re PR tree-optimization/63747 (icf mis-compares switch gimple)
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "machmode.h"
36 #include "hard-reg-set.h"
37 #include "input.h"
38 #include "function.h"
39 #include "expr.h"
40 #include "insn-codes.h"
41 #include "optabs.h"
42 #include "libfuncs.h"
43 #include "insn-config.h"
44 #include "ggc.h"
45 #include "recog.h"
46 #include "langhooks.h"
47 #include "target.h"
48 #include "common/common-target.h"
49 #include "output.h"
50
51 static rtx break_out_memory_refs (rtx);
52
53
54 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
55
56 HOST_WIDE_INT
57 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
58 {
59 int width = GET_MODE_PRECISION (mode);
60
61 /* You want to truncate to a _what_? */
62 gcc_assert (SCALAR_INT_MODE_P (mode)
63 || POINTER_BOUNDS_MODE_P (mode));
64
65 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
66 if (mode == BImode)
67 return c & 1 ? STORE_FLAG_VALUE : 0;
68
69 /* Sign-extend for the requested mode. */
70
71 if (width < HOST_BITS_PER_WIDE_INT)
72 {
73 HOST_WIDE_INT sign = 1;
74 sign <<= width - 1;
75 c &= (sign << 1) - 1;
76 c ^= sign;
77 c -= sign;
78 }
79
80 return c;
81 }
82
83 /* Return an rtx for the sum of X and the integer C, given that X has
84 mode MODE. INPLACE is true if X can be modified inplace or false
85 if it must be treated as immutable. */
86
87 rtx
88 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
89 bool inplace)
90 {
91 RTX_CODE code;
92 rtx y;
93 rtx tem;
94 int all_constant = 0;
95
96 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
97
98 if (c == 0)
99 return x;
100
101 restart:
102
103 code = GET_CODE (x);
104 y = x;
105
106 switch (code)
107 {
108 CASE_CONST_SCALAR_INT:
109 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
110 mode);
111 case MEM:
112 /* If this is a reference to the constant pool, try replacing it with
113 a reference to a new constant. If the resulting address isn't
114 valid, don't return it because we have no way to validize it. */
115 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
116 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
117 {
118 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
119 tem = force_const_mem (GET_MODE (x), tem);
120 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
121 return tem;
122 }
123 break;
124
125 case CONST:
126 /* If adding to something entirely constant, set a flag
127 so that we can add a CONST around the result. */
128 if (inplace && shared_const_p (x))
129 inplace = false;
130 x = XEXP (x, 0);
131 all_constant = 1;
132 goto restart;
133
134 case SYMBOL_REF:
135 case LABEL_REF:
136 all_constant = 1;
137 break;
138
139 case PLUS:
140 /* The interesting case is adding the integer to a sum. Look
141 for constant term in the sum and combine with C. For an
142 integer constant term or a constant term that is not an
143 explicit integer, we combine or group them together anyway.
144
145 We may not immediately return from the recursive call here, lest
146 all_constant gets lost. */
147
148 if (CONSTANT_P (XEXP (x, 1)))
149 {
150 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
151 if (term == const0_rtx)
152 x = XEXP (x, 0);
153 else if (inplace)
154 XEXP (x, 1) = term;
155 else
156 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
157 c = 0;
158 }
159 else if (rtx *const_loc = find_constant_term_loc (&y))
160 {
161 if (!inplace)
162 {
163 /* We need to be careful since X may be shared and we can't
164 modify it in place. */
165 x = copy_rtx (x);
166 const_loc = find_constant_term_loc (&x);
167 }
168 *const_loc = plus_constant (mode, *const_loc, c, true);
169 c = 0;
170 }
171 break;
172
173 default:
174 break;
175 }
176
177 if (c != 0)
178 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
179
180 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
181 return x;
182 else if (all_constant)
183 return gen_rtx_CONST (mode, x);
184 else
185 return x;
186 }
187 \f
188 /* If X is a sum, return a new sum like X but lacking any constant terms.
189 Add all the removed constant terms into *CONSTPTR.
190 X itself is not altered. The result != X if and only if
191 it is not isomorphic to X. */
192
193 rtx
194 eliminate_constant_term (rtx x, rtx *constptr)
195 {
196 rtx x0, x1;
197 rtx tem;
198
199 if (GET_CODE (x) != PLUS)
200 return x;
201
202 /* First handle constants appearing at this level explicitly. */
203 if (CONST_INT_P (XEXP (x, 1))
204 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
205 XEXP (x, 1)))
206 && CONST_INT_P (tem))
207 {
208 *constptr = tem;
209 return eliminate_constant_term (XEXP (x, 0), constptr);
210 }
211
212 tem = const0_rtx;
213 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
214 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
215 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
217 *constptr, tem))
218 && CONST_INT_P (tem))
219 {
220 *constptr = tem;
221 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
222 }
223
224 return x;
225 }
226
227 /* Returns a tree for the size of EXP in bytes. */
228
229 static tree
230 tree_expr_size (const_tree exp)
231 {
232 if (DECL_P (exp)
233 && DECL_SIZE_UNIT (exp) != 0)
234 return DECL_SIZE_UNIT (exp);
235 else
236 return size_in_bytes (TREE_TYPE (exp));
237 }
238
239 /* Return an rtx for the size in bytes of the value of EXP. */
240
241 rtx
242 expr_size (tree exp)
243 {
244 tree size;
245
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
249 {
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
253 }
254
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
256 }
257
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
260
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
263 {
264 tree size;
265
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
269 {
270 size = tree_expr_size (exp);
271 gcc_assert (size);
272 }
273
274 if (size == 0 || !tree_fits_shwi_p (size))
275 return -1;
276
277 return tree_to_shwi (size);
278 }
279 \f
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
285
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
288
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
292
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295
296 static rtx
297 break_out_memory_refs (rtx x)
298 {
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
305 {
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
311 }
312
313 return x;
314 }
315
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. IN_CONST is true if this conversion is inside
321 a CONST. */
322
323 static rtx
324 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
325 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
326 bool in_const ATTRIBUTE_UNUSED)
327 {
328 #ifndef POINTERS_EXTEND_UNSIGNED
329 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
330 return x;
331 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
332 machine_mode pointer_mode, address_mode, from_mode;
333 rtx temp;
334 enum rtx_code code;
335
336 /* If X already has the right mode, just return it. */
337 if (GET_MODE (x) == to_mode)
338 return x;
339
340 pointer_mode = targetm.addr_space.pointer_mode (as);
341 address_mode = targetm.addr_space.address_mode (as);
342 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
343
344 /* Here we handle some special cases. If none of them apply, fall through
345 to the default case. */
346 switch (GET_CODE (x))
347 {
348 CASE_CONST_SCALAR_INT:
349 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
350 code = TRUNCATE;
351 else if (POINTERS_EXTEND_UNSIGNED < 0)
352 break;
353 else if (POINTERS_EXTEND_UNSIGNED > 0)
354 code = ZERO_EXTEND;
355 else
356 code = SIGN_EXTEND;
357 temp = simplify_unary_operation (code, to_mode, x, from_mode);
358 if (temp)
359 return temp;
360 break;
361
362 case SUBREG:
363 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
364 && GET_MODE (SUBREG_REG (x)) == to_mode)
365 return SUBREG_REG (x);
366 break;
367
368 case LABEL_REF:
369 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
370 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
371 return temp;
372 break;
373
374 case SYMBOL_REF:
375 temp = shallow_copy_rtx (x);
376 PUT_MODE (temp, to_mode);
377 return temp;
378 break;
379
380 case CONST:
381 return gen_rtx_CONST (to_mode,
382 convert_memory_address_addr_space_1
383 (to_mode, XEXP (x, 0), as, true));
384 break;
385
386 case PLUS:
387 case MULT:
388 /* For addition we can safely permute the conversion and addition
389 operation if one operand is a constant and converting the constant
390 does not change it or if one operand is a constant and we are
391 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
392 We can always safely permute them if we are making the address
393 narrower. Inside a CONST RTL, this is safe for both pointers
394 zero or sign extended as pointers cannot wrap. */
395 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
396 || (GET_CODE (x) == PLUS
397 && CONST_INT_P (XEXP (x, 1))
398 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
399 || XEXP (x, 1) == convert_memory_address_addr_space_1
400 (to_mode, XEXP (x, 1), as, in_const)
401 || POINTERS_EXTEND_UNSIGNED < 0)))
402 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
403 convert_memory_address_addr_space_1
404 (to_mode, XEXP (x, 0), as, in_const),
405 XEXP (x, 1));
406 break;
407
408 default:
409 break;
410 }
411
412 return convert_modes (to_mode, from_mode,
413 x, POINTERS_EXTEND_UNSIGNED);
414 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
415 }
416
417 /* Given X, a memory address in address space AS' pointer mode, convert it to
418 an address in the address space's address mode, or vice versa (TO_MODE says
419 which way). We take advantage of the fact that pointers are not allowed to
420 overflow by commuting arithmetic operations over conversions so that address
421 arithmetic insns can be used. */
422
423 rtx
424 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
425 {
426 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
427 }
428 \f
429 /* Return something equivalent to X but valid as a memory address for something
430 of mode MODE in the named address space AS. When X is not itself valid,
431 this works by copying X or subexpressions of it into registers. */
432
433 rtx
434 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
435 {
436 rtx oldx = x;
437 machine_mode address_mode = targetm.addr_space.address_mode (as);
438
439 x = convert_memory_address_addr_space (address_mode, x, as);
440
441 /* By passing constant addresses through registers
442 we get a chance to cse them. */
443 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
444 x = force_reg (address_mode, x);
445
446 /* We get better cse by rejecting indirect addressing at this stage.
447 Let the combiner create indirect addresses where appropriate.
448 For now, generate the code so that the subexpressions useful to share
449 are visible. But not if cse won't be done! */
450 else
451 {
452 if (! cse_not_expected && !REG_P (x))
453 x = break_out_memory_refs (x);
454
455 /* At this point, any valid address is accepted. */
456 if (memory_address_addr_space_p (mode, x, as))
457 goto done;
458
459 /* If it was valid before but breaking out memory refs invalidated it,
460 use it the old way. */
461 if (memory_address_addr_space_p (mode, oldx, as))
462 {
463 x = oldx;
464 goto done;
465 }
466
467 /* Perform machine-dependent transformations on X
468 in certain cases. This is not necessary since the code
469 below can handle all possible cases, but machine-dependent
470 transformations can make better code. */
471 {
472 rtx orig_x = x;
473 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
474 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
475 goto done;
476 }
477
478 /* PLUS and MULT can appear in special ways
479 as the result of attempts to make an address usable for indexing.
480 Usually they are dealt with by calling force_operand, below.
481 But a sum containing constant terms is special
482 if removing them makes the sum a valid address:
483 then we generate that address in a register
484 and index off of it. We do this because it often makes
485 shorter code, and because the addresses thus generated
486 in registers often become common subexpressions. */
487 if (GET_CODE (x) == PLUS)
488 {
489 rtx constant_term = const0_rtx;
490 rtx y = eliminate_constant_term (x, &constant_term);
491 if (constant_term == const0_rtx
492 || ! memory_address_addr_space_p (mode, y, as))
493 x = force_operand (x, NULL_RTX);
494 else
495 {
496 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
497 if (! memory_address_addr_space_p (mode, y, as))
498 x = force_operand (x, NULL_RTX);
499 else
500 x = y;
501 }
502 }
503
504 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
505 x = force_operand (x, NULL_RTX);
506
507 /* If we have a register that's an invalid address,
508 it must be a hard reg of the wrong class. Copy it to a pseudo. */
509 else if (REG_P (x))
510 x = copy_to_reg (x);
511
512 /* Last resort: copy the value to a register, since
513 the register is a valid address. */
514 else
515 x = force_reg (address_mode, x);
516 }
517
518 done:
519
520 gcc_assert (memory_address_addr_space_p (mode, x, as));
521 /* If we didn't change the address, we are done. Otherwise, mark
522 a reg as a pointer if we have REG or REG + CONST_INT. */
523 if (oldx == x)
524 return x;
525 else if (REG_P (x))
526 mark_reg_pointer (x, BITS_PER_UNIT);
527 else if (GET_CODE (x) == PLUS
528 && REG_P (XEXP (x, 0))
529 && CONST_INT_P (XEXP (x, 1)))
530 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
531
532 /* OLDX may have been the address on a temporary. Update the address
533 to indicate that X is now used. */
534 update_temp_slot_address (oldx, x);
535
536 return x;
537 }
538
539 /* If REF is a MEM with an invalid address, change it into a valid address.
540 Pass through anything else unchanged. REF must be an unshared rtx and
541 the function may modify it in-place. */
542
543 rtx
544 validize_mem (rtx ref)
545 {
546 if (!MEM_P (ref))
547 return ref;
548 ref = use_anchored_address (ref);
549 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
550 MEM_ADDR_SPACE (ref)))
551 return ref;
552
553 return replace_equiv_address (ref, XEXP (ref, 0), true);
554 }
555
556 /* If X is a memory reference to a member of an object block, try rewriting
557 it to use an anchor instead. Return the new memory reference on success
558 and the old one on failure. */
559
560 rtx
561 use_anchored_address (rtx x)
562 {
563 rtx base;
564 HOST_WIDE_INT offset;
565 machine_mode mode;
566
567 if (!flag_section_anchors)
568 return x;
569
570 if (!MEM_P (x))
571 return x;
572
573 /* Split the address into a base and offset. */
574 base = XEXP (x, 0);
575 offset = 0;
576 if (GET_CODE (base) == CONST
577 && GET_CODE (XEXP (base, 0)) == PLUS
578 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
579 {
580 offset += INTVAL (XEXP (XEXP (base, 0), 1));
581 base = XEXP (XEXP (base, 0), 0);
582 }
583
584 /* Check whether BASE is suitable for anchors. */
585 if (GET_CODE (base) != SYMBOL_REF
586 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
587 || SYMBOL_REF_ANCHOR_P (base)
588 || SYMBOL_REF_BLOCK (base) == NULL
589 || !targetm.use_anchors_for_symbol_p (base))
590 return x;
591
592 /* Decide where BASE is going to be. */
593 place_block_symbol (base);
594
595 /* Get the anchor we need to use. */
596 offset += SYMBOL_REF_BLOCK_OFFSET (base);
597 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
598 SYMBOL_REF_TLS_MODEL (base));
599
600 /* Work out the offset from the anchor. */
601 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
602
603 /* If we're going to run a CSE pass, force the anchor into a register.
604 We will then be able to reuse registers for several accesses, if the
605 target costs say that that's worthwhile. */
606 mode = GET_MODE (base);
607 if (!cse_not_expected)
608 base = force_reg (mode, base);
609
610 return replace_equiv_address (x, plus_constant (mode, base, offset));
611 }
612 \f
613 /* Copy the value or contents of X to a new temp reg and return that reg. */
614
615 rtx
616 copy_to_reg (rtx x)
617 {
618 rtx temp = gen_reg_rtx (GET_MODE (x));
619
620 /* If not an operand, must be an address with PLUS and MULT so
621 do the computation. */
622 if (! general_operand (x, VOIDmode))
623 x = force_operand (x, temp);
624
625 if (x != temp)
626 emit_move_insn (temp, x);
627
628 return temp;
629 }
630
631 /* Like copy_to_reg but always give the new register mode Pmode
632 in case X is a constant. */
633
634 rtx
635 copy_addr_to_reg (rtx x)
636 {
637 return copy_to_mode_reg (Pmode, x);
638 }
639
640 /* Like copy_to_reg but always give the new register mode MODE
641 in case X is a constant. */
642
643 rtx
644 copy_to_mode_reg (machine_mode mode, rtx x)
645 {
646 rtx temp = gen_reg_rtx (mode);
647
648 /* If not an operand, must be an address with PLUS and MULT so
649 do the computation. */
650 if (! general_operand (x, VOIDmode))
651 x = force_operand (x, temp);
652
653 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
654 if (x != temp)
655 emit_move_insn (temp, x);
656 return temp;
657 }
658
659 /* Load X into a register if it is not already one.
660 Use mode MODE for the register.
661 X should be valid for mode MODE, but it may be a constant which
662 is valid for all integer modes; that's why caller must specify MODE.
663
664 The caller must not alter the value in the register we return,
665 since we mark it as a "constant" register. */
666
667 rtx
668 force_reg (machine_mode mode, rtx x)
669 {
670 rtx temp, set;
671 rtx_insn *insn;
672
673 if (REG_P (x))
674 return x;
675
676 if (general_operand (x, mode))
677 {
678 temp = gen_reg_rtx (mode);
679 insn = emit_move_insn (temp, x);
680 }
681 else
682 {
683 temp = force_operand (x, NULL_RTX);
684 if (REG_P (temp))
685 insn = get_last_insn ();
686 else
687 {
688 rtx temp2 = gen_reg_rtx (mode);
689 insn = emit_move_insn (temp2, temp);
690 temp = temp2;
691 }
692 }
693
694 /* Let optimizers know that TEMP's value never changes
695 and that X can be substituted for it. Don't get confused
696 if INSN set something else (such as a SUBREG of TEMP). */
697 if (CONSTANT_P (x)
698 && (set = single_set (insn)) != 0
699 && SET_DEST (set) == temp
700 && ! rtx_equal_p (x, SET_SRC (set)))
701 set_unique_reg_note (insn, REG_EQUAL, x);
702
703 /* Let optimizers know that TEMP is a pointer, and if so, the
704 known alignment of that pointer. */
705 {
706 unsigned align = 0;
707 if (GET_CODE (x) == SYMBOL_REF)
708 {
709 align = BITS_PER_UNIT;
710 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
711 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
712 }
713 else if (GET_CODE (x) == LABEL_REF)
714 align = BITS_PER_UNIT;
715 else if (GET_CODE (x) == CONST
716 && GET_CODE (XEXP (x, 0)) == PLUS
717 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
718 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
719 {
720 rtx s = XEXP (XEXP (x, 0), 0);
721 rtx c = XEXP (XEXP (x, 0), 1);
722 unsigned sa, ca;
723
724 sa = BITS_PER_UNIT;
725 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
726 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
727
728 if (INTVAL (c) == 0)
729 align = sa;
730 else
731 {
732 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
733 align = MIN (sa, ca);
734 }
735 }
736
737 if (align || (MEM_P (x) && MEM_POINTER (x)))
738 mark_reg_pointer (temp, align);
739 }
740
741 return temp;
742 }
743
744 /* If X is a memory ref, copy its contents to a new temp reg and return
745 that reg. Otherwise, return X. */
746
747 rtx
748 force_not_mem (rtx x)
749 {
750 rtx temp;
751
752 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
753 return x;
754
755 temp = gen_reg_rtx (GET_MODE (x));
756
757 if (MEM_POINTER (x))
758 REG_POINTER (temp) = 1;
759
760 emit_move_insn (temp, x);
761 return temp;
762 }
763
764 /* Copy X to TARGET (if it's nonzero and a reg)
765 or to a new temp reg and return that reg.
766 MODE is the mode to use for X in case it is a constant. */
767
768 rtx
769 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
770 {
771 rtx temp;
772
773 if (target && REG_P (target))
774 temp = target;
775 else
776 temp = gen_reg_rtx (mode);
777
778 emit_move_insn (temp, x);
779 return temp;
780 }
781 \f
782 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
783 PUNSIGNEDP points to the signedness of the type and may be adjusted
784 to show what signedness to use on extension operations.
785
786 FOR_RETURN is nonzero if the caller is promoting the return value
787 of FNDECL, else it is for promoting args. */
788
789 machine_mode
790 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
791 const_tree funtype, int for_return)
792 {
793 /* Called without a type node for a libcall. */
794 if (type == NULL_TREE)
795 {
796 if (INTEGRAL_MODE_P (mode))
797 return targetm.calls.promote_function_mode (NULL_TREE, mode,
798 punsignedp, funtype,
799 for_return);
800 else
801 return mode;
802 }
803
804 switch (TREE_CODE (type))
805 {
806 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
807 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
808 case POINTER_TYPE: case REFERENCE_TYPE:
809 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
810 for_return);
811
812 default:
813 return mode;
814 }
815 }
816 /* Return the mode to use to store a scalar of TYPE and MODE.
817 PUNSIGNEDP points to the signedness of the type and may be adjusted
818 to show what signedness to use on extension operations. */
819
820 machine_mode
821 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
822 int *punsignedp ATTRIBUTE_UNUSED)
823 {
824 #ifdef PROMOTE_MODE
825 enum tree_code code;
826 int unsignedp;
827 #endif
828
829 /* For libcalls this is invoked without TYPE from the backends
830 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
831 case. */
832 if (type == NULL_TREE)
833 return mode;
834
835 /* FIXME: this is the same logic that was there until GCC 4.4, but we
836 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
837 is not defined. The affected targets are M32C, S390, SPARC. */
838 #ifdef PROMOTE_MODE
839 code = TREE_CODE (type);
840 unsignedp = *punsignedp;
841
842 switch (code)
843 {
844 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
845 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
846 PROMOTE_MODE (mode, unsignedp, type);
847 *punsignedp = unsignedp;
848 return mode;
849 break;
850
851 #ifdef POINTERS_EXTEND_UNSIGNED
852 case REFERENCE_TYPE:
853 case POINTER_TYPE:
854 *punsignedp = POINTERS_EXTEND_UNSIGNED;
855 return targetm.addr_space.address_mode
856 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
857 break;
858 #endif
859
860 default:
861 return mode;
862 }
863 #else
864 return mode;
865 #endif
866 }
867
868
869 /* Use one of promote_mode or promote_function_mode to find the promoted
870 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
871 of DECL after promotion. */
872
873 machine_mode
874 promote_decl_mode (const_tree decl, int *punsignedp)
875 {
876 tree type = TREE_TYPE (decl);
877 int unsignedp = TYPE_UNSIGNED (type);
878 machine_mode mode = DECL_MODE (decl);
879 machine_mode pmode;
880
881 if (TREE_CODE (decl) == RESULT_DECL
882 || TREE_CODE (decl) == PARM_DECL)
883 pmode = promote_function_mode (type, mode, &unsignedp,
884 TREE_TYPE (current_function_decl), 2);
885 else
886 pmode = promote_mode (type, mode, &unsignedp);
887
888 if (punsignedp)
889 *punsignedp = unsignedp;
890 return pmode;
891 }
892
893 \f
894 /* Controls the behaviour of {anti_,}adjust_stack. */
895 static bool suppress_reg_args_size;
896
897 /* A helper for adjust_stack and anti_adjust_stack. */
898
899 static void
900 adjust_stack_1 (rtx adjust, bool anti_p)
901 {
902 rtx temp;
903 rtx_insn *insn;
904
905 #ifndef STACK_GROWS_DOWNWARD
906 /* Hereafter anti_p means subtract_p. */
907 anti_p = !anti_p;
908 #endif
909
910 temp = expand_binop (Pmode,
911 anti_p ? sub_optab : add_optab,
912 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
913 OPTAB_LIB_WIDEN);
914
915 if (temp != stack_pointer_rtx)
916 insn = emit_move_insn (stack_pointer_rtx, temp);
917 else
918 {
919 insn = get_last_insn ();
920 temp = single_set (insn);
921 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
922 }
923
924 if (!suppress_reg_args_size)
925 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
926 }
927
928 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
929 This pops when ADJUST is positive. ADJUST need not be constant. */
930
931 void
932 adjust_stack (rtx adjust)
933 {
934 if (adjust == const0_rtx)
935 return;
936
937 /* We expect all variable sized adjustments to be multiple of
938 PREFERRED_STACK_BOUNDARY. */
939 if (CONST_INT_P (adjust))
940 stack_pointer_delta -= INTVAL (adjust);
941
942 adjust_stack_1 (adjust, false);
943 }
944
945 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
946 This pushes when ADJUST is positive. ADJUST need not be constant. */
947
948 void
949 anti_adjust_stack (rtx adjust)
950 {
951 if (adjust == const0_rtx)
952 return;
953
954 /* We expect all variable sized adjustments to be multiple of
955 PREFERRED_STACK_BOUNDARY. */
956 if (CONST_INT_P (adjust))
957 stack_pointer_delta += INTVAL (adjust);
958
959 adjust_stack_1 (adjust, true);
960 }
961
962 /* Round the size of a block to be pushed up to the boundary required
963 by this machine. SIZE is the desired size, which need not be constant. */
964
965 static rtx
966 round_push (rtx size)
967 {
968 rtx align_rtx, alignm1_rtx;
969
970 if (!SUPPORTS_STACK_ALIGNMENT
971 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
972 {
973 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
974
975 if (align == 1)
976 return size;
977
978 if (CONST_INT_P (size))
979 {
980 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
981
982 if (INTVAL (size) != new_size)
983 size = GEN_INT (new_size);
984 return size;
985 }
986
987 align_rtx = GEN_INT (align);
988 alignm1_rtx = GEN_INT (align - 1);
989 }
990 else
991 {
992 /* If crtl->preferred_stack_boundary might still grow, use
993 virtual_preferred_stack_boundary_rtx instead. This will be
994 substituted by the right value in vregs pass and optimized
995 during combine. */
996 align_rtx = virtual_preferred_stack_boundary_rtx;
997 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
998 NULL_RTX);
999 }
1000
1001 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1002 but we know it can't. So add ourselves and then do
1003 TRUNC_DIV_EXPR. */
1004 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1005 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1006 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1007 NULL_RTX, 1);
1008 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1009
1010 return size;
1011 }
1012 \f
1013 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1014 to a previously-created save area. If no save area has been allocated,
1015 this function will allocate one. If a save area is specified, it
1016 must be of the proper mode. */
1017
1018 void
1019 emit_stack_save (enum save_level save_level, rtx *psave)
1020 {
1021 rtx sa = *psave;
1022 /* The default is that we use a move insn and save in a Pmode object. */
1023 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1024 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1025
1026 /* See if this machine has anything special to do for this kind of save. */
1027 switch (save_level)
1028 {
1029 #ifdef HAVE_save_stack_block
1030 case SAVE_BLOCK:
1031 if (HAVE_save_stack_block)
1032 fcn = gen_save_stack_block;
1033 break;
1034 #endif
1035 #ifdef HAVE_save_stack_function
1036 case SAVE_FUNCTION:
1037 if (HAVE_save_stack_function)
1038 fcn = gen_save_stack_function;
1039 break;
1040 #endif
1041 #ifdef HAVE_save_stack_nonlocal
1042 case SAVE_NONLOCAL:
1043 if (HAVE_save_stack_nonlocal)
1044 fcn = gen_save_stack_nonlocal;
1045 break;
1046 #endif
1047 default:
1048 break;
1049 }
1050
1051 /* If there is no save area and we have to allocate one, do so. Otherwise
1052 verify the save area is the proper mode. */
1053
1054 if (sa == 0)
1055 {
1056 if (mode != VOIDmode)
1057 {
1058 if (save_level == SAVE_NONLOCAL)
1059 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1060 else
1061 *psave = sa = gen_reg_rtx (mode);
1062 }
1063 }
1064
1065 do_pending_stack_adjust ();
1066 if (sa != 0)
1067 sa = validize_mem (sa);
1068 emit_insn (fcn (sa, stack_pointer_rtx));
1069 }
1070
1071 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1072 area made by emit_stack_save. If it is zero, we have nothing to do. */
1073
1074 void
1075 emit_stack_restore (enum save_level save_level, rtx sa)
1076 {
1077 /* The default is that we use a move insn. */
1078 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1079
1080 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1081 STACK_POINTER and HARD_FRAME_POINTER.
1082 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1083 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1084 aligned variables, which is reflected in ix86_can_eliminate.
1085 We normally still have the realigned STACK_POINTER that we can use.
1086 But if there is a stack restore still present at reload, it can trigger
1087 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1088 FRAME_POINTER into a hard reg.
1089 To prevent this situation, we force need_drap if we emit a stack
1090 restore. */
1091 if (SUPPORTS_STACK_ALIGNMENT)
1092 crtl->need_drap = true;
1093
1094 /* See if this machine has anything special to do for this kind of save. */
1095 switch (save_level)
1096 {
1097 #ifdef HAVE_restore_stack_block
1098 case SAVE_BLOCK:
1099 if (HAVE_restore_stack_block)
1100 fcn = gen_restore_stack_block;
1101 break;
1102 #endif
1103 #ifdef HAVE_restore_stack_function
1104 case SAVE_FUNCTION:
1105 if (HAVE_restore_stack_function)
1106 fcn = gen_restore_stack_function;
1107 break;
1108 #endif
1109 #ifdef HAVE_restore_stack_nonlocal
1110 case SAVE_NONLOCAL:
1111 if (HAVE_restore_stack_nonlocal)
1112 fcn = gen_restore_stack_nonlocal;
1113 break;
1114 #endif
1115 default:
1116 break;
1117 }
1118
1119 if (sa != 0)
1120 {
1121 sa = validize_mem (sa);
1122 /* These clobbers prevent the scheduler from moving
1123 references to variable arrays below the code
1124 that deletes (pops) the arrays. */
1125 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1126 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1127 }
1128
1129 discard_pending_stack_adjust ();
1130
1131 emit_insn (fcn (stack_pointer_rtx, sa));
1132 }
1133
1134 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1135 function. This function should be called whenever we allocate or
1136 deallocate dynamic stack space. */
1137
1138 void
1139 update_nonlocal_goto_save_area (void)
1140 {
1141 tree t_save;
1142 rtx r_save;
1143
1144 /* The nonlocal_goto_save_area object is an array of N pointers. The
1145 first one is used for the frame pointer save; the rest are sized by
1146 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1147 of the stack save area slots. */
1148 t_save = build4 (ARRAY_REF,
1149 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1150 cfun->nonlocal_goto_save_area,
1151 integer_one_node, NULL_TREE, NULL_TREE);
1152 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1153
1154 emit_stack_save (SAVE_NONLOCAL, &r_save);
1155 }
1156 \f
1157 /* Return an rtx representing the address of an area of memory dynamically
1158 pushed on the stack.
1159
1160 Any required stack pointer alignment is preserved.
1161
1162 SIZE is an rtx representing the size of the area.
1163
1164 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1165 parameter may be zero. If so, a proper value will be extracted
1166 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1167
1168 REQUIRED_ALIGN is the alignment (in bits) required for the region
1169 of memory.
1170
1171 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1172 stack space allocated by the generated code cannot be added with itself
1173 in the course of the execution of the function. It is always safe to
1174 pass FALSE here and the following criterion is sufficient in order to
1175 pass TRUE: every path in the CFG that starts at the allocation point and
1176 loops to it executes the associated deallocation code. */
1177
1178 rtx
1179 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1180 unsigned required_align, bool cannot_accumulate)
1181 {
1182 HOST_WIDE_INT stack_usage_size = -1;
1183 rtx_code_label *final_label;
1184 rtx final_target, target;
1185 unsigned extra_align = 0;
1186 bool must_align;
1187
1188 /* If we're asking for zero bytes, it doesn't matter what we point
1189 to since we can't dereference it. But return a reasonable
1190 address anyway. */
1191 if (size == const0_rtx)
1192 return virtual_stack_dynamic_rtx;
1193
1194 /* Otherwise, show we're calling alloca or equivalent. */
1195 cfun->calls_alloca = 1;
1196
1197 /* If stack usage info is requested, look into the size we are passed.
1198 We need to do so this early to avoid the obfuscation that may be
1199 introduced later by the various alignment operations. */
1200 if (flag_stack_usage_info)
1201 {
1202 if (CONST_INT_P (size))
1203 stack_usage_size = INTVAL (size);
1204 else if (REG_P (size))
1205 {
1206 /* Look into the last emitted insn and see if we can deduce
1207 something for the register. */
1208 rtx_insn *insn;
1209 rtx set, note;
1210 insn = get_last_insn ();
1211 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1212 {
1213 if (CONST_INT_P (SET_SRC (set)))
1214 stack_usage_size = INTVAL (SET_SRC (set));
1215 else if ((note = find_reg_equal_equiv_note (insn))
1216 && CONST_INT_P (XEXP (note, 0)))
1217 stack_usage_size = INTVAL (XEXP (note, 0));
1218 }
1219 }
1220
1221 /* If the size is not constant, we can't say anything. */
1222 if (stack_usage_size == -1)
1223 {
1224 current_function_has_unbounded_dynamic_stack_size = 1;
1225 stack_usage_size = 0;
1226 }
1227 }
1228
1229 /* Ensure the size is in the proper mode. */
1230 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1231 size = convert_to_mode (Pmode, size, 1);
1232
1233 /* Adjust SIZE_ALIGN, if needed. */
1234 if (CONST_INT_P (size))
1235 {
1236 unsigned HOST_WIDE_INT lsb;
1237
1238 lsb = INTVAL (size);
1239 lsb &= -lsb;
1240
1241 /* Watch out for overflow truncating to "unsigned". */
1242 if (lsb > UINT_MAX / BITS_PER_UNIT)
1243 size_align = 1u << (HOST_BITS_PER_INT - 1);
1244 else
1245 size_align = (unsigned)lsb * BITS_PER_UNIT;
1246 }
1247 else if (size_align < BITS_PER_UNIT)
1248 size_align = BITS_PER_UNIT;
1249
1250 /* We can't attempt to minimize alignment necessary, because we don't
1251 know the final value of preferred_stack_boundary yet while executing
1252 this code. */
1253 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1254 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1255
1256 /* We will need to ensure that the address we return is aligned to
1257 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1258 always know its final value at this point in the compilation (it
1259 might depend on the size of the outgoing parameter lists, for
1260 example), so we must align the value to be returned in that case.
1261 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1262 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1263 We must also do an alignment operation on the returned value if
1264 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1265
1266 If we have to align, we must leave space in SIZE for the hole
1267 that might result from the alignment operation. */
1268
1269 must_align = (crtl->preferred_stack_boundary < required_align);
1270 if (must_align)
1271 {
1272 if (required_align > PREFERRED_STACK_BOUNDARY)
1273 extra_align = PREFERRED_STACK_BOUNDARY;
1274 else if (required_align > STACK_BOUNDARY)
1275 extra_align = STACK_BOUNDARY;
1276 else
1277 extra_align = BITS_PER_UNIT;
1278 }
1279
1280 /* ??? STACK_POINTER_OFFSET is always defined now. */
1281 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1282 must_align = true;
1283 extra_align = BITS_PER_UNIT;
1284 #endif
1285
1286 if (must_align)
1287 {
1288 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1289
1290 size = plus_constant (Pmode, size, extra);
1291 size = force_operand (size, NULL_RTX);
1292
1293 if (flag_stack_usage_info)
1294 stack_usage_size += extra;
1295
1296 if (extra && size_align > extra_align)
1297 size_align = extra_align;
1298 }
1299
1300 /* Round the size to a multiple of the required stack alignment.
1301 Since the stack if presumed to be rounded before this allocation,
1302 this will maintain the required alignment.
1303
1304 If the stack grows downward, we could save an insn by subtracting
1305 SIZE from the stack pointer and then aligning the stack pointer.
1306 The problem with this is that the stack pointer may be unaligned
1307 between the execution of the subtraction and alignment insns and
1308 some machines do not allow this. Even on those that do, some
1309 signal handlers malfunction if a signal should occur between those
1310 insns. Since this is an extremely rare event, we have no reliable
1311 way of knowing which systems have this problem. So we avoid even
1312 momentarily mis-aligning the stack. */
1313 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1314 {
1315 size = round_push (size);
1316
1317 if (flag_stack_usage_info)
1318 {
1319 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1320 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1321 }
1322 }
1323
1324 target = gen_reg_rtx (Pmode);
1325
1326 /* The size is supposed to be fully adjusted at this point so record it
1327 if stack usage info is requested. */
1328 if (flag_stack_usage_info)
1329 {
1330 current_function_dynamic_stack_size += stack_usage_size;
1331
1332 /* ??? This is gross but the only safe stance in the absence
1333 of stack usage oriented flow analysis. */
1334 if (!cannot_accumulate)
1335 current_function_has_unbounded_dynamic_stack_size = 1;
1336 }
1337
1338 final_label = NULL;
1339 final_target = NULL_RTX;
1340
1341 /* If we are splitting the stack, we need to ask the backend whether
1342 there is enough room on the current stack. If there isn't, or if
1343 the backend doesn't know how to tell is, then we need to call a
1344 function to allocate memory in some other way. This memory will
1345 be released when we release the current stack segment. The
1346 effect is that stack allocation becomes less efficient, but at
1347 least it doesn't cause a stack overflow. */
1348 if (flag_split_stack)
1349 {
1350 rtx_code_label *available_label;
1351 rtx ask, space, func;
1352
1353 available_label = NULL;
1354
1355 #ifdef HAVE_split_stack_space_check
1356 if (HAVE_split_stack_space_check)
1357 {
1358 available_label = gen_label_rtx ();
1359
1360 /* This instruction will branch to AVAILABLE_LABEL if there
1361 are SIZE bytes available on the stack. */
1362 emit_insn (gen_split_stack_space_check (size, available_label));
1363 }
1364 #endif
1365
1366 /* The __morestack_allocate_stack_space function will allocate
1367 memory using malloc. If the alignment of the memory returned
1368 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1369 make sure we allocate enough space. */
1370 if (MALLOC_ABI_ALIGNMENT >= required_align)
1371 ask = size;
1372 else
1373 {
1374 ask = expand_binop (Pmode, add_optab, size,
1375 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1376 Pmode),
1377 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1378 must_align = true;
1379 }
1380
1381 func = init_one_libfunc ("__morestack_allocate_stack_space");
1382
1383 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1384 1, ask, Pmode);
1385
1386 if (available_label == NULL_RTX)
1387 return space;
1388
1389 final_target = gen_reg_rtx (Pmode);
1390
1391 emit_move_insn (final_target, space);
1392
1393 final_label = gen_label_rtx ();
1394 emit_jump (final_label);
1395
1396 emit_label (available_label);
1397 }
1398
1399 do_pending_stack_adjust ();
1400
1401 /* We ought to be called always on the toplevel and stack ought to be aligned
1402 properly. */
1403 gcc_assert (!(stack_pointer_delta
1404 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1405
1406 /* If needed, check that we have the required amount of stack. Take into
1407 account what has already been checked. */
1408 if (STACK_CHECK_MOVING_SP)
1409 ;
1410 else if (flag_stack_check == GENERIC_STACK_CHECK)
1411 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1412 size);
1413 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1414 probe_stack_range (STACK_CHECK_PROTECT, size);
1415
1416 /* Don't let anti_adjust_stack emit notes. */
1417 suppress_reg_args_size = true;
1418
1419 /* Perform the required allocation from the stack. Some systems do
1420 this differently than simply incrementing/decrementing from the
1421 stack pointer, such as acquiring the space by calling malloc(). */
1422 #ifdef HAVE_allocate_stack
1423 if (HAVE_allocate_stack)
1424 {
1425 struct expand_operand ops[2];
1426 /* We don't have to check against the predicate for operand 0 since
1427 TARGET is known to be a pseudo of the proper mode, which must
1428 be valid for the operand. */
1429 create_fixed_operand (&ops[0], target);
1430 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1431 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1432 }
1433 else
1434 #endif
1435 {
1436 int saved_stack_pointer_delta;
1437
1438 #ifndef STACK_GROWS_DOWNWARD
1439 emit_move_insn (target, virtual_stack_dynamic_rtx);
1440 #endif
1441
1442 /* Check stack bounds if necessary. */
1443 if (crtl->limit_stack)
1444 {
1445 rtx available;
1446 rtx_code_label *space_available = gen_label_rtx ();
1447 #ifdef STACK_GROWS_DOWNWARD
1448 available = expand_binop (Pmode, sub_optab,
1449 stack_pointer_rtx, stack_limit_rtx,
1450 NULL_RTX, 1, OPTAB_WIDEN);
1451 #else
1452 available = expand_binop (Pmode, sub_optab,
1453 stack_limit_rtx, stack_pointer_rtx,
1454 NULL_RTX, 1, OPTAB_WIDEN);
1455 #endif
1456 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1457 space_available);
1458 #ifdef HAVE_trap
1459 if (HAVE_trap)
1460 emit_insn (gen_trap ());
1461 else
1462 #endif
1463 error ("stack limits not supported on this target");
1464 emit_barrier ();
1465 emit_label (space_available);
1466 }
1467
1468 saved_stack_pointer_delta = stack_pointer_delta;
1469
1470 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1471 anti_adjust_stack_and_probe (size, false);
1472 else
1473 anti_adjust_stack (size);
1474
1475 /* Even if size is constant, don't modify stack_pointer_delta.
1476 The constant size alloca should preserve
1477 crtl->preferred_stack_boundary alignment. */
1478 stack_pointer_delta = saved_stack_pointer_delta;
1479
1480 #ifdef STACK_GROWS_DOWNWARD
1481 emit_move_insn (target, virtual_stack_dynamic_rtx);
1482 #endif
1483 }
1484
1485 suppress_reg_args_size = false;
1486
1487 /* Finish up the split stack handling. */
1488 if (final_label != NULL_RTX)
1489 {
1490 gcc_assert (flag_split_stack);
1491 emit_move_insn (final_target, target);
1492 emit_label (final_label);
1493 target = final_target;
1494 }
1495
1496 if (must_align)
1497 {
1498 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1499 but we know it can't. So add ourselves and then do
1500 TRUNC_DIV_EXPR. */
1501 target = expand_binop (Pmode, add_optab, target,
1502 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1503 Pmode),
1504 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1505 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1506 gen_int_mode (required_align / BITS_PER_UNIT,
1507 Pmode),
1508 NULL_RTX, 1);
1509 target = expand_mult (Pmode, target,
1510 gen_int_mode (required_align / BITS_PER_UNIT,
1511 Pmode),
1512 NULL_RTX, 1);
1513 }
1514
1515 /* Now that we've committed to a return value, mark its alignment. */
1516 mark_reg_pointer (target, required_align);
1517
1518 /* Record the new stack level for nonlocal gotos. */
1519 if (cfun->nonlocal_goto_save_area != 0)
1520 update_nonlocal_goto_save_area ();
1521
1522 return target;
1523 }
1524 \f
1525 /* A front end may want to override GCC's stack checking by providing a
1526 run-time routine to call to check the stack, so provide a mechanism for
1527 calling that routine. */
1528
1529 static GTY(()) rtx stack_check_libfunc;
1530
1531 void
1532 set_stack_check_libfunc (const char *libfunc_name)
1533 {
1534 gcc_assert (stack_check_libfunc == NULL_RTX);
1535 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1536 }
1537 \f
1538 /* Emit one stack probe at ADDRESS, an address within the stack. */
1539
1540 void
1541 emit_stack_probe (rtx address)
1542 {
1543 #ifdef HAVE_probe_stack_address
1544 if (HAVE_probe_stack_address)
1545 emit_insn (gen_probe_stack_address (address));
1546 else
1547 #endif
1548 {
1549 rtx memref = gen_rtx_MEM (word_mode, address);
1550
1551 MEM_VOLATILE_P (memref) = 1;
1552
1553 /* See if we have an insn to probe the stack. */
1554 #ifdef HAVE_probe_stack
1555 if (HAVE_probe_stack)
1556 emit_insn (gen_probe_stack (memref));
1557 else
1558 #endif
1559 emit_move_insn (memref, const0_rtx);
1560 }
1561 }
1562
1563 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1564 FIRST is a constant and size is a Pmode RTX. These are offsets from
1565 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1566 or subtract them from the stack pointer. */
1567
1568 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1569
1570 #ifdef STACK_GROWS_DOWNWARD
1571 #define STACK_GROW_OP MINUS
1572 #define STACK_GROW_OPTAB sub_optab
1573 #define STACK_GROW_OFF(off) -(off)
1574 #else
1575 #define STACK_GROW_OP PLUS
1576 #define STACK_GROW_OPTAB add_optab
1577 #define STACK_GROW_OFF(off) (off)
1578 #endif
1579
1580 void
1581 probe_stack_range (HOST_WIDE_INT first, rtx size)
1582 {
1583 /* First ensure SIZE is Pmode. */
1584 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1585 size = convert_to_mode (Pmode, size, 1);
1586
1587 /* Next see if we have a function to check the stack. */
1588 if (stack_check_libfunc)
1589 {
1590 rtx addr = memory_address (Pmode,
1591 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1592 stack_pointer_rtx,
1593 plus_constant (Pmode,
1594 size, first)));
1595 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1596 Pmode);
1597 }
1598
1599 /* Next see if we have an insn to check the stack. */
1600 #ifdef HAVE_check_stack
1601 else if (HAVE_check_stack)
1602 {
1603 struct expand_operand ops[1];
1604 rtx addr = memory_address (Pmode,
1605 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1606 stack_pointer_rtx,
1607 plus_constant (Pmode,
1608 size, first)));
1609 bool success;
1610 create_input_operand (&ops[0], addr, Pmode);
1611 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1612 gcc_assert (success);
1613 }
1614 #endif
1615
1616 /* Otherwise we have to generate explicit probes. If we have a constant
1617 small number of them to generate, that's the easy case. */
1618 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1619 {
1620 HOST_WIDE_INT isize = INTVAL (size), i;
1621 rtx addr;
1622
1623 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1624 it exceeds SIZE. If only one probe is needed, this will not
1625 generate any code. Then probe at FIRST + SIZE. */
1626 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1627 {
1628 addr = memory_address (Pmode,
1629 plus_constant (Pmode, stack_pointer_rtx,
1630 STACK_GROW_OFF (first + i)));
1631 emit_stack_probe (addr);
1632 }
1633
1634 addr = memory_address (Pmode,
1635 plus_constant (Pmode, stack_pointer_rtx,
1636 STACK_GROW_OFF (first + isize)));
1637 emit_stack_probe (addr);
1638 }
1639
1640 /* In the variable case, do the same as above, but in a loop. Note that we
1641 must be extra careful with variables wrapping around because we might be
1642 at the very top (or the very bottom) of the address space and we have to
1643 be able to handle this case properly; in particular, we use an equality
1644 test for the loop condition. */
1645 else
1646 {
1647 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1648 rtx_code_label *loop_lab = gen_label_rtx ();
1649 rtx_code_label *end_lab = gen_label_rtx ();
1650
1651 /* Step 1: round SIZE to the previous multiple of the interval. */
1652
1653 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1654 rounded_size
1655 = simplify_gen_binary (AND, Pmode, size,
1656 gen_int_mode (-PROBE_INTERVAL, Pmode));
1657 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1658
1659
1660 /* Step 2: compute initial and final value of the loop counter. */
1661
1662 /* TEST_ADDR = SP + FIRST. */
1663 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1664 stack_pointer_rtx,
1665 gen_int_mode (first, Pmode)),
1666 NULL_RTX);
1667
1668 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1669 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1670 test_addr,
1671 rounded_size_op), NULL_RTX);
1672
1673
1674 /* Step 3: the loop
1675
1676 while (TEST_ADDR != LAST_ADDR)
1677 {
1678 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1679 probe at TEST_ADDR
1680 }
1681
1682 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1683 until it is equal to ROUNDED_SIZE. */
1684
1685 emit_label (loop_lab);
1686
1687 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1688 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1689 end_lab);
1690
1691 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1692 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1693 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1694 1, OPTAB_WIDEN);
1695
1696 gcc_assert (temp == test_addr);
1697
1698 /* Probe at TEST_ADDR. */
1699 emit_stack_probe (test_addr);
1700
1701 emit_jump (loop_lab);
1702
1703 emit_label (end_lab);
1704
1705
1706 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1707 that SIZE is equal to ROUNDED_SIZE. */
1708
1709 /* TEMP = SIZE - ROUNDED_SIZE. */
1710 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1711 if (temp != const0_rtx)
1712 {
1713 rtx addr;
1714
1715 if (CONST_INT_P (temp))
1716 {
1717 /* Use [base + disp} addressing mode if supported. */
1718 HOST_WIDE_INT offset = INTVAL (temp);
1719 addr = memory_address (Pmode,
1720 plus_constant (Pmode, last_addr,
1721 STACK_GROW_OFF (offset)));
1722 }
1723 else
1724 {
1725 /* Manual CSE if the difference is not known at compile-time. */
1726 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1727 addr = memory_address (Pmode,
1728 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1729 last_addr, temp));
1730 }
1731
1732 emit_stack_probe (addr);
1733 }
1734 }
1735
1736 /* Make sure nothing is scheduled before we are done. */
1737 emit_insn (gen_blockage ());
1738 }
1739
1740 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1741 while probing it. This pushes when SIZE is positive. SIZE need not
1742 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1743 by plus SIZE at the end. */
1744
1745 void
1746 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1747 {
1748 /* We skip the probe for the first interval + a small dope of 4 words and
1749 probe that many bytes past the specified size to maintain a protection
1750 area at the botton of the stack. */
1751 const int dope = 4 * UNITS_PER_WORD;
1752
1753 /* First ensure SIZE is Pmode. */
1754 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1755 size = convert_to_mode (Pmode, size, 1);
1756
1757 /* If we have a constant small number of probes to generate, that's the
1758 easy case. */
1759 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1760 {
1761 HOST_WIDE_INT isize = INTVAL (size), i;
1762 bool first_probe = true;
1763
1764 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1765 values of N from 1 until it exceeds SIZE. If only one probe is
1766 needed, this will not generate any code. Then adjust and probe
1767 to PROBE_INTERVAL + SIZE. */
1768 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1769 {
1770 if (first_probe)
1771 {
1772 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1773 first_probe = false;
1774 }
1775 else
1776 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1777 emit_stack_probe (stack_pointer_rtx);
1778 }
1779
1780 if (first_probe)
1781 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1782 else
1783 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1784 emit_stack_probe (stack_pointer_rtx);
1785 }
1786
1787 /* In the variable case, do the same as above, but in a loop. Note that we
1788 must be extra careful with variables wrapping around because we might be
1789 at the very top (or the very bottom) of the address space and we have to
1790 be able to handle this case properly; in particular, we use an equality
1791 test for the loop condition. */
1792 else
1793 {
1794 rtx rounded_size, rounded_size_op, last_addr, temp;
1795 rtx_code_label *loop_lab = gen_label_rtx ();
1796 rtx_code_label *end_lab = gen_label_rtx ();
1797
1798
1799 /* Step 1: round SIZE to the previous multiple of the interval. */
1800
1801 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1802 rounded_size
1803 = simplify_gen_binary (AND, Pmode, size,
1804 gen_int_mode (-PROBE_INTERVAL, Pmode));
1805 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1806
1807
1808 /* Step 2: compute initial and final value of the loop counter. */
1809
1810 /* SP = SP_0 + PROBE_INTERVAL. */
1811 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1812
1813 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1814 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1815 stack_pointer_rtx,
1816 rounded_size_op), NULL_RTX);
1817
1818
1819 /* Step 3: the loop
1820
1821 while (SP != LAST_ADDR)
1822 {
1823 SP = SP + PROBE_INTERVAL
1824 probe at SP
1825 }
1826
1827 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1828 values of N from 1 until it is equal to ROUNDED_SIZE. */
1829
1830 emit_label (loop_lab);
1831
1832 /* Jump to END_LAB if SP == LAST_ADDR. */
1833 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1834 Pmode, 1, end_lab);
1835
1836 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1837 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1838 emit_stack_probe (stack_pointer_rtx);
1839
1840 emit_jump (loop_lab);
1841
1842 emit_label (end_lab);
1843
1844
1845 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1846 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1847
1848 /* TEMP = SIZE - ROUNDED_SIZE. */
1849 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1850 if (temp != const0_rtx)
1851 {
1852 /* Manual CSE if the difference is not known at compile-time. */
1853 if (GET_CODE (temp) != CONST_INT)
1854 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1855 anti_adjust_stack (temp);
1856 emit_stack_probe (stack_pointer_rtx);
1857 }
1858 }
1859
1860 /* Adjust back and account for the additional first interval. */
1861 if (adjust_back)
1862 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1863 else
1864 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1865 }
1866
1867 /* Return an rtx representing the register or memory location
1868 in which a scalar value of data type VALTYPE
1869 was returned by a function call to function FUNC.
1870 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1871 function is known, otherwise 0.
1872 OUTGOING is 1 if on a machine with register windows this function
1873 should return the register in which the function will put its result
1874 and 0 otherwise. */
1875
1876 rtx
1877 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1878 int outgoing ATTRIBUTE_UNUSED)
1879 {
1880 rtx val;
1881
1882 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1883
1884 if (REG_P (val)
1885 && GET_MODE (val) == BLKmode)
1886 {
1887 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1888 machine_mode tmpmode;
1889
1890 /* int_size_in_bytes can return -1. We don't need a check here
1891 since the value of bytes will then be large enough that no
1892 mode will match anyway. */
1893
1894 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1895 tmpmode != VOIDmode;
1896 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1897 {
1898 /* Have we found a large enough mode? */
1899 if (GET_MODE_SIZE (tmpmode) >= bytes)
1900 break;
1901 }
1902
1903 /* No suitable mode found. */
1904 gcc_assert (tmpmode != VOIDmode);
1905
1906 PUT_MODE (val, tmpmode);
1907 }
1908 return val;
1909 }
1910
1911 /* Return an rtx representing the register or memory location
1912 in which a scalar value of mode MODE was returned by a library call. */
1913
1914 rtx
1915 hard_libcall_value (machine_mode mode, rtx fun)
1916 {
1917 return targetm.calls.libcall_value (mode, fun);
1918 }
1919
1920 /* Look up the tree code for a given rtx code
1921 to provide the arithmetic operation for REAL_ARITHMETIC.
1922 The function returns an int because the caller may not know
1923 what `enum tree_code' means. */
1924
1925 int
1926 rtx_to_tree_code (enum rtx_code code)
1927 {
1928 enum tree_code tcode;
1929
1930 switch (code)
1931 {
1932 case PLUS:
1933 tcode = PLUS_EXPR;
1934 break;
1935 case MINUS:
1936 tcode = MINUS_EXPR;
1937 break;
1938 case MULT:
1939 tcode = MULT_EXPR;
1940 break;
1941 case DIV:
1942 tcode = RDIV_EXPR;
1943 break;
1944 case SMIN:
1945 tcode = MIN_EXPR;
1946 break;
1947 case SMAX:
1948 tcode = MAX_EXPR;
1949 break;
1950 default:
1951 tcode = LAST_AND_UNUSED_TREE_CODE;
1952 break;
1953 }
1954 return ((int) tcode);
1955 }
1956
1957 #include "gt-explow.h"