Makefile.in (explow.o, [...]): Depend on target.h.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40 #include "target.h"
41
42 static rtx break_out_memory_refs (rtx);
43 static void emit_stack_probe (rtx);
44
45
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47
48 HOST_WIDE_INT
49 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 {
51 int width = GET_MODE_BITSIZE (mode);
52
53 /* You want to truncate to a _what_? */
54 gcc_assert (SCALAR_INT_MODE_P (mode));
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C. */
75
76 rtx
77 plus_constant (rtx x, HOST_WIDE_INT c)
78 {
79 RTX_CODE code;
80 rtx y;
81 enum machine_mode mode;
82 rtx tem;
83 int all_constant = 0;
84
85 if (c == 0)
86 return x;
87
88 restart:
89
90 code = GET_CODE (x);
91 mode = GET_MODE (x);
92 y = x;
93
94 switch (code)
95 {
96 case CONST_INT:
97 return GEN_INT (INTVAL (x) + c);
98
99 case CONST_DOUBLE:
100 {
101 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103 unsigned HOST_WIDE_INT l2 = c;
104 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv;
106 HOST_WIDE_INT hv;
107
108 add_double (l1, h1, l2, h2, &lv, &hv);
109
110 return immed_double_const (lv, hv, VOIDmode);
111 }
112
113 case MEM:
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
119 {
120 tem
121 = force_const_mem (GET_MODE (x),
122 plus_constant (get_pool_constant (XEXP (x, 0)),
123 c));
124 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
126 }
127 break;
128
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 x = XEXP (x, 0);
133 all_constant = 1;
134 goto restart;
135
136 case SYMBOL_REF:
137 case LABEL_REF:
138 all_constant = 1;
139 break;
140
141 case PLUS:
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
147
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
150
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
153
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
155 {
156 c += INTVAL (XEXP (x, 1));
157
158 if (GET_MODE (x) != VOIDmode)
159 c = trunc_int_for_mode (c, GET_MODE (x));
160
161 x = XEXP (x, 0);
162 goto restart;
163 }
164 else if (CONSTANT_P (XEXP (x, 1)))
165 {
166 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167 c = 0;
168 }
169 else if (find_constant_term_loc (&y))
170 {
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy = copy_rtx (x);
174 rtx *const_loc = find_constant_term_loc (&copy);
175
176 *const_loc = plus_constant (*const_loc, c);
177 x = copy;
178 c = 0;
179 }
180 break;
181
182 default:
183 break;
184 }
185
186 if (c != 0)
187 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
188
189 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190 return x;
191 else if (all_constant)
192 return gen_rtx_CONST (mode, x);
193 else
194 return x;
195 }
196 \f
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
201
202 rtx
203 eliminate_constant_term (rtx x, rtx *constptr)
204 {
205 rtx x0, x1;
206 rtx tem;
207
208 if (GET_CODE (x) != PLUS)
209 return x;
210
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x, 1)) == CONST_INT
213 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214 XEXP (x, 1)))
215 && GET_CODE (tem) == CONST_INT)
216 {
217 *constptr = tem;
218 return eliminate_constant_term (XEXP (x, 0), constptr);
219 }
220
221 tem = const0_rtx;
222 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226 *constptr, tem))
227 && GET_CODE (tem) == CONST_INT)
228 {
229 *constptr = tem;
230 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
231 }
232
233 return x;
234 }
235
236 /* Return an rtx for the size in bytes of the value of EXP. */
237
238 rtx
239 expr_size (tree exp)
240 {
241 tree size;
242
243 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
244 size = TREE_OPERAND (exp, 1);
245 else
246 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
247
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249 }
250
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
253
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
256 {
257 tree size;
258
259 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
260 size = TREE_OPERAND (exp, 1);
261 else
262 size = lang_hooks.expr_size (exp);
263
264 if (size == 0 || !host_integerp (size, 0))
265 return -1;
266
267 return tree_low_cst (size, 0);
268 }
269 \f
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
275
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
278
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
282
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285
286 static rtx
287 break_out_memory_refs (rtx x)
288 {
289 if (MEM_P (x)
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
295 {
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301 }
302
303 return x;
304 }
305
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
311
312 rtx
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314 rtx x)
315 {
316 #ifndef POINTERS_EXTEND_UNSIGNED
317 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
318 return x;
319 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
320 enum machine_mode from_mode;
321 rtx temp;
322 enum rtx_code code;
323
324 /* If X already has the right mode, just return it. */
325 if (GET_MODE (x) == to_mode)
326 return x;
327
328 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
329
330 /* Here we handle some special cases. If none of them apply, fall through
331 to the default case. */
332 switch (GET_CODE (x))
333 {
334 case CONST_INT:
335 case CONST_DOUBLE:
336 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
337 code = TRUNCATE;
338 else if (POINTERS_EXTEND_UNSIGNED < 0)
339 break;
340 else if (POINTERS_EXTEND_UNSIGNED > 0)
341 code = ZERO_EXTEND;
342 else
343 code = SIGN_EXTEND;
344 temp = simplify_unary_operation (code, to_mode, x, from_mode);
345 if (temp)
346 return temp;
347 break;
348
349 case SUBREG:
350 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
351 && GET_MODE (SUBREG_REG (x)) == to_mode)
352 return SUBREG_REG (x);
353 break;
354
355 case LABEL_REF:
356 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
357 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
358 return temp;
359 break;
360
361 case SYMBOL_REF:
362 temp = shallow_copy_rtx (x);
363 PUT_MODE (temp, to_mode);
364 return temp;
365 break;
366
367 case CONST:
368 return gen_rtx_CONST (to_mode,
369 convert_memory_address (to_mode, XEXP (x, 0)));
370 break;
371
372 case PLUS:
373 case MULT:
374 /* For addition we can safely permute the conversion and addition
375 operation if one operand is a constant and converting the constant
376 does not change it. We can always safely permute them if we are
377 making the address narrower. */
378 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
379 || (GET_CODE (x) == PLUS
380 && GET_CODE (XEXP (x, 1)) == CONST_INT
381 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
382 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
383 convert_memory_address (to_mode, XEXP (x, 0)),
384 XEXP (x, 1));
385 break;
386
387 default:
388 break;
389 }
390
391 return convert_modes (to_mode, from_mode,
392 x, POINTERS_EXTEND_UNSIGNED);
393 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394 }
395 \f
396 /* Return something equivalent to X but valid as a memory address
397 for something of mode MODE. When X is not itself valid, this
398 works by copying X or subexpressions of it into registers. */
399
400 rtx
401 memory_address (enum machine_mode mode, rtx x)
402 {
403 rtx oldx = x;
404
405 x = convert_memory_address (Pmode, x);
406
407 /* By passing constant addresses through registers
408 we get a chance to cse them. */
409 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
410 x = force_reg (Pmode, x);
411
412 /* We get better cse by rejecting indirect addressing at this stage.
413 Let the combiner create indirect addresses where appropriate.
414 For now, generate the code so that the subexpressions useful to share
415 are visible. But not if cse won't be done! */
416 else
417 {
418 if (! cse_not_expected && !REG_P (x))
419 x = break_out_memory_refs (x);
420
421 /* At this point, any valid address is accepted. */
422 if (memory_address_p (mode, x))
423 goto win;
424
425 /* If it was valid before but breaking out memory refs invalidated it,
426 use it the old way. */
427 if (memory_address_p (mode, oldx))
428 goto win2;
429
430 /* Perform machine-dependent transformations on X
431 in certain cases. This is not necessary since the code
432 below can handle all possible cases, but machine-dependent
433 transformations can make better code. */
434 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
435
436 /* PLUS and MULT can appear in special ways
437 as the result of attempts to make an address usable for indexing.
438 Usually they are dealt with by calling force_operand, below.
439 But a sum containing constant terms is special
440 if removing them makes the sum a valid address:
441 then we generate that address in a register
442 and index off of it. We do this because it often makes
443 shorter code, and because the addresses thus generated
444 in registers often become common subexpressions. */
445 if (GET_CODE (x) == PLUS)
446 {
447 rtx constant_term = const0_rtx;
448 rtx y = eliminate_constant_term (x, &constant_term);
449 if (constant_term == const0_rtx
450 || ! memory_address_p (mode, y))
451 x = force_operand (x, NULL_RTX);
452 else
453 {
454 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
455 if (! memory_address_p (mode, y))
456 x = force_operand (x, NULL_RTX);
457 else
458 x = y;
459 }
460 }
461
462 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
463 x = force_operand (x, NULL_RTX);
464
465 /* If we have a register that's an invalid address,
466 it must be a hard reg of the wrong class. Copy it to a pseudo. */
467 else if (REG_P (x))
468 x = copy_to_reg (x);
469
470 /* Last resort: copy the value to a register, since
471 the register is a valid address. */
472 else
473 x = force_reg (Pmode, x);
474
475 goto done;
476
477 win2:
478 x = oldx;
479 win:
480 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
481 /* Don't copy an addr via a reg if it is one of our stack slots. */
482 && ! (GET_CODE (x) == PLUS
483 && (XEXP (x, 0) == virtual_stack_vars_rtx
484 || XEXP (x, 0) == virtual_incoming_args_rtx)))
485 {
486 if (general_operand (x, Pmode))
487 x = force_reg (Pmode, x);
488 else
489 x = force_operand (x, NULL_RTX);
490 }
491 }
492
493 done:
494
495 /* If we didn't change the address, we are done. Otherwise, mark
496 a reg as a pointer if we have REG or REG + CONST_INT. */
497 if (oldx == x)
498 return x;
499 else if (REG_P (x))
500 mark_reg_pointer (x, BITS_PER_UNIT);
501 else if (GET_CODE (x) == PLUS
502 && REG_P (XEXP (x, 0))
503 && GET_CODE (XEXP (x, 1)) == CONST_INT)
504 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
505
506 /* OLDX may have been the address on a temporary. Update the address
507 to indicate that X is now used. */
508 update_temp_slot_address (oldx, x);
509
510 return x;
511 }
512
513 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
514
515 rtx
516 memory_address_noforce (enum machine_mode mode, rtx x)
517 {
518 int ambient_force_addr = flag_force_addr;
519 rtx val;
520
521 flag_force_addr = 0;
522 val = memory_address (mode, x);
523 flag_force_addr = ambient_force_addr;
524 return val;
525 }
526
527 /* Convert a mem ref into one with a valid memory address.
528 Pass through anything else unchanged. */
529
530 rtx
531 validize_mem (rtx ref)
532 {
533 if (!MEM_P (ref))
534 return ref;
535 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
536 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
537 return ref;
538
539 /* Don't alter REF itself, since that is probably a stack slot. */
540 return replace_equiv_address (ref, XEXP (ref, 0));
541 }
542 \f
543 /* Copy the value or contents of X to a new temp reg and return that reg. */
544
545 rtx
546 copy_to_reg (rtx x)
547 {
548 rtx temp = gen_reg_rtx (GET_MODE (x));
549
550 /* If not an operand, must be an address with PLUS and MULT so
551 do the computation. */
552 if (! general_operand (x, VOIDmode))
553 x = force_operand (x, temp);
554
555 if (x != temp)
556 emit_move_insn (temp, x);
557
558 return temp;
559 }
560
561 /* Like copy_to_reg but always give the new register mode Pmode
562 in case X is a constant. */
563
564 rtx
565 copy_addr_to_reg (rtx x)
566 {
567 return copy_to_mode_reg (Pmode, x);
568 }
569
570 /* Like copy_to_reg but always give the new register mode MODE
571 in case X is a constant. */
572
573 rtx
574 copy_to_mode_reg (enum machine_mode mode, rtx x)
575 {
576 rtx temp = gen_reg_rtx (mode);
577
578 /* If not an operand, must be an address with PLUS and MULT so
579 do the computation. */
580 if (! general_operand (x, VOIDmode))
581 x = force_operand (x, temp);
582
583 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
584 if (x != temp)
585 emit_move_insn (temp, x);
586 return temp;
587 }
588
589 /* Load X into a register if it is not already one.
590 Use mode MODE for the register.
591 X should be valid for mode MODE, but it may be a constant which
592 is valid for all integer modes; that's why caller must specify MODE.
593
594 The caller must not alter the value in the register we return,
595 since we mark it as a "constant" register. */
596
597 rtx
598 force_reg (enum machine_mode mode, rtx x)
599 {
600 rtx temp, insn, set;
601
602 if (REG_P (x))
603 return x;
604
605 if (general_operand (x, mode))
606 {
607 temp = gen_reg_rtx (mode);
608 insn = emit_move_insn (temp, x);
609 }
610 else
611 {
612 temp = force_operand (x, NULL_RTX);
613 if (REG_P (temp))
614 insn = get_last_insn ();
615 else
616 {
617 rtx temp2 = gen_reg_rtx (mode);
618 insn = emit_move_insn (temp2, temp);
619 temp = temp2;
620 }
621 }
622
623 /* Let optimizers know that TEMP's value never changes
624 and that X can be substituted for it. Don't get confused
625 if INSN set something else (such as a SUBREG of TEMP). */
626 if (CONSTANT_P (x)
627 && (set = single_set (insn)) != 0
628 && SET_DEST (set) == temp
629 && ! rtx_equal_p (x, SET_SRC (set)))
630 set_unique_reg_note (insn, REG_EQUAL, x);
631
632 /* Let optimizers know that TEMP is a pointer, and if so, the
633 known alignment of that pointer. */
634 {
635 unsigned align = 0;
636 if (GET_CODE (x) == SYMBOL_REF)
637 {
638 align = BITS_PER_UNIT;
639 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
640 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
641 }
642 else if (GET_CODE (x) == LABEL_REF)
643 align = BITS_PER_UNIT;
644 else if (GET_CODE (x) == CONST
645 && GET_CODE (XEXP (x, 0)) == PLUS
646 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
647 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
648 {
649 rtx s = XEXP (XEXP (x, 0), 0);
650 rtx c = XEXP (XEXP (x, 0), 1);
651 unsigned sa, ca;
652
653 sa = BITS_PER_UNIT;
654 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
655 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
656
657 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
658
659 align = MIN (sa, ca);
660 }
661
662 if (align)
663 mark_reg_pointer (temp, align);
664 }
665
666 return temp;
667 }
668
669 /* If X is a memory ref, copy its contents to a new temp reg and return
670 that reg. Otherwise, return X. */
671
672 rtx
673 force_not_mem (rtx x)
674 {
675 rtx temp;
676
677 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
678 return x;
679
680 temp = gen_reg_rtx (GET_MODE (x));
681
682 if (MEM_POINTER (x))
683 REG_POINTER (temp) = 1;
684
685 emit_move_insn (temp, x);
686 return temp;
687 }
688
689 /* Copy X to TARGET (if it's nonzero and a reg)
690 or to a new temp reg and return that reg.
691 MODE is the mode to use for X in case it is a constant. */
692
693 rtx
694 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
695 {
696 rtx temp;
697
698 if (target && REG_P (target))
699 temp = target;
700 else
701 temp = gen_reg_rtx (mode);
702
703 emit_move_insn (temp, x);
704 return temp;
705 }
706 \f
707 /* Return the mode to use to store a scalar of TYPE and MODE.
708 PUNSIGNEDP points to the signedness of the type and may be adjusted
709 to show what signedness to use on extension operations.
710
711 FOR_CALL is nonzero if this call is promoting args for a call. */
712
713 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
714 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
715 #endif
716
717 enum machine_mode
718 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
719 int for_call ATTRIBUTE_UNUSED)
720 {
721 enum tree_code code = TREE_CODE (type);
722 int unsignedp = *punsignedp;
723
724 #ifndef PROMOTE_MODE
725 if (! for_call)
726 return mode;
727 #endif
728
729 switch (code)
730 {
731 #ifdef PROMOTE_FUNCTION_MODE
732 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
733 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
734 #ifdef PROMOTE_MODE
735 if (for_call)
736 {
737 #endif
738 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
739 #ifdef PROMOTE_MODE
740 }
741 else
742 {
743 PROMOTE_MODE (mode, unsignedp, type);
744 }
745 #endif
746 break;
747 #endif
748
749 #ifdef POINTERS_EXTEND_UNSIGNED
750 case REFERENCE_TYPE:
751 case POINTER_TYPE:
752 mode = Pmode;
753 unsignedp = POINTERS_EXTEND_UNSIGNED;
754 break;
755 #endif
756
757 default:
758 break;
759 }
760
761 *punsignedp = unsignedp;
762 return mode;
763 }
764 \f
765 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
766 This pops when ADJUST is positive. ADJUST need not be constant. */
767
768 void
769 adjust_stack (rtx adjust)
770 {
771 rtx temp;
772
773 if (adjust == const0_rtx)
774 return;
775
776 /* We expect all variable sized adjustments to be multiple of
777 PREFERRED_STACK_BOUNDARY. */
778 if (GET_CODE (adjust) == CONST_INT)
779 stack_pointer_delta -= INTVAL (adjust);
780
781 temp = expand_binop (Pmode,
782 #ifdef STACK_GROWS_DOWNWARD
783 add_optab,
784 #else
785 sub_optab,
786 #endif
787 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
788 OPTAB_LIB_WIDEN);
789
790 if (temp != stack_pointer_rtx)
791 emit_move_insn (stack_pointer_rtx, temp);
792 }
793
794 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
795 This pushes when ADJUST is positive. ADJUST need not be constant. */
796
797 void
798 anti_adjust_stack (rtx adjust)
799 {
800 rtx temp;
801
802 if (adjust == const0_rtx)
803 return;
804
805 /* We expect all variable sized adjustments to be multiple of
806 PREFERRED_STACK_BOUNDARY. */
807 if (GET_CODE (adjust) == CONST_INT)
808 stack_pointer_delta += INTVAL (adjust);
809
810 temp = expand_binop (Pmode,
811 #ifdef STACK_GROWS_DOWNWARD
812 sub_optab,
813 #else
814 add_optab,
815 #endif
816 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
817 OPTAB_LIB_WIDEN);
818
819 if (temp != stack_pointer_rtx)
820 emit_move_insn (stack_pointer_rtx, temp);
821 }
822
823 /* Round the size of a block to be pushed up to the boundary required
824 by this machine. SIZE is the desired size, which need not be constant. */
825
826 static rtx
827 round_push (rtx size)
828 {
829 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
830
831 if (align == 1)
832 return size;
833
834 if (GET_CODE (size) == CONST_INT)
835 {
836 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
837
838 if (INTVAL (size) != new)
839 size = GEN_INT (new);
840 }
841 else
842 {
843 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
844 but we know it can't. So add ourselves and then do
845 TRUNC_DIV_EXPR. */
846 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
847 NULL_RTX, 1, OPTAB_LIB_WIDEN);
848 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
849 NULL_RTX, 1);
850 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
851 }
852
853 return size;
854 }
855 \f
856 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
857 to a previously-created save area. If no save area has been allocated,
858 this function will allocate one. If a save area is specified, it
859 must be of the proper mode.
860
861 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
862 are emitted at the current position. */
863
864 void
865 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
866 {
867 rtx sa = *psave;
868 /* The default is that we use a move insn and save in a Pmode object. */
869 rtx (*fcn) (rtx, rtx) = gen_move_insn;
870 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
871
872 /* See if this machine has anything special to do for this kind of save. */
873 switch (save_level)
874 {
875 #ifdef HAVE_save_stack_block
876 case SAVE_BLOCK:
877 if (HAVE_save_stack_block)
878 fcn = gen_save_stack_block;
879 break;
880 #endif
881 #ifdef HAVE_save_stack_function
882 case SAVE_FUNCTION:
883 if (HAVE_save_stack_function)
884 fcn = gen_save_stack_function;
885 break;
886 #endif
887 #ifdef HAVE_save_stack_nonlocal
888 case SAVE_NONLOCAL:
889 if (HAVE_save_stack_nonlocal)
890 fcn = gen_save_stack_nonlocal;
891 break;
892 #endif
893 default:
894 break;
895 }
896
897 /* If there is no save area and we have to allocate one, do so. Otherwise
898 verify the save area is the proper mode. */
899
900 if (sa == 0)
901 {
902 if (mode != VOIDmode)
903 {
904 if (save_level == SAVE_NONLOCAL)
905 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
906 else
907 *psave = sa = gen_reg_rtx (mode);
908 }
909 }
910
911 if (after)
912 {
913 rtx seq;
914
915 start_sequence ();
916 do_pending_stack_adjust ();
917 /* We must validize inside the sequence, to ensure that any instructions
918 created by the validize call also get moved to the right place. */
919 if (sa != 0)
920 sa = validize_mem (sa);
921 emit_insn (fcn (sa, stack_pointer_rtx));
922 seq = get_insns ();
923 end_sequence ();
924 emit_insn_after (seq, after);
925 }
926 else
927 {
928 do_pending_stack_adjust ();
929 if (sa != 0)
930 sa = validize_mem (sa);
931 emit_insn (fcn (sa, stack_pointer_rtx));
932 }
933 }
934
935 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
936 area made by emit_stack_save. If it is zero, we have nothing to do.
937
938 Put any emitted insns after insn AFTER, if nonzero, otherwise at
939 current position. */
940
941 void
942 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
943 {
944 /* The default is that we use a move insn. */
945 rtx (*fcn) (rtx, rtx) = gen_move_insn;
946
947 /* See if this machine has anything special to do for this kind of save. */
948 switch (save_level)
949 {
950 #ifdef HAVE_restore_stack_block
951 case SAVE_BLOCK:
952 if (HAVE_restore_stack_block)
953 fcn = gen_restore_stack_block;
954 break;
955 #endif
956 #ifdef HAVE_restore_stack_function
957 case SAVE_FUNCTION:
958 if (HAVE_restore_stack_function)
959 fcn = gen_restore_stack_function;
960 break;
961 #endif
962 #ifdef HAVE_restore_stack_nonlocal
963 case SAVE_NONLOCAL:
964 if (HAVE_restore_stack_nonlocal)
965 fcn = gen_restore_stack_nonlocal;
966 break;
967 #endif
968 default:
969 break;
970 }
971
972 if (sa != 0)
973 {
974 sa = validize_mem (sa);
975 /* These clobbers prevent the scheduler from moving
976 references to variable arrays below the code
977 that deletes (pops) the arrays. */
978 emit_insn (gen_rtx_CLOBBER (VOIDmode,
979 gen_rtx_MEM (BLKmode,
980 gen_rtx_SCRATCH (VOIDmode))));
981 emit_insn (gen_rtx_CLOBBER (VOIDmode,
982 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
983 }
984
985 discard_pending_stack_adjust ();
986
987 if (after)
988 {
989 rtx seq;
990
991 start_sequence ();
992 emit_insn (fcn (stack_pointer_rtx, sa));
993 seq = get_insns ();
994 end_sequence ();
995 emit_insn_after (seq, after);
996 }
997 else
998 emit_insn (fcn (stack_pointer_rtx, sa));
999 }
1000
1001 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1002 function. This function should be called whenever we allocate or
1003 deallocate dynamic stack space. */
1004
1005 void
1006 update_nonlocal_goto_save_area (void)
1007 {
1008 tree t_save;
1009 rtx r_save;
1010
1011 /* The nonlocal_goto_save_area object is an array of N pointers. The
1012 first one is used for the frame pointer save; the rest are sized by
1013 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1014 of the stack save area slots. */
1015 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1016 integer_one_node, NULL_TREE, NULL_TREE);
1017 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1018
1019 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1020 }
1021 \f
1022 /* Return an rtx representing the address of an area of memory dynamically
1023 pushed on the stack. This region of memory is always aligned to
1024 a multiple of BIGGEST_ALIGNMENT.
1025
1026 Any required stack pointer alignment is preserved.
1027
1028 SIZE is an rtx representing the size of the area.
1029 TARGET is a place in which the address can be placed.
1030
1031 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1032
1033 rtx
1034 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1035 {
1036 /* If we're asking for zero bytes, it doesn't matter what we point
1037 to since we can't dereference it. But return a reasonable
1038 address anyway. */
1039 if (size == const0_rtx)
1040 return virtual_stack_dynamic_rtx;
1041
1042 /* Otherwise, show we're calling alloca or equivalent. */
1043 current_function_calls_alloca = 1;
1044
1045 /* Ensure the size is in the proper mode. */
1046 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1047 size = convert_to_mode (Pmode, size, 1);
1048
1049 /* We can't attempt to minimize alignment necessary, because we don't
1050 know the final value of preferred_stack_boundary yet while executing
1051 this code. */
1052 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1053
1054 /* We will need to ensure that the address we return is aligned to
1055 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1056 always know its final value at this point in the compilation (it
1057 might depend on the size of the outgoing parameter lists, for
1058 example), so we must align the value to be returned in that case.
1059 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1060 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1061 We must also do an alignment operation on the returned value if
1062 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1063
1064 If we have to align, we must leave space in SIZE for the hole
1065 that might result from the alignment operation. */
1066
1067 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1068 #define MUST_ALIGN 1
1069 #else
1070 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1071 #endif
1072
1073 if (MUST_ALIGN)
1074 size
1075 = force_operand (plus_constant (size,
1076 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1077 NULL_RTX);
1078
1079 #ifdef SETJMP_VIA_SAVE_AREA
1080 /* If setjmp restores regs from a save area in the stack frame,
1081 avoid clobbering the reg save area. Note that the offset of
1082 virtual_incoming_args_rtx includes the preallocated stack args space.
1083 It would be no problem to clobber that, but it's on the wrong side
1084 of the old save area.
1085
1086 What used to happen is that, since we did not know for sure
1087 whether setjmp() was invoked until after RTL generation, we
1088 would use reg notes to store the "optimized" size and fix things
1089 up later. These days we know this information before we ever
1090 start building RTL so the reg notes are unnecessary. */
1091 if (!current_function_calls_setjmp)
1092 {
1093 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1094
1095 /* ??? Code below assumes that the save area needs maximal
1096 alignment. This constraint may be too strong. */
1097 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1098
1099 if (GET_CODE (size) == CONST_INT)
1100 {
1101 HOST_WIDE_INT new = INTVAL (size) / align * align;
1102
1103 if (INTVAL (size) != new)
1104 size = GEN_INT (new);
1105 }
1106 else
1107 {
1108 /* Since we know overflow is not possible, we avoid using
1109 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1110 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1111 GEN_INT (align), NULL_RTX, 1);
1112 size = expand_mult (Pmode, size,
1113 GEN_INT (align), NULL_RTX, 1);
1114 }
1115 }
1116 else
1117 {
1118 rtx dynamic_offset
1119 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1120 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1121
1122 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1123 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1124 }
1125 #endif /* SETJMP_VIA_SAVE_AREA */
1126
1127 /* Round the size to a multiple of the required stack alignment.
1128 Since the stack if presumed to be rounded before this allocation,
1129 this will maintain the required alignment.
1130
1131 If the stack grows downward, we could save an insn by subtracting
1132 SIZE from the stack pointer and then aligning the stack pointer.
1133 The problem with this is that the stack pointer may be unaligned
1134 between the execution of the subtraction and alignment insns and
1135 some machines do not allow this. Even on those that do, some
1136 signal handlers malfunction if a signal should occur between those
1137 insns. Since this is an extremely rare event, we have no reliable
1138 way of knowing which systems have this problem. So we avoid even
1139 momentarily mis-aligning the stack. */
1140
1141 /* If we added a variable amount to SIZE,
1142 we can no longer assume it is aligned. */
1143 #if !defined (SETJMP_VIA_SAVE_AREA)
1144 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1145 #endif
1146 size = round_push (size);
1147
1148 do_pending_stack_adjust ();
1149
1150 /* We ought to be called always on the toplevel and stack ought to be aligned
1151 properly. */
1152 gcc_assert (!(stack_pointer_delta
1153 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1154
1155 /* If needed, check that we have the required amount of stack. Take into
1156 account what has already been checked. */
1157 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1158 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1159
1160 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1161 if (target == 0 || !REG_P (target)
1162 || REGNO (target) < FIRST_PSEUDO_REGISTER
1163 || GET_MODE (target) != Pmode)
1164 target = gen_reg_rtx (Pmode);
1165
1166 mark_reg_pointer (target, known_align);
1167
1168 /* Perform the required allocation from the stack. Some systems do
1169 this differently than simply incrementing/decrementing from the
1170 stack pointer, such as acquiring the space by calling malloc(). */
1171 #ifdef HAVE_allocate_stack
1172 if (HAVE_allocate_stack)
1173 {
1174 enum machine_mode mode = STACK_SIZE_MODE;
1175 insn_operand_predicate_fn pred;
1176
1177 /* We don't have to check against the predicate for operand 0 since
1178 TARGET is known to be a pseudo of the proper mode, which must
1179 be valid for the operand. For operand 1, convert to the
1180 proper mode and validate. */
1181 if (mode == VOIDmode)
1182 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1183
1184 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1185 if (pred && ! ((*pred) (size, mode)))
1186 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1187
1188 emit_insn (gen_allocate_stack (target, size));
1189 }
1190 else
1191 #endif
1192 {
1193 #ifndef STACK_GROWS_DOWNWARD
1194 emit_move_insn (target, virtual_stack_dynamic_rtx);
1195 #endif
1196
1197 /* Check stack bounds if necessary. */
1198 if (current_function_limit_stack)
1199 {
1200 rtx available;
1201 rtx space_available = gen_label_rtx ();
1202 #ifdef STACK_GROWS_DOWNWARD
1203 available = expand_binop (Pmode, sub_optab,
1204 stack_pointer_rtx, stack_limit_rtx,
1205 NULL_RTX, 1, OPTAB_WIDEN);
1206 #else
1207 available = expand_binop (Pmode, sub_optab,
1208 stack_limit_rtx, stack_pointer_rtx,
1209 NULL_RTX, 1, OPTAB_WIDEN);
1210 #endif
1211 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1212 space_available);
1213 #ifdef HAVE_trap
1214 if (HAVE_trap)
1215 emit_insn (gen_trap ());
1216 else
1217 #endif
1218 error ("stack limits not supported on this target");
1219 emit_barrier ();
1220 emit_label (space_available);
1221 }
1222
1223 anti_adjust_stack (size);
1224
1225 #ifdef STACK_GROWS_DOWNWARD
1226 emit_move_insn (target, virtual_stack_dynamic_rtx);
1227 #endif
1228 }
1229
1230 if (MUST_ALIGN)
1231 {
1232 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1233 but we know it can't. So add ourselves and then do
1234 TRUNC_DIV_EXPR. */
1235 target = expand_binop (Pmode, add_optab, target,
1236 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1237 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1238 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1239 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1240 NULL_RTX, 1);
1241 target = expand_mult (Pmode, target,
1242 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1243 NULL_RTX, 1);
1244 }
1245
1246 /* Record the new stack level for nonlocal gotos. */
1247 if (cfun->nonlocal_goto_save_area != 0)
1248 update_nonlocal_goto_save_area ();
1249
1250 return target;
1251 }
1252 \f
1253 /* A front end may want to override GCC's stack checking by providing a
1254 run-time routine to call to check the stack, so provide a mechanism for
1255 calling that routine. */
1256
1257 static GTY(()) rtx stack_check_libfunc;
1258
1259 void
1260 set_stack_check_libfunc (rtx libfunc)
1261 {
1262 stack_check_libfunc = libfunc;
1263 }
1264 \f
1265 /* Emit one stack probe at ADDRESS, an address within the stack. */
1266
1267 static void
1268 emit_stack_probe (rtx address)
1269 {
1270 rtx memref = gen_rtx_MEM (word_mode, address);
1271
1272 MEM_VOLATILE_P (memref) = 1;
1273
1274 if (STACK_CHECK_PROBE_LOAD)
1275 emit_move_insn (gen_reg_rtx (word_mode), memref);
1276 else
1277 emit_move_insn (memref, const0_rtx);
1278 }
1279
1280 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1281 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1282 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1283 subtract from the stack. If SIZE is constant, this is done
1284 with a fixed number of probes. Otherwise, we must make a loop. */
1285
1286 #ifdef STACK_GROWS_DOWNWARD
1287 #define STACK_GROW_OP MINUS
1288 #else
1289 #define STACK_GROW_OP PLUS
1290 #endif
1291
1292 void
1293 probe_stack_range (HOST_WIDE_INT first, rtx size)
1294 {
1295 /* First ensure SIZE is Pmode. */
1296 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1297 size = convert_to_mode (Pmode, size, 1);
1298
1299 /* Next see if the front end has set up a function for us to call to
1300 check the stack. */
1301 if (stack_check_libfunc != 0)
1302 {
1303 rtx addr = memory_address (QImode,
1304 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1305 stack_pointer_rtx,
1306 plus_constant (size, first)));
1307
1308 addr = convert_memory_address (ptr_mode, addr);
1309 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1310 ptr_mode);
1311 }
1312
1313 /* Next see if we have an insn to check the stack. Use it if so. */
1314 #ifdef HAVE_check_stack
1315 else if (HAVE_check_stack)
1316 {
1317 insn_operand_predicate_fn pred;
1318 rtx last_addr
1319 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1320 stack_pointer_rtx,
1321 plus_constant (size, first)),
1322 NULL_RTX);
1323
1324 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1325 if (pred && ! ((*pred) (last_addr, Pmode)))
1326 last_addr = copy_to_mode_reg (Pmode, last_addr);
1327
1328 emit_insn (gen_check_stack (last_addr));
1329 }
1330 #endif
1331
1332 /* If we have to generate explicit probes, see if we have a constant
1333 small number of them to generate. If so, that's the easy case. */
1334 else if (GET_CODE (size) == CONST_INT
1335 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1336 {
1337 HOST_WIDE_INT offset;
1338
1339 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1340 for values of N from 1 until it exceeds LAST. If only one
1341 probe is needed, this will not generate any code. Then probe
1342 at LAST. */
1343 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1344 offset < INTVAL (size);
1345 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1346 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1347 stack_pointer_rtx,
1348 GEN_INT (offset)));
1349
1350 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1351 stack_pointer_rtx,
1352 plus_constant (size, first)));
1353 }
1354
1355 /* In the variable case, do the same as above, but in a loop. We emit loop
1356 notes so that loop optimization can be done. */
1357 else
1358 {
1359 rtx test_addr
1360 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1361 stack_pointer_rtx,
1362 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1363 NULL_RTX);
1364 rtx last_addr
1365 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1366 stack_pointer_rtx,
1367 plus_constant (size, first)),
1368 NULL_RTX);
1369 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1370 rtx loop_lab = gen_label_rtx ();
1371 rtx test_lab = gen_label_rtx ();
1372 rtx end_lab = gen_label_rtx ();
1373 rtx temp;
1374
1375 if (!REG_P (test_addr)
1376 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1377 test_addr = force_reg (Pmode, test_addr);
1378
1379 emit_jump (test_lab);
1380
1381 emit_label (loop_lab);
1382 emit_stack_probe (test_addr);
1383
1384 #ifdef STACK_GROWS_DOWNWARD
1385 #define CMP_OPCODE GTU
1386 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1387 1, OPTAB_WIDEN);
1388 #else
1389 #define CMP_OPCODE LTU
1390 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1391 1, OPTAB_WIDEN);
1392 #endif
1393
1394 gcc_assert (temp == test_addr);
1395
1396 emit_label (test_lab);
1397 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1398 NULL_RTX, Pmode, 1, loop_lab);
1399 emit_jump (end_lab);
1400 emit_label (end_lab);
1401
1402 emit_stack_probe (last_addr);
1403 }
1404 }
1405 \f
1406 /* Return an rtx representing the register or memory location
1407 in which a scalar value of data type VALTYPE
1408 was returned by a function call to function FUNC.
1409 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1410 function is known, otherwise 0.
1411 OUTGOING is 1 if on a machine with register windows this function
1412 should return the register in which the function will put its result
1413 and 0 otherwise. */
1414
1415 rtx
1416 hard_function_value (tree valtype, tree func, tree fntype,
1417 int outgoing ATTRIBUTE_UNUSED)
1418 {
1419 rtx val;
1420
1421 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1422
1423 if (REG_P (val)
1424 && GET_MODE (val) == BLKmode)
1425 {
1426 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1427 enum machine_mode tmpmode;
1428
1429 /* int_size_in_bytes can return -1. We don't need a check here
1430 since the value of bytes will then be large enough that no
1431 mode will match anyway. */
1432
1433 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1434 tmpmode != VOIDmode;
1435 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1436 {
1437 /* Have we found a large enough mode? */
1438 if (GET_MODE_SIZE (tmpmode) >= bytes)
1439 break;
1440 }
1441
1442 /* No suitable mode found. */
1443 gcc_assert (tmpmode != VOIDmode);
1444
1445 PUT_MODE (val, tmpmode);
1446 }
1447 return val;
1448 }
1449
1450 /* Return an rtx representing the register or memory location
1451 in which a scalar value of mode MODE was returned by a library call. */
1452
1453 rtx
1454 hard_libcall_value (enum machine_mode mode)
1455 {
1456 return LIBCALL_VALUE (mode);
1457 }
1458
1459 /* Look up the tree code for a given rtx code
1460 to provide the arithmetic operation for REAL_ARITHMETIC.
1461 The function returns an int because the caller may not know
1462 what `enum tree_code' means. */
1463
1464 int
1465 rtx_to_tree_code (enum rtx_code code)
1466 {
1467 enum tree_code tcode;
1468
1469 switch (code)
1470 {
1471 case PLUS:
1472 tcode = PLUS_EXPR;
1473 break;
1474 case MINUS:
1475 tcode = MINUS_EXPR;
1476 break;
1477 case MULT:
1478 tcode = MULT_EXPR;
1479 break;
1480 case DIV:
1481 tcode = RDIV_EXPR;
1482 break;
1483 case SMIN:
1484 tcode = MIN_EXPR;
1485 break;
1486 case SMAX:
1487 tcode = MAX_EXPR;
1488 break;
1489 default:
1490 tcode = LAST_AND_UNUSED_TREE_CODE;
1491 break;
1492 }
1493 return ((int) tcode);
1494 }
1495
1496 #include "gt-explow.h"