c++: template instantiation during fold_for_warn [PR94038]
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "profile-count.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "except.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "stringpool.h"
42 #include "common/common-target.h"
43 #include "output.h"
44
45 static rtx break_out_memory_refs (rtx);
46
47
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
52 {
53 /* Not scalar_int_mode because we also allow pointer bound modes. */
54 scalar_mode smode = as_a <scalar_mode> (mode);
55 int width = GET_MODE_PRECISION (smode);
56
57 /* You want to truncate to a _what_? */
58 gcc_assert (SCALAR_INT_MODE_P (mode));
59
60 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
61 if (smode == BImode)
62 return c & 1 ? STORE_FLAG_VALUE : 0;
63
64 /* Sign-extend for the requested mode. */
65
66 if (width < HOST_BITS_PER_WIDE_INT)
67 {
68 HOST_WIDE_INT sign = 1;
69 sign <<= width - 1;
70 c &= (sign << 1) - 1;
71 c ^= sign;
72 c -= sign;
73 }
74
75 return c;
76 }
77
78 /* Likewise for polynomial values, using the sign-extended representation
79 for each individual coefficient. */
80
81 poly_int64
82 trunc_int_for_mode (poly_int64 x, machine_mode mode)
83 {
84 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
85 x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
86 return x;
87 }
88
89 /* Return an rtx for the sum of X and the integer C, given that X has
90 mode MODE. INPLACE is true if X can be modified inplace or false
91 if it must be treated as immutable. */
92
93 rtx
94 plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
95 {
96 RTX_CODE code;
97 rtx y;
98 rtx tem;
99 int all_constant = 0;
100
101 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
102
103 if (known_eq (c, 0))
104 return x;
105
106 restart:
107
108 code = GET_CODE (x);
109 y = x;
110
111 switch (code)
112 {
113 CASE_CONST_SCALAR_INT:
114 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 rtx cst = get_pool_constant (XEXP (x, 0));
123
124 if (GET_CODE (cst) == CONST_VECTOR
125 && GET_MODE_INNER (GET_MODE (cst)) == mode)
126 {
127 cst = gen_lowpart (mode, cst);
128 gcc_assert (cst);
129 }
130 else if (GET_MODE (cst) == VOIDmode
131 && get_pool_mode (XEXP (x, 0)) != mode)
132 break;
133 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
134 {
135 tem = plus_constant (mode, cst, c);
136 tem = force_const_mem (GET_MODE (x), tem);
137 /* Targets may disallow some constants in the constant pool, thus
138 force_const_mem may return NULL_RTX. */
139 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
140 return tem;
141 }
142 }
143 break;
144
145 case CONST:
146 /* If adding to something entirely constant, set a flag
147 so that we can add a CONST around the result. */
148 if (inplace && shared_const_p (x))
149 inplace = false;
150 x = XEXP (x, 0);
151 all_constant = 1;
152 goto restart;
153
154 case SYMBOL_REF:
155 case LABEL_REF:
156 all_constant = 1;
157 break;
158
159 case PLUS:
160 /* The interesting case is adding the integer to a sum. Look
161 for constant term in the sum and combine with C. For an
162 integer constant term or a constant term that is not an
163 explicit integer, we combine or group them together anyway.
164
165 We may not immediately return from the recursive call here, lest
166 all_constant gets lost. */
167
168 if (CONSTANT_P (XEXP (x, 1)))
169 {
170 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
171 if (term == const0_rtx)
172 x = XEXP (x, 0);
173 else if (inplace)
174 XEXP (x, 1) = term;
175 else
176 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
177 c = 0;
178 }
179 else if (rtx *const_loc = find_constant_term_loc (&y))
180 {
181 if (!inplace)
182 {
183 /* We need to be careful since X may be shared and we can't
184 modify it in place. */
185 x = copy_rtx (x);
186 const_loc = find_constant_term_loc (&x);
187 }
188 *const_loc = plus_constant (mode, *const_loc, c, true);
189 c = 0;
190 }
191 break;
192
193 default:
194 if (CONST_POLY_INT_P (x))
195 return immed_wide_int_const (const_poly_int_value (x) + c, mode);
196 break;
197 }
198
199 if (maybe_ne (c, 0))
200 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
201
202 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
203 return x;
204 else if (all_constant)
205 return gen_rtx_CONST (mode, x);
206 else
207 return x;
208 }
209 \f
210 /* If X is a sum, return a new sum like X but lacking any constant terms.
211 Add all the removed constant terms into *CONSTPTR.
212 X itself is not altered. The result != X if and only if
213 it is not isomorphic to X. */
214
215 rtx
216 eliminate_constant_term (rtx x, rtx *constptr)
217 {
218 rtx x0, x1;
219 rtx tem;
220
221 if (GET_CODE (x) != PLUS)
222 return x;
223
224 /* First handle constants appearing at this level explicitly. */
225 if (CONST_INT_P (XEXP (x, 1))
226 && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
227 XEXP (x, 1))) != 0
228 && CONST_INT_P (tem))
229 {
230 *constptr = tem;
231 return eliminate_constant_term (XEXP (x, 0), constptr);
232 }
233
234 tem = const0_rtx;
235 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
236 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
237 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
238 && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
239 *constptr, tem)) != 0
240 && CONST_INT_P (tem))
241 {
242 *constptr = tem;
243 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
244 }
245
246 return x;
247 }
248
249 \f
250 /* Return a copy of X in which all memory references
251 and all constants that involve symbol refs
252 have been replaced with new temporary registers.
253 Also emit code to load the memory locations and constants
254 into those registers.
255
256 If X contains no such constants or memory references,
257 X itself (not a copy) is returned.
258
259 If a constant is found in the address that is not a legitimate constant
260 in an insn, it is left alone in the hope that it might be valid in the
261 address.
262
263 X may contain no arithmetic except addition, subtraction and multiplication.
264 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
265
266 static rtx
267 break_out_memory_refs (rtx x)
268 {
269 if (MEM_P (x)
270 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
271 && GET_MODE (x) != VOIDmode))
272 x = force_reg (GET_MODE (x), x);
273 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
274 || GET_CODE (x) == MULT)
275 {
276 rtx op0 = break_out_memory_refs (XEXP (x, 0));
277 rtx op1 = break_out_memory_refs (XEXP (x, 1));
278
279 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
280 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
281 }
282
283 return x;
284 }
285
286 /* Given X, a memory address in address space AS' pointer mode, convert it to
287 an address in the address space's address mode, or vice versa (TO_MODE says
288 which way). We take advantage of the fact that pointers are not allowed to
289 overflow by commuting arithmetic operations over conversions so that address
290 arithmetic insns can be used. IN_CONST is true if this conversion is inside
291 a CONST. NO_EMIT is true if no insns should be emitted, and instead
292 it should return NULL if it can't be simplified without emitting insns. */
293
294 rtx
295 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
296 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
297 bool in_const ATTRIBUTE_UNUSED,
298 bool no_emit ATTRIBUTE_UNUSED)
299 {
300 #ifndef POINTERS_EXTEND_UNSIGNED
301 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
302 return x;
303 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
304 scalar_int_mode pointer_mode, address_mode, from_mode;
305 rtx temp;
306 enum rtx_code code;
307
308 /* If X already has the right mode, just return it. */
309 if (GET_MODE (x) == to_mode)
310 return x;
311
312 pointer_mode = targetm.addr_space.pointer_mode (as);
313 address_mode = targetm.addr_space.address_mode (as);
314 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
315
316 /* Here we handle some special cases. If none of them apply, fall through
317 to the default case. */
318 switch (GET_CODE (x))
319 {
320 CASE_CONST_SCALAR_INT:
321 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
322 code = TRUNCATE;
323 else if (POINTERS_EXTEND_UNSIGNED < 0)
324 break;
325 else if (POINTERS_EXTEND_UNSIGNED > 0)
326 code = ZERO_EXTEND;
327 else
328 code = SIGN_EXTEND;
329 temp = simplify_unary_operation (code, to_mode, x, from_mode);
330 if (temp)
331 return temp;
332 break;
333
334 case SUBREG:
335 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
336 && GET_MODE (SUBREG_REG (x)) == to_mode)
337 return SUBREG_REG (x);
338 break;
339
340 case LABEL_REF:
341 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
342 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
343 return temp;
344
345 case SYMBOL_REF:
346 temp = shallow_copy_rtx (x);
347 PUT_MODE (temp, to_mode);
348 return temp;
349
350 case CONST:
351 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
352 true, no_emit);
353 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
354
355 case PLUS:
356 case MULT:
357 /* For addition we can safely permute the conversion and addition
358 operation if one operand is a constant and converting the constant
359 does not change it or if one operand is a constant and we are
360 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
361 We can always safely permute them if we are making the address
362 narrower. Inside a CONST RTL, this is safe for both pointers
363 zero or sign extended as pointers cannot wrap. */
364 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
365 || (GET_CODE (x) == PLUS
366 && CONST_INT_P (XEXP (x, 1))
367 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
368 || XEXP (x, 1) == convert_memory_address_addr_space_1
369 (to_mode, XEXP (x, 1), as, in_const,
370 no_emit)
371 || POINTERS_EXTEND_UNSIGNED < 0)))
372 {
373 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
374 as, in_const, no_emit);
375 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
376 temp, XEXP (x, 1))
377 : temp);
378 }
379 break;
380
381 default:
382 break;
383 }
384
385 if (no_emit)
386 return NULL_RTX;
387
388 return convert_modes (to_mode, from_mode,
389 x, POINTERS_EXTEND_UNSIGNED);
390 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
391 }
392
393 /* Given X, a memory address in address space AS' pointer mode, convert it to
394 an address in the address space's address mode, or vice versa (TO_MODE says
395 which way). We take advantage of the fact that pointers are not allowed to
396 overflow by commuting arithmetic operations over conversions so that address
397 arithmetic insns can be used. */
398
399 rtx
400 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
401 addr_space_t as)
402 {
403 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
404 }
405 \f
406
407 /* Return something equivalent to X but valid as a memory address for something
408 of mode MODE in the named address space AS. When X is not itself valid,
409 this works by copying X or subexpressions of it into registers. */
410
411 rtx
412 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
413 {
414 rtx oldx = x;
415 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
416
417 x = convert_memory_address_addr_space (address_mode, x, as);
418
419 /* By passing constant addresses through registers
420 we get a chance to cse them. */
421 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
422 x = force_reg (address_mode, x);
423
424 /* We get better cse by rejecting indirect addressing at this stage.
425 Let the combiner create indirect addresses where appropriate.
426 For now, generate the code so that the subexpressions useful to share
427 are visible. But not if cse won't be done! */
428 else
429 {
430 if (! cse_not_expected && !REG_P (x))
431 x = break_out_memory_refs (x);
432
433 /* At this point, any valid address is accepted. */
434 if (memory_address_addr_space_p (mode, x, as))
435 goto done;
436
437 /* If it was valid before but breaking out memory refs invalidated it,
438 use it the old way. */
439 if (memory_address_addr_space_p (mode, oldx, as))
440 {
441 x = oldx;
442 goto done;
443 }
444
445 /* Perform machine-dependent transformations on X
446 in certain cases. This is not necessary since the code
447 below can handle all possible cases, but machine-dependent
448 transformations can make better code. */
449 {
450 rtx orig_x = x;
451 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
452 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
453 goto done;
454 }
455
456 /* PLUS and MULT can appear in special ways
457 as the result of attempts to make an address usable for indexing.
458 Usually they are dealt with by calling force_operand, below.
459 But a sum containing constant terms is special
460 if removing them makes the sum a valid address:
461 then we generate that address in a register
462 and index off of it. We do this because it often makes
463 shorter code, and because the addresses thus generated
464 in registers often become common subexpressions. */
465 if (GET_CODE (x) == PLUS)
466 {
467 rtx constant_term = const0_rtx;
468 rtx y = eliminate_constant_term (x, &constant_term);
469 if (constant_term == const0_rtx
470 || ! memory_address_addr_space_p (mode, y, as))
471 x = force_operand (x, NULL_RTX);
472 else
473 {
474 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
475 if (! memory_address_addr_space_p (mode, y, as))
476 x = force_operand (x, NULL_RTX);
477 else
478 x = y;
479 }
480 }
481
482 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
483 x = force_operand (x, NULL_RTX);
484
485 /* If we have a register that's an invalid address,
486 it must be a hard reg of the wrong class. Copy it to a pseudo. */
487 else if (REG_P (x))
488 x = copy_to_reg (x);
489
490 /* Last resort: copy the value to a register, since
491 the register is a valid address. */
492 else
493 x = force_reg (address_mode, x);
494 }
495
496 done:
497
498 gcc_assert (memory_address_addr_space_p (mode, x, as));
499 /* If we didn't change the address, we are done. Otherwise, mark
500 a reg as a pointer if we have REG or REG + CONST_INT. */
501 if (oldx == x)
502 return x;
503 else if (REG_P (x))
504 mark_reg_pointer (x, BITS_PER_UNIT);
505 else if (GET_CODE (x) == PLUS
506 && REG_P (XEXP (x, 0))
507 && CONST_INT_P (XEXP (x, 1)))
508 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
509
510 /* OLDX may have been the address on a temporary. Update the address
511 to indicate that X is now used. */
512 update_temp_slot_address (oldx, x);
513
514 return x;
515 }
516
517 /* Convert a mem ref into one with a valid memory address.
518 Pass through anything else unchanged. */
519
520 rtx
521 validize_mem (rtx ref)
522 {
523 if (!MEM_P (ref))
524 return ref;
525 ref = use_anchored_address (ref);
526 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
527 MEM_ADDR_SPACE (ref)))
528 return ref;
529
530 /* Don't alter REF itself, since that is probably a stack slot. */
531 return replace_equiv_address (ref, XEXP (ref, 0));
532 }
533
534 /* If X is a memory reference to a member of an object block, try rewriting
535 it to use an anchor instead. Return the new memory reference on success
536 and the old one on failure. */
537
538 rtx
539 use_anchored_address (rtx x)
540 {
541 rtx base;
542 HOST_WIDE_INT offset;
543 machine_mode mode;
544
545 if (!flag_section_anchors)
546 return x;
547
548 if (!MEM_P (x))
549 return x;
550
551 /* Split the address into a base and offset. */
552 base = XEXP (x, 0);
553 offset = 0;
554 if (GET_CODE (base) == CONST
555 && GET_CODE (XEXP (base, 0)) == PLUS
556 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
557 {
558 offset += INTVAL (XEXP (XEXP (base, 0), 1));
559 base = XEXP (XEXP (base, 0), 0);
560 }
561
562 /* Check whether BASE is suitable for anchors. */
563 if (GET_CODE (base) != SYMBOL_REF
564 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
565 || SYMBOL_REF_ANCHOR_P (base)
566 || SYMBOL_REF_BLOCK (base) == NULL
567 || !targetm.use_anchors_for_symbol_p (base))
568 return x;
569
570 /* Decide where BASE is going to be. */
571 place_block_symbol (base);
572
573 /* Get the anchor we need to use. */
574 offset += SYMBOL_REF_BLOCK_OFFSET (base);
575 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
576 SYMBOL_REF_TLS_MODEL (base));
577
578 /* Work out the offset from the anchor. */
579 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
580
581 /* If we're going to run a CSE pass, force the anchor into a register.
582 We will then be able to reuse registers for several accesses, if the
583 target costs say that that's worthwhile. */
584 mode = GET_MODE (base);
585 if (!cse_not_expected)
586 base = force_reg (mode, base);
587
588 return replace_equiv_address (x, plus_constant (mode, base, offset));
589 }
590 \f
591 /* Copy the value or contents of X to a new temp reg and return that reg. */
592
593 rtx
594 copy_to_reg (rtx x)
595 {
596 rtx temp = gen_reg_rtx (GET_MODE (x));
597
598 /* If not an operand, must be an address with PLUS and MULT so
599 do the computation. */
600 if (! general_operand (x, VOIDmode))
601 x = force_operand (x, temp);
602
603 if (x != temp)
604 emit_move_insn (temp, x);
605
606 return temp;
607 }
608
609 /* Like copy_to_reg but always give the new register mode Pmode
610 in case X is a constant. */
611
612 rtx
613 copy_addr_to_reg (rtx x)
614 {
615 return copy_to_mode_reg (Pmode, x);
616 }
617
618 /* Like copy_to_reg but always give the new register mode MODE
619 in case X is a constant. */
620
621 rtx
622 copy_to_mode_reg (machine_mode mode, rtx x)
623 {
624 rtx temp = gen_reg_rtx (mode);
625
626 /* If not an operand, must be an address with PLUS and MULT so
627 do the computation. */
628 if (! general_operand (x, VOIDmode))
629 x = force_operand (x, temp);
630
631 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
632 if (x != temp)
633 emit_move_insn (temp, x);
634 return temp;
635 }
636
637 /* Load X into a register if it is not already one.
638 Use mode MODE for the register.
639 X should be valid for mode MODE, but it may be a constant which
640 is valid for all integer modes; that's why caller must specify MODE.
641
642 The caller must not alter the value in the register we return,
643 since we mark it as a "constant" register. */
644
645 rtx
646 force_reg (machine_mode mode, rtx x)
647 {
648 rtx temp, set;
649 rtx_insn *insn;
650
651 if (REG_P (x))
652 return x;
653
654 if (general_operand (x, mode))
655 {
656 temp = gen_reg_rtx (mode);
657 insn = emit_move_insn (temp, x);
658 }
659 else
660 {
661 temp = force_operand (x, NULL_RTX);
662 if (REG_P (temp))
663 insn = get_last_insn ();
664 else
665 {
666 rtx temp2 = gen_reg_rtx (mode);
667 insn = emit_move_insn (temp2, temp);
668 temp = temp2;
669 }
670 }
671
672 /* Let optimizers know that TEMP's value never changes
673 and that X can be substituted for it. Don't get confused
674 if INSN set something else (such as a SUBREG of TEMP). */
675 if (CONSTANT_P (x)
676 && (set = single_set (insn)) != 0
677 && SET_DEST (set) == temp
678 && ! rtx_equal_p (x, SET_SRC (set)))
679 set_unique_reg_note (insn, REG_EQUAL, x);
680
681 /* Let optimizers know that TEMP is a pointer, and if so, the
682 known alignment of that pointer. */
683 {
684 unsigned align = 0;
685 if (GET_CODE (x) == SYMBOL_REF)
686 {
687 align = BITS_PER_UNIT;
688 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
689 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
690 }
691 else if (GET_CODE (x) == LABEL_REF)
692 align = BITS_PER_UNIT;
693 else if (GET_CODE (x) == CONST
694 && GET_CODE (XEXP (x, 0)) == PLUS
695 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
696 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
697 {
698 rtx s = XEXP (XEXP (x, 0), 0);
699 rtx c = XEXP (XEXP (x, 0), 1);
700 unsigned sa, ca;
701
702 sa = BITS_PER_UNIT;
703 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
704 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
705
706 if (INTVAL (c) == 0)
707 align = sa;
708 else
709 {
710 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
711 align = MIN (sa, ca);
712 }
713 }
714
715 if (align || (MEM_P (x) && MEM_POINTER (x)))
716 mark_reg_pointer (temp, align);
717 }
718
719 return temp;
720 }
721
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
724
725 rtx
726 force_not_mem (rtx x)
727 {
728 rtx temp;
729
730 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
731 return x;
732
733 temp = gen_reg_rtx (GET_MODE (x));
734
735 if (MEM_POINTER (x))
736 REG_POINTER (temp) = 1;
737
738 emit_move_insn (temp, x);
739 return temp;
740 }
741
742 /* Copy X to TARGET (if it's nonzero and a reg)
743 or to a new temp reg and return that reg.
744 MODE is the mode to use for X in case it is a constant. */
745
746 rtx
747 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
748 {
749 rtx temp;
750
751 if (target && REG_P (target))
752 temp = target;
753 else
754 temp = gen_reg_rtx (mode);
755
756 emit_move_insn (temp, x);
757 return temp;
758 }
759 \f
760 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
761 PUNSIGNEDP points to the signedness of the type and may be adjusted
762 to show what signedness to use on extension operations.
763
764 FOR_RETURN is nonzero if the caller is promoting the return value
765 of FNDECL, else it is for promoting args. */
766
767 machine_mode
768 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
769 const_tree funtype, int for_return)
770 {
771 /* Called without a type node for a libcall. */
772 if (type == NULL_TREE)
773 {
774 if (INTEGRAL_MODE_P (mode))
775 return targetm.calls.promote_function_mode (NULL_TREE, mode,
776 punsignedp, funtype,
777 for_return);
778 else
779 return mode;
780 }
781
782 switch (TREE_CODE (type))
783 {
784 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
785 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
786 case POINTER_TYPE: case REFERENCE_TYPE:
787 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
788 for_return);
789
790 default:
791 return mode;
792 }
793 }
794 /* Return the mode to use to store a scalar of TYPE and MODE.
795 PUNSIGNEDP points to the signedness of the type and may be adjusted
796 to show what signedness to use on extension operations. */
797
798 machine_mode
799 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
800 int *punsignedp ATTRIBUTE_UNUSED)
801 {
802 #ifdef PROMOTE_MODE
803 enum tree_code code;
804 int unsignedp;
805 scalar_mode smode;
806 #endif
807
808 /* For libcalls this is invoked without TYPE from the backends
809 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
810 case. */
811 if (type == NULL_TREE)
812 return mode;
813
814 /* FIXME: this is the same logic that was there until GCC 4.4, but we
815 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
816 is not defined. The affected targets are M32C, S390, SPARC. */
817 #ifdef PROMOTE_MODE
818 code = TREE_CODE (type);
819 unsignedp = *punsignedp;
820
821 switch (code)
822 {
823 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
824 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
825 /* Values of these types always have scalar mode. */
826 smode = as_a <scalar_mode> (mode);
827 PROMOTE_MODE (smode, unsignedp, type);
828 *punsignedp = unsignedp;
829 return smode;
830
831 #ifdef POINTERS_EXTEND_UNSIGNED
832 case REFERENCE_TYPE:
833 case POINTER_TYPE:
834 *punsignedp = POINTERS_EXTEND_UNSIGNED;
835 return targetm.addr_space.address_mode
836 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
837 #endif
838
839 default:
840 return mode;
841 }
842 #else
843 return mode;
844 #endif
845 }
846
847
848 /* Use one of promote_mode or promote_function_mode to find the promoted
849 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
850 of DECL after promotion. */
851
852 machine_mode
853 promote_decl_mode (const_tree decl, int *punsignedp)
854 {
855 tree type = TREE_TYPE (decl);
856 int unsignedp = TYPE_UNSIGNED (type);
857 machine_mode mode = DECL_MODE (decl);
858 machine_mode pmode;
859
860 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
861 pmode = promote_function_mode (type, mode, &unsignedp,
862 TREE_TYPE (current_function_decl), 1);
863 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
864 pmode = promote_function_mode (type, mode, &unsignedp,
865 TREE_TYPE (current_function_decl), 2);
866 else
867 pmode = promote_mode (type, mode, &unsignedp);
868
869 if (punsignedp)
870 *punsignedp = unsignedp;
871 return pmode;
872 }
873
874 /* Return the promoted mode for name. If it is a named SSA_NAME, it
875 is the same as promote_decl_mode. Otherwise, it is the promoted
876 mode of a temp decl of same type as the SSA_NAME, if we had created
877 one. */
878
879 machine_mode
880 promote_ssa_mode (const_tree name, int *punsignedp)
881 {
882 gcc_assert (TREE_CODE (name) == SSA_NAME);
883
884 /* Partitions holding parms and results must be promoted as expected
885 by function.c. */
886 if (SSA_NAME_VAR (name)
887 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
888 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
889 {
890 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
891 if (mode != BLKmode)
892 return mode;
893 }
894
895 tree type = TREE_TYPE (name);
896 int unsignedp = TYPE_UNSIGNED (type);
897 machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp);
898 if (punsignedp)
899 *punsignedp = unsignedp;
900
901 return pmode;
902 }
903
904
905 \f
906 /* Controls the behavior of {anti_,}adjust_stack. */
907 static bool suppress_reg_args_size;
908
909 /* A helper for adjust_stack and anti_adjust_stack. */
910
911 static void
912 adjust_stack_1 (rtx adjust, bool anti_p)
913 {
914 rtx temp;
915 rtx_insn *insn;
916
917 /* Hereafter anti_p means subtract_p. */
918 if (!STACK_GROWS_DOWNWARD)
919 anti_p = !anti_p;
920
921 temp = expand_binop (Pmode,
922 anti_p ? sub_optab : add_optab,
923 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
924 OPTAB_LIB_WIDEN);
925
926 if (temp != stack_pointer_rtx)
927 insn = emit_move_insn (stack_pointer_rtx, temp);
928 else
929 {
930 insn = get_last_insn ();
931 temp = single_set (insn);
932 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
933 }
934
935 if (!suppress_reg_args_size)
936 add_args_size_note (insn, stack_pointer_delta);
937 }
938
939 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
940 This pops when ADJUST is positive. ADJUST need not be constant. */
941
942 void
943 adjust_stack (rtx adjust)
944 {
945 if (adjust == const0_rtx)
946 return;
947
948 /* We expect all variable sized adjustments to be multiple of
949 PREFERRED_STACK_BOUNDARY. */
950 poly_int64 const_adjust;
951 if (poly_int_rtx_p (adjust, &const_adjust))
952 stack_pointer_delta -= const_adjust;
953
954 adjust_stack_1 (adjust, false);
955 }
956
957 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
958 This pushes when ADJUST is positive. ADJUST need not be constant. */
959
960 void
961 anti_adjust_stack (rtx adjust)
962 {
963 if (adjust == const0_rtx)
964 return;
965
966 /* We expect all variable sized adjustments to be multiple of
967 PREFERRED_STACK_BOUNDARY. */
968 poly_int64 const_adjust;
969 if (poly_int_rtx_p (adjust, &const_adjust))
970 stack_pointer_delta += const_adjust;
971
972 adjust_stack_1 (adjust, true);
973 }
974
975 /* Round the size of a block to be pushed up to the boundary required
976 by this machine. SIZE is the desired size, which need not be constant. */
977
978 static rtx
979 round_push (rtx size)
980 {
981 rtx align_rtx, alignm1_rtx;
982
983 if (!SUPPORTS_STACK_ALIGNMENT
984 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
985 {
986 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
987
988 if (align == 1)
989 return size;
990
991 if (CONST_INT_P (size))
992 {
993 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
994
995 if (INTVAL (size) != new_size)
996 size = GEN_INT (new_size);
997 return size;
998 }
999
1000 align_rtx = GEN_INT (align);
1001 alignm1_rtx = GEN_INT (align - 1);
1002 }
1003 else
1004 {
1005 /* If crtl->preferred_stack_boundary might still grow, use
1006 virtual_preferred_stack_boundary_rtx instead. This will be
1007 substituted by the right value in vregs pass and optimized
1008 during combine. */
1009 align_rtx = virtual_preferred_stack_boundary_rtx;
1010 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1011 NULL_RTX);
1012 }
1013
1014 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1015 but we know it can't. So add ourselves and then do
1016 TRUNC_DIV_EXPR. */
1017 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1018 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1019 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1020 NULL_RTX, 1);
1021 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1022
1023 return size;
1024 }
1025 \f
1026 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1027 to a previously-created save area. If no save area has been allocated,
1028 this function will allocate one. If a save area is specified, it
1029 must be of the proper mode. */
1030
1031 void
1032 emit_stack_save (enum save_level save_level, rtx *psave)
1033 {
1034 rtx sa = *psave;
1035 /* The default is that we use a move insn and save in a Pmode object. */
1036 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1037 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1038
1039 /* See if this machine has anything special to do for this kind of save. */
1040 switch (save_level)
1041 {
1042 case SAVE_BLOCK:
1043 if (targetm.have_save_stack_block ())
1044 fcn = targetm.gen_save_stack_block;
1045 break;
1046 case SAVE_FUNCTION:
1047 if (targetm.have_save_stack_function ())
1048 fcn = targetm.gen_save_stack_function;
1049 break;
1050 case SAVE_NONLOCAL:
1051 if (targetm.have_save_stack_nonlocal ())
1052 fcn = targetm.gen_save_stack_nonlocal;
1053 break;
1054 default:
1055 break;
1056 }
1057
1058 /* If there is no save area and we have to allocate one, do so. Otherwise
1059 verify the save area is the proper mode. */
1060
1061 if (sa == 0)
1062 {
1063 if (mode != VOIDmode)
1064 {
1065 if (save_level == SAVE_NONLOCAL)
1066 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1067 else
1068 *psave = sa = gen_reg_rtx (mode);
1069 }
1070 }
1071
1072 do_pending_stack_adjust ();
1073 if (sa != 0)
1074 sa = validize_mem (sa);
1075 emit_insn (fcn (sa, stack_pointer_rtx));
1076 }
1077
1078 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1079 area made by emit_stack_save. If it is zero, we have nothing to do. */
1080
1081 void
1082 emit_stack_restore (enum save_level save_level, rtx sa)
1083 {
1084 /* The default is that we use a move insn. */
1085 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1086
1087 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1088 STACK_POINTER and HARD_FRAME_POINTER.
1089 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1090 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1091 aligned variables, which is reflected in ix86_can_eliminate.
1092 We normally still have the realigned STACK_POINTER that we can use.
1093 But if there is a stack restore still present at reload, it can trigger
1094 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1095 FRAME_POINTER into a hard reg.
1096 To prevent this situation, we force need_drap if we emit a stack
1097 restore. */
1098 if (SUPPORTS_STACK_ALIGNMENT)
1099 crtl->need_drap = true;
1100
1101 /* See if this machine has anything special to do for this kind of save. */
1102 switch (save_level)
1103 {
1104 case SAVE_BLOCK:
1105 if (targetm.have_restore_stack_block ())
1106 fcn = targetm.gen_restore_stack_block;
1107 break;
1108 case SAVE_FUNCTION:
1109 if (targetm.have_restore_stack_function ())
1110 fcn = targetm.gen_restore_stack_function;
1111 break;
1112 case SAVE_NONLOCAL:
1113 if (targetm.have_restore_stack_nonlocal ())
1114 fcn = targetm.gen_restore_stack_nonlocal;
1115 break;
1116 default:
1117 break;
1118 }
1119
1120 if (sa != 0)
1121 {
1122 sa = validize_mem (sa);
1123 /* These clobbers prevent the scheduler from moving
1124 references to variable arrays below the code
1125 that deletes (pops) the arrays. */
1126 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1127 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1128 }
1129
1130 discard_pending_stack_adjust ();
1131
1132 emit_insn (fcn (stack_pointer_rtx, sa));
1133 }
1134
1135 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1136 function. This should be called whenever we allocate or deallocate
1137 dynamic stack space. */
1138
1139 void
1140 update_nonlocal_goto_save_area (void)
1141 {
1142 tree t_save;
1143 rtx r_save;
1144
1145 /* The nonlocal_goto_save_area object is an array of N pointers. The
1146 first one is used for the frame pointer save; the rest are sized by
1147 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1148 of the stack save area slots. */
1149 t_save = build4 (ARRAY_REF,
1150 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1151 cfun->nonlocal_goto_save_area,
1152 integer_one_node, NULL_TREE, NULL_TREE);
1153 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1154
1155 emit_stack_save (SAVE_NONLOCAL, &r_save);
1156 }
1157
1158 /* Record a new stack level for the current function. This should be called
1159 whenever we allocate or deallocate dynamic stack space. */
1160
1161 void
1162 record_new_stack_level (void)
1163 {
1164 /* Record the new stack level for nonlocal gotos. */
1165 if (cfun->nonlocal_goto_save_area)
1166 update_nonlocal_goto_save_area ();
1167
1168 /* Record the new stack level for SJLJ exceptions. */
1169 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1170 update_sjlj_context ();
1171 }
1172
1173 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1174
1175 rtx
1176 align_dynamic_address (rtx target, unsigned required_align)
1177 {
1178 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1179 but we know it can't. So add ourselves and then do
1180 TRUNC_DIV_EXPR. */
1181 target = expand_binop (Pmode, add_optab, target,
1182 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1183 Pmode),
1184 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1185 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1186 gen_int_mode (required_align / BITS_PER_UNIT,
1187 Pmode),
1188 NULL_RTX, 1);
1189 target = expand_mult (Pmode, target,
1190 gen_int_mode (required_align / BITS_PER_UNIT,
1191 Pmode),
1192 NULL_RTX, 1);
1193
1194 return target;
1195 }
1196
1197 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1198 be dynamically pushed on the stack.
1199
1200 *PSIZE is an rtx representing the size of the area.
1201
1202 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1203 parameter may be zero. If so, a proper value will be extracted
1204 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1205
1206 REQUIRED_ALIGN is the alignment (in bits) required for the region
1207 of memory.
1208
1209 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1210 the additional size returned. */
1211 void
1212 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1213 unsigned required_align,
1214 HOST_WIDE_INT *pstack_usage_size)
1215 {
1216 rtx size = *psize;
1217
1218 /* Ensure the size is in the proper mode. */
1219 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1220 size = convert_to_mode (Pmode, size, 1);
1221
1222 if (CONST_INT_P (size))
1223 {
1224 unsigned HOST_WIDE_INT lsb;
1225
1226 lsb = INTVAL (size);
1227 lsb &= -lsb;
1228
1229 /* Watch out for overflow truncating to "unsigned". */
1230 if (lsb > UINT_MAX / BITS_PER_UNIT)
1231 size_align = 1u << (HOST_BITS_PER_INT - 1);
1232 else
1233 size_align = (unsigned)lsb * BITS_PER_UNIT;
1234 }
1235 else if (size_align < BITS_PER_UNIT)
1236 size_align = BITS_PER_UNIT;
1237
1238 /* We can't attempt to minimize alignment necessary, because we don't
1239 know the final value of preferred_stack_boundary yet while executing
1240 this code. */
1241 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1242 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1243
1244 /* We will need to ensure that the address we return is aligned to
1245 REQUIRED_ALIGN. At this point in the compilation, we don't always
1246 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1247 (it might depend on the size of the outgoing parameter lists, for
1248 example), so we must preventively align the value. We leave space
1249 in SIZE for the hole that might result from the alignment operation. */
1250
1251 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1252 if (known_align == 0)
1253 known_align = BITS_PER_UNIT;
1254 if (required_align > known_align)
1255 {
1256 unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
1257 size = plus_constant (Pmode, size, extra);
1258 size = force_operand (size, NULL_RTX);
1259 if (size_align > known_align)
1260 size_align = known_align;
1261
1262 if (flag_stack_usage_info && pstack_usage_size)
1263 *pstack_usage_size += extra;
1264 }
1265
1266 /* Round the size to a multiple of the required stack alignment.
1267 Since the stack is presumed to be rounded before this allocation,
1268 this will maintain the required alignment.
1269
1270 If the stack grows downward, we could save an insn by subtracting
1271 SIZE from the stack pointer and then aligning the stack pointer.
1272 The problem with this is that the stack pointer may be unaligned
1273 between the execution of the subtraction and alignment insns and
1274 some machines do not allow this. Even on those that do, some
1275 signal handlers malfunction if a signal should occur between those
1276 insns. Since this is an extremely rare event, we have no reliable
1277 way of knowing which systems have this problem. So we avoid even
1278 momentarily mis-aligning the stack. */
1279 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1280 {
1281 size = round_push (size);
1282
1283 if (flag_stack_usage_info && pstack_usage_size)
1284 {
1285 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1286 *pstack_usage_size =
1287 (*pstack_usage_size + align - 1) / align * align;
1288 }
1289 }
1290
1291 *psize = size;
1292 }
1293
1294 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1295
1296 "protect" in the context of -fstack-check means how many bytes we
1297 should always ensure are available on the stack. More importantly
1298 this is how many bytes are skipped when probing the stack.
1299
1300 On some targets we want to reuse the -fstack-check prologue support
1301 to give a degree of protection against stack clashing style attacks.
1302
1303 In that scenario we do not want to skip bytes before probing as that
1304 would render the stack clash protections useless.
1305
1306 So we never use STACK_CHECK_PROTECT directly. Instead we indirect though
1307 this helper which allows us to provide different values for
1308 -fstack-check and -fstack-clash-protection. */
1309 HOST_WIDE_INT
1310 get_stack_check_protect (void)
1311 {
1312 if (flag_stack_clash_protection)
1313 return 0;
1314 return STACK_CHECK_PROTECT;
1315 }
1316
1317 /* Return an rtx representing the address of an area of memory dynamically
1318 pushed on the stack.
1319
1320 Any required stack pointer alignment is preserved.
1321
1322 SIZE is an rtx representing the size of the area.
1323
1324 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1325 parameter may be zero. If so, a proper value will be extracted
1326 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1327
1328 REQUIRED_ALIGN is the alignment (in bits) required for the region
1329 of memory.
1330
1331 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1332 no such upper bound is known.
1333
1334 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1335 stack space allocated by the generated code cannot be added with itself
1336 in the course of the execution of the function. It is always safe to
1337 pass FALSE here and the following criterion is sufficient in order to
1338 pass TRUE: every path in the CFG that starts at the allocation point and
1339 loops to it executes the associated deallocation code. */
1340
1341 rtx
1342 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1343 unsigned required_align,
1344 HOST_WIDE_INT max_size,
1345 bool cannot_accumulate)
1346 {
1347 HOST_WIDE_INT stack_usage_size = -1;
1348 rtx_code_label *final_label;
1349 rtx final_target, target;
1350
1351 /* If we're asking for zero bytes, it doesn't matter what we point
1352 to since we can't dereference it. But return a reasonable
1353 address anyway. */
1354 if (size == const0_rtx)
1355 return virtual_stack_dynamic_rtx;
1356
1357 /* Otherwise, show we're calling alloca or equivalent. */
1358 cfun->calls_alloca = 1;
1359
1360 /* If stack usage info is requested, look into the size we are passed.
1361 We need to do so this early to avoid the obfuscation that may be
1362 introduced later by the various alignment operations. */
1363 if (flag_stack_usage_info)
1364 {
1365 if (CONST_INT_P (size))
1366 stack_usage_size = INTVAL (size);
1367 else if (REG_P (size))
1368 {
1369 /* Look into the last emitted insn and see if we can deduce
1370 something for the register. */
1371 rtx_insn *insn;
1372 rtx set, note;
1373 insn = get_last_insn ();
1374 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1375 {
1376 if (CONST_INT_P (SET_SRC (set)))
1377 stack_usage_size = INTVAL (SET_SRC (set));
1378 else if ((note = find_reg_equal_equiv_note (insn))
1379 && CONST_INT_P (XEXP (note, 0)))
1380 stack_usage_size = INTVAL (XEXP (note, 0));
1381 }
1382 }
1383
1384 /* If the size is not constant, try the maximum size. */
1385 if (stack_usage_size < 0)
1386 stack_usage_size = max_size;
1387
1388 /* If the size is still not constant, we can't say anything. */
1389 if (stack_usage_size < 0)
1390 {
1391 current_function_has_unbounded_dynamic_stack_size = 1;
1392 stack_usage_size = 0;
1393 }
1394 }
1395
1396 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1397
1398 target = gen_reg_rtx (Pmode);
1399
1400 /* The size is supposed to be fully adjusted at this point so record it
1401 if stack usage info is requested. */
1402 if (flag_stack_usage_info)
1403 {
1404 current_function_dynamic_stack_size += stack_usage_size;
1405
1406 /* ??? This is gross but the only safe stance in the absence
1407 of stack usage oriented flow analysis. */
1408 if (!cannot_accumulate)
1409 current_function_has_unbounded_dynamic_stack_size = 1;
1410 }
1411
1412 do_pending_stack_adjust ();
1413
1414 final_label = NULL;
1415 final_target = NULL_RTX;
1416
1417 /* If we are splitting the stack, we need to ask the backend whether
1418 there is enough room on the current stack. If there isn't, or if
1419 the backend doesn't know how to tell is, then we need to call a
1420 function to allocate memory in some other way. This memory will
1421 be released when we release the current stack segment. The
1422 effect is that stack allocation becomes less efficient, but at
1423 least it doesn't cause a stack overflow. */
1424 if (flag_split_stack)
1425 {
1426 rtx_code_label *available_label;
1427 rtx ask, space, func;
1428
1429 available_label = NULL;
1430
1431 if (targetm.have_split_stack_space_check ())
1432 {
1433 available_label = gen_label_rtx ();
1434
1435 /* This instruction will branch to AVAILABLE_LABEL if there
1436 are SIZE bytes available on the stack. */
1437 emit_insn (targetm.gen_split_stack_space_check
1438 (size, available_label));
1439 }
1440
1441 /* The __morestack_allocate_stack_space function will allocate
1442 memory using malloc. If the alignment of the memory returned
1443 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1444 make sure we allocate enough space. */
1445 if (MALLOC_ABI_ALIGNMENT >= required_align)
1446 ask = size;
1447 else
1448 ask = expand_binop (Pmode, add_optab, size,
1449 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1450 Pmode),
1451 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1452
1453 func = init_one_libfunc ("__morestack_allocate_stack_space");
1454
1455 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1456 ask, Pmode);
1457
1458 if (available_label == NULL_RTX)
1459 return space;
1460
1461 final_target = gen_reg_rtx (Pmode);
1462
1463 emit_move_insn (final_target, space);
1464
1465 final_label = gen_label_rtx ();
1466 emit_jump (final_label);
1467
1468 emit_label (available_label);
1469 }
1470
1471 /* We ought to be called always on the toplevel and stack ought to be aligned
1472 properly. */
1473 gcc_assert (multiple_p (stack_pointer_delta,
1474 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
1475
1476 /* If needed, check that we have the required amount of stack. Take into
1477 account what has already been checked. */
1478 if (STACK_CHECK_MOVING_SP)
1479 ;
1480 else if (flag_stack_check == GENERIC_STACK_CHECK)
1481 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1482 size);
1483 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1484 probe_stack_range (get_stack_check_protect (), size);
1485
1486 /* Don't let anti_adjust_stack emit notes. */
1487 suppress_reg_args_size = true;
1488
1489 /* Perform the required allocation from the stack. Some systems do
1490 this differently than simply incrementing/decrementing from the
1491 stack pointer, such as acquiring the space by calling malloc(). */
1492 if (targetm.have_allocate_stack ())
1493 {
1494 class expand_operand ops[2];
1495 /* We don't have to check against the predicate for operand 0 since
1496 TARGET is known to be a pseudo of the proper mode, which must
1497 be valid for the operand. */
1498 create_fixed_operand (&ops[0], target);
1499 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1500 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1501 }
1502 else
1503 {
1504 poly_int64 saved_stack_pointer_delta;
1505
1506 if (!STACK_GROWS_DOWNWARD)
1507 emit_move_insn (target, virtual_stack_dynamic_rtx);
1508
1509 /* Check stack bounds if necessary. */
1510 if (crtl->limit_stack)
1511 {
1512 rtx available;
1513 rtx_code_label *space_available = gen_label_rtx ();
1514 if (STACK_GROWS_DOWNWARD)
1515 available = expand_binop (Pmode, sub_optab,
1516 stack_pointer_rtx, stack_limit_rtx,
1517 NULL_RTX, 1, OPTAB_WIDEN);
1518 else
1519 available = expand_binop (Pmode, sub_optab,
1520 stack_limit_rtx, stack_pointer_rtx,
1521 NULL_RTX, 1, OPTAB_WIDEN);
1522
1523 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1524 space_available);
1525 if (targetm.have_trap ())
1526 emit_insn (targetm.gen_trap ());
1527 else
1528 error ("stack limits not supported on this target");
1529 emit_barrier ();
1530 emit_label (space_available);
1531 }
1532
1533 saved_stack_pointer_delta = stack_pointer_delta;
1534
1535 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1536 anti_adjust_stack_and_probe (size, false);
1537 else if (flag_stack_clash_protection)
1538 anti_adjust_stack_and_probe_stack_clash (size);
1539 else
1540 anti_adjust_stack (size);
1541
1542 /* Even if size is constant, don't modify stack_pointer_delta.
1543 The constant size alloca should preserve
1544 crtl->preferred_stack_boundary alignment. */
1545 stack_pointer_delta = saved_stack_pointer_delta;
1546
1547 if (STACK_GROWS_DOWNWARD)
1548 emit_move_insn (target, virtual_stack_dynamic_rtx);
1549 }
1550
1551 suppress_reg_args_size = false;
1552
1553 /* Finish up the split stack handling. */
1554 if (final_label != NULL_RTX)
1555 {
1556 gcc_assert (flag_split_stack);
1557 emit_move_insn (final_target, target);
1558 emit_label (final_label);
1559 target = final_target;
1560 }
1561
1562 target = align_dynamic_address (target, required_align);
1563
1564 /* Now that we've committed to a return value, mark its alignment. */
1565 mark_reg_pointer (target, required_align);
1566
1567 /* Record the new stack level. */
1568 record_new_stack_level ();
1569
1570 return target;
1571 }
1572
1573 /* Return an rtx representing the address of an area of memory already
1574 statically pushed onto the stack in the virtual stack vars area. (It is
1575 assumed that the area is allocated in the function prologue.)
1576
1577 Any required stack pointer alignment is preserved.
1578
1579 OFFSET is the offset of the area into the virtual stack vars area.
1580
1581 REQUIRED_ALIGN is the alignment (in bits) required for the region
1582 of memory. */
1583
1584 rtx
1585 get_dynamic_stack_base (poly_int64 offset, unsigned required_align)
1586 {
1587 rtx target;
1588
1589 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1590 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1591
1592 target = gen_reg_rtx (Pmode);
1593 emit_move_insn (target, virtual_stack_vars_rtx);
1594 target = expand_binop (Pmode, add_optab, target,
1595 gen_int_mode (offset, Pmode),
1596 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1597 target = align_dynamic_address (target, required_align);
1598
1599 /* Now that we've committed to a return value, mark its alignment. */
1600 mark_reg_pointer (target, required_align);
1601
1602 return target;
1603 }
1604 \f
1605 /* A front end may want to override GCC's stack checking by providing a
1606 run-time routine to call to check the stack, so provide a mechanism for
1607 calling that routine. */
1608
1609 static GTY(()) rtx stack_check_libfunc;
1610
1611 void
1612 set_stack_check_libfunc (const char *libfunc_name)
1613 {
1614 gcc_assert (stack_check_libfunc == NULL_RTX);
1615 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1616 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
1617 get_identifier (libfunc_name), void_type_node);
1618 DECL_EXTERNAL (decl) = 1;
1619 SET_SYMBOL_REF_DECL (stack_check_libfunc, decl);
1620 }
1621 \f
1622 /* Emit one stack probe at ADDRESS, an address within the stack. */
1623
1624 void
1625 emit_stack_probe (rtx address)
1626 {
1627 if (targetm.have_probe_stack_address ())
1628 {
1629 class expand_operand ops[1];
1630 insn_code icode = targetm.code_for_probe_stack_address;
1631 create_address_operand (ops, address);
1632 maybe_legitimize_operands (icode, 0, 1, ops);
1633 expand_insn (icode, 1, ops);
1634 }
1635 else
1636 {
1637 rtx memref = gen_rtx_MEM (word_mode, address);
1638
1639 MEM_VOLATILE_P (memref) = 1;
1640 memref = validize_mem (memref);
1641
1642 /* See if we have an insn to probe the stack. */
1643 if (targetm.have_probe_stack ())
1644 emit_insn (targetm.gen_probe_stack (memref));
1645 else
1646 emit_move_insn (memref, const0_rtx);
1647 }
1648 }
1649
1650 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1651 FIRST is a constant and size is a Pmode RTX. These are offsets from
1652 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1653 or subtract them from the stack pointer. */
1654
1655 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1656
1657 #if STACK_GROWS_DOWNWARD
1658 #define STACK_GROW_OP MINUS
1659 #define STACK_GROW_OPTAB sub_optab
1660 #define STACK_GROW_OFF(off) -(off)
1661 #else
1662 #define STACK_GROW_OP PLUS
1663 #define STACK_GROW_OPTAB add_optab
1664 #define STACK_GROW_OFF(off) (off)
1665 #endif
1666
1667 void
1668 probe_stack_range (HOST_WIDE_INT first, rtx size)
1669 {
1670 /* First ensure SIZE is Pmode. */
1671 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1672 size = convert_to_mode (Pmode, size, 1);
1673
1674 /* Next see if we have a function to check the stack. */
1675 if (stack_check_libfunc)
1676 {
1677 rtx addr = memory_address (Pmode,
1678 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1679 stack_pointer_rtx,
1680 plus_constant (Pmode,
1681 size, first)));
1682 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1683 addr, Pmode);
1684 }
1685
1686 /* Next see if we have an insn to check the stack. */
1687 else if (targetm.have_check_stack ())
1688 {
1689 class expand_operand ops[1];
1690 rtx addr = memory_address (Pmode,
1691 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1692 stack_pointer_rtx,
1693 plus_constant (Pmode,
1694 size, first)));
1695 bool success;
1696 create_input_operand (&ops[0], addr, Pmode);
1697 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1698 gcc_assert (success);
1699 }
1700
1701 /* Otherwise we have to generate explicit probes. If we have a constant
1702 small number of them to generate, that's the easy case. */
1703 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1704 {
1705 HOST_WIDE_INT isize = INTVAL (size), i;
1706 rtx addr;
1707
1708 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1709 it exceeds SIZE. If only one probe is needed, this will not
1710 generate any code. Then probe at FIRST + SIZE. */
1711 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1712 {
1713 addr = memory_address (Pmode,
1714 plus_constant (Pmode, stack_pointer_rtx,
1715 STACK_GROW_OFF (first + i)));
1716 emit_stack_probe (addr);
1717 }
1718
1719 addr = memory_address (Pmode,
1720 plus_constant (Pmode, stack_pointer_rtx,
1721 STACK_GROW_OFF (first + isize)));
1722 emit_stack_probe (addr);
1723 }
1724
1725 /* In the variable case, do the same as above, but in a loop. Note that we
1726 must be extra careful with variables wrapping around because we might be
1727 at the very top (or the very bottom) of the address space and we have to
1728 be able to handle this case properly; in particular, we use an equality
1729 test for the loop condition. */
1730 else
1731 {
1732 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1733 rtx_code_label *loop_lab = gen_label_rtx ();
1734 rtx_code_label *end_lab = gen_label_rtx ();
1735
1736 /* Step 1: round SIZE to the previous multiple of the interval. */
1737
1738 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1739 rounded_size
1740 = simplify_gen_binary (AND, Pmode, size,
1741 gen_int_mode (-PROBE_INTERVAL, Pmode));
1742 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1743
1744
1745 /* Step 2: compute initial and final value of the loop counter. */
1746
1747 /* TEST_ADDR = SP + FIRST. */
1748 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1749 stack_pointer_rtx,
1750 gen_int_mode (first, Pmode)),
1751 NULL_RTX);
1752
1753 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1754 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1755 test_addr,
1756 rounded_size_op), NULL_RTX);
1757
1758
1759 /* Step 3: the loop
1760
1761 while (TEST_ADDR != LAST_ADDR)
1762 {
1763 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1764 probe at TEST_ADDR
1765 }
1766
1767 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1768 until it is equal to ROUNDED_SIZE. */
1769
1770 emit_label (loop_lab);
1771
1772 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1773 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1774 end_lab);
1775
1776 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1777 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1778 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1779 1, OPTAB_WIDEN);
1780
1781 gcc_assert (temp == test_addr);
1782
1783 /* Probe at TEST_ADDR. */
1784 emit_stack_probe (test_addr);
1785
1786 emit_jump (loop_lab);
1787
1788 emit_label (end_lab);
1789
1790
1791 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1792 that SIZE is equal to ROUNDED_SIZE. */
1793
1794 /* TEMP = SIZE - ROUNDED_SIZE. */
1795 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1796 if (temp != const0_rtx)
1797 {
1798 rtx addr;
1799
1800 if (CONST_INT_P (temp))
1801 {
1802 /* Use [base + disp} addressing mode if supported. */
1803 HOST_WIDE_INT offset = INTVAL (temp);
1804 addr = memory_address (Pmode,
1805 plus_constant (Pmode, last_addr,
1806 STACK_GROW_OFF (offset)));
1807 }
1808 else
1809 {
1810 /* Manual CSE if the difference is not known at compile-time. */
1811 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1812 addr = memory_address (Pmode,
1813 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1814 last_addr, temp));
1815 }
1816
1817 emit_stack_probe (addr);
1818 }
1819 }
1820
1821 /* Make sure nothing is scheduled before we are done. */
1822 emit_insn (gen_blockage ());
1823 }
1824
1825 /* Compute parameters for stack clash probing a dynamic stack
1826 allocation of SIZE bytes.
1827
1828 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1829
1830 Additionally we conditionally dump the type of probing that will
1831 be needed given the values computed. */
1832
1833 void
1834 compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1835 rtx *residual,
1836 HOST_WIDE_INT *probe_interval,
1837 rtx size)
1838 {
1839 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1840 *probe_interval
1841 = 1 << param_stack_clash_protection_probe_interval;
1842 *rounded_size = simplify_gen_binary (AND, Pmode, size,
1843 GEN_INT (-*probe_interval));
1844
1845 /* Compute the value of the stack pointer for the last iteration.
1846 It's just SP + ROUNDED_SIZE. */
1847 rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1848 *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1849 stack_pointer_rtx,
1850 rounded_size_op),
1851 NULL_RTX);
1852
1853 /* Compute any residuals not allocated by the loop above. Residuals
1854 are just the ROUNDED_SIZE - SIZE. */
1855 *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1856
1857 /* Dump key information to make writing tests easy. */
1858 if (dump_file)
1859 {
1860 if (*rounded_size == CONST0_RTX (Pmode))
1861 fprintf (dump_file,
1862 "Stack clash skipped dynamic allocation and probing loop.\n");
1863 else if (CONST_INT_P (*rounded_size)
1864 && INTVAL (*rounded_size) <= 4 * *probe_interval)
1865 fprintf (dump_file,
1866 "Stack clash dynamic allocation and probing inline.\n");
1867 else if (CONST_INT_P (*rounded_size))
1868 fprintf (dump_file,
1869 "Stack clash dynamic allocation and probing in "
1870 "rotated loop.\n");
1871 else
1872 fprintf (dump_file,
1873 "Stack clash dynamic allocation and probing in loop.\n");
1874
1875 if (*residual != CONST0_RTX (Pmode))
1876 fprintf (dump_file,
1877 "Stack clash dynamic allocation and probing residuals.\n");
1878 else
1879 fprintf (dump_file,
1880 "Stack clash skipped dynamic allocation and "
1881 "probing residuals.\n");
1882 }
1883 }
1884
1885 /* Emit the start of an allocate/probe loop for stack
1886 clash protection.
1887
1888 LOOP_LAB and END_LAB are returned for use when we emit the
1889 end of the loop.
1890
1891 LAST addr is the value for SP which stops the loop. */
1892 void
1893 emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1894 rtx *end_lab,
1895 rtx last_addr,
1896 bool rotated)
1897 {
1898 /* Essentially we want to emit any setup code, the top of loop
1899 label and the comparison at the top of the loop. */
1900 *loop_lab = gen_label_rtx ();
1901 *end_lab = gen_label_rtx ();
1902
1903 emit_label (*loop_lab);
1904 if (!rotated)
1905 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1906 Pmode, 1, *end_lab);
1907 }
1908
1909 /* Emit the end of a stack clash probing loop.
1910
1911 This consists of just the jump back to LOOP_LAB and
1912 emitting END_LOOP after the loop. */
1913
1914 void
1915 emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1916 rtx last_addr, bool rotated)
1917 {
1918 if (rotated)
1919 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1920 Pmode, 1, loop_lab);
1921 else
1922 emit_jump (loop_lab);
1923
1924 emit_label (end_loop);
1925
1926 }
1927
1928 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1929 while probing it. This pushes when SIZE is positive. SIZE need not
1930 be constant.
1931
1932 This is subtly different than anti_adjust_stack_and_probe to try and
1933 prevent stack-clash attacks
1934
1935 1. It must assume no knowledge of the probing state, any allocation
1936 must probe.
1937
1938 Consider the case of a 1 byte alloca in a loop. If the sum of the
1939 allocations is large, then this could be used to jump the guard if
1940 probes were not emitted.
1941
1942 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1943 skip probes on the first couple PROBE_INTERVALs on the assumption
1944 they're done elsewhere.
1945
1946 3. It only allocates and probes SIZE bytes, it does not need to
1947 allocate/probe beyond that because this probing style does not
1948 guarantee signal handling capability if the guard is hit. */
1949
1950 void
1951 anti_adjust_stack_and_probe_stack_clash (rtx size)
1952 {
1953 /* First ensure SIZE is Pmode. */
1954 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1955 size = convert_to_mode (Pmode, size, 1);
1956
1957 /* We can get here with a constant size on some targets. */
1958 rtx rounded_size, last_addr, residual;
1959 HOST_WIDE_INT probe_interval, probe_range;
1960 bool target_probe_range_p = false;
1961 compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
1962 &residual, &probe_interval, size);
1963
1964 /* Get the back-end specific probe ranges. */
1965 probe_range = targetm.stack_clash_protection_alloca_probe_range ();
1966 target_probe_range_p = probe_range != 0;
1967 gcc_assert (probe_range >= 0);
1968
1969 /* If no back-end specific range defined, default to the top of the newly
1970 allocated range. */
1971 if (probe_range == 0)
1972 probe_range = probe_interval - GET_MODE_SIZE (word_mode);
1973
1974 if (rounded_size != CONST0_RTX (Pmode))
1975 {
1976 if (CONST_INT_P (rounded_size)
1977 && INTVAL (rounded_size) <= 4 * probe_interval)
1978 {
1979 for (HOST_WIDE_INT i = 0;
1980 i < INTVAL (rounded_size);
1981 i += probe_interval)
1982 {
1983 anti_adjust_stack (GEN_INT (probe_interval));
1984 /* The prologue does not probe residuals. Thus the offset
1985 here to probe just beyond what the prologue had already
1986 allocated. */
1987 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1988 probe_range));
1989
1990 emit_insn (gen_blockage ());
1991 }
1992 }
1993 else
1994 {
1995 rtx loop_lab, end_loop;
1996 bool rotate_loop = CONST_INT_P (rounded_size);
1997 emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
1998 last_addr, rotate_loop);
1999
2000 anti_adjust_stack (GEN_INT (probe_interval));
2001
2002 /* The prologue does not probe residuals. Thus the offset here
2003 to probe just beyond what the prologue had already
2004 allocated. */
2005 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
2006 probe_range));
2007
2008 emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
2009 last_addr, rotate_loop);
2010 emit_insn (gen_blockage ());
2011 }
2012 }
2013
2014 if (residual != CONST0_RTX (Pmode))
2015 {
2016 rtx label = NULL_RTX;
2017 /* RESIDUAL could be zero at runtime and in that case *sp could
2018 hold live data. Furthermore, we do not want to probe into the
2019 red zone.
2020
2021 If TARGET_PROBE_RANGE_P then the target has promised it's safe to
2022 probe at offset 0. In which case we no longer have to check for
2023 RESIDUAL == 0. However we still need to probe at the right offset
2024 when RESIDUAL > PROBE_RANGE, in which case we probe at PROBE_RANGE.
2025
2026 If !TARGET_PROBE_RANGE_P then go ahead and just guard the probe at *sp
2027 on RESIDUAL != 0 at runtime if RESIDUAL is not a compile time constant.
2028 */
2029 anti_adjust_stack (residual);
2030
2031 if (!CONST_INT_P (residual))
2032 {
2033 label = gen_label_rtx ();
2034 rtx_code op = target_probe_range_p ? LT : EQ;
2035 rtx probe_cmp_value = target_probe_range_p
2036 ? gen_rtx_CONST_INT (GET_MODE (residual), probe_range)
2037 : CONST0_RTX (GET_MODE (residual));
2038
2039 if (target_probe_range_p)
2040 emit_stack_probe (stack_pointer_rtx);
2041
2042 emit_cmp_and_jump_insns (residual, probe_cmp_value,
2043 op, NULL_RTX, Pmode, 1, label);
2044 }
2045
2046 rtx x = NULL_RTX;
2047
2048 /* If RESIDUAL isn't a constant and TARGET_PROBE_RANGE_P then we probe up
2049 by the ABI defined safe value. */
2050 if (!CONST_INT_P (residual) && target_probe_range_p)
2051 x = GEN_INT (probe_range);
2052 /* If RESIDUAL is a constant but smaller than the ABI defined safe value,
2053 we still want to probe up, but the safest amount if a word. */
2054 else if (target_probe_range_p)
2055 {
2056 if (INTVAL (residual) <= probe_range)
2057 x = GEN_INT (GET_MODE_SIZE (word_mode));
2058 else
2059 x = GEN_INT (probe_range);
2060 }
2061 else
2062 /* If nothing else, probe at the top of the new allocation. */
2063 x = plus_constant (Pmode, residual, -GET_MODE_SIZE (word_mode));
2064
2065 emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
2066
2067 emit_insn (gen_blockage ());
2068 if (!CONST_INT_P (residual))
2069 emit_label (label);
2070 }
2071 }
2072
2073
2074 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2075 while probing it. This pushes when SIZE is positive. SIZE need not
2076 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2077 by plus SIZE at the end. */
2078
2079 void
2080 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
2081 {
2082 /* We skip the probe for the first interval + a small dope of 4 words and
2083 probe that many bytes past the specified size to maintain a protection
2084 area at the botton of the stack. */
2085 const int dope = 4 * UNITS_PER_WORD;
2086
2087 /* First ensure SIZE is Pmode. */
2088 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2089 size = convert_to_mode (Pmode, size, 1);
2090
2091 /* If we have a constant small number of probes to generate, that's the
2092 easy case. */
2093 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
2094 {
2095 HOST_WIDE_INT isize = INTVAL (size), i;
2096 bool first_probe = true;
2097
2098 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2099 values of N from 1 until it exceeds SIZE. If only one probe is
2100 needed, this will not generate any code. Then adjust and probe
2101 to PROBE_INTERVAL + SIZE. */
2102 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2103 {
2104 if (first_probe)
2105 {
2106 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2107 first_probe = false;
2108 }
2109 else
2110 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2111 emit_stack_probe (stack_pointer_rtx);
2112 }
2113
2114 if (first_probe)
2115 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2116 else
2117 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
2118 emit_stack_probe (stack_pointer_rtx);
2119 }
2120
2121 /* In the variable case, do the same as above, but in a loop. Note that we
2122 must be extra careful with variables wrapping around because we might be
2123 at the very top (or the very bottom) of the address space and we have to
2124 be able to handle this case properly; in particular, we use an equality
2125 test for the loop condition. */
2126 else
2127 {
2128 rtx rounded_size, rounded_size_op, last_addr, temp;
2129 rtx_code_label *loop_lab = gen_label_rtx ();
2130 rtx_code_label *end_lab = gen_label_rtx ();
2131
2132
2133 /* Step 1: round SIZE to the previous multiple of the interval. */
2134
2135 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2136 rounded_size
2137 = simplify_gen_binary (AND, Pmode, size,
2138 gen_int_mode (-PROBE_INTERVAL, Pmode));
2139 rounded_size_op = force_operand (rounded_size, NULL_RTX);
2140
2141
2142 /* Step 2: compute initial and final value of the loop counter. */
2143
2144 /* SP = SP_0 + PROBE_INTERVAL. */
2145 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2146
2147 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2148 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2149 stack_pointer_rtx,
2150 rounded_size_op), NULL_RTX);
2151
2152
2153 /* Step 3: the loop
2154
2155 while (SP != LAST_ADDR)
2156 {
2157 SP = SP + PROBE_INTERVAL
2158 probe at SP
2159 }
2160
2161 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2162 values of N from 1 until it is equal to ROUNDED_SIZE. */
2163
2164 emit_label (loop_lab);
2165
2166 /* Jump to END_LAB if SP == LAST_ADDR. */
2167 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2168 Pmode, 1, end_lab);
2169
2170 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2171 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2172 emit_stack_probe (stack_pointer_rtx);
2173
2174 emit_jump (loop_lab);
2175
2176 emit_label (end_lab);
2177
2178
2179 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2180 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2181
2182 /* TEMP = SIZE - ROUNDED_SIZE. */
2183 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2184 if (temp != const0_rtx)
2185 {
2186 /* Manual CSE if the difference is not known at compile-time. */
2187 if (GET_CODE (temp) != CONST_INT)
2188 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2189 anti_adjust_stack (temp);
2190 emit_stack_probe (stack_pointer_rtx);
2191 }
2192 }
2193
2194 /* Adjust back and account for the additional first interval. */
2195 if (adjust_back)
2196 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2197 else
2198 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2199 }
2200
2201 /* Return an rtx representing the register or memory location
2202 in which a scalar value of data type VALTYPE
2203 was returned by a function call to function FUNC.
2204 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2205 function is known, otherwise 0.
2206 OUTGOING is 1 if on a machine with register windows this function
2207 should return the register in which the function will put its result
2208 and 0 otherwise. */
2209
2210 rtx
2211 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
2212 int outgoing ATTRIBUTE_UNUSED)
2213 {
2214 rtx val;
2215
2216 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
2217
2218 if (REG_P (val)
2219 && GET_MODE (val) == BLKmode)
2220 {
2221 unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
2222 opt_scalar_int_mode tmpmode;
2223
2224 /* int_size_in_bytes can return -1. We don't need a check here
2225 since the value of bytes will then be large enough that no
2226 mode will match anyway. */
2227
2228 FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
2229 {
2230 /* Have we found a large enough mode? */
2231 if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
2232 break;
2233 }
2234
2235 PUT_MODE (val, tmpmode.require ());
2236 }
2237 return val;
2238 }
2239
2240 /* Return an rtx representing the register or memory location
2241 in which a scalar value of mode MODE was returned by a library call. */
2242
2243 rtx
2244 hard_libcall_value (machine_mode mode, rtx fun)
2245 {
2246 return targetm.calls.libcall_value (mode, fun);
2247 }
2248
2249 /* Look up the tree code for a given rtx code
2250 to provide the arithmetic operation for real_arithmetic.
2251 The function returns an int because the caller may not know
2252 what `enum tree_code' means. */
2253
2254 int
2255 rtx_to_tree_code (enum rtx_code code)
2256 {
2257 enum tree_code tcode;
2258
2259 switch (code)
2260 {
2261 case PLUS:
2262 tcode = PLUS_EXPR;
2263 break;
2264 case MINUS:
2265 tcode = MINUS_EXPR;
2266 break;
2267 case MULT:
2268 tcode = MULT_EXPR;
2269 break;
2270 case DIV:
2271 tcode = RDIV_EXPR;
2272 break;
2273 case SMIN:
2274 tcode = MIN_EXPR;
2275 break;
2276 case SMAX:
2277 tcode = MAX_EXPR;
2278 break;
2279 default:
2280 tcode = LAST_AND_UNUSED_TREE_CODE;
2281 break;
2282 }
2283 return ((int) tcode);
2284 }
2285
2286 #include "gt-explow.h"