mips.h (MASK_FIX_SB1): Bump.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
49 {
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C.
75
76 This function should be used via the `plus_constant' macro. */
77
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size = (*lang_hooks.expr_size) (exp);
244
245 if (CONTAINS_PLACEHOLDER_P (size))
246 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
247
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249 }
250
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
253
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
256 {
257 tree t = (*lang_hooks.expr_size) (exp);
258
259 if (t == 0
260 || TREE_CODE (t) != INTEGER_CST
261 || TREE_OVERFLOW (t)
262 || TREE_INT_CST_HIGH (t) != 0
263 /* If the result would appear negative, it's too big to represent. */
264 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
265 return -1;
266
267 return TREE_INT_CST_LOW (t);
268 }
269 \f
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
275
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
278
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
282
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285
286 static rtx
287 break_out_memory_refs (rtx x)
288 {
289 if (GET_CODE (x) == MEM
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
295 {
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301 }
302
303 return x;
304 }
305
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
311
312 rtx
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314 rtx x)
315 {
316 #ifndef POINTERS_EXTEND_UNSIGNED
317 return x;
318 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
319 enum machine_mode from_mode;
320 rtx temp;
321 enum rtx_code code;
322
323 /* If X already has the right mode, just return it. */
324 if (GET_MODE (x) == to_mode)
325 return x;
326
327 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
328
329 /* Here we handle some special cases. If none of them apply, fall through
330 to the default case. */
331 switch (GET_CODE (x))
332 {
333 case CONST_INT:
334 case CONST_DOUBLE:
335 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
336 code = TRUNCATE;
337 else if (POINTERS_EXTEND_UNSIGNED < 0)
338 break;
339 else if (POINTERS_EXTEND_UNSIGNED > 0)
340 code = ZERO_EXTEND;
341 else
342 code = SIGN_EXTEND;
343 temp = simplify_unary_operation (code, to_mode, x, from_mode);
344 if (temp)
345 return temp;
346 break;
347
348 case SUBREG:
349 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
350 && GET_MODE (SUBREG_REG (x)) == to_mode)
351 return SUBREG_REG (x);
352 break;
353
354 case LABEL_REF:
355 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
356 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
357 return temp;
358 break;
359
360 case SYMBOL_REF:
361 temp = shallow_copy_rtx (x);
362 PUT_MODE (temp, to_mode);
363 return temp;
364 break;
365
366 case CONST:
367 return gen_rtx_CONST (to_mode,
368 convert_memory_address (to_mode, XEXP (x, 0)));
369 break;
370
371 case PLUS:
372 case MULT:
373 /* For addition we can safely permute the conversion and addition
374 operation if one operand is a constant and converting the constant
375 does not change it. We can always safely permute them if we are
376 making the address narrower. */
377 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
378 || (GET_CODE (x) == PLUS
379 && GET_CODE (XEXP (x, 1)) == CONST_INT
380 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
381 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
382 convert_memory_address (to_mode, XEXP (x, 0)),
383 XEXP (x, 1));
384 break;
385
386 default:
387 break;
388 }
389
390 return convert_modes (to_mode, from_mode,
391 x, POINTERS_EXTEND_UNSIGNED);
392 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
393 }
394
395 /* Given a memory address or facsimile X, construct a new address,
396 currently equivalent, that is stable: future stores won't change it.
397
398 X must be composed of constants, register and memory references
399 combined with addition, subtraction and multiplication:
400 in other words, just what you can get from expand_expr if sum_ok is 1.
401
402 Works by making copies of all regs and memory locations used
403 by X and combining them the same way X does.
404 You could also stabilize the reference to this address
405 by copying the address to a register with copy_to_reg;
406 but then you wouldn't get indexed addressing in the reference. */
407
408 rtx
409 copy_all_regs (rtx x)
410 {
411 if (GET_CODE (x) == REG)
412 {
413 if (REGNO (x) != FRAME_POINTER_REGNUM
414 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
415 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
416 #endif
417 )
418 x = copy_to_reg (x);
419 }
420 else if (GET_CODE (x) == MEM)
421 x = copy_to_reg (x);
422 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
423 || GET_CODE (x) == MULT)
424 {
425 rtx op0 = copy_all_regs (XEXP (x, 0));
426 rtx op1 = copy_all_regs (XEXP (x, 1));
427 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
428 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
429 }
430 return x;
431 }
432 \f
433 /* Return something equivalent to X but valid as a memory address
434 for something of mode MODE. When X is not itself valid, this
435 works by copying X or subexpressions of it into registers. */
436
437 rtx
438 memory_address (enum machine_mode mode, rtx x)
439 {
440 rtx oldx = x;
441
442 if (GET_CODE (x) == ADDRESSOF)
443 return x;
444
445 x = convert_memory_address (Pmode, x);
446
447 /* By passing constant addresses through registers
448 we get a chance to cse them. */
449 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
450 x = force_reg (Pmode, x);
451
452 /* Accept a QUEUED that refers to a REG
453 even though that isn't a valid address.
454 On attempting to put this in an insn we will call protect_from_queue
455 which will turn it into a REG, which is valid. */
456 else if (GET_CODE (x) == QUEUED
457 && GET_CODE (QUEUED_VAR (x)) == REG)
458 ;
459
460 /* We get better cse by rejecting indirect addressing at this stage.
461 Let the combiner create indirect addresses where appropriate.
462 For now, generate the code so that the subexpressions useful to share
463 are visible. But not if cse won't be done! */
464 else
465 {
466 if (! cse_not_expected && GET_CODE (x) != REG)
467 x = break_out_memory_refs (x);
468
469 /* At this point, any valid address is accepted. */
470 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
471
472 /* If it was valid before but breaking out memory refs invalidated it,
473 use it the old way. */
474 if (memory_address_p (mode, oldx))
475 goto win2;
476
477 /* Perform machine-dependent transformations on X
478 in certain cases. This is not necessary since the code
479 below can handle all possible cases, but machine-dependent
480 transformations can make better code. */
481 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
482
483 /* PLUS and MULT can appear in special ways
484 as the result of attempts to make an address usable for indexing.
485 Usually they are dealt with by calling force_operand, below.
486 But a sum containing constant terms is special
487 if removing them makes the sum a valid address:
488 then we generate that address in a register
489 and index off of it. We do this because it often makes
490 shorter code, and because the addresses thus generated
491 in registers often become common subexpressions. */
492 if (GET_CODE (x) == PLUS)
493 {
494 rtx constant_term = const0_rtx;
495 rtx y = eliminate_constant_term (x, &constant_term);
496 if (constant_term == const0_rtx
497 || ! memory_address_p (mode, y))
498 x = force_operand (x, NULL_RTX);
499 else
500 {
501 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
502 if (! memory_address_p (mode, y))
503 x = force_operand (x, NULL_RTX);
504 else
505 x = y;
506 }
507 }
508
509 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
510 x = force_operand (x, NULL_RTX);
511
512 /* If we have a register that's an invalid address,
513 it must be a hard reg of the wrong class. Copy it to a pseudo. */
514 else if (GET_CODE (x) == REG)
515 x = copy_to_reg (x);
516
517 /* Last resort: copy the value to a register, since
518 the register is a valid address. */
519 else
520 x = force_reg (Pmode, x);
521
522 goto done;
523
524 win2:
525 x = oldx;
526 win:
527 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
528 /* Don't copy an addr via a reg if it is one of our stack slots. */
529 && ! (GET_CODE (x) == PLUS
530 && (XEXP (x, 0) == virtual_stack_vars_rtx
531 || XEXP (x, 0) == virtual_incoming_args_rtx)))
532 {
533 if (general_operand (x, Pmode))
534 x = force_reg (Pmode, x);
535 else
536 x = force_operand (x, NULL_RTX);
537 }
538 }
539
540 done:
541
542 /* If we didn't change the address, we are done. Otherwise, mark
543 a reg as a pointer if we have REG or REG + CONST_INT. */
544 if (oldx == x)
545 return x;
546 else if (GET_CODE (x) == REG)
547 mark_reg_pointer (x, BITS_PER_UNIT);
548 else if (GET_CODE (x) == PLUS
549 && GET_CODE (XEXP (x, 0)) == REG
550 && GET_CODE (XEXP (x, 1)) == CONST_INT)
551 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
552
553 /* OLDX may have been the address on a temporary. Update the address
554 to indicate that X is now used. */
555 update_temp_slot_address (oldx, x);
556
557 return x;
558 }
559
560 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
561
562 rtx
563 memory_address_noforce (enum machine_mode mode, rtx x)
564 {
565 int ambient_force_addr = flag_force_addr;
566 rtx val;
567
568 flag_force_addr = 0;
569 val = memory_address (mode, x);
570 flag_force_addr = ambient_force_addr;
571 return val;
572 }
573
574 /* Convert a mem ref into one with a valid memory address.
575 Pass through anything else unchanged. */
576
577 rtx
578 validize_mem (rtx ref)
579 {
580 if (GET_CODE (ref) != MEM)
581 return ref;
582 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
583 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
584 return ref;
585
586 /* Don't alter REF itself, since that is probably a stack slot. */
587 return replace_equiv_address (ref, XEXP (ref, 0));
588 }
589 \f
590 /* Given REF, either a MEM or a REG, and T, either the type of X or
591 the expression corresponding to REF, set RTX_UNCHANGING_P if
592 appropriate. */
593
594 void
595 maybe_set_unchanging (rtx ref, tree t)
596 {
597 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
598 initialization is only executed once, or whose initializer always
599 has the same value. Currently we simplify this to PARM_DECLs in the
600 first case, and decls with TREE_CONSTANT initializers in the second.
601
602 We cannot do this for non-static aggregates, because of the double
603 writes that can be generated by store_constructor, depending on the
604 contents of the initializer. Yes, this does eliminate a good fraction
605 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
606 It also eliminates a good quantity of bugs. Let this be incentive to
607 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
608 solution, perhaps based on alias sets. */
609
610 if ((TREE_READONLY (t) && DECL_P (t)
611 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
612 && (TREE_CODE (t) == PARM_DECL
613 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
614 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
615 RTX_UNCHANGING_P (ref) = 1;
616 }
617 \f
618 /* Return a modified copy of X with its memory address copied
619 into a temporary register to protect it from side effects.
620 If X is not a MEM, it is returned unchanged (and not copied).
621 Perhaps even if it is a MEM, if there is no need to change it. */
622
623 rtx
624 stabilize (rtx x)
625 {
626 if (GET_CODE (x) != MEM
627 || ! rtx_unstable_p (XEXP (x, 0)))
628 return x;
629
630 return
631 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
632 }
633 \f
634 /* Copy the value or contents of X to a new temp reg and return that reg. */
635
636 rtx
637 copy_to_reg (rtx x)
638 {
639 rtx temp = gen_reg_rtx (GET_MODE (x));
640
641 /* If not an operand, must be an address with PLUS and MULT so
642 do the computation. */
643 if (! general_operand (x, VOIDmode))
644 x = force_operand (x, temp);
645
646 if (x != temp)
647 emit_move_insn (temp, x);
648
649 return temp;
650 }
651
652 /* Like copy_to_reg but always give the new register mode Pmode
653 in case X is a constant. */
654
655 rtx
656 copy_addr_to_reg (rtx x)
657 {
658 return copy_to_mode_reg (Pmode, x);
659 }
660
661 /* Like copy_to_reg but always give the new register mode MODE
662 in case X is a constant. */
663
664 rtx
665 copy_to_mode_reg (enum machine_mode mode, rtx x)
666 {
667 rtx temp = gen_reg_rtx (mode);
668
669 /* If not an operand, must be an address with PLUS and MULT so
670 do the computation. */
671 if (! general_operand (x, VOIDmode))
672 x = force_operand (x, temp);
673
674 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
675 abort ();
676 if (x != temp)
677 emit_move_insn (temp, x);
678 return temp;
679 }
680
681 /* Load X into a register if it is not already one.
682 Use mode MODE for the register.
683 X should be valid for mode MODE, but it may be a constant which
684 is valid for all integer modes; that's why caller must specify MODE.
685
686 The caller must not alter the value in the register we return,
687 since we mark it as a "constant" register. */
688
689 rtx
690 force_reg (enum machine_mode mode, rtx x)
691 {
692 rtx temp, insn, set;
693
694 if (GET_CODE (x) == REG)
695 return x;
696
697 if (general_operand (x, mode))
698 {
699 temp = gen_reg_rtx (mode);
700 insn = emit_move_insn (temp, x);
701 }
702 else
703 {
704 temp = force_operand (x, NULL_RTX);
705 if (GET_CODE (temp) == REG)
706 insn = get_last_insn ();
707 else
708 {
709 rtx temp2 = gen_reg_rtx (mode);
710 insn = emit_move_insn (temp2, temp);
711 temp = temp2;
712 }
713 }
714
715 /* Let optimizers know that TEMP's value never changes
716 and that X can be substituted for it. Don't get confused
717 if INSN set something else (such as a SUBREG of TEMP). */
718 if (CONSTANT_P (x)
719 && (set = single_set (insn)) != 0
720 && SET_DEST (set) == temp
721 && ! rtx_equal_p (x, SET_SRC (set)))
722 set_unique_reg_note (insn, REG_EQUAL, x);
723
724 /* Let optimizers know that TEMP is a pointer, and if so, the
725 known alignment of that pointer. */
726 {
727 unsigned align = 0;
728 if (GET_CODE (x) == SYMBOL_REF)
729 {
730 align = BITS_PER_UNIT;
731 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
732 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
733 }
734 else if (GET_CODE (x) == LABEL_REF)
735 align = BITS_PER_UNIT;
736 else if (GET_CODE (x) == CONST
737 && GET_CODE (XEXP (x, 0)) == PLUS
738 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
739 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
740 {
741 rtx s = XEXP (XEXP (x, 0), 0);
742 rtx c = XEXP (XEXP (x, 0), 1);
743 unsigned sa, ca;
744
745 sa = BITS_PER_UNIT;
746 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
747 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
748
749 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
750
751 align = MIN (sa, ca);
752 }
753
754 if (align)
755 mark_reg_pointer (temp, align);
756 }
757
758 return temp;
759 }
760
761 /* If X is a memory ref, copy its contents to a new temp reg and return
762 that reg. Otherwise, return X. */
763
764 rtx
765 force_not_mem (rtx x)
766 {
767 rtx temp;
768
769 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
770 return x;
771
772 temp = gen_reg_rtx (GET_MODE (x));
773 emit_move_insn (temp, x);
774 return temp;
775 }
776
777 /* Copy X to TARGET (if it's nonzero and a reg)
778 or to a new temp reg and return that reg.
779 MODE is the mode to use for X in case it is a constant. */
780
781 rtx
782 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
783 {
784 rtx temp;
785
786 if (target && GET_CODE (target) == REG)
787 temp = target;
788 else
789 temp = gen_reg_rtx (mode);
790
791 emit_move_insn (temp, x);
792 return temp;
793 }
794 \f
795 /* Return the mode to use to store a scalar of TYPE and MODE.
796 PUNSIGNEDP points to the signedness of the type and may be adjusted
797 to show what signedness to use on extension operations.
798
799 FOR_CALL is nonzero if this call is promoting args for a call. */
800
801 enum machine_mode
802 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
803 int for_call ATTRIBUTE_UNUSED)
804 {
805 enum tree_code code = TREE_CODE (type);
806 int unsignedp = *punsignedp;
807
808 #ifdef PROMOTE_FOR_CALL_ONLY
809 if (! for_call)
810 return mode;
811 #endif
812
813 switch (code)
814 {
815 #ifdef PROMOTE_MODE
816 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
817 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
818 PROMOTE_MODE (mode, unsignedp, type);
819 break;
820 #endif
821
822 #ifdef POINTERS_EXTEND_UNSIGNED
823 case REFERENCE_TYPE:
824 case POINTER_TYPE:
825 mode = Pmode;
826 unsignedp = POINTERS_EXTEND_UNSIGNED;
827 break;
828 #endif
829
830 default:
831 break;
832 }
833
834 *punsignedp = unsignedp;
835 return mode;
836 }
837 \f
838 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
839 This pops when ADJUST is positive. ADJUST need not be constant. */
840
841 void
842 adjust_stack (rtx adjust)
843 {
844 rtx temp;
845 adjust = protect_from_queue (adjust, 0);
846
847 if (adjust == const0_rtx)
848 return;
849
850 /* We expect all variable sized adjustments to be multiple of
851 PREFERRED_STACK_BOUNDARY. */
852 if (GET_CODE (adjust) == CONST_INT)
853 stack_pointer_delta -= INTVAL (adjust);
854
855 temp = expand_binop (Pmode,
856 #ifdef STACK_GROWS_DOWNWARD
857 add_optab,
858 #else
859 sub_optab,
860 #endif
861 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
862 OPTAB_LIB_WIDEN);
863
864 if (temp != stack_pointer_rtx)
865 emit_move_insn (stack_pointer_rtx, temp);
866 }
867
868 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
869 This pushes when ADJUST is positive. ADJUST need not be constant. */
870
871 void
872 anti_adjust_stack (rtx adjust)
873 {
874 rtx temp;
875 adjust = protect_from_queue (adjust, 0);
876
877 if (adjust == const0_rtx)
878 return;
879
880 /* We expect all variable sized adjustments to be multiple of
881 PREFERRED_STACK_BOUNDARY. */
882 if (GET_CODE (adjust) == CONST_INT)
883 stack_pointer_delta += INTVAL (adjust);
884
885 temp = expand_binop (Pmode,
886 #ifdef STACK_GROWS_DOWNWARD
887 sub_optab,
888 #else
889 add_optab,
890 #endif
891 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
892 OPTAB_LIB_WIDEN);
893
894 if (temp != stack_pointer_rtx)
895 emit_move_insn (stack_pointer_rtx, temp);
896 }
897
898 /* Round the size of a block to be pushed up to the boundary required
899 by this machine. SIZE is the desired size, which need not be constant. */
900
901 rtx
902 round_push (rtx size)
903 {
904 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
905
906 if (align == 1)
907 return size;
908
909 if (GET_CODE (size) == CONST_INT)
910 {
911 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
912
913 if (INTVAL (size) != new)
914 size = GEN_INT (new);
915 }
916 else
917 {
918 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
919 but we know it can't. So add ourselves and then do
920 TRUNC_DIV_EXPR. */
921 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
922 NULL_RTX, 1, OPTAB_LIB_WIDEN);
923 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
924 NULL_RTX, 1);
925 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
926 }
927
928 return size;
929 }
930 \f
931 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
932 to a previously-created save area. If no save area has been allocated,
933 this function will allocate one. If a save area is specified, it
934 must be of the proper mode.
935
936 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
937 are emitted at the current position. */
938
939 void
940 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
941 {
942 rtx sa = *psave;
943 /* The default is that we use a move insn and save in a Pmode object. */
944 rtx (*fcn) (rtx, rtx) = gen_move_insn;
945 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
946
947 /* See if this machine has anything special to do for this kind of save. */
948 switch (save_level)
949 {
950 #ifdef HAVE_save_stack_block
951 case SAVE_BLOCK:
952 if (HAVE_save_stack_block)
953 fcn = gen_save_stack_block;
954 break;
955 #endif
956 #ifdef HAVE_save_stack_function
957 case SAVE_FUNCTION:
958 if (HAVE_save_stack_function)
959 fcn = gen_save_stack_function;
960 break;
961 #endif
962 #ifdef HAVE_save_stack_nonlocal
963 case SAVE_NONLOCAL:
964 if (HAVE_save_stack_nonlocal)
965 fcn = gen_save_stack_nonlocal;
966 break;
967 #endif
968 default:
969 break;
970 }
971
972 /* If there is no save area and we have to allocate one, do so. Otherwise
973 verify the save area is the proper mode. */
974
975 if (sa == 0)
976 {
977 if (mode != VOIDmode)
978 {
979 if (save_level == SAVE_NONLOCAL)
980 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
981 else
982 *psave = sa = gen_reg_rtx (mode);
983 }
984 }
985 else
986 {
987 if (mode == VOIDmode || GET_MODE (sa) != mode)
988 abort ();
989 }
990
991 if (after)
992 {
993 rtx seq;
994
995 start_sequence ();
996 /* We must validize inside the sequence, to ensure that any instructions
997 created by the validize call also get moved to the right place. */
998 if (sa != 0)
999 sa = validize_mem (sa);
1000 emit_insn (fcn (sa, stack_pointer_rtx));
1001 seq = get_insns ();
1002 end_sequence ();
1003 emit_insn_after (seq, after);
1004 }
1005 else
1006 {
1007 if (sa != 0)
1008 sa = validize_mem (sa);
1009 emit_insn (fcn (sa, stack_pointer_rtx));
1010 }
1011 }
1012
1013 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1014 area made by emit_stack_save. If it is zero, we have nothing to do.
1015
1016 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1017 current position. */
1018
1019 void
1020 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1021 {
1022 /* The default is that we use a move insn. */
1023 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1024
1025 /* See if this machine has anything special to do for this kind of save. */
1026 switch (save_level)
1027 {
1028 #ifdef HAVE_restore_stack_block
1029 case SAVE_BLOCK:
1030 if (HAVE_restore_stack_block)
1031 fcn = gen_restore_stack_block;
1032 break;
1033 #endif
1034 #ifdef HAVE_restore_stack_function
1035 case SAVE_FUNCTION:
1036 if (HAVE_restore_stack_function)
1037 fcn = gen_restore_stack_function;
1038 break;
1039 #endif
1040 #ifdef HAVE_restore_stack_nonlocal
1041 case SAVE_NONLOCAL:
1042 if (HAVE_restore_stack_nonlocal)
1043 fcn = gen_restore_stack_nonlocal;
1044 break;
1045 #endif
1046 default:
1047 break;
1048 }
1049
1050 if (sa != 0)
1051 {
1052 sa = validize_mem (sa);
1053 /* These clobbers prevent the scheduler from moving
1054 references to variable arrays below the code
1055 that deletes (pops) the arrays. */
1056 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1057 gen_rtx_MEM (BLKmode,
1058 gen_rtx_SCRATCH (VOIDmode))));
1059 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1060 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1061 }
1062
1063 if (after)
1064 {
1065 rtx seq;
1066
1067 start_sequence ();
1068 emit_insn (fcn (stack_pointer_rtx, sa));
1069 seq = get_insns ();
1070 end_sequence ();
1071 emit_insn_after (seq, after);
1072 }
1073 else
1074 emit_insn (fcn (stack_pointer_rtx, sa));
1075 }
1076 \f
1077 #ifdef SETJMP_VIA_SAVE_AREA
1078 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1079 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1080 platforms, the dynamic stack space used can corrupt the original
1081 frame, thus causing a crash if a longjmp unwinds to it. */
1082
1083 void
1084 optimize_save_area_alloca (rtx insns)
1085 {
1086 rtx insn;
1087
1088 for (insn = insns; insn; insn = NEXT_INSN(insn))
1089 {
1090 rtx note;
1091
1092 if (GET_CODE (insn) != INSN)
1093 continue;
1094
1095 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1096 {
1097 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1098 continue;
1099
1100 if (!current_function_calls_setjmp)
1101 {
1102 rtx pat = PATTERN (insn);
1103
1104 /* If we do not see the note in a pattern matching
1105 these precise characteristics, we did something
1106 entirely wrong in allocate_dynamic_stack_space.
1107
1108 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1109 was defined on a machine where stacks grow towards higher
1110 addresses.
1111
1112 Right now only supported port with stack that grow upward
1113 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1114 if (GET_CODE (pat) != SET
1115 || SET_DEST (pat) != stack_pointer_rtx
1116 || GET_CODE (SET_SRC (pat)) != MINUS
1117 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1118 abort ();
1119
1120 /* This will now be transformed into a (set REG REG)
1121 so we can just blow away all the other notes. */
1122 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1123 REG_NOTES (insn) = NULL_RTX;
1124 }
1125 else
1126 {
1127 /* setjmp was called, we must remove the REG_SAVE_AREA
1128 note so that later passes do not get confused by its
1129 presence. */
1130 if (note == REG_NOTES (insn))
1131 {
1132 REG_NOTES (insn) = XEXP (note, 1);
1133 }
1134 else
1135 {
1136 rtx srch;
1137
1138 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1139 if (XEXP (srch, 1) == note)
1140 break;
1141
1142 if (srch == NULL_RTX)
1143 abort ();
1144
1145 XEXP (srch, 1) = XEXP (note, 1);
1146 }
1147 }
1148 /* Once we've seen the note of interest, we need not look at
1149 the rest of them. */
1150 break;
1151 }
1152 }
1153 }
1154 #endif /* SETJMP_VIA_SAVE_AREA */
1155
1156 /* Return an rtx representing the address of an area of memory dynamically
1157 pushed on the stack. This region of memory is always aligned to
1158 a multiple of BIGGEST_ALIGNMENT.
1159
1160 Any required stack pointer alignment is preserved.
1161
1162 SIZE is an rtx representing the size of the area.
1163 TARGET is a place in which the address can be placed.
1164
1165 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1166
1167 rtx
1168 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1169 {
1170 #ifdef SETJMP_VIA_SAVE_AREA
1171 rtx setjmpless_size = NULL_RTX;
1172 #endif
1173
1174 /* If we're asking for zero bytes, it doesn't matter what we point
1175 to since we can't dereference it. But return a reasonable
1176 address anyway. */
1177 if (size == const0_rtx)
1178 return virtual_stack_dynamic_rtx;
1179
1180 /* Otherwise, show we're calling alloca or equivalent. */
1181 current_function_calls_alloca = 1;
1182
1183 /* Ensure the size is in the proper mode. */
1184 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1185 size = convert_to_mode (Pmode, size, 1);
1186
1187 /* We can't attempt to minimize alignment necessary, because we don't
1188 know the final value of preferred_stack_boundary yet while executing
1189 this code. */
1190 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1191
1192 /* We will need to ensure that the address we return is aligned to
1193 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1194 always know its final value at this point in the compilation (it
1195 might depend on the size of the outgoing parameter lists, for
1196 example), so we must align the value to be returned in that case.
1197 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1198 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1199 We must also do an alignment operation on the returned value if
1200 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1201
1202 If we have to align, we must leave space in SIZE for the hole
1203 that might result from the alignment operation. */
1204
1205 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1206 #define MUST_ALIGN 1
1207 #else
1208 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1209 #endif
1210
1211 if (MUST_ALIGN)
1212 size
1213 = force_operand (plus_constant (size,
1214 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1215 NULL_RTX);
1216
1217 #ifdef SETJMP_VIA_SAVE_AREA
1218 /* If setjmp restores regs from a save area in the stack frame,
1219 avoid clobbering the reg save area. Note that the offset of
1220 virtual_incoming_args_rtx includes the preallocated stack args space.
1221 It would be no problem to clobber that, but it's on the wrong side
1222 of the old save area. */
1223 {
1224 rtx dynamic_offset
1225 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1226 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1227
1228 if (!current_function_calls_setjmp)
1229 {
1230 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1231
1232 /* See optimize_save_area_alloca to understand what is being
1233 set up here. */
1234
1235 /* ??? Code below assumes that the save area needs maximal
1236 alignment. This constraint may be too strong. */
1237 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1238 abort ();
1239
1240 if (GET_CODE (size) == CONST_INT)
1241 {
1242 HOST_WIDE_INT new = INTVAL (size) / align * align;
1243
1244 if (INTVAL (size) != new)
1245 setjmpless_size = GEN_INT (new);
1246 else
1247 setjmpless_size = size;
1248 }
1249 else
1250 {
1251 /* Since we know overflow is not possible, we avoid using
1252 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1253 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1254 GEN_INT (align), NULL_RTX, 1);
1255 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1256 GEN_INT (align), NULL_RTX, 1);
1257 }
1258 /* Our optimization works based upon being able to perform a simple
1259 transformation of this RTL into a (set REG REG) so make sure things
1260 did in fact end up in a REG. */
1261 if (!register_operand (setjmpless_size, Pmode))
1262 setjmpless_size = force_reg (Pmode, setjmpless_size);
1263 }
1264
1265 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1266 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1267 }
1268 #endif /* SETJMP_VIA_SAVE_AREA */
1269
1270 /* Round the size to a multiple of the required stack alignment.
1271 Since the stack if presumed to be rounded before this allocation,
1272 this will maintain the required alignment.
1273
1274 If the stack grows downward, we could save an insn by subtracting
1275 SIZE from the stack pointer and then aligning the stack pointer.
1276 The problem with this is that the stack pointer may be unaligned
1277 between the execution of the subtraction and alignment insns and
1278 some machines do not allow this. Even on those that do, some
1279 signal handlers malfunction if a signal should occur between those
1280 insns. Since this is an extremely rare event, we have no reliable
1281 way of knowing which systems have this problem. So we avoid even
1282 momentarily mis-aligning the stack. */
1283
1284 /* If we added a variable amount to SIZE,
1285 we can no longer assume it is aligned. */
1286 #if !defined (SETJMP_VIA_SAVE_AREA)
1287 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1288 #endif
1289 size = round_push (size);
1290
1291 do_pending_stack_adjust ();
1292
1293 /* We ought to be called always on the toplevel and stack ought to be aligned
1294 properly. */
1295 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1296 abort ();
1297
1298 /* If needed, check that we have the required amount of stack. Take into
1299 account what has already been checked. */
1300 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1301 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1302
1303 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1304 if (target == 0 || GET_CODE (target) != REG
1305 || REGNO (target) < FIRST_PSEUDO_REGISTER
1306 || GET_MODE (target) != Pmode)
1307 target = gen_reg_rtx (Pmode);
1308
1309 mark_reg_pointer (target, known_align);
1310
1311 /* Perform the required allocation from the stack. Some systems do
1312 this differently than simply incrementing/decrementing from the
1313 stack pointer, such as acquiring the space by calling malloc(). */
1314 #ifdef HAVE_allocate_stack
1315 if (HAVE_allocate_stack)
1316 {
1317 enum machine_mode mode = STACK_SIZE_MODE;
1318 insn_operand_predicate_fn pred;
1319
1320 /* We don't have to check against the predicate for operand 0 since
1321 TARGET is known to be a pseudo of the proper mode, which must
1322 be valid for the operand. For operand 1, convert to the
1323 proper mode and validate. */
1324 if (mode == VOIDmode)
1325 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1326
1327 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1328 if (pred && ! ((*pred) (size, mode)))
1329 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1330
1331 emit_insn (gen_allocate_stack (target, size));
1332 }
1333 else
1334 #endif
1335 {
1336 #ifndef STACK_GROWS_DOWNWARD
1337 emit_move_insn (target, virtual_stack_dynamic_rtx);
1338 #endif
1339
1340 /* Check stack bounds if necessary. */
1341 if (current_function_limit_stack)
1342 {
1343 rtx available;
1344 rtx space_available = gen_label_rtx ();
1345 #ifdef STACK_GROWS_DOWNWARD
1346 available = expand_binop (Pmode, sub_optab,
1347 stack_pointer_rtx, stack_limit_rtx,
1348 NULL_RTX, 1, OPTAB_WIDEN);
1349 #else
1350 available = expand_binop (Pmode, sub_optab,
1351 stack_limit_rtx, stack_pointer_rtx,
1352 NULL_RTX, 1, OPTAB_WIDEN);
1353 #endif
1354 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1355 space_available);
1356 #ifdef HAVE_trap
1357 if (HAVE_trap)
1358 emit_insn (gen_trap ());
1359 else
1360 #endif
1361 error ("stack limits not supported on this target");
1362 emit_barrier ();
1363 emit_label (space_available);
1364 }
1365
1366 anti_adjust_stack (size);
1367 #ifdef SETJMP_VIA_SAVE_AREA
1368 if (setjmpless_size != NULL_RTX)
1369 {
1370 rtx note_target = get_last_insn ();
1371
1372 REG_NOTES (note_target)
1373 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1374 REG_NOTES (note_target));
1375 }
1376 #endif /* SETJMP_VIA_SAVE_AREA */
1377
1378 #ifdef STACK_GROWS_DOWNWARD
1379 emit_move_insn (target, virtual_stack_dynamic_rtx);
1380 #endif
1381 }
1382
1383 if (MUST_ALIGN)
1384 {
1385 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1386 but we know it can't. So add ourselves and then do
1387 TRUNC_DIV_EXPR. */
1388 target = expand_binop (Pmode, add_optab, target,
1389 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1390 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1391 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1392 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1393 NULL_RTX, 1);
1394 target = expand_mult (Pmode, target,
1395 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1396 NULL_RTX, 1);
1397 }
1398
1399 /* Record the new stack level for nonlocal gotos. */
1400 if (nonlocal_goto_handler_slots != 0)
1401 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1402
1403 return target;
1404 }
1405 \f
1406 /* A front end may want to override GCC's stack checking by providing a
1407 run-time routine to call to check the stack, so provide a mechanism for
1408 calling that routine. */
1409
1410 static GTY(()) rtx stack_check_libfunc;
1411
1412 void
1413 set_stack_check_libfunc (rtx libfunc)
1414 {
1415 stack_check_libfunc = libfunc;
1416 }
1417 \f
1418 /* Emit one stack probe at ADDRESS, an address within the stack. */
1419
1420 static void
1421 emit_stack_probe (rtx address)
1422 {
1423 rtx memref = gen_rtx_MEM (word_mode, address);
1424
1425 MEM_VOLATILE_P (memref) = 1;
1426
1427 if (STACK_CHECK_PROBE_LOAD)
1428 emit_move_insn (gen_reg_rtx (word_mode), memref);
1429 else
1430 emit_move_insn (memref, const0_rtx);
1431 }
1432
1433 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1434 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1435 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1436 subtract from the stack. If SIZE is constant, this is done
1437 with a fixed number of probes. Otherwise, we must make a loop. */
1438
1439 #ifdef STACK_GROWS_DOWNWARD
1440 #define STACK_GROW_OP MINUS
1441 #else
1442 #define STACK_GROW_OP PLUS
1443 #endif
1444
1445 void
1446 probe_stack_range (HOST_WIDE_INT first, rtx size)
1447 {
1448 /* First ensure SIZE is Pmode. */
1449 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1450 size = convert_to_mode (Pmode, size, 1);
1451
1452 /* Next see if the front end has set up a function for us to call to
1453 check the stack. */
1454 if (stack_check_libfunc != 0)
1455 {
1456 rtx addr = memory_address (QImode,
1457 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1458 stack_pointer_rtx,
1459 plus_constant (size, first)));
1460
1461 addr = convert_memory_address (ptr_mode, addr);
1462 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1463 ptr_mode);
1464 }
1465
1466 /* Next see if we have an insn to check the stack. Use it if so. */
1467 #ifdef HAVE_check_stack
1468 else if (HAVE_check_stack)
1469 {
1470 insn_operand_predicate_fn pred;
1471 rtx last_addr
1472 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1473 stack_pointer_rtx,
1474 plus_constant (size, first)),
1475 NULL_RTX);
1476
1477 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1478 if (pred && ! ((*pred) (last_addr, Pmode)))
1479 last_addr = copy_to_mode_reg (Pmode, last_addr);
1480
1481 emit_insn (gen_check_stack (last_addr));
1482 }
1483 #endif
1484
1485 /* If we have to generate explicit probes, see if we have a constant
1486 small number of them to generate. If so, that's the easy case. */
1487 else if (GET_CODE (size) == CONST_INT
1488 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1489 {
1490 HOST_WIDE_INT offset;
1491
1492 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1493 for values of N from 1 until it exceeds LAST. If only one
1494 probe is needed, this will not generate any code. Then probe
1495 at LAST. */
1496 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1497 offset < INTVAL (size);
1498 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1499 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1500 stack_pointer_rtx,
1501 GEN_INT (offset)));
1502
1503 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1504 stack_pointer_rtx,
1505 plus_constant (size, first)));
1506 }
1507
1508 /* In the variable case, do the same as above, but in a loop. We emit loop
1509 notes so that loop optimization can be done. */
1510 else
1511 {
1512 rtx test_addr
1513 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1514 stack_pointer_rtx,
1515 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1516 NULL_RTX);
1517 rtx last_addr
1518 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1519 stack_pointer_rtx,
1520 plus_constant (size, first)),
1521 NULL_RTX);
1522 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1523 rtx loop_lab = gen_label_rtx ();
1524 rtx test_lab = gen_label_rtx ();
1525 rtx end_lab = gen_label_rtx ();
1526 rtx temp;
1527
1528 if (GET_CODE (test_addr) != REG
1529 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1530 test_addr = force_reg (Pmode, test_addr);
1531
1532 emit_note (NOTE_INSN_LOOP_BEG);
1533 emit_jump (test_lab);
1534
1535 emit_label (loop_lab);
1536 emit_stack_probe (test_addr);
1537
1538 emit_note (NOTE_INSN_LOOP_CONT);
1539
1540 #ifdef STACK_GROWS_DOWNWARD
1541 #define CMP_OPCODE GTU
1542 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1543 1, OPTAB_WIDEN);
1544 #else
1545 #define CMP_OPCODE LTU
1546 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1547 1, OPTAB_WIDEN);
1548 #endif
1549
1550 if (temp != test_addr)
1551 abort ();
1552
1553 emit_label (test_lab);
1554 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1555 NULL_RTX, Pmode, 1, loop_lab);
1556 emit_jump (end_lab);
1557 emit_note (NOTE_INSN_LOOP_END);
1558 emit_label (end_lab);
1559
1560 emit_stack_probe (last_addr);
1561 }
1562 }
1563 \f
1564 /* Return an rtx representing the register or memory location
1565 in which a scalar value of data type VALTYPE
1566 was returned by a function call to function FUNC.
1567 FUNC is a FUNCTION_DECL node if the precise function is known,
1568 otherwise 0.
1569 OUTGOING is 1 if on a machine with register windows this function
1570 should return the register in which the function will put its result
1571 and 0 otherwise. */
1572
1573 rtx
1574 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1575 int outgoing ATTRIBUTE_UNUSED)
1576 {
1577 rtx val;
1578
1579 #ifdef FUNCTION_OUTGOING_VALUE
1580 if (outgoing)
1581 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1582 else
1583 #endif
1584 val = FUNCTION_VALUE (valtype, func);
1585
1586 if (GET_CODE (val) == REG
1587 && GET_MODE (val) == BLKmode)
1588 {
1589 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1590 enum machine_mode tmpmode;
1591
1592 /* int_size_in_bytes can return -1. We don't need a check here
1593 since the value of bytes will be large enough that no mode
1594 will match and we will abort later in this function. */
1595
1596 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1597 tmpmode != VOIDmode;
1598 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1599 {
1600 /* Have we found a large enough mode? */
1601 if (GET_MODE_SIZE (tmpmode) >= bytes)
1602 break;
1603 }
1604
1605 /* No suitable mode found. */
1606 if (tmpmode == VOIDmode)
1607 abort ();
1608
1609 PUT_MODE (val, tmpmode);
1610 }
1611 return val;
1612 }
1613
1614 /* Return an rtx representing the register or memory location
1615 in which a scalar value of mode MODE was returned by a library call. */
1616
1617 rtx
1618 hard_libcall_value (enum machine_mode mode)
1619 {
1620 return LIBCALL_VALUE (mode);
1621 }
1622
1623 /* Look up the tree code for a given rtx code
1624 to provide the arithmetic operation for REAL_ARITHMETIC.
1625 The function returns an int because the caller may not know
1626 what `enum tree_code' means. */
1627
1628 int
1629 rtx_to_tree_code (enum rtx_code code)
1630 {
1631 enum tree_code tcode;
1632
1633 switch (code)
1634 {
1635 case PLUS:
1636 tcode = PLUS_EXPR;
1637 break;
1638 case MINUS:
1639 tcode = MINUS_EXPR;
1640 break;
1641 case MULT:
1642 tcode = MULT_EXPR;
1643 break;
1644 case DIV:
1645 tcode = RDIV_EXPR;
1646 break;
1647 case SMIN:
1648 tcode = MIN_EXPR;
1649 break;
1650 case SMAX:
1651 tcode = MAX_EXPR;
1652 break;
1653 default:
1654 tcode = LAST_AND_UNUSED_TREE_CODE;
1655 break;
1656 }
1657 return ((int) tcode);
1658 }
1659
1660 #include "gt-explow.h"