tm.texi: Refer to SYMBOL_REF_HAS_BLOCK_INFO_P instead of SYMBOL_REF_IN_BLOCK_P.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
43
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46
47
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 {
53 int width = GET_MODE_BITSIZE (mode);
54
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
57
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
61
62 /* Sign-extend for the requested mode. */
63
64 if (width < HOST_BITS_PER_WIDE_INT)
65 {
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
71 }
72
73 return c;
74 }
75
76 /* Return an rtx for the sum of X and the integer C. */
77
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size;
244
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
248 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
249
250 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
251 }
252
253 /* Return a wide integer for the size in bytes of the value of EXP, or -1
254 if the size can vary or is larger than an integer. */
255
256 HOST_WIDE_INT
257 int_expr_size (tree exp)
258 {
259 tree size;
260
261 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
262 size = TREE_OPERAND (exp, 1);
263 else
264 size = lang_hooks.expr_size (exp);
265
266 if (size == 0 || !host_integerp (size, 0))
267 return -1;
268
269 return tree_low_cst (size, 0);
270 }
271 \f
272 /* Return a copy of X in which all memory references
273 and all constants that involve symbol refs
274 have been replaced with new temporary registers.
275 Also emit code to load the memory locations and constants
276 into those registers.
277
278 If X contains no such constants or memory references,
279 X itself (not a copy) is returned.
280
281 If a constant is found in the address that is not a legitimate constant
282 in an insn, it is left alone in the hope that it might be valid in the
283 address.
284
285 X may contain no arithmetic except addition, subtraction and multiplication.
286 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
287
288 static rtx
289 break_out_memory_refs (rtx x)
290 {
291 if (MEM_P (x)
292 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
293 && GET_MODE (x) != VOIDmode))
294 x = force_reg (GET_MODE (x), x);
295 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
296 || GET_CODE (x) == MULT)
297 {
298 rtx op0 = break_out_memory_refs (XEXP (x, 0));
299 rtx op1 = break_out_memory_refs (XEXP (x, 1));
300
301 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
302 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
303 }
304
305 return x;
306 }
307
308 /* Given X, a memory address in ptr_mode, convert it to an address
309 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
310 the fact that pointers are not allowed to overflow by commuting arithmetic
311 operations over conversions so that address arithmetic insns can be
312 used. */
313
314 rtx
315 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
316 rtx x)
317 {
318 #ifndef POINTERS_EXTEND_UNSIGNED
319 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
320 return x;
321 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
322 enum machine_mode from_mode;
323 rtx temp;
324 enum rtx_code code;
325
326 /* If X already has the right mode, just return it. */
327 if (GET_MODE (x) == to_mode)
328 return x;
329
330 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
331
332 /* Here we handle some special cases. If none of them apply, fall through
333 to the default case. */
334 switch (GET_CODE (x))
335 {
336 case CONST_INT:
337 case CONST_DOUBLE:
338 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
339 code = TRUNCATE;
340 else if (POINTERS_EXTEND_UNSIGNED < 0)
341 break;
342 else if (POINTERS_EXTEND_UNSIGNED > 0)
343 code = ZERO_EXTEND;
344 else
345 code = SIGN_EXTEND;
346 temp = simplify_unary_operation (code, to_mode, x, from_mode);
347 if (temp)
348 return temp;
349 break;
350
351 case SUBREG:
352 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
353 && GET_MODE (SUBREG_REG (x)) == to_mode)
354 return SUBREG_REG (x);
355 break;
356
357 case LABEL_REF:
358 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
359 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
360 return temp;
361 break;
362
363 case SYMBOL_REF:
364 temp = shallow_copy_rtx (x);
365 PUT_MODE (temp, to_mode);
366 return temp;
367 break;
368
369 case CONST:
370 return gen_rtx_CONST (to_mode,
371 convert_memory_address (to_mode, XEXP (x, 0)));
372 break;
373
374 case PLUS:
375 case MULT:
376 /* For addition we can safely permute the conversion and addition
377 operation if one operand is a constant and converting the constant
378 does not change it. We can always safely permute them if we are
379 making the address narrower. */
380 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
381 || (GET_CODE (x) == PLUS
382 && GET_CODE (XEXP (x, 1)) == CONST_INT
383 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
384 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
385 convert_memory_address (to_mode, XEXP (x, 0)),
386 XEXP (x, 1));
387 break;
388
389 default:
390 break;
391 }
392
393 return convert_modes (to_mode, from_mode,
394 x, POINTERS_EXTEND_UNSIGNED);
395 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
396 }
397 \f
398 /* Return something equivalent to X but valid as a memory address
399 for something of mode MODE. When X is not itself valid, this
400 works by copying X or subexpressions of it into registers. */
401
402 rtx
403 memory_address (enum machine_mode mode, rtx x)
404 {
405 rtx oldx = x;
406
407 x = convert_memory_address (Pmode, x);
408
409 /* By passing constant addresses through registers
410 we get a chance to cse them. */
411 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
412 x = force_reg (Pmode, x);
413
414 /* We get better cse by rejecting indirect addressing at this stage.
415 Let the combiner create indirect addresses where appropriate.
416 For now, generate the code so that the subexpressions useful to share
417 are visible. But not if cse won't be done! */
418 else
419 {
420 if (! cse_not_expected && !REG_P (x))
421 x = break_out_memory_refs (x);
422
423 /* At this point, any valid address is accepted. */
424 if (memory_address_p (mode, x))
425 goto win;
426
427 /* If it was valid before but breaking out memory refs invalidated it,
428 use it the old way. */
429 if (memory_address_p (mode, oldx))
430 goto win2;
431
432 /* Perform machine-dependent transformations on X
433 in certain cases. This is not necessary since the code
434 below can handle all possible cases, but machine-dependent
435 transformations can make better code. */
436 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
437
438 /* PLUS and MULT can appear in special ways
439 as the result of attempts to make an address usable for indexing.
440 Usually they are dealt with by calling force_operand, below.
441 But a sum containing constant terms is special
442 if removing them makes the sum a valid address:
443 then we generate that address in a register
444 and index off of it. We do this because it often makes
445 shorter code, and because the addresses thus generated
446 in registers often become common subexpressions. */
447 if (GET_CODE (x) == PLUS)
448 {
449 rtx constant_term = const0_rtx;
450 rtx y = eliminate_constant_term (x, &constant_term);
451 if (constant_term == const0_rtx
452 || ! memory_address_p (mode, y))
453 x = force_operand (x, NULL_RTX);
454 else
455 {
456 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
457 if (! memory_address_p (mode, y))
458 x = force_operand (x, NULL_RTX);
459 else
460 x = y;
461 }
462 }
463
464 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
465 x = force_operand (x, NULL_RTX);
466
467 /* If we have a register that's an invalid address,
468 it must be a hard reg of the wrong class. Copy it to a pseudo. */
469 else if (REG_P (x))
470 x = copy_to_reg (x);
471
472 /* Last resort: copy the value to a register, since
473 the register is a valid address. */
474 else
475 x = force_reg (Pmode, x);
476
477 goto done;
478
479 win2:
480 x = oldx;
481 win:
482 if (flag_force_addr && ! cse_not_expected && !REG_P (x))
483 {
484 x = force_operand (x, NULL_RTX);
485 x = force_reg (Pmode, x);
486 }
487 }
488
489 done:
490
491 /* If we didn't change the address, we are done. Otherwise, mark
492 a reg as a pointer if we have REG or REG + CONST_INT. */
493 if (oldx == x)
494 return x;
495 else if (REG_P (x))
496 mark_reg_pointer (x, BITS_PER_UNIT);
497 else if (GET_CODE (x) == PLUS
498 && REG_P (XEXP (x, 0))
499 && GET_CODE (XEXP (x, 1)) == CONST_INT)
500 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
501
502 /* OLDX may have been the address on a temporary. Update the address
503 to indicate that X is now used. */
504 update_temp_slot_address (oldx, x);
505
506 return x;
507 }
508
509 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
510
511 rtx
512 memory_address_noforce (enum machine_mode mode, rtx x)
513 {
514 int ambient_force_addr = flag_force_addr;
515 rtx val;
516
517 flag_force_addr = 0;
518 val = memory_address (mode, x);
519 flag_force_addr = ambient_force_addr;
520 return val;
521 }
522
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
525
526 rtx
527 validize_mem (rtx ref)
528 {
529 if (!MEM_P (ref))
530 return ref;
531 ref = use_anchored_address (ref);
532 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
533 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
534 return ref;
535
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref, XEXP (ref, 0));
538 }
539
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
543
544 rtx
545 use_anchored_address (rtx x)
546 {
547 rtx base;
548 HOST_WIDE_INT offset;
549
550 if (!flag_section_anchors)
551 return x;
552
553 if (!MEM_P (x))
554 return x;
555
556 /* Split the address into a base and offset. */
557 base = XEXP (x, 0);
558 offset = 0;
559 if (GET_CODE (base) == CONST
560 && GET_CODE (XEXP (base, 0)) == PLUS
561 && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
562 {
563 offset += INTVAL (XEXP (XEXP (base, 0), 1));
564 base = XEXP (XEXP (base, 0), 0);
565 }
566
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base) != SYMBOL_REF
569 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570 || SYMBOL_REF_ANCHOR_P (base)
571 || SYMBOL_REF_BLOCK (base) == NULL
572 || !targetm.use_anchors_for_symbol_p (base))
573 return x;
574
575 /* Decide where BASE is going to be. */
576 place_block_symbol (base);
577
578 /* Get the anchor we need to use. */
579 offset += SYMBOL_REF_BLOCK_OFFSET (base);
580 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581 SYMBOL_REF_TLS_MODEL (base));
582
583 /* Work out the offset from the anchor. */
584 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
585
586 /* If we're going to run a CSE pass, force the anchor into a register.
587 We will then be able to reuse registers for several accesses, if the
588 target costs say that that's worthwhile. */
589 if (!cse_not_expected)
590 base = force_reg (GET_MODE (base), base);
591
592 return replace_equiv_address (x, plus_constant (base, offset));
593 }
594 \f
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
596
597 rtx
598 copy_to_reg (rtx x)
599 {
600 rtx temp = gen_reg_rtx (GET_MODE (x));
601
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
606
607 if (x != temp)
608 emit_move_insn (temp, x);
609
610 return temp;
611 }
612
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
615
616 rtx
617 copy_addr_to_reg (rtx x)
618 {
619 return copy_to_mode_reg (Pmode, x);
620 }
621
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
624
625 rtx
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
627 {
628 rtx temp = gen_reg_rtx (mode);
629
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
634
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
639 }
640
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
645
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
648
649 rtx
650 force_reg (enum machine_mode mode, rtx x)
651 {
652 rtx temp, insn, set;
653
654 if (REG_P (x))
655 return x;
656
657 if (general_operand (x, mode))
658 {
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
661 }
662 else
663 {
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
668 {
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
672 }
673 }
674
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
683
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
686 {
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
689 {
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
693 }
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
700 {
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
704
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
708
709 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
710
711 align = MIN (sa, ca);
712 }
713
714 if (align)
715 mark_reg_pointer (temp, align);
716 }
717
718 return temp;
719 }
720
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
723
724 rtx
725 force_not_mem (rtx x)
726 {
727 rtx temp;
728
729 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730 return x;
731
732 temp = gen_reg_rtx (GET_MODE (x));
733
734 if (MEM_POINTER (x))
735 REG_POINTER (temp) = 1;
736
737 emit_move_insn (temp, x);
738 return temp;
739 }
740
741 /* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
744
745 rtx
746 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
747 {
748 rtx temp;
749
750 if (target && REG_P (target))
751 temp = target;
752 else
753 temp = gen_reg_rtx (mode);
754
755 emit_move_insn (temp, x);
756 return temp;
757 }
758 \f
759 /* Return the mode to use to store a scalar of TYPE and MODE.
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
762
763 FOR_CALL is nonzero if this call is promoting args for a call. */
764
765 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
766 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
767 #endif
768
769 enum machine_mode
770 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
771 int for_call ATTRIBUTE_UNUSED)
772 {
773 enum tree_code code = TREE_CODE (type);
774 int unsignedp = *punsignedp;
775
776 #ifndef PROMOTE_MODE
777 if (! for_call)
778 return mode;
779 #endif
780
781 switch (code)
782 {
783 #ifdef PROMOTE_FUNCTION_MODE
784 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
785 case REAL_TYPE: case OFFSET_TYPE:
786 #ifdef PROMOTE_MODE
787 if (for_call)
788 {
789 #endif
790 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
791 #ifdef PROMOTE_MODE
792 }
793 else
794 {
795 PROMOTE_MODE (mode, unsignedp, type);
796 }
797 #endif
798 break;
799 #endif
800
801 #ifdef POINTERS_EXTEND_UNSIGNED
802 case REFERENCE_TYPE:
803 case POINTER_TYPE:
804 mode = Pmode;
805 unsignedp = POINTERS_EXTEND_UNSIGNED;
806 break;
807 #endif
808
809 default:
810 break;
811 }
812
813 *punsignedp = unsignedp;
814 return mode;
815 }
816 \f
817 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
818 This pops when ADJUST is positive. ADJUST need not be constant. */
819
820 void
821 adjust_stack (rtx adjust)
822 {
823 rtx temp;
824
825 if (adjust == const0_rtx)
826 return;
827
828 /* We expect all variable sized adjustments to be multiple of
829 PREFERRED_STACK_BOUNDARY. */
830 if (GET_CODE (adjust) == CONST_INT)
831 stack_pointer_delta -= INTVAL (adjust);
832
833 temp = expand_binop (Pmode,
834 #ifdef STACK_GROWS_DOWNWARD
835 add_optab,
836 #else
837 sub_optab,
838 #endif
839 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
840 OPTAB_LIB_WIDEN);
841
842 if (temp != stack_pointer_rtx)
843 emit_move_insn (stack_pointer_rtx, temp);
844 }
845
846 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
847 This pushes when ADJUST is positive. ADJUST need not be constant. */
848
849 void
850 anti_adjust_stack (rtx adjust)
851 {
852 rtx temp;
853
854 if (adjust == const0_rtx)
855 return;
856
857 /* We expect all variable sized adjustments to be multiple of
858 PREFERRED_STACK_BOUNDARY. */
859 if (GET_CODE (adjust) == CONST_INT)
860 stack_pointer_delta += INTVAL (adjust);
861
862 temp = expand_binop (Pmode,
863 #ifdef STACK_GROWS_DOWNWARD
864 sub_optab,
865 #else
866 add_optab,
867 #endif
868 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
869 OPTAB_LIB_WIDEN);
870
871 if (temp != stack_pointer_rtx)
872 emit_move_insn (stack_pointer_rtx, temp);
873 }
874
875 /* Round the size of a block to be pushed up to the boundary required
876 by this machine. SIZE is the desired size, which need not be constant. */
877
878 static rtx
879 round_push (rtx size)
880 {
881 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
882
883 if (align == 1)
884 return size;
885
886 if (GET_CODE (size) == CONST_INT)
887 {
888 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
889
890 if (INTVAL (size) != new)
891 size = GEN_INT (new);
892 }
893 else
894 {
895 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
896 but we know it can't. So add ourselves and then do
897 TRUNC_DIV_EXPR. */
898 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
899 NULL_RTX, 1, OPTAB_LIB_WIDEN);
900 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
901 NULL_RTX, 1);
902 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
903 }
904
905 return size;
906 }
907 \f
908 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
909 to a previously-created save area. If no save area has been allocated,
910 this function will allocate one. If a save area is specified, it
911 must be of the proper mode.
912
913 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
914 are emitted at the current position. */
915
916 void
917 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
918 {
919 rtx sa = *psave;
920 /* The default is that we use a move insn and save in a Pmode object. */
921 rtx (*fcn) (rtx, rtx) = gen_move_insn;
922 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
923
924 /* See if this machine has anything special to do for this kind of save. */
925 switch (save_level)
926 {
927 #ifdef HAVE_save_stack_block
928 case SAVE_BLOCK:
929 if (HAVE_save_stack_block)
930 fcn = gen_save_stack_block;
931 break;
932 #endif
933 #ifdef HAVE_save_stack_function
934 case SAVE_FUNCTION:
935 if (HAVE_save_stack_function)
936 fcn = gen_save_stack_function;
937 break;
938 #endif
939 #ifdef HAVE_save_stack_nonlocal
940 case SAVE_NONLOCAL:
941 if (HAVE_save_stack_nonlocal)
942 fcn = gen_save_stack_nonlocal;
943 break;
944 #endif
945 default:
946 break;
947 }
948
949 /* If there is no save area and we have to allocate one, do so. Otherwise
950 verify the save area is the proper mode. */
951
952 if (sa == 0)
953 {
954 if (mode != VOIDmode)
955 {
956 if (save_level == SAVE_NONLOCAL)
957 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
958 else
959 *psave = sa = gen_reg_rtx (mode);
960 }
961 }
962
963 if (after)
964 {
965 rtx seq;
966
967 start_sequence ();
968 do_pending_stack_adjust ();
969 /* We must validize inside the sequence, to ensure that any instructions
970 created by the validize call also get moved to the right place. */
971 if (sa != 0)
972 sa = validize_mem (sa);
973 emit_insn (fcn (sa, stack_pointer_rtx));
974 seq = get_insns ();
975 end_sequence ();
976 emit_insn_after (seq, after);
977 }
978 else
979 {
980 do_pending_stack_adjust ();
981 if (sa != 0)
982 sa = validize_mem (sa);
983 emit_insn (fcn (sa, stack_pointer_rtx));
984 }
985 }
986
987 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
988 area made by emit_stack_save. If it is zero, we have nothing to do.
989
990 Put any emitted insns after insn AFTER, if nonzero, otherwise at
991 current position. */
992
993 void
994 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
995 {
996 /* The default is that we use a move insn. */
997 rtx (*fcn) (rtx, rtx) = gen_move_insn;
998
999 /* See if this machine has anything special to do for this kind of save. */
1000 switch (save_level)
1001 {
1002 #ifdef HAVE_restore_stack_block
1003 case SAVE_BLOCK:
1004 if (HAVE_restore_stack_block)
1005 fcn = gen_restore_stack_block;
1006 break;
1007 #endif
1008 #ifdef HAVE_restore_stack_function
1009 case SAVE_FUNCTION:
1010 if (HAVE_restore_stack_function)
1011 fcn = gen_restore_stack_function;
1012 break;
1013 #endif
1014 #ifdef HAVE_restore_stack_nonlocal
1015 case SAVE_NONLOCAL:
1016 if (HAVE_restore_stack_nonlocal)
1017 fcn = gen_restore_stack_nonlocal;
1018 break;
1019 #endif
1020 default:
1021 break;
1022 }
1023
1024 if (sa != 0)
1025 {
1026 sa = validize_mem (sa);
1027 /* These clobbers prevent the scheduler from moving
1028 references to variable arrays below the code
1029 that deletes (pops) the arrays. */
1030 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1031 gen_rtx_MEM (BLKmode,
1032 gen_rtx_SCRATCH (VOIDmode))));
1033 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1034 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1035 }
1036
1037 discard_pending_stack_adjust ();
1038
1039 if (after)
1040 {
1041 rtx seq;
1042
1043 start_sequence ();
1044 emit_insn (fcn (stack_pointer_rtx, sa));
1045 seq = get_insns ();
1046 end_sequence ();
1047 emit_insn_after (seq, after);
1048 }
1049 else
1050 emit_insn (fcn (stack_pointer_rtx, sa));
1051 }
1052
1053 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1054 function. This function should be called whenever we allocate or
1055 deallocate dynamic stack space. */
1056
1057 void
1058 update_nonlocal_goto_save_area (void)
1059 {
1060 tree t_save;
1061 rtx r_save;
1062
1063 /* The nonlocal_goto_save_area object is an array of N pointers. The
1064 first one is used for the frame pointer save; the rest are sized by
1065 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1066 of the stack save area slots. */
1067 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1068 integer_one_node, NULL_TREE, NULL_TREE);
1069 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1070
1071 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1072 }
1073 \f
1074 /* Return an rtx representing the address of an area of memory dynamically
1075 pushed on the stack. This region of memory is always aligned to
1076 a multiple of BIGGEST_ALIGNMENT.
1077
1078 Any required stack pointer alignment is preserved.
1079
1080 SIZE is an rtx representing the size of the area.
1081 TARGET is a place in which the address can be placed.
1082
1083 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1084
1085 rtx
1086 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1087 {
1088 /* If we're asking for zero bytes, it doesn't matter what we point
1089 to since we can't dereference it. But return a reasonable
1090 address anyway. */
1091 if (size == const0_rtx)
1092 return virtual_stack_dynamic_rtx;
1093
1094 /* Otherwise, show we're calling alloca or equivalent. */
1095 current_function_calls_alloca = 1;
1096
1097 /* Ensure the size is in the proper mode. */
1098 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1099 size = convert_to_mode (Pmode, size, 1);
1100
1101 /* We can't attempt to minimize alignment necessary, because we don't
1102 know the final value of preferred_stack_boundary yet while executing
1103 this code. */
1104 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1105
1106 /* We will need to ensure that the address we return is aligned to
1107 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1108 always know its final value at this point in the compilation (it
1109 might depend on the size of the outgoing parameter lists, for
1110 example), so we must align the value to be returned in that case.
1111 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1112 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1113 We must also do an alignment operation on the returned value if
1114 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1115
1116 If we have to align, we must leave space in SIZE for the hole
1117 that might result from the alignment operation. */
1118
1119 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1120 #define MUST_ALIGN 1
1121 #else
1122 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1123 #endif
1124
1125 if (MUST_ALIGN)
1126 size
1127 = force_operand (plus_constant (size,
1128 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1129 NULL_RTX);
1130
1131 #ifdef SETJMP_VIA_SAVE_AREA
1132 /* If setjmp restores regs from a save area in the stack frame,
1133 avoid clobbering the reg save area. Note that the offset of
1134 virtual_incoming_args_rtx includes the preallocated stack args space.
1135 It would be no problem to clobber that, but it's on the wrong side
1136 of the old save area.
1137
1138 What used to happen is that, since we did not know for sure
1139 whether setjmp() was invoked until after RTL generation, we
1140 would use reg notes to store the "optimized" size and fix things
1141 up later. These days we know this information before we ever
1142 start building RTL so the reg notes are unnecessary. */
1143 if (!current_function_calls_setjmp)
1144 {
1145 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1146
1147 /* ??? Code below assumes that the save area needs maximal
1148 alignment. This constraint may be too strong. */
1149 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1150
1151 if (GET_CODE (size) == CONST_INT)
1152 {
1153 HOST_WIDE_INT new = INTVAL (size) / align * align;
1154
1155 if (INTVAL (size) != new)
1156 size = GEN_INT (new);
1157 }
1158 else
1159 {
1160 /* Since we know overflow is not possible, we avoid using
1161 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1162 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1163 GEN_INT (align), NULL_RTX, 1);
1164 size = expand_mult (Pmode, size,
1165 GEN_INT (align), NULL_RTX, 1);
1166 }
1167 }
1168 else
1169 {
1170 rtx dynamic_offset
1171 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1172 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1173
1174 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1175 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1176 }
1177 #endif /* SETJMP_VIA_SAVE_AREA */
1178
1179 /* Round the size to a multiple of the required stack alignment.
1180 Since the stack if presumed to be rounded before this allocation,
1181 this will maintain the required alignment.
1182
1183 If the stack grows downward, we could save an insn by subtracting
1184 SIZE from the stack pointer and then aligning the stack pointer.
1185 The problem with this is that the stack pointer may be unaligned
1186 between the execution of the subtraction and alignment insns and
1187 some machines do not allow this. Even on those that do, some
1188 signal handlers malfunction if a signal should occur between those
1189 insns. Since this is an extremely rare event, we have no reliable
1190 way of knowing which systems have this problem. So we avoid even
1191 momentarily mis-aligning the stack. */
1192
1193 /* If we added a variable amount to SIZE,
1194 we can no longer assume it is aligned. */
1195 #if !defined (SETJMP_VIA_SAVE_AREA)
1196 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1197 #endif
1198 size = round_push (size);
1199
1200 do_pending_stack_adjust ();
1201
1202 /* We ought to be called always on the toplevel and stack ought to be aligned
1203 properly. */
1204 gcc_assert (!(stack_pointer_delta
1205 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1206
1207 /* If needed, check that we have the required amount of stack. Take into
1208 account what has already been checked. */
1209 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1210 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1211
1212 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1213 if (target == 0 || !REG_P (target)
1214 || REGNO (target) < FIRST_PSEUDO_REGISTER
1215 || GET_MODE (target) != Pmode)
1216 target = gen_reg_rtx (Pmode);
1217
1218 mark_reg_pointer (target, known_align);
1219
1220 /* Perform the required allocation from the stack. Some systems do
1221 this differently than simply incrementing/decrementing from the
1222 stack pointer, such as acquiring the space by calling malloc(). */
1223 #ifdef HAVE_allocate_stack
1224 if (HAVE_allocate_stack)
1225 {
1226 enum machine_mode mode = STACK_SIZE_MODE;
1227 insn_operand_predicate_fn pred;
1228
1229 /* We don't have to check against the predicate for operand 0 since
1230 TARGET is known to be a pseudo of the proper mode, which must
1231 be valid for the operand. For operand 1, convert to the
1232 proper mode and validate. */
1233 if (mode == VOIDmode)
1234 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1235
1236 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1237 if (pred && ! ((*pred) (size, mode)))
1238 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1239
1240 emit_insn (gen_allocate_stack (target, size));
1241 }
1242 else
1243 #endif
1244 {
1245 #ifndef STACK_GROWS_DOWNWARD
1246 emit_move_insn (target, virtual_stack_dynamic_rtx);
1247 #endif
1248
1249 /* Check stack bounds if necessary. */
1250 if (current_function_limit_stack)
1251 {
1252 rtx available;
1253 rtx space_available = gen_label_rtx ();
1254 #ifdef STACK_GROWS_DOWNWARD
1255 available = expand_binop (Pmode, sub_optab,
1256 stack_pointer_rtx, stack_limit_rtx,
1257 NULL_RTX, 1, OPTAB_WIDEN);
1258 #else
1259 available = expand_binop (Pmode, sub_optab,
1260 stack_limit_rtx, stack_pointer_rtx,
1261 NULL_RTX, 1, OPTAB_WIDEN);
1262 #endif
1263 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1264 space_available);
1265 #ifdef HAVE_trap
1266 if (HAVE_trap)
1267 emit_insn (gen_trap ());
1268 else
1269 #endif
1270 error ("stack limits not supported on this target");
1271 emit_barrier ();
1272 emit_label (space_available);
1273 }
1274
1275 anti_adjust_stack (size);
1276
1277 #ifdef STACK_GROWS_DOWNWARD
1278 emit_move_insn (target, virtual_stack_dynamic_rtx);
1279 #endif
1280 }
1281
1282 if (MUST_ALIGN)
1283 {
1284 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1285 but we know it can't. So add ourselves and then do
1286 TRUNC_DIV_EXPR. */
1287 target = expand_binop (Pmode, add_optab, target,
1288 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1289 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1290 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1291 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1292 NULL_RTX, 1);
1293 target = expand_mult (Pmode, target,
1294 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1295 NULL_RTX, 1);
1296 }
1297
1298 /* Record the new stack level for nonlocal gotos. */
1299 if (cfun->nonlocal_goto_save_area != 0)
1300 update_nonlocal_goto_save_area ();
1301
1302 return target;
1303 }
1304 \f
1305 /* A front end may want to override GCC's stack checking by providing a
1306 run-time routine to call to check the stack, so provide a mechanism for
1307 calling that routine. */
1308
1309 static GTY(()) rtx stack_check_libfunc;
1310
1311 void
1312 set_stack_check_libfunc (rtx libfunc)
1313 {
1314 stack_check_libfunc = libfunc;
1315 }
1316 \f
1317 /* Emit one stack probe at ADDRESS, an address within the stack. */
1318
1319 static void
1320 emit_stack_probe (rtx address)
1321 {
1322 rtx memref = gen_rtx_MEM (word_mode, address);
1323
1324 MEM_VOLATILE_P (memref) = 1;
1325
1326 if (STACK_CHECK_PROBE_LOAD)
1327 emit_move_insn (gen_reg_rtx (word_mode), memref);
1328 else
1329 emit_move_insn (memref, const0_rtx);
1330 }
1331
1332 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1333 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1334 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1335 subtract from the stack. If SIZE is constant, this is done
1336 with a fixed number of probes. Otherwise, we must make a loop. */
1337
1338 #ifdef STACK_GROWS_DOWNWARD
1339 #define STACK_GROW_OP MINUS
1340 #else
1341 #define STACK_GROW_OP PLUS
1342 #endif
1343
1344 void
1345 probe_stack_range (HOST_WIDE_INT first, rtx size)
1346 {
1347 /* First ensure SIZE is Pmode. */
1348 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1349 size = convert_to_mode (Pmode, size, 1);
1350
1351 /* Next see if the front end has set up a function for us to call to
1352 check the stack. */
1353 if (stack_check_libfunc != 0)
1354 {
1355 rtx addr = memory_address (QImode,
1356 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1357 stack_pointer_rtx,
1358 plus_constant (size, first)));
1359
1360 addr = convert_memory_address (ptr_mode, addr);
1361 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1362 ptr_mode);
1363 }
1364
1365 /* Next see if we have an insn to check the stack. Use it if so. */
1366 #ifdef HAVE_check_stack
1367 else if (HAVE_check_stack)
1368 {
1369 insn_operand_predicate_fn pred;
1370 rtx last_addr
1371 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1372 stack_pointer_rtx,
1373 plus_constant (size, first)),
1374 NULL_RTX);
1375
1376 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1377 if (pred && ! ((*pred) (last_addr, Pmode)))
1378 last_addr = copy_to_mode_reg (Pmode, last_addr);
1379
1380 emit_insn (gen_check_stack (last_addr));
1381 }
1382 #endif
1383
1384 /* If we have to generate explicit probes, see if we have a constant
1385 small number of them to generate. If so, that's the easy case. */
1386 else if (GET_CODE (size) == CONST_INT
1387 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1388 {
1389 HOST_WIDE_INT offset;
1390
1391 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1392 for values of N from 1 until it exceeds LAST. If only one
1393 probe is needed, this will not generate any code. Then probe
1394 at LAST. */
1395 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1396 offset < INTVAL (size);
1397 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1398 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1399 stack_pointer_rtx,
1400 GEN_INT (offset)));
1401
1402 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1403 stack_pointer_rtx,
1404 plus_constant (size, first)));
1405 }
1406
1407 /* In the variable case, do the same as above, but in a loop. We emit loop
1408 notes so that loop optimization can be done. */
1409 else
1410 {
1411 rtx test_addr
1412 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1413 stack_pointer_rtx,
1414 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1415 NULL_RTX);
1416 rtx last_addr
1417 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1418 stack_pointer_rtx,
1419 plus_constant (size, first)),
1420 NULL_RTX);
1421 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1422 rtx loop_lab = gen_label_rtx ();
1423 rtx test_lab = gen_label_rtx ();
1424 rtx end_lab = gen_label_rtx ();
1425 rtx temp;
1426
1427 if (!REG_P (test_addr)
1428 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1429 test_addr = force_reg (Pmode, test_addr);
1430
1431 emit_jump (test_lab);
1432
1433 emit_label (loop_lab);
1434 emit_stack_probe (test_addr);
1435
1436 #ifdef STACK_GROWS_DOWNWARD
1437 #define CMP_OPCODE GTU
1438 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1439 1, OPTAB_WIDEN);
1440 #else
1441 #define CMP_OPCODE LTU
1442 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1443 1, OPTAB_WIDEN);
1444 #endif
1445
1446 gcc_assert (temp == test_addr);
1447
1448 emit_label (test_lab);
1449 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1450 NULL_RTX, Pmode, 1, loop_lab);
1451 emit_jump (end_lab);
1452 emit_label (end_lab);
1453
1454 emit_stack_probe (last_addr);
1455 }
1456 }
1457 \f
1458 /* Return an rtx representing the register or memory location
1459 in which a scalar value of data type VALTYPE
1460 was returned by a function call to function FUNC.
1461 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1462 function is known, otherwise 0.
1463 OUTGOING is 1 if on a machine with register windows this function
1464 should return the register in which the function will put its result
1465 and 0 otherwise. */
1466
1467 rtx
1468 hard_function_value (tree valtype, tree func, tree fntype,
1469 int outgoing ATTRIBUTE_UNUSED)
1470 {
1471 rtx val;
1472
1473 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1474
1475 if (REG_P (val)
1476 && GET_MODE (val) == BLKmode)
1477 {
1478 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1479 enum machine_mode tmpmode;
1480
1481 /* int_size_in_bytes can return -1. We don't need a check here
1482 since the value of bytes will then be large enough that no
1483 mode will match anyway. */
1484
1485 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1486 tmpmode != VOIDmode;
1487 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1488 {
1489 /* Have we found a large enough mode? */
1490 if (GET_MODE_SIZE (tmpmode) >= bytes)
1491 break;
1492 }
1493
1494 /* No suitable mode found. */
1495 gcc_assert (tmpmode != VOIDmode);
1496
1497 PUT_MODE (val, tmpmode);
1498 }
1499 return val;
1500 }
1501
1502 /* Return an rtx representing the register or memory location
1503 in which a scalar value of mode MODE was returned by a library call. */
1504
1505 rtx
1506 hard_libcall_value (enum machine_mode mode)
1507 {
1508 return LIBCALL_VALUE (mode);
1509 }
1510
1511 /* Look up the tree code for a given rtx code
1512 to provide the arithmetic operation for REAL_ARITHMETIC.
1513 The function returns an int because the caller may not know
1514 what `enum tree_code' means. */
1515
1516 int
1517 rtx_to_tree_code (enum rtx_code code)
1518 {
1519 enum tree_code tcode;
1520
1521 switch (code)
1522 {
1523 case PLUS:
1524 tcode = PLUS_EXPR;
1525 break;
1526 case MINUS:
1527 tcode = MINUS_EXPR;
1528 break;
1529 case MULT:
1530 tcode = MULT_EXPR;
1531 break;
1532 case DIV:
1533 tcode = RDIV_EXPR;
1534 break;
1535 case SMIN:
1536 tcode = MIN_EXPR;
1537 break;
1538 case SMAX:
1539 tcode = MAX_EXPR;
1540 break;
1541 default:
1542 tcode = LAST_AND_UNUSED_TREE_CODE;
1543 break;
1544 }
1545 return ((int) tcode);
1546 }
1547
1548 #include "gt-explow.h"