re PR target/23196 (ICE instantiate_virtual_regs_in_insn when -fforce-addr used)
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40 #include "target.h"
41
42 static rtx break_out_memory_refs (rtx);
43 static void emit_stack_probe (rtx);
44
45
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47
48 HOST_WIDE_INT
49 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 {
51 int width = GET_MODE_BITSIZE (mode);
52
53 /* You want to truncate to a _what_? */
54 gcc_assert (SCALAR_INT_MODE_P (mode));
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C. */
75
76 rtx
77 plus_constant (rtx x, HOST_WIDE_INT c)
78 {
79 RTX_CODE code;
80 rtx y;
81 enum machine_mode mode;
82 rtx tem;
83 int all_constant = 0;
84
85 if (c == 0)
86 return x;
87
88 restart:
89
90 code = GET_CODE (x);
91 mode = GET_MODE (x);
92 y = x;
93
94 switch (code)
95 {
96 case CONST_INT:
97 return GEN_INT (INTVAL (x) + c);
98
99 case CONST_DOUBLE:
100 {
101 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103 unsigned HOST_WIDE_INT l2 = c;
104 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv;
106 HOST_WIDE_INT hv;
107
108 add_double (l1, h1, l2, h2, &lv, &hv);
109
110 return immed_double_const (lv, hv, VOIDmode);
111 }
112
113 case MEM:
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
119 {
120 tem
121 = force_const_mem (GET_MODE (x),
122 plus_constant (get_pool_constant (XEXP (x, 0)),
123 c));
124 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
126 }
127 break;
128
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 x = XEXP (x, 0);
133 all_constant = 1;
134 goto restart;
135
136 case SYMBOL_REF:
137 case LABEL_REF:
138 all_constant = 1;
139 break;
140
141 case PLUS:
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
147
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
150
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
153
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
155 {
156 c += INTVAL (XEXP (x, 1));
157
158 if (GET_MODE (x) != VOIDmode)
159 c = trunc_int_for_mode (c, GET_MODE (x));
160
161 x = XEXP (x, 0);
162 goto restart;
163 }
164 else if (CONSTANT_P (XEXP (x, 1)))
165 {
166 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167 c = 0;
168 }
169 else if (find_constant_term_loc (&y))
170 {
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy = copy_rtx (x);
174 rtx *const_loc = find_constant_term_loc (&copy);
175
176 *const_loc = plus_constant (*const_loc, c);
177 x = copy;
178 c = 0;
179 }
180 break;
181
182 default:
183 break;
184 }
185
186 if (c != 0)
187 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
188
189 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190 return x;
191 else if (all_constant)
192 return gen_rtx_CONST (mode, x);
193 else
194 return x;
195 }
196 \f
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
201
202 rtx
203 eliminate_constant_term (rtx x, rtx *constptr)
204 {
205 rtx x0, x1;
206 rtx tem;
207
208 if (GET_CODE (x) != PLUS)
209 return x;
210
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x, 1)) == CONST_INT
213 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214 XEXP (x, 1)))
215 && GET_CODE (tem) == CONST_INT)
216 {
217 *constptr = tem;
218 return eliminate_constant_term (XEXP (x, 0), constptr);
219 }
220
221 tem = const0_rtx;
222 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226 *constptr, tem))
227 && GET_CODE (tem) == CONST_INT)
228 {
229 *constptr = tem;
230 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
231 }
232
233 return x;
234 }
235
236 /* Return an rtx for the size in bytes of the value of EXP. */
237
238 rtx
239 expr_size (tree exp)
240 {
241 tree size;
242
243 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
244 size = TREE_OPERAND (exp, 1);
245 else
246 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
247
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249 }
250
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
253
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
256 {
257 tree size;
258
259 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
260 size = TREE_OPERAND (exp, 1);
261 else
262 size = lang_hooks.expr_size (exp);
263
264 if (size == 0 || !host_integerp (size, 0))
265 return -1;
266
267 return tree_low_cst (size, 0);
268 }
269 \f
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
275
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
278
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
282
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285
286 static rtx
287 break_out_memory_refs (rtx x)
288 {
289 if (MEM_P (x)
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
295 {
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301 }
302
303 return x;
304 }
305
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
311
312 rtx
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314 rtx x)
315 {
316 #ifndef POINTERS_EXTEND_UNSIGNED
317 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
318 return x;
319 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
320 enum machine_mode from_mode;
321 rtx temp;
322 enum rtx_code code;
323
324 /* If X already has the right mode, just return it. */
325 if (GET_MODE (x) == to_mode)
326 return x;
327
328 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
329
330 /* Here we handle some special cases. If none of them apply, fall through
331 to the default case. */
332 switch (GET_CODE (x))
333 {
334 case CONST_INT:
335 case CONST_DOUBLE:
336 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
337 code = TRUNCATE;
338 else if (POINTERS_EXTEND_UNSIGNED < 0)
339 break;
340 else if (POINTERS_EXTEND_UNSIGNED > 0)
341 code = ZERO_EXTEND;
342 else
343 code = SIGN_EXTEND;
344 temp = simplify_unary_operation (code, to_mode, x, from_mode);
345 if (temp)
346 return temp;
347 break;
348
349 case SUBREG:
350 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
351 && GET_MODE (SUBREG_REG (x)) == to_mode)
352 return SUBREG_REG (x);
353 break;
354
355 case LABEL_REF:
356 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
357 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
358 return temp;
359 break;
360
361 case SYMBOL_REF:
362 temp = shallow_copy_rtx (x);
363 PUT_MODE (temp, to_mode);
364 return temp;
365 break;
366
367 case CONST:
368 return gen_rtx_CONST (to_mode,
369 convert_memory_address (to_mode, XEXP (x, 0)));
370 break;
371
372 case PLUS:
373 case MULT:
374 /* For addition we can safely permute the conversion and addition
375 operation if one operand is a constant and converting the constant
376 does not change it. We can always safely permute them if we are
377 making the address narrower. */
378 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
379 || (GET_CODE (x) == PLUS
380 && GET_CODE (XEXP (x, 1)) == CONST_INT
381 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
382 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
383 convert_memory_address (to_mode, XEXP (x, 0)),
384 XEXP (x, 1));
385 break;
386
387 default:
388 break;
389 }
390
391 return convert_modes (to_mode, from_mode,
392 x, POINTERS_EXTEND_UNSIGNED);
393 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394 }
395 \f
396 /* Return something equivalent to X but valid as a memory address
397 for something of mode MODE. When X is not itself valid, this
398 works by copying X or subexpressions of it into registers. */
399
400 rtx
401 memory_address (enum machine_mode mode, rtx x)
402 {
403 rtx oldx = x;
404
405 x = convert_memory_address (Pmode, x);
406
407 /* By passing constant addresses through registers
408 we get a chance to cse them. */
409 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
410 x = force_reg (Pmode, x);
411
412 /* We get better cse by rejecting indirect addressing at this stage.
413 Let the combiner create indirect addresses where appropriate.
414 For now, generate the code so that the subexpressions useful to share
415 are visible. But not if cse won't be done! */
416 else
417 {
418 if (! cse_not_expected && !REG_P (x))
419 x = break_out_memory_refs (x);
420
421 /* At this point, any valid address is accepted. */
422 if (memory_address_p (mode, x))
423 goto win;
424
425 /* If it was valid before but breaking out memory refs invalidated it,
426 use it the old way. */
427 if (memory_address_p (mode, oldx))
428 goto win2;
429
430 /* Perform machine-dependent transformations on X
431 in certain cases. This is not necessary since the code
432 below can handle all possible cases, but machine-dependent
433 transformations can make better code. */
434 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
435
436 /* PLUS and MULT can appear in special ways
437 as the result of attempts to make an address usable for indexing.
438 Usually they are dealt with by calling force_operand, below.
439 But a sum containing constant terms is special
440 if removing them makes the sum a valid address:
441 then we generate that address in a register
442 and index off of it. We do this because it often makes
443 shorter code, and because the addresses thus generated
444 in registers often become common subexpressions. */
445 if (GET_CODE (x) == PLUS)
446 {
447 rtx constant_term = const0_rtx;
448 rtx y = eliminate_constant_term (x, &constant_term);
449 if (constant_term == const0_rtx
450 || ! memory_address_p (mode, y))
451 x = force_operand (x, NULL_RTX);
452 else
453 {
454 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
455 if (! memory_address_p (mode, y))
456 x = force_operand (x, NULL_RTX);
457 else
458 x = y;
459 }
460 }
461
462 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
463 x = force_operand (x, NULL_RTX);
464
465 /* If we have a register that's an invalid address,
466 it must be a hard reg of the wrong class. Copy it to a pseudo. */
467 else if (REG_P (x))
468 x = copy_to_reg (x);
469
470 /* Last resort: copy the value to a register, since
471 the register is a valid address. */
472 else
473 x = force_reg (Pmode, x);
474
475 goto done;
476
477 win2:
478 x = oldx;
479 win:
480 if (flag_force_addr && ! cse_not_expected && !REG_P (x))
481 {
482 x = force_operand (x, NULL_RTX);
483 x = force_reg (Pmode, x);
484 }
485 }
486
487 done:
488
489 /* If we didn't change the address, we are done. Otherwise, mark
490 a reg as a pointer if we have REG or REG + CONST_INT. */
491 if (oldx == x)
492 return x;
493 else if (REG_P (x))
494 mark_reg_pointer (x, BITS_PER_UNIT);
495 else if (GET_CODE (x) == PLUS
496 && REG_P (XEXP (x, 0))
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
499
500 /* OLDX may have been the address on a temporary. Update the address
501 to indicate that X is now used. */
502 update_temp_slot_address (oldx, x);
503
504 return x;
505 }
506
507 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
508
509 rtx
510 memory_address_noforce (enum machine_mode mode, rtx x)
511 {
512 int ambient_force_addr = flag_force_addr;
513 rtx val;
514
515 flag_force_addr = 0;
516 val = memory_address (mode, x);
517 flag_force_addr = ambient_force_addr;
518 return val;
519 }
520
521 /* Convert a mem ref into one with a valid memory address.
522 Pass through anything else unchanged. */
523
524 rtx
525 validize_mem (rtx ref)
526 {
527 if (!MEM_P (ref))
528 return ref;
529 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
530 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
531 return ref;
532
533 /* Don't alter REF itself, since that is probably a stack slot. */
534 return replace_equiv_address (ref, XEXP (ref, 0));
535 }
536 \f
537 /* Copy the value or contents of X to a new temp reg and return that reg. */
538
539 rtx
540 copy_to_reg (rtx x)
541 {
542 rtx temp = gen_reg_rtx (GET_MODE (x));
543
544 /* If not an operand, must be an address with PLUS and MULT so
545 do the computation. */
546 if (! general_operand (x, VOIDmode))
547 x = force_operand (x, temp);
548
549 if (x != temp)
550 emit_move_insn (temp, x);
551
552 return temp;
553 }
554
555 /* Like copy_to_reg but always give the new register mode Pmode
556 in case X is a constant. */
557
558 rtx
559 copy_addr_to_reg (rtx x)
560 {
561 return copy_to_mode_reg (Pmode, x);
562 }
563
564 /* Like copy_to_reg but always give the new register mode MODE
565 in case X is a constant. */
566
567 rtx
568 copy_to_mode_reg (enum machine_mode mode, rtx x)
569 {
570 rtx temp = gen_reg_rtx (mode);
571
572 /* If not an operand, must be an address with PLUS and MULT so
573 do the computation. */
574 if (! general_operand (x, VOIDmode))
575 x = force_operand (x, temp);
576
577 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
578 if (x != temp)
579 emit_move_insn (temp, x);
580 return temp;
581 }
582
583 /* Load X into a register if it is not already one.
584 Use mode MODE for the register.
585 X should be valid for mode MODE, but it may be a constant which
586 is valid for all integer modes; that's why caller must specify MODE.
587
588 The caller must not alter the value in the register we return,
589 since we mark it as a "constant" register. */
590
591 rtx
592 force_reg (enum machine_mode mode, rtx x)
593 {
594 rtx temp, insn, set;
595
596 if (REG_P (x))
597 return x;
598
599 if (general_operand (x, mode))
600 {
601 temp = gen_reg_rtx (mode);
602 insn = emit_move_insn (temp, x);
603 }
604 else
605 {
606 temp = force_operand (x, NULL_RTX);
607 if (REG_P (temp))
608 insn = get_last_insn ();
609 else
610 {
611 rtx temp2 = gen_reg_rtx (mode);
612 insn = emit_move_insn (temp2, temp);
613 temp = temp2;
614 }
615 }
616
617 /* Let optimizers know that TEMP's value never changes
618 and that X can be substituted for it. Don't get confused
619 if INSN set something else (such as a SUBREG of TEMP). */
620 if (CONSTANT_P (x)
621 && (set = single_set (insn)) != 0
622 && SET_DEST (set) == temp
623 && ! rtx_equal_p (x, SET_SRC (set)))
624 set_unique_reg_note (insn, REG_EQUAL, x);
625
626 /* Let optimizers know that TEMP is a pointer, and if so, the
627 known alignment of that pointer. */
628 {
629 unsigned align = 0;
630 if (GET_CODE (x) == SYMBOL_REF)
631 {
632 align = BITS_PER_UNIT;
633 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
634 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
635 }
636 else if (GET_CODE (x) == LABEL_REF)
637 align = BITS_PER_UNIT;
638 else if (GET_CODE (x) == CONST
639 && GET_CODE (XEXP (x, 0)) == PLUS
640 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
641 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
642 {
643 rtx s = XEXP (XEXP (x, 0), 0);
644 rtx c = XEXP (XEXP (x, 0), 1);
645 unsigned sa, ca;
646
647 sa = BITS_PER_UNIT;
648 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
649 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
650
651 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
652
653 align = MIN (sa, ca);
654 }
655
656 if (align)
657 mark_reg_pointer (temp, align);
658 }
659
660 return temp;
661 }
662
663 /* If X is a memory ref, copy its contents to a new temp reg and return
664 that reg. Otherwise, return X. */
665
666 rtx
667 force_not_mem (rtx x)
668 {
669 rtx temp;
670
671 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
672 return x;
673
674 temp = gen_reg_rtx (GET_MODE (x));
675
676 if (MEM_POINTER (x))
677 REG_POINTER (temp) = 1;
678
679 emit_move_insn (temp, x);
680 return temp;
681 }
682
683 /* Copy X to TARGET (if it's nonzero and a reg)
684 or to a new temp reg and return that reg.
685 MODE is the mode to use for X in case it is a constant. */
686
687 rtx
688 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
689 {
690 rtx temp;
691
692 if (target && REG_P (target))
693 temp = target;
694 else
695 temp = gen_reg_rtx (mode);
696
697 emit_move_insn (temp, x);
698 return temp;
699 }
700 \f
701 /* Return the mode to use to store a scalar of TYPE and MODE.
702 PUNSIGNEDP points to the signedness of the type and may be adjusted
703 to show what signedness to use on extension operations.
704
705 FOR_CALL is nonzero if this call is promoting args for a call. */
706
707 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
708 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
709 #endif
710
711 enum machine_mode
712 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
713 int for_call ATTRIBUTE_UNUSED)
714 {
715 enum tree_code code = TREE_CODE (type);
716 int unsignedp = *punsignedp;
717
718 #ifndef PROMOTE_MODE
719 if (! for_call)
720 return mode;
721 #endif
722
723 switch (code)
724 {
725 #ifdef PROMOTE_FUNCTION_MODE
726 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
727 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
728 #ifdef PROMOTE_MODE
729 if (for_call)
730 {
731 #endif
732 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
733 #ifdef PROMOTE_MODE
734 }
735 else
736 {
737 PROMOTE_MODE (mode, unsignedp, type);
738 }
739 #endif
740 break;
741 #endif
742
743 #ifdef POINTERS_EXTEND_UNSIGNED
744 case REFERENCE_TYPE:
745 case POINTER_TYPE:
746 mode = Pmode;
747 unsignedp = POINTERS_EXTEND_UNSIGNED;
748 break;
749 #endif
750
751 default:
752 break;
753 }
754
755 *punsignedp = unsignedp;
756 return mode;
757 }
758 \f
759 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
760 This pops when ADJUST is positive. ADJUST need not be constant. */
761
762 void
763 adjust_stack (rtx adjust)
764 {
765 rtx temp;
766
767 if (adjust == const0_rtx)
768 return;
769
770 /* We expect all variable sized adjustments to be multiple of
771 PREFERRED_STACK_BOUNDARY. */
772 if (GET_CODE (adjust) == CONST_INT)
773 stack_pointer_delta -= INTVAL (adjust);
774
775 temp = expand_binop (Pmode,
776 #ifdef STACK_GROWS_DOWNWARD
777 add_optab,
778 #else
779 sub_optab,
780 #endif
781 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
782 OPTAB_LIB_WIDEN);
783
784 if (temp != stack_pointer_rtx)
785 emit_move_insn (stack_pointer_rtx, temp);
786 }
787
788 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
789 This pushes when ADJUST is positive. ADJUST need not be constant. */
790
791 void
792 anti_adjust_stack (rtx adjust)
793 {
794 rtx temp;
795
796 if (adjust == const0_rtx)
797 return;
798
799 /* We expect all variable sized adjustments to be multiple of
800 PREFERRED_STACK_BOUNDARY. */
801 if (GET_CODE (adjust) == CONST_INT)
802 stack_pointer_delta += INTVAL (adjust);
803
804 temp = expand_binop (Pmode,
805 #ifdef STACK_GROWS_DOWNWARD
806 sub_optab,
807 #else
808 add_optab,
809 #endif
810 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
811 OPTAB_LIB_WIDEN);
812
813 if (temp != stack_pointer_rtx)
814 emit_move_insn (stack_pointer_rtx, temp);
815 }
816
817 /* Round the size of a block to be pushed up to the boundary required
818 by this machine. SIZE is the desired size, which need not be constant. */
819
820 static rtx
821 round_push (rtx size)
822 {
823 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
824
825 if (align == 1)
826 return size;
827
828 if (GET_CODE (size) == CONST_INT)
829 {
830 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
831
832 if (INTVAL (size) != new)
833 size = GEN_INT (new);
834 }
835 else
836 {
837 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
838 but we know it can't. So add ourselves and then do
839 TRUNC_DIV_EXPR. */
840 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
841 NULL_RTX, 1, OPTAB_LIB_WIDEN);
842 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
843 NULL_RTX, 1);
844 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
845 }
846
847 return size;
848 }
849 \f
850 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
851 to a previously-created save area. If no save area has been allocated,
852 this function will allocate one. If a save area is specified, it
853 must be of the proper mode.
854
855 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
856 are emitted at the current position. */
857
858 void
859 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
860 {
861 rtx sa = *psave;
862 /* The default is that we use a move insn and save in a Pmode object. */
863 rtx (*fcn) (rtx, rtx) = gen_move_insn;
864 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
865
866 /* See if this machine has anything special to do for this kind of save. */
867 switch (save_level)
868 {
869 #ifdef HAVE_save_stack_block
870 case SAVE_BLOCK:
871 if (HAVE_save_stack_block)
872 fcn = gen_save_stack_block;
873 break;
874 #endif
875 #ifdef HAVE_save_stack_function
876 case SAVE_FUNCTION:
877 if (HAVE_save_stack_function)
878 fcn = gen_save_stack_function;
879 break;
880 #endif
881 #ifdef HAVE_save_stack_nonlocal
882 case SAVE_NONLOCAL:
883 if (HAVE_save_stack_nonlocal)
884 fcn = gen_save_stack_nonlocal;
885 break;
886 #endif
887 default:
888 break;
889 }
890
891 /* If there is no save area and we have to allocate one, do so. Otherwise
892 verify the save area is the proper mode. */
893
894 if (sa == 0)
895 {
896 if (mode != VOIDmode)
897 {
898 if (save_level == SAVE_NONLOCAL)
899 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
900 else
901 *psave = sa = gen_reg_rtx (mode);
902 }
903 }
904
905 if (after)
906 {
907 rtx seq;
908
909 start_sequence ();
910 do_pending_stack_adjust ();
911 /* We must validize inside the sequence, to ensure that any instructions
912 created by the validize call also get moved to the right place. */
913 if (sa != 0)
914 sa = validize_mem (sa);
915 emit_insn (fcn (sa, stack_pointer_rtx));
916 seq = get_insns ();
917 end_sequence ();
918 emit_insn_after (seq, after);
919 }
920 else
921 {
922 do_pending_stack_adjust ();
923 if (sa != 0)
924 sa = validize_mem (sa);
925 emit_insn (fcn (sa, stack_pointer_rtx));
926 }
927 }
928
929 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
930 area made by emit_stack_save. If it is zero, we have nothing to do.
931
932 Put any emitted insns after insn AFTER, if nonzero, otherwise at
933 current position. */
934
935 void
936 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
937 {
938 /* The default is that we use a move insn. */
939 rtx (*fcn) (rtx, rtx) = gen_move_insn;
940
941 /* See if this machine has anything special to do for this kind of save. */
942 switch (save_level)
943 {
944 #ifdef HAVE_restore_stack_block
945 case SAVE_BLOCK:
946 if (HAVE_restore_stack_block)
947 fcn = gen_restore_stack_block;
948 break;
949 #endif
950 #ifdef HAVE_restore_stack_function
951 case SAVE_FUNCTION:
952 if (HAVE_restore_stack_function)
953 fcn = gen_restore_stack_function;
954 break;
955 #endif
956 #ifdef HAVE_restore_stack_nonlocal
957 case SAVE_NONLOCAL:
958 if (HAVE_restore_stack_nonlocal)
959 fcn = gen_restore_stack_nonlocal;
960 break;
961 #endif
962 default:
963 break;
964 }
965
966 if (sa != 0)
967 {
968 sa = validize_mem (sa);
969 /* These clobbers prevent the scheduler from moving
970 references to variable arrays below the code
971 that deletes (pops) the arrays. */
972 emit_insn (gen_rtx_CLOBBER (VOIDmode,
973 gen_rtx_MEM (BLKmode,
974 gen_rtx_SCRATCH (VOIDmode))));
975 emit_insn (gen_rtx_CLOBBER (VOIDmode,
976 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
977 }
978
979 discard_pending_stack_adjust ();
980
981 if (after)
982 {
983 rtx seq;
984
985 start_sequence ();
986 emit_insn (fcn (stack_pointer_rtx, sa));
987 seq = get_insns ();
988 end_sequence ();
989 emit_insn_after (seq, after);
990 }
991 else
992 emit_insn (fcn (stack_pointer_rtx, sa));
993 }
994
995 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
996 function. This function should be called whenever we allocate or
997 deallocate dynamic stack space. */
998
999 void
1000 update_nonlocal_goto_save_area (void)
1001 {
1002 tree t_save;
1003 rtx r_save;
1004
1005 /* The nonlocal_goto_save_area object is an array of N pointers. The
1006 first one is used for the frame pointer save; the rest are sized by
1007 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1008 of the stack save area slots. */
1009 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1010 integer_one_node, NULL_TREE, NULL_TREE);
1011 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1012
1013 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1014 }
1015 \f
1016 /* Return an rtx representing the address of an area of memory dynamically
1017 pushed on the stack. This region of memory is always aligned to
1018 a multiple of BIGGEST_ALIGNMENT.
1019
1020 Any required stack pointer alignment is preserved.
1021
1022 SIZE is an rtx representing the size of the area.
1023 TARGET is a place in which the address can be placed.
1024
1025 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1026
1027 rtx
1028 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1029 {
1030 /* If we're asking for zero bytes, it doesn't matter what we point
1031 to since we can't dereference it. But return a reasonable
1032 address anyway. */
1033 if (size == const0_rtx)
1034 return virtual_stack_dynamic_rtx;
1035
1036 /* Otherwise, show we're calling alloca or equivalent. */
1037 current_function_calls_alloca = 1;
1038
1039 /* Ensure the size is in the proper mode. */
1040 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1041 size = convert_to_mode (Pmode, size, 1);
1042
1043 /* We can't attempt to minimize alignment necessary, because we don't
1044 know the final value of preferred_stack_boundary yet while executing
1045 this code. */
1046 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1047
1048 /* We will need to ensure that the address we return is aligned to
1049 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1050 always know its final value at this point in the compilation (it
1051 might depend on the size of the outgoing parameter lists, for
1052 example), so we must align the value to be returned in that case.
1053 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1054 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1055 We must also do an alignment operation on the returned value if
1056 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1057
1058 If we have to align, we must leave space in SIZE for the hole
1059 that might result from the alignment operation. */
1060
1061 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1062 #define MUST_ALIGN 1
1063 #else
1064 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1065 #endif
1066
1067 if (MUST_ALIGN)
1068 size
1069 = force_operand (plus_constant (size,
1070 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1071 NULL_RTX);
1072
1073 #ifdef SETJMP_VIA_SAVE_AREA
1074 /* If setjmp restores regs from a save area in the stack frame,
1075 avoid clobbering the reg save area. Note that the offset of
1076 virtual_incoming_args_rtx includes the preallocated stack args space.
1077 It would be no problem to clobber that, but it's on the wrong side
1078 of the old save area.
1079
1080 What used to happen is that, since we did not know for sure
1081 whether setjmp() was invoked until after RTL generation, we
1082 would use reg notes to store the "optimized" size and fix things
1083 up later. These days we know this information before we ever
1084 start building RTL so the reg notes are unnecessary. */
1085 if (!current_function_calls_setjmp)
1086 {
1087 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1088
1089 /* ??? Code below assumes that the save area needs maximal
1090 alignment. This constraint may be too strong. */
1091 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1092
1093 if (GET_CODE (size) == CONST_INT)
1094 {
1095 HOST_WIDE_INT new = INTVAL (size) / align * align;
1096
1097 if (INTVAL (size) != new)
1098 size = GEN_INT (new);
1099 }
1100 else
1101 {
1102 /* Since we know overflow is not possible, we avoid using
1103 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1104 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1105 GEN_INT (align), NULL_RTX, 1);
1106 size = expand_mult (Pmode, size,
1107 GEN_INT (align), NULL_RTX, 1);
1108 }
1109 }
1110 else
1111 {
1112 rtx dynamic_offset
1113 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1114 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1115
1116 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1117 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1118 }
1119 #endif /* SETJMP_VIA_SAVE_AREA */
1120
1121 /* Round the size to a multiple of the required stack alignment.
1122 Since the stack if presumed to be rounded before this allocation,
1123 this will maintain the required alignment.
1124
1125 If the stack grows downward, we could save an insn by subtracting
1126 SIZE from the stack pointer and then aligning the stack pointer.
1127 The problem with this is that the stack pointer may be unaligned
1128 between the execution of the subtraction and alignment insns and
1129 some machines do not allow this. Even on those that do, some
1130 signal handlers malfunction if a signal should occur between those
1131 insns. Since this is an extremely rare event, we have no reliable
1132 way of knowing which systems have this problem. So we avoid even
1133 momentarily mis-aligning the stack. */
1134
1135 /* If we added a variable amount to SIZE,
1136 we can no longer assume it is aligned. */
1137 #if !defined (SETJMP_VIA_SAVE_AREA)
1138 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1139 #endif
1140 size = round_push (size);
1141
1142 do_pending_stack_adjust ();
1143
1144 /* We ought to be called always on the toplevel and stack ought to be aligned
1145 properly. */
1146 gcc_assert (!(stack_pointer_delta
1147 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1148
1149 /* If needed, check that we have the required amount of stack. Take into
1150 account what has already been checked. */
1151 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1152 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1153
1154 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1155 if (target == 0 || !REG_P (target)
1156 || REGNO (target) < FIRST_PSEUDO_REGISTER
1157 || GET_MODE (target) != Pmode)
1158 target = gen_reg_rtx (Pmode);
1159
1160 mark_reg_pointer (target, known_align);
1161
1162 /* Perform the required allocation from the stack. Some systems do
1163 this differently than simply incrementing/decrementing from the
1164 stack pointer, such as acquiring the space by calling malloc(). */
1165 #ifdef HAVE_allocate_stack
1166 if (HAVE_allocate_stack)
1167 {
1168 enum machine_mode mode = STACK_SIZE_MODE;
1169 insn_operand_predicate_fn pred;
1170
1171 /* We don't have to check against the predicate for operand 0 since
1172 TARGET is known to be a pseudo of the proper mode, which must
1173 be valid for the operand. For operand 1, convert to the
1174 proper mode and validate. */
1175 if (mode == VOIDmode)
1176 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1177
1178 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1179 if (pred && ! ((*pred) (size, mode)))
1180 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1181
1182 emit_insn (gen_allocate_stack (target, size));
1183 }
1184 else
1185 #endif
1186 {
1187 #ifndef STACK_GROWS_DOWNWARD
1188 emit_move_insn (target, virtual_stack_dynamic_rtx);
1189 #endif
1190
1191 /* Check stack bounds if necessary. */
1192 if (current_function_limit_stack)
1193 {
1194 rtx available;
1195 rtx space_available = gen_label_rtx ();
1196 #ifdef STACK_GROWS_DOWNWARD
1197 available = expand_binop (Pmode, sub_optab,
1198 stack_pointer_rtx, stack_limit_rtx,
1199 NULL_RTX, 1, OPTAB_WIDEN);
1200 #else
1201 available = expand_binop (Pmode, sub_optab,
1202 stack_limit_rtx, stack_pointer_rtx,
1203 NULL_RTX, 1, OPTAB_WIDEN);
1204 #endif
1205 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1206 space_available);
1207 #ifdef HAVE_trap
1208 if (HAVE_trap)
1209 emit_insn (gen_trap ());
1210 else
1211 #endif
1212 error ("stack limits not supported on this target");
1213 emit_barrier ();
1214 emit_label (space_available);
1215 }
1216
1217 anti_adjust_stack (size);
1218
1219 #ifdef STACK_GROWS_DOWNWARD
1220 emit_move_insn (target, virtual_stack_dynamic_rtx);
1221 #endif
1222 }
1223
1224 if (MUST_ALIGN)
1225 {
1226 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1227 but we know it can't. So add ourselves and then do
1228 TRUNC_DIV_EXPR. */
1229 target = expand_binop (Pmode, add_optab, target,
1230 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1231 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1232 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1233 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1234 NULL_RTX, 1);
1235 target = expand_mult (Pmode, target,
1236 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1237 NULL_RTX, 1);
1238 }
1239
1240 /* Record the new stack level for nonlocal gotos. */
1241 if (cfun->nonlocal_goto_save_area != 0)
1242 update_nonlocal_goto_save_area ();
1243
1244 return target;
1245 }
1246 \f
1247 /* A front end may want to override GCC's stack checking by providing a
1248 run-time routine to call to check the stack, so provide a mechanism for
1249 calling that routine. */
1250
1251 static GTY(()) rtx stack_check_libfunc;
1252
1253 void
1254 set_stack_check_libfunc (rtx libfunc)
1255 {
1256 stack_check_libfunc = libfunc;
1257 }
1258 \f
1259 /* Emit one stack probe at ADDRESS, an address within the stack. */
1260
1261 static void
1262 emit_stack_probe (rtx address)
1263 {
1264 rtx memref = gen_rtx_MEM (word_mode, address);
1265
1266 MEM_VOLATILE_P (memref) = 1;
1267
1268 if (STACK_CHECK_PROBE_LOAD)
1269 emit_move_insn (gen_reg_rtx (word_mode), memref);
1270 else
1271 emit_move_insn (memref, const0_rtx);
1272 }
1273
1274 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1275 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1276 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1277 subtract from the stack. If SIZE is constant, this is done
1278 with a fixed number of probes. Otherwise, we must make a loop. */
1279
1280 #ifdef STACK_GROWS_DOWNWARD
1281 #define STACK_GROW_OP MINUS
1282 #else
1283 #define STACK_GROW_OP PLUS
1284 #endif
1285
1286 void
1287 probe_stack_range (HOST_WIDE_INT first, rtx size)
1288 {
1289 /* First ensure SIZE is Pmode. */
1290 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1291 size = convert_to_mode (Pmode, size, 1);
1292
1293 /* Next see if the front end has set up a function for us to call to
1294 check the stack. */
1295 if (stack_check_libfunc != 0)
1296 {
1297 rtx addr = memory_address (QImode,
1298 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1299 stack_pointer_rtx,
1300 plus_constant (size, first)));
1301
1302 addr = convert_memory_address (ptr_mode, addr);
1303 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1304 ptr_mode);
1305 }
1306
1307 /* Next see if we have an insn to check the stack. Use it if so. */
1308 #ifdef HAVE_check_stack
1309 else if (HAVE_check_stack)
1310 {
1311 insn_operand_predicate_fn pred;
1312 rtx last_addr
1313 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1314 stack_pointer_rtx,
1315 plus_constant (size, first)),
1316 NULL_RTX);
1317
1318 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1319 if (pred && ! ((*pred) (last_addr, Pmode)))
1320 last_addr = copy_to_mode_reg (Pmode, last_addr);
1321
1322 emit_insn (gen_check_stack (last_addr));
1323 }
1324 #endif
1325
1326 /* If we have to generate explicit probes, see if we have a constant
1327 small number of them to generate. If so, that's the easy case. */
1328 else if (GET_CODE (size) == CONST_INT
1329 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1330 {
1331 HOST_WIDE_INT offset;
1332
1333 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1334 for values of N from 1 until it exceeds LAST. If only one
1335 probe is needed, this will not generate any code. Then probe
1336 at LAST. */
1337 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1338 offset < INTVAL (size);
1339 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1340 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1341 stack_pointer_rtx,
1342 GEN_INT (offset)));
1343
1344 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1345 stack_pointer_rtx,
1346 plus_constant (size, first)));
1347 }
1348
1349 /* In the variable case, do the same as above, but in a loop. We emit loop
1350 notes so that loop optimization can be done. */
1351 else
1352 {
1353 rtx test_addr
1354 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1355 stack_pointer_rtx,
1356 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1357 NULL_RTX);
1358 rtx last_addr
1359 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1360 stack_pointer_rtx,
1361 plus_constant (size, first)),
1362 NULL_RTX);
1363 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1364 rtx loop_lab = gen_label_rtx ();
1365 rtx test_lab = gen_label_rtx ();
1366 rtx end_lab = gen_label_rtx ();
1367 rtx temp;
1368
1369 if (!REG_P (test_addr)
1370 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1371 test_addr = force_reg (Pmode, test_addr);
1372
1373 emit_jump (test_lab);
1374
1375 emit_label (loop_lab);
1376 emit_stack_probe (test_addr);
1377
1378 #ifdef STACK_GROWS_DOWNWARD
1379 #define CMP_OPCODE GTU
1380 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1381 1, OPTAB_WIDEN);
1382 #else
1383 #define CMP_OPCODE LTU
1384 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1385 1, OPTAB_WIDEN);
1386 #endif
1387
1388 gcc_assert (temp == test_addr);
1389
1390 emit_label (test_lab);
1391 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1392 NULL_RTX, Pmode, 1, loop_lab);
1393 emit_jump (end_lab);
1394 emit_label (end_lab);
1395
1396 emit_stack_probe (last_addr);
1397 }
1398 }
1399 \f
1400 /* Return an rtx representing the register or memory location
1401 in which a scalar value of data type VALTYPE
1402 was returned by a function call to function FUNC.
1403 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1404 function is known, otherwise 0.
1405 OUTGOING is 1 if on a machine with register windows this function
1406 should return the register in which the function will put its result
1407 and 0 otherwise. */
1408
1409 rtx
1410 hard_function_value (tree valtype, tree func, tree fntype,
1411 int outgoing ATTRIBUTE_UNUSED)
1412 {
1413 rtx val;
1414
1415 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1416
1417 if (REG_P (val)
1418 && GET_MODE (val) == BLKmode)
1419 {
1420 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1421 enum machine_mode tmpmode;
1422
1423 /* int_size_in_bytes can return -1. We don't need a check here
1424 since the value of bytes will then be large enough that no
1425 mode will match anyway. */
1426
1427 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1428 tmpmode != VOIDmode;
1429 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1430 {
1431 /* Have we found a large enough mode? */
1432 if (GET_MODE_SIZE (tmpmode) >= bytes)
1433 break;
1434 }
1435
1436 /* No suitable mode found. */
1437 gcc_assert (tmpmode != VOIDmode);
1438
1439 PUT_MODE (val, tmpmode);
1440 }
1441 return val;
1442 }
1443
1444 /* Return an rtx representing the register or memory location
1445 in which a scalar value of mode MODE was returned by a library call. */
1446
1447 rtx
1448 hard_libcall_value (enum machine_mode mode)
1449 {
1450 return LIBCALL_VALUE (mode);
1451 }
1452
1453 /* Look up the tree code for a given rtx code
1454 to provide the arithmetic operation for REAL_ARITHMETIC.
1455 The function returns an int because the caller may not know
1456 what `enum tree_code' means. */
1457
1458 int
1459 rtx_to_tree_code (enum rtx_code code)
1460 {
1461 enum tree_code tcode;
1462
1463 switch (code)
1464 {
1465 case PLUS:
1466 tcode = PLUS_EXPR;
1467 break;
1468 case MINUS:
1469 tcode = MINUS_EXPR;
1470 break;
1471 case MULT:
1472 tcode = MULT_EXPR;
1473 break;
1474 case DIV:
1475 tcode = RDIV_EXPR;
1476 break;
1477 case SMIN:
1478 tcode = MIN_EXPR;
1479 break;
1480 case SMAX:
1481 tcode = MAX_EXPR;
1482 break;
1483 default:
1484 tcode = LAST_AND_UNUSED_TREE_CODE;
1485 break;
1486 }
1487 return ((int) tcode);
1488 }
1489
1490 #include "gt-explow.h"