sbitmap.c: Fix comment formatting.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "optabs.h"
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "recog.h"
36
37 static rtx break_out_memory_refs PARAMS ((rtx));
38 static void emit_stack_probe PARAMS ((rtx));
39
40
41 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
42
43 HOST_WIDE_INT
44 trunc_int_for_mode (c, mode)
45 HOST_WIDE_INT c;
46 enum machine_mode mode;
47 {
48 int width = GET_MODE_BITSIZE (mode);
49
50 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
51 if (mode == BImode)
52 return c & 1 ? STORE_FLAG_VALUE : 0;
53
54 /* Sign-extend for the requested mode. */
55
56 if (width < HOST_BITS_PER_WIDE_INT)
57 {
58 HOST_WIDE_INT sign = 1;
59 sign <<= width - 1;
60 c &= (sign << 1) - 1;
61 c ^= sign;
62 c -= sign;
63 }
64
65 return c;
66 }
67
68 /* Return an rtx for the sum of X and the integer C.
69
70 This function should be used via the `plus_constant' macro. */
71
72 rtx
73 plus_constant_wide (x, c)
74 register rtx x;
75 register HOST_WIDE_INT c;
76 {
77 register RTX_CODE code;
78 rtx y;
79 register enum machine_mode mode;
80 register rtx tem;
81 int all_constant = 0;
82
83 if (c == 0)
84 return x;
85
86 restart:
87
88 code = GET_CODE (x);
89 mode = GET_MODE (x);
90 y = x;
91
92 switch (code)
93 {
94 case CONST_INT:
95 return GEN_INT (INTVAL (x) + c);
96
97 case CONST_DOUBLE:
98 {
99 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
100 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
101 unsigned HOST_WIDE_INT l2 = c;
102 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
103 unsigned HOST_WIDE_INT lv;
104 HOST_WIDE_INT hv;
105
106 add_double (l1, h1, l2, h2, &lv, &hv);
107
108 return immed_double_const (lv, hv, VOIDmode);
109 }
110
111 case MEM:
112 /* If this is a reference to the constant pool, try replacing it with
113 a reference to a new constant. If the resulting address isn't
114 valid, don't return it because we have no way to validize it. */
115 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
116 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
117 {
118 tem
119 = force_const_mem (GET_MODE (x),
120 plus_constant (get_pool_constant (XEXP (x, 0)),
121 c));
122 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
123 return tem;
124 }
125 break;
126
127 case CONST:
128 /* If adding to something entirely constant, set a flag
129 so that we can add a CONST around the result. */
130 x = XEXP (x, 0);
131 all_constant = 1;
132 goto restart;
133
134 case SYMBOL_REF:
135 case LABEL_REF:
136 all_constant = 1;
137 break;
138
139 case PLUS:
140 /* The interesting case is adding the integer to a sum.
141 Look for constant term in the sum and combine
142 with C. For an integer constant term, we make a combined
143 integer. For a constant term that is not an explicit integer,
144 we cannot really combine, but group them together anyway.
145
146 Restart or use a recursive call in case the remaining operand is
147 something that we handle specially, such as a SYMBOL_REF.
148
149 We may not immediately return from the recursive call here, lest
150 all_constant gets lost. */
151
152 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
153 {
154 c += INTVAL (XEXP (x, 1));
155
156 if (GET_MODE (x) != VOIDmode)
157 c = trunc_int_for_mode (c, GET_MODE (x));
158
159 x = XEXP (x, 0);
160 goto restart;
161 }
162 else if (CONSTANT_P (XEXP (x, 1)))
163 {
164 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
165 c = 0;
166 }
167 else if (find_constant_term_loc (&y))
168 {
169 /* We need to be careful since X may be shared and we can't
170 modify it in place. */
171 rtx copy = copy_rtx (x);
172 rtx *const_loc = find_constant_term_loc (&copy);
173
174 *const_loc = plus_constant (*const_loc, c);
175 x = copy;
176 c = 0;
177 }
178 break;
179
180 default:
181 break;
182 }
183
184 if (c != 0)
185 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
186
187 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
188 return x;
189 else if (all_constant)
190 return gen_rtx_CONST (mode, x);
191 else
192 return x;
193 }
194 \f
195 /* If X is a sum, return a new sum like X but lacking any constant terms.
196 Add all the removed constant terms into *CONSTPTR.
197 X itself is not altered. The result != X if and only if
198 it is not isomorphic to X. */
199
200 rtx
201 eliminate_constant_term (x, constptr)
202 rtx x;
203 rtx *constptr;
204 {
205 register rtx x0, x1;
206 rtx tem;
207
208 if (GET_CODE (x) != PLUS)
209 return x;
210
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x, 1)) == CONST_INT
213 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214 XEXP (x, 1)))
215 && GET_CODE (tem) == CONST_INT)
216 {
217 *constptr = tem;
218 return eliminate_constant_term (XEXP (x, 0), constptr);
219 }
220
221 tem = const0_rtx;
222 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226 *constptr, tem))
227 && GET_CODE (tem) == CONST_INT)
228 {
229 *constptr = tem;
230 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
231 }
232
233 return x;
234 }
235
236 /* Returns the insn that next references REG after INSN, or 0
237 if REG is clobbered before next referenced or we cannot find
238 an insn that references REG in a straight-line piece of code. */
239
240 rtx
241 find_next_ref (reg, insn)
242 rtx reg;
243 rtx insn;
244 {
245 rtx next;
246
247 for (insn = NEXT_INSN (insn); insn; insn = next)
248 {
249 next = NEXT_INSN (insn);
250 if (GET_CODE (insn) == NOTE)
251 continue;
252 if (GET_CODE (insn) == CODE_LABEL
253 || GET_CODE (insn) == BARRIER)
254 return 0;
255 if (GET_CODE (insn) == INSN
256 || GET_CODE (insn) == JUMP_INSN
257 || GET_CODE (insn) == CALL_INSN)
258 {
259 if (reg_set_p (reg, insn))
260 return 0;
261 if (reg_mentioned_p (reg, PATTERN (insn)))
262 return insn;
263 if (GET_CODE (insn) == JUMP_INSN)
264 {
265 if (any_uncondjump_p (insn))
266 next = JUMP_LABEL (insn);
267 else
268 return 0;
269 }
270 if (GET_CODE (insn) == CALL_INSN
271 && REGNO (reg) < FIRST_PSEUDO_REGISTER
272 && call_used_regs[REGNO (reg)])
273 return 0;
274 }
275 else
276 abort ();
277 }
278 return 0;
279 }
280
281 /* Return an rtx for the size in bytes of the value of EXP. */
282
283 rtx
284 expr_size (exp)
285 tree exp;
286 {
287 tree size;
288
289 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
290 && DECL_SIZE_UNIT (exp) != 0)
291 size = DECL_SIZE_UNIT (exp);
292 else
293 size = size_in_bytes (TREE_TYPE (exp));
294
295 if (TREE_CODE (size) != INTEGER_CST
296 && contains_placeholder_p (size))
297 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
298
299 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
300 EXPAND_MEMORY_USE_BAD);
301 }
302 \f
303 /* Return a copy of X in which all memory references
304 and all constants that involve symbol refs
305 have been replaced with new temporary registers.
306 Also emit code to load the memory locations and constants
307 into those registers.
308
309 If X contains no such constants or memory references,
310 X itself (not a copy) is returned.
311
312 If a constant is found in the address that is not a legitimate constant
313 in an insn, it is left alone in the hope that it might be valid in the
314 address.
315
316 X may contain no arithmetic except addition, subtraction and multiplication.
317 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
318
319 static rtx
320 break_out_memory_refs (x)
321 register rtx x;
322 {
323 if (GET_CODE (x) == MEM
324 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
325 && GET_MODE (x) != VOIDmode))
326 x = force_reg (GET_MODE (x), x);
327 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
328 || GET_CODE (x) == MULT)
329 {
330 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
331 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
332
333 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
334 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
335 }
336
337 return x;
338 }
339
340 #ifdef POINTERS_EXTEND_UNSIGNED
341
342 /* Given X, a memory address in ptr_mode, convert it to an address
343 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
344 the fact that pointers are not allowed to overflow by commuting arithmetic
345 operations over conversions so that address arithmetic insns can be
346 used. */
347
348 rtx
349 convert_memory_address (to_mode, x)
350 enum machine_mode to_mode;
351 rtx x;
352 {
353 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
354 rtx temp;
355
356 /* Here we handle some special cases. If none of them apply, fall through
357 to the default case. */
358 switch (GET_CODE (x))
359 {
360 case CONST_INT:
361 case CONST_DOUBLE:
362 return x;
363
364 case SUBREG:
365 if (POINTERS_EXTEND_UNSIGNED >= 0
366 && GET_MODE (SUBREG_REG (x)) == to_mode)
367 return SUBREG_REG (x);
368 break;
369
370 case LABEL_REF:
371 if (POINTERS_EXTEND_UNSIGNED >= 0)
372 {
373 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
374 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
375 return temp;
376 }
377 break;
378
379 case SYMBOL_REF:
380 if (POINTERS_EXTEND_UNSIGNED >= 0)
381 {
382 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
383 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
384 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
385 STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
386 return temp;
387 }
388 break;
389
390 case CONST:
391 if (POINTERS_EXTEND_UNSIGNED >= 0)
392 return gen_rtx_CONST (to_mode,
393 convert_memory_address (to_mode, XEXP (x, 0)));
394 break;
395
396 case PLUS:
397 case MULT:
398 /* For addition the second operand is a small constant, we can safely
399 permute the conversion and addition operation. We can always safely
400 permute them if we are making the address narrower. In addition,
401 always permute the operations if this is a constant. */
402 if (POINTERS_EXTEND_UNSIGNED >= 0
403 && (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
404 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
405 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
406 || CONSTANT_P (XEXP (x, 0))))))
407 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
408 convert_memory_address (to_mode, XEXP (x, 0)),
409 convert_memory_address (to_mode, XEXP (x, 1)));
410 break;
411
412 default:
413 break;
414 }
415
416 return convert_modes (to_mode, from_mode,
417 x, POINTERS_EXTEND_UNSIGNED);
418 }
419 #endif
420
421 /* Given a memory address or facsimile X, construct a new address,
422 currently equivalent, that is stable: future stores won't change it.
423
424 X must be composed of constants, register and memory references
425 combined with addition, subtraction and multiplication:
426 in other words, just what you can get from expand_expr if sum_ok is 1.
427
428 Works by making copies of all regs and memory locations used
429 by X and combining them the same way X does.
430 You could also stabilize the reference to this address
431 by copying the address to a register with copy_to_reg;
432 but then you wouldn't get indexed addressing in the reference. */
433
434 rtx
435 copy_all_regs (x)
436 register rtx x;
437 {
438 if (GET_CODE (x) == REG)
439 {
440 if (REGNO (x) != FRAME_POINTER_REGNUM
441 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
442 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
443 #endif
444 )
445 x = copy_to_reg (x);
446 }
447 else if (GET_CODE (x) == MEM)
448 x = copy_to_reg (x);
449 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
450 || GET_CODE (x) == MULT)
451 {
452 register rtx op0 = copy_all_regs (XEXP (x, 0));
453 register rtx op1 = copy_all_regs (XEXP (x, 1));
454 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
455 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
456 }
457 return x;
458 }
459 \f
460 /* Return something equivalent to X but valid as a memory address
461 for something of mode MODE. When X is not itself valid, this
462 works by copying X or subexpressions of it into registers. */
463
464 rtx
465 memory_address (mode, x)
466 enum machine_mode mode;
467 register rtx x;
468 {
469 register rtx oldx = x;
470
471 if (GET_CODE (x) == ADDRESSOF)
472 return x;
473
474 #ifdef POINTERS_EXTEND_UNSIGNED
475 if (GET_MODE (x) == ptr_mode)
476 x = convert_memory_address (Pmode, x);
477 #endif
478
479 /* By passing constant addresses thru registers
480 we get a chance to cse them. */
481 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
482 x = force_reg (Pmode, x);
483
484 /* Accept a QUEUED that refers to a REG
485 even though that isn't a valid address.
486 On attempting to put this in an insn we will call protect_from_queue
487 which will turn it into a REG, which is valid. */
488 else if (GET_CODE (x) == QUEUED
489 && GET_CODE (QUEUED_VAR (x)) == REG)
490 ;
491
492 /* We get better cse by rejecting indirect addressing at this stage.
493 Let the combiner create indirect addresses where appropriate.
494 For now, generate the code so that the subexpressions useful to share
495 are visible. But not if cse won't be done! */
496 else
497 {
498 if (! cse_not_expected && GET_CODE (x) != REG)
499 x = break_out_memory_refs (x);
500
501 /* At this point, any valid address is accepted. */
502 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
503
504 /* If it was valid before but breaking out memory refs invalidated it,
505 use it the old way. */
506 if (memory_address_p (mode, oldx))
507 goto win2;
508
509 /* Perform machine-dependent transformations on X
510 in certain cases. This is not necessary since the code
511 below can handle all possible cases, but machine-dependent
512 transformations can make better code. */
513 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
514
515 /* PLUS and MULT can appear in special ways
516 as the result of attempts to make an address usable for indexing.
517 Usually they are dealt with by calling force_operand, below.
518 But a sum containing constant terms is special
519 if removing them makes the sum a valid address:
520 then we generate that address in a register
521 and index off of it. We do this because it often makes
522 shorter code, and because the addresses thus generated
523 in registers often become common subexpressions. */
524 if (GET_CODE (x) == PLUS)
525 {
526 rtx constant_term = const0_rtx;
527 rtx y = eliminate_constant_term (x, &constant_term);
528 if (constant_term == const0_rtx
529 || ! memory_address_p (mode, y))
530 x = force_operand (x, NULL_RTX);
531 else
532 {
533 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
534 if (! memory_address_p (mode, y))
535 x = force_operand (x, NULL_RTX);
536 else
537 x = y;
538 }
539 }
540
541 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
542 x = force_operand (x, NULL_RTX);
543
544 /* If we have a register that's an invalid address,
545 it must be a hard reg of the wrong class. Copy it to a pseudo. */
546 else if (GET_CODE (x) == REG)
547 x = copy_to_reg (x);
548
549 /* Last resort: copy the value to a register, since
550 the register is a valid address. */
551 else
552 x = force_reg (Pmode, x);
553
554 goto done;
555
556 win2:
557 x = oldx;
558 win:
559 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
560 /* Don't copy an addr via a reg if it is one of our stack slots. */
561 && ! (GET_CODE (x) == PLUS
562 && (XEXP (x, 0) == virtual_stack_vars_rtx
563 || XEXP (x, 0) == virtual_incoming_args_rtx)))
564 {
565 if (general_operand (x, Pmode))
566 x = force_reg (Pmode, x);
567 else
568 x = force_operand (x, NULL_RTX);
569 }
570 }
571
572 done:
573
574 /* If we didn't change the address, we are done. Otherwise, mark
575 a reg as a pointer if we have REG or REG + CONST_INT. */
576 if (oldx == x)
577 return x;
578 else if (GET_CODE (x) == REG)
579 mark_reg_pointer (x, BITS_PER_UNIT);
580 else if (GET_CODE (x) == PLUS
581 && GET_CODE (XEXP (x, 0)) == REG
582 && GET_CODE (XEXP (x, 1)) == CONST_INT)
583 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
584
585 /* OLDX may have been the address on a temporary. Update the address
586 to indicate that X is now used. */
587 update_temp_slot_address (oldx, x);
588
589 return x;
590 }
591
592 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
593
594 rtx
595 memory_address_noforce (mode, x)
596 enum machine_mode mode;
597 rtx x;
598 {
599 int ambient_force_addr = flag_force_addr;
600 rtx val;
601
602 flag_force_addr = 0;
603 val = memory_address (mode, x);
604 flag_force_addr = ambient_force_addr;
605 return val;
606 }
607
608 /* Convert a mem ref into one with a valid memory address.
609 Pass through anything else unchanged. */
610
611 rtx
612 validize_mem (ref)
613 rtx ref;
614 {
615 if (GET_CODE (ref) != MEM)
616 return ref;
617 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
618 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
619 return ref;
620
621 /* Don't alter REF itself, since that is probably a stack slot. */
622 return replace_equiv_address (ref, XEXP (ref, 0));
623 }
624 \f
625 /* Given REF, either a MEM or a REG, and T, either the type of X or
626 the expression corresponding to REF, set RTX_UNCHANGING_P if
627 appropriate. */
628
629 void
630 maybe_set_unchanging (ref, t)
631 rtx ref;
632 tree t;
633 {
634 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
635 initialization is only executed once, or whose initializer always
636 has the same value. Currently we simplify this to PARM_DECLs in the
637 first case, and decls with TREE_CONSTANT initializers in the second. */
638 if ((TREE_READONLY (t) && DECL_P (t)
639 && (TREE_CODE (t) == PARM_DECL
640 || DECL_INITIAL (t) == NULL_TREE
641 || TREE_CONSTANT (DECL_INITIAL (t))))
642 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
643 RTX_UNCHANGING_P (ref) = 1;
644 }
645
646 /* Given REF, a MEM, and T, either the type of X or the expression
647 corresponding to REF, set the memory attributes. OBJECTP is nonzero
648 if we are making a new object of this type. */
649
650 void
651 set_mem_attributes (ref, t, objectp)
652 rtx ref;
653 tree t;
654 int objectp;
655 {
656 tree type;
657
658 /* It can happen that type_for_mode was given a mode for which there
659 is no language-level type. In which case it returns NULL, which
660 we can see here. */
661 if (t == NULL_TREE)
662 return;
663
664 type = TYPE_P (t) ? t : TREE_TYPE (t);
665
666 /* Get the alias set from the expression or type (perhaps using a
667 front-end routine) and then copy bits from the type. */
668
669 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
670 here, because, in C and C++, the fact that a location is accessed
671 through a const expression does not mean that the value there can
672 never change. */
673 set_mem_alias_set (ref, get_alias_set (t));
674 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
675 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
676
677 /* If we are making an object of this type, we know that it is a scalar if
678 the type is not an aggregate. */
679 if (objectp && ! AGGREGATE_TYPE_P (type))
680 MEM_SCALAR_P (ref) = 1;
681
682 /* If T is a type, this is all we can do. Otherwise, we may be able
683 to deduce some more information about the expression. */
684 if (TYPE_P (t))
685 return;
686
687 maybe_set_unchanging (ref, t);
688 if (TREE_THIS_VOLATILE (t))
689 MEM_VOLATILE_P (ref) = 1;
690
691 /* Now see if we can say more about whether it's an aggregate or
692 scalar. If we already know it's an aggregate, don't bother. */
693 if (MEM_IN_STRUCT_P (ref))
694 return;
695
696 /* Now remove any NOPs: they don't change what the underlying object is.
697 Likewise for SAVE_EXPR. */
698 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
699 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
700 t = TREE_OPERAND (t, 0);
701
702 /* Since we already know the type isn't an aggregate, if this is a decl,
703 it must be a scalar. Or if it is a reference into an aggregate,
704 this is part of an aggregate. Otherwise we don't know. */
705 if (DECL_P (t))
706 MEM_SCALAR_P (ref) = 1;
707 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
708 || TREE_CODE (t) == ARRAY_RANGE_REF
709 || TREE_CODE (t) == BIT_FIELD_REF)
710 MEM_IN_STRUCT_P (ref) = 1;
711 }
712 \f
713 /* Return a modified copy of X with its memory address copied
714 into a temporary register to protect it from side effects.
715 If X is not a MEM, it is returned unchanged (and not copied).
716 Perhaps even if it is a MEM, if there is no need to change it. */
717
718 rtx
719 stabilize (x)
720 rtx x;
721 {
722
723 if (GET_CODE (x) != MEM
724 || ! rtx_unstable_p (XEXP (x, 0)))
725 return x;
726
727 return
728 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
729 }
730 \f
731 /* Copy the value or contents of X to a new temp reg and return that reg. */
732
733 rtx
734 copy_to_reg (x)
735 rtx x;
736 {
737 register rtx temp = gen_reg_rtx (GET_MODE (x));
738
739 /* If not an operand, must be an address with PLUS and MULT so
740 do the computation. */
741 if (! general_operand (x, VOIDmode))
742 x = force_operand (x, temp);
743
744 if (x != temp)
745 emit_move_insn (temp, x);
746
747 return temp;
748 }
749
750 /* Like copy_to_reg but always give the new register mode Pmode
751 in case X is a constant. */
752
753 rtx
754 copy_addr_to_reg (x)
755 rtx x;
756 {
757 return copy_to_mode_reg (Pmode, x);
758 }
759
760 /* Like copy_to_reg but always give the new register mode MODE
761 in case X is a constant. */
762
763 rtx
764 copy_to_mode_reg (mode, x)
765 enum machine_mode mode;
766 rtx x;
767 {
768 register rtx temp = gen_reg_rtx (mode);
769
770 /* If not an operand, must be an address with PLUS and MULT so
771 do the computation. */
772 if (! general_operand (x, VOIDmode))
773 x = force_operand (x, temp);
774
775 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
776 abort ();
777 if (x != temp)
778 emit_move_insn (temp, x);
779 return temp;
780 }
781
782 /* Load X into a register if it is not already one.
783 Use mode MODE for the register.
784 X should be valid for mode MODE, but it may be a constant which
785 is valid for all integer modes; that's why caller must specify MODE.
786
787 The caller must not alter the value in the register we return,
788 since we mark it as a "constant" register. */
789
790 rtx
791 force_reg (mode, x)
792 enum machine_mode mode;
793 rtx x;
794 {
795 register rtx temp, insn, set;
796
797 if (GET_CODE (x) == REG)
798 return x;
799
800 temp = gen_reg_rtx (mode);
801
802 if (! general_operand (x, mode))
803 x = force_operand (x, NULL_RTX);
804
805 insn = emit_move_insn (temp, x);
806
807 /* Let optimizers know that TEMP's value never changes
808 and that X can be substituted for it. Don't get confused
809 if INSN set something else (such as a SUBREG of TEMP). */
810 if (CONSTANT_P (x)
811 && (set = single_set (insn)) != 0
812 && SET_DEST (set) == temp)
813 {
814 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
815
816 if (note)
817 XEXP (note, 0) = x;
818 else
819 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
820 }
821 return temp;
822 }
823
824 /* If X is a memory ref, copy its contents to a new temp reg and return
825 that reg. Otherwise, return X. */
826
827 rtx
828 force_not_mem (x)
829 rtx x;
830 {
831 register rtx temp;
832
833 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
834 return x;
835
836 temp = gen_reg_rtx (GET_MODE (x));
837 emit_move_insn (temp, x);
838 return temp;
839 }
840
841 /* Copy X to TARGET (if it's nonzero and a reg)
842 or to a new temp reg and return that reg.
843 MODE is the mode to use for X in case it is a constant. */
844
845 rtx
846 copy_to_suggested_reg (x, target, mode)
847 rtx x, target;
848 enum machine_mode mode;
849 {
850 register rtx temp;
851
852 if (target && GET_CODE (target) == REG)
853 temp = target;
854 else
855 temp = gen_reg_rtx (mode);
856
857 emit_move_insn (temp, x);
858 return temp;
859 }
860 \f
861 /* Return the mode to use to store a scalar of TYPE and MODE.
862 PUNSIGNEDP points to the signedness of the type and may be adjusted
863 to show what signedness to use on extension operations.
864
865 FOR_CALL is non-zero if this call is promoting args for a call. */
866
867 enum machine_mode
868 promote_mode (type, mode, punsignedp, for_call)
869 tree type;
870 enum machine_mode mode;
871 int *punsignedp;
872 int for_call ATTRIBUTE_UNUSED;
873 {
874 enum tree_code code = TREE_CODE (type);
875 int unsignedp = *punsignedp;
876
877 #ifdef PROMOTE_FOR_CALL_ONLY
878 if (! for_call)
879 return mode;
880 #endif
881
882 switch (code)
883 {
884 #ifdef PROMOTE_MODE
885 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
886 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
887 PROMOTE_MODE (mode, unsignedp, type);
888 break;
889 #endif
890
891 #ifdef POINTERS_EXTEND_UNSIGNED
892 case REFERENCE_TYPE:
893 case POINTER_TYPE:
894 mode = Pmode;
895 unsignedp = POINTERS_EXTEND_UNSIGNED;
896 break;
897 #endif
898
899 default:
900 break;
901 }
902
903 *punsignedp = unsignedp;
904 return mode;
905 }
906 \f
907 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
908 This pops when ADJUST is positive. ADJUST need not be constant. */
909
910 void
911 adjust_stack (adjust)
912 rtx adjust;
913 {
914 rtx temp;
915 adjust = protect_from_queue (adjust, 0);
916
917 if (adjust == const0_rtx)
918 return;
919
920 /* We expect all variable sized adjustments to be multiple of
921 PREFERRED_STACK_BOUNDARY. */
922 if (GET_CODE (adjust) == CONST_INT)
923 stack_pointer_delta -= INTVAL (adjust);
924
925 temp = expand_binop (Pmode,
926 #ifdef STACK_GROWS_DOWNWARD
927 add_optab,
928 #else
929 sub_optab,
930 #endif
931 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
932 OPTAB_LIB_WIDEN);
933
934 if (temp != stack_pointer_rtx)
935 emit_move_insn (stack_pointer_rtx, temp);
936 }
937
938 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
939 This pushes when ADJUST is positive. ADJUST need not be constant. */
940
941 void
942 anti_adjust_stack (adjust)
943 rtx adjust;
944 {
945 rtx temp;
946 adjust = protect_from_queue (adjust, 0);
947
948 if (adjust == const0_rtx)
949 return;
950
951 /* We expect all variable sized adjustments to be multiple of
952 PREFERRED_STACK_BOUNDARY. */
953 if (GET_CODE (adjust) == CONST_INT)
954 stack_pointer_delta += INTVAL (adjust);
955
956 temp = expand_binop (Pmode,
957 #ifdef STACK_GROWS_DOWNWARD
958 sub_optab,
959 #else
960 add_optab,
961 #endif
962 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
963 OPTAB_LIB_WIDEN);
964
965 if (temp != stack_pointer_rtx)
966 emit_move_insn (stack_pointer_rtx, temp);
967 }
968
969 /* Round the size of a block to be pushed up to the boundary required
970 by this machine. SIZE is the desired size, which need not be constant. */
971
972 rtx
973 round_push (size)
974 rtx size;
975 {
976 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
977 if (align == 1)
978 return size;
979 if (GET_CODE (size) == CONST_INT)
980 {
981 int new = (INTVAL (size) + align - 1) / align * align;
982 if (INTVAL (size) != new)
983 size = GEN_INT (new);
984 }
985 else
986 {
987 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
988 but we know it can't. So add ourselves and then do
989 TRUNC_DIV_EXPR. */
990 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
991 NULL_RTX, 1, OPTAB_LIB_WIDEN);
992 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
993 NULL_RTX, 1);
994 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
995 }
996 return size;
997 }
998 \f
999 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1000 to a previously-created save area. If no save area has been allocated,
1001 this function will allocate one. If a save area is specified, it
1002 must be of the proper mode.
1003
1004 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
1005 are emitted at the current position. */
1006
1007 void
1008 emit_stack_save (save_level, psave, after)
1009 enum save_level save_level;
1010 rtx *psave;
1011 rtx after;
1012 {
1013 rtx sa = *psave;
1014 /* The default is that we use a move insn and save in a Pmode object. */
1015 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1016 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1017
1018 /* See if this machine has anything special to do for this kind of save. */
1019 switch (save_level)
1020 {
1021 #ifdef HAVE_save_stack_block
1022 case SAVE_BLOCK:
1023 if (HAVE_save_stack_block)
1024 fcn = gen_save_stack_block;
1025 break;
1026 #endif
1027 #ifdef HAVE_save_stack_function
1028 case SAVE_FUNCTION:
1029 if (HAVE_save_stack_function)
1030 fcn = gen_save_stack_function;
1031 break;
1032 #endif
1033 #ifdef HAVE_save_stack_nonlocal
1034 case SAVE_NONLOCAL:
1035 if (HAVE_save_stack_nonlocal)
1036 fcn = gen_save_stack_nonlocal;
1037 break;
1038 #endif
1039 default:
1040 break;
1041 }
1042
1043 /* If there is no save area and we have to allocate one, do so. Otherwise
1044 verify the save area is the proper mode. */
1045
1046 if (sa == 0)
1047 {
1048 if (mode != VOIDmode)
1049 {
1050 if (save_level == SAVE_NONLOCAL)
1051 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1052 else
1053 *psave = sa = gen_reg_rtx (mode);
1054 }
1055 }
1056 else
1057 {
1058 if (mode == VOIDmode || GET_MODE (sa) != mode)
1059 abort ();
1060 }
1061
1062 if (after)
1063 {
1064 rtx seq;
1065
1066 start_sequence ();
1067 /* We must validize inside the sequence, to ensure that any instructions
1068 created by the validize call also get moved to the right place. */
1069 if (sa != 0)
1070 sa = validize_mem (sa);
1071 emit_insn (fcn (sa, stack_pointer_rtx));
1072 seq = gen_sequence ();
1073 end_sequence ();
1074 emit_insn_after (seq, after);
1075 }
1076 else
1077 {
1078 if (sa != 0)
1079 sa = validize_mem (sa);
1080 emit_insn (fcn (sa, stack_pointer_rtx));
1081 }
1082 }
1083
1084 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1085 area made by emit_stack_save. If it is zero, we have nothing to do.
1086
1087 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1088 current position. */
1089
1090 void
1091 emit_stack_restore (save_level, sa, after)
1092 enum save_level save_level;
1093 rtx after;
1094 rtx sa;
1095 {
1096 /* The default is that we use a move insn. */
1097 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1098
1099 /* See if this machine has anything special to do for this kind of save. */
1100 switch (save_level)
1101 {
1102 #ifdef HAVE_restore_stack_block
1103 case SAVE_BLOCK:
1104 if (HAVE_restore_stack_block)
1105 fcn = gen_restore_stack_block;
1106 break;
1107 #endif
1108 #ifdef HAVE_restore_stack_function
1109 case SAVE_FUNCTION:
1110 if (HAVE_restore_stack_function)
1111 fcn = gen_restore_stack_function;
1112 break;
1113 #endif
1114 #ifdef HAVE_restore_stack_nonlocal
1115 case SAVE_NONLOCAL:
1116 if (HAVE_restore_stack_nonlocal)
1117 fcn = gen_restore_stack_nonlocal;
1118 break;
1119 #endif
1120 default:
1121 break;
1122 }
1123
1124 if (sa != 0)
1125 sa = validize_mem (sa);
1126
1127 if (after)
1128 {
1129 rtx seq;
1130
1131 start_sequence ();
1132 emit_insn (fcn (stack_pointer_rtx, sa));
1133 seq = gen_sequence ();
1134 end_sequence ();
1135 emit_insn_after (seq, after);
1136 }
1137 else
1138 emit_insn (fcn (stack_pointer_rtx, sa));
1139 }
1140 \f
1141 #ifdef SETJMP_VIA_SAVE_AREA
1142 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1143 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1144 platforms, the dynamic stack space used can corrupt the original
1145 frame, thus causing a crash if a longjmp unwinds to it. */
1146
1147 void
1148 optimize_save_area_alloca (insns)
1149 rtx insns;
1150 {
1151 rtx insn;
1152
1153 for (insn = insns; insn; insn = NEXT_INSN(insn))
1154 {
1155 rtx note;
1156
1157 if (GET_CODE (insn) != INSN)
1158 continue;
1159
1160 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1161 {
1162 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1163 continue;
1164
1165 if (!current_function_calls_setjmp)
1166 {
1167 rtx pat = PATTERN (insn);
1168
1169 /* If we do not see the note in a pattern matching
1170 these precise characteristics, we did something
1171 entirely wrong in allocate_dynamic_stack_space.
1172
1173 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1174 was defined on a machine where stacks grow towards higher
1175 addresses.
1176
1177 Right now only supported port with stack that grow upward
1178 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1179 if (GET_CODE (pat) != SET
1180 || SET_DEST (pat) != stack_pointer_rtx
1181 || GET_CODE (SET_SRC (pat)) != MINUS
1182 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1183 abort ();
1184
1185 /* This will now be transformed into a (set REG REG)
1186 so we can just blow away all the other notes. */
1187 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1188 REG_NOTES (insn) = NULL_RTX;
1189 }
1190 else
1191 {
1192 /* setjmp was called, we must remove the REG_SAVE_AREA
1193 note so that later passes do not get confused by its
1194 presence. */
1195 if (note == REG_NOTES (insn))
1196 {
1197 REG_NOTES (insn) = XEXP (note, 1);
1198 }
1199 else
1200 {
1201 rtx srch;
1202
1203 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1204 if (XEXP (srch, 1) == note)
1205 break;
1206
1207 if (srch == NULL_RTX)
1208 abort();
1209
1210 XEXP (srch, 1) = XEXP (note, 1);
1211 }
1212 }
1213 /* Once we've seen the note of interest, we need not look at
1214 the rest of them. */
1215 break;
1216 }
1217 }
1218 }
1219 #endif /* SETJMP_VIA_SAVE_AREA */
1220
1221 /* Return an rtx representing the address of an area of memory dynamically
1222 pushed on the stack. This region of memory is always aligned to
1223 a multiple of BIGGEST_ALIGNMENT.
1224
1225 Any required stack pointer alignment is preserved.
1226
1227 SIZE is an rtx representing the size of the area.
1228 TARGET is a place in which the address can be placed.
1229
1230 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1231
1232 rtx
1233 allocate_dynamic_stack_space (size, target, known_align)
1234 rtx size;
1235 rtx target;
1236 int known_align;
1237 {
1238 #ifdef SETJMP_VIA_SAVE_AREA
1239 rtx setjmpless_size = NULL_RTX;
1240 #endif
1241
1242 /* If we're asking for zero bytes, it doesn't matter what we point
1243 to since we can't dereference it. But return a reasonable
1244 address anyway. */
1245 if (size == const0_rtx)
1246 return virtual_stack_dynamic_rtx;
1247
1248 /* Otherwise, show we're calling alloca or equivalent. */
1249 current_function_calls_alloca = 1;
1250
1251 /* Ensure the size is in the proper mode. */
1252 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1253 size = convert_to_mode (Pmode, size, 1);
1254
1255 /* We can't attempt to minimize alignment necessary, because we don't
1256 know the final value of preferred_stack_boundary yet while executing
1257 this code. */
1258 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1259
1260 /* We will need to ensure that the address we return is aligned to
1261 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1262 always know its final value at this point in the compilation (it
1263 might depend on the size of the outgoing parameter lists, for
1264 example), so we must align the value to be returned in that case.
1265 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1266 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1267 We must also do an alignment operation on the returned value if
1268 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1269
1270 If we have to align, we must leave space in SIZE for the hole
1271 that might result from the alignment operation. */
1272
1273 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1274 #define MUST_ALIGN 1
1275 #else
1276 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1277 #endif
1278
1279 if (MUST_ALIGN)
1280 size
1281 = force_operand (plus_constant (size,
1282 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1283 NULL_RTX);
1284
1285 #ifdef SETJMP_VIA_SAVE_AREA
1286 /* If setjmp restores regs from a save area in the stack frame,
1287 avoid clobbering the reg save area. Note that the offset of
1288 virtual_incoming_args_rtx includes the preallocated stack args space.
1289 It would be no problem to clobber that, but it's on the wrong side
1290 of the old save area. */
1291 {
1292 rtx dynamic_offset
1293 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1294 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1295
1296 if (!current_function_calls_setjmp)
1297 {
1298 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1299
1300 /* See optimize_save_area_alloca to understand what is being
1301 set up here. */
1302
1303 /* ??? Code below assumes that the save area needs maximal
1304 alignment. This constraint may be too strong. */
1305 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1306 abort ();
1307
1308 if (GET_CODE (size) == CONST_INT)
1309 {
1310 HOST_WIDE_INT new = INTVAL (size) / align * align;
1311
1312 if (INTVAL (size) != new)
1313 setjmpless_size = GEN_INT (new);
1314 else
1315 setjmpless_size = size;
1316 }
1317 else
1318 {
1319 /* Since we know overflow is not possible, we avoid using
1320 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1321 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1322 GEN_INT (align), NULL_RTX, 1);
1323 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1324 GEN_INT (align), NULL_RTX, 1);
1325 }
1326 /* Our optimization works based upon being able to perform a simple
1327 transformation of this RTL into a (set REG REG) so make sure things
1328 did in fact end up in a REG. */
1329 if (!register_operand (setjmpless_size, Pmode))
1330 setjmpless_size = force_reg (Pmode, setjmpless_size);
1331 }
1332
1333 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1334 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1335 }
1336 #endif /* SETJMP_VIA_SAVE_AREA */
1337
1338 /* Round the size to a multiple of the required stack alignment.
1339 Since the stack if presumed to be rounded before this allocation,
1340 this will maintain the required alignment.
1341
1342 If the stack grows downward, we could save an insn by subtracting
1343 SIZE from the stack pointer and then aligning the stack pointer.
1344 The problem with this is that the stack pointer may be unaligned
1345 between the execution of the subtraction and alignment insns and
1346 some machines do not allow this. Even on those that do, some
1347 signal handlers malfunction if a signal should occur between those
1348 insns. Since this is an extremely rare event, we have no reliable
1349 way of knowing which systems have this problem. So we avoid even
1350 momentarily mis-aligning the stack. */
1351
1352 /* If we added a variable amount to SIZE,
1353 we can no longer assume it is aligned. */
1354 #if !defined (SETJMP_VIA_SAVE_AREA)
1355 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1356 #endif
1357 size = round_push (size);
1358
1359 do_pending_stack_adjust ();
1360
1361 /* We ought to be called always on the toplevel and stack ought to be aligned
1362 propertly. */
1363 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1364 abort ();
1365
1366 /* If needed, check that we have the required amount of stack. Take into
1367 account what has already been checked. */
1368 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1369 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1370
1371 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1372 if (target == 0 || GET_CODE (target) != REG
1373 || REGNO (target) < FIRST_PSEUDO_REGISTER
1374 || GET_MODE (target) != Pmode)
1375 target = gen_reg_rtx (Pmode);
1376
1377 mark_reg_pointer (target, known_align);
1378
1379 /* Perform the required allocation from the stack. Some systems do
1380 this differently than simply incrementing/decrementing from the
1381 stack pointer, such as acquiring the space by calling malloc(). */
1382 #ifdef HAVE_allocate_stack
1383 if (HAVE_allocate_stack)
1384 {
1385 enum machine_mode mode = STACK_SIZE_MODE;
1386 insn_operand_predicate_fn pred;
1387
1388 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1389 if (pred && ! ((*pred) (target, Pmode)))
1390 #ifdef POINTERS_EXTEND_UNSIGNED
1391 target = convert_memory_address (Pmode, target);
1392 #else
1393 target = copy_to_mode_reg (Pmode, target);
1394 #endif
1395
1396 if (mode == VOIDmode)
1397 mode = Pmode;
1398
1399 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1400 if (pred && ! ((*pred) (size, mode)))
1401 size = copy_to_mode_reg (mode, size);
1402
1403 emit_insn (gen_allocate_stack (target, size));
1404 }
1405 else
1406 #endif
1407 {
1408 #ifndef STACK_GROWS_DOWNWARD
1409 emit_move_insn (target, virtual_stack_dynamic_rtx);
1410 #endif
1411
1412 /* Check stack bounds if necessary. */
1413 if (current_function_limit_stack)
1414 {
1415 rtx available;
1416 rtx space_available = gen_label_rtx ();
1417 #ifdef STACK_GROWS_DOWNWARD
1418 available = expand_binop (Pmode, sub_optab,
1419 stack_pointer_rtx, stack_limit_rtx,
1420 NULL_RTX, 1, OPTAB_WIDEN);
1421 #else
1422 available = expand_binop (Pmode, sub_optab,
1423 stack_limit_rtx, stack_pointer_rtx,
1424 NULL_RTX, 1, OPTAB_WIDEN);
1425 #endif
1426 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1427 0, space_available);
1428 #ifdef HAVE_trap
1429 if (HAVE_trap)
1430 emit_insn (gen_trap ());
1431 else
1432 #endif
1433 error ("stack limits not supported on this target");
1434 emit_barrier ();
1435 emit_label (space_available);
1436 }
1437
1438 anti_adjust_stack (size);
1439 #ifdef SETJMP_VIA_SAVE_AREA
1440 if (setjmpless_size != NULL_RTX)
1441 {
1442 rtx note_target = get_last_insn ();
1443
1444 REG_NOTES (note_target)
1445 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1446 REG_NOTES (note_target));
1447 }
1448 #endif /* SETJMP_VIA_SAVE_AREA */
1449
1450 #ifdef STACK_GROWS_DOWNWARD
1451 emit_move_insn (target, virtual_stack_dynamic_rtx);
1452 #endif
1453 }
1454
1455 if (MUST_ALIGN)
1456 {
1457 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1458 but we know it can't. So add ourselves and then do
1459 TRUNC_DIV_EXPR. */
1460 target = expand_binop (Pmode, add_optab, target,
1461 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1462 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1463 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1464 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1465 NULL_RTX, 1);
1466 target = expand_mult (Pmode, target,
1467 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1468 NULL_RTX, 1);
1469 }
1470
1471 /* Some systems require a particular insn to refer to the stack
1472 to make the pages exist. */
1473 #ifdef HAVE_probe
1474 if (HAVE_probe)
1475 emit_insn (gen_probe ());
1476 #endif
1477
1478 /* Record the new stack level for nonlocal gotos. */
1479 if (nonlocal_goto_handler_slots != 0)
1480 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1481
1482 return target;
1483 }
1484 \f
1485 /* A front end may want to override GCC's stack checking by providing a
1486 run-time routine to call to check the stack, so provide a mechanism for
1487 calling that routine. */
1488
1489 static rtx stack_check_libfunc;
1490
1491 void
1492 set_stack_check_libfunc (libfunc)
1493 rtx libfunc;
1494 {
1495 stack_check_libfunc = libfunc;
1496 }
1497 \f
1498 /* Emit one stack probe at ADDRESS, an address within the stack. */
1499
1500 static void
1501 emit_stack_probe (address)
1502 rtx address;
1503 {
1504 rtx memref = gen_rtx_MEM (word_mode, address);
1505
1506 MEM_VOLATILE_P (memref) = 1;
1507
1508 if (STACK_CHECK_PROBE_LOAD)
1509 emit_move_insn (gen_reg_rtx (word_mode), memref);
1510 else
1511 emit_move_insn (memref, const0_rtx);
1512 }
1513
1514 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1515 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1516 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1517 subtract from the stack. If SIZE is constant, this is done
1518 with a fixed number of probes. Otherwise, we must make a loop. */
1519
1520 #ifdef STACK_GROWS_DOWNWARD
1521 #define STACK_GROW_OP MINUS
1522 #else
1523 #define STACK_GROW_OP PLUS
1524 #endif
1525
1526 void
1527 probe_stack_range (first, size)
1528 HOST_WIDE_INT first;
1529 rtx size;
1530 {
1531 /* First see if the front end has set up a function for us to call to
1532 check the stack. */
1533 if (stack_check_libfunc != 0)
1534 {
1535 rtx addr = memory_address (QImode,
1536 gen_rtx (STACK_GROW_OP, Pmode,
1537 stack_pointer_rtx,
1538 plus_constant (size, first)));
1539
1540 #ifdef POINTERS_EXTEND_UNSIGNED
1541 if (GET_MODE (addr) != ptr_mode)
1542 addr = convert_memory_address (ptr_mode, addr);
1543 #endif
1544
1545 emit_library_call (stack_check_libfunc, 0, VOIDmode, 1, addr,
1546 ptr_mode);
1547 }
1548
1549 /* Next see if we have an insn to check the stack. Use it if so. */
1550 #ifdef HAVE_check_stack
1551 else if (HAVE_check_stack)
1552 {
1553 insn_operand_predicate_fn pred;
1554 rtx last_addr
1555 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1556 stack_pointer_rtx,
1557 plus_constant (size, first)),
1558 NULL_RTX);
1559
1560 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1561 if (pred && ! ((*pred) (last_addr, Pmode)))
1562 last_addr = copy_to_mode_reg (Pmode, last_addr);
1563
1564 emit_insn (gen_check_stack (last_addr));
1565 }
1566 #endif
1567
1568 /* If we have to generate explicit probes, see if we have a constant
1569 small number of them to generate. If so, that's the easy case. */
1570 else if (GET_CODE (size) == CONST_INT
1571 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1572 {
1573 HOST_WIDE_INT offset;
1574
1575 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1576 for values of N from 1 until it exceeds LAST. If only one
1577 probe is needed, this will not generate any code. Then probe
1578 at LAST. */
1579 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1580 offset < INTVAL (size);
1581 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1582 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1583 stack_pointer_rtx,
1584 GEN_INT (offset)));
1585
1586 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1587 stack_pointer_rtx,
1588 plus_constant (size, first)));
1589 }
1590
1591 /* In the variable case, do the same as above, but in a loop. We emit loop
1592 notes so that loop optimization can be done. */
1593 else
1594 {
1595 rtx test_addr
1596 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1597 stack_pointer_rtx,
1598 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1599 NULL_RTX);
1600 rtx last_addr
1601 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1602 stack_pointer_rtx,
1603 plus_constant (size, first)),
1604 NULL_RTX);
1605 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1606 rtx loop_lab = gen_label_rtx ();
1607 rtx test_lab = gen_label_rtx ();
1608 rtx end_lab = gen_label_rtx ();
1609 rtx temp;
1610
1611 if (GET_CODE (test_addr) != REG
1612 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1613 test_addr = force_reg (Pmode, test_addr);
1614
1615 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1616 emit_jump (test_lab);
1617
1618 emit_label (loop_lab);
1619 emit_stack_probe (test_addr);
1620
1621 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1622
1623 #ifdef STACK_GROWS_DOWNWARD
1624 #define CMP_OPCODE GTU
1625 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1626 1, OPTAB_WIDEN);
1627 #else
1628 #define CMP_OPCODE LTU
1629 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1630 1, OPTAB_WIDEN);
1631 #endif
1632
1633 if (temp != test_addr)
1634 abort ();
1635
1636 emit_label (test_lab);
1637 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1638 NULL_RTX, Pmode, 1, 0, loop_lab);
1639 emit_jump (end_lab);
1640 emit_note (NULL, NOTE_INSN_LOOP_END);
1641 emit_label (end_lab);
1642
1643 emit_stack_probe (last_addr);
1644 }
1645 }
1646 \f
1647 /* Return an rtx representing the register or memory location
1648 in which a scalar value of data type VALTYPE
1649 was returned by a function call to function FUNC.
1650 FUNC is a FUNCTION_DECL node if the precise function is known,
1651 otherwise 0.
1652 OUTGOING is 1 if on a machine with register windows this function
1653 should return the register in which the function will put its result
1654 and 0 otherwise. */
1655
1656 rtx
1657 hard_function_value (valtype, func, outgoing)
1658 tree valtype;
1659 tree func ATTRIBUTE_UNUSED;
1660 int outgoing ATTRIBUTE_UNUSED;
1661 {
1662 rtx val;
1663
1664 #ifdef FUNCTION_OUTGOING_VALUE
1665 if (outgoing)
1666 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1667 else
1668 #endif
1669 val = FUNCTION_VALUE (valtype, func);
1670
1671 if (GET_CODE (val) == REG
1672 && GET_MODE (val) == BLKmode)
1673 {
1674 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1675 enum machine_mode tmpmode;
1676
1677 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1678 tmpmode != VOIDmode;
1679 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1680 {
1681 /* Have we found a large enough mode? */
1682 if (GET_MODE_SIZE (tmpmode) >= bytes)
1683 break;
1684 }
1685
1686 /* No suitable mode found. */
1687 if (tmpmode == VOIDmode)
1688 abort ();
1689
1690 PUT_MODE (val, tmpmode);
1691 }
1692 return val;
1693 }
1694
1695 /* Return an rtx representing the register or memory location
1696 in which a scalar value of mode MODE was returned by a library call. */
1697
1698 rtx
1699 hard_libcall_value (mode)
1700 enum machine_mode mode;
1701 {
1702 return LIBCALL_VALUE (mode);
1703 }
1704
1705 /* Look up the tree code for a given rtx code
1706 to provide the arithmetic operation for REAL_ARITHMETIC.
1707 The function returns an int because the caller may not know
1708 what `enum tree_code' means. */
1709
1710 int
1711 rtx_to_tree_code (code)
1712 enum rtx_code code;
1713 {
1714 enum tree_code tcode;
1715
1716 switch (code)
1717 {
1718 case PLUS:
1719 tcode = PLUS_EXPR;
1720 break;
1721 case MINUS:
1722 tcode = MINUS_EXPR;
1723 break;
1724 case MULT:
1725 tcode = MULT_EXPR;
1726 break;
1727 case DIV:
1728 tcode = RDIV_EXPR;
1729 break;
1730 case SMIN:
1731 tcode = MIN_EXPR;
1732 break;
1733 case SMAX:
1734 tcode = MAX_EXPR;
1735 break;
1736 default:
1737 tcode = LAST_AND_UNUSED_TREE_CODE;
1738 break;
1739 }
1740 return ((int) tcode);
1741 }