2009-08-02 Paolo Bonzini <bonzini@gnu.org
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
43
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46
47
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 {
53 int width = GET_MODE_BITSIZE (mode);
54
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
57
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
61
62 /* Sign-extend for the requested mode. */
63
64 if (width < HOST_BITS_PER_WIDE_INT)
65 {
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
71 }
72
73 return c;
74 }
75
76 /* Return an rtx for the sum of X and the integer C. */
77
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (CONST_INT_P (XEXP (x, 1)))
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (CONST_INT_P (XEXP (x, 1))
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && CONST_INT_P (tem))
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && CONST_INT_P (tem))
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size;
244
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
248 {
249 size = lang_hooks.expr_size (exp);
250 gcc_assert (size);
251 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
252 }
253
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
255 }
256
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258 if the size can vary or is larger than an integer. */
259
260 HOST_WIDE_INT
261 int_expr_size (tree exp)
262 {
263 tree size;
264
265 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266 size = TREE_OPERAND (exp, 1);
267 else
268 {
269 size = lang_hooks.expr_size (exp);
270 gcc_assert (size);
271 }
272
273 if (size == 0 || !host_integerp (size, 0))
274 return -1;
275
276 return tree_low_cst (size, 0);
277 }
278 \f
279 /* Return a copy of X in which all memory references
280 and all constants that involve symbol refs
281 have been replaced with new temporary registers.
282 Also emit code to load the memory locations and constants
283 into those registers.
284
285 If X contains no such constants or memory references,
286 X itself (not a copy) is returned.
287
288 If a constant is found in the address that is not a legitimate constant
289 in an insn, it is left alone in the hope that it might be valid in the
290 address.
291
292 X may contain no arithmetic except addition, subtraction and multiplication.
293 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
294
295 static rtx
296 break_out_memory_refs (rtx x)
297 {
298 if (MEM_P (x)
299 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 && GET_MODE (x) != VOIDmode))
301 x = force_reg (GET_MODE (x), x);
302 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 || GET_CODE (x) == MULT)
304 {
305 rtx op0 = break_out_memory_refs (XEXP (x, 0));
306 rtx op1 = break_out_memory_refs (XEXP (x, 1));
307
308 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 x = simplify_gen_binary (GET_CODE (x), Pmode, op0, op1);
310 }
311
312 return x;
313 }
314
315 /* Given X, a memory address in ptr_mode, convert it to an address
316 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
317 the fact that pointers are not allowed to overflow by commuting arithmetic
318 operations over conversions so that address arithmetic insns can be
319 used. */
320
321 rtx
322 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 rtx x)
324 {
325 #ifndef POINTERS_EXTEND_UNSIGNED
326 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327 return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329 enum machine_mode from_mode;
330 rtx temp;
331 enum rtx_code code;
332
333 /* If X already has the right mode, just return it. */
334 if (GET_MODE (x) == to_mode)
335 return x;
336
337 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
338
339 /* Here we handle some special cases. If none of them apply, fall through
340 to the default case. */
341 switch (GET_CODE (x))
342 {
343 case CONST_INT:
344 case CONST_DOUBLE:
345 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
346 code = TRUNCATE;
347 else if (POINTERS_EXTEND_UNSIGNED < 0)
348 break;
349 else if (POINTERS_EXTEND_UNSIGNED > 0)
350 code = ZERO_EXTEND;
351 else
352 code = SIGN_EXTEND;
353 temp = simplify_unary_operation (code, to_mode, x, from_mode);
354 if (temp)
355 return temp;
356 break;
357
358 case SUBREG:
359 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
360 && GET_MODE (SUBREG_REG (x)) == to_mode)
361 return SUBREG_REG (x);
362 break;
363
364 case LABEL_REF:
365 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
366 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
367 return temp;
368 break;
369
370 case SYMBOL_REF:
371 temp = shallow_copy_rtx (x);
372 PUT_MODE (temp, to_mode);
373 return temp;
374 break;
375
376 case CONST:
377 return gen_rtx_CONST (to_mode,
378 convert_memory_address (to_mode, XEXP (x, 0)));
379 break;
380
381 case PLUS:
382 case MULT:
383 /* For addition we can safely permute the conversion and addition
384 operation if one operand is a constant and converting the constant
385 does not change it or if one operand is a constant and we are
386 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
387 We can always safely permute them if we are making the address
388 narrower. */
389 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
390 || (GET_CODE (x) == PLUS
391 && CONST_INT_P (XEXP (x, 1))
392 && (XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))
393 || POINTERS_EXTEND_UNSIGNED < 0)))
394 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
395 convert_memory_address (to_mode, XEXP (x, 0)),
396 XEXP (x, 1));
397 break;
398
399 default:
400 break;
401 }
402
403 return convert_modes (to_mode, from_mode,
404 x, POINTERS_EXTEND_UNSIGNED);
405 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
406 }
407 \f
408 /* Return something equivalent to X but valid as a memory address
409 for something of mode MODE. When X is not itself valid, this
410 works by copying X or subexpressions of it into registers. */
411
412 rtx
413 memory_address (enum machine_mode mode, rtx x)
414 {
415 rtx oldx = x;
416
417 x = convert_memory_address (Pmode, x);
418
419 /* By passing constant addresses through registers
420 we get a chance to cse them. */
421 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
422 x = force_reg (Pmode, x);
423
424 /* We get better cse by rejecting indirect addressing at this stage.
425 Let the combiner create indirect addresses where appropriate.
426 For now, generate the code so that the subexpressions useful to share
427 are visible. But not if cse won't be done! */
428 else
429 {
430 if (! cse_not_expected && !REG_P (x))
431 x = break_out_memory_refs (x);
432
433 /* At this point, any valid address is accepted. */
434 if (memory_address_p (mode, x))
435 goto done;
436
437 /* If it was valid before but breaking out memory refs invalidated it,
438 use it the old way. */
439 if (memory_address_p (mode, oldx))
440 {
441 x = oldx;
442 goto done;
443 }
444
445 /* Perform machine-dependent transformations on X
446 in certain cases. This is not necessary since the code
447 below can handle all possible cases, but machine-dependent
448 transformations can make better code. */
449 {
450 rtx orig_x = x;
451 x = targetm.legitimize_address (x, oldx, mode);
452 if (orig_x != x && memory_address_p (mode, x))
453 goto done;
454 }
455
456 /* PLUS and MULT can appear in special ways
457 as the result of attempts to make an address usable for indexing.
458 Usually they are dealt with by calling force_operand, below.
459 But a sum containing constant terms is special
460 if removing them makes the sum a valid address:
461 then we generate that address in a register
462 and index off of it. We do this because it often makes
463 shorter code, and because the addresses thus generated
464 in registers often become common subexpressions. */
465 if (GET_CODE (x) == PLUS)
466 {
467 rtx constant_term = const0_rtx;
468 rtx y = eliminate_constant_term (x, &constant_term);
469 if (constant_term == const0_rtx
470 || ! memory_address_p (mode, y))
471 x = force_operand (x, NULL_RTX);
472 else
473 {
474 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
475 if (! memory_address_p (mode, y))
476 x = force_operand (x, NULL_RTX);
477 else
478 x = y;
479 }
480 }
481
482 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
483 x = force_operand (x, NULL_RTX);
484
485 /* If we have a register that's an invalid address,
486 it must be a hard reg of the wrong class. Copy it to a pseudo. */
487 else if (REG_P (x))
488 x = copy_to_reg (x);
489
490 /* Last resort: copy the value to a register, since
491 the register is a valid address. */
492 else
493 x = force_reg (Pmode, x);
494 }
495
496 done:
497
498 gcc_assert (memory_address_p (mode, x));
499 /* If we didn't change the address, we are done. Otherwise, mark
500 a reg as a pointer if we have REG or REG + CONST_INT. */
501 if (oldx == x)
502 return x;
503 else if (REG_P (x))
504 mark_reg_pointer (x, BITS_PER_UNIT);
505 else if (GET_CODE (x) == PLUS
506 && REG_P (XEXP (x, 0))
507 && CONST_INT_P (XEXP (x, 1)))
508 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
509
510 /* OLDX may have been the address on a temporary. Update the address
511 to indicate that X is now used. */
512 update_temp_slot_address (oldx, x);
513
514 return x;
515 }
516
517 /* Convert a mem ref into one with a valid memory address.
518 Pass through anything else unchanged. */
519
520 rtx
521 validize_mem (rtx ref)
522 {
523 if (!MEM_P (ref))
524 return ref;
525 ref = use_anchored_address (ref);
526 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
527 return ref;
528
529 /* Don't alter REF itself, since that is probably a stack slot. */
530 return replace_equiv_address (ref, XEXP (ref, 0));
531 }
532
533 /* If X is a memory reference to a member of an object block, try rewriting
534 it to use an anchor instead. Return the new memory reference on success
535 and the old one on failure. */
536
537 rtx
538 use_anchored_address (rtx x)
539 {
540 rtx base;
541 HOST_WIDE_INT offset;
542
543 if (!flag_section_anchors)
544 return x;
545
546 if (!MEM_P (x))
547 return x;
548
549 /* Split the address into a base and offset. */
550 base = XEXP (x, 0);
551 offset = 0;
552 if (GET_CODE (base) == CONST
553 && GET_CODE (XEXP (base, 0)) == PLUS
554 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
555 {
556 offset += INTVAL (XEXP (XEXP (base, 0), 1));
557 base = XEXP (XEXP (base, 0), 0);
558 }
559
560 /* Check whether BASE is suitable for anchors. */
561 if (GET_CODE (base) != SYMBOL_REF
562 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
563 || SYMBOL_REF_ANCHOR_P (base)
564 || SYMBOL_REF_BLOCK (base) == NULL
565 || !targetm.use_anchors_for_symbol_p (base))
566 return x;
567
568 /* Decide where BASE is going to be. */
569 place_block_symbol (base);
570
571 /* Get the anchor we need to use. */
572 offset += SYMBOL_REF_BLOCK_OFFSET (base);
573 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
574 SYMBOL_REF_TLS_MODEL (base));
575
576 /* Work out the offset from the anchor. */
577 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
578
579 /* If we're going to run a CSE pass, force the anchor into a register.
580 We will then be able to reuse registers for several accesses, if the
581 target costs say that that's worthwhile. */
582 if (!cse_not_expected)
583 base = force_reg (GET_MODE (base), base);
584
585 return replace_equiv_address (x, plus_constant (base, offset));
586 }
587 \f
588 /* Copy the value or contents of X to a new temp reg and return that reg. */
589
590 rtx
591 copy_to_reg (rtx x)
592 {
593 rtx temp = gen_reg_rtx (GET_MODE (x));
594
595 /* If not an operand, must be an address with PLUS and MULT so
596 do the computation. */
597 if (! general_operand (x, VOIDmode))
598 x = force_operand (x, temp);
599
600 if (x != temp)
601 emit_move_insn (temp, x);
602
603 return temp;
604 }
605
606 /* Like copy_to_reg but always give the new register mode Pmode
607 in case X is a constant. */
608
609 rtx
610 copy_addr_to_reg (rtx x)
611 {
612 return copy_to_mode_reg (Pmode, x);
613 }
614
615 /* Like copy_to_reg but always give the new register mode MODE
616 in case X is a constant. */
617
618 rtx
619 copy_to_mode_reg (enum machine_mode mode, rtx x)
620 {
621 rtx temp = gen_reg_rtx (mode);
622
623 /* If not an operand, must be an address with PLUS and MULT so
624 do the computation. */
625 if (! general_operand (x, VOIDmode))
626 x = force_operand (x, temp);
627
628 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
629 if (x != temp)
630 emit_move_insn (temp, x);
631 return temp;
632 }
633
634 /* Load X into a register if it is not already one.
635 Use mode MODE for the register.
636 X should be valid for mode MODE, but it may be a constant which
637 is valid for all integer modes; that's why caller must specify MODE.
638
639 The caller must not alter the value in the register we return,
640 since we mark it as a "constant" register. */
641
642 rtx
643 force_reg (enum machine_mode mode, rtx x)
644 {
645 rtx temp, insn, set;
646
647 if (REG_P (x))
648 return x;
649
650 if (general_operand (x, mode))
651 {
652 temp = gen_reg_rtx (mode);
653 insn = emit_move_insn (temp, x);
654 }
655 else
656 {
657 temp = force_operand (x, NULL_RTX);
658 if (REG_P (temp))
659 insn = get_last_insn ();
660 else
661 {
662 rtx temp2 = gen_reg_rtx (mode);
663 insn = emit_move_insn (temp2, temp);
664 temp = temp2;
665 }
666 }
667
668 /* Let optimizers know that TEMP's value never changes
669 and that X can be substituted for it. Don't get confused
670 if INSN set something else (such as a SUBREG of TEMP). */
671 if (CONSTANT_P (x)
672 && (set = single_set (insn)) != 0
673 && SET_DEST (set) == temp
674 && ! rtx_equal_p (x, SET_SRC (set)))
675 set_unique_reg_note (insn, REG_EQUAL, x);
676
677 /* Let optimizers know that TEMP is a pointer, and if so, the
678 known alignment of that pointer. */
679 {
680 unsigned align = 0;
681 if (GET_CODE (x) == SYMBOL_REF)
682 {
683 align = BITS_PER_UNIT;
684 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
685 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
686 }
687 else if (GET_CODE (x) == LABEL_REF)
688 align = BITS_PER_UNIT;
689 else if (GET_CODE (x) == CONST
690 && GET_CODE (XEXP (x, 0)) == PLUS
691 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
692 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
693 {
694 rtx s = XEXP (XEXP (x, 0), 0);
695 rtx c = XEXP (XEXP (x, 0), 1);
696 unsigned sa, ca;
697
698 sa = BITS_PER_UNIT;
699 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
700 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
701
702 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
703
704 align = MIN (sa, ca);
705 }
706
707 if (align || (MEM_P (x) && MEM_POINTER (x)))
708 mark_reg_pointer (temp, align);
709 }
710
711 return temp;
712 }
713
714 /* If X is a memory ref, copy its contents to a new temp reg and return
715 that reg. Otherwise, return X. */
716
717 rtx
718 force_not_mem (rtx x)
719 {
720 rtx temp;
721
722 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
723 return x;
724
725 temp = gen_reg_rtx (GET_MODE (x));
726
727 if (MEM_POINTER (x))
728 REG_POINTER (temp) = 1;
729
730 emit_move_insn (temp, x);
731 return temp;
732 }
733
734 /* Copy X to TARGET (if it's nonzero and a reg)
735 or to a new temp reg and return that reg.
736 MODE is the mode to use for X in case it is a constant. */
737
738 rtx
739 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
740 {
741 rtx temp;
742
743 if (target && REG_P (target))
744 temp = target;
745 else
746 temp = gen_reg_rtx (mode);
747
748 emit_move_insn (temp, x);
749 return temp;
750 }
751 \f
752 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
753 PUNSIGNEDP points to the signedness of the type and may be adjusted
754 to show what signedness to use on extension operations.
755
756 FOR_RETURN is nonzero if the caller is promoting the return value
757 of FNDECL, else it is for promoting args. */
758
759 enum machine_mode
760 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
761 const_tree funtype, int for_return)
762 {
763 switch (TREE_CODE (type))
764 {
765 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
766 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
767 case POINTER_TYPE: case REFERENCE_TYPE:
768 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
769 for_return);
770
771 default:
772 return mode;
773 }
774 }
775 /* Return the mode to use to store a scalar of TYPE and MODE.
776 PUNSIGNEDP points to the signedness of the type and may be adjusted
777 to show what signedness to use on extension operations. */
778
779 enum machine_mode
780 promote_mode (const_tree type, enum machine_mode mode, int *punsignedp)
781 {
782 /* FIXME: this is the same logic that was there until GCC 4.4, but we
783 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
784 is not defined. The affected targets are M32C, S390, SPARC. */
785 #ifdef PROMOTE_MODE
786 const enum tree_code code = TREE_CODE (type);
787 int unsignedp = *punsignedp;
788
789 switch (code)
790 {
791 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
792 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
793 PROMOTE_MODE (mode, unsignedp, type);
794 *punsignedp = unsignedp;
795 return mode;
796 break;
797
798 #ifdef POINTERS_EXTEND_UNSIGNED
799 case REFERENCE_TYPE:
800 case POINTER_TYPE:
801 *punsignedp = POINTERS_EXTEND_UNSIGNED;
802 return Pmode;
803 break;
804 #endif
805
806 default:
807 return mode;
808 }
809 #else
810 return mode;
811 #endif
812 }
813
814
815 /* Use one of promote_mode or promote_function_mode to find the promoted
816 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
817 of DECL after promotion. */
818
819 enum machine_mode
820 promote_decl_mode (const_tree decl, int *punsignedp)
821 {
822 tree type = TREE_TYPE (decl);
823 int unsignedp = TYPE_UNSIGNED (type);
824 enum machine_mode mode = DECL_MODE (decl);
825 enum machine_mode pmode;
826
827 if (TREE_CODE (decl) == RESULT_DECL)
828 pmode = promote_function_mode (type, mode, &unsignedp,
829 TREE_TYPE (current_function_decl), 1);
830 else if (TREE_CODE (decl) == PARM_DECL)
831 pmode = promote_function_mode (type, mode, &unsignedp,
832 TREE_TYPE (current_function_decl), 0);
833 else
834 pmode = promote_mode (type, mode, &unsignedp);
835
836 if (punsignedp)
837 *punsignedp = unsignedp;
838 return pmode;
839 }
840
841 \f
842 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
843 This pops when ADJUST is positive. ADJUST need not be constant. */
844
845 void
846 adjust_stack (rtx adjust)
847 {
848 rtx temp;
849
850 if (adjust == const0_rtx)
851 return;
852
853 /* We expect all variable sized adjustments to be multiple of
854 PREFERRED_STACK_BOUNDARY. */
855 if (CONST_INT_P (adjust))
856 stack_pointer_delta -= INTVAL (adjust);
857
858 temp = expand_binop (Pmode,
859 #ifdef STACK_GROWS_DOWNWARD
860 add_optab,
861 #else
862 sub_optab,
863 #endif
864 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
865 OPTAB_LIB_WIDEN);
866
867 if (temp != stack_pointer_rtx)
868 emit_move_insn (stack_pointer_rtx, temp);
869 }
870
871 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
872 This pushes when ADJUST is positive. ADJUST need not be constant. */
873
874 void
875 anti_adjust_stack (rtx adjust)
876 {
877 rtx temp;
878
879 if (adjust == const0_rtx)
880 return;
881
882 /* We expect all variable sized adjustments to be multiple of
883 PREFERRED_STACK_BOUNDARY. */
884 if (CONST_INT_P (adjust))
885 stack_pointer_delta += INTVAL (adjust);
886
887 temp = expand_binop (Pmode,
888 #ifdef STACK_GROWS_DOWNWARD
889 sub_optab,
890 #else
891 add_optab,
892 #endif
893 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
894 OPTAB_LIB_WIDEN);
895
896 if (temp != stack_pointer_rtx)
897 emit_move_insn (stack_pointer_rtx, temp);
898 }
899
900 /* Round the size of a block to be pushed up to the boundary required
901 by this machine. SIZE is the desired size, which need not be constant. */
902
903 static rtx
904 round_push (rtx size)
905 {
906 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
907
908 if (align == 1)
909 return size;
910
911 if (CONST_INT_P (size))
912 {
913 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
914
915 if (INTVAL (size) != new_size)
916 size = GEN_INT (new_size);
917 }
918 else
919 {
920 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
921 but we know it can't. So add ourselves and then do
922 TRUNC_DIV_EXPR. */
923 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
924 NULL_RTX, 1, OPTAB_LIB_WIDEN);
925 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
926 NULL_RTX, 1);
927 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
928 }
929
930 return size;
931 }
932 \f
933 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
934 to a previously-created save area. If no save area has been allocated,
935 this function will allocate one. If a save area is specified, it
936 must be of the proper mode.
937
938 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
939 are emitted at the current position. */
940
941 void
942 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
943 {
944 rtx sa = *psave;
945 /* The default is that we use a move insn and save in a Pmode object. */
946 rtx (*fcn) (rtx, rtx) = gen_move_insn;
947 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
948
949 /* See if this machine has anything special to do for this kind of save. */
950 switch (save_level)
951 {
952 #ifdef HAVE_save_stack_block
953 case SAVE_BLOCK:
954 if (HAVE_save_stack_block)
955 fcn = gen_save_stack_block;
956 break;
957 #endif
958 #ifdef HAVE_save_stack_function
959 case SAVE_FUNCTION:
960 if (HAVE_save_stack_function)
961 fcn = gen_save_stack_function;
962 break;
963 #endif
964 #ifdef HAVE_save_stack_nonlocal
965 case SAVE_NONLOCAL:
966 if (HAVE_save_stack_nonlocal)
967 fcn = gen_save_stack_nonlocal;
968 break;
969 #endif
970 default:
971 break;
972 }
973
974 /* If there is no save area and we have to allocate one, do so. Otherwise
975 verify the save area is the proper mode. */
976
977 if (sa == 0)
978 {
979 if (mode != VOIDmode)
980 {
981 if (save_level == SAVE_NONLOCAL)
982 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
983 else
984 *psave = sa = gen_reg_rtx (mode);
985 }
986 }
987
988 if (after)
989 {
990 rtx seq;
991
992 start_sequence ();
993 do_pending_stack_adjust ();
994 /* We must validize inside the sequence, to ensure that any instructions
995 created by the validize call also get moved to the right place. */
996 if (sa != 0)
997 sa = validize_mem (sa);
998 emit_insn (fcn (sa, stack_pointer_rtx));
999 seq = get_insns ();
1000 end_sequence ();
1001 emit_insn_after (seq, after);
1002 }
1003 else
1004 {
1005 do_pending_stack_adjust ();
1006 if (sa != 0)
1007 sa = validize_mem (sa);
1008 emit_insn (fcn (sa, stack_pointer_rtx));
1009 }
1010 }
1011
1012 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1013 area made by emit_stack_save. If it is zero, we have nothing to do.
1014
1015 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1016 current position. */
1017
1018 void
1019 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1020 {
1021 /* The default is that we use a move insn. */
1022 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1023
1024 /* See if this machine has anything special to do for this kind of save. */
1025 switch (save_level)
1026 {
1027 #ifdef HAVE_restore_stack_block
1028 case SAVE_BLOCK:
1029 if (HAVE_restore_stack_block)
1030 fcn = gen_restore_stack_block;
1031 break;
1032 #endif
1033 #ifdef HAVE_restore_stack_function
1034 case SAVE_FUNCTION:
1035 if (HAVE_restore_stack_function)
1036 fcn = gen_restore_stack_function;
1037 break;
1038 #endif
1039 #ifdef HAVE_restore_stack_nonlocal
1040 case SAVE_NONLOCAL:
1041 if (HAVE_restore_stack_nonlocal)
1042 fcn = gen_restore_stack_nonlocal;
1043 break;
1044 #endif
1045 default:
1046 break;
1047 }
1048
1049 if (sa != 0)
1050 {
1051 sa = validize_mem (sa);
1052 /* These clobbers prevent the scheduler from moving
1053 references to variable arrays below the code
1054 that deletes (pops) the arrays. */
1055 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1056 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1057 }
1058
1059 discard_pending_stack_adjust ();
1060
1061 if (after)
1062 {
1063 rtx seq;
1064
1065 start_sequence ();
1066 emit_insn (fcn (stack_pointer_rtx, sa));
1067 seq = get_insns ();
1068 end_sequence ();
1069 emit_insn_after (seq, after);
1070 }
1071 else
1072 emit_insn (fcn (stack_pointer_rtx, sa));
1073 }
1074
1075 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1076 function. This function should be called whenever we allocate or
1077 deallocate dynamic stack space. */
1078
1079 void
1080 update_nonlocal_goto_save_area (void)
1081 {
1082 tree t_save;
1083 rtx r_save;
1084
1085 /* The nonlocal_goto_save_area object is an array of N pointers. The
1086 first one is used for the frame pointer save; the rest are sized by
1087 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1088 of the stack save area slots. */
1089 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1090 integer_one_node, NULL_TREE, NULL_TREE);
1091 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1092
1093 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1094 }
1095 \f
1096 /* Return an rtx representing the address of an area of memory dynamically
1097 pushed on the stack. This region of memory is always aligned to
1098 a multiple of BIGGEST_ALIGNMENT.
1099
1100 Any required stack pointer alignment is preserved.
1101
1102 SIZE is an rtx representing the size of the area.
1103 TARGET is a place in which the address can be placed.
1104
1105 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1106
1107 rtx
1108 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1109 {
1110 /* If we're asking for zero bytes, it doesn't matter what we point
1111 to since we can't dereference it. But return a reasonable
1112 address anyway. */
1113 if (size == const0_rtx)
1114 return virtual_stack_dynamic_rtx;
1115
1116 /* Otherwise, show we're calling alloca or equivalent. */
1117 cfun->calls_alloca = 1;
1118
1119 /* Ensure the size is in the proper mode. */
1120 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1121 size = convert_to_mode (Pmode, size, 1);
1122
1123 /* We can't attempt to minimize alignment necessary, because we don't
1124 know the final value of preferred_stack_boundary yet while executing
1125 this code. */
1126 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1127
1128 /* We will need to ensure that the address we return is aligned to
1129 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1130 always know its final value at this point in the compilation (it
1131 might depend on the size of the outgoing parameter lists, for
1132 example), so we must align the value to be returned in that case.
1133 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1134 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1135 We must also do an alignment operation on the returned value if
1136 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1137
1138 If we have to align, we must leave space in SIZE for the hole
1139 that might result from the alignment operation. */
1140
1141 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1142 #define MUST_ALIGN 1
1143 #else
1144 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1145 #endif
1146
1147 if (MUST_ALIGN)
1148 size
1149 = force_operand (plus_constant (size,
1150 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1151 NULL_RTX);
1152
1153 #ifdef SETJMP_VIA_SAVE_AREA
1154 /* If setjmp restores regs from a save area in the stack frame,
1155 avoid clobbering the reg save area. Note that the offset of
1156 virtual_incoming_args_rtx includes the preallocated stack args space.
1157 It would be no problem to clobber that, but it's on the wrong side
1158 of the old save area.
1159
1160 What used to happen is that, since we did not know for sure
1161 whether setjmp() was invoked until after RTL generation, we
1162 would use reg notes to store the "optimized" size and fix things
1163 up later. These days we know this information before we ever
1164 start building RTL so the reg notes are unnecessary. */
1165 if (!cfun->calls_setjmp)
1166 {
1167 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1168
1169 /* ??? Code below assumes that the save area needs maximal
1170 alignment. This constraint may be too strong. */
1171 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1172
1173 if (CONST_INT_P (size))
1174 {
1175 HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1176
1177 if (INTVAL (size) != new_size)
1178 size = GEN_INT (new_size);
1179 }
1180 else
1181 {
1182 /* Since we know overflow is not possible, we avoid using
1183 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1184 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1185 GEN_INT (align), NULL_RTX, 1);
1186 size = expand_mult (Pmode, size,
1187 GEN_INT (align), NULL_RTX, 1);
1188 }
1189 }
1190 else
1191 {
1192 rtx dynamic_offset
1193 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1194 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1195
1196 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1197 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1198 }
1199 #endif /* SETJMP_VIA_SAVE_AREA */
1200
1201 /* Round the size to a multiple of the required stack alignment.
1202 Since the stack if presumed to be rounded before this allocation,
1203 this will maintain the required alignment.
1204
1205 If the stack grows downward, we could save an insn by subtracting
1206 SIZE from the stack pointer and then aligning the stack pointer.
1207 The problem with this is that the stack pointer may be unaligned
1208 between the execution of the subtraction and alignment insns and
1209 some machines do not allow this. Even on those that do, some
1210 signal handlers malfunction if a signal should occur between those
1211 insns. Since this is an extremely rare event, we have no reliable
1212 way of knowing which systems have this problem. So we avoid even
1213 momentarily mis-aligning the stack. */
1214
1215 /* If we added a variable amount to SIZE,
1216 we can no longer assume it is aligned. */
1217 #if !defined (SETJMP_VIA_SAVE_AREA)
1218 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1219 #endif
1220 size = round_push (size);
1221
1222 do_pending_stack_adjust ();
1223
1224 /* We ought to be called always on the toplevel and stack ought to be aligned
1225 properly. */
1226 gcc_assert (!(stack_pointer_delta
1227 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1228
1229 /* If needed, check that we have the required amount of stack.
1230 Take into account what has already been checked. */
1231 if (flag_stack_check == GENERIC_STACK_CHECK)
1232 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1233 size);
1234 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1235 probe_stack_range (STACK_CHECK_PROTECT, size);
1236
1237 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1238 if (target == 0 || !REG_P (target)
1239 || REGNO (target) < FIRST_PSEUDO_REGISTER
1240 || GET_MODE (target) != Pmode)
1241 target = gen_reg_rtx (Pmode);
1242
1243 mark_reg_pointer (target, known_align);
1244
1245 /* Perform the required allocation from the stack. Some systems do
1246 this differently than simply incrementing/decrementing from the
1247 stack pointer, such as acquiring the space by calling malloc(). */
1248 #ifdef HAVE_allocate_stack
1249 if (HAVE_allocate_stack)
1250 {
1251 enum machine_mode mode = STACK_SIZE_MODE;
1252 insn_operand_predicate_fn pred;
1253
1254 /* We don't have to check against the predicate for operand 0 since
1255 TARGET is known to be a pseudo of the proper mode, which must
1256 be valid for the operand. For operand 1, convert to the
1257 proper mode and validate. */
1258 if (mode == VOIDmode)
1259 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1260
1261 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1262 if (pred && ! ((*pred) (size, mode)))
1263 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1264
1265 emit_insn (gen_allocate_stack (target, size));
1266 }
1267 else
1268 #endif
1269 {
1270 #ifndef STACK_GROWS_DOWNWARD
1271 emit_move_insn (target, virtual_stack_dynamic_rtx);
1272 #endif
1273
1274 /* Check stack bounds if necessary. */
1275 if (crtl->limit_stack)
1276 {
1277 rtx available;
1278 rtx space_available = gen_label_rtx ();
1279 #ifdef STACK_GROWS_DOWNWARD
1280 available = expand_binop (Pmode, sub_optab,
1281 stack_pointer_rtx, stack_limit_rtx,
1282 NULL_RTX, 1, OPTAB_WIDEN);
1283 #else
1284 available = expand_binop (Pmode, sub_optab,
1285 stack_limit_rtx, stack_pointer_rtx,
1286 NULL_RTX, 1, OPTAB_WIDEN);
1287 #endif
1288 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1289 space_available);
1290 #ifdef HAVE_trap
1291 if (HAVE_trap)
1292 emit_insn (gen_trap ());
1293 else
1294 #endif
1295 error ("stack limits not supported on this target");
1296 emit_barrier ();
1297 emit_label (space_available);
1298 }
1299
1300 anti_adjust_stack (size);
1301
1302 #ifdef STACK_GROWS_DOWNWARD
1303 emit_move_insn (target, virtual_stack_dynamic_rtx);
1304 #endif
1305 }
1306
1307 if (MUST_ALIGN)
1308 {
1309 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1310 but we know it can't. So add ourselves and then do
1311 TRUNC_DIV_EXPR. */
1312 target = expand_binop (Pmode, add_optab, target,
1313 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1314 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1315 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1316 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1317 NULL_RTX, 1);
1318 target = expand_mult (Pmode, target,
1319 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1320 NULL_RTX, 1);
1321 }
1322
1323 /* Record the new stack level for nonlocal gotos. */
1324 if (cfun->nonlocal_goto_save_area != 0)
1325 update_nonlocal_goto_save_area ();
1326
1327 return target;
1328 }
1329 \f
1330 /* A front end may want to override GCC's stack checking by providing a
1331 run-time routine to call to check the stack, so provide a mechanism for
1332 calling that routine. */
1333
1334 static GTY(()) rtx stack_check_libfunc;
1335
1336 void
1337 set_stack_check_libfunc (rtx libfunc)
1338 {
1339 stack_check_libfunc = libfunc;
1340 }
1341 \f
1342 /* Emit one stack probe at ADDRESS, an address within the stack. */
1343
1344 static void
1345 emit_stack_probe (rtx address)
1346 {
1347 rtx memref = gen_rtx_MEM (word_mode, address);
1348
1349 MEM_VOLATILE_P (memref) = 1;
1350
1351 if (STACK_CHECK_PROBE_LOAD)
1352 emit_move_insn (gen_reg_rtx (word_mode), memref);
1353 else
1354 emit_move_insn (memref, const0_rtx);
1355 }
1356
1357 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1358 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1359 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1360 subtract from the stack. If SIZE is constant, this is done
1361 with a fixed number of probes. Otherwise, we must make a loop. */
1362
1363 #ifdef STACK_GROWS_DOWNWARD
1364 #define STACK_GROW_OP MINUS
1365 #else
1366 #define STACK_GROW_OP PLUS
1367 #endif
1368
1369 void
1370 probe_stack_range (HOST_WIDE_INT first, rtx size)
1371 {
1372 /* First ensure SIZE is Pmode. */
1373 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1374 size = convert_to_mode (Pmode, size, 1);
1375
1376 /* Next see if the front end has set up a function for us to call to
1377 check the stack. */
1378 if (stack_check_libfunc != 0)
1379 {
1380 rtx addr = memory_address (QImode,
1381 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1382 stack_pointer_rtx,
1383 plus_constant (size, first)));
1384
1385 addr = convert_memory_address (ptr_mode, addr);
1386 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1387 ptr_mode);
1388 }
1389
1390 /* Next see if we have an insn to check the stack. Use it if so. */
1391 #ifdef HAVE_check_stack
1392 else if (HAVE_check_stack)
1393 {
1394 insn_operand_predicate_fn pred;
1395 rtx last_addr
1396 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1397 stack_pointer_rtx,
1398 plus_constant (size, first)),
1399 NULL_RTX);
1400
1401 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1402 if (pred && ! ((*pred) (last_addr, Pmode)))
1403 last_addr = copy_to_mode_reg (Pmode, last_addr);
1404
1405 emit_insn (gen_check_stack (last_addr));
1406 }
1407 #endif
1408
1409 /* If we have to generate explicit probes, see if we have a constant
1410 small number of them to generate. If so, that's the easy case. */
1411 else if (CONST_INT_P (size)
1412 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1413 {
1414 HOST_WIDE_INT offset;
1415
1416 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1417 for values of N from 1 until it exceeds LAST. If only one
1418 probe is needed, this will not generate any code. Then probe
1419 at LAST. */
1420 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1421 offset < INTVAL (size);
1422 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1423 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1424 stack_pointer_rtx,
1425 GEN_INT (offset)));
1426
1427 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1428 stack_pointer_rtx,
1429 plus_constant (size, first)));
1430 }
1431
1432 /* In the variable case, do the same as above, but in a loop. We emit loop
1433 notes so that loop optimization can be done. */
1434 else
1435 {
1436 rtx test_addr
1437 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1438 stack_pointer_rtx,
1439 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1440 NULL_RTX);
1441 rtx last_addr
1442 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1443 stack_pointer_rtx,
1444 plus_constant (size, first)),
1445 NULL_RTX);
1446 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1447 rtx loop_lab = gen_label_rtx ();
1448 rtx test_lab = gen_label_rtx ();
1449 rtx end_lab = gen_label_rtx ();
1450 rtx temp;
1451
1452 if (!REG_P (test_addr)
1453 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1454 test_addr = force_reg (Pmode, test_addr);
1455
1456 emit_jump (test_lab);
1457
1458 emit_label (loop_lab);
1459 emit_stack_probe (test_addr);
1460
1461 #ifdef STACK_GROWS_DOWNWARD
1462 #define CMP_OPCODE GTU
1463 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1464 1, OPTAB_WIDEN);
1465 #else
1466 #define CMP_OPCODE LTU
1467 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1468 1, OPTAB_WIDEN);
1469 #endif
1470
1471 gcc_assert (temp == test_addr);
1472
1473 emit_label (test_lab);
1474 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1475 NULL_RTX, Pmode, 1, loop_lab);
1476 emit_jump (end_lab);
1477 emit_label (end_lab);
1478
1479 emit_stack_probe (last_addr);
1480 }
1481 }
1482 \f
1483 /* Return an rtx representing the register or memory location
1484 in which a scalar value of data type VALTYPE
1485 was returned by a function call to function FUNC.
1486 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1487 function is known, otherwise 0.
1488 OUTGOING is 1 if on a machine with register windows this function
1489 should return the register in which the function will put its result
1490 and 0 otherwise. */
1491
1492 rtx
1493 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1494 int outgoing ATTRIBUTE_UNUSED)
1495 {
1496 rtx val;
1497
1498 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1499
1500 if (REG_P (val)
1501 && GET_MODE (val) == BLKmode)
1502 {
1503 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1504 enum machine_mode tmpmode;
1505
1506 /* int_size_in_bytes can return -1. We don't need a check here
1507 since the value of bytes will then be large enough that no
1508 mode will match anyway. */
1509
1510 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1511 tmpmode != VOIDmode;
1512 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1513 {
1514 /* Have we found a large enough mode? */
1515 if (GET_MODE_SIZE (tmpmode) >= bytes)
1516 break;
1517 }
1518
1519 /* No suitable mode found. */
1520 gcc_assert (tmpmode != VOIDmode);
1521
1522 PUT_MODE (val, tmpmode);
1523 }
1524 return val;
1525 }
1526
1527 /* Return an rtx representing the register or memory location
1528 in which a scalar value of mode MODE was returned by a library call. */
1529
1530 rtx
1531 hard_libcall_value (enum machine_mode mode)
1532 {
1533 return LIBCALL_VALUE (mode);
1534 }
1535
1536 /* Look up the tree code for a given rtx code
1537 to provide the arithmetic operation for REAL_ARITHMETIC.
1538 The function returns an int because the caller may not know
1539 what `enum tree_code' means. */
1540
1541 int
1542 rtx_to_tree_code (enum rtx_code code)
1543 {
1544 enum tree_code tcode;
1545
1546 switch (code)
1547 {
1548 case PLUS:
1549 tcode = PLUS_EXPR;
1550 break;
1551 case MINUS:
1552 tcode = MINUS_EXPR;
1553 break;
1554 case MULT:
1555 tcode = MULT_EXPR;
1556 break;
1557 case DIV:
1558 tcode = RDIV_EXPR;
1559 break;
1560 case SMIN:
1561 tcode = MIN_EXPR;
1562 break;
1563 case SMAX:
1564 tcode = MAX_EXPR;
1565 break;
1566 default:
1567 tcode = LAST_AND_UNUSED_TREE_CODE;
1568 break;
1569 }
1570 return ((int) tcode);
1571 }
1572
1573 #include "gt-explow.h"