Update Copyright years for files modified in 2011 and/or 2012.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "common/common-target.h"
44 #include "output.h"
45
46 static rtx break_out_memory_refs (rtx);
47
48
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 {
54 int width = GET_MODE_PRECISION (mode);
55
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
58
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
62
63 /* Sign-extend for the requested mode. */
64
65 if (width < HOST_BITS_PER_WIDE_INT)
66 {
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
72 }
73
74 return c;
75 }
76
77 /* Return an rtx for the sum of X and the integer C, given that X has
78 mode MODE. */
79
80 rtx
81 plus_constant (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
82 {
83 RTX_CODE code;
84 rtx y;
85 rtx tem;
86 int all_constant = 0;
87
88 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
89
90 if (c == 0)
91 return x;
92
93 restart:
94
95 code = GET_CODE (x);
96 y = x;
97
98 switch (code)
99 {
100 case CONST_INT:
101 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
102 {
103 double_int di_x = double_int::from_shwi (INTVAL (x));
104 double_int di_c = double_int::from_shwi (c);
105
106 bool overflow;
107 double_int v = di_x.add_with_sign (di_c, false, &overflow);
108 if (overflow)
109 gcc_unreachable ();
110
111 return immed_double_int_const (v, VOIDmode);
112 }
113
114 return GEN_INT (INTVAL (x) + c);
115
116 case CONST_DOUBLE:
117 {
118 double_int di_x = double_int::from_pair (CONST_DOUBLE_HIGH (x),
119 CONST_DOUBLE_LOW (x));
120 double_int di_c = double_int::from_shwi (c);
121
122 bool overflow;
123 double_int v = di_x.add_with_sign (di_c, false, &overflow);
124 if (overflow)
125 /* Sorry, we have no way to represent overflows this wide.
126 To fix, add constant support wider than CONST_DOUBLE. */
127 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
128
129 return immed_double_int_const (v, VOIDmode);
130 }
131
132 case MEM:
133 /* If this is a reference to the constant pool, try replacing it with
134 a reference to a new constant. If the resulting address isn't
135 valid, don't return it because we have no way to validize it. */
136 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
137 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
138 {
139 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
140 tem = force_const_mem (GET_MODE (x), tem);
141 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
142 return tem;
143 }
144 break;
145
146 case CONST:
147 /* If adding to something entirely constant, set a flag
148 so that we can add a CONST around the result. */
149 x = XEXP (x, 0);
150 all_constant = 1;
151 goto restart;
152
153 case SYMBOL_REF:
154 case LABEL_REF:
155 all_constant = 1;
156 break;
157
158 case PLUS:
159 /* The interesting case is adding the integer to a sum. Look
160 for constant term in the sum and combine with C. For an
161 integer constant term or a constant term that is not an
162 explicit integer, we combine or group them together anyway.
163
164 We may not immediately return from the recursive call here, lest
165 all_constant gets lost. */
166
167 if (CONSTANT_P (XEXP (x, 1)))
168 {
169 x = gen_rtx_PLUS (mode, XEXP (x, 0),
170 plus_constant (mode, XEXP (x, 1), c));
171 c = 0;
172 }
173 else if (find_constant_term_loc (&y))
174 {
175 /* We need to be careful since X may be shared and we can't
176 modify it in place. */
177 rtx copy = copy_rtx (x);
178 rtx *const_loc = find_constant_term_loc (&copy);
179
180 *const_loc = plus_constant (mode, *const_loc, c);
181 x = copy;
182 c = 0;
183 }
184 break;
185
186 default:
187 break;
188 }
189
190 if (c != 0)
191 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192
193 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
194 return x;
195 else if (all_constant)
196 return gen_rtx_CONST (mode, x);
197 else
198 return x;
199 }
200 \f
201 /* If X is a sum, return a new sum like X but lacking any constant terms.
202 Add all the removed constant terms into *CONSTPTR.
203 X itself is not altered. The result != X if and only if
204 it is not isomorphic to X. */
205
206 rtx
207 eliminate_constant_term (rtx x, rtx *constptr)
208 {
209 rtx x0, x1;
210 rtx tem;
211
212 if (GET_CODE (x) != PLUS)
213 return x;
214
215 /* First handle constants appearing at this level explicitly. */
216 if (CONST_INT_P (XEXP (x, 1))
217 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
218 XEXP (x, 1)))
219 && CONST_INT_P (tem))
220 {
221 *constptr = tem;
222 return eliminate_constant_term (XEXP (x, 0), constptr);
223 }
224
225 tem = const0_rtx;
226 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
227 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
228 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
229 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
230 *constptr, tem))
231 && CONST_INT_P (tem))
232 {
233 *constptr = tem;
234 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 }
236
237 return x;
238 }
239
240 /* Return an rtx for the size in bytes of the value of EXP. */
241
242 rtx
243 expr_size (tree exp)
244 {
245 tree size;
246
247 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
248 size = TREE_OPERAND (exp, 1);
249 else
250 {
251 size = tree_expr_size (exp);
252 gcc_assert (size);
253 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
254 }
255
256 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
257 }
258
259 /* Return a wide integer for the size in bytes of the value of EXP, or -1
260 if the size can vary or is larger than an integer. */
261
262 HOST_WIDE_INT
263 int_expr_size (tree exp)
264 {
265 tree size;
266
267 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
268 size = TREE_OPERAND (exp, 1);
269 else
270 {
271 size = tree_expr_size (exp);
272 gcc_assert (size);
273 }
274
275 if (size == 0 || !host_integerp (size, 0))
276 return -1;
277
278 return tree_low_cst (size, 0);
279 }
280 \f
281 /* Return a copy of X in which all memory references
282 and all constants that involve symbol refs
283 have been replaced with new temporary registers.
284 Also emit code to load the memory locations and constants
285 into those registers.
286
287 If X contains no such constants or memory references,
288 X itself (not a copy) is returned.
289
290 If a constant is found in the address that is not a legitimate constant
291 in an insn, it is left alone in the hope that it might be valid in the
292 address.
293
294 X may contain no arithmetic except addition, subtraction and multiplication.
295 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296
297 static rtx
298 break_out_memory_refs (rtx x)
299 {
300 if (MEM_P (x)
301 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
302 && GET_MODE (x) != VOIDmode))
303 x = force_reg (GET_MODE (x), x);
304 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
305 || GET_CODE (x) == MULT)
306 {
307 rtx op0 = break_out_memory_refs (XEXP (x, 0));
308 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309
310 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
311 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
312 }
313
314 return x;
315 }
316
317 /* Given X, a memory address in address space AS' pointer mode, convert it to
318 an address in the address space's address mode, or vice versa (TO_MODE says
319 which way). We take advantage of the fact that pointers are not allowed to
320 overflow by commuting arithmetic operations over conversions so that address
321 arithmetic insns can be used. */
322
323 rtx
324 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
325 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
326 {
327 #ifndef POINTERS_EXTEND_UNSIGNED
328 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
329 return x;
330 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
331 enum machine_mode pointer_mode, address_mode, from_mode;
332 rtx temp;
333 enum rtx_code code;
334
335 /* If X already has the right mode, just return it. */
336 if (GET_MODE (x) == to_mode)
337 return x;
338
339 pointer_mode = targetm.addr_space.pointer_mode (as);
340 address_mode = targetm.addr_space.address_mode (as);
341 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
342
343 /* Here we handle some special cases. If none of them apply, fall through
344 to the default case. */
345 switch (GET_CODE (x))
346 {
347 CASE_CONST_SCALAR_INT:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
360
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
366
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
372
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
378
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
384
385 case PLUS:
386 case MULT:
387 /* FIXME: For addition, we used to permute the conversion and
388 addition operation only if one operand is a constant and
389 converting the constant does not change it or if one operand
390 is a constant and we are using a ptr_extend instruction
391 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
392 may overflow/underflow. We relax the condition to include
393 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
394 parts of the compiler depend on it. See PR 49721.
395
396 We can always safely permute them if we are making the address
397 narrower. */
398 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
399 || (GET_CODE (x) == PLUS
400 && CONST_INT_P (XEXP (x, 1))
401 && (POINTERS_EXTEND_UNSIGNED != 0
402 || XEXP (x, 1) == convert_memory_address_addr_space
403 (to_mode, XEXP (x, 1), as))))
404 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
405 convert_memory_address_addr_space
406 (to_mode, XEXP (x, 0), as),
407 XEXP (x, 1));
408 break;
409
410 default:
411 break;
412 }
413
414 return convert_modes (to_mode, from_mode,
415 x, POINTERS_EXTEND_UNSIGNED);
416 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
417 }
418 \f
419 /* Return something equivalent to X but valid as a memory address for something
420 of mode MODE in the named address space AS. When X is not itself valid,
421 this works by copying X or subexpressions of it into registers. */
422
423 rtx
424 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
425 {
426 rtx oldx = x;
427 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
428
429 x = convert_memory_address_addr_space (address_mode, x, as);
430
431 /* By passing constant addresses through registers
432 we get a chance to cse them. */
433 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
434 x = force_reg (address_mode, x);
435
436 /* We get better cse by rejecting indirect addressing at this stage.
437 Let the combiner create indirect addresses where appropriate.
438 For now, generate the code so that the subexpressions useful to share
439 are visible. But not if cse won't be done! */
440 else
441 {
442 if (! cse_not_expected && !REG_P (x))
443 x = break_out_memory_refs (x);
444
445 /* At this point, any valid address is accepted. */
446 if (memory_address_addr_space_p (mode, x, as))
447 goto done;
448
449 /* If it was valid before but breaking out memory refs invalidated it,
450 use it the old way. */
451 if (memory_address_addr_space_p (mode, oldx, as))
452 {
453 x = oldx;
454 goto done;
455 }
456
457 /* Perform machine-dependent transformations on X
458 in certain cases. This is not necessary since the code
459 below can handle all possible cases, but machine-dependent
460 transformations can make better code. */
461 {
462 rtx orig_x = x;
463 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
464 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
465 goto done;
466 }
467
468 /* PLUS and MULT can appear in special ways
469 as the result of attempts to make an address usable for indexing.
470 Usually they are dealt with by calling force_operand, below.
471 But a sum containing constant terms is special
472 if removing them makes the sum a valid address:
473 then we generate that address in a register
474 and index off of it. We do this because it often makes
475 shorter code, and because the addresses thus generated
476 in registers often become common subexpressions. */
477 if (GET_CODE (x) == PLUS)
478 {
479 rtx constant_term = const0_rtx;
480 rtx y = eliminate_constant_term (x, &constant_term);
481 if (constant_term == const0_rtx
482 || ! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 {
486 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
487 if (! memory_address_addr_space_p (mode, y, as))
488 x = force_operand (x, NULL_RTX);
489 else
490 x = y;
491 }
492 }
493
494 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
495 x = force_operand (x, NULL_RTX);
496
497 /* If we have a register that's an invalid address,
498 it must be a hard reg of the wrong class. Copy it to a pseudo. */
499 else if (REG_P (x))
500 x = copy_to_reg (x);
501
502 /* Last resort: copy the value to a register, since
503 the register is a valid address. */
504 else
505 x = force_reg (address_mode, x);
506 }
507
508 done:
509
510 gcc_assert (memory_address_addr_space_p (mode, x, as));
511 /* If we didn't change the address, we are done. Otherwise, mark
512 a reg as a pointer if we have REG or REG + CONST_INT. */
513 if (oldx == x)
514 return x;
515 else if (REG_P (x))
516 mark_reg_pointer (x, BITS_PER_UNIT);
517 else if (GET_CODE (x) == PLUS
518 && REG_P (XEXP (x, 0))
519 && CONST_INT_P (XEXP (x, 1)))
520 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
521
522 /* OLDX may have been the address on a temporary. Update the address
523 to indicate that X is now used. */
524 update_temp_slot_address (oldx, x);
525
526 return x;
527 }
528
529 /* Convert a mem ref into one with a valid memory address.
530 Pass through anything else unchanged. */
531
532 rtx
533 validize_mem (rtx ref)
534 {
535 if (!MEM_P (ref))
536 return ref;
537 ref = use_anchored_address (ref);
538 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
539 MEM_ADDR_SPACE (ref)))
540 return ref;
541
542 /* Don't alter REF itself, since that is probably a stack slot. */
543 return replace_equiv_address (ref, XEXP (ref, 0));
544 }
545
546 /* If X is a memory reference to a member of an object block, try rewriting
547 it to use an anchor instead. Return the new memory reference on success
548 and the old one on failure. */
549
550 rtx
551 use_anchored_address (rtx x)
552 {
553 rtx base;
554 HOST_WIDE_INT offset;
555 enum machine_mode mode;
556
557 if (!flag_section_anchors)
558 return x;
559
560 if (!MEM_P (x))
561 return x;
562
563 /* Split the address into a base and offset. */
564 base = XEXP (x, 0);
565 offset = 0;
566 if (GET_CODE (base) == CONST
567 && GET_CODE (XEXP (base, 0)) == PLUS
568 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
569 {
570 offset += INTVAL (XEXP (XEXP (base, 0), 1));
571 base = XEXP (XEXP (base, 0), 0);
572 }
573
574 /* Check whether BASE is suitable for anchors. */
575 if (GET_CODE (base) != SYMBOL_REF
576 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
577 || SYMBOL_REF_ANCHOR_P (base)
578 || SYMBOL_REF_BLOCK (base) == NULL
579 || !targetm.use_anchors_for_symbol_p (base))
580 return x;
581
582 /* Decide where BASE is going to be. */
583 place_block_symbol (base);
584
585 /* Get the anchor we need to use. */
586 offset += SYMBOL_REF_BLOCK_OFFSET (base);
587 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
588 SYMBOL_REF_TLS_MODEL (base));
589
590 /* Work out the offset from the anchor. */
591 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
592
593 /* If we're going to run a CSE pass, force the anchor into a register.
594 We will then be able to reuse registers for several accesses, if the
595 target costs say that that's worthwhile. */
596 mode = GET_MODE (base);
597 if (!cse_not_expected)
598 base = force_reg (mode, base);
599
600 return replace_equiv_address (x, plus_constant (mode, base, offset));
601 }
602 \f
603 /* Copy the value or contents of X to a new temp reg and return that reg. */
604
605 rtx
606 copy_to_reg (rtx x)
607 {
608 rtx temp = gen_reg_rtx (GET_MODE (x));
609
610 /* If not an operand, must be an address with PLUS and MULT so
611 do the computation. */
612 if (! general_operand (x, VOIDmode))
613 x = force_operand (x, temp);
614
615 if (x != temp)
616 emit_move_insn (temp, x);
617
618 return temp;
619 }
620
621 /* Like copy_to_reg but always give the new register mode Pmode
622 in case X is a constant. */
623
624 rtx
625 copy_addr_to_reg (rtx x)
626 {
627 return copy_to_mode_reg (Pmode, x);
628 }
629
630 /* Like copy_to_reg but always give the new register mode MODE
631 in case X is a constant. */
632
633 rtx
634 copy_to_mode_reg (enum machine_mode mode, rtx x)
635 {
636 rtx temp = gen_reg_rtx (mode);
637
638 /* If not an operand, must be an address with PLUS and MULT so
639 do the computation. */
640 if (! general_operand (x, VOIDmode))
641 x = force_operand (x, temp);
642
643 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
644 if (x != temp)
645 emit_move_insn (temp, x);
646 return temp;
647 }
648
649 /* Load X into a register if it is not already one.
650 Use mode MODE for the register.
651 X should be valid for mode MODE, but it may be a constant which
652 is valid for all integer modes; that's why caller must specify MODE.
653
654 The caller must not alter the value in the register we return,
655 since we mark it as a "constant" register. */
656
657 rtx
658 force_reg (enum machine_mode mode, rtx x)
659 {
660 rtx temp, insn, set;
661
662 if (REG_P (x))
663 return x;
664
665 if (general_operand (x, mode))
666 {
667 temp = gen_reg_rtx (mode);
668 insn = emit_move_insn (temp, x);
669 }
670 else
671 {
672 temp = force_operand (x, NULL_RTX);
673 if (REG_P (temp))
674 insn = get_last_insn ();
675 else
676 {
677 rtx temp2 = gen_reg_rtx (mode);
678 insn = emit_move_insn (temp2, temp);
679 temp = temp2;
680 }
681 }
682
683 /* Let optimizers know that TEMP's value never changes
684 and that X can be substituted for it. Don't get confused
685 if INSN set something else (such as a SUBREG of TEMP). */
686 if (CONSTANT_P (x)
687 && (set = single_set (insn)) != 0
688 && SET_DEST (set) == temp
689 && ! rtx_equal_p (x, SET_SRC (set)))
690 set_unique_reg_note (insn, REG_EQUAL, x);
691
692 /* Let optimizers know that TEMP is a pointer, and if so, the
693 known alignment of that pointer. */
694 {
695 unsigned align = 0;
696 if (GET_CODE (x) == SYMBOL_REF)
697 {
698 align = BITS_PER_UNIT;
699 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
700 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
701 }
702 else if (GET_CODE (x) == LABEL_REF)
703 align = BITS_PER_UNIT;
704 else if (GET_CODE (x) == CONST
705 && GET_CODE (XEXP (x, 0)) == PLUS
706 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
707 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
708 {
709 rtx s = XEXP (XEXP (x, 0), 0);
710 rtx c = XEXP (XEXP (x, 0), 1);
711 unsigned sa, ca;
712
713 sa = BITS_PER_UNIT;
714 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
715 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
716
717 if (INTVAL (c) == 0)
718 align = sa;
719 else
720 {
721 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
722 align = MIN (sa, ca);
723 }
724 }
725
726 if (align || (MEM_P (x) && MEM_POINTER (x)))
727 mark_reg_pointer (temp, align);
728 }
729
730 return temp;
731 }
732
733 /* If X is a memory ref, copy its contents to a new temp reg and return
734 that reg. Otherwise, return X. */
735
736 rtx
737 force_not_mem (rtx x)
738 {
739 rtx temp;
740
741 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
742 return x;
743
744 temp = gen_reg_rtx (GET_MODE (x));
745
746 if (MEM_POINTER (x))
747 REG_POINTER (temp) = 1;
748
749 emit_move_insn (temp, x);
750 return temp;
751 }
752
753 /* Copy X to TARGET (if it's nonzero and a reg)
754 or to a new temp reg and return that reg.
755 MODE is the mode to use for X in case it is a constant. */
756
757 rtx
758 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
759 {
760 rtx temp;
761
762 if (target && REG_P (target))
763 temp = target;
764 else
765 temp = gen_reg_rtx (mode);
766
767 emit_move_insn (temp, x);
768 return temp;
769 }
770 \f
771 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
772 PUNSIGNEDP points to the signedness of the type and may be adjusted
773 to show what signedness to use on extension operations.
774
775 FOR_RETURN is nonzero if the caller is promoting the return value
776 of FNDECL, else it is for promoting args. */
777
778 enum machine_mode
779 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
780 const_tree funtype, int for_return)
781 {
782 /* Called without a type node for a libcall. */
783 if (type == NULL_TREE)
784 {
785 if (INTEGRAL_MODE_P (mode))
786 return targetm.calls.promote_function_mode (NULL_TREE, mode,
787 punsignedp, funtype,
788 for_return);
789 else
790 return mode;
791 }
792
793 switch (TREE_CODE (type))
794 {
795 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
796 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
797 case POINTER_TYPE: case REFERENCE_TYPE:
798 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
799 for_return);
800
801 default:
802 return mode;
803 }
804 }
805 /* Return the mode to use to store a scalar of TYPE and MODE.
806 PUNSIGNEDP points to the signedness of the type and may be adjusted
807 to show what signedness to use on extension operations. */
808
809 enum machine_mode
810 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
811 int *punsignedp ATTRIBUTE_UNUSED)
812 {
813 #ifdef PROMOTE_MODE
814 enum tree_code code;
815 int unsignedp;
816 #endif
817
818 /* For libcalls this is invoked without TYPE from the backends
819 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
820 case. */
821 if (type == NULL_TREE)
822 return mode;
823
824 /* FIXME: this is the same logic that was there until GCC 4.4, but we
825 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
826 is not defined. The affected targets are M32C, S390, SPARC. */
827 #ifdef PROMOTE_MODE
828 code = TREE_CODE (type);
829 unsignedp = *punsignedp;
830
831 switch (code)
832 {
833 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
834 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
835 PROMOTE_MODE (mode, unsignedp, type);
836 *punsignedp = unsignedp;
837 return mode;
838 break;
839
840 #ifdef POINTERS_EXTEND_UNSIGNED
841 case REFERENCE_TYPE:
842 case POINTER_TYPE:
843 *punsignedp = POINTERS_EXTEND_UNSIGNED;
844 return targetm.addr_space.address_mode
845 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
846 break;
847 #endif
848
849 default:
850 return mode;
851 }
852 #else
853 return mode;
854 #endif
855 }
856
857
858 /* Use one of promote_mode or promote_function_mode to find the promoted
859 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
860 of DECL after promotion. */
861
862 enum machine_mode
863 promote_decl_mode (const_tree decl, int *punsignedp)
864 {
865 tree type = TREE_TYPE (decl);
866 int unsignedp = TYPE_UNSIGNED (type);
867 enum machine_mode mode = DECL_MODE (decl);
868 enum machine_mode pmode;
869
870 if (TREE_CODE (decl) == RESULT_DECL
871 || TREE_CODE (decl) == PARM_DECL)
872 pmode = promote_function_mode (type, mode, &unsignedp,
873 TREE_TYPE (current_function_decl), 2);
874 else
875 pmode = promote_mode (type, mode, &unsignedp);
876
877 if (punsignedp)
878 *punsignedp = unsignedp;
879 return pmode;
880 }
881
882 \f
883 /* Controls the behaviour of {anti_,}adjust_stack. */
884 static bool suppress_reg_args_size;
885
886 /* A helper for adjust_stack and anti_adjust_stack. */
887
888 static void
889 adjust_stack_1 (rtx adjust, bool anti_p)
890 {
891 rtx temp, insn;
892
893 #ifndef STACK_GROWS_DOWNWARD
894 /* Hereafter anti_p means subtract_p. */
895 anti_p = !anti_p;
896 #endif
897
898 temp = expand_binop (Pmode,
899 anti_p ? sub_optab : add_optab,
900 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
901 OPTAB_LIB_WIDEN);
902
903 if (temp != stack_pointer_rtx)
904 insn = emit_move_insn (stack_pointer_rtx, temp);
905 else
906 {
907 insn = get_last_insn ();
908 temp = single_set (insn);
909 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
910 }
911
912 if (!suppress_reg_args_size)
913 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
914 }
915
916 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
917 This pops when ADJUST is positive. ADJUST need not be constant. */
918
919 void
920 adjust_stack (rtx adjust)
921 {
922 if (adjust == const0_rtx)
923 return;
924
925 /* We expect all variable sized adjustments to be multiple of
926 PREFERRED_STACK_BOUNDARY. */
927 if (CONST_INT_P (adjust))
928 stack_pointer_delta -= INTVAL (adjust);
929
930 adjust_stack_1 (adjust, false);
931 }
932
933 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
934 This pushes when ADJUST is positive. ADJUST need not be constant. */
935
936 void
937 anti_adjust_stack (rtx adjust)
938 {
939 if (adjust == const0_rtx)
940 return;
941
942 /* We expect all variable sized adjustments to be multiple of
943 PREFERRED_STACK_BOUNDARY. */
944 if (CONST_INT_P (adjust))
945 stack_pointer_delta += INTVAL (adjust);
946
947 adjust_stack_1 (adjust, true);
948 }
949
950 /* Round the size of a block to be pushed up to the boundary required
951 by this machine. SIZE is the desired size, which need not be constant. */
952
953 static rtx
954 round_push (rtx size)
955 {
956 rtx align_rtx, alignm1_rtx;
957
958 if (!SUPPORTS_STACK_ALIGNMENT
959 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
960 {
961 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
962
963 if (align == 1)
964 return size;
965
966 if (CONST_INT_P (size))
967 {
968 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
969
970 if (INTVAL (size) != new_size)
971 size = GEN_INT (new_size);
972 return size;
973 }
974
975 align_rtx = GEN_INT (align);
976 alignm1_rtx = GEN_INT (align - 1);
977 }
978 else
979 {
980 /* If crtl->preferred_stack_boundary might still grow, use
981 virtual_preferred_stack_boundary_rtx instead. This will be
982 substituted by the right value in vregs pass and optimized
983 during combine. */
984 align_rtx = virtual_preferred_stack_boundary_rtx;
985 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
986 NULL_RTX);
987 }
988
989 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
990 but we know it can't. So add ourselves and then do
991 TRUNC_DIV_EXPR. */
992 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
993 NULL_RTX, 1, OPTAB_LIB_WIDEN);
994 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
995 NULL_RTX, 1);
996 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
997
998 return size;
999 }
1000 \f
1001 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1002 to a previously-created save area. If no save area has been allocated,
1003 this function will allocate one. If a save area is specified, it
1004 must be of the proper mode. */
1005
1006 void
1007 emit_stack_save (enum save_level save_level, rtx *psave)
1008 {
1009 rtx sa = *psave;
1010 /* The default is that we use a move insn and save in a Pmode object. */
1011 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1012 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1013
1014 /* See if this machine has anything special to do for this kind of save. */
1015 switch (save_level)
1016 {
1017 #ifdef HAVE_save_stack_block
1018 case SAVE_BLOCK:
1019 if (HAVE_save_stack_block)
1020 fcn = gen_save_stack_block;
1021 break;
1022 #endif
1023 #ifdef HAVE_save_stack_function
1024 case SAVE_FUNCTION:
1025 if (HAVE_save_stack_function)
1026 fcn = gen_save_stack_function;
1027 break;
1028 #endif
1029 #ifdef HAVE_save_stack_nonlocal
1030 case SAVE_NONLOCAL:
1031 if (HAVE_save_stack_nonlocal)
1032 fcn = gen_save_stack_nonlocal;
1033 break;
1034 #endif
1035 default:
1036 break;
1037 }
1038
1039 /* If there is no save area and we have to allocate one, do so. Otherwise
1040 verify the save area is the proper mode. */
1041
1042 if (sa == 0)
1043 {
1044 if (mode != VOIDmode)
1045 {
1046 if (save_level == SAVE_NONLOCAL)
1047 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1048 else
1049 *psave = sa = gen_reg_rtx (mode);
1050 }
1051 }
1052
1053 do_pending_stack_adjust ();
1054 if (sa != 0)
1055 sa = validize_mem (sa);
1056 emit_insn (fcn (sa, stack_pointer_rtx));
1057 }
1058
1059 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1060 area made by emit_stack_save. If it is zero, we have nothing to do. */
1061
1062 void
1063 emit_stack_restore (enum save_level save_level, rtx sa)
1064 {
1065 /* The default is that we use a move insn. */
1066 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1067
1068 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1069 STACK_POINTER and HARD_FRAME_POINTER.
1070 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1071 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1072 aligned variables, which is reflected in ix86_can_eliminate.
1073 We normally still have the realigned STACK_POINTER that we can use.
1074 But if there is a stack restore still present at reload, it can trigger
1075 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1076 FRAME_POINTER into a hard reg.
1077 To prevent this situation, we force need_drap if we emit a stack
1078 restore. */
1079 if (SUPPORTS_STACK_ALIGNMENT)
1080 crtl->need_drap = true;
1081
1082 /* See if this machine has anything special to do for this kind of save. */
1083 switch (save_level)
1084 {
1085 #ifdef HAVE_restore_stack_block
1086 case SAVE_BLOCK:
1087 if (HAVE_restore_stack_block)
1088 fcn = gen_restore_stack_block;
1089 break;
1090 #endif
1091 #ifdef HAVE_restore_stack_function
1092 case SAVE_FUNCTION:
1093 if (HAVE_restore_stack_function)
1094 fcn = gen_restore_stack_function;
1095 break;
1096 #endif
1097 #ifdef HAVE_restore_stack_nonlocal
1098 case SAVE_NONLOCAL:
1099 if (HAVE_restore_stack_nonlocal)
1100 fcn = gen_restore_stack_nonlocal;
1101 break;
1102 #endif
1103 default:
1104 break;
1105 }
1106
1107 if (sa != 0)
1108 {
1109 sa = validize_mem (sa);
1110 /* These clobbers prevent the scheduler from moving
1111 references to variable arrays below the code
1112 that deletes (pops) the arrays. */
1113 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1114 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1115 }
1116
1117 discard_pending_stack_adjust ();
1118
1119 emit_insn (fcn (stack_pointer_rtx, sa));
1120 }
1121
1122 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1123 function. This function should be called whenever we allocate or
1124 deallocate dynamic stack space. */
1125
1126 void
1127 update_nonlocal_goto_save_area (void)
1128 {
1129 tree t_save;
1130 rtx r_save;
1131
1132 /* The nonlocal_goto_save_area object is an array of N pointers. The
1133 first one is used for the frame pointer save; the rest are sized by
1134 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1135 of the stack save area slots. */
1136 t_save = build4 (ARRAY_REF,
1137 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1138 cfun->nonlocal_goto_save_area,
1139 integer_one_node, NULL_TREE, NULL_TREE);
1140 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1141
1142 emit_stack_save (SAVE_NONLOCAL, &r_save);
1143 }
1144 \f
1145 /* Return an rtx representing the address of an area of memory dynamically
1146 pushed on the stack.
1147
1148 Any required stack pointer alignment is preserved.
1149
1150 SIZE is an rtx representing the size of the area.
1151
1152 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1153 parameter may be zero. If so, a proper value will be extracted
1154 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1155
1156 REQUIRED_ALIGN is the alignment (in bits) required for the region
1157 of memory.
1158
1159 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1160 stack space allocated by the generated code cannot be added with itself
1161 in the course of the execution of the function. It is always safe to
1162 pass FALSE here and the following criterion is sufficient in order to
1163 pass TRUE: every path in the CFG that starts at the allocation point and
1164 loops to it executes the associated deallocation code. */
1165
1166 rtx
1167 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1168 unsigned required_align, bool cannot_accumulate)
1169 {
1170 HOST_WIDE_INT stack_usage_size = -1;
1171 rtx final_label, final_target, target;
1172 unsigned extra_align = 0;
1173 bool must_align;
1174
1175 /* If we're asking for zero bytes, it doesn't matter what we point
1176 to since we can't dereference it. But return a reasonable
1177 address anyway. */
1178 if (size == const0_rtx)
1179 return virtual_stack_dynamic_rtx;
1180
1181 /* Otherwise, show we're calling alloca or equivalent. */
1182 cfun->calls_alloca = 1;
1183
1184 /* If stack usage info is requested, look into the size we are passed.
1185 We need to do so this early to avoid the obfuscation that may be
1186 introduced later by the various alignment operations. */
1187 if (flag_stack_usage_info)
1188 {
1189 if (CONST_INT_P (size))
1190 stack_usage_size = INTVAL (size);
1191 else if (REG_P (size))
1192 {
1193 /* Look into the last emitted insn and see if we can deduce
1194 something for the register. */
1195 rtx insn, set, note;
1196 insn = get_last_insn ();
1197 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1198 {
1199 if (CONST_INT_P (SET_SRC (set)))
1200 stack_usage_size = INTVAL (SET_SRC (set));
1201 else if ((note = find_reg_equal_equiv_note (insn))
1202 && CONST_INT_P (XEXP (note, 0)))
1203 stack_usage_size = INTVAL (XEXP (note, 0));
1204 }
1205 }
1206
1207 /* If the size is not constant, we can't say anything. */
1208 if (stack_usage_size == -1)
1209 {
1210 current_function_has_unbounded_dynamic_stack_size = 1;
1211 stack_usage_size = 0;
1212 }
1213 }
1214
1215 /* Ensure the size is in the proper mode. */
1216 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1217 size = convert_to_mode (Pmode, size, 1);
1218
1219 /* Adjust SIZE_ALIGN, if needed. */
1220 if (CONST_INT_P (size))
1221 {
1222 unsigned HOST_WIDE_INT lsb;
1223
1224 lsb = INTVAL (size);
1225 lsb &= -lsb;
1226
1227 /* Watch out for overflow truncating to "unsigned". */
1228 if (lsb > UINT_MAX / BITS_PER_UNIT)
1229 size_align = 1u << (HOST_BITS_PER_INT - 1);
1230 else
1231 size_align = (unsigned)lsb * BITS_PER_UNIT;
1232 }
1233 else if (size_align < BITS_PER_UNIT)
1234 size_align = BITS_PER_UNIT;
1235
1236 /* We can't attempt to minimize alignment necessary, because we don't
1237 know the final value of preferred_stack_boundary yet while executing
1238 this code. */
1239 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1240 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1241
1242 /* We will need to ensure that the address we return is aligned to
1243 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1244 always know its final value at this point in the compilation (it
1245 might depend on the size of the outgoing parameter lists, for
1246 example), so we must align the value to be returned in that case.
1247 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1248 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1249 We must also do an alignment operation on the returned value if
1250 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1251
1252 If we have to align, we must leave space in SIZE for the hole
1253 that might result from the alignment operation. */
1254
1255 must_align = (crtl->preferred_stack_boundary < required_align);
1256 if (must_align)
1257 {
1258 if (required_align > PREFERRED_STACK_BOUNDARY)
1259 extra_align = PREFERRED_STACK_BOUNDARY;
1260 else if (required_align > STACK_BOUNDARY)
1261 extra_align = STACK_BOUNDARY;
1262 else
1263 extra_align = BITS_PER_UNIT;
1264 }
1265
1266 /* ??? STACK_POINTER_OFFSET is always defined now. */
1267 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1268 must_align = true;
1269 extra_align = BITS_PER_UNIT;
1270 #endif
1271
1272 if (must_align)
1273 {
1274 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1275
1276 size = plus_constant (Pmode, size, extra);
1277 size = force_operand (size, NULL_RTX);
1278
1279 if (flag_stack_usage_info)
1280 stack_usage_size += extra;
1281
1282 if (extra && size_align > extra_align)
1283 size_align = extra_align;
1284 }
1285
1286 /* Round the size to a multiple of the required stack alignment.
1287 Since the stack if presumed to be rounded before this allocation,
1288 this will maintain the required alignment.
1289
1290 If the stack grows downward, we could save an insn by subtracting
1291 SIZE from the stack pointer and then aligning the stack pointer.
1292 The problem with this is that the stack pointer may be unaligned
1293 between the execution of the subtraction and alignment insns and
1294 some machines do not allow this. Even on those that do, some
1295 signal handlers malfunction if a signal should occur between those
1296 insns. Since this is an extremely rare event, we have no reliable
1297 way of knowing which systems have this problem. So we avoid even
1298 momentarily mis-aligning the stack. */
1299 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1300 {
1301 size = round_push (size);
1302
1303 if (flag_stack_usage_info)
1304 {
1305 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1306 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1307 }
1308 }
1309
1310 target = gen_reg_rtx (Pmode);
1311
1312 /* The size is supposed to be fully adjusted at this point so record it
1313 if stack usage info is requested. */
1314 if (flag_stack_usage_info)
1315 {
1316 current_function_dynamic_stack_size += stack_usage_size;
1317
1318 /* ??? This is gross but the only safe stance in the absence
1319 of stack usage oriented flow analysis. */
1320 if (!cannot_accumulate)
1321 current_function_has_unbounded_dynamic_stack_size = 1;
1322 }
1323
1324 final_label = NULL_RTX;
1325 final_target = NULL_RTX;
1326
1327 /* If we are splitting the stack, we need to ask the backend whether
1328 there is enough room on the current stack. If there isn't, or if
1329 the backend doesn't know how to tell is, then we need to call a
1330 function to allocate memory in some other way. This memory will
1331 be released when we release the current stack segment. The
1332 effect is that stack allocation becomes less efficient, but at
1333 least it doesn't cause a stack overflow. */
1334 if (flag_split_stack)
1335 {
1336 rtx available_label, ask, space, func;
1337
1338 available_label = NULL_RTX;
1339
1340 #ifdef HAVE_split_stack_space_check
1341 if (HAVE_split_stack_space_check)
1342 {
1343 available_label = gen_label_rtx ();
1344
1345 /* This instruction will branch to AVAILABLE_LABEL if there
1346 are SIZE bytes available on the stack. */
1347 emit_insn (gen_split_stack_space_check (size, available_label));
1348 }
1349 #endif
1350
1351 /* The __morestack_allocate_stack_space function will allocate
1352 memory using malloc. If the alignment of the memory returned
1353 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1354 make sure we allocate enough space. */
1355 if (MALLOC_ABI_ALIGNMENT >= required_align)
1356 ask = size;
1357 else
1358 {
1359 ask = expand_binop (Pmode, add_optab, size,
1360 GEN_INT (required_align / BITS_PER_UNIT - 1),
1361 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1362 must_align = true;
1363 }
1364
1365 func = init_one_libfunc ("__morestack_allocate_stack_space");
1366
1367 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1368 1, ask, Pmode);
1369
1370 if (available_label == NULL_RTX)
1371 return space;
1372
1373 final_target = gen_reg_rtx (Pmode);
1374
1375 emit_move_insn (final_target, space);
1376
1377 final_label = gen_label_rtx ();
1378 emit_jump (final_label);
1379
1380 emit_label (available_label);
1381 }
1382
1383 do_pending_stack_adjust ();
1384
1385 /* We ought to be called always on the toplevel and stack ought to be aligned
1386 properly. */
1387 gcc_assert (!(stack_pointer_delta
1388 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1389
1390 /* If needed, check that we have the required amount of stack. Take into
1391 account what has already been checked. */
1392 if (STACK_CHECK_MOVING_SP)
1393 ;
1394 else if (flag_stack_check == GENERIC_STACK_CHECK)
1395 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1396 size);
1397 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1398 probe_stack_range (STACK_CHECK_PROTECT, size);
1399
1400 /* Don't let anti_adjust_stack emit notes. */
1401 suppress_reg_args_size = true;
1402
1403 /* Perform the required allocation from the stack. Some systems do
1404 this differently than simply incrementing/decrementing from the
1405 stack pointer, such as acquiring the space by calling malloc(). */
1406 #ifdef HAVE_allocate_stack
1407 if (HAVE_allocate_stack)
1408 {
1409 struct expand_operand ops[2];
1410 /* We don't have to check against the predicate for operand 0 since
1411 TARGET is known to be a pseudo of the proper mode, which must
1412 be valid for the operand. */
1413 create_fixed_operand (&ops[0], target);
1414 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1415 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1416 }
1417 else
1418 #endif
1419 {
1420 int saved_stack_pointer_delta;
1421
1422 #ifndef STACK_GROWS_DOWNWARD
1423 emit_move_insn (target, virtual_stack_dynamic_rtx);
1424 #endif
1425
1426 /* Check stack bounds if necessary. */
1427 if (crtl->limit_stack)
1428 {
1429 rtx available;
1430 rtx space_available = gen_label_rtx ();
1431 #ifdef STACK_GROWS_DOWNWARD
1432 available = expand_binop (Pmode, sub_optab,
1433 stack_pointer_rtx, stack_limit_rtx,
1434 NULL_RTX, 1, OPTAB_WIDEN);
1435 #else
1436 available = expand_binop (Pmode, sub_optab,
1437 stack_limit_rtx, stack_pointer_rtx,
1438 NULL_RTX, 1, OPTAB_WIDEN);
1439 #endif
1440 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1441 space_available);
1442 #ifdef HAVE_trap
1443 if (HAVE_trap)
1444 emit_insn (gen_trap ());
1445 else
1446 #endif
1447 error ("stack limits not supported on this target");
1448 emit_barrier ();
1449 emit_label (space_available);
1450 }
1451
1452 saved_stack_pointer_delta = stack_pointer_delta;
1453
1454 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1455 anti_adjust_stack_and_probe (size, false);
1456 else
1457 anti_adjust_stack (size);
1458
1459 /* Even if size is constant, don't modify stack_pointer_delta.
1460 The constant size alloca should preserve
1461 crtl->preferred_stack_boundary alignment. */
1462 stack_pointer_delta = saved_stack_pointer_delta;
1463
1464 #ifdef STACK_GROWS_DOWNWARD
1465 emit_move_insn (target, virtual_stack_dynamic_rtx);
1466 #endif
1467 }
1468
1469 suppress_reg_args_size = false;
1470
1471 /* Finish up the split stack handling. */
1472 if (final_label != NULL_RTX)
1473 {
1474 gcc_assert (flag_split_stack);
1475 emit_move_insn (final_target, target);
1476 emit_label (final_label);
1477 target = final_target;
1478 }
1479
1480 if (must_align)
1481 {
1482 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1483 but we know it can't. So add ourselves and then do
1484 TRUNC_DIV_EXPR. */
1485 target = expand_binop (Pmode, add_optab, target,
1486 GEN_INT (required_align / BITS_PER_UNIT - 1),
1487 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1488 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1489 GEN_INT (required_align / BITS_PER_UNIT),
1490 NULL_RTX, 1);
1491 target = expand_mult (Pmode, target,
1492 GEN_INT (required_align / BITS_PER_UNIT),
1493 NULL_RTX, 1);
1494 }
1495
1496 /* Now that we've committed to a return value, mark its alignment. */
1497 mark_reg_pointer (target, required_align);
1498
1499 /* Record the new stack level for nonlocal gotos. */
1500 if (cfun->nonlocal_goto_save_area != 0)
1501 update_nonlocal_goto_save_area ();
1502
1503 return target;
1504 }
1505 \f
1506 /* A front end may want to override GCC's stack checking by providing a
1507 run-time routine to call to check the stack, so provide a mechanism for
1508 calling that routine. */
1509
1510 static GTY(()) rtx stack_check_libfunc;
1511
1512 void
1513 set_stack_check_libfunc (const char *libfunc_name)
1514 {
1515 gcc_assert (stack_check_libfunc == NULL_RTX);
1516 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1517 }
1518 \f
1519 /* Emit one stack probe at ADDRESS, an address within the stack. */
1520
1521 void
1522 emit_stack_probe (rtx address)
1523 {
1524 #ifdef HAVE_probe_stack_address
1525 if (HAVE_probe_stack_address)
1526 emit_insn (gen_probe_stack_address (address));
1527 else
1528 #endif
1529 {
1530 rtx memref = gen_rtx_MEM (word_mode, address);
1531
1532 MEM_VOLATILE_P (memref) = 1;
1533
1534 /* See if we have an insn to probe the stack. */
1535 #ifdef HAVE_probe_stack
1536 if (HAVE_probe_stack)
1537 emit_insn (gen_probe_stack (memref));
1538 else
1539 #endif
1540 emit_move_insn (memref, const0_rtx);
1541 }
1542 }
1543
1544 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1545 FIRST is a constant and size is a Pmode RTX. These are offsets from
1546 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1547 or subtract them from the stack pointer. */
1548
1549 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1550
1551 #ifdef STACK_GROWS_DOWNWARD
1552 #define STACK_GROW_OP MINUS
1553 #define STACK_GROW_OPTAB sub_optab
1554 #define STACK_GROW_OFF(off) -(off)
1555 #else
1556 #define STACK_GROW_OP PLUS
1557 #define STACK_GROW_OPTAB add_optab
1558 #define STACK_GROW_OFF(off) (off)
1559 #endif
1560
1561 void
1562 probe_stack_range (HOST_WIDE_INT first, rtx size)
1563 {
1564 /* First ensure SIZE is Pmode. */
1565 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1566 size = convert_to_mode (Pmode, size, 1);
1567
1568 /* Next see if we have a function to check the stack. */
1569 if (stack_check_libfunc)
1570 {
1571 rtx addr = memory_address (Pmode,
1572 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1573 stack_pointer_rtx,
1574 plus_constant (Pmode,
1575 size, first)));
1576 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1577 Pmode);
1578 }
1579
1580 /* Next see if we have an insn to check the stack. */
1581 #ifdef HAVE_check_stack
1582 else if (HAVE_check_stack)
1583 {
1584 struct expand_operand ops[1];
1585 rtx addr = memory_address (Pmode,
1586 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1587 stack_pointer_rtx,
1588 plus_constant (Pmode,
1589 size, first)));
1590 bool success;
1591 create_input_operand (&ops[0], addr, Pmode);
1592 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1593 gcc_assert (success);
1594 }
1595 #endif
1596
1597 /* Otherwise we have to generate explicit probes. If we have a constant
1598 small number of them to generate, that's the easy case. */
1599 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1600 {
1601 HOST_WIDE_INT isize = INTVAL (size), i;
1602 rtx addr;
1603
1604 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1605 it exceeds SIZE. If only one probe is needed, this will not
1606 generate any code. Then probe at FIRST + SIZE. */
1607 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1608 {
1609 addr = memory_address (Pmode,
1610 plus_constant (Pmode, stack_pointer_rtx,
1611 STACK_GROW_OFF (first + i)));
1612 emit_stack_probe (addr);
1613 }
1614
1615 addr = memory_address (Pmode,
1616 plus_constant (Pmode, stack_pointer_rtx,
1617 STACK_GROW_OFF (first + isize)));
1618 emit_stack_probe (addr);
1619 }
1620
1621 /* In the variable case, do the same as above, but in a loop. Note that we
1622 must be extra careful with variables wrapping around because we might be
1623 at the very top (or the very bottom) of the address space and we have to
1624 be able to handle this case properly; in particular, we use an equality
1625 test for the loop condition. */
1626 else
1627 {
1628 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1629 rtx loop_lab = gen_label_rtx ();
1630 rtx end_lab = gen_label_rtx ();
1631
1632
1633 /* Step 1: round SIZE to the previous multiple of the interval. */
1634
1635 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1636 rounded_size
1637 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1638 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1639
1640
1641 /* Step 2: compute initial and final value of the loop counter. */
1642
1643 /* TEST_ADDR = SP + FIRST. */
1644 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1645 stack_pointer_rtx,
1646 GEN_INT (first)), NULL_RTX);
1647
1648 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1649 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1650 test_addr,
1651 rounded_size_op), NULL_RTX);
1652
1653
1654 /* Step 3: the loop
1655
1656 while (TEST_ADDR != LAST_ADDR)
1657 {
1658 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1659 probe at TEST_ADDR
1660 }
1661
1662 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1663 until it is equal to ROUNDED_SIZE. */
1664
1665 emit_label (loop_lab);
1666
1667 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1668 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1669 end_lab);
1670
1671 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1672 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1673 GEN_INT (PROBE_INTERVAL), test_addr,
1674 1, OPTAB_WIDEN);
1675
1676 gcc_assert (temp == test_addr);
1677
1678 /* Probe at TEST_ADDR. */
1679 emit_stack_probe (test_addr);
1680
1681 emit_jump (loop_lab);
1682
1683 emit_label (end_lab);
1684
1685
1686 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1687 that SIZE is equal to ROUNDED_SIZE. */
1688
1689 /* TEMP = SIZE - ROUNDED_SIZE. */
1690 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1691 if (temp != const0_rtx)
1692 {
1693 rtx addr;
1694
1695 if (CONST_INT_P (temp))
1696 {
1697 /* Use [base + disp} addressing mode if supported. */
1698 HOST_WIDE_INT offset = INTVAL (temp);
1699 addr = memory_address (Pmode,
1700 plus_constant (Pmode, last_addr,
1701 STACK_GROW_OFF (offset)));
1702 }
1703 else
1704 {
1705 /* Manual CSE if the difference is not known at compile-time. */
1706 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1707 addr = memory_address (Pmode,
1708 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1709 last_addr, temp));
1710 }
1711
1712 emit_stack_probe (addr);
1713 }
1714 }
1715 }
1716
1717 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1718 while probing it. This pushes when SIZE is positive. SIZE need not
1719 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1720 by plus SIZE at the end. */
1721
1722 void
1723 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1724 {
1725 /* We skip the probe for the first interval + a small dope of 4 words and
1726 probe that many bytes past the specified size to maintain a protection
1727 area at the botton of the stack. */
1728 const int dope = 4 * UNITS_PER_WORD;
1729
1730 /* First ensure SIZE is Pmode. */
1731 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1732 size = convert_to_mode (Pmode, size, 1);
1733
1734 /* If we have a constant small number of probes to generate, that's the
1735 easy case. */
1736 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1737 {
1738 HOST_WIDE_INT isize = INTVAL (size), i;
1739 bool first_probe = true;
1740
1741 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1742 values of N from 1 until it exceeds SIZE. If only one probe is
1743 needed, this will not generate any code. Then adjust and probe
1744 to PROBE_INTERVAL + SIZE. */
1745 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1746 {
1747 if (first_probe)
1748 {
1749 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1750 first_probe = false;
1751 }
1752 else
1753 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1754 emit_stack_probe (stack_pointer_rtx);
1755 }
1756
1757 if (first_probe)
1758 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1759 else
1760 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1761 emit_stack_probe (stack_pointer_rtx);
1762 }
1763
1764 /* In the variable case, do the same as above, but in a loop. Note that we
1765 must be extra careful with variables wrapping around because we might be
1766 at the very top (or the very bottom) of the address space and we have to
1767 be able to handle this case properly; in particular, we use an equality
1768 test for the loop condition. */
1769 else
1770 {
1771 rtx rounded_size, rounded_size_op, last_addr, temp;
1772 rtx loop_lab = gen_label_rtx ();
1773 rtx end_lab = gen_label_rtx ();
1774
1775
1776 /* Step 1: round SIZE to the previous multiple of the interval. */
1777
1778 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1779 rounded_size
1780 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1781 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1782
1783
1784 /* Step 2: compute initial and final value of the loop counter. */
1785
1786 /* SP = SP_0 + PROBE_INTERVAL. */
1787 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1788
1789 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1790 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1791 stack_pointer_rtx,
1792 rounded_size_op), NULL_RTX);
1793
1794
1795 /* Step 3: the loop
1796
1797 while (SP != LAST_ADDR)
1798 {
1799 SP = SP + PROBE_INTERVAL
1800 probe at SP
1801 }
1802
1803 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1804 values of N from 1 until it is equal to ROUNDED_SIZE. */
1805
1806 emit_label (loop_lab);
1807
1808 /* Jump to END_LAB if SP == LAST_ADDR. */
1809 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1810 Pmode, 1, end_lab);
1811
1812 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1813 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1814 emit_stack_probe (stack_pointer_rtx);
1815
1816 emit_jump (loop_lab);
1817
1818 emit_label (end_lab);
1819
1820
1821 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1822 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1823
1824 /* TEMP = SIZE - ROUNDED_SIZE. */
1825 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1826 if (temp != const0_rtx)
1827 {
1828 /* Manual CSE if the difference is not known at compile-time. */
1829 if (GET_CODE (temp) != CONST_INT)
1830 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1831 anti_adjust_stack (temp);
1832 emit_stack_probe (stack_pointer_rtx);
1833 }
1834 }
1835
1836 /* Adjust back and account for the additional first interval. */
1837 if (adjust_back)
1838 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1839 else
1840 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1841 }
1842
1843 /* Return an rtx representing the register or memory location
1844 in which a scalar value of data type VALTYPE
1845 was returned by a function call to function FUNC.
1846 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1847 function is known, otherwise 0.
1848 OUTGOING is 1 if on a machine with register windows this function
1849 should return the register in which the function will put its result
1850 and 0 otherwise. */
1851
1852 rtx
1853 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1854 int outgoing ATTRIBUTE_UNUSED)
1855 {
1856 rtx val;
1857
1858 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1859
1860 if (REG_P (val)
1861 && GET_MODE (val) == BLKmode)
1862 {
1863 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1864 enum machine_mode tmpmode;
1865
1866 /* int_size_in_bytes can return -1. We don't need a check here
1867 since the value of bytes will then be large enough that no
1868 mode will match anyway. */
1869
1870 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1871 tmpmode != VOIDmode;
1872 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1873 {
1874 /* Have we found a large enough mode? */
1875 if (GET_MODE_SIZE (tmpmode) >= bytes)
1876 break;
1877 }
1878
1879 /* No suitable mode found. */
1880 gcc_assert (tmpmode != VOIDmode);
1881
1882 PUT_MODE (val, tmpmode);
1883 }
1884 return val;
1885 }
1886
1887 /* Return an rtx representing the register or memory location
1888 in which a scalar value of mode MODE was returned by a library call. */
1889
1890 rtx
1891 hard_libcall_value (enum machine_mode mode, rtx fun)
1892 {
1893 return targetm.calls.libcall_value (mode, fun);
1894 }
1895
1896 /* Look up the tree code for a given rtx code
1897 to provide the arithmetic operation for REAL_ARITHMETIC.
1898 The function returns an int because the caller may not know
1899 what `enum tree_code' means. */
1900
1901 int
1902 rtx_to_tree_code (enum rtx_code code)
1903 {
1904 enum tree_code tcode;
1905
1906 switch (code)
1907 {
1908 case PLUS:
1909 tcode = PLUS_EXPR;
1910 break;
1911 case MINUS:
1912 tcode = MINUS_EXPR;
1913 break;
1914 case MULT:
1915 tcode = MULT_EXPR;
1916 break;
1917 case DIV:
1918 tcode = RDIV_EXPR;
1919 break;
1920 case SMIN:
1921 tcode = MIN_EXPR;
1922 break;
1923 case SMAX:
1924 tcode = MAX_EXPR;
1925 break;
1926 default:
1927 tcode = LAST_AND_UNUSED_TREE_CODE;
1928 break;
1929 }
1930 return ((int) tcode);
1931 }
1932
1933 #include "gt-explow.h"