Drop excess size used for run time allocated stack variables.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "expmed.h"
30 #include "optabs.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "diagnostic-core.h"
34 #include "stor-layout.h"
35 #include "except.h"
36 #include "dojump.h"
37 #include "explow.h"
38 #include "expr.h"
39 #include "common/common-target.h"
40 #include "output.h"
41
42 static rtx break_out_memory_refs (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
49 {
50 int width = GET_MODE_PRECISION (mode);
51
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode)
54 || POINTER_BOUNDS_MODE_P (mode));
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C, given that X has
75 mode MODE. INPLACE is true if X can be modified inplace or false
76 if it must be treated as immutable. */
77
78 rtx
79 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
80 bool inplace)
81 {
82 RTX_CODE code;
83 rtx y;
84 rtx tem;
85 int all_constant = 0;
86
87 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
88
89 if (c == 0)
90 return x;
91
92 restart:
93
94 code = GET_CODE (x);
95 y = x;
96
97 switch (code)
98 {
99 CASE_CONST_SCALAR_INT:
100 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
101 mode);
102 case MEM:
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 {
109 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
110 tem = force_const_mem (GET_MODE (x), tem);
111 /* Targets may disallow some constants in the constant pool, thus
112 force_const_mem may return NULL_RTX. */
113 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
114 return tem;
115 }
116 break;
117
118 case CONST:
119 /* If adding to something entirely constant, set a flag
120 so that we can add a CONST around the result. */
121 if (inplace && shared_const_p (x))
122 inplace = false;
123 x = XEXP (x, 0);
124 all_constant = 1;
125 goto restart;
126
127 case SYMBOL_REF:
128 case LABEL_REF:
129 all_constant = 1;
130 break;
131
132 case PLUS:
133 /* The interesting case is adding the integer to a sum. Look
134 for constant term in the sum and combine with C. For an
135 integer constant term or a constant term that is not an
136 explicit integer, we combine or group them together anyway.
137
138 We may not immediately return from the recursive call here, lest
139 all_constant gets lost. */
140
141 if (CONSTANT_P (XEXP (x, 1)))
142 {
143 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
144 if (term == const0_rtx)
145 x = XEXP (x, 0);
146 else if (inplace)
147 XEXP (x, 1) = term;
148 else
149 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
150 c = 0;
151 }
152 else if (rtx *const_loc = find_constant_term_loc (&y))
153 {
154 if (!inplace)
155 {
156 /* We need to be careful since X may be shared and we can't
157 modify it in place. */
158 x = copy_rtx (x);
159 const_loc = find_constant_term_loc (&x);
160 }
161 *const_loc = plus_constant (mode, *const_loc, c, true);
162 c = 0;
163 }
164 break;
165
166 default:
167 break;
168 }
169
170 if (c != 0)
171 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
172
173 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
174 return x;
175 else if (all_constant)
176 return gen_rtx_CONST (mode, x);
177 else
178 return x;
179 }
180 \f
181 /* If X is a sum, return a new sum like X but lacking any constant terms.
182 Add all the removed constant terms into *CONSTPTR.
183 X itself is not altered. The result != X if and only if
184 it is not isomorphic to X. */
185
186 rtx
187 eliminate_constant_term (rtx x, rtx *constptr)
188 {
189 rtx x0, x1;
190 rtx tem;
191
192 if (GET_CODE (x) != PLUS)
193 return x;
194
195 /* First handle constants appearing at this level explicitly. */
196 if (CONST_INT_P (XEXP (x, 1))
197 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
198 XEXP (x, 1)))
199 && CONST_INT_P (tem))
200 {
201 *constptr = tem;
202 return eliminate_constant_term (XEXP (x, 0), constptr);
203 }
204
205 tem = const0_rtx;
206 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
207 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
208 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
209 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
210 *constptr, tem))
211 && CONST_INT_P (tem))
212 {
213 *constptr = tem;
214 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
215 }
216
217 return x;
218 }
219
220 \f
221 /* Return a copy of X in which all memory references
222 and all constants that involve symbol refs
223 have been replaced with new temporary registers.
224 Also emit code to load the memory locations and constants
225 into those registers.
226
227 If X contains no such constants or memory references,
228 X itself (not a copy) is returned.
229
230 If a constant is found in the address that is not a legitimate constant
231 in an insn, it is left alone in the hope that it might be valid in the
232 address.
233
234 X may contain no arithmetic except addition, subtraction and multiplication.
235 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
236
237 static rtx
238 break_out_memory_refs (rtx x)
239 {
240 if (MEM_P (x)
241 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
242 && GET_MODE (x) != VOIDmode))
243 x = force_reg (GET_MODE (x), x);
244 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
245 || GET_CODE (x) == MULT)
246 {
247 rtx op0 = break_out_memory_refs (XEXP (x, 0));
248 rtx op1 = break_out_memory_refs (XEXP (x, 1));
249
250 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
251 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
252 }
253
254 return x;
255 }
256
257 /* Given X, a memory address in address space AS' pointer mode, convert it to
258 an address in the address space's address mode, or vice versa (TO_MODE says
259 which way). We take advantage of the fact that pointers are not allowed to
260 overflow by commuting arithmetic operations over conversions so that address
261 arithmetic insns can be used. IN_CONST is true if this conversion is inside
262 a CONST. NO_EMIT is true if no insns should be emitted, and instead
263 it should return NULL if it can't be simplified without emitting insns. */
264
265 rtx
266 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
267 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
268 bool in_const ATTRIBUTE_UNUSED,
269 bool no_emit ATTRIBUTE_UNUSED)
270 {
271 #ifndef POINTERS_EXTEND_UNSIGNED
272 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
273 return x;
274 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
275 machine_mode pointer_mode, address_mode, from_mode;
276 rtx temp;
277 enum rtx_code code;
278
279 /* If X already has the right mode, just return it. */
280 if (GET_MODE (x) == to_mode)
281 return x;
282
283 pointer_mode = targetm.addr_space.pointer_mode (as);
284 address_mode = targetm.addr_space.address_mode (as);
285 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
286
287 /* Here we handle some special cases. If none of them apply, fall through
288 to the default case. */
289 switch (GET_CODE (x))
290 {
291 CASE_CONST_SCALAR_INT:
292 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
293 code = TRUNCATE;
294 else if (POINTERS_EXTEND_UNSIGNED < 0)
295 break;
296 else if (POINTERS_EXTEND_UNSIGNED > 0)
297 code = ZERO_EXTEND;
298 else
299 code = SIGN_EXTEND;
300 temp = simplify_unary_operation (code, to_mode, x, from_mode);
301 if (temp)
302 return temp;
303 break;
304
305 case SUBREG:
306 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
307 && GET_MODE (SUBREG_REG (x)) == to_mode)
308 return SUBREG_REG (x);
309 break;
310
311 case LABEL_REF:
312 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
313 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
314 return temp;
315
316 case SYMBOL_REF:
317 temp = shallow_copy_rtx (x);
318 PUT_MODE (temp, to_mode);
319 return temp;
320
321 case CONST:
322 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
323 true, no_emit);
324 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
325
326 case PLUS:
327 case MULT:
328 /* For addition we can safely permute the conversion and addition
329 operation if one operand is a constant and converting the constant
330 does not change it or if one operand is a constant and we are
331 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
332 We can always safely permute them if we are making the address
333 narrower. Inside a CONST RTL, this is safe for both pointers
334 zero or sign extended as pointers cannot wrap. */
335 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
336 || (GET_CODE (x) == PLUS
337 && CONST_INT_P (XEXP (x, 1))
338 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
339 || XEXP (x, 1) == convert_memory_address_addr_space_1
340 (to_mode, XEXP (x, 1), as, in_const,
341 no_emit)
342 || POINTERS_EXTEND_UNSIGNED < 0)))
343 {
344 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
345 as, in_const, no_emit);
346 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
347 temp, XEXP (x, 1))
348 : temp);
349 }
350 break;
351
352 default:
353 break;
354 }
355
356 if (no_emit)
357 return NULL_RTX;
358
359 return convert_modes (to_mode, from_mode,
360 x, POINTERS_EXTEND_UNSIGNED);
361 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
362 }
363
364 /* Given X, a memory address in address space AS' pointer mode, convert it to
365 an address in the address space's address mode, or vice versa (TO_MODE says
366 which way). We take advantage of the fact that pointers are not allowed to
367 overflow by commuting arithmetic operations over conversions so that address
368 arithmetic insns can be used. */
369
370 rtx
371 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
372 {
373 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
374 }
375 \f
376
377 /* Return something equivalent to X but valid as a memory address for something
378 of mode MODE in the named address space AS. When X is not itself valid,
379 this works by copying X or subexpressions of it into registers. */
380
381 rtx
382 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
383 {
384 rtx oldx = x;
385 machine_mode address_mode = targetm.addr_space.address_mode (as);
386
387 x = convert_memory_address_addr_space (address_mode, x, as);
388
389 /* By passing constant addresses through registers
390 we get a chance to cse them. */
391 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
392 x = force_reg (address_mode, x);
393
394 /* We get better cse by rejecting indirect addressing at this stage.
395 Let the combiner create indirect addresses where appropriate.
396 For now, generate the code so that the subexpressions useful to share
397 are visible. But not if cse won't be done! */
398 else
399 {
400 if (! cse_not_expected && !REG_P (x))
401 x = break_out_memory_refs (x);
402
403 /* At this point, any valid address is accepted. */
404 if (memory_address_addr_space_p (mode, x, as))
405 goto done;
406
407 /* If it was valid before but breaking out memory refs invalidated it,
408 use it the old way. */
409 if (memory_address_addr_space_p (mode, oldx, as))
410 {
411 x = oldx;
412 goto done;
413 }
414
415 /* Perform machine-dependent transformations on X
416 in certain cases. This is not necessary since the code
417 below can handle all possible cases, but machine-dependent
418 transformations can make better code. */
419 {
420 rtx orig_x = x;
421 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
422 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
423 goto done;
424 }
425
426 /* PLUS and MULT can appear in special ways
427 as the result of attempts to make an address usable for indexing.
428 Usually they are dealt with by calling force_operand, below.
429 But a sum containing constant terms is special
430 if removing them makes the sum a valid address:
431 then we generate that address in a register
432 and index off of it. We do this because it often makes
433 shorter code, and because the addresses thus generated
434 in registers often become common subexpressions. */
435 if (GET_CODE (x) == PLUS)
436 {
437 rtx constant_term = const0_rtx;
438 rtx y = eliminate_constant_term (x, &constant_term);
439 if (constant_term == const0_rtx
440 || ! memory_address_addr_space_p (mode, y, as))
441 x = force_operand (x, NULL_RTX);
442 else
443 {
444 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
445 if (! memory_address_addr_space_p (mode, y, as))
446 x = force_operand (x, NULL_RTX);
447 else
448 x = y;
449 }
450 }
451
452 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
453 x = force_operand (x, NULL_RTX);
454
455 /* If we have a register that's an invalid address,
456 it must be a hard reg of the wrong class. Copy it to a pseudo. */
457 else if (REG_P (x))
458 x = copy_to_reg (x);
459
460 /* Last resort: copy the value to a register, since
461 the register is a valid address. */
462 else
463 x = force_reg (address_mode, x);
464 }
465
466 done:
467
468 gcc_assert (memory_address_addr_space_p (mode, x, as));
469 /* If we didn't change the address, we are done. Otherwise, mark
470 a reg as a pointer if we have REG or REG + CONST_INT. */
471 if (oldx == x)
472 return x;
473 else if (REG_P (x))
474 mark_reg_pointer (x, BITS_PER_UNIT);
475 else if (GET_CODE (x) == PLUS
476 && REG_P (XEXP (x, 0))
477 && CONST_INT_P (XEXP (x, 1)))
478 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
479
480 /* OLDX may have been the address on a temporary. Update the address
481 to indicate that X is now used. */
482 update_temp_slot_address (oldx, x);
483
484 return x;
485 }
486
487 /* If REF is a MEM with an invalid address, change it into a valid address.
488 Pass through anything else unchanged. REF must be an unshared rtx and
489 the function may modify it in-place. */
490
491 rtx
492 validize_mem (rtx ref)
493 {
494 if (!MEM_P (ref))
495 return ref;
496 ref = use_anchored_address (ref);
497 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
498 MEM_ADDR_SPACE (ref)))
499 return ref;
500
501 return replace_equiv_address (ref, XEXP (ref, 0), true);
502 }
503
504 /* If X is a memory reference to a member of an object block, try rewriting
505 it to use an anchor instead. Return the new memory reference on success
506 and the old one on failure. */
507
508 rtx
509 use_anchored_address (rtx x)
510 {
511 rtx base;
512 HOST_WIDE_INT offset;
513 machine_mode mode;
514
515 if (!flag_section_anchors)
516 return x;
517
518 if (!MEM_P (x))
519 return x;
520
521 /* Split the address into a base and offset. */
522 base = XEXP (x, 0);
523 offset = 0;
524 if (GET_CODE (base) == CONST
525 && GET_CODE (XEXP (base, 0)) == PLUS
526 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
527 {
528 offset += INTVAL (XEXP (XEXP (base, 0), 1));
529 base = XEXP (XEXP (base, 0), 0);
530 }
531
532 /* Check whether BASE is suitable for anchors. */
533 if (GET_CODE (base) != SYMBOL_REF
534 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
535 || SYMBOL_REF_ANCHOR_P (base)
536 || SYMBOL_REF_BLOCK (base) == NULL
537 || !targetm.use_anchors_for_symbol_p (base))
538 return x;
539
540 /* Decide where BASE is going to be. */
541 place_block_symbol (base);
542
543 /* Get the anchor we need to use. */
544 offset += SYMBOL_REF_BLOCK_OFFSET (base);
545 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
546 SYMBOL_REF_TLS_MODEL (base));
547
548 /* Work out the offset from the anchor. */
549 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
550
551 /* If we're going to run a CSE pass, force the anchor into a register.
552 We will then be able to reuse registers for several accesses, if the
553 target costs say that that's worthwhile. */
554 mode = GET_MODE (base);
555 if (!cse_not_expected)
556 base = force_reg (mode, base);
557
558 return replace_equiv_address (x, plus_constant (mode, base, offset));
559 }
560 \f
561 /* Copy the value or contents of X to a new temp reg and return that reg. */
562
563 rtx
564 copy_to_reg (rtx x)
565 {
566 rtx temp = gen_reg_rtx (GET_MODE (x));
567
568 /* If not an operand, must be an address with PLUS and MULT so
569 do the computation. */
570 if (! general_operand (x, VOIDmode))
571 x = force_operand (x, temp);
572
573 if (x != temp)
574 emit_move_insn (temp, x);
575
576 return temp;
577 }
578
579 /* Like copy_to_reg but always give the new register mode Pmode
580 in case X is a constant. */
581
582 rtx
583 copy_addr_to_reg (rtx x)
584 {
585 return copy_to_mode_reg (Pmode, x);
586 }
587
588 /* Like copy_to_reg but always give the new register mode MODE
589 in case X is a constant. */
590
591 rtx
592 copy_to_mode_reg (machine_mode mode, rtx x)
593 {
594 rtx temp = gen_reg_rtx (mode);
595
596 /* If not an operand, must be an address with PLUS and MULT so
597 do the computation. */
598 if (! general_operand (x, VOIDmode))
599 x = force_operand (x, temp);
600
601 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
602 if (x != temp)
603 emit_move_insn (temp, x);
604 return temp;
605 }
606
607 /* Load X into a register if it is not already one.
608 Use mode MODE for the register.
609 X should be valid for mode MODE, but it may be a constant which
610 is valid for all integer modes; that's why caller must specify MODE.
611
612 The caller must not alter the value in the register we return,
613 since we mark it as a "constant" register. */
614
615 rtx
616 force_reg (machine_mode mode, rtx x)
617 {
618 rtx temp, set;
619 rtx_insn *insn;
620
621 if (REG_P (x))
622 return x;
623
624 if (general_operand (x, mode))
625 {
626 temp = gen_reg_rtx (mode);
627 insn = emit_move_insn (temp, x);
628 }
629 else
630 {
631 temp = force_operand (x, NULL_RTX);
632 if (REG_P (temp))
633 insn = get_last_insn ();
634 else
635 {
636 rtx temp2 = gen_reg_rtx (mode);
637 insn = emit_move_insn (temp2, temp);
638 temp = temp2;
639 }
640 }
641
642 /* Let optimizers know that TEMP's value never changes
643 and that X can be substituted for it. Don't get confused
644 if INSN set something else (such as a SUBREG of TEMP). */
645 if (CONSTANT_P (x)
646 && (set = single_set (insn)) != 0
647 && SET_DEST (set) == temp
648 && ! rtx_equal_p (x, SET_SRC (set)))
649 set_unique_reg_note (insn, REG_EQUAL, x);
650
651 /* Let optimizers know that TEMP is a pointer, and if so, the
652 known alignment of that pointer. */
653 {
654 unsigned align = 0;
655 if (GET_CODE (x) == SYMBOL_REF)
656 {
657 align = BITS_PER_UNIT;
658 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
659 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
660 }
661 else if (GET_CODE (x) == LABEL_REF)
662 align = BITS_PER_UNIT;
663 else if (GET_CODE (x) == CONST
664 && GET_CODE (XEXP (x, 0)) == PLUS
665 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
666 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
667 {
668 rtx s = XEXP (XEXP (x, 0), 0);
669 rtx c = XEXP (XEXP (x, 0), 1);
670 unsigned sa, ca;
671
672 sa = BITS_PER_UNIT;
673 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
674 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
675
676 if (INTVAL (c) == 0)
677 align = sa;
678 else
679 {
680 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
681 align = MIN (sa, ca);
682 }
683 }
684
685 if (align || (MEM_P (x) && MEM_POINTER (x)))
686 mark_reg_pointer (temp, align);
687 }
688
689 return temp;
690 }
691
692 /* If X is a memory ref, copy its contents to a new temp reg and return
693 that reg. Otherwise, return X. */
694
695 rtx
696 force_not_mem (rtx x)
697 {
698 rtx temp;
699
700 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
701 return x;
702
703 temp = gen_reg_rtx (GET_MODE (x));
704
705 if (MEM_POINTER (x))
706 REG_POINTER (temp) = 1;
707
708 emit_move_insn (temp, x);
709 return temp;
710 }
711
712 /* Copy X to TARGET (if it's nonzero and a reg)
713 or to a new temp reg and return that reg.
714 MODE is the mode to use for X in case it is a constant. */
715
716 rtx
717 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
718 {
719 rtx temp;
720
721 if (target && REG_P (target))
722 temp = target;
723 else
724 temp = gen_reg_rtx (mode);
725
726 emit_move_insn (temp, x);
727 return temp;
728 }
729 \f
730 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
731 PUNSIGNEDP points to the signedness of the type and may be adjusted
732 to show what signedness to use on extension operations.
733
734 FOR_RETURN is nonzero if the caller is promoting the return value
735 of FNDECL, else it is for promoting args. */
736
737 machine_mode
738 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
739 const_tree funtype, int for_return)
740 {
741 /* Called without a type node for a libcall. */
742 if (type == NULL_TREE)
743 {
744 if (INTEGRAL_MODE_P (mode))
745 return targetm.calls.promote_function_mode (NULL_TREE, mode,
746 punsignedp, funtype,
747 for_return);
748 else
749 return mode;
750 }
751
752 switch (TREE_CODE (type))
753 {
754 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
755 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
756 case POINTER_TYPE: case REFERENCE_TYPE:
757 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
758 for_return);
759
760 default:
761 return mode;
762 }
763 }
764 /* Return the mode to use to store a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations. */
767
768 machine_mode
769 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
770 int *punsignedp ATTRIBUTE_UNUSED)
771 {
772 #ifdef PROMOTE_MODE
773 enum tree_code code;
774 int unsignedp;
775 #endif
776
777 /* For libcalls this is invoked without TYPE from the backends
778 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
779 case. */
780 if (type == NULL_TREE)
781 return mode;
782
783 /* FIXME: this is the same logic that was there until GCC 4.4, but we
784 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
785 is not defined. The affected targets are M32C, S390, SPARC. */
786 #ifdef PROMOTE_MODE
787 code = TREE_CODE (type);
788 unsignedp = *punsignedp;
789
790 switch (code)
791 {
792 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
793 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
794 PROMOTE_MODE (mode, unsignedp, type);
795 *punsignedp = unsignedp;
796 return mode;
797 break;
798
799 #ifdef POINTERS_EXTEND_UNSIGNED
800 case REFERENCE_TYPE:
801 case POINTER_TYPE:
802 *punsignedp = POINTERS_EXTEND_UNSIGNED;
803 return targetm.addr_space.address_mode
804 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
805 break;
806 #endif
807
808 default:
809 return mode;
810 }
811 #else
812 return mode;
813 #endif
814 }
815
816
817 /* Use one of promote_mode or promote_function_mode to find the promoted
818 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
819 of DECL after promotion. */
820
821 machine_mode
822 promote_decl_mode (const_tree decl, int *punsignedp)
823 {
824 tree type = TREE_TYPE (decl);
825 int unsignedp = TYPE_UNSIGNED (type);
826 machine_mode mode = DECL_MODE (decl);
827 machine_mode pmode;
828
829 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
830 pmode = promote_function_mode (type, mode, &unsignedp,
831 TREE_TYPE (current_function_decl), 1);
832 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
833 pmode = promote_function_mode (type, mode, &unsignedp,
834 TREE_TYPE (current_function_decl), 2);
835 else
836 pmode = promote_mode (type, mode, &unsignedp);
837
838 if (punsignedp)
839 *punsignedp = unsignedp;
840 return pmode;
841 }
842
843 /* Return the promoted mode for name. If it is a named SSA_NAME, it
844 is the same as promote_decl_mode. Otherwise, it is the promoted
845 mode of a temp decl of same type as the SSA_NAME, if we had created
846 one. */
847
848 machine_mode
849 promote_ssa_mode (const_tree name, int *punsignedp)
850 {
851 gcc_assert (TREE_CODE (name) == SSA_NAME);
852
853 /* Partitions holding parms and results must be promoted as expected
854 by function.c. */
855 if (SSA_NAME_VAR (name)
856 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
857 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
858 {
859 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
860 if (mode != BLKmode)
861 return mode;
862 }
863
864 tree type = TREE_TYPE (name);
865 int unsignedp = TYPE_UNSIGNED (type);
866 machine_mode mode = TYPE_MODE (type);
867
868 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
869 if (mode == BLKmode)
870 {
871 gcc_assert (VECTOR_TYPE_P (type));
872 mode = type->type_common.mode;
873 }
874
875 machine_mode pmode = promote_mode (type, mode, &unsignedp);
876 if (punsignedp)
877 *punsignedp = unsignedp;
878
879 return pmode;
880 }
881
882
883 \f
884 /* Controls the behavior of {anti_,}adjust_stack. */
885 static bool suppress_reg_args_size;
886
887 /* A helper for adjust_stack and anti_adjust_stack. */
888
889 static void
890 adjust_stack_1 (rtx adjust, bool anti_p)
891 {
892 rtx temp;
893 rtx_insn *insn;
894
895 /* Hereafter anti_p means subtract_p. */
896 if (!STACK_GROWS_DOWNWARD)
897 anti_p = !anti_p;
898
899 temp = expand_binop (Pmode,
900 anti_p ? sub_optab : add_optab,
901 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
902 OPTAB_LIB_WIDEN);
903
904 if (temp != stack_pointer_rtx)
905 insn = emit_move_insn (stack_pointer_rtx, temp);
906 else
907 {
908 insn = get_last_insn ();
909 temp = single_set (insn);
910 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
911 }
912
913 if (!suppress_reg_args_size)
914 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
915 }
916
917 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
918 This pops when ADJUST is positive. ADJUST need not be constant. */
919
920 void
921 adjust_stack (rtx adjust)
922 {
923 if (adjust == const0_rtx)
924 return;
925
926 /* We expect all variable sized adjustments to be multiple of
927 PREFERRED_STACK_BOUNDARY. */
928 if (CONST_INT_P (adjust))
929 stack_pointer_delta -= INTVAL (adjust);
930
931 adjust_stack_1 (adjust, false);
932 }
933
934 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
935 This pushes when ADJUST is positive. ADJUST need not be constant. */
936
937 void
938 anti_adjust_stack (rtx adjust)
939 {
940 if (adjust == const0_rtx)
941 return;
942
943 /* We expect all variable sized adjustments to be multiple of
944 PREFERRED_STACK_BOUNDARY. */
945 if (CONST_INT_P (adjust))
946 stack_pointer_delta += INTVAL (adjust);
947
948 adjust_stack_1 (adjust, true);
949 }
950
951 /* Round the size of a block to be pushed up to the boundary required
952 by this machine. SIZE is the desired size, which need not be constant. */
953
954 static rtx
955 round_push (rtx size)
956 {
957 rtx align_rtx, alignm1_rtx;
958
959 if (!SUPPORTS_STACK_ALIGNMENT
960 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
961 {
962 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
963
964 if (align == 1)
965 return size;
966
967 if (CONST_INT_P (size))
968 {
969 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
970
971 if (INTVAL (size) != new_size)
972 size = GEN_INT (new_size);
973 return size;
974 }
975
976 align_rtx = GEN_INT (align);
977 alignm1_rtx = GEN_INT (align - 1);
978 }
979 else
980 {
981 /* If crtl->preferred_stack_boundary might still grow, use
982 virtual_preferred_stack_boundary_rtx instead. This will be
983 substituted by the right value in vregs pass and optimized
984 during combine. */
985 align_rtx = virtual_preferred_stack_boundary_rtx;
986 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
987 NULL_RTX);
988 }
989
990 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
991 but we know it can't. So add ourselves and then do
992 TRUNC_DIV_EXPR. */
993 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
994 NULL_RTX, 1, OPTAB_LIB_WIDEN);
995 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
996 NULL_RTX, 1);
997 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
998
999 return size;
1000 }
1001 \f
1002 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1003 to a previously-created save area. If no save area has been allocated,
1004 this function will allocate one. If a save area is specified, it
1005 must be of the proper mode. */
1006
1007 void
1008 emit_stack_save (enum save_level save_level, rtx *psave)
1009 {
1010 rtx sa = *psave;
1011 /* The default is that we use a move insn and save in a Pmode object. */
1012 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1013 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1014
1015 /* See if this machine has anything special to do for this kind of save. */
1016 switch (save_level)
1017 {
1018 case SAVE_BLOCK:
1019 if (targetm.have_save_stack_block ())
1020 fcn = targetm.gen_save_stack_block;
1021 break;
1022 case SAVE_FUNCTION:
1023 if (targetm.have_save_stack_function ())
1024 fcn = targetm.gen_save_stack_function;
1025 break;
1026 case SAVE_NONLOCAL:
1027 if (targetm.have_save_stack_nonlocal ())
1028 fcn = targetm.gen_save_stack_nonlocal;
1029 break;
1030 default:
1031 break;
1032 }
1033
1034 /* If there is no save area and we have to allocate one, do so. Otherwise
1035 verify the save area is the proper mode. */
1036
1037 if (sa == 0)
1038 {
1039 if (mode != VOIDmode)
1040 {
1041 if (save_level == SAVE_NONLOCAL)
1042 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1043 else
1044 *psave = sa = gen_reg_rtx (mode);
1045 }
1046 }
1047
1048 do_pending_stack_adjust ();
1049 if (sa != 0)
1050 sa = validize_mem (sa);
1051 emit_insn (fcn (sa, stack_pointer_rtx));
1052 }
1053
1054 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1055 area made by emit_stack_save. If it is zero, we have nothing to do. */
1056
1057 void
1058 emit_stack_restore (enum save_level save_level, rtx sa)
1059 {
1060 /* The default is that we use a move insn. */
1061 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1062
1063 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1064 STACK_POINTER and HARD_FRAME_POINTER.
1065 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1066 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1067 aligned variables, which is reflected in ix86_can_eliminate.
1068 We normally still have the realigned STACK_POINTER that we can use.
1069 But if there is a stack restore still present at reload, it can trigger
1070 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1071 FRAME_POINTER into a hard reg.
1072 To prevent this situation, we force need_drap if we emit a stack
1073 restore. */
1074 if (SUPPORTS_STACK_ALIGNMENT)
1075 crtl->need_drap = true;
1076
1077 /* See if this machine has anything special to do for this kind of save. */
1078 switch (save_level)
1079 {
1080 case SAVE_BLOCK:
1081 if (targetm.have_restore_stack_block ())
1082 fcn = targetm.gen_restore_stack_block;
1083 break;
1084 case SAVE_FUNCTION:
1085 if (targetm.have_restore_stack_function ())
1086 fcn = targetm.gen_restore_stack_function;
1087 break;
1088 case SAVE_NONLOCAL:
1089 if (targetm.have_restore_stack_nonlocal ())
1090 fcn = targetm.gen_restore_stack_nonlocal;
1091 break;
1092 default:
1093 break;
1094 }
1095
1096 if (sa != 0)
1097 {
1098 sa = validize_mem (sa);
1099 /* These clobbers prevent the scheduler from moving
1100 references to variable arrays below the code
1101 that deletes (pops) the arrays. */
1102 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1103 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1104 }
1105
1106 discard_pending_stack_adjust ();
1107
1108 emit_insn (fcn (stack_pointer_rtx, sa));
1109 }
1110
1111 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1112 function. This should be called whenever we allocate or deallocate
1113 dynamic stack space. */
1114
1115 void
1116 update_nonlocal_goto_save_area (void)
1117 {
1118 tree t_save;
1119 rtx r_save;
1120
1121 /* The nonlocal_goto_save_area object is an array of N pointers. The
1122 first one is used for the frame pointer save; the rest are sized by
1123 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1124 of the stack save area slots. */
1125 t_save = build4 (ARRAY_REF,
1126 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1127 cfun->nonlocal_goto_save_area,
1128 integer_one_node, NULL_TREE, NULL_TREE);
1129 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1130
1131 emit_stack_save (SAVE_NONLOCAL, &r_save);
1132 }
1133
1134 /* Record a new stack level for the current function. This should be called
1135 whenever we allocate or deallocate dynamic stack space. */
1136
1137 void
1138 record_new_stack_level (void)
1139 {
1140 /* Record the new stack level for nonlocal gotos. */
1141 if (cfun->nonlocal_goto_save_area)
1142 update_nonlocal_goto_save_area ();
1143
1144 /* Record the new stack level for SJLJ exceptions. */
1145 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1146 update_sjlj_context ();
1147 }
1148 \f
1149 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1150 static rtx
1151 align_dynamic_address (rtx target, unsigned required_align)
1152 {
1153 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1154 but we know it can't. So add ourselves and then do
1155 TRUNC_DIV_EXPR. */
1156 target = expand_binop (Pmode, add_optab, target,
1157 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1158 Pmode),
1159 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1160 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1161 gen_int_mode (required_align / BITS_PER_UNIT,
1162 Pmode),
1163 NULL_RTX, 1);
1164 target = expand_mult (Pmode, target,
1165 gen_int_mode (required_align / BITS_PER_UNIT,
1166 Pmode),
1167 NULL_RTX, 1);
1168
1169 return target;
1170 }
1171
1172 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1173 be dynamically pushed on the stack.
1174
1175 *PSIZE is an rtx representing the size of the area.
1176
1177 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1178 parameter may be zero. If so, a proper value will be extracted
1179 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1180
1181 REQUIRED_ALIGN is the alignment (in bits) required for the region
1182 of memory.
1183
1184 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1185 the additional size returned. */
1186 void
1187 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1188 unsigned required_align,
1189 HOST_WIDE_INT *pstack_usage_size)
1190 {
1191 unsigned extra = 0;
1192 rtx size = *psize;
1193
1194 /* Ensure the size is in the proper mode. */
1195 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1196 size = convert_to_mode (Pmode, size, 1);
1197
1198 if (CONST_INT_P (size))
1199 {
1200 unsigned HOST_WIDE_INT lsb;
1201
1202 lsb = INTVAL (size);
1203 lsb &= -lsb;
1204
1205 /* Watch out for overflow truncating to "unsigned". */
1206 if (lsb > UINT_MAX / BITS_PER_UNIT)
1207 size_align = 1u << (HOST_BITS_PER_INT - 1);
1208 else
1209 size_align = (unsigned)lsb * BITS_PER_UNIT;
1210 }
1211 else if (size_align < BITS_PER_UNIT)
1212 size_align = BITS_PER_UNIT;
1213
1214 /* We can't attempt to minimize alignment necessary, because we don't
1215 know the final value of preferred_stack_boundary yet while executing
1216 this code. */
1217 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1218 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1219
1220 /* We will need to ensure that the address we return is aligned to
1221 REQUIRED_ALIGN. At this point in the compilation, we don't always
1222 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1223 (it might depend on the size of the outgoing parameter lists, for
1224 example), so we must preventively align the value. We leave space
1225 in SIZE for the hole that might result from the alignment operation. */
1226
1227 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1228 if (known_align == 0)
1229 known_align = BITS_PER_UNIT;
1230 if (required_align > known_align)
1231 {
1232 extra = (required_align - known_align) / BITS_PER_UNIT;
1233 size = plus_constant (Pmode, size, extra);
1234 size = force_operand (size, NULL_RTX);
1235 }
1236
1237 if (flag_stack_usage_info && pstack_usage_size)
1238 *pstack_usage_size += extra;
1239
1240 if (extra && size_align > BITS_PER_UNIT)
1241 size_align = BITS_PER_UNIT;
1242
1243 /* Round the size to a multiple of the required stack alignment.
1244 Since the stack is presumed to be rounded before this allocation,
1245 this will maintain the required alignment.
1246
1247 If the stack grows downward, we could save an insn by subtracting
1248 SIZE from the stack pointer and then aligning the stack pointer.
1249 The problem with this is that the stack pointer may be unaligned
1250 between the execution of the subtraction and alignment insns and
1251 some machines do not allow this. Even on those that do, some
1252 signal handlers malfunction if a signal should occur between those
1253 insns. Since this is an extremely rare event, we have no reliable
1254 way of knowing which systems have this problem. So we avoid even
1255 momentarily mis-aligning the stack. */
1256 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1257 {
1258 size = round_push (size);
1259
1260 if (flag_stack_usage_info && pstack_usage_size)
1261 {
1262 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1263 *pstack_usage_size =
1264 (*pstack_usage_size + align - 1) / align * align;
1265 }
1266 }
1267
1268 *psize = size;
1269 }
1270
1271 /* Return an rtx representing the address of an area of memory dynamically
1272 pushed on the stack.
1273
1274 Any required stack pointer alignment is preserved.
1275
1276 SIZE is an rtx representing the size of the area.
1277
1278 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1279 parameter may be zero. If so, a proper value will be extracted
1280 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1281
1282 REQUIRED_ALIGN is the alignment (in bits) required for the region
1283 of memory.
1284
1285 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1286 stack space allocated by the generated code cannot be added with itself
1287 in the course of the execution of the function. It is always safe to
1288 pass FALSE here and the following criterion is sufficient in order to
1289 pass TRUE: every path in the CFG that starts at the allocation point and
1290 loops to it executes the associated deallocation code. */
1291
1292 rtx
1293 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1294 unsigned required_align, bool cannot_accumulate)
1295 {
1296 HOST_WIDE_INT stack_usage_size = -1;
1297 rtx_code_label *final_label;
1298 rtx final_target, target;
1299
1300 /* If we're asking for zero bytes, it doesn't matter what we point
1301 to since we can't dereference it. But return a reasonable
1302 address anyway. */
1303 if (size == const0_rtx)
1304 return virtual_stack_dynamic_rtx;
1305
1306 /* Otherwise, show we're calling alloca or equivalent. */
1307 cfun->calls_alloca = 1;
1308
1309 /* If stack usage info is requested, look into the size we are passed.
1310 We need to do so this early to avoid the obfuscation that may be
1311 introduced later by the various alignment operations. */
1312 if (flag_stack_usage_info)
1313 {
1314 if (CONST_INT_P (size))
1315 stack_usage_size = INTVAL (size);
1316 else if (REG_P (size))
1317 {
1318 /* Look into the last emitted insn and see if we can deduce
1319 something for the register. */
1320 rtx_insn *insn;
1321 rtx set, note;
1322 insn = get_last_insn ();
1323 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1324 {
1325 if (CONST_INT_P (SET_SRC (set)))
1326 stack_usage_size = INTVAL (SET_SRC (set));
1327 else if ((note = find_reg_equal_equiv_note (insn))
1328 && CONST_INT_P (XEXP (note, 0)))
1329 stack_usage_size = INTVAL (XEXP (note, 0));
1330 }
1331 }
1332
1333 /* If the size is not constant, we can't say anything. */
1334 if (stack_usage_size == -1)
1335 {
1336 current_function_has_unbounded_dynamic_stack_size = 1;
1337 stack_usage_size = 0;
1338 }
1339 }
1340
1341 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1342
1343 target = gen_reg_rtx (Pmode);
1344
1345 /* The size is supposed to be fully adjusted at this point so record it
1346 if stack usage info is requested. */
1347 if (flag_stack_usage_info)
1348 {
1349 current_function_dynamic_stack_size += stack_usage_size;
1350
1351 /* ??? This is gross but the only safe stance in the absence
1352 of stack usage oriented flow analysis. */
1353 if (!cannot_accumulate)
1354 current_function_has_unbounded_dynamic_stack_size = 1;
1355 }
1356
1357 final_label = NULL;
1358 final_target = NULL_RTX;
1359
1360 /* If we are splitting the stack, we need to ask the backend whether
1361 there is enough room on the current stack. If there isn't, or if
1362 the backend doesn't know how to tell is, then we need to call a
1363 function to allocate memory in some other way. This memory will
1364 be released when we release the current stack segment. The
1365 effect is that stack allocation becomes less efficient, but at
1366 least it doesn't cause a stack overflow. */
1367 if (flag_split_stack)
1368 {
1369 rtx_code_label *available_label;
1370 rtx ask, space, func;
1371
1372 available_label = NULL;
1373
1374 if (targetm.have_split_stack_space_check ())
1375 {
1376 available_label = gen_label_rtx ();
1377
1378 /* This instruction will branch to AVAILABLE_LABEL if there
1379 are SIZE bytes available on the stack. */
1380 emit_insn (targetm.gen_split_stack_space_check
1381 (size, available_label));
1382 }
1383
1384 /* The __morestack_allocate_stack_space function will allocate
1385 memory using malloc. If the alignment of the memory returned
1386 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1387 make sure we allocate enough space. */
1388 if (MALLOC_ABI_ALIGNMENT >= required_align)
1389 ask = size;
1390 else
1391 ask = expand_binop (Pmode, add_optab, size,
1392 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1393 Pmode),
1394 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1395
1396 func = init_one_libfunc ("__morestack_allocate_stack_space");
1397
1398 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1399 1, ask, Pmode);
1400
1401 if (available_label == NULL_RTX)
1402 return space;
1403
1404 final_target = gen_reg_rtx (Pmode);
1405
1406 emit_move_insn (final_target, space);
1407
1408 final_label = gen_label_rtx ();
1409 emit_jump (final_label);
1410
1411 emit_label (available_label);
1412 }
1413
1414 do_pending_stack_adjust ();
1415
1416 /* We ought to be called always on the toplevel and stack ought to be aligned
1417 properly. */
1418 gcc_assert (!(stack_pointer_delta
1419 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1420
1421 /* If needed, check that we have the required amount of stack. Take into
1422 account what has already been checked. */
1423 if (STACK_CHECK_MOVING_SP)
1424 ;
1425 else if (flag_stack_check == GENERIC_STACK_CHECK)
1426 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1427 size);
1428 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1429 probe_stack_range (STACK_CHECK_PROTECT, size);
1430
1431 /* Don't let anti_adjust_stack emit notes. */
1432 suppress_reg_args_size = true;
1433
1434 /* Perform the required allocation from the stack. Some systems do
1435 this differently than simply incrementing/decrementing from the
1436 stack pointer, such as acquiring the space by calling malloc(). */
1437 if (targetm.have_allocate_stack ())
1438 {
1439 struct expand_operand ops[2];
1440 /* We don't have to check against the predicate for operand 0 since
1441 TARGET is known to be a pseudo of the proper mode, which must
1442 be valid for the operand. */
1443 create_fixed_operand (&ops[0], target);
1444 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1445 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1446 }
1447 else
1448 {
1449 int saved_stack_pointer_delta;
1450
1451 if (!STACK_GROWS_DOWNWARD)
1452 emit_move_insn (target, virtual_stack_dynamic_rtx);
1453
1454 /* Check stack bounds if necessary. */
1455 if (crtl->limit_stack)
1456 {
1457 rtx available;
1458 rtx_code_label *space_available = gen_label_rtx ();
1459 if (STACK_GROWS_DOWNWARD)
1460 available = expand_binop (Pmode, sub_optab,
1461 stack_pointer_rtx, stack_limit_rtx,
1462 NULL_RTX, 1, OPTAB_WIDEN);
1463 else
1464 available = expand_binop (Pmode, sub_optab,
1465 stack_limit_rtx, stack_pointer_rtx,
1466 NULL_RTX, 1, OPTAB_WIDEN);
1467
1468 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1469 space_available);
1470 if (targetm.have_trap ())
1471 emit_insn (targetm.gen_trap ());
1472 else
1473 error ("stack limits not supported on this target");
1474 emit_barrier ();
1475 emit_label (space_available);
1476 }
1477
1478 saved_stack_pointer_delta = stack_pointer_delta;
1479
1480 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1481 anti_adjust_stack_and_probe (size, false);
1482 else
1483 anti_adjust_stack (size);
1484
1485 /* Even if size is constant, don't modify stack_pointer_delta.
1486 The constant size alloca should preserve
1487 crtl->preferred_stack_boundary alignment. */
1488 stack_pointer_delta = saved_stack_pointer_delta;
1489
1490 if (STACK_GROWS_DOWNWARD)
1491 emit_move_insn (target, virtual_stack_dynamic_rtx);
1492 }
1493
1494 suppress_reg_args_size = false;
1495
1496 /* Finish up the split stack handling. */
1497 if (final_label != NULL_RTX)
1498 {
1499 gcc_assert (flag_split_stack);
1500 emit_move_insn (final_target, target);
1501 emit_label (final_label);
1502 target = final_target;
1503 }
1504
1505 target = align_dynamic_address (target, required_align);
1506
1507 /* Now that we've committed to a return value, mark its alignment. */
1508 mark_reg_pointer (target, required_align);
1509
1510 /* Record the new stack level. */
1511 record_new_stack_level ();
1512
1513 return target;
1514 }
1515
1516 /* Return an rtx representing the address of an area of memory already
1517 statically pushed onto the stack in the virtual stack vars area. (It is
1518 assumed that the area is allocated in the function prologue.)
1519
1520 Any required stack pointer alignment is preserved.
1521
1522 OFFSET is the offset of the area into the virtual stack vars area.
1523
1524 REQUIRED_ALIGN is the alignment (in bits) required for the region
1525 of memory. */
1526
1527 rtx
1528 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1529 {
1530 rtx target;
1531
1532 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1533 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1534
1535 target = gen_reg_rtx (Pmode);
1536 emit_move_insn (target, virtual_stack_vars_rtx);
1537 target = expand_binop (Pmode, add_optab, target,
1538 gen_int_mode (offset, Pmode),
1539 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1540 target = align_dynamic_address (target, required_align);
1541
1542 /* Now that we've committed to a return value, mark its alignment. */
1543 mark_reg_pointer (target, required_align);
1544
1545 return target;
1546 }
1547 \f
1548 /* A front end may want to override GCC's stack checking by providing a
1549 run-time routine to call to check the stack, so provide a mechanism for
1550 calling that routine. */
1551
1552 static GTY(()) rtx stack_check_libfunc;
1553
1554 void
1555 set_stack_check_libfunc (const char *libfunc_name)
1556 {
1557 gcc_assert (stack_check_libfunc == NULL_RTX);
1558 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1559 }
1560 \f
1561 /* Emit one stack probe at ADDRESS, an address within the stack. */
1562
1563 void
1564 emit_stack_probe (rtx address)
1565 {
1566 if (targetm.have_probe_stack_address ())
1567 emit_insn (targetm.gen_probe_stack_address (address));
1568 else
1569 {
1570 rtx memref = gen_rtx_MEM (word_mode, address);
1571
1572 MEM_VOLATILE_P (memref) = 1;
1573
1574 /* See if we have an insn to probe the stack. */
1575 if (targetm.have_probe_stack ())
1576 emit_insn (targetm.gen_probe_stack (memref));
1577 else
1578 emit_move_insn (memref, const0_rtx);
1579 }
1580 }
1581
1582 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1583 FIRST is a constant and size is a Pmode RTX. These are offsets from
1584 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1585 or subtract them from the stack pointer. */
1586
1587 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1588
1589 #if STACK_GROWS_DOWNWARD
1590 #define STACK_GROW_OP MINUS
1591 #define STACK_GROW_OPTAB sub_optab
1592 #define STACK_GROW_OFF(off) -(off)
1593 #else
1594 #define STACK_GROW_OP PLUS
1595 #define STACK_GROW_OPTAB add_optab
1596 #define STACK_GROW_OFF(off) (off)
1597 #endif
1598
1599 void
1600 probe_stack_range (HOST_WIDE_INT first, rtx size)
1601 {
1602 /* First ensure SIZE is Pmode. */
1603 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1604 size = convert_to_mode (Pmode, size, 1);
1605
1606 /* Next see if we have a function to check the stack. */
1607 if (stack_check_libfunc)
1608 {
1609 rtx addr = memory_address (Pmode,
1610 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1611 stack_pointer_rtx,
1612 plus_constant (Pmode,
1613 size, first)));
1614 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1615 Pmode);
1616 }
1617
1618 /* Next see if we have an insn to check the stack. */
1619 else if (targetm.have_check_stack ())
1620 {
1621 struct expand_operand ops[1];
1622 rtx addr = memory_address (Pmode,
1623 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1624 stack_pointer_rtx,
1625 plus_constant (Pmode,
1626 size, first)));
1627 bool success;
1628 create_input_operand (&ops[0], addr, Pmode);
1629 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1630 gcc_assert (success);
1631 }
1632
1633 /* Otherwise we have to generate explicit probes. If we have a constant
1634 small number of them to generate, that's the easy case. */
1635 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1636 {
1637 HOST_WIDE_INT isize = INTVAL (size), i;
1638 rtx addr;
1639
1640 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1641 it exceeds SIZE. If only one probe is needed, this will not
1642 generate any code. Then probe at FIRST + SIZE. */
1643 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1644 {
1645 addr = memory_address (Pmode,
1646 plus_constant (Pmode, stack_pointer_rtx,
1647 STACK_GROW_OFF (first + i)));
1648 emit_stack_probe (addr);
1649 }
1650
1651 addr = memory_address (Pmode,
1652 plus_constant (Pmode, stack_pointer_rtx,
1653 STACK_GROW_OFF (first + isize)));
1654 emit_stack_probe (addr);
1655 }
1656
1657 /* In the variable case, do the same as above, but in a loop. Note that we
1658 must be extra careful with variables wrapping around because we might be
1659 at the very top (or the very bottom) of the address space and we have to
1660 be able to handle this case properly; in particular, we use an equality
1661 test for the loop condition. */
1662 else
1663 {
1664 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1665 rtx_code_label *loop_lab = gen_label_rtx ();
1666 rtx_code_label *end_lab = gen_label_rtx ();
1667
1668 /* Step 1: round SIZE to the previous multiple of the interval. */
1669
1670 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1671 rounded_size
1672 = simplify_gen_binary (AND, Pmode, size,
1673 gen_int_mode (-PROBE_INTERVAL, Pmode));
1674 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1675
1676
1677 /* Step 2: compute initial and final value of the loop counter. */
1678
1679 /* TEST_ADDR = SP + FIRST. */
1680 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1681 stack_pointer_rtx,
1682 gen_int_mode (first, Pmode)),
1683 NULL_RTX);
1684
1685 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1686 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1687 test_addr,
1688 rounded_size_op), NULL_RTX);
1689
1690
1691 /* Step 3: the loop
1692
1693 while (TEST_ADDR != LAST_ADDR)
1694 {
1695 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1696 probe at TEST_ADDR
1697 }
1698
1699 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1700 until it is equal to ROUNDED_SIZE. */
1701
1702 emit_label (loop_lab);
1703
1704 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1705 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1706 end_lab);
1707
1708 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1709 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1710 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1711 1, OPTAB_WIDEN);
1712
1713 gcc_assert (temp == test_addr);
1714
1715 /* Probe at TEST_ADDR. */
1716 emit_stack_probe (test_addr);
1717
1718 emit_jump (loop_lab);
1719
1720 emit_label (end_lab);
1721
1722
1723 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1724 that SIZE is equal to ROUNDED_SIZE. */
1725
1726 /* TEMP = SIZE - ROUNDED_SIZE. */
1727 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1728 if (temp != const0_rtx)
1729 {
1730 rtx addr;
1731
1732 if (CONST_INT_P (temp))
1733 {
1734 /* Use [base + disp} addressing mode if supported. */
1735 HOST_WIDE_INT offset = INTVAL (temp);
1736 addr = memory_address (Pmode,
1737 plus_constant (Pmode, last_addr,
1738 STACK_GROW_OFF (offset)));
1739 }
1740 else
1741 {
1742 /* Manual CSE if the difference is not known at compile-time. */
1743 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1744 addr = memory_address (Pmode,
1745 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1746 last_addr, temp));
1747 }
1748
1749 emit_stack_probe (addr);
1750 }
1751 }
1752
1753 /* Make sure nothing is scheduled before we are done. */
1754 emit_insn (gen_blockage ());
1755 }
1756
1757 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1758 while probing it. This pushes when SIZE is positive. SIZE need not
1759 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1760 by plus SIZE at the end. */
1761
1762 void
1763 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1764 {
1765 /* We skip the probe for the first interval + a small dope of 4 words and
1766 probe that many bytes past the specified size to maintain a protection
1767 area at the botton of the stack. */
1768 const int dope = 4 * UNITS_PER_WORD;
1769
1770 /* First ensure SIZE is Pmode. */
1771 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1772 size = convert_to_mode (Pmode, size, 1);
1773
1774 /* If we have a constant small number of probes to generate, that's the
1775 easy case. */
1776 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1777 {
1778 HOST_WIDE_INT isize = INTVAL (size), i;
1779 bool first_probe = true;
1780
1781 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1782 values of N from 1 until it exceeds SIZE. If only one probe is
1783 needed, this will not generate any code. Then adjust and probe
1784 to PROBE_INTERVAL + SIZE. */
1785 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1786 {
1787 if (first_probe)
1788 {
1789 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1790 first_probe = false;
1791 }
1792 else
1793 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1794 emit_stack_probe (stack_pointer_rtx);
1795 }
1796
1797 if (first_probe)
1798 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1799 else
1800 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1801 emit_stack_probe (stack_pointer_rtx);
1802 }
1803
1804 /* In the variable case, do the same as above, but in a loop. Note that we
1805 must be extra careful with variables wrapping around because we might be
1806 at the very top (or the very bottom) of the address space and we have to
1807 be able to handle this case properly; in particular, we use an equality
1808 test for the loop condition. */
1809 else
1810 {
1811 rtx rounded_size, rounded_size_op, last_addr, temp;
1812 rtx_code_label *loop_lab = gen_label_rtx ();
1813 rtx_code_label *end_lab = gen_label_rtx ();
1814
1815
1816 /* Step 1: round SIZE to the previous multiple of the interval. */
1817
1818 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1819 rounded_size
1820 = simplify_gen_binary (AND, Pmode, size,
1821 gen_int_mode (-PROBE_INTERVAL, Pmode));
1822 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1823
1824
1825 /* Step 2: compute initial and final value of the loop counter. */
1826
1827 /* SP = SP_0 + PROBE_INTERVAL. */
1828 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1829
1830 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1831 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1832 stack_pointer_rtx,
1833 rounded_size_op), NULL_RTX);
1834
1835
1836 /* Step 3: the loop
1837
1838 while (SP != LAST_ADDR)
1839 {
1840 SP = SP + PROBE_INTERVAL
1841 probe at SP
1842 }
1843
1844 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1845 values of N from 1 until it is equal to ROUNDED_SIZE. */
1846
1847 emit_label (loop_lab);
1848
1849 /* Jump to END_LAB if SP == LAST_ADDR. */
1850 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1851 Pmode, 1, end_lab);
1852
1853 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1854 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1855 emit_stack_probe (stack_pointer_rtx);
1856
1857 emit_jump (loop_lab);
1858
1859 emit_label (end_lab);
1860
1861
1862 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1863 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1864
1865 /* TEMP = SIZE - ROUNDED_SIZE. */
1866 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1867 if (temp != const0_rtx)
1868 {
1869 /* Manual CSE if the difference is not known at compile-time. */
1870 if (GET_CODE (temp) != CONST_INT)
1871 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1872 anti_adjust_stack (temp);
1873 emit_stack_probe (stack_pointer_rtx);
1874 }
1875 }
1876
1877 /* Adjust back and account for the additional first interval. */
1878 if (adjust_back)
1879 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1880 else
1881 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1882 }
1883
1884 /* Return an rtx representing the register or memory location
1885 in which a scalar value of data type VALTYPE
1886 was returned by a function call to function FUNC.
1887 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1888 function is known, otherwise 0.
1889 OUTGOING is 1 if on a machine with register windows this function
1890 should return the register in which the function will put its result
1891 and 0 otherwise. */
1892
1893 rtx
1894 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1895 int outgoing ATTRIBUTE_UNUSED)
1896 {
1897 rtx val;
1898
1899 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1900
1901 if (REG_P (val)
1902 && GET_MODE (val) == BLKmode)
1903 {
1904 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1905 machine_mode tmpmode;
1906
1907 /* int_size_in_bytes can return -1. We don't need a check here
1908 since the value of bytes will then be large enough that no
1909 mode will match anyway. */
1910
1911 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1912 tmpmode != VOIDmode;
1913 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1914 {
1915 /* Have we found a large enough mode? */
1916 if (GET_MODE_SIZE (tmpmode) >= bytes)
1917 break;
1918 }
1919
1920 /* No suitable mode found. */
1921 gcc_assert (tmpmode != VOIDmode);
1922
1923 PUT_MODE (val, tmpmode);
1924 }
1925 return val;
1926 }
1927
1928 /* Return an rtx representing the register or memory location
1929 in which a scalar value of mode MODE was returned by a library call. */
1930
1931 rtx
1932 hard_libcall_value (machine_mode mode, rtx fun)
1933 {
1934 return targetm.calls.libcall_value (mode, fun);
1935 }
1936
1937 /* Look up the tree code for a given rtx code
1938 to provide the arithmetic operation for real_arithmetic.
1939 The function returns an int because the caller may not know
1940 what `enum tree_code' means. */
1941
1942 int
1943 rtx_to_tree_code (enum rtx_code code)
1944 {
1945 enum tree_code tcode;
1946
1947 switch (code)
1948 {
1949 case PLUS:
1950 tcode = PLUS_EXPR;
1951 break;
1952 case MINUS:
1953 tcode = MINUS_EXPR;
1954 break;
1955 case MULT:
1956 tcode = MULT_EXPR;
1957 break;
1958 case DIV:
1959 tcode = RDIV_EXPR;
1960 break;
1961 case SMIN:
1962 tcode = MIN_EXPR;
1963 break;
1964 case SMAX:
1965 tcode = MAX_EXPR;
1966 break;
1967 default:
1968 tcode = LAST_AND_UNUSED_TREE_CODE;
1969 break;
1970 }
1971 return ((int) tcode);
1972 }
1973
1974 #include "gt-explow.h"