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
1886 }
1887
1888 emit_move_insn (cfun->eh->exc_ptr,
1889 gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
1890 emit_move_insn (cfun->eh->filter,
1891 gen_rtx_REG (word_mode, EH_RETURN_DATA_REGNO (1)));
1892
1893 seq = get_insns ();
1894 end_sequence ();
1895
1896 emit_insn_before (seq, region->post_landing_pad);
1897 }
1898 }
1899
1900 \f
1901 struct sjlj_lp_info
1902 {
1903 int directly_reachable;
1904 int action_index;
1905 int dispatch_index;
1906 int call_site_index;
1907 };
1908
1909 static bool
1910 sjlj_find_directly_reachable_regions (lp_info)
1911 struct sjlj_lp_info *lp_info;
1912 {
1913 rtx insn;
1914 bool found_one = false;
1915
1916 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1917 {
1918 struct eh_region *region;
1919 enum reachable_code rc;
1920 tree type_thrown;
1921 rtx note;
1922
1923 if (! INSN_P (insn))
1924 continue;
1925
1926 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1927 if (!note || INTVAL (XEXP (note, 0)) <= 0)
1928 continue;
1929
1930 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
1931
1932 type_thrown = NULL_TREE;
1933 if (region->type == ERT_THROW)
1934 {
1935 type_thrown = region->u.throw.type;
1936 region = region->outer;
1937 }
1938
1939 /* Find the first containing region that might handle the exception.
1940 That's the landing pad to which we will transfer control. */
1941 rc = RNL_NOT_CAUGHT;
1942 for (; region; region = region->outer)
1943 {
1944 rc = reachable_next_level (region, type_thrown, 0);
1945 if (rc != RNL_NOT_CAUGHT)
1946 break;
1947 }
1948 if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
1949 {
1950 lp_info[region->region_number].directly_reachable = 1;
1951 found_one = true;
1952 }
1953 }
1954
1955 return found_one;
1956 }
1957
1958 static void
1959 sjlj_assign_call_site_values (dispatch_label, lp_info)
1960 rtx dispatch_label;
1961 struct sjlj_lp_info *lp_info;
1962 {
1963 htab_t ar_hash;
1964 int i, index;
1965
1966 /* First task: build the action table. */
1967
1968 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
1969 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
1970
1971 for (i = cfun->eh->last_region_number; i > 0; --i)
1972 if (lp_info[i].directly_reachable)
1973 {
1974 struct eh_region *r = cfun->eh->region_array[i];
1975 r->landing_pad = dispatch_label;
1976 lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
1977 if (lp_info[i].action_index != -1)
1978 cfun->uses_eh_lsda = 1;
1979 }
1980
1981 htab_delete (ar_hash);
1982
1983 /* Next: assign dispatch values. In dwarf2 terms, this would be the
1984 landing pad label for the region. For sjlj though, there is one
1985 common landing pad from which we dispatch to the post-landing pads.
1986
1987 A region receives a dispatch index if it is directly reachable
1988 and requires in-function processing. Regions that share post-landing
1989 pads may share dispatch indices. */
1990 /* ??? Post-landing pad sharing doesn't actually happen at the moment
1991 (see build_post_landing_pads) so we don't bother checking for it. */
1992
1993 index = 0;
1994 for (i = cfun->eh->last_region_number; i > 0; --i)
1995 if (lp_info[i].directly_reachable)
1996 lp_info[i].dispatch_index = index++;
1997
1998 /* Finally: assign call-site values. If dwarf2 terms, this would be
1999 the region number assigned by convert_to_eh_region_ranges, but
2000 handles no-action and must-not-throw differently. */
2001
2002 call_site_base = 1;
2003 for (i = cfun->eh->last_region_number; i > 0; --i)
2004 if (lp_info[i].directly_reachable)
2005 {
2006 int action = lp_info[i].action_index;
2007
2008 /* Map must-not-throw to otherwise unused call-site index 0. */
2009 if (action == -2)
2010 index = 0;
2011 /* Map no-action to otherwise unused call-site index -1. */
2012 else if (action == -1)
2013 index = -1;
2014 /* Otherwise, look it up in the table. */
2015 else
2016 index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
2017
2018 lp_info[i].call_site_index = index;
2019 }
2020 }
2021
2022 static void
2023 sjlj_mark_call_sites (lp_info)
2024 struct sjlj_lp_info *lp_info;
2025 {
2026 int last_call_site = -2;
2027 rtx insn, mem;
2028
2029 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
2030 {
2031 struct eh_region *region;
2032 int this_call_site;
2033 rtx note, before, p;
2034
2035 /* Reset value tracking at extended basic block boundaries. */
2036 if (GET_CODE (insn) == CODE_LABEL)
2037 last_call_site = -2;
2038
2039 if (! INSN_P (insn))
2040 continue;
2041
2042 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2043 if (!note)
2044 {
2045 /* Calls (and trapping insns) without notes are outside any
2046 exception handling region in this function. Mark them as
2047 no action. */
2048 if (GET_CODE (insn) == CALL_INSN
2049 || (flag_non_call_exceptions
2050 && may_trap_p (PATTERN (insn))))
2051 this_call_site = -1;
2052 else
2053 continue;
2054 }
2055 else
2056 {
2057 /* Calls that are known to not throw need not be marked. */
2058 if (INTVAL (XEXP (note, 0)) <= 0)
2059 continue;
2060
2061 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2062 this_call_site = lp_info[region->region_number].call_site_index;
2063 }
2064
2065 if (this_call_site == last_call_site)
2066 continue;
2067
2068 /* Don't separate a call from it's argument loads. */
2069 before = insn;
2070 if (GET_CODE (insn) == CALL_INSN)
2071 before = find_first_parameter_load (insn, NULL_RTX);
2072
2073 start_sequence ();
2074 mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
2075 sjlj_fc_call_site_ofs);
2076 emit_move_insn (mem, GEN_INT (this_call_site));
2077 p = get_insns ();
2078 end_sequence ();
2079
2080 emit_insn_before (p, before);
2081 last_call_site = this_call_site;
2082 }
2083 }
2084
2085 /* Construct the SjLj_Function_Context. */
2086
2087 static void
2088 sjlj_emit_function_enter (dispatch_label)
2089 rtx dispatch_label;
2090 {
2091 rtx fn_begin, fc, mem, seq;
2092
2093 fc = cfun->eh->sjlj_fc;
2094
2095 start_sequence ();
2096
2097 /* We're storing this libcall's address into memory instead of
2098 calling it directly. Thus, we must call assemble_external_libcall
2099 here, as we can not depend on emit_library_call to do it for us. */
2100 assemble_external_libcall (eh_personality_libfunc);
2101 mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
2102 emit_move_insn (mem, eh_personality_libfunc);
2103
2104 mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
2105 if (cfun->uses_eh_lsda)
2106 {
2107 char buf[20];
2108 ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
2109 emit_move_insn (mem, gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)));
2110 }
2111 else
2112 emit_move_insn (mem, const0_rtx);
2113
2114 #ifdef DONT_USE_BUILTIN_SETJMP
2115 {
2116 rtx x, note;
2117 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
2118 TYPE_MODE (integer_type_node), 1,
2119 plus_constant (XEXP (fc, 0),
2120 sjlj_fc_jbuf_ofs), Pmode);
2121
2122 note = emit_note (NOTE_INSN_EXPECTED_VALUE);
2123 NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
2124
2125 emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
2126 TYPE_MODE (integer_type_node), 0, dispatch_label);
2127 }
2128 #else
2129 expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
2130 dispatch_label);
2131 #endif
2132
2133 emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
2134 1, XEXP (fc, 0), Pmode);
2135
2136 seq = get_insns ();
2137 end_sequence ();
2138
2139 /* ??? Instead of doing this at the beginning of the function,
2140 do this in a block that is at loop level 0 and dominates all
2141 can_throw_internal instructions. */
2142
2143 for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
2144 if (GET_CODE (fn_begin) == NOTE
2145 && NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
2146 break;
2147 emit_insn_after (seq, fn_begin);
2148 }
2149
2150 /* Call back from expand_function_end to know where we should put
2151 the call to unwind_sjlj_unregister_libfunc if needed. */
2152
2153 void
2154 sjlj_emit_function_exit_after (after)
2155 rtx after;
2156 {
2157 cfun->eh->sjlj_exit_after = after;
2158 }
2159
2160 static void
2161 sjlj_emit_function_exit ()
2162 {
2163 rtx seq;
2164
2165 start_sequence ();
2166
2167 emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
2168 1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
2169
2170 seq = get_insns ();
2171 end_sequence ();
2172
2173 /* ??? Really this can be done in any block at loop level 0 that
2174 post-dominates all can_throw_internal instructions. This is
2175 the last possible moment. */
2176
2177 emit_insn_after (seq, cfun->eh->sjlj_exit_after);
2178 }
2179
2180 static void
2181 sjlj_emit_dispatch_table (dispatch_label, lp_info)
2182 rtx dispatch_label;
2183 struct sjlj_lp_info *lp_info;
2184 {
2185 int i, first_reachable;
2186 rtx mem, dispatch, seq, fc;
2187
2188 fc = cfun->eh->sjlj_fc;
2189
2190 start_sequence ();
2191
2192 emit_label (dispatch_label);
2193
2194 #ifndef DONT_USE_BUILTIN_SETJMP
2195 expand_builtin_setjmp_receiver (dispatch_label);
2196 #endif
2197
2198 /* Load up dispatch index, exc_ptr and filter values from the
2199 function context. */
2200 mem = adjust_address (fc, TYPE_MODE (integer_type_node),
2201 sjlj_fc_call_site_ofs);
2202 dispatch = copy_to_reg (mem);
2203
2204 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
2205 if (word_mode != Pmode)
2206 {
2207 #ifdef POINTERS_EXTEND_UNSIGNED
2208 mem = convert_memory_address (Pmode, mem);
2209 #else
2210 mem = convert_to_mode (Pmode, mem, 0);
2211 #endif
2212 }
2213 emit_move_insn (cfun->eh->exc_ptr, mem);
2214
2215 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
2216 emit_move_insn (cfun->eh->filter, mem);
2217
2218 /* Jump to one of the directly reachable regions. */
2219 /* ??? This really ought to be using a switch statement. */
2220
2221 first_reachable = 0;
2222 for (i = cfun->eh->last_region_number; i > 0; --i)
2223 {
2224 if (! lp_info[i].directly_reachable)
2225 continue;
2226
2227 if (! first_reachable)
2228 {
2229 first_reachable = i;
2230 continue;
2231 }
2232
2233 emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
2234 EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
2235 cfun->eh->region_array[i]->post_landing_pad);
2236 }
2237
2238 seq = get_insns ();
2239 end_sequence ();
2240
2241 emit_insn_before (seq, (cfun->eh->region_array[first_reachable]
2242 ->post_landing_pad));
2243 }
2244
2245 static void
2246 sjlj_build_landing_pads ()
2247 {
2248 struct sjlj_lp_info *lp_info;
2249
2250 lp_info = (struct sjlj_lp_info *) xcalloc (cfun->eh->last_region_number + 1,
2251 sizeof (struct sjlj_lp_info));
2252
2253 if (sjlj_find_directly_reachable_regions (lp_info))
2254 {
2255 rtx dispatch_label = gen_label_rtx ();
2256
2257 cfun->eh->sjlj_fc
2258 = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
2259 int_size_in_bytes (sjlj_fc_type_node),
2260 TYPE_ALIGN (sjlj_fc_type_node));
2261
2262 sjlj_assign_call_site_values (dispatch_label, lp_info);
2263 sjlj_mark_call_sites (lp_info);
2264
2265 sjlj_emit_function_enter (dispatch_label);
2266 sjlj_emit_dispatch_table (dispatch_label, lp_info);
2267 sjlj_emit_function_exit ();
2268 }
2269
2270 free (lp_info);
2271 }
2272
2273 void
2274 finish_eh_generation ()
2275 {
2276 /* Nothing to do if no regions created. */
2277 if (cfun->eh->region_tree == NULL)
2278 return;
2279
2280 /* The object here is to provide find_basic_blocks with detailed
2281 information (via reachable_handlers) on how exception control
2282 flows within the function. In this first pass, we can include
2283 type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
2284 regions, and hope that it will be useful in deleting unreachable
2285 handlers. Subsequently, we will generate landing pads which will
2286 connect many of the handlers, and then type information will not
2287 be effective. Still, this is a win over previous implementations. */
2288
2289 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
2290
2291 /* These registers are used by the landing pads. Make sure they
2292 have been generated. */
2293 get_exception_pointer (cfun);
2294 get_exception_filter (cfun);
2295
2296 /* Construct the landing pads. */
2297
2298 assign_filter_values ();
2299 build_post_landing_pads ();
2300 connect_post_landing_pads ();
2301 if (USING_SJLJ_EXCEPTIONS)
2302 sjlj_build_landing_pads ();
2303 else
2304 dw2_build_landing_pads ();
2305
2306 cfun->eh->built_landing_pads = 1;
2307
2308 /* We've totally changed the CFG. Start over. */
2309 find_exception_handler_labels ();
2310 rebuild_jump_labels (get_insns ());
2311 find_basic_blocks (get_insns (), max_reg_num (), 0);
2312 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
2313 }
2314 \f
2315 static hashval_t
2316 ehl_hash (pentry)
2317 const void *pentry;
2318 {
2319 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2320
2321 /* 2^32 * ((sqrt(5) - 1) / 2) */
2322 const hashval_t scaled_golden_ratio = 0x9e3779b9;
2323 return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
2324 }
2325
2326 static int
2327 ehl_eq (pentry, pdata)
2328 const void *pentry;
2329 const void *pdata;
2330 {
2331 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2332 struct ehl_map_entry *data = (struct ehl_map_entry *) pdata;
2333
2334 return entry->label == data->label;
2335 }
2336
2337 /* This section handles removing dead code for flow. */
2338
2339 /* Remove LABEL from exception_handler_label_map. */
2340
2341 static void
2342 remove_exception_handler_label (label)
2343 rtx label;
2344 {
2345 struct ehl_map_entry **slot, tmp;
2346
2347 /* If exception_handler_label_map was not built yet,
2348 there is nothing to do. */
2349 if (cfun->eh->exception_handler_label_map == NULL)
2350 return;
2351
2352 tmp.label = label;
2353 slot = (struct ehl_map_entry **)
2354 htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
2355 if (! slot)
2356 abort ();
2357
2358 htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
2359 }
2360
2361 /* Splice REGION from the region tree etc. */
2362
2363 static void
2364 remove_eh_handler (region)
2365 struct eh_region *region;
2366 {
2367 struct eh_region **pp, **pp_start, *p, *outer, *inner;
2368 rtx lab;
2369
2370 /* For the benefit of efficiently handling REG_EH_REGION notes,
2371 replace this region in the region array with its containing
2372 region. Note that previous region deletions may result in
2373 multiple copies of this region in the array, so we have a
2374 list of alternate numbers by which we are known. */
2375
2376 outer = region->outer;
2377 cfun->eh->region_array[region->region_number] = outer;
2378 if (region->aka)
2379 {
2380 int i;
2381 EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i,
2382 { cfun->eh->region_array[i] = outer; });
2383 }
2384
2385 if (outer)
2386 {
2387 if (!outer->aka)
2388 outer->aka = BITMAP_GGC_ALLOC ();
2389 if (region->aka)
2390 bitmap_a_or_b (outer->aka, outer->aka, region->aka);
2391 bitmap_set_bit (outer->aka, region->region_number);
2392 }
2393
2394 if (cfun->eh->built_landing_pads)
2395 lab = region->landing_pad;
2396 else
2397 lab = region->label;
2398 if (lab)
2399 remove_exception_handler_label (lab);
2400
2401 if (outer)
2402 pp_start = &outer->inner;
2403 else
2404 pp_start = &cfun->eh->region_tree;
2405 for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
2406 continue;
2407 *pp = region->next_peer;
2408
2409 inner = region->inner;
2410 if (inner)
2411 {
2412 for (p = inner; p->next_peer ; p = p->next_peer)
2413 p->outer = outer;
2414 p->outer = outer;
2415
2416 p->next_peer = *pp_start;
2417 *pp_start = inner;
2418 }
2419
2420 if (region->type == ERT_CATCH)
2421 {
2422 struct eh_region *try, *next, *prev;
2423
2424 for (try = region->next_peer;
2425 try->type == ERT_CATCH;
2426 try = try->next_peer)
2427 continue;
2428 if (try->type != ERT_TRY)
2429 abort ();
2430
2431 next = region->u.catch.next_catch;
2432 prev = region->u.catch.prev_catch;
2433
2434 if (next)
2435 next->u.catch.prev_catch = prev;
2436 else
2437 try->u.try.last_catch = prev;
2438 if (prev)
2439 prev->u.catch.next_catch = next;
2440 else
2441 {
2442 try->u.try.catch = next;
2443 if (! next)
2444 remove_eh_handler (try);
2445 }
2446 }
2447 }
2448
2449 /* LABEL heads a basic block that is about to be deleted. If this
2450 label corresponds to an exception region, we may be able to
2451 delete the region. */
2452
2453 void
2454 maybe_remove_eh_handler (label)
2455 rtx label;
2456 {
2457 struct ehl_map_entry **slot, tmp;
2458 struct eh_region *region;
2459
2460 /* ??? After generating landing pads, it's not so simple to determine
2461 if the region data is completely unused. One must examine the
2462 landing pad and the post landing pad, and whether an inner try block
2463 is referencing the catch handlers directly. */
2464 if (cfun->eh->built_landing_pads)
2465 return;
2466
2467 tmp.label = label;
2468 slot = (struct ehl_map_entry **)
2469 htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
2470 if (! slot)
2471 return;
2472 region = (*slot)->region;
2473 if (! region)
2474 return;
2475
2476 /* Flow will want to remove MUST_NOT_THROW regions as unreachable
2477 because there is no path to the fallback call to terminate.
2478 But the region continues to affect call-site data until there
2479 are no more contained calls, which we don't see here. */
2480 if (region->type == ERT_MUST_NOT_THROW)
2481 {
2482 htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
2483 region->label = NULL_RTX;
2484 }
2485 else
2486 remove_eh_handler (region);
2487 }
2488
2489 /* Invokes CALLBACK for every exception handler label. Only used by old
2490 loop hackery; should not be used by new code. */
2491
2492 void
2493 for_each_eh_label (callback)
2494 void (*callback) PARAMS ((rtx));
2495 {
2496 htab_traverse (cfun->eh->exception_handler_label_map, for_each_eh_label_1,
2497 (void *)callback);
2498 }
2499
2500 static int
2501 for_each_eh_label_1 (pentry, data)
2502 void **pentry;
2503 void *data;
2504 {
2505 struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
2506 void (*callback) PARAMS ((rtx)) = (void (*) PARAMS ((rtx))) data;
2507
2508 (*callback) (entry->label);
2509 return 1;
2510 }
2511 \f
2512 /* This section describes CFG exception edges for flow. */
2513
2514 /* For communicating between calls to reachable_next_level. */
2515 struct reachable_info GTY(())
2516 {
2517 tree types_caught;
2518 tree types_allowed;
2519 rtx handlers;
2520 };
2521
2522 /* A subroutine of reachable_next_level. Return true if TYPE, or a
2523 base class of TYPE, is in HANDLED. */
2524
2525 static int
2526 check_handled (handled, type)
2527 tree handled, type;
2528 {
2529 tree t;
2530
2531 /* We can check for exact matches without front-end help. */
2532 if (! lang_eh_type_covers)
2533 {
2534 for (t = handled; t ; t = TREE_CHAIN (t))
2535 if (TREE_VALUE (t) == type)
2536 return 1;
2537 }
2538 else
2539 {
2540 for (t = handled; t ; t = TREE_CHAIN (t))
2541 if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
2542 return 1;
2543 }
2544
2545 return 0;
2546 }
2547
2548 /* A subroutine of reachable_next_level. If we are collecting a list
2549 of handlers, add one. After landing pad generation, reference
2550 it instead of the handlers themselves. Further, the handlers are
2551 all wired together, so by referencing one, we've got them all.
2552 Before landing pad generation we reference each handler individually.
2553
2554 LP_REGION contains the landing pad; REGION is the handler. */
2555
2556 static void
2557 add_reachable_handler (info, lp_region, region)
2558 struct reachable_info *info;
2559 struct eh_region *lp_region;
2560 struct eh_region *region;
2561 {
2562 if (! info)
2563 return;
2564
2565 if (cfun->eh->built_landing_pads)
2566 {
2567 if (! info->handlers)
2568 info->handlers = alloc_INSN_LIST (lp_region->landing_pad, NULL_RTX);
2569 }
2570 else
2571 info->handlers = alloc_INSN_LIST (region->label, info->handlers);
2572 }
2573
2574 /* Process one level of exception regions for reachability.
2575 If TYPE_THROWN is non-null, then it is the *exact* type being
2576 propagated. If INFO is non-null, then collect handler labels
2577 and caught/allowed type information between invocations. */
2578
2579 static enum reachable_code
2580 reachable_next_level (region, type_thrown, info)
2581 struct eh_region *region;
2582 tree type_thrown;
2583 struct reachable_info *info;
2584 {
2585 switch (region->type)
2586 {
2587 case ERT_CLEANUP:
2588 /* Before landing-pad generation, we model control flow
2589 directly to the individual handlers. In this way we can
2590 see that catch handler types may shadow one another. */
2591 add_reachable_handler (info, region, region);
2592 return RNL_MAYBE_CAUGHT;
2593
2594 case ERT_TRY:
2595 {
2596 struct eh_region *c;
2597 enum reachable_code ret = RNL_NOT_CAUGHT;
2598
2599 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
2600 {
2601 /* A catch-all handler ends the search. */
2602 if (c->u.catch.type_list == NULL)
2603 {
2604 add_reachable_handler (info, region, c);
2605 return RNL_CAUGHT;
2606 }
2607
2608 if (type_thrown)
2609 {
2610 /* If we have at least one type match, end the search. */
2611 tree tp_node = c->u.catch.type_list;
2612
2613 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2614 {
2615 tree type = TREE_VALUE (tp_node);
2616
2617 if (type == type_thrown
2618 || (lang_eh_type_covers
2619 && (*lang_eh_type_covers) (type, type_thrown)))
2620 {
2621 add_reachable_handler (info, region, c);
2622 return RNL_CAUGHT;
2623 }
2624 }
2625
2626 /* If we have definitive information of a match failure,
2627 the catch won't trigger. */
2628 if (lang_eh_type_covers)
2629 return RNL_NOT_CAUGHT;
2630 }
2631
2632 /* At this point, we either don't know what type is thrown or
2633 don't have front-end assistance to help deciding if it is
2634 covered by one of the types in the list for this region.
2635
2636 We'd then like to add this region to the list of reachable
2637 handlers since it is indeed potentially reachable based on the
2638 information we have.
2639
2640 Actually, this handler is for sure not reachable if all the
2641 types it matches have already been caught. That is, it is only
2642 potentially reachable if at least one of the types it catches
2643 has not been previously caught. */
2644
2645 if (! info)
2646 ret = RNL_MAYBE_CAUGHT;
2647 else
2648 {
2649 tree tp_node = c->u.catch.type_list;
2650 bool maybe_reachable = false;
2651
2652 /* Compute the potential reachability of this handler and
2653 update the list of types caught at the same time. */
2654 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2655 {
2656 tree type = TREE_VALUE (tp_node);
2657
2658 if (! check_handled (info->types_caught, type))
2659 {
2660 info->types_caught
2661 = tree_cons (NULL, type, info->types_caught);
2662
2663 maybe_reachable = true;
2664 }
2665 }
2666
2667 if (maybe_reachable)
2668 {
2669 add_reachable_handler (info, region, c);
2670
2671 /* ??? If the catch type is a base class of every allowed
2672 type, then we know we can stop the search. */
2673 ret = RNL_MAYBE_CAUGHT;
2674 }
2675 }
2676 }
2677
2678 return ret;
2679 }
2680
2681 case ERT_ALLOWED_EXCEPTIONS:
2682 /* An empty list of types definitely ends the search. */
2683 if (region->u.allowed.type_list == NULL_TREE)
2684 {
2685 add_reachable_handler (info, region, region);
2686 return RNL_CAUGHT;
2687 }
2688
2689 /* Collect a list of lists of allowed types for use in detecting
2690 when a catch may be transformed into a catch-all. */
2691 if (info)
2692 info->types_allowed = tree_cons (NULL_TREE,
2693 region->u.allowed.type_list,
2694 info->types_allowed);
2695
2696 /* If we have definitive information about the type hierarchy,
2697 then we can tell if the thrown type will pass through the
2698 filter. */
2699 if (type_thrown && lang_eh_type_covers)
2700 {
2701 if (check_handled (region->u.allowed.type_list, type_thrown))
2702 return RNL_NOT_CAUGHT;
2703 else
2704 {
2705 add_reachable_handler (info, region, region);
2706 return RNL_CAUGHT;
2707 }
2708 }
2709
2710 add_reachable_handler (info, region, region);
2711 return RNL_MAYBE_CAUGHT;
2712
2713 case ERT_CATCH:
2714 /* Catch regions are handled by their controlling try region. */
2715 return RNL_NOT_CAUGHT;
2716
2717 case ERT_MUST_NOT_THROW:
2718 /* Here we end our search, since no exceptions may propagate.
2719 If we've touched down at some landing pad previous, then the
2720 explicit function call we generated may be used. Otherwise
2721 the call is made by the runtime. */
2722 if (info && info->handlers)
2723 {
2724 add_reachable_handler (info, region, region);
2725 return RNL_CAUGHT;
2726 }
2727 else
2728 return RNL_BLOCKED;
2729
2730 case ERT_THROW:
2731 case ERT_FIXUP:
2732 case ERT_UNKNOWN:
2733 /* Shouldn't see these here. */
2734 break;
2735 }
2736
2737 abort ();
2738 }
2739
2740 /* Retrieve a list of labels of exception handlers which can be
2741 reached by a given insn. */
2742
2743 rtx
2744 reachable_handlers (insn)
2745 rtx insn;
2746 {
2747 struct reachable_info info;
2748 struct eh_region *region;
2749 tree type_thrown;
2750 int region_number;
2751
2752 if (GET_CODE (insn) == JUMP_INSN
2753 && GET_CODE (PATTERN (insn)) == RESX)
2754 region_number = XINT (PATTERN (insn), 0);
2755 else
2756 {
2757 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2758 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2759 return NULL;
2760 region_number = INTVAL (XEXP (note, 0));
2761 }
2762
2763 memset (&info, 0, sizeof (info));
2764
2765 region = cfun->eh->region_array[region_number];
2766
2767 type_thrown = NULL_TREE;
2768 if (GET_CODE (insn) == JUMP_INSN
2769 && GET_CODE (PATTERN (insn)) == RESX)
2770 {
2771 /* A RESX leaves a region instead of entering it. Thus the
2772 region itself may have been deleted out from under us. */
2773 if (region == NULL)
2774 return NULL;
2775 region = region->outer;
2776 }
2777 else if (region->type == ERT_THROW)
2778 {
2779 type_thrown = region->u.throw.type;
2780 region = region->outer;
2781 }
2782
2783 while (region)
2784 {
2785 if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
2786 break;
2787 /* If we have processed one cleanup, there is no point in
2788 processing any more of them. Each cleanup will have an edge
2789 to the next outer cleanup region, so the flow graph will be
2790 accurate. */
2791 if (region->type == ERT_CLEANUP)
2792 region = region->u.cleanup.prev_try;
2793 else
2794 region = region->outer;
2795 }
2796
2797 return info.handlers;
2798 }
2799
2800 /* Determine if the given INSN can throw an exception that is caught
2801 within the function. */
2802
2803 bool
2804 can_throw_internal (insn)
2805 rtx insn;
2806 {
2807 struct eh_region *region;
2808 tree type_thrown;
2809 rtx note;
2810
2811 if (! INSN_P (insn))
2812 return false;
2813
2814 if (GET_CODE (insn) == INSN
2815 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2816 insn = XVECEXP (PATTERN (insn), 0, 0);
2817
2818 if (GET_CODE (insn) == CALL_INSN
2819 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2820 {
2821 int i;
2822 for (i = 0; i < 3; ++i)
2823 {
2824 rtx sub = XEXP (PATTERN (insn), i);
2825 for (; sub ; sub = NEXT_INSN (sub))
2826 if (can_throw_internal (sub))
2827 return true;
2828 }
2829 return false;
2830 }
2831
2832 /* Every insn that might throw has an EH_REGION note. */
2833 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2834 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2835 return false;
2836
2837 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2838
2839 type_thrown = NULL_TREE;
2840 if (region->type == ERT_THROW)
2841 {
2842 type_thrown = region->u.throw.type;
2843 region = region->outer;
2844 }
2845
2846 /* If this exception is ignored by each and every containing region,
2847 then control passes straight out. The runtime may handle some
2848 regions, which also do not require processing internally. */
2849 for (; region; region = region->outer)
2850 {
2851 enum reachable_code how = reachable_next_level (region, type_thrown, 0);
2852 if (how == RNL_BLOCKED)
2853 return false;
2854 if (how != RNL_NOT_CAUGHT)
2855 return true;
2856 }
2857
2858 return false;
2859 }
2860
2861 /* Determine if the given INSN can throw an exception that is
2862 visible outside the function. */
2863
2864 bool
2865 can_throw_external (insn)
2866 rtx insn;
2867 {
2868 struct eh_region *region;
2869 tree type_thrown;
2870 rtx note;
2871
2872 if (! INSN_P (insn))
2873 return false;
2874
2875 if (GET_CODE (insn) == INSN
2876 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2877 insn = XVECEXP (PATTERN (insn), 0, 0);
2878
2879 if (GET_CODE (insn) == CALL_INSN
2880 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2881 {
2882 int i;
2883 for (i = 0; i < 3; ++i)
2884 {
2885 rtx sub = XEXP (PATTERN (insn), i);
2886 for (; sub ; sub = NEXT_INSN (sub))
2887 if (can_throw_external (sub))
2888 return true;
2889 }
2890 return false;
2891 }
2892
2893 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2894 if (!note)
2895 {
2896 /* Calls (and trapping insns) without notes are outside any
2897 exception handling region in this function. We have to
2898 assume it might throw. Given that the front end and middle
2899 ends mark known NOTHROW functions, this isn't so wildly
2900 inaccurate. */
2901 return (GET_CODE (insn) == CALL_INSN
2902 || (flag_non_call_exceptions
2903 && may_trap_p (PATTERN (insn))));
2904 }
2905 if (INTVAL (XEXP (note, 0)) <= 0)
2906 return false;
2907
2908 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2909
2910 type_thrown = NULL_TREE;
2911 if (region->type == ERT_THROW)
2912 {
2913 type_thrown = region->u.throw.type;
2914 region = region->outer;
2915 }
2916
2917 /* If the exception is caught or blocked by any containing region,
2918 then it is not seen by any calling function. */
2919 for (; region ; region = region->outer)
2920 if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
2921 return false;
2922
2923 return true;
2924 }
2925
2926 /* Set current_function_nothrow and cfun->all_throwers_are_sibcalls. */
2927
2928 void
2929 set_nothrow_function_flags ()
2930 {
2931 rtx insn;
2932
2933 current_function_nothrow = 1;
2934
2935 /* Assume cfun->all_throwers_are_sibcalls until we encounter
2936 something that can throw an exception. We specifically exempt
2937 CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
2938 and can't throw. Most CALL_INSNs are not SIBLING_CALL_P, so this
2939 is optimistic. */
2940
2941 cfun->all_throwers_are_sibcalls = 1;
2942
2943 if (! flag_exceptions)
2944 return;
2945
2946 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2947 if (can_throw_external (insn))
2948 {
2949 current_function_nothrow = 0;
2950
2951 if (GET_CODE (insn) != CALL_INSN || !SIBLING_CALL_P (insn))
2952 {
2953 cfun->all_throwers_are_sibcalls = 0;
2954 return;
2955 }
2956 }
2957
2958 for (insn = current_function_epilogue_delay_list; insn;
2959 insn = XEXP (insn, 1))
2960 if (can_throw_external (insn))
2961 {
2962 current_function_nothrow = 0;
2963
2964 if (GET_CODE (insn) != CALL_INSN || !SIBLING_CALL_P (insn))
2965 {
2966 cfun->all_throwers_are_sibcalls = 0;
2967 return;
2968 }
2969 }
2970 }
2971
2972 \f
2973 /* Various hooks for unwind library. */
2974
2975 /* Do any necessary initialization to access arbitrary stack frames.
2976 On the SPARC, this means flushing the register windows. */
2977
2978 void
2979 expand_builtin_unwind_init ()
2980 {
2981 /* Set this so all the registers get saved in our frame; we need to be
2982 able to copy the saved values for any registers from frames we unwind. */
2983 current_function_has_nonlocal_label = 1;
2984
2985 #ifdef SETUP_FRAME_ADDRESSES
2986 SETUP_FRAME_ADDRESSES ();
2987 #endif
2988 }
2989
2990 rtx
2991 expand_builtin_eh_return_data_regno (arglist)
2992 tree arglist;
2993 {
2994 tree which = TREE_VALUE (arglist);
2995 unsigned HOST_WIDE_INT iwhich;
2996
2997 if (TREE_CODE (which) != INTEGER_CST)
2998 {
2999 error ("argument of `__builtin_eh_return_regno' must be constant");
3000 return constm1_rtx;
3001 }
3002
3003 iwhich = tree_low_cst (which, 1);
3004 iwhich = EH_RETURN_DATA_REGNO (iwhich);
3005 if (iwhich == INVALID_REGNUM)
3006 return constm1_rtx;
3007
3008 #ifdef DWARF_FRAME_REGNUM
3009 iwhich = DWARF_FRAME_REGNUM (iwhich);
3010 #else
3011 iwhich = DBX_REGISTER_NUMBER (iwhich);
3012 #endif
3013
3014 return GEN_INT (iwhich);
3015 }
3016
3017 /* Given a value extracted from the return address register or stack slot,
3018 return the actual address encoded in that value. */
3019
3020 rtx
3021 expand_builtin_extract_return_addr (addr_tree)
3022 tree addr_tree;
3023 {
3024 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
3025
3026 if (GET_MODE (addr) != Pmode
3027 && GET_MODE (addr) != VOIDmode)
3028 {
3029 #ifdef POINTERS_EXTEND_UNSIGNED
3030 addr = convert_memory_address (Pmode, addr);
3031 #else
3032 addr = convert_to_mode (Pmode, addr, 0);
3033 #endif
3034 }
3035
3036 /* First mask out any unwanted bits. */
3037 #ifdef MASK_RETURN_ADDR
3038 expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
3039 #endif
3040
3041 /* Then adjust to find the real return address. */
3042 #if defined (RETURN_ADDR_OFFSET)
3043 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
3044 #endif
3045
3046 return addr;
3047 }
3048
3049 /* Given an actual address in addr_tree, do any necessary encoding
3050 and return the value to be stored in the return address register or
3051 stack slot so the epilogue will return to that address. */
3052
3053 rtx
3054 expand_builtin_frob_return_addr (addr_tree)
3055 tree addr_tree;
3056 {
3057 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
3058
3059 #ifdef POINTERS_EXTEND_UNSIGNED
3060 if (GET_MODE (addr) != Pmode)
3061 addr = convert_memory_address (Pmode, addr);
3062 #endif
3063
3064 #ifdef RETURN_ADDR_OFFSET
3065 addr = force_reg (Pmode, addr);
3066 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
3067 #endif
3068
3069 return addr;
3070 }
3071
3072 /* Set up the epilogue with the magic bits we'll need to return to the
3073 exception handler. */
3074
3075 void
3076 expand_builtin_eh_return (stackadj_tree, handler_tree)
3077 tree stackadj_tree ATTRIBUTE_UNUSED;
3078 tree handler_tree;
3079 {
3080 rtx tmp;
3081
3082 #ifdef EH_RETURN_STACKADJ_RTX
3083 tmp = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
3084 #ifdef POINTERS_EXTEND_UNSIGNED
3085 if (GET_MODE (tmp) != Pmode)
3086 tmp = convert_memory_address (Pmode, tmp);
3087 #endif
3088 if (!cfun->eh->ehr_stackadj)
3089 cfun->eh->ehr_stackadj = copy_to_reg (tmp);
3090 else if (tmp != cfun->eh->ehr_stackadj)
3091 emit_move_insn (cfun->eh->ehr_stackadj, tmp);
3092 #endif
3093
3094 tmp = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
3095 #ifdef POINTERS_EXTEND_UNSIGNED
3096 if (GET_MODE (tmp) != Pmode)
3097 tmp = convert_memory_address (Pmode, tmp);
3098 #endif
3099 if (!cfun->eh->ehr_handler)
3100 cfun->eh->ehr_handler = copy_to_reg (tmp);
3101 else if (tmp != cfun->eh->ehr_handler)
3102 emit_move_insn (cfun->eh->ehr_handler, tmp);
3103
3104 if (!cfun->eh->ehr_label)
3105 cfun->eh->ehr_label = gen_label_rtx ();
3106 emit_jump (cfun->eh->ehr_label);
3107 }
3108
3109 void
3110 expand_eh_return ()
3111 {
3112 rtx around_label;
3113
3114 if (! cfun->eh->ehr_label)
3115 return;
3116
3117 current_function_calls_eh_return = 1;
3118
3119 #ifdef EH_RETURN_STACKADJ_RTX
3120 emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
3121 #endif
3122
3123 around_label = gen_label_rtx ();
3124 emit_jump (around_label);
3125
3126 emit_label (cfun->eh->ehr_label);
3127 clobber_return_register ();
3128
3129 #ifdef EH_RETURN_STACKADJ_RTX
3130 emit_move_insn (EH_RETURN_STACKADJ_RTX, cfun->eh->ehr_stackadj);
3131 #endif
3132
3133 #ifdef HAVE_eh_return
3134 if (HAVE_eh_return)
3135 emit_insn (gen_eh_return (cfun->eh->ehr_handler));
3136 else
3137 #endif
3138 {
3139 #ifdef EH_RETURN_HANDLER_RTX
3140 emit_move_insn (EH_RETURN_HANDLER_RTX, cfun->eh->ehr_handler);
3141 #else
3142 error ("__builtin_eh_return not supported on this target");
3143 #endif
3144 }
3145
3146 emit_label (around_label);
3147 }
3148 \f
3149 /* In the following functions, we represent entries in the action table
3150 as 1-based indices. Special cases are:
3151
3152 0: null action record, non-null landing pad; implies cleanups
3153 -1: null action record, null landing pad; implies no action
3154 -2: no call-site entry; implies must_not_throw
3155 -3: we have yet to process outer regions
3156
3157 Further, no special cases apply to the "next" field of the record.
3158 For next, 0 means end of list. */
3159
3160 struct action_record
3161 {
3162 int offset;
3163 int filter;
3164 int next;
3165 };
3166
3167 static int
3168 action_record_eq (pentry, pdata)
3169 const void *pentry;
3170 const void *pdata;
3171 {
3172 const struct action_record *entry = (const struct action_record *) pentry;
3173 const struct action_record *data = (const struct action_record *) pdata;
3174 return entry->filter == data->filter && entry->next == data->next;
3175 }
3176
3177 static hashval_t
3178 action_record_hash (pentry)
3179 const void *pentry;
3180 {
3181 const struct action_record *entry = (const struct action_record *) pentry;
3182 return entry->next * 1009 + entry->filter;
3183 }
3184
3185 static int
3186 add_action_record (ar_hash, filter, next)
3187 htab_t ar_hash;
3188 int filter, next;
3189 {
3190 struct action_record **slot, *new, tmp;
3191
3192 tmp.filter = filter;
3193 tmp.next = next;
3194 slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
3195
3196 if ((new = *slot) == NULL)
3197 {
3198 new = (struct action_record *) xmalloc (sizeof (*new));
3199 new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3200 new->filter = filter;
3201 new->next = next;
3202 *slot = new;
3203
3204 /* The filter value goes in untouched. The link to the next
3205 record is a "self-relative" byte offset, or zero to indicate
3206 that there is no next record. So convert the absolute 1 based
3207 indices we've been carrying around into a displacement. */
3208
3209 push_sleb128 (&cfun->eh->action_record_data, filter);
3210 if (next)
3211 next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3212 push_sleb128 (&cfun->eh->action_record_data, next);
3213 }
3214
3215 return new->offset;
3216 }
3217
3218 static int
3219 collect_one_action_chain (ar_hash, region)
3220 htab_t ar_hash;
3221 struct eh_region *region;
3222 {
3223 struct eh_region *c;
3224 int next;
3225
3226 /* If we've reached the top of the region chain, then we have
3227 no actions, and require no landing pad. */
3228 if (region == NULL)
3229 return -1;
3230
3231 switch (region->type)
3232 {
3233 case ERT_CLEANUP:
3234 /* A cleanup adds a zero filter to the beginning of the chain, but
3235 there are special cases to look out for. If there are *only*
3236 cleanups along a path, then it compresses to a zero action.
3237 Further, if there are multiple cleanups along a path, we only
3238 need to represent one of them, as that is enough to trigger
3239 entry to the landing pad at runtime. */
3240 next = collect_one_action_chain (ar_hash, region->outer);
3241 if (next <= 0)
3242 return 0;
3243 for (c = region->outer; c ; c = c->outer)
3244 if (c->type == ERT_CLEANUP)
3245 return next;
3246 return add_action_record (ar_hash, 0, next);
3247
3248 case ERT_TRY:
3249 /* Process the associated catch regions in reverse order.
3250 If there's a catch-all handler, then we don't need to
3251 search outer regions. Use a magic -3 value to record
3252 that we haven't done the outer search. */
3253 next = -3;
3254 for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
3255 {
3256 if (c->u.catch.type_list == NULL)
3257 {
3258 /* Retrieve the filter from the head of the filter list
3259 where we have stored it (see assign_filter_values). */
3260 int filter
3261 = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
3262
3263 next = add_action_record (ar_hash, filter, 0);
3264 }
3265 else
3266 {
3267 /* Once the outer search is done, trigger an action record for
3268 each filter we have. */
3269 tree flt_node;
3270
3271 if (next == -3)
3272 {
3273 next = collect_one_action_chain (ar_hash, region->outer);
3274
3275 /* If there is no next action, terminate the chain. */
3276 if (next == -1)
3277 next = 0;
3278 /* If all outer actions are cleanups or must_not_throw,
3279 we'll have no action record for it, since we had wanted
3280 to encode these states in the call-site record directly.
3281 Add a cleanup action to the chain to catch these. */
3282 else if (next <= 0)
3283 next = add_action_record (ar_hash, 0, 0);
3284 }
3285
3286 flt_node = c->u.catch.filter_list;
3287 for (; flt_node; flt_node = TREE_CHAIN (flt_node))
3288 {
3289 int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
3290 next = add_action_record (ar_hash, filter, next);
3291 }
3292 }
3293 }
3294 return next;
3295
3296 case ERT_ALLOWED_EXCEPTIONS:
3297 /* An exception specification adds its filter to the
3298 beginning of the chain. */
3299 next = collect_one_action_chain (ar_hash, region->outer);
3300 return add_action_record (ar_hash, region->u.allowed.filter,
3301 next < 0 ? 0 : next);
3302
3303 case ERT_MUST_NOT_THROW:
3304 /* A must-not-throw region with no inner handlers or cleanups
3305 requires no call-site entry. Note that this differs from
3306 the no handler or cleanup case in that we do require an lsda
3307 to be generated. Return a magic -2 value to record this. */
3308 return -2;
3309
3310 case ERT_CATCH:
3311 case ERT_THROW:
3312 /* CATCH regions are handled in TRY above. THROW regions are
3313 for optimization information only and produce no output. */
3314 return collect_one_action_chain (ar_hash, region->outer);
3315
3316 default:
3317 abort ();
3318 }
3319 }
3320
3321 static int
3322 add_call_site (landing_pad, action)
3323 rtx landing_pad;
3324 int action;
3325 {
3326 struct call_site_record *data = cfun->eh->call_site_data;
3327 int used = cfun->eh->call_site_data_used;
3328 int size = cfun->eh->call_site_data_size;
3329
3330 if (used >= size)
3331 {
3332 size = (size ? size * 2 : 64);
3333 data = (struct call_site_record *)
3334 ggc_realloc (data, sizeof (*data) * size);
3335 cfun->eh->call_site_data = data;
3336 cfun->eh->call_site_data_size = size;
3337 }
3338
3339 data[used].landing_pad = landing_pad;
3340 data[used].action = action;
3341
3342 cfun->eh->call_site_data_used = used + 1;
3343
3344 return used + call_site_base;
3345 }
3346
3347 /* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
3348 The new note numbers will not refer to region numbers, but
3349 instead to call site entries. */
3350
3351 void
3352 convert_to_eh_region_ranges ()
3353 {
3354 rtx insn, iter, note;
3355 htab_t ar_hash;
3356 int last_action = -3;
3357 rtx last_action_insn = NULL_RTX;
3358 rtx last_landing_pad = NULL_RTX;
3359 rtx first_no_action_insn = NULL_RTX;
3360 int call_site = 0;
3361
3362 if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
3363 return;
3364
3365 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
3366
3367 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
3368
3369 for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
3370 if (INSN_P (iter))
3371 {
3372 struct eh_region *region;
3373 int this_action;
3374 rtx this_landing_pad;
3375
3376 insn = iter;
3377 if (GET_CODE (insn) == INSN
3378 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3379 insn = XVECEXP (PATTERN (insn), 0, 0);
3380
3381 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3382 if (!note)
3383 {
3384 if (! (GET_CODE (insn) == CALL_INSN
3385 || (flag_non_call_exceptions
3386 && may_trap_p (PATTERN (insn)))))
3387 continue;
3388 this_action = -1;
3389 region = NULL;
3390 }
3391 else
3392 {
3393 if (INTVAL (XEXP (note, 0)) <= 0)
3394 continue;
3395 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
3396 this_action = collect_one_action_chain (ar_hash, region);
3397 }
3398
3399 /* Existence of catch handlers, or must-not-throw regions
3400 implies that an lsda is needed (even if empty). */
3401 if (this_action != -1)
3402 cfun->uses_eh_lsda = 1;
3403
3404 /* Delay creation of region notes for no-action regions
3405 until we're sure that an lsda will be required. */
3406 else if (last_action == -3)
3407 {
3408 first_no_action_insn = iter;
3409 last_action = -1;
3410 }
3411
3412 /* Cleanups and handlers may share action chains but not
3413 landing pads. Collect the landing pad for this region. */
3414 if (this_action >= 0)
3415 {
3416 struct eh_region *o;
3417 for (o = region; ! o->landing_pad ; o = o->outer)
3418 continue;
3419 this_landing_pad = o->landing_pad;
3420 }
3421 else
3422 this_landing_pad = NULL_RTX;
3423
3424 /* Differing actions or landing pads implies a change in call-site
3425 info, which implies some EH_REGION note should be emitted. */
3426 if (last_action != this_action
3427 || last_landing_pad != this_landing_pad)
3428 {
3429 /* If we'd not seen a previous action (-3) or the previous
3430 action was must-not-throw (-2), then we do not need an
3431 end note. */
3432 if (last_action >= -1)
3433 {
3434 /* If we delayed the creation of the begin, do it now. */
3435 if (first_no_action_insn)
3436 {
3437 call_site = add_call_site (NULL_RTX, 0);
3438 note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
3439 first_no_action_insn);
3440 NOTE_EH_HANDLER (note) = call_site;
3441 first_no_action_insn = NULL_RTX;
3442 }
3443
3444 note = emit_note_after (NOTE_INSN_EH_REGION_END,
3445 last_action_insn);
3446 NOTE_EH_HANDLER (note) = call_site;
3447 }
3448
3449 /* If the new action is must-not-throw, then no region notes
3450 are created. */
3451 if (this_action >= -1)
3452 {
3453 call_site = add_call_site (this_landing_pad,
3454 this_action < 0 ? 0 : this_action);
3455 note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
3456 NOTE_EH_HANDLER (note) = call_site;
3457 }
3458
3459 last_action = this_action;
3460 last_landing_pad = this_landing_pad;
3461 }
3462 last_action_insn = iter;
3463 }
3464
3465 if (last_action >= -1 && ! first_no_action_insn)
3466 {
3467 note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
3468 NOTE_EH_HANDLER (note) = call_site;
3469 }
3470
3471 htab_delete (ar_hash);
3472 }
3473
3474 \f
3475 static void
3476 push_uleb128 (data_area, value)
3477 varray_type *data_area;
3478 unsigned int value;
3479 {
3480 do
3481 {
3482 unsigned char byte = value & 0x7f;
3483 value >>= 7;
3484 if (value)
3485 byte |= 0x80;
3486 VARRAY_PUSH_UCHAR (*data_area, byte);
3487 }
3488 while (value);
3489 }
3490
3491 static void
3492 push_sleb128 (data_area, value)
3493 varray_type *data_area;
3494 int value;
3495 {
3496 unsigned char byte;
3497 int more;
3498
3499 do
3500 {
3501 byte = value & 0x7f;
3502 value >>= 7;
3503 more = ! ((value == 0 && (byte & 0x40) == 0)
3504 || (value == -1 && (byte & 0x40) != 0));
3505 if (more)
3506 byte |= 0x80;
3507 VARRAY_PUSH_UCHAR (*data_area, byte);
3508 }
3509 while (more);
3510 }
3511
3512 \f
3513 #ifndef HAVE_AS_LEB128
3514 static int
3515 dw2_size_of_call_site_table ()
3516 {
3517 int n = cfun->eh->call_site_data_used;
3518 int size = n * (4 + 4 + 4);
3519 int i;
3520
3521 for (i = 0; i < n; ++i)
3522 {
3523 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3524 size += size_of_uleb128 (cs->action);
3525 }
3526
3527 return size;
3528 }
3529
3530 static int
3531 sjlj_size_of_call_site_table ()
3532 {
3533 int n = cfun->eh->call_site_data_used;
3534 int size = 0;
3535 int i;
3536
3537 for (i = 0; i < n; ++i)
3538 {
3539 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3540 size += size_of_uleb128 (INTVAL (cs->landing_pad));
3541 size += size_of_uleb128 (cs->action);
3542 }
3543
3544 return size;
3545 }
3546 #endif
3547
3548 static void
3549 dw2_output_call_site_table ()
3550 {
3551 const char *const function_start_lab
3552 = IDENTIFIER_POINTER (current_function_func_begin_label);
3553 int n = cfun->eh->call_site_data_used;
3554 int i;
3555
3556 for (i = 0; i < n; ++i)
3557 {
3558 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3559 char reg_start_lab[32];
3560 char reg_end_lab[32];
3561 char landing_pad_lab[32];
3562
3563 ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
3564 ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
3565
3566 if (cs->landing_pad)
3567 ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
3568 CODE_LABEL_NUMBER (cs->landing_pad));
3569
3570 /* ??? Perhaps use insn length scaling if the assembler supports
3571 generic arithmetic. */
3572 /* ??? Perhaps use attr_length to choose data1 or data2 instead of
3573 data4 if the function is small enough. */
3574 #ifdef HAVE_AS_LEB128
3575 dw2_asm_output_delta_uleb128 (reg_start_lab, function_start_lab,
3576 "region %d start", i);
3577 dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
3578 "length");
3579 if (cs->landing_pad)
3580 dw2_asm_output_delta_uleb128 (landing_pad_lab, function_start_lab,
3581 "landing pad");
3582 else
3583 dw2_asm_output_data_uleb128 (0, "landing pad");
3584 #else
3585 dw2_asm_output_delta (4, reg_start_lab, function_start_lab,
3586 "region %d start", i);
3587 dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
3588 if (cs->landing_pad)
3589 dw2_asm_output_delta (4, landing_pad_lab, function_start_lab,
3590 "landing pad");
3591 else
3592 dw2_asm_output_data (4, 0, "landing pad");
3593 #endif
3594 dw2_asm_output_data_uleb128 (cs->action, "action");
3595 }
3596
3597 call_site_base += n;
3598 }
3599
3600 static void
3601 sjlj_output_call_site_table ()
3602 {
3603 int n = cfun->eh->call_site_data_used;
3604 int i;
3605
3606 for (i = 0; i < n; ++i)
3607 {
3608 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3609
3610 dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
3611 "region %d landing pad", i);
3612 dw2_asm_output_data_uleb128 (cs->action, "action");
3613 }
3614
3615 call_site_base += n;
3616 }
3617
3618 /* Tell assembler to switch to the section for the exception handling
3619 table. */
3620
3621 void
3622 default_exception_section ()
3623 {
3624 if (targetm.have_named_sections)
3625 {
3626 int flags;
3627 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
3628 int tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3629
3630 flags = (! flag_pic
3631 || ((tt_format & 0x70) != DW_EH_PE_absptr
3632 && (tt_format & 0x70) != DW_EH_PE_aligned))
3633 ? 0 : SECTION_WRITE;
3634 #else
3635 flags = SECTION_WRITE;
3636 #endif
3637 named_section_flags (".gcc_except_table", flags);
3638 }
3639 else if (flag_pic)
3640 data_section ();
3641 else
3642 readonly_data_section ();
3643 }
3644
3645 void
3646 output_function_exception_table ()
3647 {
3648 int tt_format, cs_format, lp_format, i, n;
3649 #ifdef HAVE_AS_LEB128
3650 char ttype_label[32];
3651 char cs_after_size_label[32];
3652 char cs_end_label[32];
3653 #else
3654 int call_site_len;
3655 #endif
3656 int have_tt_data;
3657 int tt_format_size = 0;
3658
3659 /* Not all functions need anything. */
3660 if (! cfun->uses_eh_lsda)
3661 return;
3662
3663 #ifdef IA64_UNWIND_INFO
3664 fputs ("\t.personality\t", asm_out_file);
3665 output_addr_const (asm_out_file, eh_personality_libfunc);
3666 fputs ("\n\t.handlerdata\n", asm_out_file);
3667 /* Note that varasm still thinks we're in the function's code section.
3668 The ".endp" directive that will immediately follow will take us back. */
3669 #else
3670 (*targetm.asm_out.exception_section) ();
3671 #endif
3672
3673 have_tt_data = (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) > 0
3674 || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
3675
3676 /* Indicate the format of the @TType entries. */
3677 if (! have_tt_data)
3678 tt_format = DW_EH_PE_omit;
3679 else
3680 {
3681 tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3682 #ifdef HAVE_AS_LEB128
3683 ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT",
3684 current_function_funcdef_no);
3685 #endif
3686 tt_format_size = size_of_encoded_value (tt_format);
3687
3688 assemble_align (tt_format_size * BITS_PER_UNIT);
3689 }
3690
3691 (*targetm.asm_out.internal_label) (asm_out_file, "LLSDA",
3692 current_function_funcdef_no);
3693
3694 /* The LSDA header. */
3695
3696 /* Indicate the format of the landing pad start pointer. An omitted
3697 field implies @LPStart == @Start. */
3698 /* Currently we always put @LPStart == @Start. This field would
3699 be most useful in moving the landing pads completely out of
3700 line to another section, but it could also be used to minimize
3701 the size of uleb128 landing pad offsets. */
3702 lp_format = DW_EH_PE_omit;
3703 dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
3704 eh_data_format_name (lp_format));
3705
3706 /* @LPStart pointer would go here. */
3707
3708 dw2_asm_output_data (1, tt_format, "@TType format (%s)",
3709 eh_data_format_name (tt_format));
3710
3711 #ifndef HAVE_AS_LEB128
3712 if (USING_SJLJ_EXCEPTIONS)
3713 call_site_len = sjlj_size_of_call_site_table ();
3714 else
3715 call_site_len = dw2_size_of_call_site_table ();
3716 #endif
3717
3718 /* A pc-relative 4-byte displacement to the @TType data. */
3719 if (have_tt_data)
3720 {
3721 #ifdef HAVE_AS_LEB128
3722 char ttype_after_disp_label[32];
3723 ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
3724 current_function_funcdef_no);
3725 dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
3726 "@TType base offset");
3727 ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
3728 #else
3729 /* Ug. Alignment queers things. */
3730 unsigned int before_disp, after_disp, last_disp, disp;
3731
3732 before_disp = 1 + 1;
3733 after_disp = (1 + size_of_uleb128 (call_site_len)
3734 + call_site_len
3735 + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
3736 + (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data)
3737 * tt_format_size));
3738
3739 disp = after_disp;
3740 do
3741 {
3742 unsigned int disp_size, pad;
3743
3744 last_disp = disp;
3745 disp_size = size_of_uleb128 (disp);
3746 pad = before_disp + disp_size + after_disp;
3747 if (pad % tt_format_size)
3748 pad = tt_format_size - (pad % tt_format_size);
3749 else
3750 pad = 0;
3751 disp = after_disp + pad;
3752 }
3753 while (disp != last_disp);
3754
3755 dw2_asm_output_data_uleb128 (disp, "@TType base offset");
3756 #endif
3757 }
3758
3759 /* Indicate the format of the call-site offsets. */
3760 #ifdef HAVE_AS_LEB128
3761 cs_format = DW_EH_PE_uleb128;
3762 #else
3763 cs_format = DW_EH_PE_udata4;
3764 #endif
3765 dw2_asm_output_data (1, cs_format, "call-site format (%s)",
3766 eh_data_format_name (cs_format));
3767
3768 #ifdef HAVE_AS_LEB128
3769 ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
3770 current_function_funcdef_no);
3771 ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
3772 current_function_funcdef_no);
3773 dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
3774 "Call-site table length");
3775 ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
3776 if (USING_SJLJ_EXCEPTIONS)
3777 sjlj_output_call_site_table ();
3778 else
3779 dw2_output_call_site_table ();
3780 ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
3781 #else
3782 dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
3783 if (USING_SJLJ_EXCEPTIONS)
3784 sjlj_output_call_site_table ();
3785 else
3786 dw2_output_call_site_table ();
3787 #endif
3788
3789 /* ??? Decode and interpret the data for flag_debug_asm. */
3790 n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
3791 for (i = 0; i < n; ++i)
3792 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
3793 (i ? NULL : "Action record table"));
3794
3795 if (have_tt_data)
3796 assemble_align (tt_format_size * BITS_PER_UNIT);
3797
3798 i = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data);
3799 while (i-- > 0)
3800 {
3801 tree type = VARRAY_TREE (cfun->eh->ttype_data, i);
3802 rtx value;
3803
3804 if (type == NULL_TREE)
3805 type = integer_zero_node;
3806 else
3807 type = lookup_type_for_runtime (type);
3808
3809 value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
3810 if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
3811 assemble_integer (value, tt_format_size,
3812 tt_format_size * BITS_PER_UNIT, 1);
3813 else
3814 dw2_asm_output_encoded_addr_rtx (tt_format, value, NULL);
3815 }
3816
3817 #ifdef HAVE_AS_LEB128
3818 if (have_tt_data)
3819 ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
3820 #endif
3821
3822 /* ??? Decode and interpret the data for flag_debug_asm. */
3823 n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
3824 for (i = 0; i < n; ++i)
3825 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
3826 (i ? NULL : "Exception specification table"));
3827
3828 function_section (current_function_decl);
3829 }
3830
3831 #include "gt-except.h"