backport: ChangeLog.tuples: ChangeLog from gimple-tuples-branch.
[gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Mike Stump <mrs@cygnus.com>.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
29
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
39
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
46
47 [ Add updated documentation on how to use this. ] */
48
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "flags.h"
57 #include "function.h"
58 #include "expr.h"
59 #include "libfuncs.h"
60 #include "insn-config.h"
61 #include "except.h"
62 #include "integrate.h"
63 #include "hard-reg-set.h"
64 #include "basic-block.h"
65 #include "output.h"
66 #include "dwarf2asm.h"
67 #include "dwarf2out.h"
68 #include "dwarf2.h"
69 #include "toplev.h"
70 #include "hashtab.h"
71 #include "intl.h"
72 #include "ggc.h"
73 #include "tm_p.h"
74 #include "target.h"
75 #include "langhooks.h"
76 #include "cgraph.h"
77 #include "diagnostic.h"
78 #include "tree-pass.h"
79 #include "timevar.h"
80
81 /* Provide defaults for stuff that may not be defined when using
82 sjlj exceptions. */
83 #ifndef EH_RETURN_DATA_REGNO
84 #define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
85 #endif
86
87 /* Protect cleanup actions with must-not-throw regions, with a call
88 to the given failure handler. */
89 gimple (*lang_protect_cleanup_actions) (void);
90
91 /* Return true if type A catches type B. */
92 int (*lang_eh_type_covers) (tree a, tree b);
93
94 /* Map a type to a runtime object to match type. */
95 tree (*lang_eh_runtime_type) (tree);
96
97 /* A hash table of label to region number. */
98
99 struct ehl_map_entry GTY(())
100 {
101 rtx label;
102 struct eh_region *region;
103 };
104
105 static GTY(()) int call_site_base;
106 static GTY ((param_is (union tree_node)))
107 htab_t type_to_runtime_map;
108
109 /* Describe the SjLj_Function_Context structure. */
110 static GTY(()) tree sjlj_fc_type_node;
111 static int sjlj_fc_call_site_ofs;
112 static int sjlj_fc_data_ofs;
113 static int sjlj_fc_personality_ofs;
114 static int sjlj_fc_lsda_ofs;
115 static int sjlj_fc_jbuf_ofs;
116 \f
117 /* Describes one exception region. */
118 struct eh_region GTY(())
119 {
120 /* The immediately surrounding region. */
121 struct eh_region *outer;
122
123 /* The list of immediately contained regions. */
124 struct eh_region *inner;
125 struct eh_region *next_peer;
126
127 /* An identifier for this region. */
128 int region_number;
129
130 /* When a region is deleted, its parents inherit the REG_EH_REGION
131 numbers already assigned. */
132 bitmap aka;
133
134 /* Each region does exactly one thing. */
135 enum eh_region_type
136 {
137 ERT_UNKNOWN = 0,
138 ERT_CLEANUP,
139 ERT_TRY,
140 ERT_CATCH,
141 ERT_ALLOWED_EXCEPTIONS,
142 ERT_MUST_NOT_THROW,
143 ERT_THROW
144 } type;
145
146 /* Holds the action to perform based on the preceding type. */
147 union eh_region_u {
148 /* A list of catch blocks, a surrounding try block,
149 and the label for continuing after a catch. */
150 struct eh_region_u_try {
151 struct eh_region *catch;
152 struct eh_region *last_catch;
153 } GTY ((tag ("ERT_TRY"))) try;
154
155 /* The list through the catch handlers, the list of type objects
156 matched, and the list of associated filters. */
157 struct eh_region_u_catch {
158 struct eh_region *next_catch;
159 struct eh_region *prev_catch;
160 tree type_list;
161 tree filter_list;
162 } GTY ((tag ("ERT_CATCH"))) catch;
163
164 /* A tree_list of allowed types. */
165 struct eh_region_u_allowed {
166 tree type_list;
167 int filter;
168 } GTY ((tag ("ERT_ALLOWED_EXCEPTIONS"))) allowed;
169
170 /* The type given by a call to "throw foo();", or discovered
171 for a throw. */
172 struct eh_region_u_throw {
173 tree type;
174 } GTY ((tag ("ERT_THROW"))) throw;
175
176 /* Retain the cleanup expression even after expansion so that
177 we can match up fixup regions. */
178 struct eh_region_u_cleanup {
179 struct eh_region *prev_try;
180 } GTY ((tag ("ERT_CLEANUP"))) cleanup;
181 } GTY ((desc ("%0.type"))) u;
182
183 /* Entry point for this region's handler before landing pads are built. */
184 rtx label;
185 tree tree_label;
186
187 /* Entry point for this region's handler from the runtime eh library. */
188 rtx landing_pad;
189
190 /* Entry point for this region's handler from an inner region. */
191 rtx post_landing_pad;
192
193 /* The RESX insn for handing off control to the next outermost handler,
194 if appropriate. */
195 rtx resume;
196
197 /* True if something in this region may throw. */
198 unsigned may_contain_throw : 1;
199 };
200
201 typedef struct eh_region *eh_region;
202
203 struct call_site_record GTY(())
204 {
205 rtx landing_pad;
206 int action;
207 };
208
209 DEF_VEC_P(eh_region);
210 DEF_VEC_ALLOC_P(eh_region, gc);
211
212 /* Used to save exception status for each function. */
213 struct eh_status GTY(())
214 {
215 /* The tree of all regions for this function. */
216 struct eh_region *region_tree;
217
218 /* The same information as an indexable array. */
219 VEC(eh_region,gc) *region_array;
220 int last_region_number;
221
222 htab_t GTY((param_is (struct throw_stmt_node))) throw_stmt_table;
223 };
224 \f
225 static int t2r_eq (const void *, const void *);
226 static hashval_t t2r_hash (const void *);
227 static void add_type_for_runtime (tree);
228 static tree lookup_type_for_runtime (tree);
229
230 static void remove_unreachable_regions (rtx);
231
232 static int ttypes_filter_eq (const void *, const void *);
233 static hashval_t ttypes_filter_hash (const void *);
234 static int ehspec_filter_eq (const void *, const void *);
235 static hashval_t ehspec_filter_hash (const void *);
236 static int add_ttypes_entry (htab_t, tree);
237 static int add_ehspec_entry (htab_t, htab_t, tree);
238 static void assign_filter_values (void);
239 static void build_post_landing_pads (void);
240 static void connect_post_landing_pads (void);
241 static void dw2_build_landing_pads (void);
242
243 struct sjlj_lp_info;
244 static bool sjlj_find_directly_reachable_regions (struct sjlj_lp_info *);
245 static void sjlj_assign_call_site_values (rtx, struct sjlj_lp_info *);
246 static void sjlj_mark_call_sites (struct sjlj_lp_info *);
247 static void sjlj_emit_function_enter (rtx);
248 static void sjlj_emit_function_exit (void);
249 static void sjlj_emit_dispatch_table (rtx, struct sjlj_lp_info *);
250 static void sjlj_build_landing_pads (void);
251
252 static hashval_t ehl_hash (const void *);
253 static int ehl_eq (const void *, const void *);
254 static void add_ehl_entry (rtx, struct eh_region *);
255 static void remove_exception_handler_label (rtx);
256 static void remove_eh_handler (struct eh_region *);
257 static int for_each_eh_label_1 (void **, void *);
258
259 /* The return value of reachable_next_level. */
260 enum reachable_code
261 {
262 /* The given exception is not processed by the given region. */
263 RNL_NOT_CAUGHT,
264 /* The given exception may need processing by the given region. */
265 RNL_MAYBE_CAUGHT,
266 /* The given exception is completely processed by the given region. */
267 RNL_CAUGHT,
268 /* The given exception is completely processed by the runtime. */
269 RNL_BLOCKED
270 };
271
272 struct reachable_info;
273 static enum reachable_code reachable_next_level (struct eh_region *, tree,
274 struct reachable_info *);
275
276 static int action_record_eq (const void *, const void *);
277 static hashval_t action_record_hash (const void *);
278 static int add_action_record (htab_t, int, int);
279 static int collect_one_action_chain (htab_t, struct eh_region *);
280 static int add_call_site (rtx, int);
281
282 static void push_uleb128 (varray_type *, unsigned int);
283 static void push_sleb128 (varray_type *, int);
284 #ifndef HAVE_AS_LEB128
285 static int dw2_size_of_call_site_table (void);
286 static int sjlj_size_of_call_site_table (void);
287 #endif
288 static void dw2_output_call_site_table (void);
289 static void sjlj_output_call_site_table (void);
290
291 \f
292 /* Routine to see if exception handling is turned on.
293 DO_WARN is nonzero if we want to inform the user that exception
294 handling is turned off.
295
296 This is used to ensure that -fexceptions has been specified if the
297 compiler tries to use any exception-specific functions. */
298
299 int
300 doing_eh (int do_warn)
301 {
302 if (! flag_exceptions)
303 {
304 static int warned = 0;
305 if (! warned && do_warn)
306 {
307 error ("exception handling disabled, use -fexceptions to enable");
308 warned = 1;
309 }
310 return 0;
311 }
312 return 1;
313 }
314
315 \f
316 void
317 init_eh (void)
318 {
319 if (! flag_exceptions)
320 return;
321
322 type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
323
324 /* Create the SjLj_Function_Context structure. This should match
325 the definition in unwind-sjlj.c. */
326 if (USING_SJLJ_EXCEPTIONS)
327 {
328 tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
329
330 sjlj_fc_type_node = lang_hooks.types.make_type (RECORD_TYPE);
331
332 f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
333 build_pointer_type (sjlj_fc_type_node));
334 DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
335
336 f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
337 integer_type_node);
338 DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
339
340 tmp = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
341 tmp = build_array_type (lang_hooks.types.type_for_mode
342 (targetm.unwind_word_mode (), 1),
343 tmp);
344 f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
345 DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
346
347 f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
348 ptr_type_node);
349 DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
350
351 f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
352 ptr_type_node);
353 DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
354
355 #ifdef DONT_USE_BUILTIN_SETJMP
356 #ifdef JMP_BUF_SIZE
357 tmp = build_int_cst (NULL_TREE, JMP_BUF_SIZE - 1);
358 #else
359 /* Should be large enough for most systems, if it is not,
360 JMP_BUF_SIZE should be defined with the proper value. It will
361 also tend to be larger than necessary for most systems, a more
362 optimal port will define JMP_BUF_SIZE. */
363 tmp = build_int_cst (NULL_TREE, FIRST_PSEUDO_REGISTER + 2 - 1);
364 #endif
365 #else
366 /* builtin_setjmp takes a pointer to 5 words. */
367 tmp = build_int_cst (NULL_TREE, 5 * BITS_PER_WORD / POINTER_SIZE - 1);
368 #endif
369 tmp = build_index_type (tmp);
370 tmp = build_array_type (ptr_type_node, tmp);
371 f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
372 #ifdef DONT_USE_BUILTIN_SETJMP
373 /* We don't know what the alignment requirements of the
374 runtime's jmp_buf has. Overestimate. */
375 DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
376 DECL_USER_ALIGN (f_jbuf) = 1;
377 #endif
378 DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
379
380 TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
381 TREE_CHAIN (f_prev) = f_cs;
382 TREE_CHAIN (f_cs) = f_data;
383 TREE_CHAIN (f_data) = f_per;
384 TREE_CHAIN (f_per) = f_lsda;
385 TREE_CHAIN (f_lsda) = f_jbuf;
386
387 layout_type (sjlj_fc_type_node);
388
389 /* Cache the interesting field offsets so that we have
390 easy access from rtl. */
391 sjlj_fc_call_site_ofs
392 = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
393 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
394 sjlj_fc_data_ofs
395 = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
396 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
397 sjlj_fc_personality_ofs
398 = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
399 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
400 sjlj_fc_lsda_ofs
401 = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
402 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
403 sjlj_fc_jbuf_ofs
404 = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
405 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
406 }
407 }
408
409 void
410 init_eh_for_function (void)
411 {
412 cfun->eh = GGC_CNEW (struct eh_status);
413 }
414 \f
415 /* Routines to generate the exception tree somewhat directly.
416 These are used from tree-eh.c when processing exception related
417 nodes during tree optimization. */
418
419 static struct eh_region *
420 gen_eh_region (enum eh_region_type type, struct eh_region *outer)
421 {
422 struct eh_region *new_eh;
423
424 #ifdef ENABLE_CHECKING
425 gcc_assert (doing_eh (0));
426 #endif
427
428 /* Insert a new blank region as a leaf in the tree. */
429 new_eh = GGC_CNEW (struct eh_region);
430 new_eh->type = type;
431 new_eh->outer = outer;
432 if (outer)
433 {
434 new_eh->next_peer = outer->inner;
435 outer->inner = new_eh;
436 }
437 else
438 {
439 new_eh->next_peer = cfun->eh->region_tree;
440 cfun->eh->region_tree = new_eh;
441 }
442
443 new_eh->region_number = ++cfun->eh->last_region_number;
444
445 return new_eh;
446 }
447
448 struct eh_region *
449 gen_eh_region_cleanup (struct eh_region *outer, struct eh_region *prev_try)
450 {
451 struct eh_region *cleanup = gen_eh_region (ERT_CLEANUP, outer);
452 cleanup->u.cleanup.prev_try = prev_try;
453 return cleanup;
454 }
455
456 struct eh_region *
457 gen_eh_region_try (struct eh_region *outer)
458 {
459 return gen_eh_region (ERT_TRY, outer);
460 }
461
462 struct eh_region *
463 gen_eh_region_catch (struct eh_region *t, tree type_or_list)
464 {
465 struct eh_region *c, *l;
466 tree type_list, type_node;
467
468 /* Ensure to always end up with a type list to normalize further
469 processing, then register each type against the runtime types map. */
470 type_list = type_or_list;
471 if (type_or_list)
472 {
473 if (TREE_CODE (type_or_list) != TREE_LIST)
474 type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
475
476 type_node = type_list;
477 for (; type_node; type_node = TREE_CHAIN (type_node))
478 add_type_for_runtime (TREE_VALUE (type_node));
479 }
480
481 c = gen_eh_region (ERT_CATCH, t->outer);
482 c->u.catch.type_list = type_list;
483 l = t->u.try.last_catch;
484 c->u.catch.prev_catch = l;
485 if (l)
486 l->u.catch.next_catch = c;
487 else
488 t->u.try.catch = c;
489 t->u.try.last_catch = c;
490
491 return c;
492 }
493
494 struct eh_region *
495 gen_eh_region_allowed (struct eh_region *outer, tree allowed)
496 {
497 struct eh_region *region = gen_eh_region (ERT_ALLOWED_EXCEPTIONS, outer);
498 region->u.allowed.type_list = allowed;
499
500 for (; allowed ; allowed = TREE_CHAIN (allowed))
501 add_type_for_runtime (TREE_VALUE (allowed));
502
503 return region;
504 }
505
506 struct eh_region *
507 gen_eh_region_must_not_throw (struct eh_region *outer)
508 {
509 return gen_eh_region (ERT_MUST_NOT_THROW, outer);
510 }
511
512 int
513 get_eh_region_number (struct eh_region *region)
514 {
515 return region->region_number;
516 }
517
518 bool
519 get_eh_region_may_contain_throw (struct eh_region *region)
520 {
521 return region->may_contain_throw;
522 }
523
524 tree
525 get_eh_region_tree_label (struct eh_region *region)
526 {
527 return region->tree_label;
528 }
529
530 void
531 set_eh_region_tree_label (struct eh_region *region, tree lab)
532 {
533 region->tree_label = lab;
534 }
535 \f
536 void
537 expand_resx_expr (tree exp)
538 {
539 int region_nr = TREE_INT_CST_LOW (TREE_OPERAND (exp, 0));
540 struct eh_region *reg = VEC_index (eh_region,
541 cfun->eh->region_array, region_nr);
542
543 gcc_assert (!reg->resume);
544 do_pending_stack_adjust ();
545 reg->resume = emit_jump_insn (gen_rtx_RESX (VOIDmode, region_nr));
546 emit_barrier ();
547 }
548
549 /* Note that the current EH region (if any) may contain a throw, or a
550 call to a function which itself may contain a throw. */
551
552 void
553 note_eh_region_may_contain_throw (struct eh_region *region)
554 {
555 while (region && !region->may_contain_throw)
556 {
557 region->may_contain_throw = 1;
558 region = region->outer;
559 }
560 }
561
562
563 /* Return an rtl expression for a pointer to the exception object
564 within a handler. */
565
566 rtx
567 get_exception_pointer (void)
568 {
569 if (! crtl->eh.exc_ptr)
570 crtl->eh.exc_ptr = gen_reg_rtx (ptr_mode);
571 return crtl->eh.exc_ptr;
572 }
573
574 /* Return an rtl expression for the exception dispatch filter
575 within a handler. */
576
577 rtx
578 get_exception_filter (void)
579 {
580 if (! crtl->eh.filter)
581 crtl->eh.filter = gen_reg_rtx (targetm.eh_return_filter_mode ());
582 return crtl->eh.filter;
583 }
584 \f
585 /* This section is for the exception handling specific optimization pass. */
586
587 /* Random access the exception region tree. */
588
589 void
590 collect_eh_region_array (void)
591 {
592 struct eh_region *i;
593
594 i = cfun->eh->region_tree;
595 if (! i)
596 return;
597
598 VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
599 cfun->eh->last_region_number + 1);
600 VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
601
602 while (1)
603 {
604 VEC_replace (eh_region, cfun->eh->region_array, i->region_number, i);
605
606 /* If there are sub-regions, process them. */
607 if (i->inner)
608 i = i->inner;
609 /* If there are peers, process them. */
610 else if (i->next_peer)
611 i = i->next_peer;
612 /* Otherwise, step back up the tree to the next peer. */
613 else
614 {
615 do {
616 i = i->outer;
617 if (i == NULL)
618 return;
619 } while (i->next_peer == NULL);
620 i = i->next_peer;
621 }
622 }
623 }
624
625 /* Remove all regions whose labels are not reachable from insns. */
626
627 static void
628 remove_unreachable_regions (rtx insns)
629 {
630 int i, *uid_region_num;
631 bool *reachable;
632 struct eh_region *r;
633 rtx insn;
634
635 uid_region_num = XCNEWVEC (int, get_max_uid ());
636 reachable = XCNEWVEC (bool, cfun->eh->last_region_number + 1);
637
638 for (i = cfun->eh->last_region_number; i > 0; --i)
639 {
640 r = VEC_index (eh_region, cfun->eh->region_array, i);
641 if (!r || r->region_number != i)
642 continue;
643
644 if (r->resume)
645 {
646 gcc_assert (!uid_region_num[INSN_UID (r->resume)]);
647 uid_region_num[INSN_UID (r->resume)] = i;
648 }
649 if (r->label)
650 {
651 gcc_assert (!uid_region_num[INSN_UID (r->label)]);
652 uid_region_num[INSN_UID (r->label)] = i;
653 }
654 }
655
656 for (insn = insns; insn; insn = NEXT_INSN (insn))
657 reachable[uid_region_num[INSN_UID (insn)]] = true;
658
659 for (i = cfun->eh->last_region_number; i > 0; --i)
660 {
661 r = VEC_index (eh_region, cfun->eh->region_array, i);
662 if (r && r->region_number == i && !reachable[i])
663 {
664 bool kill_it = true;
665 switch (r->type)
666 {
667 case ERT_THROW:
668 /* Don't remove ERT_THROW regions if their outer region
669 is reachable. */
670 if (r->outer && reachable[r->outer->region_number])
671 kill_it = false;
672 break;
673
674 case ERT_MUST_NOT_THROW:
675 /* MUST_NOT_THROW regions are implementable solely in the
676 runtime, but their existence continues to affect calls
677 within that region. Never delete them here. */
678 kill_it = false;
679 break;
680
681 case ERT_TRY:
682 {
683 /* TRY regions are reachable if any of its CATCH regions
684 are reachable. */
685 struct eh_region *c;
686 for (c = r->u.try.catch; c ; c = c->u.catch.next_catch)
687 if (reachable[c->region_number])
688 {
689 kill_it = false;
690 break;
691 }
692 break;
693 }
694
695 default:
696 break;
697 }
698
699 if (kill_it)
700 remove_eh_handler (r);
701 }
702 }
703
704 free (reachable);
705 free (uid_region_num);
706 }
707
708 /* Set up EH labels for RTL. */
709
710 void
711 convert_from_eh_region_ranges (void)
712 {
713 rtx insns = get_insns ();
714 int i, n = cfun->eh->last_region_number;
715
716 /* Most of the work is already done at the tree level. All we need to
717 do is collect the rtl labels that correspond to the tree labels that
718 collect the rtl labels that correspond to the tree labels
719 we allocated earlier. */
720 for (i = 1; i <= n; ++i)
721 {
722 struct eh_region *region;
723
724 region = VEC_index (eh_region, cfun->eh->region_array, i);
725 if (region && region->tree_label)
726 region->label = DECL_RTL_IF_SET (region->tree_label);
727 }
728
729 remove_unreachable_regions (insns);
730 }
731
732 static void
733 add_ehl_entry (rtx label, struct eh_region *region)
734 {
735 struct ehl_map_entry **slot, *entry;
736
737 LABEL_PRESERVE_P (label) = 1;
738
739 entry = GGC_NEW (struct ehl_map_entry);
740 entry->label = label;
741 entry->region = region;
742
743 slot = (struct ehl_map_entry **)
744 htab_find_slot (crtl->eh.exception_handler_label_map, entry, INSERT);
745
746 /* Before landing pad creation, each exception handler has its own
747 label. After landing pad creation, the exception handlers may
748 share landing pads. This is ok, since maybe_remove_eh_handler
749 only requires the 1-1 mapping before landing pad creation. */
750 gcc_assert (!*slot || crtl->eh.built_landing_pads);
751
752 *slot = entry;
753 }
754
755 void
756 find_exception_handler_labels (void)
757 {
758 int i;
759
760 if (crtl->eh.exception_handler_label_map)
761 htab_empty (crtl->eh.exception_handler_label_map);
762 else
763 {
764 /* ??? The expansion factor here (3/2) must be greater than the htab
765 occupancy factor (4/3) to avoid unnecessary resizing. */
766 crtl->eh.exception_handler_label_map
767 = htab_create_ggc (cfun->eh->last_region_number * 3 / 2,
768 ehl_hash, ehl_eq, NULL);
769 }
770
771 if (cfun->eh->region_tree == NULL)
772 return;
773
774 for (i = cfun->eh->last_region_number; i > 0; --i)
775 {
776 struct eh_region *region;
777 rtx lab;
778
779 region = VEC_index (eh_region, cfun->eh->region_array, i);
780 if (! region || region->region_number != i)
781 continue;
782 if (crtl->eh.built_landing_pads)
783 lab = region->landing_pad;
784 else
785 lab = region->label;
786
787 if (lab)
788 add_ehl_entry (lab, region);
789 }
790
791 /* For sjlj exceptions, need the return label to remain live until
792 after landing pad generation. */
793 if (USING_SJLJ_EXCEPTIONS && ! crtl->eh.built_landing_pads)
794 add_ehl_entry (return_label, NULL);
795 }
796
797 /* Returns true if the current function has exception handling regions. */
798
799 bool
800 current_function_has_exception_handlers (void)
801 {
802 int i;
803
804 for (i = cfun->eh->last_region_number; i > 0; --i)
805 {
806 struct eh_region *region;
807
808 region = VEC_index (eh_region, cfun->eh->region_array, i);
809 if (region
810 && region->region_number == i
811 && region->type != ERT_THROW)
812 return true;
813 }
814
815 return false;
816 }
817 \f
818 /* A subroutine of duplicate_eh_regions. Search the region tree under O
819 for the minimum and maximum region numbers. Update *MIN and *MAX. */
820
821 static void
822 duplicate_eh_regions_0 (eh_region o, int *min, int *max)
823 {
824 if (o->region_number < *min)
825 *min = o->region_number;
826 if (o->region_number > *max)
827 *max = o->region_number;
828
829 if (o->inner)
830 {
831 o = o->inner;
832 duplicate_eh_regions_0 (o, min, max);
833 while (o->next_peer)
834 {
835 o = o->next_peer;
836 duplicate_eh_regions_0 (o, min, max);
837 }
838 }
839 }
840
841 /* A subroutine of duplicate_eh_regions. Copy the region tree under OLD.
842 Root it at OUTER, and apply EH_OFFSET to the region number. Don't worry
843 about the other internal pointers just yet, just the tree-like pointers. */
844
845 static eh_region
846 duplicate_eh_regions_1 (eh_region old, eh_region outer, int eh_offset)
847 {
848 eh_region ret, n;
849
850 ret = n = GGC_NEW (struct eh_region);
851
852 *n = *old;
853 n->outer = outer;
854 n->next_peer = NULL;
855 gcc_assert (!old->aka);
856
857 n->region_number += eh_offset;
858 VEC_replace (eh_region, cfun->eh->region_array, n->region_number, n);
859
860 if (old->inner)
861 {
862 old = old->inner;
863 n = n->inner = duplicate_eh_regions_1 (old, ret, eh_offset);
864 while (old->next_peer)
865 {
866 old = old->next_peer;
867 n = n->next_peer = duplicate_eh_regions_1 (old, ret, eh_offset);
868 }
869 }
870
871 return ret;
872 }
873
874 /* Duplicate the EH regions of IFUN, rooted at COPY_REGION, into current
875 function and root the tree below OUTER_REGION. Remap labels using MAP
876 callback. The special case of COPY_REGION of 0 means all regions. */
877
878 int
879 duplicate_eh_regions (struct function *ifun, duplicate_eh_regions_map map,
880 void *data, int copy_region, int outer_region)
881 {
882 eh_region cur, prev_try, outer, *splice;
883 int i, min_region, max_region, eh_offset, cfun_last_region_number;
884 int num_regions;
885
886 if (!ifun->eh->region_tree)
887 return 0;
888
889 /* Find the range of region numbers to be copied. The interface we
890 provide here mandates a single offset to find new number from old,
891 which means we must look at the numbers present, instead of the
892 count or something else. */
893 if (copy_region > 0)
894 {
895 min_region = INT_MAX;
896 max_region = 0;
897
898 cur = VEC_index (eh_region, ifun->eh->region_array, copy_region);
899 duplicate_eh_regions_0 (cur, &min_region, &max_region);
900 }
901 else
902 min_region = 1, max_region = ifun->eh->last_region_number;
903 num_regions = max_region - min_region + 1;
904 cfun_last_region_number = cfun->eh->last_region_number;
905 eh_offset = cfun_last_region_number + 1 - min_region;
906
907 /* If we've not yet created a region array, do so now. */
908 VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
909 cfun_last_region_number + 1 + num_regions);
910 cfun->eh->last_region_number = max_region + eh_offset;
911
912 /* We may have just allocated the array for the first time.
913 Make sure that element zero is null. */
914 VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
915
916 /* Zero all entries in the range allocated. */
917 memset (VEC_address (eh_region, cfun->eh->region_array)
918 + cfun_last_region_number + 1, 0, num_regions * sizeof (eh_region));
919
920 /* Locate the spot at which to insert the new tree. */
921 if (outer_region > 0)
922 {
923 outer = VEC_index (eh_region, cfun->eh->region_array, outer_region);
924 splice = &outer->inner;
925 }
926 else
927 {
928 outer = NULL;
929 splice = &cfun->eh->region_tree;
930 }
931 while (*splice)
932 splice = &(*splice)->next_peer;
933
934 /* Copy all the regions in the subtree. */
935 if (copy_region > 0)
936 {
937 cur = VEC_index (eh_region, ifun->eh->region_array, copy_region);
938 *splice = duplicate_eh_regions_1 (cur, outer, eh_offset);
939 }
940 else
941 {
942 eh_region n;
943
944 cur = ifun->eh->region_tree;
945 *splice = n = duplicate_eh_regions_1 (cur, outer, eh_offset);
946 while (cur->next_peer)
947 {
948 cur = cur->next_peer;
949 n = n->next_peer = duplicate_eh_regions_1 (cur, outer, eh_offset);
950 }
951 }
952
953 /* Remap all the labels in the new regions. */
954 for (i = cfun_last_region_number + 1;
955 VEC_iterate (eh_region, cfun->eh->region_array, i, cur); ++i)
956 if (cur && cur->tree_label)
957 cur->tree_label = map (cur->tree_label, data);
958
959 /* Search for the containing ERT_TRY region to fix up
960 the prev_try short-cuts for ERT_CLEANUP regions. */
961 prev_try = NULL;
962 if (outer_region > 0)
963 for (prev_try = VEC_index (eh_region, cfun->eh->region_array, outer_region);
964 prev_try && prev_try->type != ERT_TRY;
965 prev_try = prev_try->outer)
966 if (prev_try->type == ERT_MUST_NOT_THROW
967 || (prev_try->type == ERT_ALLOWED_EXCEPTIONS
968 && !prev_try->u.allowed.type_list))
969 {
970 prev_try = NULL;
971 break;
972 }
973
974 /* Remap all of the internal catch and cleanup linkages. Since we
975 duplicate entire subtrees, all of the referenced regions will have
976 been copied too. And since we renumbered them as a block, a simple
977 bit of arithmetic finds us the index for the replacement region. */
978 for (i = cfun_last_region_number + 1;
979 VEC_iterate (eh_region, cfun->eh->region_array, i, cur); ++i)
980 {
981 if (cur == NULL)
982 continue;
983
984 #define REMAP(REG) \
985 (REG) = VEC_index (eh_region, cfun->eh->region_array, \
986 (REG)->region_number + eh_offset)
987
988 switch (cur->type)
989 {
990 case ERT_TRY:
991 if (cur->u.try.catch)
992 REMAP (cur->u.try.catch);
993 if (cur->u.try.last_catch)
994 REMAP (cur->u.try.last_catch);
995 break;
996
997 case ERT_CATCH:
998 if (cur->u.catch.next_catch)
999 REMAP (cur->u.catch.next_catch);
1000 if (cur->u.catch.prev_catch)
1001 REMAP (cur->u.catch.prev_catch);
1002 break;
1003
1004 case ERT_CLEANUP:
1005 if (cur->u.cleanup.prev_try)
1006 REMAP (cur->u.cleanup.prev_try);
1007 else
1008 cur->u.cleanup.prev_try = prev_try;
1009 break;
1010
1011 default:
1012 break;
1013 }
1014
1015 #undef REMAP
1016 }
1017
1018 return eh_offset;
1019 }
1020
1021 /* Return true if REGION_A is outer to REGION_B in IFUN. */
1022
1023 bool
1024 eh_region_outer_p (struct function *ifun, int region_a, int region_b)
1025 {
1026 struct eh_region *rp_a, *rp_b;
1027
1028 gcc_assert (ifun->eh->last_region_number > 0);
1029 gcc_assert (ifun->eh->region_tree);
1030
1031 rp_a = VEC_index (eh_region, ifun->eh->region_array, region_a);
1032 rp_b = VEC_index (eh_region, ifun->eh->region_array, region_b);
1033 gcc_assert (rp_a != NULL);
1034 gcc_assert (rp_b != NULL);
1035
1036 do
1037 {
1038 if (rp_a == rp_b)
1039 return true;
1040 rp_b = rp_b->outer;
1041 }
1042 while (rp_b);
1043
1044 return false;
1045 }
1046
1047 /* Return region number of region that is outer to both if REGION_A and
1048 REGION_B in IFUN. */
1049
1050 int
1051 eh_region_outermost (struct function *ifun, int region_a, int region_b)
1052 {
1053 struct eh_region *rp_a, *rp_b;
1054 sbitmap b_outer;
1055
1056 gcc_assert (ifun->eh->last_region_number > 0);
1057 gcc_assert (ifun->eh->region_tree);
1058
1059 rp_a = VEC_index (eh_region, ifun->eh->region_array, region_a);
1060 rp_b = VEC_index (eh_region, ifun->eh->region_array, region_b);
1061 gcc_assert (rp_a != NULL);
1062 gcc_assert (rp_b != NULL);
1063
1064 b_outer = sbitmap_alloc (ifun->eh->last_region_number + 1);
1065 sbitmap_zero (b_outer);
1066
1067 do
1068 {
1069 SET_BIT (b_outer, rp_b->region_number);
1070 rp_b = rp_b->outer;
1071 }
1072 while (rp_b);
1073
1074 do
1075 {
1076 if (TEST_BIT (b_outer, rp_a->region_number))
1077 {
1078 sbitmap_free (b_outer);
1079 return rp_a->region_number;
1080 }
1081 rp_a = rp_a->outer;
1082 }
1083 while (rp_a);
1084
1085 sbitmap_free (b_outer);
1086 return -1;
1087 }
1088 \f
1089 static int
1090 t2r_eq (const void *pentry, const void *pdata)
1091 {
1092 const_tree const entry = (const_tree) pentry;
1093 const_tree const data = (const_tree) pdata;
1094
1095 return TREE_PURPOSE (entry) == data;
1096 }
1097
1098 static hashval_t
1099 t2r_hash (const void *pentry)
1100 {
1101 const_tree const entry = (const_tree) pentry;
1102 return TREE_HASH (TREE_PURPOSE (entry));
1103 }
1104
1105 static void
1106 add_type_for_runtime (tree type)
1107 {
1108 tree *slot;
1109
1110 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1111 TREE_HASH (type), INSERT);
1112 if (*slot == NULL)
1113 {
1114 tree runtime = (*lang_eh_runtime_type) (type);
1115 *slot = tree_cons (type, runtime, NULL_TREE);
1116 }
1117 }
1118
1119 static tree
1120 lookup_type_for_runtime (tree type)
1121 {
1122 tree *slot;
1123
1124 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1125 TREE_HASH (type), NO_INSERT);
1126
1127 /* We should have always inserted the data earlier. */
1128 return TREE_VALUE (*slot);
1129 }
1130
1131 \f
1132 /* Represent an entry in @TTypes for either catch actions
1133 or exception filter actions. */
1134 struct ttypes_filter GTY(())
1135 {
1136 tree t;
1137 int filter;
1138 };
1139
1140 /* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
1141 (a tree) for a @TTypes type node we are thinking about adding. */
1142
1143 static int
1144 ttypes_filter_eq (const void *pentry, const void *pdata)
1145 {
1146 const struct ttypes_filter *const entry
1147 = (const struct ttypes_filter *) pentry;
1148 const_tree const data = (const_tree) pdata;
1149
1150 return entry->t == data;
1151 }
1152
1153 static hashval_t
1154 ttypes_filter_hash (const void *pentry)
1155 {
1156 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1157 return TREE_HASH (entry->t);
1158 }
1159
1160 /* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
1161 exception specification list we are thinking about adding. */
1162 /* ??? Currently we use the type lists in the order given. Someone
1163 should put these in some canonical order. */
1164
1165 static int
1166 ehspec_filter_eq (const void *pentry, const void *pdata)
1167 {
1168 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1169 const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
1170
1171 return type_list_equal (entry->t, data->t);
1172 }
1173
1174 /* Hash function for exception specification lists. */
1175
1176 static hashval_t
1177 ehspec_filter_hash (const void *pentry)
1178 {
1179 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1180 hashval_t h = 0;
1181 tree list;
1182
1183 for (list = entry->t; list ; list = TREE_CHAIN (list))
1184 h = (h << 5) + (h >> 27) + TREE_HASH (TREE_VALUE (list));
1185 return h;
1186 }
1187
1188 /* Add TYPE (which may be NULL) to crtl->eh.ttype_data, using TYPES_HASH
1189 to speed up the search. Return the filter value to be used. */
1190
1191 static int
1192 add_ttypes_entry (htab_t ttypes_hash, tree type)
1193 {
1194 struct ttypes_filter **slot, *n;
1195
1196 slot = (struct ttypes_filter **)
1197 htab_find_slot_with_hash (ttypes_hash, type, TREE_HASH (type), INSERT);
1198
1199 if ((n = *slot) == NULL)
1200 {
1201 /* Filter value is a 1 based table index. */
1202
1203 n = XNEW (struct ttypes_filter);
1204 n->t = type;
1205 n->filter = VEC_length (tree, crtl->eh.ttype_data) + 1;
1206 *slot = n;
1207
1208 VEC_safe_push (tree, gc, crtl->eh.ttype_data, type);
1209 }
1210
1211 return n->filter;
1212 }
1213
1214 /* Add LIST to crtl->eh.ehspec_data, using EHSPEC_HASH and TYPES_HASH
1215 to speed up the search. Return the filter value to be used. */
1216
1217 static int
1218 add_ehspec_entry (htab_t ehspec_hash, htab_t ttypes_hash, tree list)
1219 {
1220 struct ttypes_filter **slot, *n;
1221 struct ttypes_filter dummy;
1222
1223 dummy.t = list;
1224 slot = (struct ttypes_filter **)
1225 htab_find_slot (ehspec_hash, &dummy, INSERT);
1226
1227 if ((n = *slot) == NULL)
1228 {
1229 /* Filter value is a -1 based byte index into a uleb128 buffer. */
1230
1231 n = XNEW (struct ttypes_filter);
1232 n->t = list;
1233 n->filter = -(VARRAY_ACTIVE_SIZE (crtl->eh.ehspec_data) + 1);
1234 *slot = n;
1235
1236 /* Generate a 0 terminated list of filter values. */
1237 for (; list ; list = TREE_CHAIN (list))
1238 {
1239 if (targetm.arm_eabi_unwinder)
1240 VARRAY_PUSH_TREE (crtl->eh.ehspec_data, TREE_VALUE (list));
1241 else
1242 {
1243 /* Look up each type in the list and encode its filter
1244 value as a uleb128. */
1245 push_uleb128 (&crtl->eh.ehspec_data,
1246 add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
1247 }
1248 }
1249 if (targetm.arm_eabi_unwinder)
1250 VARRAY_PUSH_TREE (crtl->eh.ehspec_data, NULL_TREE);
1251 else
1252 VARRAY_PUSH_UCHAR (crtl->eh.ehspec_data, 0);
1253 }
1254
1255 return n->filter;
1256 }
1257
1258 /* Generate the action filter values to be used for CATCH and
1259 ALLOWED_EXCEPTIONS regions. When using dwarf2 exception regions,
1260 we use lots of landing pads, and so every type or list can share
1261 the same filter value, which saves table space. */
1262
1263 static void
1264 assign_filter_values (void)
1265 {
1266 int i;
1267 htab_t ttypes, ehspec;
1268
1269 crtl->eh.ttype_data = VEC_alloc (tree, gc, 16);
1270 if (targetm.arm_eabi_unwinder)
1271 VARRAY_TREE_INIT (crtl->eh.ehspec_data, 64, "ehspec_data");
1272 else
1273 VARRAY_UCHAR_INIT (crtl->eh.ehspec_data, 64, "ehspec_data");
1274
1275 ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
1276 ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
1277
1278 for (i = cfun->eh->last_region_number; i > 0; --i)
1279 {
1280 struct eh_region *r;
1281
1282 r = VEC_index (eh_region, cfun->eh->region_array, i);
1283
1284 /* Mind we don't process a region more than once. */
1285 if (!r || r->region_number != i)
1286 continue;
1287
1288 switch (r->type)
1289 {
1290 case ERT_CATCH:
1291 /* Whatever type_list is (NULL or true list), we build a list
1292 of filters for the region. */
1293 r->u.catch.filter_list = NULL_TREE;
1294
1295 if (r->u.catch.type_list != NULL)
1296 {
1297 /* Get a filter value for each of the types caught and store
1298 them in the region's dedicated list. */
1299 tree tp_node = r->u.catch.type_list;
1300
1301 for (;tp_node; tp_node = TREE_CHAIN (tp_node))
1302 {
1303 int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
1304 tree flt_node = build_int_cst (NULL_TREE, flt);
1305
1306 r->u.catch.filter_list
1307 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1308 }
1309 }
1310 else
1311 {
1312 /* Get a filter value for the NULL list also since it will need
1313 an action record anyway. */
1314 int flt = add_ttypes_entry (ttypes, NULL);
1315 tree flt_node = build_int_cst (NULL_TREE, flt);
1316
1317 r->u.catch.filter_list
1318 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1319 }
1320
1321 break;
1322
1323 case ERT_ALLOWED_EXCEPTIONS:
1324 r->u.allowed.filter
1325 = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
1326 break;
1327
1328 default:
1329 break;
1330 }
1331 }
1332
1333 htab_delete (ttypes);
1334 htab_delete (ehspec);
1335 }
1336
1337 /* Emit SEQ into basic block just before INSN (that is assumed to be
1338 first instruction of some existing BB and return the newly
1339 produced block. */
1340 static basic_block
1341 emit_to_new_bb_before (rtx seq, rtx insn)
1342 {
1343 rtx last;
1344 basic_block bb;
1345 edge e;
1346 edge_iterator ei;
1347
1348 /* If there happens to be a fallthru edge (possibly created by cleanup_cfg
1349 call), we don't want it to go into newly created landing pad or other EH
1350 construct. */
1351 for (ei = ei_start (BLOCK_FOR_INSN (insn)->preds); (e = ei_safe_edge (ei)); )
1352 if (e->flags & EDGE_FALLTHRU)
1353 force_nonfallthru (e);
1354 else
1355 ei_next (&ei);
1356 last = emit_insn_before (seq, insn);
1357 if (BARRIER_P (last))
1358 last = PREV_INSN (last);
1359 bb = create_basic_block (seq, last, BLOCK_FOR_INSN (insn)->prev_bb);
1360 update_bb_for_insn (bb);
1361 bb->flags |= BB_SUPERBLOCK;
1362 return bb;
1363 }
1364
1365 /* Generate the code to actually handle exceptions, which will follow the
1366 landing pads. */
1367
1368 static void
1369 build_post_landing_pads (void)
1370 {
1371 int i;
1372
1373 for (i = cfun->eh->last_region_number; i > 0; --i)
1374 {
1375 struct eh_region *region;
1376 rtx seq;
1377
1378 region = VEC_index (eh_region, cfun->eh->region_array, i);
1379 /* Mind we don't process a region more than once. */
1380 if (!region || region->region_number != i)
1381 continue;
1382
1383 switch (region->type)
1384 {
1385 case ERT_TRY:
1386 /* ??? Collect the set of all non-overlapping catch handlers
1387 all the way up the chain until blocked by a cleanup. */
1388 /* ??? Outer try regions can share landing pads with inner
1389 try regions if the types are completely non-overlapping,
1390 and there are no intervening cleanups. */
1391
1392 region->post_landing_pad = gen_label_rtx ();
1393
1394 start_sequence ();
1395
1396 emit_label (region->post_landing_pad);
1397
1398 /* ??? It is mighty inconvenient to call back into the
1399 switch statement generation code in expand_end_case.
1400 Rapid prototyping sez a sequence of ifs. */
1401 {
1402 struct eh_region *c;
1403 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
1404 {
1405 if (c->u.catch.type_list == NULL)
1406 emit_jump (c->label);
1407 else
1408 {
1409 /* Need for one cmp/jump per type caught. Each type
1410 list entry has a matching entry in the filter list
1411 (see assign_filter_values). */
1412 tree tp_node = c->u.catch.type_list;
1413 tree flt_node = c->u.catch.filter_list;
1414
1415 for (; tp_node; )
1416 {
1417 emit_cmp_and_jump_insns
1418 (crtl->eh.filter,
1419 GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
1420 EQ, NULL_RTX,
1421 targetm.eh_return_filter_mode (), 0, c->label);
1422
1423 tp_node = TREE_CHAIN (tp_node);
1424 flt_node = TREE_CHAIN (flt_node);
1425 }
1426 }
1427 }
1428 }
1429
1430 /* We delay the generation of the _Unwind_Resume until we generate
1431 landing pads. We emit a marker here so as to get good control
1432 flow data in the meantime. */
1433 region->resume
1434 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1435 emit_barrier ();
1436
1437 seq = get_insns ();
1438 end_sequence ();
1439
1440 emit_to_new_bb_before (seq, region->u.try.catch->label);
1441
1442 break;
1443
1444 case ERT_ALLOWED_EXCEPTIONS:
1445 region->post_landing_pad = gen_label_rtx ();
1446
1447 start_sequence ();
1448
1449 emit_label (region->post_landing_pad);
1450
1451 emit_cmp_and_jump_insns (crtl->eh.filter,
1452 GEN_INT (region->u.allowed.filter),
1453 EQ, NULL_RTX,
1454 targetm.eh_return_filter_mode (), 0, region->label);
1455
1456 /* We delay the generation of the _Unwind_Resume until we generate
1457 landing pads. We emit a marker here so as to get good control
1458 flow data in the meantime. */
1459 region->resume
1460 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1461 emit_barrier ();
1462
1463 seq = get_insns ();
1464 end_sequence ();
1465
1466 emit_to_new_bb_before (seq, region->label);
1467 break;
1468
1469 case ERT_CLEANUP:
1470 case ERT_MUST_NOT_THROW:
1471 region->post_landing_pad = region->label;
1472 break;
1473
1474 case ERT_CATCH:
1475 case ERT_THROW:
1476 /* Nothing to do. */
1477 break;
1478
1479 default:
1480 gcc_unreachable ();
1481 }
1482 }
1483 }
1484
1485 /* Replace RESX patterns with jumps to the next handler if any, or calls to
1486 _Unwind_Resume otherwise. */
1487
1488 static void
1489 connect_post_landing_pads (void)
1490 {
1491 int i;
1492
1493 for (i = cfun->eh->last_region_number; i > 0; --i)
1494 {
1495 struct eh_region *region;
1496 struct eh_region *outer;
1497 rtx seq;
1498 rtx barrier;
1499
1500 region = VEC_index (eh_region, cfun->eh->region_array, i);
1501 /* Mind we don't process a region more than once. */
1502 if (!region || region->region_number != i)
1503 continue;
1504
1505 /* If there is no RESX, or it has been deleted by flow, there's
1506 nothing to fix up. */
1507 if (! region->resume || INSN_DELETED_P (region->resume))
1508 continue;
1509
1510 /* Search for another landing pad in this function. */
1511 for (outer = region->outer; outer ; outer = outer->outer)
1512 if (outer->post_landing_pad)
1513 break;
1514
1515 start_sequence ();
1516
1517 if (outer)
1518 {
1519 edge e;
1520 basic_block src, dest;
1521
1522 emit_jump (outer->post_landing_pad);
1523 src = BLOCK_FOR_INSN (region->resume);
1524 dest = BLOCK_FOR_INSN (outer->post_landing_pad);
1525 while (EDGE_COUNT (src->succs) > 0)
1526 remove_edge (EDGE_SUCC (src, 0));
1527 e = make_edge (src, dest, 0);
1528 e->probability = REG_BR_PROB_BASE;
1529 e->count = src->count;
1530 }
1531 else
1532 {
1533 emit_library_call (unwind_resume_libfunc, LCT_THROW,
1534 VOIDmode, 1, crtl->eh.exc_ptr, ptr_mode);
1535
1536 /* What we just emitted was a throwing libcall, so it got a
1537 barrier automatically added after it. If the last insn in
1538 the libcall sequence isn't the barrier, it's because the
1539 target emits multiple insns for a call, and there are insns
1540 after the actual call insn (which are redundant and would be
1541 optimized away). The barrier is inserted exactly after the
1542 call insn, so let's go get that and delete the insns after
1543 it, because below we need the barrier to be the last insn in
1544 the sequence. */
1545 delete_insns_since (NEXT_INSN (last_call_insn ()));
1546 }
1547
1548 seq = get_insns ();
1549 end_sequence ();
1550 barrier = emit_insn_before (seq, region->resume);
1551 /* Avoid duplicate barrier. */
1552 gcc_assert (BARRIER_P (barrier));
1553 delete_insn (barrier);
1554 delete_insn (region->resume);
1555
1556 /* ??? From tree-ssa we can wind up with catch regions whose
1557 label is not instantiated, but whose resx is present. Now
1558 that we've dealt with the resx, kill the region. */
1559 if (region->label == NULL && region->type == ERT_CLEANUP)
1560 remove_eh_handler (region);
1561 }
1562 }
1563
1564 \f
1565 static void
1566 dw2_build_landing_pads (void)
1567 {
1568 int i;
1569
1570 for (i = cfun->eh->last_region_number; i > 0; --i)
1571 {
1572 struct eh_region *region;
1573 rtx seq;
1574 basic_block bb;
1575 edge e;
1576
1577 region = VEC_index (eh_region, cfun->eh->region_array, i);
1578 /* Mind we don't process a region more than once. */
1579 if (!region || region->region_number != i)
1580 continue;
1581
1582 if (region->type != ERT_CLEANUP
1583 && region->type != ERT_TRY
1584 && region->type != ERT_ALLOWED_EXCEPTIONS)
1585 continue;
1586
1587 start_sequence ();
1588
1589 region->landing_pad = gen_label_rtx ();
1590 emit_label (region->landing_pad);
1591
1592 #ifdef HAVE_exception_receiver
1593 if (HAVE_exception_receiver)
1594 emit_insn (gen_exception_receiver ());
1595 else
1596 #endif
1597 #ifdef HAVE_nonlocal_goto_receiver
1598 if (HAVE_nonlocal_goto_receiver)
1599 emit_insn (gen_nonlocal_goto_receiver ());
1600 else
1601 #endif
1602 { /* Nothing */ }
1603
1604 emit_move_insn (crtl->eh.exc_ptr,
1605 gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
1606 emit_move_insn (crtl->eh.filter,
1607 gen_rtx_REG (targetm.eh_return_filter_mode (),
1608 EH_RETURN_DATA_REGNO (1)));
1609
1610 seq = get_insns ();
1611 end_sequence ();
1612
1613 bb = emit_to_new_bb_before (seq, region->post_landing_pad);
1614 e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
1615 e->count = bb->count;
1616 e->probability = REG_BR_PROB_BASE;
1617 }
1618 }
1619
1620 \f
1621 struct sjlj_lp_info
1622 {
1623 int directly_reachable;
1624 int action_index;
1625 int dispatch_index;
1626 int call_site_index;
1627 };
1628
1629 static bool
1630 sjlj_find_directly_reachable_regions (struct sjlj_lp_info *lp_info)
1631 {
1632 rtx insn;
1633 bool found_one = false;
1634
1635 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1636 {
1637 struct eh_region *region;
1638 enum reachable_code rc;
1639 tree type_thrown;
1640 rtx note;
1641
1642 if (! INSN_P (insn))
1643 continue;
1644
1645 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1646 if (!note || INTVAL (XEXP (note, 0)) <= 0)
1647 continue;
1648
1649 region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
1650
1651 type_thrown = NULL_TREE;
1652 if (region->type == ERT_THROW)
1653 {
1654 type_thrown = region->u.throw.type;
1655 region = region->outer;
1656 }
1657
1658 /* Find the first containing region that might handle the exception.
1659 That's the landing pad to which we will transfer control. */
1660 rc = RNL_NOT_CAUGHT;
1661 for (; region; region = region->outer)
1662 {
1663 rc = reachable_next_level (region, type_thrown, NULL);
1664 if (rc != RNL_NOT_CAUGHT)
1665 break;
1666 }
1667 if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
1668 {
1669 lp_info[region->region_number].directly_reachable = 1;
1670 found_one = true;
1671 }
1672 }
1673
1674 return found_one;
1675 }
1676
1677 static void
1678 sjlj_assign_call_site_values (rtx dispatch_label, struct sjlj_lp_info *lp_info)
1679 {
1680 htab_t ar_hash;
1681 int i, index;
1682
1683 /* First task: build the action table. */
1684
1685 VARRAY_UCHAR_INIT (crtl->eh.action_record_data, 64, "action_record_data");
1686 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
1687
1688 for (i = cfun->eh->last_region_number; i > 0; --i)
1689 if (lp_info[i].directly_reachable)
1690 {
1691 struct eh_region *r = VEC_index (eh_region, cfun->eh->region_array, i);
1692
1693 r->landing_pad = dispatch_label;
1694 lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
1695 if (lp_info[i].action_index != -1)
1696 crtl->uses_eh_lsda = 1;
1697 }
1698
1699 htab_delete (ar_hash);
1700
1701 /* Next: assign dispatch values. In dwarf2 terms, this would be the
1702 landing pad label for the region. For sjlj though, there is one
1703 common landing pad from which we dispatch to the post-landing pads.
1704
1705 A region receives a dispatch index if it is directly reachable
1706 and requires in-function processing. Regions that share post-landing
1707 pads may share dispatch indices. */
1708 /* ??? Post-landing pad sharing doesn't actually happen at the moment
1709 (see build_post_landing_pads) so we don't bother checking for it. */
1710
1711 index = 0;
1712 for (i = cfun->eh->last_region_number; i > 0; --i)
1713 if (lp_info[i].directly_reachable)
1714 lp_info[i].dispatch_index = index++;
1715
1716 /* Finally: assign call-site values. If dwarf2 terms, this would be
1717 the region number assigned by convert_to_eh_region_ranges, but
1718 handles no-action and must-not-throw differently. */
1719
1720 call_site_base = 1;
1721 for (i = cfun->eh->last_region_number; i > 0; --i)
1722 if (lp_info[i].directly_reachable)
1723 {
1724 int action = lp_info[i].action_index;
1725
1726 /* Map must-not-throw to otherwise unused call-site index 0. */
1727 if (action == -2)
1728 index = 0;
1729 /* Map no-action to otherwise unused call-site index -1. */
1730 else if (action == -1)
1731 index = -1;
1732 /* Otherwise, look it up in the table. */
1733 else
1734 index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
1735
1736 lp_info[i].call_site_index = index;
1737 }
1738 }
1739
1740 static void
1741 sjlj_mark_call_sites (struct sjlj_lp_info *lp_info)
1742 {
1743 int last_call_site = -2;
1744 rtx insn, mem;
1745
1746 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1747 {
1748 struct eh_region *region;
1749 int this_call_site;
1750 rtx note, before, p;
1751
1752 /* Reset value tracking at extended basic block boundaries. */
1753 if (LABEL_P (insn))
1754 last_call_site = -2;
1755
1756 if (! INSN_P (insn))
1757 continue;
1758
1759 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1760 if (!note)
1761 {
1762 /* Calls (and trapping insns) without notes are outside any
1763 exception handling region in this function. Mark them as
1764 no action. */
1765 if (CALL_P (insn)
1766 || (flag_non_call_exceptions
1767 && may_trap_p (PATTERN (insn))))
1768 this_call_site = -1;
1769 else
1770 continue;
1771 }
1772 else
1773 {
1774 /* Calls that are known to not throw need not be marked. */
1775 if (INTVAL (XEXP (note, 0)) <= 0)
1776 continue;
1777
1778 region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
1779 this_call_site = lp_info[region->region_number].call_site_index;
1780 }
1781
1782 if (this_call_site == last_call_site)
1783 continue;
1784
1785 /* Don't separate a call from it's argument loads. */
1786 before = insn;
1787 if (CALL_P (insn))
1788 before = find_first_parameter_load (insn, NULL_RTX);
1789
1790 start_sequence ();
1791 mem = adjust_address (crtl->eh.sjlj_fc, TYPE_MODE (integer_type_node),
1792 sjlj_fc_call_site_ofs);
1793 emit_move_insn (mem, GEN_INT (this_call_site));
1794 p = get_insns ();
1795 end_sequence ();
1796
1797 emit_insn_before (p, before);
1798 last_call_site = this_call_site;
1799 }
1800 }
1801
1802 /* Construct the SjLj_Function_Context. */
1803
1804 static void
1805 sjlj_emit_function_enter (rtx dispatch_label)
1806 {
1807 rtx fn_begin, fc, mem, seq;
1808 bool fn_begin_outside_block;
1809
1810 fc = crtl->eh.sjlj_fc;
1811
1812 start_sequence ();
1813
1814 /* We're storing this libcall's address into memory instead of
1815 calling it directly. Thus, we must call assemble_external_libcall
1816 here, as we can not depend on emit_library_call to do it for us. */
1817 assemble_external_libcall (eh_personality_libfunc);
1818 mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
1819 emit_move_insn (mem, eh_personality_libfunc);
1820
1821 mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
1822 if (crtl->uses_eh_lsda)
1823 {
1824 char buf[20];
1825 rtx sym;
1826
1827 ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
1828 sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
1829 SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
1830 emit_move_insn (mem, sym);
1831 }
1832 else
1833 emit_move_insn (mem, const0_rtx);
1834
1835 #ifdef DONT_USE_BUILTIN_SETJMP
1836 {
1837 rtx x;
1838 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
1839 TYPE_MODE (integer_type_node), 1,
1840 plus_constant (XEXP (fc, 0),
1841 sjlj_fc_jbuf_ofs), Pmode);
1842
1843 emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
1844 TYPE_MODE (integer_type_node), 0, dispatch_label);
1845 add_reg_br_prob_note (get_insns (), REG_BR_PROB_BASE/100);
1846 }
1847 #else
1848 expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
1849 dispatch_label);
1850 #endif
1851
1852 emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
1853 1, XEXP (fc, 0), Pmode);
1854
1855 seq = get_insns ();
1856 end_sequence ();
1857
1858 /* ??? Instead of doing this at the beginning of the function,
1859 do this in a block that is at loop level 0 and dominates all
1860 can_throw_internal instructions. */
1861
1862 fn_begin_outside_block = true;
1863 for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
1864 if (NOTE_P (fn_begin))
1865 {
1866 if (NOTE_KIND (fn_begin) == NOTE_INSN_FUNCTION_BEG)
1867 break;
1868 else if (NOTE_INSN_BASIC_BLOCK_P (fn_begin))
1869 fn_begin_outside_block = false;
1870 }
1871
1872 if (fn_begin_outside_block)
1873 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
1874 else
1875 emit_insn_after (seq, fn_begin);
1876 }
1877
1878 /* Call back from expand_function_end to know where we should put
1879 the call to unwind_sjlj_unregister_libfunc if needed. */
1880
1881 void
1882 sjlj_emit_function_exit_after (rtx after)
1883 {
1884 crtl->eh.sjlj_exit_after = after;
1885 }
1886
1887 static void
1888 sjlj_emit_function_exit (void)
1889 {
1890 rtx seq;
1891 edge e;
1892 edge_iterator ei;
1893
1894 start_sequence ();
1895
1896 emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
1897 1, XEXP (crtl->eh.sjlj_fc, 0), Pmode);
1898
1899 seq = get_insns ();
1900 end_sequence ();
1901
1902 /* ??? Really this can be done in any block at loop level 0 that
1903 post-dominates all can_throw_internal instructions. This is
1904 the last possible moment. */
1905
1906 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1907 if (e->flags & EDGE_FALLTHRU)
1908 break;
1909 if (e)
1910 {
1911 rtx insn;
1912
1913 /* Figure out whether the place we are supposed to insert libcall
1914 is inside the last basic block or after it. In the other case
1915 we need to emit to edge. */
1916 gcc_assert (e->src->next_bb == EXIT_BLOCK_PTR);
1917 for (insn = BB_HEAD (e->src); ; insn = NEXT_INSN (insn))
1918 {
1919 if (insn == crtl->eh.sjlj_exit_after)
1920 {
1921 if (LABEL_P (insn))
1922 insn = NEXT_INSN (insn);
1923 emit_insn_after (seq, insn);
1924 return;
1925 }
1926 if (insn == BB_END (e->src))
1927 break;
1928 }
1929 insert_insn_on_edge (seq, e);
1930 }
1931 }
1932
1933 static void
1934 sjlj_emit_dispatch_table (rtx dispatch_label, struct sjlj_lp_info *lp_info)
1935 {
1936 enum machine_mode unwind_word_mode = targetm.unwind_word_mode ();
1937 enum machine_mode filter_mode = targetm.eh_return_filter_mode ();
1938 int i, first_reachable;
1939 rtx mem, dispatch, seq, fc;
1940 rtx before;
1941 basic_block bb;
1942 edge e;
1943
1944 fc = crtl->eh.sjlj_fc;
1945
1946 start_sequence ();
1947
1948 emit_label (dispatch_label);
1949
1950 #ifndef DONT_USE_BUILTIN_SETJMP
1951 expand_builtin_setjmp_receiver (dispatch_label);
1952 #endif
1953
1954 /* Load up dispatch index, exc_ptr and filter values from the
1955 function context. */
1956 mem = adjust_address (fc, TYPE_MODE (integer_type_node),
1957 sjlj_fc_call_site_ofs);
1958 dispatch = copy_to_reg (mem);
1959
1960 mem = adjust_address (fc, unwind_word_mode, sjlj_fc_data_ofs);
1961 if (unwind_word_mode != ptr_mode)
1962 {
1963 #ifdef POINTERS_EXTEND_UNSIGNED
1964 mem = convert_memory_address (ptr_mode, mem);
1965 #else
1966 mem = convert_to_mode (ptr_mode, mem, 0);
1967 #endif
1968 }
1969 emit_move_insn (crtl->eh.exc_ptr, mem);
1970
1971 mem = adjust_address (fc, unwind_word_mode,
1972 sjlj_fc_data_ofs + GET_MODE_SIZE (unwind_word_mode));
1973 if (unwind_word_mode != filter_mode)
1974 mem = convert_to_mode (filter_mode, mem, 0);
1975 emit_move_insn (crtl->eh.filter, mem);
1976
1977 /* Jump to one of the directly reachable regions. */
1978 /* ??? This really ought to be using a switch statement. */
1979
1980 first_reachable = 0;
1981 for (i = cfun->eh->last_region_number; i > 0; --i)
1982 {
1983 if (! lp_info[i].directly_reachable)
1984 continue;
1985
1986 if (! first_reachable)
1987 {
1988 first_reachable = i;
1989 continue;
1990 }
1991
1992 emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
1993 EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
1994 ((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, i))
1995 ->post_landing_pad);
1996 }
1997
1998 seq = get_insns ();
1999 end_sequence ();
2000
2001 before = (((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, first_reachable))
2002 ->post_landing_pad);
2003
2004 bb = emit_to_new_bb_before (seq, before);
2005 e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
2006 e->count = bb->count;
2007 e->probability = REG_BR_PROB_BASE;
2008 }
2009
2010 static void
2011 sjlj_build_landing_pads (void)
2012 {
2013 struct sjlj_lp_info *lp_info;
2014
2015 lp_info = XCNEWVEC (struct sjlj_lp_info, cfun->eh->last_region_number + 1);
2016
2017 if (sjlj_find_directly_reachable_regions (lp_info))
2018 {
2019 rtx dispatch_label = gen_label_rtx ();
2020
2021 crtl->eh.sjlj_fc
2022 = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
2023 int_size_in_bytes (sjlj_fc_type_node),
2024 TYPE_ALIGN (sjlj_fc_type_node));
2025
2026 sjlj_assign_call_site_values (dispatch_label, lp_info);
2027 sjlj_mark_call_sites (lp_info);
2028
2029 sjlj_emit_function_enter (dispatch_label);
2030 sjlj_emit_dispatch_table (dispatch_label, lp_info);
2031 sjlj_emit_function_exit ();
2032 }
2033
2034 free (lp_info);
2035 }
2036
2037 void
2038 finish_eh_generation (void)
2039 {
2040 basic_block bb;
2041
2042 /* Nothing to do if no regions created. */
2043 if (cfun->eh->region_tree == NULL)
2044 return;
2045
2046 /* The object here is to provide find_basic_blocks with detailed
2047 information (via reachable_handlers) on how exception control
2048 flows within the function. In this first pass, we can include
2049 type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
2050 regions, and hope that it will be useful in deleting unreachable
2051 handlers. Subsequently, we will generate landing pads which will
2052 connect many of the handlers, and then type information will not
2053 be effective. Still, this is a win over previous implementations. */
2054
2055 /* These registers are used by the landing pads. Make sure they
2056 have been generated. */
2057 get_exception_pointer ();
2058 get_exception_filter ();
2059
2060 /* Construct the landing pads. */
2061
2062 assign_filter_values ();
2063 build_post_landing_pads ();
2064 connect_post_landing_pads ();
2065 if (USING_SJLJ_EXCEPTIONS)
2066 sjlj_build_landing_pads ();
2067 else
2068 dw2_build_landing_pads ();
2069
2070 crtl->eh.built_landing_pads = 1;
2071
2072 /* We've totally changed the CFG. Start over. */
2073 find_exception_handler_labels ();
2074 break_superblocks ();
2075 if (USING_SJLJ_EXCEPTIONS
2076 /* Kludge for Alpha/Tru64 (see alpha_gp_save_rtx). */
2077 || single_succ_edge (ENTRY_BLOCK_PTR)->insns.r)
2078 commit_edge_insertions ();
2079 FOR_EACH_BB (bb)
2080 {
2081 edge e;
2082 edge_iterator ei;
2083 bool eh = false;
2084 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2085 {
2086 if (e->flags & EDGE_EH)
2087 {
2088 remove_edge (e);
2089 eh = true;
2090 }
2091 else
2092 ei_next (&ei);
2093 }
2094 if (eh)
2095 rtl_make_eh_edge (NULL, bb, BB_END (bb));
2096 }
2097 }
2098 \f
2099 static hashval_t
2100 ehl_hash (const void *pentry)
2101 {
2102 const struct ehl_map_entry *const entry
2103 = (const struct ehl_map_entry *) pentry;
2104
2105 /* 2^32 * ((sqrt(5) - 1) / 2) */
2106 const hashval_t scaled_golden_ratio = 0x9e3779b9;
2107 return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
2108 }
2109
2110 static int
2111 ehl_eq (const void *pentry, const void *pdata)
2112 {
2113 const struct ehl_map_entry *const entry
2114 = (const struct ehl_map_entry *) pentry;
2115 const struct ehl_map_entry *const data
2116 = (const struct ehl_map_entry *) pdata;
2117
2118 return entry->label == data->label;
2119 }
2120
2121 /* This section handles removing dead code for flow. */
2122
2123 /* Remove LABEL from exception_handler_label_map. */
2124
2125 static void
2126 remove_exception_handler_label (rtx label)
2127 {
2128 struct ehl_map_entry **slot, tmp;
2129
2130 /* If exception_handler_label_map was not built yet,
2131 there is nothing to do. */
2132 if (crtl->eh.exception_handler_label_map == NULL)
2133 return;
2134
2135 tmp.label = label;
2136 slot = (struct ehl_map_entry **)
2137 htab_find_slot (crtl->eh.exception_handler_label_map, &tmp, NO_INSERT);
2138 gcc_assert (slot);
2139
2140 htab_clear_slot (crtl->eh.exception_handler_label_map, (void **) slot);
2141 }
2142
2143 /* Splice REGION from the region tree etc. */
2144
2145 static void
2146 remove_eh_handler (struct eh_region *region)
2147 {
2148 struct eh_region **pp, **pp_start, *p, *outer, *inner;
2149 rtx lab;
2150
2151 /* For the benefit of efficiently handling REG_EH_REGION notes,
2152 replace this region in the region array with its containing
2153 region. Note that previous region deletions may result in
2154 multiple copies of this region in the array, so we have a
2155 list of alternate numbers by which we are known. */
2156
2157 outer = region->outer;
2158 VEC_replace (eh_region, cfun->eh->region_array, region->region_number, outer);
2159 if (region->aka)
2160 {
2161 unsigned i;
2162 bitmap_iterator bi;
2163
2164 EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i, bi)
2165 {
2166 VEC_replace (eh_region, cfun->eh->region_array, i, outer);
2167 }
2168 }
2169
2170 if (outer)
2171 {
2172 if (!outer->aka)
2173 outer->aka = BITMAP_GGC_ALLOC ();
2174 if (region->aka)
2175 bitmap_ior_into (outer->aka, region->aka);
2176 bitmap_set_bit (outer->aka, region->region_number);
2177 }
2178
2179 if (crtl->eh.built_landing_pads)
2180 lab = region->landing_pad;
2181 else
2182 lab = region->label;
2183 if (lab)
2184 remove_exception_handler_label (lab);
2185
2186 if (outer)
2187 pp_start = &outer->inner;
2188 else
2189 pp_start = &cfun->eh->region_tree;
2190 for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
2191 continue;
2192 *pp = region->next_peer;
2193
2194 inner = region->inner;
2195 if (inner)
2196 {
2197 for (p = inner; p->next_peer ; p = p->next_peer)
2198 p->outer = outer;
2199 p->outer = outer;
2200
2201 p->next_peer = *pp_start;
2202 *pp_start = inner;
2203 }
2204
2205 if (region->type == ERT_CATCH)
2206 {
2207 struct eh_region *try, *next, *prev;
2208
2209 for (try = region->next_peer;
2210 try->type == ERT_CATCH;
2211 try = try->next_peer)
2212 continue;
2213 gcc_assert (try->type == ERT_TRY);
2214
2215 next = region->u.catch.next_catch;
2216 prev = region->u.catch.prev_catch;
2217
2218 if (next)
2219 next->u.catch.prev_catch = prev;
2220 else
2221 try->u.try.last_catch = prev;
2222 if (prev)
2223 prev->u.catch.next_catch = next;
2224 else
2225 {
2226 try->u.try.catch = next;
2227 if (! next)
2228 remove_eh_handler (try);
2229 }
2230 }
2231 }
2232
2233 /* LABEL heads a basic block that is about to be deleted. If this
2234 label corresponds to an exception region, we may be able to
2235 delete the region. */
2236
2237 void
2238 maybe_remove_eh_handler (rtx label)
2239 {
2240 struct ehl_map_entry **slot, tmp;
2241 struct eh_region *region;
2242
2243 /* ??? After generating landing pads, it's not so simple to determine
2244 if the region data is completely unused. One must examine the
2245 landing pad and the post landing pad, and whether an inner try block
2246 is referencing the catch handlers directly. */
2247 if (crtl->eh.built_landing_pads)
2248 return;
2249
2250 tmp.label = label;
2251 slot = (struct ehl_map_entry **)
2252 htab_find_slot (crtl->eh.exception_handler_label_map, &tmp, NO_INSERT);
2253 if (! slot)
2254 return;
2255 region = (*slot)->region;
2256 if (! region)
2257 return;
2258
2259 /* Flow will want to remove MUST_NOT_THROW regions as unreachable
2260 because there is no path to the fallback call to terminate.
2261 But the region continues to affect call-site data until there
2262 are no more contained calls, which we don't see here. */
2263 if (region->type == ERT_MUST_NOT_THROW)
2264 {
2265 htab_clear_slot (crtl->eh.exception_handler_label_map, (void **) slot);
2266 region->label = NULL_RTX;
2267 }
2268 else
2269 remove_eh_handler (region);
2270 }
2271
2272 /* Invokes CALLBACK for every exception handler label. Only used by old
2273 loop hackery; should not be used by new code. */
2274
2275 void
2276 for_each_eh_label (void (*callback) (rtx))
2277 {
2278 htab_traverse (crtl->eh.exception_handler_label_map, for_each_eh_label_1,
2279 (void *) &callback);
2280 }
2281
2282 static int
2283 for_each_eh_label_1 (void **pentry, void *data)
2284 {
2285 struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
2286 void (*callback) (rtx) = *(void (**) (rtx)) data;
2287
2288 (*callback) (entry->label);
2289 return 1;
2290 }
2291
2292 /* Invoke CALLBACK for every exception region in the current function. */
2293
2294 void
2295 for_each_eh_region (void (*callback) (struct eh_region *))
2296 {
2297 int i, n = cfun->eh->last_region_number;
2298 for (i = 1; i <= n; ++i)
2299 {
2300 struct eh_region *region;
2301
2302 region = VEC_index (eh_region, cfun->eh->region_array, i);
2303 if (region)
2304 (*callback) (region);
2305 }
2306 }
2307 \f
2308 /* This section describes CFG exception edges for flow. */
2309
2310 /* For communicating between calls to reachable_next_level. */
2311 struct reachable_info
2312 {
2313 tree types_caught;
2314 tree types_allowed;
2315 void (*callback) (struct eh_region *, void *);
2316 void *callback_data;
2317 bool saw_any_handlers;
2318 };
2319
2320 /* A subroutine of reachable_next_level. Return true if TYPE, or a
2321 base class of TYPE, is in HANDLED. */
2322
2323 static int
2324 check_handled (tree handled, tree type)
2325 {
2326 tree t;
2327
2328 /* We can check for exact matches without front-end help. */
2329 if (! lang_eh_type_covers)
2330 {
2331 for (t = handled; t ; t = TREE_CHAIN (t))
2332 if (TREE_VALUE (t) == type)
2333 return 1;
2334 }
2335 else
2336 {
2337 for (t = handled; t ; t = TREE_CHAIN (t))
2338 if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
2339 return 1;
2340 }
2341
2342 return 0;
2343 }
2344
2345 /* A subroutine of reachable_next_level. If we are collecting a list
2346 of handlers, add one. After landing pad generation, reference
2347 it instead of the handlers themselves. Further, the handlers are
2348 all wired together, so by referencing one, we've got them all.
2349 Before landing pad generation we reference each handler individually.
2350
2351 LP_REGION contains the landing pad; REGION is the handler. */
2352
2353 static void
2354 add_reachable_handler (struct reachable_info *info,
2355 struct eh_region *lp_region, struct eh_region *region)
2356 {
2357 if (! info)
2358 return;
2359
2360 info->saw_any_handlers = true;
2361
2362 if (crtl->eh.built_landing_pads)
2363 info->callback (lp_region, info->callback_data);
2364 else
2365 info->callback (region, info->callback_data);
2366 }
2367
2368 /* Process one level of exception regions for reachability.
2369 If TYPE_THROWN is non-null, then it is the *exact* type being
2370 propagated. If INFO is non-null, then collect handler labels
2371 and caught/allowed type information between invocations. */
2372
2373 static enum reachable_code
2374 reachable_next_level (struct eh_region *region, tree type_thrown,
2375 struct reachable_info *info)
2376 {
2377 switch (region->type)
2378 {
2379 case ERT_CLEANUP:
2380 /* Before landing-pad generation, we model control flow
2381 directly to the individual handlers. In this way we can
2382 see that catch handler types may shadow one another. */
2383 add_reachable_handler (info, region, region);
2384 return RNL_MAYBE_CAUGHT;
2385
2386 case ERT_TRY:
2387 {
2388 struct eh_region *c;
2389 enum reachable_code ret = RNL_NOT_CAUGHT;
2390
2391 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
2392 {
2393 /* A catch-all handler ends the search. */
2394 if (c->u.catch.type_list == NULL)
2395 {
2396 add_reachable_handler (info, region, c);
2397 return RNL_CAUGHT;
2398 }
2399
2400 if (type_thrown)
2401 {
2402 /* If we have at least one type match, end the search. */
2403 tree tp_node = c->u.catch.type_list;
2404
2405 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2406 {
2407 tree type = TREE_VALUE (tp_node);
2408
2409 if (type == type_thrown
2410 || (lang_eh_type_covers
2411 && (*lang_eh_type_covers) (type, type_thrown)))
2412 {
2413 add_reachable_handler (info, region, c);
2414 return RNL_CAUGHT;
2415 }
2416 }
2417
2418 /* If we have definitive information of a match failure,
2419 the catch won't trigger. */
2420 if (lang_eh_type_covers)
2421 return RNL_NOT_CAUGHT;
2422 }
2423
2424 /* At this point, we either don't know what type is thrown or
2425 don't have front-end assistance to help deciding if it is
2426 covered by one of the types in the list for this region.
2427
2428 We'd then like to add this region to the list of reachable
2429 handlers since it is indeed potentially reachable based on the
2430 information we have.
2431
2432 Actually, this handler is for sure not reachable if all the
2433 types it matches have already been caught. That is, it is only
2434 potentially reachable if at least one of the types it catches
2435 has not been previously caught. */
2436
2437 if (! info)
2438 ret = RNL_MAYBE_CAUGHT;
2439 else
2440 {
2441 tree tp_node = c->u.catch.type_list;
2442 bool maybe_reachable = false;
2443
2444 /* Compute the potential reachability of this handler and
2445 update the list of types caught at the same time. */
2446 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2447 {
2448 tree type = TREE_VALUE (tp_node);
2449
2450 if (! check_handled (info->types_caught, type))
2451 {
2452 info->types_caught
2453 = tree_cons (NULL, type, info->types_caught);
2454
2455 maybe_reachable = true;
2456 }
2457 }
2458
2459 if (maybe_reachable)
2460 {
2461 add_reachable_handler (info, region, c);
2462
2463 /* ??? If the catch type is a base class of every allowed
2464 type, then we know we can stop the search. */
2465 ret = RNL_MAYBE_CAUGHT;
2466 }
2467 }
2468 }
2469
2470 return ret;
2471 }
2472
2473 case ERT_ALLOWED_EXCEPTIONS:
2474 /* An empty list of types definitely ends the search. */
2475 if (region->u.allowed.type_list == NULL_TREE)
2476 {
2477 add_reachable_handler (info, region, region);
2478 return RNL_CAUGHT;
2479 }
2480
2481 /* Collect a list of lists of allowed types for use in detecting
2482 when a catch may be transformed into a catch-all. */
2483 if (info)
2484 info->types_allowed = tree_cons (NULL_TREE,
2485 region->u.allowed.type_list,
2486 info->types_allowed);
2487
2488 /* If we have definitive information about the type hierarchy,
2489 then we can tell if the thrown type will pass through the
2490 filter. */
2491 if (type_thrown && lang_eh_type_covers)
2492 {
2493 if (check_handled (region->u.allowed.type_list, type_thrown))
2494 return RNL_NOT_CAUGHT;
2495 else
2496 {
2497 add_reachable_handler (info, region, region);
2498 return RNL_CAUGHT;
2499 }
2500 }
2501
2502 add_reachable_handler (info, region, region);
2503 return RNL_MAYBE_CAUGHT;
2504
2505 case ERT_CATCH:
2506 /* Catch regions are handled by their controlling try region. */
2507 return RNL_NOT_CAUGHT;
2508
2509 case ERT_MUST_NOT_THROW:
2510 /* Here we end our search, since no exceptions may propagate.
2511 If we've touched down at some landing pad previous, then the
2512 explicit function call we generated may be used. Otherwise
2513 the call is made by the runtime.
2514
2515 Before inlining, do not perform this optimization. We may
2516 inline a subroutine that contains handlers, and that will
2517 change the value of saw_any_handlers. */
2518
2519 if ((info && info->saw_any_handlers) || !cfun->after_inlining)
2520 {
2521 add_reachable_handler (info, region, region);
2522 return RNL_CAUGHT;
2523 }
2524 else
2525 return RNL_BLOCKED;
2526
2527 case ERT_THROW:
2528 case ERT_UNKNOWN:
2529 /* Shouldn't see these here. */
2530 gcc_unreachable ();
2531 break;
2532 default:
2533 gcc_unreachable ();
2534 }
2535 }
2536
2537 /* Invoke CALLBACK on each region reachable from REGION_NUMBER. */
2538
2539 void
2540 foreach_reachable_handler (int region_number, bool is_resx,
2541 void (*callback) (struct eh_region *, void *),
2542 void *callback_data)
2543 {
2544 struct reachable_info info;
2545 struct eh_region *region;
2546 tree type_thrown;
2547
2548 memset (&info, 0, sizeof (info));
2549 info.callback = callback;
2550 info.callback_data = callback_data;
2551
2552 region = VEC_index (eh_region, cfun->eh->region_array, region_number);
2553
2554 type_thrown = NULL_TREE;
2555 if (is_resx)
2556 {
2557 /* A RESX leaves a region instead of entering it. Thus the
2558 region itself may have been deleted out from under us. */
2559 if (region == NULL)
2560 return;
2561 region = region->outer;
2562 }
2563 else if (region->type == ERT_THROW)
2564 {
2565 type_thrown = region->u.throw.type;
2566 region = region->outer;
2567 }
2568
2569 while (region)
2570 {
2571 if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
2572 break;
2573 /* If we have processed one cleanup, there is no point in
2574 processing any more of them. Each cleanup will have an edge
2575 to the next outer cleanup region, so the flow graph will be
2576 accurate. */
2577 if (region->type == ERT_CLEANUP)
2578 region = region->u.cleanup.prev_try;
2579 else
2580 region = region->outer;
2581 }
2582 }
2583
2584 /* Retrieve a list of labels of exception handlers which can be
2585 reached by a given insn. */
2586
2587 static void
2588 arh_to_landing_pad (struct eh_region *region, void *data)
2589 {
2590 rtx *p_handlers = (rtx *) data;
2591 if (! *p_handlers)
2592 *p_handlers = alloc_INSN_LIST (region->landing_pad, NULL_RTX);
2593 }
2594
2595 static void
2596 arh_to_label (struct eh_region *region, void *data)
2597 {
2598 rtx *p_handlers = (rtx *) data;
2599 *p_handlers = alloc_INSN_LIST (region->label, *p_handlers);
2600 }
2601
2602 rtx
2603 reachable_handlers (rtx insn)
2604 {
2605 bool is_resx = false;
2606 rtx handlers = NULL;
2607 int region_number;
2608
2609 if (JUMP_P (insn)
2610 && GET_CODE (PATTERN (insn)) == RESX)
2611 {
2612 region_number = XINT (PATTERN (insn), 0);
2613 is_resx = true;
2614 }
2615 else
2616 {
2617 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2618 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2619 return NULL;
2620 region_number = INTVAL (XEXP (note, 0));
2621 }
2622
2623 foreach_reachable_handler (region_number, is_resx,
2624 (crtl->eh.built_landing_pads
2625 ? arh_to_landing_pad
2626 : arh_to_label),
2627 &handlers);
2628
2629 return handlers;
2630 }
2631
2632 /* Determine if the given INSN can throw an exception that is caught
2633 within the function. */
2634
2635 bool
2636 can_throw_internal_1 (int region_number, bool is_resx)
2637 {
2638 struct eh_region *region;
2639 tree type_thrown;
2640
2641 region = VEC_index (eh_region, cfun->eh->region_array, region_number);
2642
2643 type_thrown = NULL_TREE;
2644 if (is_resx)
2645 region = region->outer;
2646 else if (region->type == ERT_THROW)
2647 {
2648 type_thrown = region->u.throw.type;
2649 region = region->outer;
2650 }
2651
2652 /* If this exception is ignored by each and every containing region,
2653 then control passes straight out. The runtime may handle some
2654 regions, which also do not require processing internally. */
2655 for (; region; region = region->outer)
2656 {
2657 enum reachable_code how = reachable_next_level (region, type_thrown, 0);
2658 if (how == RNL_BLOCKED)
2659 return false;
2660 if (how != RNL_NOT_CAUGHT)
2661 return true;
2662 }
2663
2664 return false;
2665 }
2666
2667 bool
2668 can_throw_internal (const_rtx insn)
2669 {
2670 rtx note;
2671
2672 if (! INSN_P (insn))
2673 return false;
2674
2675 if (JUMP_P (insn)
2676 && GET_CODE (PATTERN (insn)) == RESX
2677 && XINT (PATTERN (insn), 0) > 0)
2678 return can_throw_internal_1 (XINT (PATTERN (insn), 0), true);
2679
2680 if (NONJUMP_INSN_P (insn)
2681 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2682 insn = XVECEXP (PATTERN (insn), 0, 0);
2683
2684 /* Every insn that might throw has an EH_REGION note. */
2685 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2686 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2687 return false;
2688
2689 return can_throw_internal_1 (INTVAL (XEXP (note, 0)), false);
2690 }
2691
2692 /* Determine if the given INSN can throw an exception that is
2693 visible outside the function. */
2694
2695 bool
2696 can_throw_external_1 (int region_number, bool is_resx)
2697 {
2698 struct eh_region *region;
2699 tree type_thrown;
2700
2701 region = VEC_index (eh_region, cfun->eh->region_array, region_number);
2702
2703 type_thrown = NULL_TREE;
2704 if (is_resx)
2705 region = region->outer;
2706 else if (region->type == ERT_THROW)
2707 {
2708 type_thrown = region->u.throw.type;
2709 region = region->outer;
2710 }
2711
2712 /* If the exception is caught or blocked by any containing region,
2713 then it is not seen by any calling function. */
2714 for (; region ; region = region->outer)
2715 if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
2716 return false;
2717
2718 return true;
2719 }
2720
2721 bool
2722 can_throw_external (const_rtx insn)
2723 {
2724 rtx note;
2725
2726 if (! INSN_P (insn))
2727 return false;
2728
2729 if (JUMP_P (insn)
2730 && GET_CODE (PATTERN (insn)) == RESX
2731 && XINT (PATTERN (insn), 0) > 0)
2732 return can_throw_external_1 (XINT (PATTERN (insn), 0), true);
2733
2734 if (NONJUMP_INSN_P (insn)
2735 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2736 insn = XVECEXP (PATTERN (insn), 0, 0);
2737
2738 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2739 if (!note)
2740 {
2741 /* Calls (and trapping insns) without notes are outside any
2742 exception handling region in this function. We have to
2743 assume it might throw. Given that the front end and middle
2744 ends mark known NOTHROW functions, this isn't so wildly
2745 inaccurate. */
2746 return (CALL_P (insn)
2747 || (flag_non_call_exceptions
2748 && may_trap_p (PATTERN (insn))));
2749 }
2750 if (INTVAL (XEXP (note, 0)) <= 0)
2751 return false;
2752
2753 return can_throw_external_1 (INTVAL (XEXP (note, 0)), false);
2754 }
2755
2756 /* Set TREE_NOTHROW and crtl->all_throwers_are_sibcalls. */
2757
2758 unsigned int
2759 set_nothrow_function_flags (void)
2760 {
2761 rtx insn;
2762
2763 /* If we don't know that this implementation of the function will
2764 actually be used, then we must not set TREE_NOTHROW, since
2765 callers must not assume that this function does not throw. */
2766 if (DECL_REPLACEABLE_P (current_function_decl))
2767 return 0;
2768
2769 TREE_NOTHROW (current_function_decl) = 1;
2770
2771 /* Assume crtl->all_throwers_are_sibcalls until we encounter
2772 something that can throw an exception. We specifically exempt
2773 CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
2774 and can't throw. Most CALL_INSNs are not SIBLING_CALL_P, so this
2775 is optimistic. */
2776
2777 crtl->all_throwers_are_sibcalls = 1;
2778
2779 if (! flag_exceptions)
2780 return 0;
2781
2782 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2783 if (can_throw_external (insn))
2784 {
2785 TREE_NOTHROW (current_function_decl) = 0;
2786
2787 if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
2788 {
2789 crtl->all_throwers_are_sibcalls = 0;
2790 return 0;
2791 }
2792 }
2793
2794 for (insn = crtl->epilogue_delay_list; insn;
2795 insn = XEXP (insn, 1))
2796 if (can_throw_external (insn))
2797 {
2798 TREE_NOTHROW (current_function_decl) = 0;
2799
2800 if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
2801 {
2802 crtl->all_throwers_are_sibcalls = 0;
2803 return 0;
2804 }
2805 }
2806 return 0;
2807 }
2808
2809 struct rtl_opt_pass pass_set_nothrow_function_flags =
2810 {
2811 {
2812 RTL_PASS,
2813 NULL, /* name */
2814 NULL, /* gate */
2815 set_nothrow_function_flags, /* execute */
2816 NULL, /* sub */
2817 NULL, /* next */
2818 0, /* static_pass_number */
2819 0, /* tv_id */
2820 0, /* properties_required */
2821 0, /* properties_provided */
2822 0, /* properties_destroyed */
2823 0, /* todo_flags_start */
2824 0, /* todo_flags_finish */
2825 }
2826 };
2827
2828 \f
2829 /* Various hooks for unwind library. */
2830
2831 /* Do any necessary initialization to access arbitrary stack frames.
2832 On the SPARC, this means flushing the register windows. */
2833
2834 void
2835 expand_builtin_unwind_init (void)
2836 {
2837 /* Set this so all the registers get saved in our frame; we need to be
2838 able to copy the saved values for any registers from frames we unwind. */
2839 crtl->saves_all_registers = 1;
2840
2841 #ifdef SETUP_FRAME_ADDRESSES
2842 SETUP_FRAME_ADDRESSES ();
2843 #endif
2844 }
2845
2846 rtx
2847 expand_builtin_eh_return_data_regno (tree exp)
2848 {
2849 tree which = CALL_EXPR_ARG (exp, 0);
2850 unsigned HOST_WIDE_INT iwhich;
2851
2852 if (TREE_CODE (which) != INTEGER_CST)
2853 {
2854 error ("argument of %<__builtin_eh_return_regno%> must be constant");
2855 return constm1_rtx;
2856 }
2857
2858 iwhich = tree_low_cst (which, 1);
2859 iwhich = EH_RETURN_DATA_REGNO (iwhich);
2860 if (iwhich == INVALID_REGNUM)
2861 return constm1_rtx;
2862
2863 #ifdef DWARF_FRAME_REGNUM
2864 iwhich = DWARF_FRAME_REGNUM (iwhich);
2865 #else
2866 iwhich = DBX_REGISTER_NUMBER (iwhich);
2867 #endif
2868
2869 return GEN_INT (iwhich);
2870 }
2871
2872 /* Given a value extracted from the return address register or stack slot,
2873 return the actual address encoded in that value. */
2874
2875 rtx
2876 expand_builtin_extract_return_addr (tree addr_tree)
2877 {
2878 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
2879
2880 if (GET_MODE (addr) != Pmode
2881 && GET_MODE (addr) != VOIDmode)
2882 {
2883 #ifdef POINTERS_EXTEND_UNSIGNED
2884 addr = convert_memory_address (Pmode, addr);
2885 #else
2886 addr = convert_to_mode (Pmode, addr, 0);
2887 #endif
2888 }
2889
2890 /* First mask out any unwanted bits. */
2891 #ifdef MASK_RETURN_ADDR
2892 expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
2893 #endif
2894
2895 /* Then adjust to find the real return address. */
2896 #if defined (RETURN_ADDR_OFFSET)
2897 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
2898 #endif
2899
2900 return addr;
2901 }
2902
2903 /* Given an actual address in addr_tree, do any necessary encoding
2904 and return the value to be stored in the return address register or
2905 stack slot so the epilogue will return to that address. */
2906
2907 rtx
2908 expand_builtin_frob_return_addr (tree addr_tree)
2909 {
2910 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, EXPAND_NORMAL);
2911
2912 addr = convert_memory_address (Pmode, addr);
2913
2914 #ifdef RETURN_ADDR_OFFSET
2915 addr = force_reg (Pmode, addr);
2916 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2917 #endif
2918
2919 return addr;
2920 }
2921
2922 /* Set up the epilogue with the magic bits we'll need to return to the
2923 exception handler. */
2924
2925 void
2926 expand_builtin_eh_return (tree stackadj_tree ATTRIBUTE_UNUSED,
2927 tree handler_tree)
2928 {
2929 rtx tmp;
2930
2931 #ifdef EH_RETURN_STACKADJ_RTX
2932 tmp = expand_expr (stackadj_tree, crtl->eh.ehr_stackadj,
2933 VOIDmode, EXPAND_NORMAL);
2934 tmp = convert_memory_address (Pmode, tmp);
2935 if (!crtl->eh.ehr_stackadj)
2936 crtl->eh.ehr_stackadj = copy_to_reg (tmp);
2937 else if (tmp != crtl->eh.ehr_stackadj)
2938 emit_move_insn (crtl->eh.ehr_stackadj, tmp);
2939 #endif
2940
2941 tmp = expand_expr (handler_tree, crtl->eh.ehr_handler,
2942 VOIDmode, EXPAND_NORMAL);
2943 tmp = convert_memory_address (Pmode, tmp);
2944 if (!crtl->eh.ehr_handler)
2945 crtl->eh.ehr_handler = copy_to_reg (tmp);
2946 else if (tmp != crtl->eh.ehr_handler)
2947 emit_move_insn (crtl->eh.ehr_handler, tmp);
2948
2949 if (!crtl->eh.ehr_label)
2950 crtl->eh.ehr_label = gen_label_rtx ();
2951 emit_jump (crtl->eh.ehr_label);
2952 }
2953
2954 void
2955 expand_eh_return (void)
2956 {
2957 rtx around_label;
2958
2959 if (! crtl->eh.ehr_label)
2960 return;
2961
2962 crtl->calls_eh_return = 1;
2963
2964 #ifdef EH_RETURN_STACKADJ_RTX
2965 emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
2966 #endif
2967
2968 around_label = gen_label_rtx ();
2969 emit_jump (around_label);
2970
2971 emit_label (crtl->eh.ehr_label);
2972 clobber_return_register ();
2973
2974 #ifdef EH_RETURN_STACKADJ_RTX
2975 emit_move_insn (EH_RETURN_STACKADJ_RTX, crtl->eh.ehr_stackadj);
2976 #endif
2977
2978 #ifdef HAVE_eh_return
2979 if (HAVE_eh_return)
2980 emit_insn (gen_eh_return (crtl->eh.ehr_handler));
2981 else
2982 #endif
2983 {
2984 #ifdef EH_RETURN_HANDLER_RTX
2985 emit_move_insn (EH_RETURN_HANDLER_RTX, crtl->eh.ehr_handler);
2986 #else
2987 error ("__builtin_eh_return not supported on this target");
2988 #endif
2989 }
2990
2991 emit_label (around_label);
2992 }
2993
2994 /* Convert a ptr_mode address ADDR_TREE to a Pmode address controlled by
2995 POINTERS_EXTEND_UNSIGNED and return it. */
2996
2997 rtx
2998 expand_builtin_extend_pointer (tree addr_tree)
2999 {
3000 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, EXPAND_NORMAL);
3001 int extend;
3002
3003 #ifdef POINTERS_EXTEND_UNSIGNED
3004 extend = POINTERS_EXTEND_UNSIGNED;
3005 #else
3006 /* The previous EH code did an unsigned extend by default, so we do this also
3007 for consistency. */
3008 extend = 1;
3009 #endif
3010
3011 return convert_modes (targetm.unwind_word_mode (), ptr_mode, addr, extend);
3012 }
3013 \f
3014 /* In the following functions, we represent entries in the action table
3015 as 1-based indices. Special cases are:
3016
3017 0: null action record, non-null landing pad; implies cleanups
3018 -1: null action record, null landing pad; implies no action
3019 -2: no call-site entry; implies must_not_throw
3020 -3: we have yet to process outer regions
3021
3022 Further, no special cases apply to the "next" field of the record.
3023 For next, 0 means end of list. */
3024
3025 struct action_record
3026 {
3027 int offset;
3028 int filter;
3029 int next;
3030 };
3031
3032 static int
3033 action_record_eq (const void *pentry, const void *pdata)
3034 {
3035 const struct action_record *entry = (const struct action_record *) pentry;
3036 const struct action_record *data = (const struct action_record *) pdata;
3037 return entry->filter == data->filter && entry->next == data->next;
3038 }
3039
3040 static hashval_t
3041 action_record_hash (const void *pentry)
3042 {
3043 const struct action_record *entry = (const struct action_record *) pentry;
3044 return entry->next * 1009 + entry->filter;
3045 }
3046
3047 static int
3048 add_action_record (htab_t ar_hash, int filter, int next)
3049 {
3050 struct action_record **slot, *new_ar, tmp;
3051
3052 tmp.filter = filter;
3053 tmp.next = next;
3054 slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
3055
3056 if ((new_ar = *slot) == NULL)
3057 {
3058 new_ar = XNEW (struct action_record);
3059 new_ar->offset = VARRAY_ACTIVE_SIZE (crtl->eh.action_record_data) + 1;
3060 new_ar->filter = filter;
3061 new_ar->next = next;
3062 *slot = new_ar;
3063
3064 /* The filter value goes in untouched. The link to the next
3065 record is a "self-relative" byte offset, or zero to indicate
3066 that there is no next record. So convert the absolute 1 based
3067 indices we've been carrying around into a displacement. */
3068
3069 push_sleb128 (&crtl->eh.action_record_data, filter);
3070 if (next)
3071 next -= VARRAY_ACTIVE_SIZE (crtl->eh.action_record_data) + 1;
3072 push_sleb128 (&crtl->eh.action_record_data, next);
3073 }
3074
3075 return new_ar->offset;
3076 }
3077
3078 static int
3079 collect_one_action_chain (htab_t ar_hash, struct eh_region *region)
3080 {
3081 struct eh_region *c;
3082 int next;
3083
3084 /* If we've reached the top of the region chain, then we have
3085 no actions, and require no landing pad. */
3086 if (region == NULL)
3087 return -1;
3088
3089 switch (region->type)
3090 {
3091 case ERT_CLEANUP:
3092 /* A cleanup adds a zero filter to the beginning of the chain, but
3093 there are special cases to look out for. If there are *only*
3094 cleanups along a path, then it compresses to a zero action.
3095 Further, if there are multiple cleanups along a path, we only
3096 need to represent one of them, as that is enough to trigger
3097 entry to the landing pad at runtime. */
3098 next = collect_one_action_chain (ar_hash, region->outer);
3099 if (next <= 0)
3100 return 0;
3101 for (c = region->outer; c ; c = c->outer)
3102 if (c->type == ERT_CLEANUP)
3103 return next;
3104 return add_action_record (ar_hash, 0, next);
3105
3106 case ERT_TRY:
3107 /* Process the associated catch regions in reverse order.
3108 If there's a catch-all handler, then we don't need to
3109 search outer regions. Use a magic -3 value to record
3110 that we haven't done the outer search. */
3111 next = -3;
3112 for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
3113 {
3114 if (c->u.catch.type_list == NULL)
3115 {
3116 /* Retrieve the filter from the head of the filter list
3117 where we have stored it (see assign_filter_values). */
3118 int filter
3119 = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
3120
3121 next = add_action_record (ar_hash, filter, 0);
3122 }
3123 else
3124 {
3125 /* Once the outer search is done, trigger an action record for
3126 each filter we have. */
3127 tree flt_node;
3128
3129 if (next == -3)
3130 {
3131 next = collect_one_action_chain (ar_hash, region->outer);
3132
3133 /* If there is no next action, terminate the chain. */
3134 if (next == -1)
3135 next = 0;
3136 /* If all outer actions are cleanups or must_not_throw,
3137 we'll have no action record for it, since we had wanted
3138 to encode these states in the call-site record directly.
3139 Add a cleanup action to the chain to catch these. */
3140 else if (next <= 0)
3141 next = add_action_record (ar_hash, 0, 0);
3142 }
3143
3144 flt_node = c->u.catch.filter_list;
3145 for (; flt_node; flt_node = TREE_CHAIN (flt_node))
3146 {
3147 int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
3148 next = add_action_record (ar_hash, filter, next);
3149 }
3150 }
3151 }
3152 return next;
3153
3154 case ERT_ALLOWED_EXCEPTIONS:
3155 /* An exception specification adds its filter to the
3156 beginning of the chain. */
3157 next = collect_one_action_chain (ar_hash, region->outer);
3158
3159 /* If there is no next action, terminate the chain. */
3160 if (next == -1)
3161 next = 0;
3162 /* If all outer actions are cleanups or must_not_throw,
3163 we'll have no action record for it, since we had wanted
3164 to encode these states in the call-site record directly.
3165 Add a cleanup action to the chain to catch these. */
3166 else if (next <= 0)
3167 next = add_action_record (ar_hash, 0, 0);
3168
3169 return add_action_record (ar_hash, region->u.allowed.filter, next);
3170
3171 case ERT_MUST_NOT_THROW:
3172 /* A must-not-throw region with no inner handlers or cleanups
3173 requires no call-site entry. Note that this differs from
3174 the no handler or cleanup case in that we do require an lsda
3175 to be generated. Return a magic -2 value to record this. */
3176 return -2;
3177
3178 case ERT_CATCH:
3179 case ERT_THROW:
3180 /* CATCH regions are handled in TRY above. THROW regions are
3181 for optimization information only and produce no output. */
3182 return collect_one_action_chain (ar_hash, region->outer);
3183
3184 default:
3185 gcc_unreachable ();
3186 }
3187 }
3188
3189 static int
3190 add_call_site (rtx landing_pad, int action)
3191 {
3192 call_site_record record;
3193
3194 record = GGC_NEW (struct call_site_record);
3195 record->landing_pad = landing_pad;
3196 record->action = action;
3197
3198 VEC_safe_push (call_site_record, gc, crtl->eh.call_site_record, record);
3199
3200 return call_site_base + VEC_length (call_site_record, crtl->eh.call_site_record) - 1;
3201 }
3202
3203 /* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
3204 The new note numbers will not refer to region numbers, but
3205 instead to call site entries. */
3206
3207 unsigned int
3208 convert_to_eh_region_ranges (void)
3209 {
3210 rtx insn, iter, note;
3211 htab_t ar_hash;
3212 int last_action = -3;
3213 rtx last_action_insn = NULL_RTX;
3214 rtx last_landing_pad = NULL_RTX;
3215 rtx first_no_action_insn = NULL_RTX;
3216 int call_site = 0;
3217
3218 if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
3219 return 0;
3220
3221 VARRAY_UCHAR_INIT (crtl->eh.action_record_data, 64, "action_record_data");
3222
3223 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
3224
3225 for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
3226 if (INSN_P (iter))
3227 {
3228 struct eh_region *region;
3229 int this_action;
3230 rtx this_landing_pad;
3231
3232 insn = iter;
3233 if (NONJUMP_INSN_P (insn)
3234 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3235 insn = XVECEXP (PATTERN (insn), 0, 0);
3236
3237 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3238 if (!note)
3239 {
3240 if (! (CALL_P (insn)
3241 || (flag_non_call_exceptions
3242 && may_trap_p (PATTERN (insn)))))
3243 continue;
3244 this_action = -1;
3245 region = NULL;
3246 }
3247 else
3248 {
3249 if (INTVAL (XEXP (note, 0)) <= 0)
3250 continue;
3251 region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
3252 this_action = collect_one_action_chain (ar_hash, region);
3253 }
3254
3255 /* Existence of catch handlers, or must-not-throw regions
3256 implies that an lsda is needed (even if empty). */
3257 if (this_action != -1)
3258 crtl->uses_eh_lsda = 1;
3259
3260 /* Delay creation of region notes for no-action regions
3261 until we're sure that an lsda will be required. */
3262 else if (last_action == -3)
3263 {
3264 first_no_action_insn = iter;
3265 last_action = -1;
3266 }
3267
3268 /* Cleanups and handlers may share action chains but not
3269 landing pads. Collect the landing pad for this region. */
3270 if (this_action >= 0)
3271 {
3272 struct eh_region *o;
3273 for (o = region; ! o->landing_pad ; o = o->outer)
3274 continue;
3275 this_landing_pad = o->landing_pad;
3276 }
3277 else
3278 this_landing_pad = NULL_RTX;
3279
3280 /* Differing actions or landing pads implies a change in call-site
3281 info, which implies some EH_REGION note should be emitted. */
3282 if (last_action != this_action
3283 || last_landing_pad != this_landing_pad)
3284 {
3285 /* If we'd not seen a previous action (-3) or the previous
3286 action was must-not-throw (-2), then we do not need an
3287 end note. */
3288 if (last_action >= -1)
3289 {
3290 /* If we delayed the creation of the begin, do it now. */
3291 if (first_no_action_insn)
3292 {
3293 call_site = add_call_site (NULL_RTX, 0);
3294 note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
3295 first_no_action_insn);
3296 NOTE_EH_HANDLER (note) = call_site;
3297 first_no_action_insn = NULL_RTX;
3298 }
3299
3300 note = emit_note_after (NOTE_INSN_EH_REGION_END,
3301 last_action_insn);
3302 NOTE_EH_HANDLER (note) = call_site;
3303 }
3304
3305 /* If the new action is must-not-throw, then no region notes
3306 are created. */
3307 if (this_action >= -1)
3308 {
3309 call_site = add_call_site (this_landing_pad,
3310 this_action < 0 ? 0 : this_action);
3311 note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
3312 NOTE_EH_HANDLER (note) = call_site;
3313 }
3314
3315 last_action = this_action;
3316 last_landing_pad = this_landing_pad;
3317 }
3318 last_action_insn = iter;
3319 }
3320
3321 if (last_action >= -1 && ! first_no_action_insn)
3322 {
3323 note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
3324 NOTE_EH_HANDLER (note) = call_site;
3325 }
3326
3327 htab_delete (ar_hash);
3328 return 0;
3329 }
3330
3331 struct rtl_opt_pass pass_convert_to_eh_region_ranges =
3332 {
3333 {
3334 RTL_PASS,
3335 "eh-ranges", /* name */
3336 NULL, /* gate */
3337 convert_to_eh_region_ranges, /* execute */
3338 NULL, /* sub */
3339 NULL, /* next */
3340 0, /* static_pass_number */
3341 0, /* tv_id */
3342 0, /* properties_required */
3343 0, /* properties_provided */
3344 0, /* properties_destroyed */
3345 0, /* todo_flags_start */
3346 TODO_dump_func, /* todo_flags_finish */
3347 }
3348 };
3349
3350 \f
3351 static void
3352 push_uleb128 (varray_type *data_area, unsigned int value)
3353 {
3354 do
3355 {
3356 unsigned char byte = value & 0x7f;
3357 value >>= 7;
3358 if (value)
3359 byte |= 0x80;
3360 VARRAY_PUSH_UCHAR (*data_area, byte);
3361 }
3362 while (value);
3363 }
3364
3365 static void
3366 push_sleb128 (varray_type *data_area, int value)
3367 {
3368 unsigned char byte;
3369 int more;
3370
3371 do
3372 {
3373 byte = value & 0x7f;
3374 value >>= 7;
3375 more = ! ((value == 0 && (byte & 0x40) == 0)
3376 || (value == -1 && (byte & 0x40) != 0));
3377 if (more)
3378 byte |= 0x80;
3379 VARRAY_PUSH_UCHAR (*data_area, byte);
3380 }
3381 while (more);
3382 }
3383
3384 \f
3385 #ifndef HAVE_AS_LEB128
3386 static int
3387 dw2_size_of_call_site_table (void)
3388 {
3389 int n = VEC_length (call_site_record, crtl->eh.call_site_record);
3390 int size = n * (4 + 4 + 4);
3391 int i;
3392
3393 for (i = 0; i < n; ++i)
3394 {
3395 struct call_site_record *cs = VEC_index (call_site_record, crtl->eh.call_site_record, i);
3396 size += size_of_uleb128 (cs->action);
3397 }
3398
3399 return size;
3400 }
3401
3402 static int
3403 sjlj_size_of_call_site_table (void)
3404 {
3405 int n = VEC_length (call_site_record, crtl->eh.call_site_record);
3406 int size = 0;
3407 int i;
3408
3409 for (i = 0; i < n; ++i)
3410 {
3411 struct call_site_record *cs = VEC_index (call_site_record, crtl->eh.call_site_record, i);
3412 size += size_of_uleb128 (INTVAL (cs->landing_pad));
3413 size += size_of_uleb128 (cs->action);
3414 }
3415
3416 return size;
3417 }
3418 #endif
3419
3420 static void
3421 dw2_output_call_site_table (void)
3422 {
3423 int n = VEC_length (call_site_record, crtl->eh.call_site_record);
3424 int i;
3425
3426 for (i = 0; i < n; ++i)
3427 {
3428 struct call_site_record *cs = VEC_index (call_site_record, crtl->eh.call_site_record, i);
3429 char reg_start_lab[32];
3430 char reg_end_lab[32];
3431 char landing_pad_lab[32];
3432
3433 ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
3434 ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
3435
3436 if (cs->landing_pad)
3437 ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
3438 CODE_LABEL_NUMBER (cs->landing_pad));
3439
3440 /* ??? Perhaps use insn length scaling if the assembler supports
3441 generic arithmetic. */
3442 /* ??? Perhaps use attr_length to choose data1 or data2 instead of
3443 data4 if the function is small enough. */
3444 #ifdef HAVE_AS_LEB128
3445 dw2_asm_output_delta_uleb128 (reg_start_lab,
3446 current_function_func_begin_label,
3447 "region %d start", i);
3448 dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
3449 "length");
3450 if (cs->landing_pad)
3451 dw2_asm_output_delta_uleb128 (landing_pad_lab,
3452 current_function_func_begin_label,
3453 "landing pad");
3454 else
3455 dw2_asm_output_data_uleb128 (0, "landing pad");
3456 #else
3457 dw2_asm_output_delta (4, reg_start_lab,
3458 current_function_func_begin_label,
3459 "region %d start", i);
3460 dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
3461 if (cs->landing_pad)
3462 dw2_asm_output_delta (4, landing_pad_lab,
3463 current_function_func_begin_label,
3464 "landing pad");
3465 else
3466 dw2_asm_output_data (4, 0, "landing pad");
3467 #endif
3468 dw2_asm_output_data_uleb128 (cs->action, "action");
3469 }
3470
3471 call_site_base += n;
3472 }
3473
3474 static void
3475 sjlj_output_call_site_table (void)
3476 {
3477 int n = VEC_length (call_site_record, crtl->eh.call_site_record);
3478 int i;
3479
3480 for (i = 0; i < n; ++i)
3481 {
3482 struct call_site_record *cs = VEC_index (call_site_record, crtl->eh.call_site_record, i);
3483
3484 dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
3485 "region %d landing pad", i);
3486 dw2_asm_output_data_uleb128 (cs->action, "action");
3487 }
3488
3489 call_site_base += n;
3490 }
3491
3492 #ifndef TARGET_UNWIND_INFO
3493 /* Switch to the section that should be used for exception tables. */
3494
3495 static void
3496 switch_to_exception_section (const char * ARG_UNUSED (fnname))
3497 {
3498 section *s;
3499
3500 if (exception_section)
3501 s = exception_section;
3502 else
3503 {
3504 /* Compute the section and cache it into exception_section,
3505 unless it depends on the function name. */
3506 if (targetm.have_named_sections)
3507 {
3508 int flags;
3509
3510 if (EH_TABLES_CAN_BE_READ_ONLY)
3511 {
3512 int tt_format =
3513 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3514 flags = ((! flag_pic
3515 || ((tt_format & 0x70) != DW_EH_PE_absptr
3516 && (tt_format & 0x70) != DW_EH_PE_aligned))
3517 ? 0 : SECTION_WRITE);
3518 }
3519 else
3520 flags = SECTION_WRITE;
3521
3522 #ifdef HAVE_LD_EH_GC_SECTIONS
3523 if (flag_function_sections)
3524 {
3525 char *section_name = XNEWVEC (char, strlen (fnname) + 32);
3526 sprintf (section_name, ".gcc_except_table.%s", fnname);
3527 s = get_section (section_name, flags, NULL);
3528 free (section_name);
3529 }
3530 else
3531 #endif
3532 exception_section
3533 = s = get_section (".gcc_except_table", flags, NULL);
3534 }
3535 else
3536 exception_section
3537 = s = flag_pic ? data_section : readonly_data_section;
3538 }
3539
3540 switch_to_section (s);
3541 }
3542 #endif
3543
3544
3545 /* Output a reference from an exception table to the type_info object TYPE.
3546 TT_FORMAT and TT_FORMAT_SIZE describe the DWARF encoding method used for
3547 the value. */
3548
3549 static void
3550 output_ttype (tree type, int tt_format, int tt_format_size)
3551 {
3552 rtx value;
3553 bool is_public = true;
3554
3555 if (type == NULL_TREE)
3556 value = const0_rtx;
3557 else
3558 {
3559 struct varpool_node *node;
3560
3561 type = lookup_type_for_runtime (type);
3562 value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
3563
3564 /* Let cgraph know that the rtti decl is used. Not all of the
3565 paths below go through assemble_integer, which would take
3566 care of this for us. */
3567 STRIP_NOPS (type);
3568 if (TREE_CODE (type) == ADDR_EXPR)
3569 {
3570 type = TREE_OPERAND (type, 0);
3571 if (TREE_CODE (type) == VAR_DECL)
3572 {
3573 node = varpool_node (type);
3574 if (node)
3575 varpool_mark_needed_node (node);
3576 is_public = TREE_PUBLIC (type);
3577 }
3578 }
3579 else
3580 gcc_assert (TREE_CODE (type) == INTEGER_CST);
3581 }
3582
3583 /* Allow the target to override the type table entry format. */
3584 if (targetm.asm_out.ttype (value))
3585 return;
3586
3587 if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
3588 assemble_integer (value, tt_format_size,
3589 tt_format_size * BITS_PER_UNIT, 1);
3590 else
3591 dw2_asm_output_encoded_addr_rtx (tt_format, value, is_public, NULL);
3592 }
3593
3594 void
3595 output_function_exception_table (const char * ARG_UNUSED (fnname))
3596 {
3597 int tt_format, cs_format, lp_format, i, n;
3598 #ifdef HAVE_AS_LEB128
3599 char ttype_label[32];
3600 char cs_after_size_label[32];
3601 char cs_end_label[32];
3602 #else
3603 int call_site_len;
3604 #endif
3605 int have_tt_data;
3606 int tt_format_size = 0;
3607
3608 /* Not all functions need anything. */
3609 if (! crtl->uses_eh_lsda)
3610 return;
3611
3612 if (eh_personality_libfunc)
3613 assemble_external_libcall (eh_personality_libfunc);
3614
3615 #ifdef TARGET_UNWIND_INFO
3616 /* TODO: Move this into target file. */
3617 fputs ("\t.personality\t", asm_out_file);
3618 output_addr_const (asm_out_file, eh_personality_libfunc);
3619 fputs ("\n\t.handlerdata\n", asm_out_file);
3620 /* Note that varasm still thinks we're in the function's code section.
3621 The ".endp" directive that will immediately follow will take us back. */
3622 #else
3623 switch_to_exception_section (fnname);
3624 #endif
3625
3626 /* If the target wants a label to begin the table, emit it here. */
3627 targetm.asm_out.except_table_label (asm_out_file);
3628
3629 have_tt_data = (VEC_length (tree, crtl->eh.ttype_data) > 0
3630 || VARRAY_ACTIVE_SIZE (crtl->eh.ehspec_data) > 0);
3631
3632 /* Indicate the format of the @TType entries. */
3633 if (! have_tt_data)
3634 tt_format = DW_EH_PE_omit;
3635 else
3636 {
3637 tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3638 #ifdef HAVE_AS_LEB128
3639 ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT",
3640 current_function_funcdef_no);
3641 #endif
3642 tt_format_size = size_of_encoded_value (tt_format);
3643
3644 assemble_align (tt_format_size * BITS_PER_UNIT);
3645 }
3646
3647 targetm.asm_out.internal_label (asm_out_file, "LLSDA",
3648 current_function_funcdef_no);
3649
3650 /* The LSDA header. */
3651
3652 /* Indicate the format of the landing pad start pointer. An omitted
3653 field implies @LPStart == @Start. */
3654 /* Currently we always put @LPStart == @Start. This field would
3655 be most useful in moving the landing pads completely out of
3656 line to another section, but it could also be used to minimize
3657 the size of uleb128 landing pad offsets. */
3658 lp_format = DW_EH_PE_omit;
3659 dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
3660 eh_data_format_name (lp_format));
3661
3662 /* @LPStart pointer would go here. */
3663
3664 dw2_asm_output_data (1, tt_format, "@TType format (%s)",
3665 eh_data_format_name (tt_format));
3666
3667 #ifndef HAVE_AS_LEB128
3668 if (USING_SJLJ_EXCEPTIONS)
3669 call_site_len = sjlj_size_of_call_site_table ();
3670 else
3671 call_site_len = dw2_size_of_call_site_table ();
3672 #endif
3673
3674 /* A pc-relative 4-byte displacement to the @TType data. */
3675 if (have_tt_data)
3676 {
3677 #ifdef HAVE_AS_LEB128
3678 char ttype_after_disp_label[32];
3679 ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
3680 current_function_funcdef_no);
3681 dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
3682 "@TType base offset");
3683 ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
3684 #else
3685 /* Ug. Alignment queers things. */
3686 unsigned int before_disp, after_disp, last_disp, disp;
3687
3688 before_disp = 1 + 1;
3689 after_disp = (1 + size_of_uleb128 (call_site_len)
3690 + call_site_len
3691 + VARRAY_ACTIVE_SIZE (crtl->eh.action_record_data)
3692 + (VEC_length (tree, crtl->eh.ttype_data)
3693 * tt_format_size));
3694
3695 disp = after_disp;
3696 do
3697 {
3698 unsigned int disp_size, pad;
3699
3700 last_disp = disp;
3701 disp_size = size_of_uleb128 (disp);
3702 pad = before_disp + disp_size + after_disp;
3703 if (pad % tt_format_size)
3704 pad = tt_format_size - (pad % tt_format_size);
3705 else
3706 pad = 0;
3707 disp = after_disp + pad;
3708 }
3709 while (disp != last_disp);
3710
3711 dw2_asm_output_data_uleb128 (disp, "@TType base offset");
3712 #endif
3713 }
3714
3715 /* Indicate the format of the call-site offsets. */
3716 #ifdef HAVE_AS_LEB128
3717 cs_format = DW_EH_PE_uleb128;
3718 #else
3719 cs_format = DW_EH_PE_udata4;
3720 #endif
3721 dw2_asm_output_data (1, cs_format, "call-site format (%s)",
3722 eh_data_format_name (cs_format));
3723
3724 #ifdef HAVE_AS_LEB128
3725 ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
3726 current_function_funcdef_no);
3727 ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
3728 current_function_funcdef_no);
3729 dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
3730 "Call-site table length");
3731 ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
3732 if (USING_SJLJ_EXCEPTIONS)
3733 sjlj_output_call_site_table ();
3734 else
3735 dw2_output_call_site_table ();
3736 ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
3737 #else
3738 dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
3739 if (USING_SJLJ_EXCEPTIONS)
3740 sjlj_output_call_site_table ();
3741 else
3742 dw2_output_call_site_table ();
3743 #endif
3744
3745 /* ??? Decode and interpret the data for flag_debug_asm. */
3746 n = VARRAY_ACTIVE_SIZE (crtl->eh.action_record_data);
3747 for (i = 0; i < n; ++i)
3748 dw2_asm_output_data (1, VARRAY_UCHAR (crtl->eh.action_record_data, i),
3749 (i ? NULL : "Action record table"));
3750
3751 if (have_tt_data)
3752 assemble_align (tt_format_size * BITS_PER_UNIT);
3753
3754 i = VEC_length (tree, crtl->eh.ttype_data);
3755 while (i-- > 0)
3756 {
3757 tree type = VEC_index (tree, crtl->eh.ttype_data, i);
3758 output_ttype (type, tt_format, tt_format_size);
3759 }
3760
3761 #ifdef HAVE_AS_LEB128
3762 if (have_tt_data)
3763 ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
3764 #endif
3765
3766 /* ??? Decode and interpret the data for flag_debug_asm. */
3767 n = VARRAY_ACTIVE_SIZE (crtl->eh.ehspec_data);
3768 for (i = 0; i < n; ++i)
3769 {
3770 if (targetm.arm_eabi_unwinder)
3771 {
3772 tree type = VARRAY_TREE (crtl->eh.ehspec_data, i);
3773 output_ttype (type, tt_format, tt_format_size);
3774 }
3775 else
3776 dw2_asm_output_data (1, VARRAY_UCHAR (crtl->eh.ehspec_data, i),
3777 (i ? NULL : "Exception specification table"));
3778 }
3779
3780 switch_to_section (current_function_section ());
3781 }
3782
3783 void
3784 set_eh_throw_stmt_table (struct function *fun, struct htab *table)
3785 {
3786 fun->eh->throw_stmt_table = table;
3787 }
3788
3789 htab_t
3790 get_eh_throw_stmt_table (struct function *fun)
3791 {
3792 return fun->eh->throw_stmt_table;
3793 }
3794
3795 /* Dump EH information to OUT. */
3796 void
3797 dump_eh_tree (FILE *out, struct function *fun)
3798 {
3799 struct eh_region *i;
3800 int depth = 0;
3801 static const char * const type_name[] = {"unknown", "cleanup", "try", "catch",
3802 "allowed_exceptions", "must_not_throw",
3803 "throw"};
3804
3805 i = fun->eh->region_tree;
3806 if (! i)
3807 return;
3808
3809 fprintf (out, "Eh tree:\n");
3810 while (1)
3811 {
3812 fprintf (out, " %*s %i %s", depth * 2, "",
3813 i->region_number, type_name [(int)i->type]);
3814 if (i->tree_label)
3815 {
3816 fprintf (out, " tree_label:");
3817 print_generic_expr (out, i->tree_label, 0);
3818 }
3819 fprintf (out, "\n");
3820 /* If there are sub-regions, process them. */
3821 if (i->inner)
3822 i = i->inner, depth++;
3823 /* If there are peers, process them. */
3824 else if (i->next_peer)
3825 i = i->next_peer;
3826 /* Otherwise, step back up the tree to the next peer. */
3827 else
3828 {
3829 do {
3830 i = i->outer;
3831 depth--;
3832 if (i == NULL)
3833 return;
3834 } while (i->next_peer == NULL);
3835 i = i->next_peer;
3836 }
3837 }
3838 }
3839
3840 /* Verify some basic invariants on EH datastructures. Could be extended to
3841 catch more. */
3842 void
3843 verify_eh_tree (struct function *fun)
3844 {
3845 struct eh_region *i, *outer = NULL;
3846 bool err = false;
3847 int nvisited = 0;
3848 int count = 0;
3849 int j;
3850 int depth = 0;
3851
3852 i = fun->eh->region_tree;
3853 if (! i)
3854 return;
3855 for (j = fun->eh->last_region_number; j > 0; --j)
3856 if ((i = VEC_index (eh_region, cfun->eh->region_array, j)))
3857 {
3858 count++;
3859 if (i->region_number != j)
3860 {
3861 error ("region_array is corrupted for region %i", i->region_number);
3862 err = true;
3863 }
3864 }
3865
3866 while (1)
3867 {
3868 if (VEC_index (eh_region, cfun->eh->region_array, i->region_number) != i)
3869 {
3870 error ("region_array is corrupted for region %i", i->region_number);
3871 err = true;
3872 }
3873 if (i->outer != outer)
3874 {
3875 error ("outer block of region %i is wrong", i->region_number);
3876 err = true;
3877 }
3878 if (i->may_contain_throw && outer && !outer->may_contain_throw)
3879 {
3880 error ("region %i may contain throw and is contained in region that may not",
3881 i->region_number);
3882 err = true;
3883 }
3884 if (depth < 0)
3885 {
3886 error ("negative nesting depth of region %i", i->region_number);
3887 err = true;
3888 }
3889 nvisited ++;
3890 /* If there are sub-regions, process them. */
3891 if (i->inner)
3892 outer = i, i = i->inner, depth++;
3893 /* If there are peers, process them. */
3894 else if (i->next_peer)
3895 i = i->next_peer;
3896 /* Otherwise, step back up the tree to the next peer. */
3897 else
3898 {
3899 do {
3900 i = i->outer;
3901 depth--;
3902 if (i == NULL)
3903 {
3904 if (depth != -1)
3905 {
3906 error ("tree list ends on depth %i", depth + 1);
3907 err = true;
3908 }
3909 if (count != nvisited)
3910 {
3911 error ("array does not match the region tree");
3912 err = true;
3913 }
3914 if (err)
3915 {
3916 dump_eh_tree (stderr, fun);
3917 internal_error ("verify_eh_tree failed");
3918 }
3919 return;
3920 }
3921 outer = i->outer;
3922 } while (i->next_peer == NULL);
3923 i = i->next_peer;
3924 }
3925 }
3926 }
3927
3928 /* Initialize unwind_resume_libfunc. */
3929
3930 void
3931 default_init_unwind_resume_libfunc (void)
3932 {
3933 /* The default c++ routines aren't actually c++ specific, so use those. */
3934 unwind_resume_libfunc =
3935 init_one_libfunc ( USING_SJLJ_EXCEPTIONS ? "_Unwind_SjLj_Resume"
3936 : "_Unwind_Resume");
3937 }
3938
3939 \f
3940 static bool
3941 gate_handle_eh (void)
3942 {
3943 return doing_eh (0);
3944 }
3945
3946 /* Complete generation of exception handling code. */
3947 static unsigned int
3948 rest_of_handle_eh (void)
3949 {
3950 cleanup_cfg (CLEANUP_NO_INSN_DEL);
3951 finish_eh_generation ();
3952 cleanup_cfg (CLEANUP_NO_INSN_DEL);
3953 return 0;
3954 }
3955
3956 struct rtl_opt_pass pass_rtl_eh =
3957 {
3958 {
3959 RTL_PASS,
3960 "eh", /* name */
3961 gate_handle_eh, /* gate */
3962 rest_of_handle_eh, /* execute */
3963 NULL, /* sub */
3964 NULL, /* next */
3965 0, /* static_pass_number */
3966 TV_JUMP, /* tv_id */
3967 0, /* properties_required */
3968 0, /* properties_provided */
3969 0, /* properties_destroyed */
3970 0, /* todo_flags_start */
3971 TODO_dump_func /* todo_flags_finish */
3972 }
3973 };
3974
3975 #include "gt-except.h"