regmove.c (optimize_reg_copy_1): Undo Aug 18 change.
[gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
26 be transferred to any arbitrary code associated with a function call
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
48 approach, which is the default. -fno-sjlj-exceptions can be used to
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
74 In the current implementation, cleanups are handled by allocating an
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
89
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
92 __register_exceptions with the address of its local
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
100 __register_frame_info. On other targets, the information for each
101 translation unit is registered from the file generated by collect2.
102 __register_frame_info is defined in frame.c, and is responsible for
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
105
106 The function __throw is actually responsible for doing the
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
109 per-object-file basis for each source file compiled with
110 -fexceptions by the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
113
114 __throw attempts to find the appropriate exception handler for the
115 PC value stored in __eh_pc by calling __find_first_exception_table_match
116 (which is defined in libgcc2.c). If __find_first_exception_table_match
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
131
132 Internal implementation details:
133
134 To associate a user-defined handler with a block of statements, the
135 function expand_start_try_stmts is used to mark the start of the
136 block of statements with which the handler is to be associated
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
140 A call to expand_start_all_catch marks the end of the try block,
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
155 handler. expand_end_all_catch and expand_leftover_cleanups
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
163 to the topmost entry's label via expand_goto will resume normal
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
187 calling expand_eh_region_start to mark the start of the region,
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
210 and end_protect_partials. add_partial_entry creates the start of
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
217 group of calls to add_partial_entry as the entries are queued
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
234 can be safely optimized away (along with its exception handlers)
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
246
247 Walking the stack:
248
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
252
253 Unwinding the stack:
254
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
282 should call __terminate.
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
296
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
302
303 On some platforms it is possible that neither __unwind_function
304 nor inlined unwinders are available. For these platforms it is not
305 possible to throw through a function call, and abort will be
306 invoked instead of performing the throw.
307
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
320 Future directions:
321
322 Currently __throw makes no differentiation between cleanups and
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
333 A two-pass scheme could then be used by __throw to iterate
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
343 __throw to be able to determine if a given user-defined
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
348 as to the types of exceptions accepted by each handler. __throw
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
353 available, other than to place a breakpoint on __throw. While
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
359 scheme by adding additional labels to __throw for appropriate
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
380 table, and no calls to __register_exceptions. __sjthrow is used
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
389
390
391 #include "config.h"
392 #include "defaults.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "obstack.h"
410
411 /* One to use setjmp/longjmp method of generating code for exception
412 handling. */
413
414 int exceptions_via_longjmp = 2;
415
416 /* One to enable asynchronous exception support. */
417
418 int asynchronous_exceptions = 0;
419
420 /* One to protect cleanup actions with a handler that calls
421 __terminate, zero otherwise. */
422
423 int protect_cleanup_actions_with_terminate;
424
425 /* A list of labels used for exception handlers. Created by
426 find_exception_handler_labels for the optimization passes. */
427
428 rtx exception_handler_labels;
429
430 /* The EH context. Nonzero if the function has already
431 fetched a pointer to the EH context for exception handling. */
432
433 rtx current_function_ehc;
434
435 /* A stack used for keeping track of the currently active exception
436 handling region. As each exception region is started, an entry
437 describing the region is pushed onto this stack. The current
438 region can be found by looking at the top of the stack, and as we
439 exit regions, the corresponding entries are popped.
440
441 Entries cannot overlap; they can be nested. So there is only one
442 entry at most that corresponds to the current instruction, and that
443 is the entry on the top of the stack. */
444
445 static struct eh_stack ehstack;
446
447
448 /* This stack is used to represent what the current eh region is
449 for the catch blocks beings processed */
450
451 static struct eh_stack catchstack;
452
453 /* A queue used for tracking which exception regions have closed but
454 whose handlers have not yet been expanded. Regions are emitted in
455 groups in an attempt to improve paging performance.
456
457 As we exit a region, we enqueue a new entry. The entries are then
458 dequeued during expand_leftover_cleanups and expand_start_all_catch,
459
460 We should redo things so that we either take RTL for the handler,
461 or we expand the handler expressed as a tree immediately at region
462 end time. */
463
464 static struct eh_queue ehqueue;
465
466 /* Insns for all of the exception handlers for the current function.
467 They are currently emitted by the frontend code. */
468
469 rtx catch_clauses;
470
471 /* A TREE_CHAINed list of handlers for regions that are not yet
472 closed. The TREE_VALUE of each entry contains the handler for the
473 corresponding entry on the ehstack. */
474
475 static tree protect_list;
476
477 /* Stacks to keep track of various labels. */
478
479 /* Keeps track of the label to resume to should one want to resume
480 normal control flow out of a handler (instead of, say, returning to
481 the caller of the current function or exiting the program). */
482
483 struct label_node *caught_return_label_stack = NULL;
484
485 /* Keeps track of the label used as the context of a throw to rethrow an
486 exception to the outer exception region. */
487
488 struct label_node *outer_context_label_stack = NULL;
489
490 /* A random data area for the front end's own use. */
491
492 struct label_node *false_label_stack = NULL;
493
494 /* Pseudos used to hold exception return data in the interim between
495 __builtin_eh_return and the end of the function. */
496
497 static rtx eh_return_context;
498 static rtx eh_return_stack_adjust;
499 static rtx eh_return_handler;
500
501 /* Used to mark the eh return stub for flow, so that the Right Thing
502 happens with the values for the hardregs therin. */
503
504 rtx eh_return_stub_label;
505
506 /* This is used for targets which can call rethrow with an offset instead
507 of an address. This is subtracted from the rethrow label we are
508 interested in. */
509
510 static rtx first_rethrow_symbol = NULL_RTX;
511 static rtx final_rethrow = NULL_RTX;
512 static rtx last_rethrow_symbol = NULL_RTX;
513
514
515 /* Prototypes for local functions. */
516
517 static void push_eh_entry PROTO((struct eh_stack *));
518 static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
519 static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
520 static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
521 static rtx call_get_eh_context PROTO((void));
522 static void start_dynamic_cleanup PROTO((tree, tree));
523 static void start_dynamic_handler PROTO((void));
524 static void expand_rethrow PROTO((rtx));
525 static void output_exception_table_entry PROTO((FILE *, int));
526 static int can_throw PROTO((rtx));
527 static rtx scan_region PROTO((rtx, int, int *));
528 static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
529 static void set_insn_eh_region PROTO((rtx *, int));
530 #ifdef DONT_USE_BUILTIN_SETJMP
531 static void jumpif_rtx PROTO((rtx, rtx));
532 #endif
533
534 rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
535 \f
536 /* Various support routines to manipulate the various data structures
537 used by the exception handling code. */
538
539 extern struct obstack permanent_obstack;
540
541 /* Generate a SYMBOL_REF for rethrow to use */
542 static rtx
543 create_rethrow_ref (region_num)
544 int region_num;
545 {
546 rtx def;
547 char *ptr;
548 char buf[60];
549
550 push_obstacks_nochange ();
551 end_temporary_allocation ();
552
553 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
554 ptr = (char *) obstack_copy0 (&permanent_obstack, buf, strlen (buf));
555 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
556 SYMBOL_REF_NEED_ADJUST (def) = 1;
557
558 pop_obstacks ();
559 return def;
560 }
561
562 /* Push a label entry onto the given STACK. */
563
564 void
565 push_label_entry (stack, rlabel, tlabel)
566 struct label_node **stack;
567 rtx rlabel;
568 tree tlabel;
569 {
570 struct label_node *newnode
571 = (struct label_node *) xmalloc (sizeof (struct label_node));
572
573 if (rlabel)
574 newnode->u.rlabel = rlabel;
575 else
576 newnode->u.tlabel = tlabel;
577 newnode->chain = *stack;
578 *stack = newnode;
579 }
580
581 /* Pop a label entry from the given STACK. */
582
583 rtx
584 pop_label_entry (stack)
585 struct label_node **stack;
586 {
587 rtx label;
588 struct label_node *tempnode;
589
590 if (! *stack)
591 return NULL_RTX;
592
593 tempnode = *stack;
594 label = tempnode->u.rlabel;
595 *stack = (*stack)->chain;
596 free (tempnode);
597
598 return label;
599 }
600
601 /* Return the top element of the given STACK. */
602
603 tree
604 top_label_entry (stack)
605 struct label_node **stack;
606 {
607 if (! *stack)
608 return NULL_TREE;
609
610 return (*stack)->u.tlabel;
611 }
612
613 /* get an exception label. These must be on the permanent obstack */
614
615 rtx
616 gen_exception_label ()
617 {
618 rtx lab;
619 lab = gen_label_rtx ();
620 return lab;
621 }
622
623 /* Push a new eh_node entry onto STACK. */
624
625 static void
626 push_eh_entry (stack)
627 struct eh_stack *stack;
628 {
629 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
630 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
631
632 rtx rlab = gen_exception_label ();
633 entry->finalization = NULL_TREE;
634 entry->label_used = 0;
635 entry->exception_handler_label = rlab;
636 entry->false_label = NULL_RTX;
637 if (! flag_new_exceptions)
638 entry->outer_context = gen_label_rtx ();
639 else
640 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
641 entry->rethrow_label = entry->outer_context;
642
643 node->entry = entry;
644 node->chain = stack->top;
645 stack->top = node;
646 }
647
648 /* push an existing entry onto a stack. */
649 static void
650 push_entry (stack, entry)
651 struct eh_stack *stack;
652 struct eh_entry *entry;
653 {
654 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
655 node->entry = entry;
656 node->chain = stack->top;
657 stack->top = node;
658 }
659
660 /* Pop an entry from the given STACK. */
661
662 static struct eh_entry *
663 pop_eh_entry (stack)
664 struct eh_stack *stack;
665 {
666 struct eh_node *tempnode;
667 struct eh_entry *tempentry;
668
669 tempnode = stack->top;
670 tempentry = tempnode->entry;
671 stack->top = stack->top->chain;
672 free (tempnode);
673
674 return tempentry;
675 }
676
677 /* Enqueue an ENTRY onto the given QUEUE. */
678
679 static void
680 enqueue_eh_entry (queue, entry)
681 struct eh_queue *queue;
682 struct eh_entry *entry;
683 {
684 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
685
686 node->entry = entry;
687 node->chain = NULL;
688
689 if (queue->head == NULL)
690 {
691 queue->head = node;
692 }
693 else
694 {
695 queue->tail->chain = node;
696 }
697 queue->tail = node;
698 }
699
700 /* Dequeue an entry from the given QUEUE. */
701
702 static struct eh_entry *
703 dequeue_eh_entry (queue)
704 struct eh_queue *queue;
705 {
706 struct eh_node *tempnode;
707 struct eh_entry *tempentry;
708
709 if (queue->head == NULL)
710 return NULL;
711
712 tempnode = queue->head;
713 queue->head = queue->head->chain;
714
715 tempentry = tempnode->entry;
716 free (tempnode);
717
718 return tempentry;
719 }
720
721 static void
722 receive_exception_label (handler_label)
723 rtx handler_label;
724 {
725 emit_label (handler_label);
726
727 #ifdef HAVE_exception_receiver
728 if (! exceptions_via_longjmp)
729 if (HAVE_exception_receiver)
730 emit_insn (gen_exception_receiver ());
731 #endif
732
733 #ifdef HAVE_nonlocal_goto_receiver
734 if (! exceptions_via_longjmp)
735 if (HAVE_nonlocal_goto_receiver)
736 emit_insn (gen_nonlocal_goto_receiver ());
737 #endif
738 }
739
740
741 struct func_eh_entry
742 {
743 int range_number; /* EH region number from EH NOTE insn's */
744 rtx rethrow_label; /* Label for rethrow */
745 struct handler_info *handlers;
746 };
747
748
749 /* table of function eh regions */
750 static struct func_eh_entry *function_eh_regions = NULL;
751 static int num_func_eh_entries = 0;
752 static int current_func_eh_entry = 0;
753
754 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
755
756 /* Add a new eh_entry for this function, and base it off of the information
757 in the EH_ENTRY parameter. A NULL parameter is invalid.
758 OUTER_CONTEXT is a label which is used for rethrowing. The number
759 returned is an number which uniquely identifies this exception range. */
760
761 static int
762 new_eh_region_entry (note_eh_region, rethrow)
763 int note_eh_region;
764 rtx rethrow;
765 {
766 if (current_func_eh_entry == num_func_eh_entries)
767 {
768 if (num_func_eh_entries == 0)
769 {
770 function_eh_regions =
771 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
772 num_func_eh_entries = 50;
773 }
774 else
775 {
776 num_func_eh_entries = num_func_eh_entries * 3 / 2;
777 function_eh_regions = (struct func_eh_entry *)
778 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
779 }
780 }
781 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
782 if (rethrow == NULL_RTX)
783 function_eh_regions[current_func_eh_entry].rethrow_label =
784 create_rethrow_ref (note_eh_region);
785 else
786 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
787 function_eh_regions[current_func_eh_entry].handlers = NULL;
788
789 return current_func_eh_entry++;
790 }
791
792 /* Add new handler information to an exception range. The first parameter
793 specifies the range number (returned from new_eh_entry()). The second
794 parameter specifies the handler. By default the handler is inserted at
795 the end of the list. A handler list may contain only ONE NULL_TREE
796 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
797 is always output as the LAST handler in the exception table for a region. */
798
799 void
800 add_new_handler (region, newhandler)
801 int region;
802 struct handler_info *newhandler;
803 {
804 struct handler_info *last;
805
806 newhandler->next = NULL;
807 last = function_eh_regions[region].handlers;
808 if (last == NULL)
809 function_eh_regions[region].handlers = newhandler;
810 else
811 {
812 for ( ; ; last = last->next)
813 {
814 if (last->type_info == CATCH_ALL_TYPE)
815 pedwarn ("additional handler after ...");
816 if (last->next == NULL)
817 break;
818 }
819 last->next = newhandler;
820 }
821 }
822
823 /* Remove a handler label. The handler label is being deleted, so all
824 regions which reference this handler should have it removed from their
825 list of possible handlers. Any region which has the final handler
826 removed can be deleted. */
827
828 void remove_handler (removing_label)
829 rtx removing_label;
830 {
831 struct handler_info *handler, *last;
832 int x;
833 for (x = 0 ; x < current_func_eh_entry; ++x)
834 {
835 last = NULL;
836 handler = function_eh_regions[x].handlers;
837 for ( ; handler; last = handler, handler = handler->next)
838 if (handler->handler_label == removing_label)
839 {
840 if (last)
841 {
842 last->next = handler->next;
843 handler = last;
844 }
845 else
846 function_eh_regions[x].handlers = handler->next;
847 }
848 }
849 }
850
851 /* This function will return a malloc'd pointer to an array of
852 void pointer representing the runtime match values that
853 currently exist in all regions. */
854
855 int
856 find_all_handler_type_matches (array)
857 void ***array;
858 {
859 struct handler_info *handler, *last;
860 int x,y;
861 void *val;
862 void **ptr;
863 int max_ptr;
864 int n_ptr = 0;
865
866 *array = NULL;
867
868 if (!doing_eh (0) || ! flag_new_exceptions)
869 return 0;
870
871 max_ptr = 100;
872 ptr = (void **)malloc (max_ptr * sizeof (void *));
873
874 if (ptr == NULL)
875 return 0;
876
877 for (x = 0 ; x < current_func_eh_entry; x++)
878 {
879 last = NULL;
880 handler = function_eh_regions[x].handlers;
881 for ( ; handler; last = handler, handler = handler->next)
882 {
883 val = handler->type_info;
884 if (val != NULL && val != CATCH_ALL_TYPE)
885 {
886 /* See if this match value has already been found. */
887 for (y = 0; y < n_ptr; y++)
888 if (ptr[y] == val)
889 break;
890
891 /* If we break early, we already found this value. */
892 if (y < n_ptr)
893 continue;
894
895 /* Do we need to allocate more space? */
896 if (n_ptr >= max_ptr)
897 {
898 max_ptr += max_ptr / 2;
899 ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
900 if (ptr == NULL)
901 return 0;
902 }
903 ptr[n_ptr] = val;
904 n_ptr++;
905 }
906 }
907 }
908 *array = ptr;
909 return n_ptr;
910 }
911
912 /* Create a new handler structure initialized with the handler label and
913 typeinfo fields passed in. */
914
915 struct handler_info *
916 get_new_handler (handler, typeinfo)
917 rtx handler;
918 void *typeinfo;
919 {
920 struct handler_info* ptr;
921 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
922 ptr->handler_label = handler;
923 ptr->handler_number = CODE_LABEL_NUMBER (handler);
924 ptr->type_info = typeinfo;
925 ptr->next = NULL;
926
927 return ptr;
928 }
929
930
931
932 /* Find the index in function_eh_regions associated with a NOTE region. If
933 the region cannot be found, a -1 is returned. This should never happen! */
934
935 int
936 find_func_region (insn_region)
937 int insn_region;
938 {
939 int x;
940 for (x = 0; x < current_func_eh_entry; x++)
941 if (function_eh_regions[x].range_number == insn_region)
942 return x;
943
944 return -1;
945 }
946
947 /* Get a pointer to the first handler in an exception region's list. */
948
949 struct handler_info *
950 get_first_handler (region)
951 int region;
952 {
953 return function_eh_regions[find_func_region (region)].handlers;
954 }
955
956 /* Clean out the function_eh_region table and free all memory */
957
958 static void
959 clear_function_eh_region ()
960 {
961 int x;
962 struct handler_info *ptr, *next;
963 for (x = 0; x < current_func_eh_entry; x++)
964 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
965 {
966 next = ptr->next;
967 free (ptr);
968 }
969 free (function_eh_regions);
970 num_func_eh_entries = 0;
971 current_func_eh_entry = 0;
972 }
973
974 /* Make a duplicate of an exception region by copying all the handlers
975 for an exception region. Return the new handler index. The final
976 parameter is a routine which maps old labels to new ones. */
977
978 int
979 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
980 int old_note_eh_region, new_note_eh_region;
981 rtx (*map) PARAMS ((rtx));
982 {
983 struct handler_info *ptr, *new_ptr;
984 int new_region, region;
985
986 region = find_func_region (old_note_eh_region);
987 if (region == -1)
988 fatal ("Cannot duplicate non-existant exception region.");
989
990 /* duplicate_eh_handlers may have been called during a symbol remap. */
991 new_region = find_func_region (new_note_eh_region);
992 if (new_region != -1)
993 return (new_region);
994
995 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
996
997 ptr = function_eh_regions[region].handlers;
998
999 for ( ; ptr; ptr = ptr->next)
1000 {
1001 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
1002 add_new_handler (new_region, new_ptr);
1003 }
1004
1005 return new_region;
1006 }
1007
1008
1009 /* Given a rethrow symbol, find the EH region number this is for. */
1010 int
1011 eh_region_from_symbol (sym)
1012 rtx sym;
1013 {
1014 int x;
1015 if (sym == last_rethrow_symbol)
1016 return 1;
1017 for (x = 0; x < current_func_eh_entry; x++)
1018 if (function_eh_regions[x].rethrow_label == sym)
1019 return function_eh_regions[x].range_number;
1020 return -1;
1021 }
1022
1023
1024 /* When inlining/unrolling, we have to map the symbols passed to
1025 __rethrow as well. This performs the remap. If a symbol isn't foiund,
1026 the original one is returned. This is not an efficient routine,
1027 so don't call it on everything!! */
1028 rtx
1029 rethrow_symbol_map (sym, map)
1030 rtx sym;
1031 rtx (*map) PARAMS ((rtx));
1032 {
1033 int x, y;
1034 for (x = 0; x < current_func_eh_entry; x++)
1035 if (function_eh_regions[x].rethrow_label == sym)
1036 {
1037 /* We've found the original region, now lets determine which region
1038 this now maps to. */
1039 rtx l1 = function_eh_regions[x].handlers->handler_label;
1040 rtx l2 = map (l1);
1041 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1042 x = find_func_region (y); /* Get the new permanent region */
1043 if (x == -1) /* Hmm, Doesn't exist yet */
1044 {
1045 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1046 /* Since we're mapping it, it must be used. */
1047 SYMBOL_REF_USED (function_eh_regions[x].rethrow_label) = 1;
1048 }
1049 return function_eh_regions[x].rethrow_label;
1050 }
1051 return sym;
1052 }
1053
1054 int
1055 rethrow_used (region)
1056 int region;
1057 {
1058 if (flag_new_exceptions)
1059 {
1060 rtx lab = function_eh_regions[find_func_region (region)].rethrow_label;
1061 return (SYMBOL_REF_USED (lab));
1062 }
1063 return 0;
1064 }
1065
1066 \f
1067 /* Routine to see if exception handling is turned on.
1068 DO_WARN is non-zero if we want to inform the user that exception
1069 handling is turned off.
1070
1071 This is used to ensure that -fexceptions has been specified if the
1072 compiler tries to use any exception-specific functions. */
1073
1074 int
1075 doing_eh (do_warn)
1076 int do_warn;
1077 {
1078 if (! flag_exceptions)
1079 {
1080 static int warned = 0;
1081 if (! warned && do_warn)
1082 {
1083 error ("exception handling disabled, use -fexceptions to enable");
1084 warned = 1;
1085 }
1086 return 0;
1087 }
1088 return 1;
1089 }
1090
1091 /* Given a return address in ADDR, determine the address we should use
1092 to find the corresponding EH region. */
1093
1094 rtx
1095 eh_outer_context (addr)
1096 rtx addr;
1097 {
1098 /* First mask out any unwanted bits. */
1099 #ifdef MASK_RETURN_ADDR
1100 expand_and (addr, MASK_RETURN_ADDR, addr);
1101 #endif
1102
1103 /* Then adjust to find the real return address. */
1104 #if defined (RETURN_ADDR_OFFSET)
1105 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1106 #endif
1107
1108 return addr;
1109 }
1110
1111 /* Start a new exception region for a region of code that has a
1112 cleanup action and push the HANDLER for the region onto
1113 protect_list. All of the regions created with add_partial_entry
1114 will be ended when end_protect_partials is invoked. */
1115
1116 void
1117 add_partial_entry (handler)
1118 tree handler;
1119 {
1120 expand_eh_region_start ();
1121
1122 /* Make sure the entry is on the correct obstack. */
1123 push_obstacks_nochange ();
1124 resume_temporary_allocation ();
1125
1126 /* Because this is a cleanup action, we may have to protect the handler
1127 with __terminate. */
1128 handler = protect_with_terminate (handler);
1129
1130 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1131 pop_obstacks ();
1132 }
1133
1134 /* Emit code to get EH context to current function. */
1135
1136 static rtx
1137 call_get_eh_context ()
1138 {
1139 static tree fn;
1140 tree expr;
1141
1142 if (fn == NULL_TREE)
1143 {
1144 tree fntype;
1145 fn = get_identifier ("__get_eh_context");
1146 push_obstacks_nochange ();
1147 end_temporary_allocation ();
1148 fntype = build_pointer_type (build_pointer_type
1149 (build_pointer_type (void_type_node)));
1150 fntype = build_function_type (fntype, NULL_TREE);
1151 fn = build_decl (FUNCTION_DECL, fn, fntype);
1152 DECL_EXTERNAL (fn) = 1;
1153 TREE_PUBLIC (fn) = 1;
1154 DECL_ARTIFICIAL (fn) = 1;
1155 TREE_READONLY (fn) = 1;
1156 make_decl_rtl (fn, NULL_PTR, 1);
1157 assemble_external (fn);
1158 pop_obstacks ();
1159 }
1160
1161 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1162 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1163 expr, NULL_TREE, NULL_TREE);
1164 TREE_SIDE_EFFECTS (expr) = 1;
1165
1166 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1167 }
1168
1169 /* Get a reference to the EH context.
1170 We will only generate a register for the current function EH context here,
1171 and emit a USE insn to mark that this is a EH context register.
1172
1173 Later, emit_eh_context will emit needed call to __get_eh_context
1174 in libgcc2, and copy the value to the register we have generated. */
1175
1176 rtx
1177 get_eh_context ()
1178 {
1179 if (current_function_ehc == 0)
1180 {
1181 rtx insn;
1182
1183 current_function_ehc = gen_reg_rtx (Pmode);
1184
1185 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1186 current_function_ehc);
1187 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1188
1189 REG_NOTES (insn)
1190 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1191 REG_NOTES (insn));
1192 }
1193 return current_function_ehc;
1194 }
1195
1196 /* Get a reference to the dynamic handler chain. It points to the
1197 pointer to the next element in the dynamic handler chain. It ends
1198 when there are no more elements in the dynamic handler chain, when
1199 the value is &top_elt from libgcc2.c. Immediately after the
1200 pointer, is an area suitable for setjmp/longjmp when
1201 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1202 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1203 isn't defined. */
1204
1205 rtx
1206 get_dynamic_handler_chain ()
1207 {
1208 rtx ehc, dhc, result;
1209
1210 ehc = get_eh_context ();
1211
1212 /* This is the offset of dynamic_handler_chain in the eh_context struct
1213 declared in eh-common.h. If its location is change, change this offset */
1214 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1215
1216 result = copy_to_reg (dhc);
1217
1218 /* We don't want a copy of the dcc, but rather, the single dcc. */
1219 return gen_rtx_MEM (Pmode, result);
1220 }
1221
1222 /* Get a reference to the dynamic cleanup chain. It points to the
1223 pointer to the next element in the dynamic cleanup chain.
1224 Immediately after the pointer, are two Pmode variables, one for a
1225 pointer to a function that performs the cleanup action, and the
1226 second, the argument to pass to that function. */
1227
1228 rtx
1229 get_dynamic_cleanup_chain ()
1230 {
1231 rtx dhc, dcc, result;
1232
1233 dhc = get_dynamic_handler_chain ();
1234 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1235
1236 result = copy_to_reg (dcc);
1237
1238 /* We don't want a copy of the dcc, but rather, the single dcc. */
1239 return gen_rtx_MEM (Pmode, result);
1240 }
1241
1242 #ifdef DONT_USE_BUILTIN_SETJMP
1243 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1244 LABEL is an rtx of code CODE_LABEL, in this function. */
1245
1246 static void
1247 jumpif_rtx (x, label)
1248 rtx x;
1249 rtx label;
1250 {
1251 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1252 }
1253 #endif
1254
1255 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1256 We just need to create an element for the cleanup list, and push it
1257 into the chain.
1258
1259 A dynamic cleanup is a cleanup action implied by the presence of an
1260 element on the EH runtime dynamic cleanup stack that is to be
1261 performed when an exception is thrown. The cleanup action is
1262 performed by __sjthrow when an exception is thrown. Only certain
1263 actions can be optimized into dynamic cleanup actions. For the
1264 restrictions on what actions can be performed using this routine,
1265 see expand_eh_region_start_tree. */
1266
1267 static void
1268 start_dynamic_cleanup (func, arg)
1269 tree func;
1270 tree arg;
1271 {
1272 rtx dcc;
1273 rtx new_func, new_arg;
1274 rtx x, buf;
1275 int size;
1276
1277 /* We allocate enough room for a pointer to the function, and
1278 one argument. */
1279 size = 2;
1280
1281 /* XXX, FIXME: The stack space allocated this way is too long lived,
1282 but there is no allocation routine that allocates at the level of
1283 the last binding contour. */
1284 buf = assign_stack_local (BLKmode,
1285 GET_MODE_SIZE (Pmode)*(size+1),
1286 0);
1287
1288 buf = change_address (buf, Pmode, NULL_RTX);
1289
1290 /* Store dcc into the first word of the newly allocated buffer. */
1291
1292 dcc = get_dynamic_cleanup_chain ();
1293 emit_move_insn (buf, dcc);
1294
1295 /* Store func and arg into the cleanup list element. */
1296
1297 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1298 GET_MODE_SIZE (Pmode)));
1299 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1300 GET_MODE_SIZE (Pmode)*2));
1301 x = expand_expr (func, new_func, Pmode, 0);
1302 if (x != new_func)
1303 emit_move_insn (new_func, x);
1304
1305 x = expand_expr (arg, new_arg, Pmode, 0);
1306 if (x != new_arg)
1307 emit_move_insn (new_arg, x);
1308
1309 /* Update the cleanup chain. */
1310
1311 emit_move_insn (dcc, XEXP (buf, 0));
1312 }
1313
1314 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1315 handler stack. This should only be used by expand_eh_region_start
1316 or expand_eh_region_start_tree. */
1317
1318 static void
1319 start_dynamic_handler ()
1320 {
1321 rtx dhc, dcc;
1322 rtx x, arg, buf;
1323 int size;
1324
1325 #ifndef DONT_USE_BUILTIN_SETJMP
1326 /* The number of Pmode words for the setjmp buffer, when using the
1327 builtin setjmp/longjmp, see expand_builtin, case
1328 BUILT_IN_LONGJMP. */
1329 size = 5;
1330 #else
1331 #ifdef JMP_BUF_SIZE
1332 size = JMP_BUF_SIZE;
1333 #else
1334 /* Should be large enough for most systems, if it is not,
1335 JMP_BUF_SIZE should be defined with the proper value. It will
1336 also tend to be larger than necessary for most systems, a more
1337 optimal port will define JMP_BUF_SIZE. */
1338 size = FIRST_PSEUDO_REGISTER+2;
1339 #endif
1340 #endif
1341 /* XXX, FIXME: The stack space allocated this way is too long lived,
1342 but there is no allocation routine that allocates at the level of
1343 the last binding contour. */
1344 arg = assign_stack_local (BLKmode,
1345 GET_MODE_SIZE (Pmode)*(size+1),
1346 0);
1347
1348 arg = change_address (arg, Pmode, NULL_RTX);
1349
1350 /* Store dhc into the first word of the newly allocated buffer. */
1351
1352 dhc = get_dynamic_handler_chain ();
1353 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1354 GET_MODE_SIZE (Pmode)));
1355 emit_move_insn (arg, dhc);
1356
1357 /* Zero out the start of the cleanup chain. */
1358 emit_move_insn (dcc, const0_rtx);
1359
1360 /* The jmpbuf starts two words into the area allocated. */
1361 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1362
1363 #ifdef DONT_USE_BUILTIN_SETJMP
1364 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
1365 buf, Pmode);
1366 /* If we come back here for a catch, transfer control to the handler. */
1367 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1368 #else
1369 {
1370 /* A label to continue execution for the no exception case. */
1371 rtx noex = gen_label_rtx();
1372 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1373 ehstack.top->entry->exception_handler_label);
1374 emit_label (noex);
1375 }
1376 #endif
1377
1378 /* We are committed to this, so update the handler chain. */
1379
1380 emit_move_insn (dhc, XEXP (arg, 0));
1381 }
1382
1383 /* Start an exception handling region for the given cleanup action.
1384 All instructions emitted after this point are considered to be part
1385 of the region until expand_eh_region_end is invoked. CLEANUP is
1386 the cleanup action to perform. The return value is true if the
1387 exception region was optimized away. If that case,
1388 expand_eh_region_end does not need to be called for this cleanup,
1389 nor should it be.
1390
1391 This routine notices one particular common case in C++ code
1392 generation, and optimizes it so as to not need the exception
1393 region. It works by creating a dynamic cleanup action, instead of
1394 a using an exception region. */
1395
1396 int
1397 expand_eh_region_start_tree (decl, cleanup)
1398 tree decl;
1399 tree cleanup;
1400 {
1401 /* This is the old code. */
1402 if (! doing_eh (0))
1403 return 0;
1404
1405 /* The optimization only applies to actions protected with
1406 terminate, and only applies if we are using the setjmp/longjmp
1407 codegen method. */
1408 if (exceptions_via_longjmp
1409 && protect_cleanup_actions_with_terminate)
1410 {
1411 tree func, arg;
1412 tree args;
1413
1414 /* Ignore any UNSAVE_EXPR. */
1415 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1416 cleanup = TREE_OPERAND (cleanup, 0);
1417
1418 /* Further, it only applies if the action is a call, if there
1419 are 2 arguments, and if the second argument is 2. */
1420
1421 if (TREE_CODE (cleanup) == CALL_EXPR
1422 && (args = TREE_OPERAND (cleanup, 1))
1423 && (func = TREE_OPERAND (cleanup, 0))
1424 && (arg = TREE_VALUE (args))
1425 && (args = TREE_CHAIN (args))
1426
1427 /* is the second argument 2? */
1428 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1429 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1430 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1431
1432 /* Make sure there are no other arguments. */
1433 && TREE_CHAIN (args) == NULL_TREE)
1434 {
1435 /* Arrange for returns and gotos to pop the entry we make on the
1436 dynamic cleanup stack. */
1437 expand_dcc_cleanup (decl);
1438 start_dynamic_cleanup (func, arg);
1439 return 1;
1440 }
1441 }
1442
1443 expand_eh_region_start_for_decl (decl);
1444 ehstack.top->entry->finalization = cleanup;
1445
1446 return 0;
1447 }
1448
1449 /* Just like expand_eh_region_start, except if a cleanup action is
1450 entered on the cleanup chain, the TREE_PURPOSE of the element put
1451 on the chain is DECL. DECL should be the associated VAR_DECL, if
1452 any, otherwise it should be NULL_TREE. */
1453
1454 void
1455 expand_eh_region_start_for_decl (decl)
1456 tree decl;
1457 {
1458 rtx note;
1459
1460 /* This is the old code. */
1461 if (! doing_eh (0))
1462 return;
1463
1464 if (exceptions_via_longjmp)
1465 {
1466 /* We need a new block to record the start and end of the
1467 dynamic handler chain. We could always do this, but we
1468 really want to permit jumping into such a block, and we want
1469 to avoid any errors or performance impact in the SJ EH code
1470 for now. */
1471 expand_start_bindings (0);
1472
1473 /* But we don't need or want a new temporary level. */
1474 pop_temp_slots ();
1475
1476 /* Mark this block as created by expand_eh_region_start. This
1477 is so that we can pop the block with expand_end_bindings
1478 automatically. */
1479 mark_block_as_eh_region ();
1480
1481 /* Arrange for returns and gotos to pop the entry we make on the
1482 dynamic handler stack. */
1483 expand_dhc_cleanup (decl);
1484 }
1485
1486 push_eh_entry (&ehstack);
1487 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1488 NOTE_BLOCK_NUMBER (note)
1489 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1490 if (exceptions_via_longjmp)
1491 start_dynamic_handler ();
1492 }
1493
1494 /* Start an exception handling region. All instructions emitted after
1495 this point are considered to be part of the region until
1496 expand_eh_region_end is invoked. */
1497
1498 void
1499 expand_eh_region_start ()
1500 {
1501 expand_eh_region_start_for_decl (NULL_TREE);
1502 }
1503
1504 /* End an exception handling region. The information about the region
1505 is found on the top of ehstack.
1506
1507 HANDLER is either the cleanup for the exception region, or if we're
1508 marking the end of a try block, HANDLER is integer_zero_node.
1509
1510 HANDLER will be transformed to rtl when expand_leftover_cleanups
1511 is invoked. */
1512
1513 void
1514 expand_eh_region_end (handler)
1515 tree handler;
1516 {
1517 struct eh_entry *entry;
1518 rtx note;
1519 int ret, r;
1520
1521 if (! doing_eh (0))
1522 return;
1523
1524 entry = pop_eh_entry (&ehstack);
1525
1526 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1527 ret = NOTE_BLOCK_NUMBER (note)
1528 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1529 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1530 /* We share outer_context between regions; only emit it once. */
1531 && INSN_UID (entry->outer_context) == 0)
1532 {
1533 rtx label;
1534
1535 label = gen_label_rtx ();
1536 emit_jump (label);
1537
1538 /* Emit a label marking the end of this exception region that
1539 is used for rethrowing into the outer context. */
1540 emit_label (entry->outer_context);
1541 expand_internal_throw ();
1542
1543 emit_label (label);
1544 }
1545
1546 entry->finalization = handler;
1547
1548 /* create region entry in final exception table */
1549 r = new_eh_region_entry (NOTE_BLOCK_NUMBER (note), entry->rethrow_label);
1550
1551 enqueue_eh_entry (&ehqueue, entry);
1552
1553 /* If we have already started ending the bindings, don't recurse.
1554 This only happens when exceptions_via_longjmp is true. */
1555 if (is_eh_region ())
1556 {
1557 /* Because we don't need or want a new temporary level and
1558 because we didn't create one in expand_eh_region_start,
1559 create a fake one now to avoid removing one in
1560 expand_end_bindings. */
1561 push_temp_slots ();
1562
1563 mark_block_as_not_eh_region ();
1564
1565 /* Maybe do this to prevent jumping in and so on... */
1566 expand_end_bindings (NULL_TREE, 0, 0);
1567 }
1568 }
1569
1570 /* End the EH region for a goto fixup. We only need them in the region-based
1571 EH scheme. */
1572
1573 void
1574 expand_fixup_region_start ()
1575 {
1576 if (! doing_eh (0) || exceptions_via_longjmp)
1577 return;
1578
1579 expand_eh_region_start ();
1580 }
1581
1582 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1583 expanded; to avoid running it twice if it throws, we look through the
1584 ehqueue for a matching region and rethrow from its outer_context. */
1585
1586 void
1587 expand_fixup_region_end (cleanup)
1588 tree cleanup;
1589 {
1590 struct eh_node *node;
1591 int dont_issue;
1592
1593 if (! doing_eh (0) || exceptions_via_longjmp)
1594 return;
1595
1596 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1597 node = node->chain;
1598 if (node == 0)
1599 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1600 node = node->chain;
1601 if (node == 0)
1602 abort ();
1603
1604 /* If the outer context label has not been issued yet, we don't want
1605 to issue it as a part of this region, unless this is the
1606 correct region for the outer context. If we did, then the label for
1607 the outer context will be WITHIN the begin/end labels,
1608 and we could get an infinte loop when it tried to rethrow, or just
1609 generally incorrect execution following a throw. */
1610
1611 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1612 && (ehstack.top->entry != node->entry));
1613
1614 ehstack.top->entry->outer_context = node->entry->outer_context;
1615
1616 /* Since we are rethrowing to the OUTER region, we know we don't need
1617 a jump around sequence for this region, so we'll pretend the outer
1618 context label has been issued by setting INSN_UID to 1, then clearing
1619 it again afterwards. */
1620
1621 if (dont_issue)
1622 INSN_UID (node->entry->outer_context) = 1;
1623
1624 /* Just rethrow. size_zero_node is just a NOP. */
1625 expand_eh_region_end (size_zero_node);
1626
1627 if (dont_issue)
1628 INSN_UID (node->entry->outer_context) = 0;
1629 }
1630
1631 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1632 call to __sjthrow.
1633
1634 Otherwise, we emit a call to __throw and note that we threw
1635 something, so we know we need to generate the necessary code for
1636 __throw.
1637
1638 Before invoking throw, the __eh_pc variable must have been set up
1639 to contain the PC being thrown from. This address is used by
1640 __throw to determine which exception region (if any) is
1641 responsible for handling the exception. */
1642
1643 void
1644 emit_throw ()
1645 {
1646 if (exceptions_via_longjmp)
1647 {
1648 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1649 }
1650 else
1651 {
1652 #ifdef JUMP_TO_THROW
1653 emit_indirect_jump (throw_libfunc);
1654 #else
1655 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1656 #endif
1657 }
1658 emit_barrier ();
1659 }
1660
1661 /* Throw the current exception. If appropriate, this is done by jumping
1662 to the next handler. */
1663
1664 void
1665 expand_internal_throw ()
1666 {
1667 emit_throw ();
1668 }
1669
1670 /* Called from expand_exception_blocks and expand_end_catch_block to
1671 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1672
1673 void
1674 expand_leftover_cleanups ()
1675 {
1676 struct eh_entry *entry;
1677
1678 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1679 {
1680 rtx prev;
1681
1682 /* A leftover try block. Shouldn't be one here. */
1683 if (entry->finalization == integer_zero_node)
1684 abort ();
1685
1686 /* Output the label for the start of the exception handler. */
1687
1688 receive_exception_label (entry->exception_handler_label);
1689
1690 /* register a handler for this cleanup region */
1691 add_new_handler (
1692 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1693 get_new_handler (entry->exception_handler_label, NULL));
1694
1695 /* And now generate the insns for the handler. */
1696 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1697
1698 prev = get_last_insn ();
1699 if (prev == NULL || GET_CODE (prev) != BARRIER)
1700 /* Emit code to throw to the outer context if we fall off
1701 the end of the handler. */
1702 expand_rethrow (entry->outer_context);
1703
1704 do_pending_stack_adjust ();
1705 free (entry);
1706 }
1707 }
1708
1709 /* Called at the start of a block of try statements. */
1710 void
1711 expand_start_try_stmts ()
1712 {
1713 if (! doing_eh (1))
1714 return;
1715
1716 expand_eh_region_start ();
1717 }
1718
1719 /* Called to begin a catch clause. The parameter is the object which
1720 will be passed to the runtime type check routine. */
1721 void
1722 start_catch_handler (rtime)
1723 tree rtime;
1724 {
1725 rtx handler_label;
1726 int insn_region_num;
1727 int eh_region_entry;
1728
1729 if (! doing_eh (1))
1730 return;
1731
1732 handler_label = catchstack.top->entry->exception_handler_label;
1733 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1734 eh_region_entry = find_func_region (insn_region_num);
1735
1736 /* If we've already issued this label, pick a new one */
1737 if (catchstack.top->entry->label_used)
1738 handler_label = gen_exception_label ();
1739 else
1740 catchstack.top->entry->label_used = 1;
1741
1742 receive_exception_label (handler_label);
1743
1744 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1745
1746 if (flag_new_exceptions && ! exceptions_via_longjmp)
1747 return;
1748
1749 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1750 issue code to compare 'rtime' to the value in eh_info, via the
1751 matching function in eh_info. If its is false, we branch around
1752 the handler we are about to issue. */
1753
1754 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1755 {
1756 rtx call_rtx, rtime_address;
1757
1758 if (catchstack.top->entry->false_label != NULL_RTX)
1759 fatal ("Compiler Bug: Never issued previous false_label");
1760 catchstack.top->entry->false_label = gen_exception_label ();
1761
1762 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1763 rtime_address = force_reg (Pmode, rtime_address);
1764
1765 /* Now issue the call, and branch around handler if needed */
1766 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1767 0, SImode, 1, rtime_address, Pmode);
1768
1769 /* Did the function return true? */
1770 emit_cmp_insn (call_rtx, const0_rtx, EQ, NULL_RTX,
1771 GET_MODE (call_rtx), 0 ,0);
1772 emit_jump_insn (gen_beq (catchstack.top->entry->false_label));
1773 }
1774 }
1775
1776 /* Called to end a catch clause. If we aren't using the new exception
1777 model tabel mechanism, we need to issue the branch-around label
1778 for the end of the catch block. */
1779
1780 void
1781 end_catch_handler ()
1782 {
1783 if (! doing_eh (1))
1784 return;
1785
1786 if (flag_new_exceptions && ! exceptions_via_longjmp)
1787 {
1788 emit_barrier ();
1789 return;
1790 }
1791
1792 /* A NULL label implies the catch clause was a catch all or cleanup */
1793 if (catchstack.top->entry->false_label == NULL_RTX)
1794 return;
1795
1796 emit_label (catchstack.top->entry->false_label);
1797 catchstack.top->entry->false_label = NULL_RTX;
1798 }
1799
1800 /* Generate RTL for the start of a group of catch clauses.
1801
1802 It is responsible for starting a new instruction sequence for the
1803 instructions in the catch block, and expanding the handlers for the
1804 internally-generated exception regions nested within the try block
1805 corresponding to this catch block. */
1806
1807 void
1808 expand_start_all_catch ()
1809 {
1810 struct eh_entry *entry;
1811 tree label;
1812 rtx outer_context;
1813
1814 if (! doing_eh (1))
1815 return;
1816
1817 outer_context = ehstack.top->entry->outer_context;
1818
1819 /* End the try block. */
1820 expand_eh_region_end (integer_zero_node);
1821
1822 emit_line_note (input_filename, lineno);
1823 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1824
1825 /* The label for the exception handling block that we will save.
1826 This is Lresume in the documentation. */
1827 expand_label (label);
1828
1829 /* Push the label that points to where normal flow is resumed onto
1830 the top of the label stack. */
1831 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1832
1833 /* Start a new sequence for all the catch blocks. We will add this
1834 to the global sequence catch_clauses when we have completed all
1835 the handlers in this handler-seq. */
1836 start_sequence ();
1837
1838 entry = dequeue_eh_entry (&ehqueue);
1839 for ( ; entry->finalization != integer_zero_node;
1840 entry = dequeue_eh_entry (&ehqueue))
1841 {
1842 rtx prev;
1843
1844 /* Emit the label for the cleanup handler for this region, and
1845 expand the code for the handler.
1846
1847 Note that a catch region is handled as a side-effect here;
1848 for a try block, entry->finalization will contain
1849 integer_zero_node, so no code will be generated in the
1850 expand_expr call below. But, the label for the handler will
1851 still be emitted, so any code emitted after this point will
1852 end up being the handler. */
1853
1854 receive_exception_label (entry->exception_handler_label);
1855
1856 /* register a handler for this cleanup region */
1857 add_new_handler (
1858 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1859 get_new_handler (entry->exception_handler_label, NULL));
1860
1861 /* And now generate the insns for the cleanup handler. */
1862 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1863
1864 prev = get_last_insn ();
1865 if (prev == NULL || GET_CODE (prev) != BARRIER)
1866 /* Code to throw out to outer context when we fall off end
1867 of the handler. We can't do this here for catch blocks,
1868 so it's done in expand_end_all_catch instead. */
1869 expand_rethrow (entry->outer_context);
1870
1871 do_pending_stack_adjust ();
1872 free (entry);
1873 }
1874
1875 /* At this point, all the cleanups are done, and the ehqueue now has
1876 the current exception region at its head. We dequeue it, and put it
1877 on the catch stack. */
1878
1879 push_entry (&catchstack, entry);
1880
1881 /* If we are not doing setjmp/longjmp EH, because we are reordered
1882 out of line, we arrange to rethrow in the outer context. We need to
1883 do this because we are not physically within the region, if any, that
1884 logically contains this catch block. */
1885 if (! exceptions_via_longjmp)
1886 {
1887 expand_eh_region_start ();
1888 ehstack.top->entry->outer_context = outer_context;
1889 }
1890
1891 }
1892
1893 /* Finish up the catch block. At this point all the insns for the
1894 catch clauses have already been generated, so we only have to add
1895 them to the catch_clauses list. We also want to make sure that if
1896 we fall off the end of the catch clauses that we rethrow to the
1897 outer EH region. */
1898
1899 void
1900 expand_end_all_catch ()
1901 {
1902 rtx new_catch_clause;
1903 struct eh_entry *entry;
1904
1905 if (! doing_eh (1))
1906 return;
1907
1908 /* Dequeue the current catch clause region. */
1909 entry = pop_eh_entry (&catchstack);
1910 free (entry);
1911
1912 if (! exceptions_via_longjmp)
1913 {
1914 rtx outer_context = ehstack.top->entry->outer_context;
1915
1916 /* Finish the rethrow region. size_zero_node is just a NOP. */
1917 expand_eh_region_end (size_zero_node);
1918 /* New exceptions handling models will never have a fall through
1919 of a catch clause */
1920 if (!flag_new_exceptions)
1921 expand_rethrow (outer_context);
1922 }
1923 else
1924 expand_rethrow (NULL_RTX);
1925
1926 /* Code to throw out to outer context, if we fall off end of catch
1927 handlers. This is rethrow (Lresume, same id, same obj) in the
1928 documentation. We use Lresume because we know that it will throw
1929 to the correct context.
1930
1931 In other words, if the catch handler doesn't exit or return, we
1932 do a "throw" (using the address of Lresume as the point being
1933 thrown from) so that the outer EH region can then try to process
1934 the exception. */
1935
1936 /* Now we have the complete catch sequence. */
1937 new_catch_clause = get_insns ();
1938 end_sequence ();
1939
1940 /* This level of catch blocks is done, so set up the successful
1941 catch jump label for the next layer of catch blocks. */
1942 pop_label_entry (&caught_return_label_stack);
1943 pop_label_entry (&outer_context_label_stack);
1944
1945 /* Add the new sequence of catches to the main one for this function. */
1946 push_to_sequence (catch_clauses);
1947 emit_insns (new_catch_clause);
1948 catch_clauses = get_insns ();
1949 end_sequence ();
1950
1951 /* Here we fall through into the continuation code. */
1952 }
1953
1954 /* Rethrow from the outer context LABEL. */
1955
1956 static void
1957 expand_rethrow (label)
1958 rtx label;
1959 {
1960 if (exceptions_via_longjmp)
1961 emit_throw ();
1962 else
1963 if (flag_new_exceptions)
1964 {
1965 rtx insn, val;
1966 if (label == NULL_RTX)
1967 label = last_rethrow_symbol;
1968 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1969 SYMBOL_REF_USED (label) = 1;
1970 insn = get_last_insn ();
1971 val = GEN_INT (eh_region_from_symbol (label));
1972 /* Mark the label/symbol on the call. */
1973 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, val,
1974 REG_NOTES (insn));
1975 emit_barrier ();
1976 }
1977 else
1978 emit_jump (label);
1979 }
1980
1981 /* End all the pending exception regions on protect_list. The handlers
1982 will be emitted when expand_leftover_cleanups is invoked. */
1983
1984 void
1985 end_protect_partials ()
1986 {
1987 while (protect_list)
1988 {
1989 expand_eh_region_end (TREE_VALUE (protect_list));
1990 protect_list = TREE_CHAIN (protect_list);
1991 }
1992 }
1993
1994 /* Arrange for __terminate to be called if there is an unhandled throw
1995 from within E. */
1996
1997 tree
1998 protect_with_terminate (e)
1999 tree e;
2000 {
2001 /* We only need to do this when using setjmp/longjmp EH and the
2002 language requires it, as otherwise we protect all of the handlers
2003 at once, if we need to. */
2004 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2005 {
2006 tree handler, result;
2007
2008 /* All cleanups must be on the function_obstack. */
2009 push_obstacks_nochange ();
2010 resume_temporary_allocation ();
2011
2012 handler = make_node (RTL_EXPR);
2013 TREE_TYPE (handler) = void_type_node;
2014 RTL_EXPR_RTL (handler) = const0_rtx;
2015 TREE_SIDE_EFFECTS (handler) = 1;
2016 start_sequence_for_rtl_expr (handler);
2017
2018 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2019 emit_barrier ();
2020
2021 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2022 end_sequence ();
2023
2024 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2025 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2026 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2027 TREE_READONLY (result) = TREE_READONLY (e);
2028
2029 pop_obstacks ();
2030
2031 e = result;
2032 }
2033
2034 return e;
2035 }
2036 \f
2037 /* The exception table that we build that is used for looking up and
2038 dispatching exceptions, the current number of entries, and its
2039 maximum size before we have to extend it.
2040
2041 The number in eh_table is the code label number of the exception
2042 handler for the region. This is added by add_eh_table_entry and
2043 used by output_exception_table_entry. */
2044
2045 static int *eh_table = NULL;
2046 static int eh_table_size = 0;
2047 static int eh_table_max_size = 0;
2048
2049 /* Note the need for an exception table entry for region N. If we
2050 don't need to output an explicit exception table, avoid all of the
2051 extra work.
2052
2053 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2054 (Or NOTE_INSN_EH_REGION_END sometimes)
2055 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
2056 label number of the exception handler for the region. */
2057
2058 void
2059 add_eh_table_entry (n)
2060 int n;
2061 {
2062 #ifndef OMIT_EH_TABLE
2063 if (eh_table_size >= eh_table_max_size)
2064 {
2065 if (eh_table)
2066 {
2067 eh_table_max_size += eh_table_max_size>>1;
2068
2069 if (eh_table_max_size < 0)
2070 abort ();
2071
2072 eh_table = (int *) xrealloc (eh_table,
2073 eh_table_max_size * sizeof (int));
2074 }
2075 else
2076 {
2077 eh_table_max_size = 252;
2078 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2079 }
2080 }
2081 eh_table[eh_table_size++] = n;
2082 #endif
2083 }
2084
2085 /* Return a non-zero value if we need to output an exception table.
2086
2087 On some platforms, we don't have to output a table explicitly.
2088 This routine doesn't mean we don't have one. */
2089
2090 int
2091 exception_table_p ()
2092 {
2093 if (eh_table)
2094 return 1;
2095
2096 return 0;
2097 }
2098
2099 /* Output the entry of the exception table corresponding to the
2100 exception region numbered N to file FILE.
2101
2102 N is the code label number corresponding to the handler of the
2103 region. */
2104
2105 static void
2106 output_exception_table_entry (file, n)
2107 FILE *file;
2108 int n;
2109 {
2110 char buf[256];
2111 rtx sym;
2112 struct handler_info *handler = get_first_handler (n);
2113 int index = find_func_region (n);
2114 rtx rethrow;
2115
2116 /* form and emit the rethrow label, if needed */
2117 rethrow = function_eh_regions[index].rethrow_label;
2118 if (rethrow != NULL_RTX && !flag_new_exceptions)
2119 rethrow = NULL_RTX;
2120 if (rethrow != NULL_RTX && handler == NULL)
2121 if (! SYMBOL_REF_USED (rethrow))
2122 rethrow = NULL_RTX;
2123
2124
2125 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2126 {
2127 /* rethrow label should indicate the LAST entry for a region */
2128 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2129 {
2130 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2131 assemble_label(buf);
2132 rethrow = NULL_RTX;
2133 }
2134
2135 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2136 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2137 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2138
2139 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2140 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2141 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2142
2143 if (handler == NULL)
2144 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2145 else
2146 {
2147 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2148 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2149 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2150 }
2151
2152 if (flag_new_exceptions)
2153 {
2154 if (handler == NULL || handler->type_info == NULL)
2155 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2156 else
2157 if (handler->type_info == CATCH_ALL_TYPE)
2158 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2159 POINTER_SIZE / BITS_PER_UNIT, 1);
2160 else
2161 output_constant ((tree)(handler->type_info),
2162 POINTER_SIZE / BITS_PER_UNIT);
2163 }
2164 putc ('\n', file); /* blank line */
2165 /* We only output the first label under the old scheme */
2166 if (! flag_new_exceptions || handler == NULL)
2167 break;
2168 }
2169 }
2170
2171 /* Output the exception table if we have and need one. */
2172
2173 static short language_code = 0;
2174 static short version_code = 0;
2175
2176 /* This routine will set the language code for exceptions. */
2177 void
2178 set_exception_lang_code (code)
2179 int code;
2180 {
2181 language_code = code;
2182 }
2183
2184 /* This routine will set the language version code for exceptions. */
2185 void
2186 set_exception_version_code (code)
2187 int code;
2188 {
2189 version_code = code;
2190 }
2191
2192
2193 void
2194 output_exception_table ()
2195 {
2196 int i;
2197 char buf[256];
2198 extern FILE *asm_out_file;
2199
2200 if (! doing_eh (0) || ! eh_table)
2201 return;
2202
2203 exception_section ();
2204
2205 /* Beginning marker for table. */
2206 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2207 assemble_label ("__EXCEPTION_TABLE__");
2208
2209 if (flag_new_exceptions)
2210 {
2211 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2212 POINTER_SIZE / BITS_PER_UNIT, 1);
2213 assemble_integer (GEN_INT (language_code), 2 , 1);
2214 assemble_integer (GEN_INT (version_code), 2 , 1);
2215
2216 /* Add enough padding to make sure table aligns on a pointer boundry. */
2217 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2218 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2219 ;
2220 if (i != 0)
2221 assemble_integer (const0_rtx, i , 1);
2222
2223 /* Generate the label for offset calculations on rethrows */
2224 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2225 assemble_label(buf);
2226 }
2227
2228 for (i = 0; i < eh_table_size; ++i)
2229 output_exception_table_entry (asm_out_file, eh_table[i]);
2230
2231 free (eh_table);
2232 clear_function_eh_region ();
2233
2234 /* Ending marker for table. */
2235 /* Generate the label for end of table. */
2236 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2237 assemble_label(buf);
2238 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2239
2240 /* for binary compatability, the old __throw checked the second
2241 position for a -1, so we should output at least 2 -1's */
2242 if (! flag_new_exceptions)
2243 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2244
2245 putc ('\n', asm_out_file); /* blank line */
2246 }
2247 \f
2248 /* Emit code to get EH context.
2249
2250 We have to scan thru the code to find possible EH context registers.
2251 Inlined functions may use it too, and thus we'll have to be able
2252 to change them too.
2253
2254 This is done only if using exceptions_via_longjmp. */
2255
2256 void
2257 emit_eh_context ()
2258 {
2259 rtx insn;
2260 rtx ehc = 0;
2261
2262 if (! doing_eh (0))
2263 return;
2264
2265 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2266 if (GET_CODE (insn) == INSN
2267 && GET_CODE (PATTERN (insn)) == USE)
2268 {
2269 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2270 if (reg)
2271 {
2272 rtx insns;
2273
2274 start_sequence ();
2275
2276 /* If this is the first use insn, emit the call here. This
2277 will always be at the top of our function, because if
2278 expand_inline_function notices a REG_EH_CONTEXT note, it
2279 adds a use insn to this function as well. */
2280 if (ehc == 0)
2281 ehc = call_get_eh_context ();
2282
2283 emit_move_insn (XEXP (reg, 0), ehc);
2284 insns = get_insns ();
2285 end_sequence ();
2286
2287 emit_insns_before (insns, insn);
2288
2289 /* At -O0, we must make the context register stay alive so
2290 that the stupid.c register allocator doesn't get confused. */
2291 if (obey_regdecls != 0)
2292 {
2293 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2294 emit_insn_before (insns, get_last_insn ());
2295 }
2296 }
2297 }
2298 }
2299
2300 /* Scan the current insns and build a list of handler labels. The
2301 resulting list is placed in the global variable exception_handler_labels.
2302
2303 It is called after the last exception handling region is added to
2304 the current function (when the rtl is almost all built for the
2305 current function) and before the jump optimization pass. */
2306
2307 void
2308 find_exception_handler_labels ()
2309 {
2310 rtx insn;
2311
2312 exception_handler_labels = NULL_RTX;
2313
2314 /* If we aren't doing exception handling, there isn't much to check. */
2315 if (! doing_eh (0))
2316 return;
2317
2318 /* For each start of a region, add its label to the list. */
2319
2320 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2321 {
2322 struct handler_info* ptr;
2323 if (GET_CODE (insn) == NOTE
2324 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2325 {
2326 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2327 for ( ; ptr; ptr = ptr->next)
2328 {
2329 /* make sure label isn't in the list already */
2330 rtx x;
2331 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2332 if (XEXP (x, 0) == ptr->handler_label)
2333 break;
2334 if (! x)
2335 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2336 ptr->handler_label, exception_handler_labels);
2337 }
2338 }
2339 }
2340 }
2341
2342 /* Return a value of 1 if the parameter label number is an exception handler
2343 label. Return 0 otherwise. */
2344
2345 int
2346 is_exception_handler_label (lab)
2347 int lab;
2348 {
2349 rtx x;
2350 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2351 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2352 return 1;
2353 return 0;
2354 }
2355
2356 /* Perform sanity checking on the exception_handler_labels list.
2357
2358 Can be called after find_exception_handler_labels is called to
2359 build the list of exception handlers for the current function and
2360 before we finish processing the current function. */
2361
2362 void
2363 check_exception_handler_labels ()
2364 {
2365 rtx insn, insn2;
2366
2367 /* If we aren't doing exception handling, there isn't much to check. */
2368 if (! doing_eh (0))
2369 return;
2370
2371 /* Make sure there is no more than 1 copy of a label */
2372 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2373 {
2374 int count = 0;
2375 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2376 if (XEXP (insn, 0) == XEXP (insn2, 0))
2377 count++;
2378 if (count != 1)
2379 warning ("Counted %d copies of EH region %d in list.\n", count,
2380 CODE_LABEL_NUMBER (insn));
2381 }
2382
2383 }
2384 \f
2385 /* This group of functions initializes the exception handling data
2386 structures at the start of the compilation, initializes the data
2387 structures at the start of a function, and saves and restores the
2388 exception handling data structures for the start/end of a nested
2389 function. */
2390
2391 /* Toplevel initialization for EH things. */
2392
2393 void
2394 init_eh ()
2395 {
2396 first_rethrow_symbol = create_rethrow_ref (0);
2397 final_rethrow = gen_exception_label ();
2398 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2399 }
2400
2401 /* Initialize the per-function EH information. */
2402
2403 void
2404 init_eh_for_function ()
2405 {
2406 ehstack.top = 0;
2407 catchstack.top = 0;
2408 ehqueue.head = ehqueue.tail = 0;
2409 catch_clauses = NULL_RTX;
2410 false_label_stack = 0;
2411 caught_return_label_stack = 0;
2412 protect_list = NULL_TREE;
2413 current_function_ehc = NULL_RTX;
2414 eh_return_context = NULL_RTX;
2415 eh_return_stack_adjust = NULL_RTX;
2416 eh_return_handler = NULL_RTX;
2417 eh_return_stub_label = NULL_RTX;
2418 }
2419
2420 /* Save some of the per-function EH info into the save area denoted by
2421 P.
2422
2423 This is currently called from save_stmt_status. */
2424
2425 void
2426 save_eh_status (p)
2427 struct function *p;
2428 {
2429 if (p == NULL)
2430 abort ();
2431
2432 p->ehstack = ehstack;
2433 p->catchstack = catchstack;
2434 p->ehqueue = ehqueue;
2435 p->catch_clauses = catch_clauses;
2436 p->false_label_stack = false_label_stack;
2437 p->caught_return_label_stack = caught_return_label_stack;
2438 p->protect_list = protect_list;
2439 p->ehc = current_function_ehc;
2440
2441 init_eh_for_function ();
2442 }
2443
2444 /* Restore the per-function EH info saved into the area denoted by P.
2445
2446 This is currently called from restore_stmt_status. */
2447
2448 void
2449 restore_eh_status (p)
2450 struct function *p;
2451 {
2452 if (p == NULL)
2453 abort ();
2454
2455 protect_list = p->protect_list;
2456 caught_return_label_stack = p->caught_return_label_stack;
2457 false_label_stack = p->false_label_stack;
2458 catch_clauses = p->catch_clauses;
2459 ehqueue = p->ehqueue;
2460 ehstack = p->ehstack;
2461 catchstack = p->catchstack;
2462 current_function_ehc = p->ehc;
2463 }
2464 \f
2465 /* This section is for the exception handling specific optimization
2466 pass. First are the internal routines, and then the main
2467 optimization pass. */
2468
2469 /* Determine if the given INSN can throw an exception. */
2470
2471 static int
2472 can_throw (insn)
2473 rtx insn;
2474 {
2475 /* Calls can always potentially throw exceptions. */
2476 if (GET_CODE (insn) == CALL_INSN)
2477 return 1;
2478
2479 if (asynchronous_exceptions)
2480 {
2481 /* If we wanted asynchronous exceptions, then everything but NOTEs
2482 and CODE_LABELs could throw. */
2483 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2484 return 1;
2485 }
2486
2487 return 0;
2488 }
2489
2490 /* Scan a exception region looking for the matching end and then
2491 remove it if possible. INSN is the start of the region, N is the
2492 region number, and DELETE_OUTER is to note if anything in this
2493 region can throw.
2494
2495 Regions are removed if they cannot possibly catch an exception.
2496 This is determined by invoking can_throw on each insn within the
2497 region; if can_throw returns true for any of the instructions, the
2498 region can catch an exception, since there is an insn within the
2499 region that is capable of throwing an exception.
2500
2501 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2502 calls abort if it can't find one.
2503
2504 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2505 correspond to the region number, or if DELETE_OUTER is NULL. */
2506
2507 static rtx
2508 scan_region (insn, n, delete_outer)
2509 rtx insn;
2510 int n;
2511 int *delete_outer;
2512 {
2513 rtx start = insn;
2514
2515 /* Assume we can delete the region. */
2516 int delete = 1;
2517
2518 int r = find_func_region (n);
2519 /* Can't delete something which is rethrown to. */
2520 if (SYMBOL_REF_USED((function_eh_regions[r].rethrow_label)))
2521 delete = 0;
2522
2523 if (insn == NULL_RTX
2524 || GET_CODE (insn) != NOTE
2525 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2526 || NOTE_BLOCK_NUMBER (insn) != n
2527 || delete_outer == NULL)
2528 abort ();
2529
2530 insn = NEXT_INSN (insn);
2531
2532 /* Look for the matching end. */
2533 while (! (GET_CODE (insn) == NOTE
2534 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2535 {
2536 /* If anything can throw, we can't remove the region. */
2537 if (delete && can_throw (insn))
2538 {
2539 delete = 0;
2540 }
2541
2542 /* Watch out for and handle nested regions. */
2543 if (GET_CODE (insn) == NOTE
2544 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2545 {
2546 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2547 }
2548
2549 insn = NEXT_INSN (insn);
2550 }
2551
2552 /* The _BEG/_END NOTEs must match and nest. */
2553 if (NOTE_BLOCK_NUMBER (insn) != n)
2554 abort ();
2555
2556 /* If anything in this exception region can throw, we can throw. */
2557 if (! delete)
2558 *delete_outer = 0;
2559 else
2560 {
2561 /* Delete the start and end of the region. */
2562 delete_insn (start);
2563 delete_insn (insn);
2564
2565 /* We no longer removed labels here, since flow will now remove any
2566 handler which cannot be called any more. */
2567
2568 #if 0
2569 /* Only do this part if we have built the exception handler
2570 labels. */
2571 if (exception_handler_labels)
2572 {
2573 rtx x, *prev = &exception_handler_labels;
2574
2575 /* Find it in the list of handlers. */
2576 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2577 {
2578 rtx label = XEXP (x, 0);
2579 if (CODE_LABEL_NUMBER (label) == n)
2580 {
2581 /* If we are the last reference to the handler,
2582 delete it. */
2583 if (--LABEL_NUSES (label) == 0)
2584 delete_insn (label);
2585
2586 if (optimize)
2587 {
2588 /* Remove it from the list of exception handler
2589 labels, if we are optimizing. If we are not, then
2590 leave it in the list, as we are not really going to
2591 remove the region. */
2592 *prev = XEXP (x, 1);
2593 XEXP (x, 1) = 0;
2594 XEXP (x, 0) = 0;
2595 }
2596
2597 break;
2598 }
2599 prev = &XEXP (x, 1);
2600 }
2601 }
2602 #endif
2603 }
2604 return insn;
2605 }
2606
2607 /* Perform various interesting optimizations for exception handling
2608 code.
2609
2610 We look for empty exception regions and make them go (away). The
2611 jump optimization code will remove the handler if nothing else uses
2612 it. */
2613
2614 void
2615 exception_optimize ()
2616 {
2617 rtx insn;
2618 int n;
2619
2620 /* Remove empty regions. */
2621 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2622 {
2623 if (GET_CODE (insn) == NOTE
2624 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2625 {
2626 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2627 insn, we will indirectly skip through all the insns
2628 inbetween. We are also guaranteed that the value of insn
2629 returned will be valid, as otherwise scan_region won't
2630 return. */
2631 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2632 }
2633 }
2634 }
2635 \f
2636 /* Various hooks for the DWARF 2 __throw routine. */
2637
2638 /* Do any necessary initialization to access arbitrary stack frames.
2639 On the SPARC, this means flushing the register windows. */
2640
2641 void
2642 expand_builtin_unwind_init ()
2643 {
2644 /* Set this so all the registers get saved in our frame; we need to be
2645 able to copy the saved values for any registers from frames we unwind. */
2646 current_function_has_nonlocal_label = 1;
2647
2648 #ifdef SETUP_FRAME_ADDRESSES
2649 SETUP_FRAME_ADDRESSES ();
2650 #endif
2651 }
2652
2653 /* Given a value extracted from the return address register or stack slot,
2654 return the actual address encoded in that value. */
2655
2656 rtx
2657 expand_builtin_extract_return_addr (addr_tree)
2658 tree addr_tree;
2659 {
2660 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2661 return eh_outer_context (addr);
2662 }
2663
2664 /* Given an actual address in addr_tree, do any necessary encoding
2665 and return the value to be stored in the return address register or
2666 stack slot so the epilogue will return to that address. */
2667
2668 rtx
2669 expand_builtin_frob_return_addr (addr_tree)
2670 tree addr_tree;
2671 {
2672 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2673 #ifdef RETURN_ADDR_OFFSET
2674 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2675 #endif
2676 return addr;
2677 }
2678
2679 /* Choose three registers for communication between the main body of
2680 __throw and the epilogue (or eh stub) and the exception handler.
2681 We must do this with hard registers because the epilogue itself
2682 will be generated after reload, at which point we may not reference
2683 pseudos at all.
2684
2685 The first passes the exception context to the handler. For this
2686 we use the return value register for a void*.
2687
2688 The second holds the stack pointer value to be restored. For
2689 this we use the static chain register if it exists and is different
2690 from the previous, otherwise some arbitrary call-clobbered register.
2691
2692 The third holds the address of the handler itself. Here we use
2693 some arbitrary call-clobbered register. */
2694
2695 static void
2696 eh_regs (pcontext, psp, pra, outgoing)
2697 rtx *pcontext, *psp, *pra;
2698 int outgoing;
2699 {
2700 rtx rcontext, rsp, rra;
2701 int i;
2702
2703 #ifdef FUNCTION_OUTGOING_VALUE
2704 if (outgoing)
2705 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2706 current_function_decl);
2707 else
2708 #endif
2709 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2710 current_function_decl);
2711
2712 #ifdef STATIC_CHAIN_REGNUM
2713 if (outgoing)
2714 rsp = static_chain_incoming_rtx;
2715 else
2716 rsp = static_chain_rtx;
2717 if (REGNO (rsp) == REGNO (rcontext))
2718 #endif /* STATIC_CHAIN_REGNUM */
2719 rsp = NULL_RTX;
2720
2721 if (rsp == NULL_RTX)
2722 {
2723 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2724 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2725 break;
2726 if (i == FIRST_PSEUDO_REGISTER)
2727 abort();
2728
2729 rsp = gen_rtx_REG (Pmode, i);
2730 }
2731
2732 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2733 if (call_used_regs[i] && ! fixed_regs[i]
2734 && i != REGNO (rcontext) && i != REGNO (rsp))
2735 break;
2736 if (i == FIRST_PSEUDO_REGISTER)
2737 abort();
2738
2739 rra = gen_rtx_REG (Pmode, i);
2740
2741 *pcontext = rcontext;
2742 *psp = rsp;
2743 *pra = rra;
2744 }
2745
2746 /* Retrieve the register which contains the pointer to the eh_context
2747 structure set the __throw. */
2748
2749 rtx
2750 get_reg_for_handler ()
2751 {
2752 rtx reg1;
2753 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2754 current_function_decl);
2755 return reg1;
2756 }
2757
2758 /* Set up the epilogue with the magic bits we'll need to return to the
2759 exception handler. */
2760
2761 void
2762 expand_builtin_eh_return (context, stack, handler)
2763 tree context, stack, handler;
2764 {
2765 if (eh_return_context)
2766 error("Duplicate call to __builtin_eh_return");
2767
2768 eh_return_context
2769 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2770 eh_return_stack_adjust
2771 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2772 eh_return_handler
2773 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
2774 }
2775
2776 void
2777 expand_eh_return ()
2778 {
2779 rtx reg1, reg2, reg3;
2780 rtx stub_start, after_stub;
2781 rtx ra, tmp;
2782
2783 if (!eh_return_context)
2784 return;
2785
2786 eh_regs (&reg1, &reg2, &reg3, 1);
2787 emit_move_insn (reg1, eh_return_context);
2788 emit_move_insn (reg2, eh_return_stack_adjust);
2789 emit_move_insn (reg3, eh_return_handler);
2790
2791 /* Talk directly to the target's epilogue code when possible. */
2792
2793 #ifdef HAVE_eh_epilogue
2794 if (HAVE_eh_epilogue)
2795 {
2796 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2797 return;
2798 }
2799 #endif
2800
2801 /* Otherwise, use the same stub technique we had before. */
2802
2803 eh_return_stub_label = stub_start = gen_label_rtx ();
2804 after_stub = gen_label_rtx ();
2805
2806 /* Set the return address to the stub label. */
2807
2808 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2809 0, hard_frame_pointer_rtx);
2810 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2811 abort();
2812
2813 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2814 #ifdef RETURN_ADDR_OFFSET
2815 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2816 #endif
2817 tmp = force_operand (tmp, ra);
2818 if (tmp != ra)
2819 emit_move_insn (ra, tmp);
2820
2821 /* Indicate that the registers are in fact used. */
2822 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2823 emit_insn (gen_rtx_USE (VOIDmode, reg2));
2824 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2825 if (GET_CODE (ra) == REG)
2826 emit_insn (gen_rtx_USE (VOIDmode, ra));
2827
2828 /* Generate the stub. */
2829
2830 emit_jump (after_stub);
2831 emit_label (stub_start);
2832
2833 eh_regs (&reg1, &reg2, &reg3, 0);
2834 adjust_stack (reg2);
2835 emit_indirect_jump (reg3);
2836
2837 emit_label (after_stub);
2838 }
2839 \f
2840
2841 /* This contains the code required to verify whether arbitrary instructions
2842 are in the same exception region. */
2843
2844 static int *insn_eh_region = (int *)0;
2845 static int maximum_uid;
2846
2847 static void
2848 set_insn_eh_region (first, region_num)
2849 rtx *first;
2850 int region_num;
2851 {
2852 rtx insn;
2853 int rnum;
2854
2855 for (insn = *first; insn; insn = NEXT_INSN (insn))
2856 {
2857 if ((GET_CODE (insn) == NOTE) &&
2858 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2859 {
2860 rnum = NOTE_BLOCK_NUMBER (insn);
2861 insn_eh_region[INSN_UID (insn)] = rnum;
2862 insn = NEXT_INSN (insn);
2863 set_insn_eh_region (&insn, rnum);
2864 /* Upon return, insn points to the EH_REGION_END of nested region */
2865 continue;
2866 }
2867 insn_eh_region[INSN_UID (insn)] = region_num;
2868 if ((GET_CODE (insn) == NOTE) &&
2869 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2870 break;
2871 }
2872 *first = insn;
2873 }
2874
2875 /* Free the insn table, an make sure it cannot be used again. */
2876
2877 void
2878 free_insn_eh_region ()
2879 {
2880 if (!doing_eh (0))
2881 return;
2882
2883 if (insn_eh_region)
2884 {
2885 free (insn_eh_region);
2886 insn_eh_region = (int *)0;
2887 }
2888 }
2889
2890 /* Initialize the table. max_uid must be calculated and handed into
2891 this routine. If it is unavailable, passing a value of 0 will
2892 cause this routine to calculate it as well. */
2893
2894 void
2895 init_insn_eh_region (first, max_uid)
2896 rtx first;
2897 int max_uid;
2898 {
2899 rtx insn;
2900
2901 if (!doing_eh (0))
2902 return;
2903
2904 if (insn_eh_region)
2905 free_insn_eh_region();
2906
2907 if (max_uid == 0)
2908 for (insn = first; insn; insn = NEXT_INSN (insn))
2909 if (INSN_UID (insn) > max_uid) /* find largest UID */
2910 max_uid = INSN_UID (insn);
2911
2912 maximum_uid = max_uid;
2913 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2914 insn = first;
2915 set_insn_eh_region (&insn, 0);
2916 }
2917
2918
2919 /* Check whether 2 instructions are within the same region. */
2920
2921 int
2922 in_same_eh_region (insn1, insn2)
2923 rtx insn1, insn2;
2924 {
2925 int ret, uid1, uid2;
2926
2927 /* If no exceptions, instructions are always in same region. */
2928 if (!doing_eh (0))
2929 return 1;
2930
2931 /* If the table isn't allocated, assume the worst. */
2932 if (!insn_eh_region)
2933 return 0;
2934
2935 uid1 = INSN_UID (insn1);
2936 uid2 = INSN_UID (insn2);
2937
2938 /* if instructions have been allocated beyond the end, either
2939 the table is out of date, or this is a late addition, or
2940 something... Assume the worst. */
2941 if (uid1 > maximum_uid || uid2 > maximum_uid)
2942 return 0;
2943
2944 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2945 return ret;
2946 }
2947