gimple-fold.c (fold_const_aggregate_ref_1): Use DECL_P.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "real.h"
37 #include "tree.h"
38 #include "stor-layout.h"
39 #include "tm_p.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "hard-reg-set.h"
43 #include "function.h"
44 #include "hashtab.h"
45 #include "statistics.h"
46 #include "fixed-value.h"
47 #include "insn-config.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "libfuncs.h"
59 #include "ggc.h"
60 #include "recog.h"
61 #include "langhooks.h"
62 #include "target.h"
63 #include "common/common-target.h"
64 #include "output.h"
65
66 static rtx break_out_memory_refs (rtx);
67
68
69 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
70
71 HOST_WIDE_INT
72 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
73 {
74 int width = GET_MODE_PRECISION (mode);
75
76 /* You want to truncate to a _what_? */
77 gcc_assert (SCALAR_INT_MODE_P (mode)
78 || POINTER_BOUNDS_MODE_P (mode));
79
80 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
81 if (mode == BImode)
82 return c & 1 ? STORE_FLAG_VALUE : 0;
83
84 /* Sign-extend for the requested mode. */
85
86 if (width < HOST_BITS_PER_WIDE_INT)
87 {
88 HOST_WIDE_INT sign = 1;
89 sign <<= width - 1;
90 c &= (sign << 1) - 1;
91 c ^= sign;
92 c -= sign;
93 }
94
95 return c;
96 }
97
98 /* Return an rtx for the sum of X and the integer C, given that X has
99 mode MODE. INPLACE is true if X can be modified inplace or false
100 if it must be treated as immutable. */
101
102 rtx
103 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
104 bool inplace)
105 {
106 RTX_CODE code;
107 rtx y;
108 rtx tem;
109 int all_constant = 0;
110
111 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
112
113 if (c == 0)
114 return x;
115
116 restart:
117
118 code = GET_CODE (x);
119 y = x;
120
121 switch (code)
122 {
123 CASE_CONST_SCALAR_INT:
124 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
125 mode);
126 case MEM:
127 /* If this is a reference to the constant pool, try replacing it with
128 a reference to a new constant. If the resulting address isn't
129 valid, don't return it because we have no way to validize it. */
130 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
131 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
132 {
133 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
134 tem = force_const_mem (GET_MODE (x), tem);
135 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
136 return tem;
137 }
138 break;
139
140 case CONST:
141 /* If adding to something entirely constant, set a flag
142 so that we can add a CONST around the result. */
143 if (inplace && shared_const_p (x))
144 inplace = false;
145 x = XEXP (x, 0);
146 all_constant = 1;
147 goto restart;
148
149 case SYMBOL_REF:
150 case LABEL_REF:
151 all_constant = 1;
152 break;
153
154 case PLUS:
155 /* The interesting case is adding the integer to a sum. Look
156 for constant term in the sum and combine with C. For an
157 integer constant term or a constant term that is not an
158 explicit integer, we combine or group them together anyway.
159
160 We may not immediately return from the recursive call here, lest
161 all_constant gets lost. */
162
163 if (CONSTANT_P (XEXP (x, 1)))
164 {
165 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
166 if (term == const0_rtx)
167 x = XEXP (x, 0);
168 else if (inplace)
169 XEXP (x, 1) = term;
170 else
171 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
172 c = 0;
173 }
174 else if (rtx *const_loc = find_constant_term_loc (&y))
175 {
176 if (!inplace)
177 {
178 /* We need to be careful since X may be shared and we can't
179 modify it in place. */
180 x = copy_rtx (x);
181 const_loc = find_constant_term_loc (&x);
182 }
183 *const_loc = plus_constant (mode, *const_loc, c, true);
184 c = 0;
185 }
186 break;
187
188 default:
189 break;
190 }
191
192 if (c != 0)
193 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
194
195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196 return x;
197 else if (all_constant)
198 return gen_rtx_CONST (mode, x);
199 else
200 return x;
201 }
202 \f
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
207
208 rtx
209 eliminate_constant_term (rtx x, rtx *constptr)
210 {
211 rtx x0, x1;
212 rtx tem;
213
214 if (GET_CODE (x) != PLUS)
215 return x;
216
217 /* First handle constants appearing at this level explicitly. */
218 if (CONST_INT_P (XEXP (x, 1))
219 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
220 XEXP (x, 1)))
221 && CONST_INT_P (tem))
222 {
223 *constptr = tem;
224 return eliminate_constant_term (XEXP (x, 0), constptr);
225 }
226
227 tem = const0_rtx;
228 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
229 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
230 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
231 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
232 *constptr, tem))
233 && CONST_INT_P (tem))
234 {
235 *constptr = tem;
236 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
237 }
238
239 return x;
240 }
241
242 \f
243 /* Return a copy of X in which all memory references
244 and all constants that involve symbol refs
245 have been replaced with new temporary registers.
246 Also emit code to load the memory locations and constants
247 into those registers.
248
249 If X contains no such constants or memory references,
250 X itself (not a copy) is returned.
251
252 If a constant is found in the address that is not a legitimate constant
253 in an insn, it is left alone in the hope that it might be valid in the
254 address.
255
256 X may contain no arithmetic except addition, subtraction and multiplication.
257 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
258
259 static rtx
260 break_out_memory_refs (rtx x)
261 {
262 if (MEM_P (x)
263 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
264 && GET_MODE (x) != VOIDmode))
265 x = force_reg (GET_MODE (x), x);
266 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
267 || GET_CODE (x) == MULT)
268 {
269 rtx op0 = break_out_memory_refs (XEXP (x, 0));
270 rtx op1 = break_out_memory_refs (XEXP (x, 1));
271
272 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
273 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
274 }
275
276 return x;
277 }
278
279 /* Given X, a memory address in address space AS' pointer mode, convert it to
280 an address in the address space's address mode, or vice versa (TO_MODE says
281 which way). We take advantage of the fact that pointers are not allowed to
282 overflow by commuting arithmetic operations over conversions so that address
283 arithmetic insns can be used. IN_CONST is true if this conversion is inside
284 a CONST. */
285
286 static rtx
287 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
288 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
289 bool in_const ATTRIBUTE_UNUSED)
290 {
291 #ifndef POINTERS_EXTEND_UNSIGNED
292 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
293 return x;
294 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
295 machine_mode pointer_mode, address_mode, from_mode;
296 rtx temp;
297 enum rtx_code code;
298
299 /* If X already has the right mode, just return it. */
300 if (GET_MODE (x) == to_mode)
301 return x;
302
303 pointer_mode = targetm.addr_space.pointer_mode (as);
304 address_mode = targetm.addr_space.address_mode (as);
305 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
306
307 /* Here we handle some special cases. If none of them apply, fall through
308 to the default case. */
309 switch (GET_CODE (x))
310 {
311 CASE_CONST_SCALAR_INT:
312 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
313 code = TRUNCATE;
314 else if (POINTERS_EXTEND_UNSIGNED < 0)
315 break;
316 else if (POINTERS_EXTEND_UNSIGNED > 0)
317 code = ZERO_EXTEND;
318 else
319 code = SIGN_EXTEND;
320 temp = simplify_unary_operation (code, to_mode, x, from_mode);
321 if (temp)
322 return temp;
323 break;
324
325 case SUBREG:
326 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
327 && GET_MODE (SUBREG_REG (x)) == to_mode)
328 return SUBREG_REG (x);
329 break;
330
331 case LABEL_REF:
332 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
333 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
334 return temp;
335 break;
336
337 case SYMBOL_REF:
338 temp = shallow_copy_rtx (x);
339 PUT_MODE (temp, to_mode);
340 return temp;
341 break;
342
343 case CONST:
344 return gen_rtx_CONST (to_mode,
345 convert_memory_address_addr_space_1
346 (to_mode, XEXP (x, 0), as, true));
347 break;
348
349 case PLUS:
350 case MULT:
351 /* For addition we can safely permute the conversion and addition
352 operation if one operand is a constant and converting the constant
353 does not change it or if one operand is a constant and we are
354 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
355 We can always safely permute them if we are making the address
356 narrower. Inside a CONST RTL, this is safe for both pointers
357 zero or sign extended as pointers cannot wrap. */
358 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
359 || (GET_CODE (x) == PLUS
360 && CONST_INT_P (XEXP (x, 1))
361 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
362 || XEXP (x, 1) == convert_memory_address_addr_space_1
363 (to_mode, XEXP (x, 1), as, in_const)
364 || POINTERS_EXTEND_UNSIGNED < 0)))
365 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
366 convert_memory_address_addr_space_1
367 (to_mode, XEXP (x, 0), as, in_const),
368 XEXP (x, 1));
369 break;
370
371 default:
372 break;
373 }
374
375 return convert_modes (to_mode, from_mode,
376 x, POINTERS_EXTEND_UNSIGNED);
377 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
378 }
379
380 /* Given X, a memory address in address space AS' pointer mode, convert it to
381 an address in the address space's address mode, or vice versa (TO_MODE says
382 which way). We take advantage of the fact that pointers are not allowed to
383 overflow by commuting arithmetic operations over conversions so that address
384 arithmetic insns can be used. */
385
386 rtx
387 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
388 {
389 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
390 }
391 \f
392
393 /* Return something equivalent to X but valid as a memory address for something
394 of mode MODE in the named address space AS. When X is not itself valid,
395 this works by copying X or subexpressions of it into registers. */
396
397 rtx
398 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
399 {
400 rtx oldx = x;
401 machine_mode address_mode = targetm.addr_space.address_mode (as);
402
403 x = convert_memory_address_addr_space (address_mode, x, as);
404
405 /* By passing constant addresses through registers
406 we get a chance to cse them. */
407 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
408 x = force_reg (address_mode, x);
409
410 /* We get better cse by rejecting indirect addressing at this stage.
411 Let the combiner create indirect addresses where appropriate.
412 For now, generate the code so that the subexpressions useful to share
413 are visible. But not if cse won't be done! */
414 else
415 {
416 if (! cse_not_expected && !REG_P (x))
417 x = break_out_memory_refs (x);
418
419 /* At this point, any valid address is accepted. */
420 if (memory_address_addr_space_p (mode, x, as))
421 goto done;
422
423 /* If it was valid before but breaking out memory refs invalidated it,
424 use it the old way. */
425 if (memory_address_addr_space_p (mode, oldx, as))
426 {
427 x = oldx;
428 goto done;
429 }
430
431 /* Perform machine-dependent transformations on X
432 in certain cases. This is not necessary since the code
433 below can handle all possible cases, but machine-dependent
434 transformations can make better code. */
435 {
436 rtx orig_x = x;
437 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
438 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
439 goto done;
440 }
441
442 /* PLUS and MULT can appear in special ways
443 as the result of attempts to make an address usable for indexing.
444 Usually they are dealt with by calling force_operand, below.
445 But a sum containing constant terms is special
446 if removing them makes the sum a valid address:
447 then we generate that address in a register
448 and index off of it. We do this because it often makes
449 shorter code, and because the addresses thus generated
450 in registers often become common subexpressions. */
451 if (GET_CODE (x) == PLUS)
452 {
453 rtx constant_term = const0_rtx;
454 rtx y = eliminate_constant_term (x, &constant_term);
455 if (constant_term == const0_rtx
456 || ! memory_address_addr_space_p (mode, y, as))
457 x = force_operand (x, NULL_RTX);
458 else
459 {
460 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
461 if (! memory_address_addr_space_p (mode, y, as))
462 x = force_operand (x, NULL_RTX);
463 else
464 x = y;
465 }
466 }
467
468 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
469 x = force_operand (x, NULL_RTX);
470
471 /* If we have a register that's an invalid address,
472 it must be a hard reg of the wrong class. Copy it to a pseudo. */
473 else if (REG_P (x))
474 x = copy_to_reg (x);
475
476 /* Last resort: copy the value to a register, since
477 the register is a valid address. */
478 else
479 x = force_reg (address_mode, x);
480 }
481
482 done:
483
484 gcc_assert (memory_address_addr_space_p (mode, x, as));
485 /* If we didn't change the address, we are done. Otherwise, mark
486 a reg as a pointer if we have REG or REG + CONST_INT. */
487 if (oldx == x)
488 return x;
489 else if (REG_P (x))
490 mark_reg_pointer (x, BITS_PER_UNIT);
491 else if (GET_CODE (x) == PLUS
492 && REG_P (XEXP (x, 0))
493 && CONST_INT_P (XEXP (x, 1)))
494 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
495
496 /* OLDX may have been the address on a temporary. Update the address
497 to indicate that X is now used. */
498 update_temp_slot_address (oldx, x);
499
500 return x;
501 }
502
503 /* If REF is a MEM with an invalid address, change it into a valid address.
504 Pass through anything else unchanged. REF must be an unshared rtx and
505 the function may modify it in-place. */
506
507 rtx
508 validize_mem (rtx ref)
509 {
510 if (!MEM_P (ref))
511 return ref;
512 ref = use_anchored_address (ref);
513 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
514 MEM_ADDR_SPACE (ref)))
515 return ref;
516
517 return replace_equiv_address (ref, XEXP (ref, 0), true);
518 }
519
520 /* If X is a memory reference to a member of an object block, try rewriting
521 it to use an anchor instead. Return the new memory reference on success
522 and the old one on failure. */
523
524 rtx
525 use_anchored_address (rtx x)
526 {
527 rtx base;
528 HOST_WIDE_INT offset;
529 machine_mode mode;
530
531 if (!flag_section_anchors)
532 return x;
533
534 if (!MEM_P (x))
535 return x;
536
537 /* Split the address into a base and offset. */
538 base = XEXP (x, 0);
539 offset = 0;
540 if (GET_CODE (base) == CONST
541 && GET_CODE (XEXP (base, 0)) == PLUS
542 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
543 {
544 offset += INTVAL (XEXP (XEXP (base, 0), 1));
545 base = XEXP (XEXP (base, 0), 0);
546 }
547
548 /* Check whether BASE is suitable for anchors. */
549 if (GET_CODE (base) != SYMBOL_REF
550 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
551 || SYMBOL_REF_ANCHOR_P (base)
552 || SYMBOL_REF_BLOCK (base) == NULL
553 || !targetm.use_anchors_for_symbol_p (base))
554 return x;
555
556 /* Decide where BASE is going to be. */
557 place_block_symbol (base);
558
559 /* Get the anchor we need to use. */
560 offset += SYMBOL_REF_BLOCK_OFFSET (base);
561 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
562 SYMBOL_REF_TLS_MODEL (base));
563
564 /* Work out the offset from the anchor. */
565 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
566
567 /* If we're going to run a CSE pass, force the anchor into a register.
568 We will then be able to reuse registers for several accesses, if the
569 target costs say that that's worthwhile. */
570 mode = GET_MODE (base);
571 if (!cse_not_expected)
572 base = force_reg (mode, base);
573
574 return replace_equiv_address (x, plus_constant (mode, base, offset));
575 }
576 \f
577 /* Copy the value or contents of X to a new temp reg and return that reg. */
578
579 rtx
580 copy_to_reg (rtx x)
581 {
582 rtx temp = gen_reg_rtx (GET_MODE (x));
583
584 /* If not an operand, must be an address with PLUS and MULT so
585 do the computation. */
586 if (! general_operand (x, VOIDmode))
587 x = force_operand (x, temp);
588
589 if (x != temp)
590 emit_move_insn (temp, x);
591
592 return temp;
593 }
594
595 /* Like copy_to_reg but always give the new register mode Pmode
596 in case X is a constant. */
597
598 rtx
599 copy_addr_to_reg (rtx x)
600 {
601 return copy_to_mode_reg (Pmode, x);
602 }
603
604 /* Like copy_to_reg but always give the new register mode MODE
605 in case X is a constant. */
606
607 rtx
608 copy_to_mode_reg (machine_mode mode, rtx x)
609 {
610 rtx temp = gen_reg_rtx (mode);
611
612 /* If not an operand, must be an address with PLUS and MULT so
613 do the computation. */
614 if (! general_operand (x, VOIDmode))
615 x = force_operand (x, temp);
616
617 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
618 if (x != temp)
619 emit_move_insn (temp, x);
620 return temp;
621 }
622
623 /* Load X into a register if it is not already one.
624 Use mode MODE for the register.
625 X should be valid for mode MODE, but it may be a constant which
626 is valid for all integer modes; that's why caller must specify MODE.
627
628 The caller must not alter the value in the register we return,
629 since we mark it as a "constant" register. */
630
631 rtx
632 force_reg (machine_mode mode, rtx x)
633 {
634 rtx temp, set;
635 rtx_insn *insn;
636
637 if (REG_P (x))
638 return x;
639
640 if (general_operand (x, mode))
641 {
642 temp = gen_reg_rtx (mode);
643 insn = emit_move_insn (temp, x);
644 }
645 else
646 {
647 temp = force_operand (x, NULL_RTX);
648 if (REG_P (temp))
649 insn = get_last_insn ();
650 else
651 {
652 rtx temp2 = gen_reg_rtx (mode);
653 insn = emit_move_insn (temp2, temp);
654 temp = temp2;
655 }
656 }
657
658 /* Let optimizers know that TEMP's value never changes
659 and that X can be substituted for it. Don't get confused
660 if INSN set something else (such as a SUBREG of TEMP). */
661 if (CONSTANT_P (x)
662 && (set = single_set (insn)) != 0
663 && SET_DEST (set) == temp
664 && ! rtx_equal_p (x, SET_SRC (set)))
665 set_unique_reg_note (insn, REG_EQUAL, x);
666
667 /* Let optimizers know that TEMP is a pointer, and if so, the
668 known alignment of that pointer. */
669 {
670 unsigned align = 0;
671 if (GET_CODE (x) == SYMBOL_REF)
672 {
673 align = BITS_PER_UNIT;
674 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
675 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
676 }
677 else if (GET_CODE (x) == LABEL_REF)
678 align = BITS_PER_UNIT;
679 else if (GET_CODE (x) == CONST
680 && GET_CODE (XEXP (x, 0)) == PLUS
681 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
682 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
683 {
684 rtx s = XEXP (XEXP (x, 0), 0);
685 rtx c = XEXP (XEXP (x, 0), 1);
686 unsigned sa, ca;
687
688 sa = BITS_PER_UNIT;
689 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
690 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
691
692 if (INTVAL (c) == 0)
693 align = sa;
694 else
695 {
696 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
697 align = MIN (sa, ca);
698 }
699 }
700
701 if (align || (MEM_P (x) && MEM_POINTER (x)))
702 mark_reg_pointer (temp, align);
703 }
704
705 return temp;
706 }
707
708 /* If X is a memory ref, copy its contents to a new temp reg and return
709 that reg. Otherwise, return X. */
710
711 rtx
712 force_not_mem (rtx x)
713 {
714 rtx temp;
715
716 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
717 return x;
718
719 temp = gen_reg_rtx (GET_MODE (x));
720
721 if (MEM_POINTER (x))
722 REG_POINTER (temp) = 1;
723
724 emit_move_insn (temp, x);
725 return temp;
726 }
727
728 /* Copy X to TARGET (if it's nonzero and a reg)
729 or to a new temp reg and return that reg.
730 MODE is the mode to use for X in case it is a constant. */
731
732 rtx
733 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
734 {
735 rtx temp;
736
737 if (target && REG_P (target))
738 temp = target;
739 else
740 temp = gen_reg_rtx (mode);
741
742 emit_move_insn (temp, x);
743 return temp;
744 }
745 \f
746 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
747 PUNSIGNEDP points to the signedness of the type and may be adjusted
748 to show what signedness to use on extension operations.
749
750 FOR_RETURN is nonzero if the caller is promoting the return value
751 of FNDECL, else it is for promoting args. */
752
753 machine_mode
754 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
755 const_tree funtype, int for_return)
756 {
757 /* Called without a type node for a libcall. */
758 if (type == NULL_TREE)
759 {
760 if (INTEGRAL_MODE_P (mode))
761 return targetm.calls.promote_function_mode (NULL_TREE, mode,
762 punsignedp, funtype,
763 for_return);
764 else
765 return mode;
766 }
767
768 switch (TREE_CODE (type))
769 {
770 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
771 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
772 case POINTER_TYPE: case REFERENCE_TYPE:
773 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
774 for_return);
775
776 default:
777 return mode;
778 }
779 }
780 /* Return the mode to use to store a scalar of TYPE and MODE.
781 PUNSIGNEDP points to the signedness of the type and may be adjusted
782 to show what signedness to use on extension operations. */
783
784 machine_mode
785 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
786 int *punsignedp ATTRIBUTE_UNUSED)
787 {
788 #ifdef PROMOTE_MODE
789 enum tree_code code;
790 int unsignedp;
791 #endif
792
793 /* For libcalls this is invoked without TYPE from the backends
794 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
795 case. */
796 if (type == NULL_TREE)
797 return mode;
798
799 /* FIXME: this is the same logic that was there until GCC 4.4, but we
800 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
801 is not defined. The affected targets are M32C, S390, SPARC. */
802 #ifdef PROMOTE_MODE
803 code = TREE_CODE (type);
804 unsignedp = *punsignedp;
805
806 switch (code)
807 {
808 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
809 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
810 PROMOTE_MODE (mode, unsignedp, type);
811 *punsignedp = unsignedp;
812 return mode;
813 break;
814
815 #ifdef POINTERS_EXTEND_UNSIGNED
816 case REFERENCE_TYPE:
817 case POINTER_TYPE:
818 *punsignedp = POINTERS_EXTEND_UNSIGNED;
819 return targetm.addr_space.address_mode
820 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
821 break;
822 #endif
823
824 default:
825 return mode;
826 }
827 #else
828 return mode;
829 #endif
830 }
831
832
833 /* Use one of promote_mode or promote_function_mode to find the promoted
834 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
835 of DECL after promotion. */
836
837 machine_mode
838 promote_decl_mode (const_tree decl, int *punsignedp)
839 {
840 tree type = TREE_TYPE (decl);
841 int unsignedp = TYPE_UNSIGNED (type);
842 machine_mode mode = DECL_MODE (decl);
843 machine_mode pmode;
844
845 if (TREE_CODE (decl) == RESULT_DECL
846 || TREE_CODE (decl) == PARM_DECL)
847 pmode = promote_function_mode (type, mode, &unsignedp,
848 TREE_TYPE (current_function_decl), 2);
849 else
850 pmode = promote_mode (type, mode, &unsignedp);
851
852 if (punsignedp)
853 *punsignedp = unsignedp;
854 return pmode;
855 }
856
857 \f
858 /* Controls the behaviour of {anti_,}adjust_stack. */
859 static bool suppress_reg_args_size;
860
861 /* A helper for adjust_stack and anti_adjust_stack. */
862
863 static void
864 adjust_stack_1 (rtx adjust, bool anti_p)
865 {
866 rtx temp;
867 rtx_insn *insn;
868
869 #ifndef STACK_GROWS_DOWNWARD
870 /* Hereafter anti_p means subtract_p. */
871 anti_p = !anti_p;
872 #endif
873
874 temp = expand_binop (Pmode,
875 anti_p ? sub_optab : add_optab,
876 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877 OPTAB_LIB_WIDEN);
878
879 if (temp != stack_pointer_rtx)
880 insn = emit_move_insn (stack_pointer_rtx, temp);
881 else
882 {
883 insn = get_last_insn ();
884 temp = single_set (insn);
885 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
886 }
887
888 if (!suppress_reg_args_size)
889 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
890 }
891
892 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
893 This pops when ADJUST is positive. ADJUST need not be constant. */
894
895 void
896 adjust_stack (rtx adjust)
897 {
898 if (adjust == const0_rtx)
899 return;
900
901 /* We expect all variable sized adjustments to be multiple of
902 PREFERRED_STACK_BOUNDARY. */
903 if (CONST_INT_P (adjust))
904 stack_pointer_delta -= INTVAL (adjust);
905
906 adjust_stack_1 (adjust, false);
907 }
908
909 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
910 This pushes when ADJUST is positive. ADJUST need not be constant. */
911
912 void
913 anti_adjust_stack (rtx adjust)
914 {
915 if (adjust == const0_rtx)
916 return;
917
918 /* We expect all variable sized adjustments to be multiple of
919 PREFERRED_STACK_BOUNDARY. */
920 if (CONST_INT_P (adjust))
921 stack_pointer_delta += INTVAL (adjust);
922
923 adjust_stack_1 (adjust, true);
924 }
925
926 /* Round the size of a block to be pushed up to the boundary required
927 by this machine. SIZE is the desired size, which need not be constant. */
928
929 static rtx
930 round_push (rtx size)
931 {
932 rtx align_rtx, alignm1_rtx;
933
934 if (!SUPPORTS_STACK_ALIGNMENT
935 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
936 {
937 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
938
939 if (align == 1)
940 return size;
941
942 if (CONST_INT_P (size))
943 {
944 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
945
946 if (INTVAL (size) != new_size)
947 size = GEN_INT (new_size);
948 return size;
949 }
950
951 align_rtx = GEN_INT (align);
952 alignm1_rtx = GEN_INT (align - 1);
953 }
954 else
955 {
956 /* If crtl->preferred_stack_boundary might still grow, use
957 virtual_preferred_stack_boundary_rtx instead. This will be
958 substituted by the right value in vregs pass and optimized
959 during combine. */
960 align_rtx = virtual_preferred_stack_boundary_rtx;
961 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
962 NULL_RTX);
963 }
964
965 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
966 but we know it can't. So add ourselves and then do
967 TRUNC_DIV_EXPR. */
968 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
969 NULL_RTX, 1, OPTAB_LIB_WIDEN);
970 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
971 NULL_RTX, 1);
972 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
973
974 return size;
975 }
976 \f
977 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
978 to a previously-created save area. If no save area has been allocated,
979 this function will allocate one. If a save area is specified, it
980 must be of the proper mode. */
981
982 void
983 emit_stack_save (enum save_level save_level, rtx *psave)
984 {
985 rtx sa = *psave;
986 /* The default is that we use a move insn and save in a Pmode object. */
987 rtx (*fcn) (rtx, rtx) = gen_move_insn;
988 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
989
990 /* See if this machine has anything special to do for this kind of save. */
991 switch (save_level)
992 {
993 #ifdef HAVE_save_stack_block
994 case SAVE_BLOCK:
995 if (HAVE_save_stack_block)
996 fcn = gen_save_stack_block;
997 break;
998 #endif
999 #ifdef HAVE_save_stack_function
1000 case SAVE_FUNCTION:
1001 if (HAVE_save_stack_function)
1002 fcn = gen_save_stack_function;
1003 break;
1004 #endif
1005 #ifdef HAVE_save_stack_nonlocal
1006 case SAVE_NONLOCAL:
1007 if (HAVE_save_stack_nonlocal)
1008 fcn = gen_save_stack_nonlocal;
1009 break;
1010 #endif
1011 default:
1012 break;
1013 }
1014
1015 /* If there is no save area and we have to allocate one, do so. Otherwise
1016 verify the save area is the proper mode. */
1017
1018 if (sa == 0)
1019 {
1020 if (mode != VOIDmode)
1021 {
1022 if (save_level == SAVE_NONLOCAL)
1023 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1024 else
1025 *psave = sa = gen_reg_rtx (mode);
1026 }
1027 }
1028
1029 do_pending_stack_adjust ();
1030 if (sa != 0)
1031 sa = validize_mem (sa);
1032 emit_insn (fcn (sa, stack_pointer_rtx));
1033 }
1034
1035 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1036 area made by emit_stack_save. If it is zero, we have nothing to do. */
1037
1038 void
1039 emit_stack_restore (enum save_level save_level, rtx sa)
1040 {
1041 /* The default is that we use a move insn. */
1042 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1043
1044 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1045 STACK_POINTER and HARD_FRAME_POINTER.
1046 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1047 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1048 aligned variables, which is reflected in ix86_can_eliminate.
1049 We normally still have the realigned STACK_POINTER that we can use.
1050 But if there is a stack restore still present at reload, it can trigger
1051 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1052 FRAME_POINTER into a hard reg.
1053 To prevent this situation, we force need_drap if we emit a stack
1054 restore. */
1055 if (SUPPORTS_STACK_ALIGNMENT)
1056 crtl->need_drap = true;
1057
1058 /* See if this machine has anything special to do for this kind of save. */
1059 switch (save_level)
1060 {
1061 #ifdef HAVE_restore_stack_block
1062 case SAVE_BLOCK:
1063 if (HAVE_restore_stack_block)
1064 fcn = gen_restore_stack_block;
1065 break;
1066 #endif
1067 #ifdef HAVE_restore_stack_function
1068 case SAVE_FUNCTION:
1069 if (HAVE_restore_stack_function)
1070 fcn = gen_restore_stack_function;
1071 break;
1072 #endif
1073 #ifdef HAVE_restore_stack_nonlocal
1074 case SAVE_NONLOCAL:
1075 if (HAVE_restore_stack_nonlocal)
1076 fcn = gen_restore_stack_nonlocal;
1077 break;
1078 #endif
1079 default:
1080 break;
1081 }
1082
1083 if (sa != 0)
1084 {
1085 sa = validize_mem (sa);
1086 /* These clobbers prevent the scheduler from moving
1087 references to variable arrays below the code
1088 that deletes (pops) the arrays. */
1089 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1090 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1091 }
1092
1093 discard_pending_stack_adjust ();
1094
1095 emit_insn (fcn (stack_pointer_rtx, sa));
1096 }
1097
1098 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1099 function. This should be called whenever we allocate or deallocate
1100 dynamic stack space. */
1101
1102 void
1103 update_nonlocal_goto_save_area (void)
1104 {
1105 tree t_save;
1106 rtx r_save;
1107
1108 /* The nonlocal_goto_save_area object is an array of N pointers. The
1109 first one is used for the frame pointer save; the rest are sized by
1110 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1111 of the stack save area slots. */
1112 t_save = build4 (ARRAY_REF,
1113 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1114 cfun->nonlocal_goto_save_area,
1115 integer_one_node, NULL_TREE, NULL_TREE);
1116 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1117
1118 emit_stack_save (SAVE_NONLOCAL, &r_save);
1119 }
1120
1121 /* Record a new stack level for the current function. This should be called
1122 whenever we allocate or deallocate dynamic stack space. */
1123
1124 void
1125 record_new_stack_level (void)
1126 {
1127 /* Record the new stack level for nonlocal gotos. */
1128 if (cfun->nonlocal_goto_save_area)
1129 update_nonlocal_goto_save_area ();
1130
1131 /* Record the new stack level for SJLJ exceptions. */
1132 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1133 update_sjlj_context ();
1134 }
1135 \f
1136 /* Return an rtx representing the address of an area of memory dynamically
1137 pushed on the stack.
1138
1139 Any required stack pointer alignment is preserved.
1140
1141 SIZE is an rtx representing the size of the area.
1142
1143 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1144 parameter may be zero. If so, a proper value will be extracted
1145 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1146
1147 REQUIRED_ALIGN is the alignment (in bits) required for the region
1148 of memory.
1149
1150 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1151 stack space allocated by the generated code cannot be added with itself
1152 in the course of the execution of the function. It is always safe to
1153 pass FALSE here and the following criterion is sufficient in order to
1154 pass TRUE: every path in the CFG that starts at the allocation point and
1155 loops to it executes the associated deallocation code. */
1156
1157 rtx
1158 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1159 unsigned required_align, bool cannot_accumulate)
1160 {
1161 HOST_WIDE_INT stack_usage_size = -1;
1162 rtx_code_label *final_label;
1163 rtx final_target, target;
1164 unsigned extra_align = 0;
1165 bool must_align;
1166
1167 /* If we're asking for zero bytes, it doesn't matter what we point
1168 to since we can't dereference it. But return a reasonable
1169 address anyway. */
1170 if (size == const0_rtx)
1171 return virtual_stack_dynamic_rtx;
1172
1173 /* Otherwise, show we're calling alloca or equivalent. */
1174 cfun->calls_alloca = 1;
1175
1176 /* If stack usage info is requested, look into the size we are passed.
1177 We need to do so this early to avoid the obfuscation that may be
1178 introduced later by the various alignment operations. */
1179 if (flag_stack_usage_info)
1180 {
1181 if (CONST_INT_P (size))
1182 stack_usage_size = INTVAL (size);
1183 else if (REG_P (size))
1184 {
1185 /* Look into the last emitted insn and see if we can deduce
1186 something for the register. */
1187 rtx_insn *insn;
1188 rtx set, note;
1189 insn = get_last_insn ();
1190 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1191 {
1192 if (CONST_INT_P (SET_SRC (set)))
1193 stack_usage_size = INTVAL (SET_SRC (set));
1194 else if ((note = find_reg_equal_equiv_note (insn))
1195 && CONST_INT_P (XEXP (note, 0)))
1196 stack_usage_size = INTVAL (XEXP (note, 0));
1197 }
1198 }
1199
1200 /* If the size is not constant, we can't say anything. */
1201 if (stack_usage_size == -1)
1202 {
1203 current_function_has_unbounded_dynamic_stack_size = 1;
1204 stack_usage_size = 0;
1205 }
1206 }
1207
1208 /* Ensure the size is in the proper mode. */
1209 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1210 size = convert_to_mode (Pmode, size, 1);
1211
1212 /* Adjust SIZE_ALIGN, if needed. */
1213 if (CONST_INT_P (size))
1214 {
1215 unsigned HOST_WIDE_INT lsb;
1216
1217 lsb = INTVAL (size);
1218 lsb &= -lsb;
1219
1220 /* Watch out for overflow truncating to "unsigned". */
1221 if (lsb > UINT_MAX / BITS_PER_UNIT)
1222 size_align = 1u << (HOST_BITS_PER_INT - 1);
1223 else
1224 size_align = (unsigned)lsb * BITS_PER_UNIT;
1225 }
1226 else if (size_align < BITS_PER_UNIT)
1227 size_align = BITS_PER_UNIT;
1228
1229 /* We can't attempt to minimize alignment necessary, because we don't
1230 know the final value of preferred_stack_boundary yet while executing
1231 this code. */
1232 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1233 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1234
1235 /* We will need to ensure that the address we return is aligned to
1236 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1237 always know its final value at this point in the compilation (it
1238 might depend on the size of the outgoing parameter lists, for
1239 example), so we must align the value to be returned in that case.
1240 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1241 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1242 We must also do an alignment operation on the returned value if
1243 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1244
1245 If we have to align, we must leave space in SIZE for the hole
1246 that might result from the alignment operation. */
1247
1248 must_align = (crtl->preferred_stack_boundary < required_align);
1249 if (must_align)
1250 {
1251 if (required_align > PREFERRED_STACK_BOUNDARY)
1252 extra_align = PREFERRED_STACK_BOUNDARY;
1253 else if (required_align > STACK_BOUNDARY)
1254 extra_align = STACK_BOUNDARY;
1255 else
1256 extra_align = BITS_PER_UNIT;
1257 }
1258
1259 /* ??? STACK_POINTER_OFFSET is always defined now. */
1260 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1261 must_align = true;
1262 extra_align = BITS_PER_UNIT;
1263 #endif
1264
1265 if (must_align)
1266 {
1267 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1268
1269 size = plus_constant (Pmode, size, extra);
1270 size = force_operand (size, NULL_RTX);
1271
1272 if (flag_stack_usage_info)
1273 stack_usage_size += extra;
1274
1275 if (extra && size_align > extra_align)
1276 size_align = extra_align;
1277 }
1278
1279 /* Round the size to a multiple of the required stack alignment.
1280 Since the stack if presumed to be rounded before this allocation,
1281 this will maintain the required alignment.
1282
1283 If the stack grows downward, we could save an insn by subtracting
1284 SIZE from the stack pointer and then aligning the stack pointer.
1285 The problem with this is that the stack pointer may be unaligned
1286 between the execution of the subtraction and alignment insns and
1287 some machines do not allow this. Even on those that do, some
1288 signal handlers malfunction if a signal should occur between those
1289 insns. Since this is an extremely rare event, we have no reliable
1290 way of knowing which systems have this problem. So we avoid even
1291 momentarily mis-aligning the stack. */
1292 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1293 {
1294 size = round_push (size);
1295
1296 if (flag_stack_usage_info)
1297 {
1298 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1299 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1300 }
1301 }
1302
1303 target = gen_reg_rtx (Pmode);
1304
1305 /* The size is supposed to be fully adjusted at this point so record it
1306 if stack usage info is requested. */
1307 if (flag_stack_usage_info)
1308 {
1309 current_function_dynamic_stack_size += stack_usage_size;
1310
1311 /* ??? This is gross but the only safe stance in the absence
1312 of stack usage oriented flow analysis. */
1313 if (!cannot_accumulate)
1314 current_function_has_unbounded_dynamic_stack_size = 1;
1315 }
1316
1317 final_label = NULL;
1318 final_target = NULL_RTX;
1319
1320 /* If we are splitting the stack, we need to ask the backend whether
1321 there is enough room on the current stack. If there isn't, or if
1322 the backend doesn't know how to tell is, then we need to call a
1323 function to allocate memory in some other way. This memory will
1324 be released when we release the current stack segment. The
1325 effect is that stack allocation becomes less efficient, but at
1326 least it doesn't cause a stack overflow. */
1327 if (flag_split_stack)
1328 {
1329 rtx_code_label *available_label;
1330 rtx ask, space, func;
1331
1332 available_label = NULL;
1333
1334 #ifdef HAVE_split_stack_space_check
1335 if (HAVE_split_stack_space_check)
1336 {
1337 available_label = gen_label_rtx ();
1338
1339 /* This instruction will branch to AVAILABLE_LABEL if there
1340 are SIZE bytes available on the stack. */
1341 emit_insn (gen_split_stack_space_check (size, available_label));
1342 }
1343 #endif
1344
1345 /* The __morestack_allocate_stack_space function will allocate
1346 memory using malloc. If the alignment of the memory returned
1347 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1348 make sure we allocate enough space. */
1349 if (MALLOC_ABI_ALIGNMENT >= required_align)
1350 ask = size;
1351 else
1352 {
1353 ask = expand_binop (Pmode, add_optab, size,
1354 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1355 Pmode),
1356 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1357 must_align = true;
1358 }
1359
1360 func = init_one_libfunc ("__morestack_allocate_stack_space");
1361
1362 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1363 1, ask, Pmode);
1364
1365 if (available_label == NULL_RTX)
1366 return space;
1367
1368 final_target = gen_reg_rtx (Pmode);
1369
1370 emit_move_insn (final_target, space);
1371
1372 final_label = gen_label_rtx ();
1373 emit_jump (final_label);
1374
1375 emit_label (available_label);
1376 }
1377
1378 do_pending_stack_adjust ();
1379
1380 /* We ought to be called always on the toplevel and stack ought to be aligned
1381 properly. */
1382 gcc_assert (!(stack_pointer_delta
1383 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1384
1385 /* If needed, check that we have the required amount of stack. Take into
1386 account what has already been checked. */
1387 if (STACK_CHECK_MOVING_SP)
1388 ;
1389 else if (flag_stack_check == GENERIC_STACK_CHECK)
1390 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1391 size);
1392 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1393 probe_stack_range (STACK_CHECK_PROTECT, size);
1394
1395 /* Don't let anti_adjust_stack emit notes. */
1396 suppress_reg_args_size = true;
1397
1398 /* Perform the required allocation from the stack. Some systems do
1399 this differently than simply incrementing/decrementing from the
1400 stack pointer, such as acquiring the space by calling malloc(). */
1401 #ifdef HAVE_allocate_stack
1402 if (HAVE_allocate_stack)
1403 {
1404 struct expand_operand ops[2];
1405 /* We don't have to check against the predicate for operand 0 since
1406 TARGET is known to be a pseudo of the proper mode, which must
1407 be valid for the operand. */
1408 create_fixed_operand (&ops[0], target);
1409 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1410 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1411 }
1412 else
1413 #endif
1414 {
1415 int saved_stack_pointer_delta;
1416
1417 #ifndef STACK_GROWS_DOWNWARD
1418 emit_move_insn (target, virtual_stack_dynamic_rtx);
1419 #endif
1420
1421 /* Check stack bounds if necessary. */
1422 if (crtl->limit_stack)
1423 {
1424 rtx available;
1425 rtx_code_label *space_available = gen_label_rtx ();
1426 #ifdef STACK_GROWS_DOWNWARD
1427 available = expand_binop (Pmode, sub_optab,
1428 stack_pointer_rtx, stack_limit_rtx,
1429 NULL_RTX, 1, OPTAB_WIDEN);
1430 #else
1431 available = expand_binop (Pmode, sub_optab,
1432 stack_limit_rtx, stack_pointer_rtx,
1433 NULL_RTX, 1, OPTAB_WIDEN);
1434 #endif
1435 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1436 space_available);
1437 #ifdef HAVE_trap
1438 if (HAVE_trap)
1439 emit_insn (gen_trap ());
1440 else
1441 #endif
1442 error ("stack limits not supported on this target");
1443 emit_barrier ();
1444 emit_label (space_available);
1445 }
1446
1447 saved_stack_pointer_delta = stack_pointer_delta;
1448
1449 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1450 anti_adjust_stack_and_probe (size, false);
1451 else
1452 anti_adjust_stack (size);
1453
1454 /* Even if size is constant, don't modify stack_pointer_delta.
1455 The constant size alloca should preserve
1456 crtl->preferred_stack_boundary alignment. */
1457 stack_pointer_delta = saved_stack_pointer_delta;
1458
1459 #ifdef STACK_GROWS_DOWNWARD
1460 emit_move_insn (target, virtual_stack_dynamic_rtx);
1461 #endif
1462 }
1463
1464 suppress_reg_args_size = false;
1465
1466 /* Finish up the split stack handling. */
1467 if (final_label != NULL_RTX)
1468 {
1469 gcc_assert (flag_split_stack);
1470 emit_move_insn (final_target, target);
1471 emit_label (final_label);
1472 target = final_target;
1473 }
1474
1475 if (must_align)
1476 {
1477 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1478 but we know it can't. So add ourselves and then do
1479 TRUNC_DIV_EXPR. */
1480 target = expand_binop (Pmode, add_optab, target,
1481 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1482 Pmode),
1483 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1484 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1485 gen_int_mode (required_align / BITS_PER_UNIT,
1486 Pmode),
1487 NULL_RTX, 1);
1488 target = expand_mult (Pmode, target,
1489 gen_int_mode (required_align / BITS_PER_UNIT,
1490 Pmode),
1491 NULL_RTX, 1);
1492 }
1493
1494 /* Now that we've committed to a return value, mark its alignment. */
1495 mark_reg_pointer (target, required_align);
1496
1497 /* Record the new stack level. */
1498 record_new_stack_level ();
1499
1500 return target;
1501 }
1502 \f
1503 /* A front end may want to override GCC's stack checking by providing a
1504 run-time routine to call to check the stack, so provide a mechanism for
1505 calling that routine. */
1506
1507 static GTY(()) rtx stack_check_libfunc;
1508
1509 void
1510 set_stack_check_libfunc (const char *libfunc_name)
1511 {
1512 gcc_assert (stack_check_libfunc == NULL_RTX);
1513 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1514 }
1515 \f
1516 /* Emit one stack probe at ADDRESS, an address within the stack. */
1517
1518 void
1519 emit_stack_probe (rtx address)
1520 {
1521 #ifdef HAVE_probe_stack_address
1522 if (HAVE_probe_stack_address)
1523 emit_insn (gen_probe_stack_address (address));
1524 else
1525 #endif
1526 {
1527 rtx memref = gen_rtx_MEM (word_mode, address);
1528
1529 MEM_VOLATILE_P (memref) = 1;
1530
1531 /* See if we have an insn to probe the stack. */
1532 #ifdef HAVE_probe_stack
1533 if (HAVE_probe_stack)
1534 emit_insn (gen_probe_stack (memref));
1535 else
1536 #endif
1537 emit_move_insn (memref, const0_rtx);
1538 }
1539 }
1540
1541 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1542 FIRST is a constant and size is a Pmode RTX. These are offsets from
1543 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1544 or subtract them from the stack pointer. */
1545
1546 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1547
1548 #ifdef STACK_GROWS_DOWNWARD
1549 #define STACK_GROW_OP MINUS
1550 #define STACK_GROW_OPTAB sub_optab
1551 #define STACK_GROW_OFF(off) -(off)
1552 #else
1553 #define STACK_GROW_OP PLUS
1554 #define STACK_GROW_OPTAB add_optab
1555 #define STACK_GROW_OFF(off) (off)
1556 #endif
1557
1558 void
1559 probe_stack_range (HOST_WIDE_INT first, rtx size)
1560 {
1561 /* First ensure SIZE is Pmode. */
1562 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1563 size = convert_to_mode (Pmode, size, 1);
1564
1565 /* Next see if we have a function to check the stack. */
1566 if (stack_check_libfunc)
1567 {
1568 rtx addr = memory_address (Pmode,
1569 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1570 stack_pointer_rtx,
1571 plus_constant (Pmode,
1572 size, first)));
1573 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1574 Pmode);
1575 }
1576
1577 /* Next see if we have an insn to check the stack. */
1578 #ifdef HAVE_check_stack
1579 else if (HAVE_check_stack)
1580 {
1581 struct expand_operand ops[1];
1582 rtx addr = memory_address (Pmode,
1583 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1584 stack_pointer_rtx,
1585 plus_constant (Pmode,
1586 size, first)));
1587 bool success;
1588 create_input_operand (&ops[0], addr, Pmode);
1589 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1590 gcc_assert (success);
1591 }
1592 #endif
1593
1594 /* Otherwise we have to generate explicit probes. If we have a constant
1595 small number of them to generate, that's the easy case. */
1596 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1597 {
1598 HOST_WIDE_INT isize = INTVAL (size), i;
1599 rtx addr;
1600
1601 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1602 it exceeds SIZE. If only one probe is needed, this will not
1603 generate any code. Then probe at FIRST + SIZE. */
1604 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1605 {
1606 addr = memory_address (Pmode,
1607 plus_constant (Pmode, stack_pointer_rtx,
1608 STACK_GROW_OFF (first + i)));
1609 emit_stack_probe (addr);
1610 }
1611
1612 addr = memory_address (Pmode,
1613 plus_constant (Pmode, stack_pointer_rtx,
1614 STACK_GROW_OFF (first + isize)));
1615 emit_stack_probe (addr);
1616 }
1617
1618 /* In the variable case, do the same as above, but in a loop. Note that we
1619 must be extra careful with variables wrapping around because we might be
1620 at the very top (or the very bottom) of the address space and we have to
1621 be able to handle this case properly; in particular, we use an equality
1622 test for the loop condition. */
1623 else
1624 {
1625 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1626 rtx_code_label *loop_lab = gen_label_rtx ();
1627 rtx_code_label *end_lab = gen_label_rtx ();
1628
1629 /* Step 1: round SIZE to the previous multiple of the interval. */
1630
1631 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1632 rounded_size
1633 = simplify_gen_binary (AND, Pmode, size,
1634 gen_int_mode (-PROBE_INTERVAL, Pmode));
1635 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1636
1637
1638 /* Step 2: compute initial and final value of the loop counter. */
1639
1640 /* TEST_ADDR = SP + FIRST. */
1641 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1642 stack_pointer_rtx,
1643 gen_int_mode (first, Pmode)),
1644 NULL_RTX);
1645
1646 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1647 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1648 test_addr,
1649 rounded_size_op), NULL_RTX);
1650
1651
1652 /* Step 3: the loop
1653
1654 while (TEST_ADDR != LAST_ADDR)
1655 {
1656 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1657 probe at TEST_ADDR
1658 }
1659
1660 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1661 until it is equal to ROUNDED_SIZE. */
1662
1663 emit_label (loop_lab);
1664
1665 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1666 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1667 end_lab);
1668
1669 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1670 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1671 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1672 1, OPTAB_WIDEN);
1673
1674 gcc_assert (temp == test_addr);
1675
1676 /* Probe at TEST_ADDR. */
1677 emit_stack_probe (test_addr);
1678
1679 emit_jump (loop_lab);
1680
1681 emit_label (end_lab);
1682
1683
1684 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1685 that SIZE is equal to ROUNDED_SIZE. */
1686
1687 /* TEMP = SIZE - ROUNDED_SIZE. */
1688 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1689 if (temp != const0_rtx)
1690 {
1691 rtx addr;
1692
1693 if (CONST_INT_P (temp))
1694 {
1695 /* Use [base + disp} addressing mode if supported. */
1696 HOST_WIDE_INT offset = INTVAL (temp);
1697 addr = memory_address (Pmode,
1698 plus_constant (Pmode, last_addr,
1699 STACK_GROW_OFF (offset)));
1700 }
1701 else
1702 {
1703 /* Manual CSE if the difference is not known at compile-time. */
1704 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1705 addr = memory_address (Pmode,
1706 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1707 last_addr, temp));
1708 }
1709
1710 emit_stack_probe (addr);
1711 }
1712 }
1713
1714 /* Make sure nothing is scheduled before we are done. */
1715 emit_insn (gen_blockage ());
1716 }
1717
1718 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1719 while probing it. This pushes when SIZE is positive. SIZE need not
1720 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1721 by plus SIZE at the end. */
1722
1723 void
1724 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1725 {
1726 /* We skip the probe for the first interval + a small dope of 4 words and
1727 probe that many bytes past the specified size to maintain a protection
1728 area at the botton of the stack. */
1729 const int dope = 4 * UNITS_PER_WORD;
1730
1731 /* First ensure SIZE is Pmode. */
1732 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1733 size = convert_to_mode (Pmode, size, 1);
1734
1735 /* If we have a constant small number of probes to generate, that's the
1736 easy case. */
1737 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1738 {
1739 HOST_WIDE_INT isize = INTVAL (size), i;
1740 bool first_probe = true;
1741
1742 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1743 values of N from 1 until it exceeds SIZE. If only one probe is
1744 needed, this will not generate any code. Then adjust and probe
1745 to PROBE_INTERVAL + SIZE. */
1746 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1747 {
1748 if (first_probe)
1749 {
1750 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1751 first_probe = false;
1752 }
1753 else
1754 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1755 emit_stack_probe (stack_pointer_rtx);
1756 }
1757
1758 if (first_probe)
1759 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1760 else
1761 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1762 emit_stack_probe (stack_pointer_rtx);
1763 }
1764
1765 /* In the variable case, do the same as above, but in a loop. Note that we
1766 must be extra careful with variables wrapping around because we might be
1767 at the very top (or the very bottom) of the address space and we have to
1768 be able to handle this case properly; in particular, we use an equality
1769 test for the loop condition. */
1770 else
1771 {
1772 rtx rounded_size, rounded_size_op, last_addr, temp;
1773 rtx_code_label *loop_lab = gen_label_rtx ();
1774 rtx_code_label *end_lab = gen_label_rtx ();
1775
1776
1777 /* Step 1: round SIZE to the previous multiple of the interval. */
1778
1779 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1780 rounded_size
1781 = simplify_gen_binary (AND, Pmode, size,
1782 gen_int_mode (-PROBE_INTERVAL, Pmode));
1783 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1784
1785
1786 /* Step 2: compute initial and final value of the loop counter. */
1787
1788 /* SP = SP_0 + PROBE_INTERVAL. */
1789 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1790
1791 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1792 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1793 stack_pointer_rtx,
1794 rounded_size_op), NULL_RTX);
1795
1796
1797 /* Step 3: the loop
1798
1799 while (SP != LAST_ADDR)
1800 {
1801 SP = SP + PROBE_INTERVAL
1802 probe at SP
1803 }
1804
1805 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1806 values of N from 1 until it is equal to ROUNDED_SIZE. */
1807
1808 emit_label (loop_lab);
1809
1810 /* Jump to END_LAB if SP == LAST_ADDR. */
1811 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1812 Pmode, 1, end_lab);
1813
1814 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1815 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1816 emit_stack_probe (stack_pointer_rtx);
1817
1818 emit_jump (loop_lab);
1819
1820 emit_label (end_lab);
1821
1822
1823 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1824 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1825
1826 /* TEMP = SIZE - ROUNDED_SIZE. */
1827 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1828 if (temp != const0_rtx)
1829 {
1830 /* Manual CSE if the difference is not known at compile-time. */
1831 if (GET_CODE (temp) != CONST_INT)
1832 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1833 anti_adjust_stack (temp);
1834 emit_stack_probe (stack_pointer_rtx);
1835 }
1836 }
1837
1838 /* Adjust back and account for the additional first interval. */
1839 if (adjust_back)
1840 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1841 else
1842 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1843 }
1844
1845 /* Return an rtx representing the register or memory location
1846 in which a scalar value of data type VALTYPE
1847 was returned by a function call to function FUNC.
1848 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1849 function is known, otherwise 0.
1850 OUTGOING is 1 if on a machine with register windows this function
1851 should return the register in which the function will put its result
1852 and 0 otherwise. */
1853
1854 rtx
1855 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1856 int outgoing ATTRIBUTE_UNUSED)
1857 {
1858 rtx val;
1859
1860 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1861
1862 if (REG_P (val)
1863 && GET_MODE (val) == BLKmode)
1864 {
1865 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1866 machine_mode tmpmode;
1867
1868 /* int_size_in_bytes can return -1. We don't need a check here
1869 since the value of bytes will then be large enough that no
1870 mode will match anyway. */
1871
1872 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1873 tmpmode != VOIDmode;
1874 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1875 {
1876 /* Have we found a large enough mode? */
1877 if (GET_MODE_SIZE (tmpmode) >= bytes)
1878 break;
1879 }
1880
1881 /* No suitable mode found. */
1882 gcc_assert (tmpmode != VOIDmode);
1883
1884 PUT_MODE (val, tmpmode);
1885 }
1886 return val;
1887 }
1888
1889 /* Return an rtx representing the register or memory location
1890 in which a scalar value of mode MODE was returned by a library call. */
1891
1892 rtx
1893 hard_libcall_value (machine_mode mode, rtx fun)
1894 {
1895 return targetm.calls.libcall_value (mode, fun);
1896 }
1897
1898 /* Look up the tree code for a given rtx code
1899 to provide the arithmetic operation for REAL_ARITHMETIC.
1900 The function returns an int because the caller may not know
1901 what `enum tree_code' means. */
1902
1903 int
1904 rtx_to_tree_code (enum rtx_code code)
1905 {
1906 enum tree_code tcode;
1907
1908 switch (code)
1909 {
1910 case PLUS:
1911 tcode = PLUS_EXPR;
1912 break;
1913 case MINUS:
1914 tcode = MINUS_EXPR;
1915 break;
1916 case MULT:
1917 tcode = MULT_EXPR;
1918 break;
1919 case DIV:
1920 tcode = RDIV_EXPR;
1921 break;
1922 case SMIN:
1923 tcode = MIN_EXPR;
1924 break;
1925 case SMAX:
1926 tcode = MAX_EXPR;
1927 break;
1928 default:
1929 tcode = LAST_AND_UNUSED_TREE_CODE;
1930 break;
1931 }
1932 return ((int) tcode);
1933 }
1934
1935 #include "gt-explow.h"