rtl.texi (const_double): Document as sign-extending.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "common/common-target.h"
44 #include "output.h"
45
46 static rtx break_out_memory_refs (rtx);
47
48
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 {
54 int width = GET_MODE_PRECISION (mode);
55
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
58
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
62
63 /* Sign-extend for the requested mode. */
64
65 if (width < HOST_BITS_PER_WIDE_INT)
66 {
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
72 }
73
74 return c;
75 }
76
77 /* Return an rtx for the sum of X and the integer C, given that X has
78 mode MODE. This routine should be used instead of plus_constant
79 when they want to ensure that addition happens in a particular
80 mode, which is necessary when X can be a VOIDmode CONST_INT or
81 CONST_DOUBLE and the width of the constant is different from the
82 width of the expression. */
83 /* TODO: All callers of plus_constant should migrate to this routine,
84 and once they do, we can assert that mode is not VOIDmode. */
85
86 rtx
87 plus_constant_mode (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
88 {
89 RTX_CODE code;
90 rtx y;
91 rtx tem;
92 int all_constant = 0;
93
94 if (c == 0)
95 return x;
96
97 restart:
98
99 code = GET_CODE (x);
100 y = x;
101
102 switch (code)
103 {
104 case CONST_INT:
105 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
106 {
107 unsigned HOST_WIDE_INT l1 = INTVAL (x);
108 HOST_WIDE_INT h1 = (l1 >> (HOST_BITS_PER_WIDE_INT - 1)) ? -1 : 0;
109 unsigned HOST_WIDE_INT l2 = c;
110 HOST_WIDE_INT h2 = c < 0 ? -1 : 0;
111 unsigned HOST_WIDE_INT lv;
112 HOST_WIDE_INT hv;
113
114 if (add_double_with_sign (l1, h1, l2, h2, &lv, &hv, false))
115 gcc_unreachable ();
116
117 return immed_double_const (lv, hv, VOIDmode);
118 }
119
120 return GEN_INT (INTVAL (x) + c);
121
122 case CONST_DOUBLE:
123 {
124 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
125 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
126 unsigned HOST_WIDE_INT l2 = c;
127 HOST_WIDE_INT h2 = c < 0 ? -1 : 0;
128 unsigned HOST_WIDE_INT lv;
129 HOST_WIDE_INT hv;
130
131 if (add_double_with_sign (l1, h1, l2, h2, &lv, &hv, false))
132 /* Sorry, we have no way to represent overflows this wide.
133 To fix, add constant support wider than CONST_DOUBLE. */
134 gcc_assert (GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT);
135
136 return immed_double_const (lv, hv, VOIDmode);
137 }
138
139 case MEM:
140 /* If this is a reference to the constant pool, try replacing it with
141 a reference to a new constant. If the resulting address isn't
142 valid, don't return it because we have no way to validize it. */
143 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
144 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
145 {
146 tem = plus_constant_mode (mode, get_pool_constant (XEXP (x, 0)), c);
147 tem = force_const_mem (GET_MODE (x), tem);
148 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
149 return tem;
150 }
151 break;
152
153 case CONST:
154 /* If adding to something entirely constant, set a flag
155 so that we can add a CONST around the result. */
156 x = XEXP (x, 0);
157 all_constant = 1;
158 goto restart;
159
160 case SYMBOL_REF:
161 case LABEL_REF:
162 all_constant = 1;
163 break;
164
165 case PLUS:
166 /* The interesting case is adding the integer to a sum. Look
167 for constant term in the sum and combine with C. For an
168 integer constant term or a constant term that is not an
169 explicit integer, we combine or group them together anyway.
170
171 We may not immediately return from the recursive call here, lest
172 all_constant gets lost. */
173
174 if (CONSTANT_P (XEXP (x, 1)))
175 {
176 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant_mode (mode, XEXP (x, 1), c));
177 c = 0;
178 }
179 else if (find_constant_term_loc (&y))
180 {
181 /* We need to be careful since X may be shared and we can't
182 modify it in place. */
183 rtx copy = copy_rtx (x);
184 rtx *const_loc = find_constant_term_loc (&copy);
185
186 *const_loc = plus_constant_mode (mode, *const_loc, c);
187 x = copy;
188 c = 0;
189 }
190 break;
191
192 default:
193 break;
194 }
195
196 if (c != 0)
197 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
198
199 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
200 return x;
201 else if (all_constant)
202 return gen_rtx_CONST (mode, x);
203 else
204 return x;
205 }
206
207 /* Return an rtx for the sum of X and the integer C. */
208
209 rtx
210 plus_constant (rtx x, HOST_WIDE_INT c)
211 {
212 return plus_constant_mode (GET_MODE (x), x, c);
213 }
214 \f
215 /* If X is a sum, return a new sum like X but lacking any constant terms.
216 Add all the removed constant terms into *CONSTPTR.
217 X itself is not altered. The result != X if and only if
218 it is not isomorphic to X. */
219
220 rtx
221 eliminate_constant_term (rtx x, rtx *constptr)
222 {
223 rtx x0, x1;
224 rtx tem;
225
226 if (GET_CODE (x) != PLUS)
227 return x;
228
229 /* First handle constants appearing at this level explicitly. */
230 if (CONST_INT_P (XEXP (x, 1))
231 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
232 XEXP (x, 1)))
233 && CONST_INT_P (tem))
234 {
235 *constptr = tem;
236 return eliminate_constant_term (XEXP (x, 0), constptr);
237 }
238
239 tem = const0_rtx;
240 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
241 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
242 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
243 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
244 *constptr, tem))
245 && CONST_INT_P (tem))
246 {
247 *constptr = tem;
248 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
249 }
250
251 return x;
252 }
253
254 /* Return an rtx for the size in bytes of the value of EXP. */
255
256 rtx
257 expr_size (tree exp)
258 {
259 tree size;
260
261 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
262 size = TREE_OPERAND (exp, 1);
263 else
264 {
265 size = tree_expr_size (exp);
266 gcc_assert (size);
267 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
268 }
269
270 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
271 }
272
273 /* Return a wide integer for the size in bytes of the value of EXP, or -1
274 if the size can vary or is larger than an integer. */
275
276 HOST_WIDE_INT
277 int_expr_size (tree exp)
278 {
279 tree size;
280
281 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
282 size = TREE_OPERAND (exp, 1);
283 else
284 {
285 size = tree_expr_size (exp);
286 gcc_assert (size);
287 }
288
289 if (size == 0 || !host_integerp (size, 0))
290 return -1;
291
292 return tree_low_cst (size, 0);
293 }
294 \f
295 /* Return a copy of X in which all memory references
296 and all constants that involve symbol refs
297 have been replaced with new temporary registers.
298 Also emit code to load the memory locations and constants
299 into those registers.
300
301 If X contains no such constants or memory references,
302 X itself (not a copy) is returned.
303
304 If a constant is found in the address that is not a legitimate constant
305 in an insn, it is left alone in the hope that it might be valid in the
306 address.
307
308 X may contain no arithmetic except addition, subtraction and multiplication.
309 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
310
311 static rtx
312 break_out_memory_refs (rtx x)
313 {
314 if (MEM_P (x)
315 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
316 && GET_MODE (x) != VOIDmode))
317 x = force_reg (GET_MODE (x), x);
318 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
319 || GET_CODE (x) == MULT)
320 {
321 rtx op0 = break_out_memory_refs (XEXP (x, 0));
322 rtx op1 = break_out_memory_refs (XEXP (x, 1));
323
324 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
325 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
326 }
327
328 return x;
329 }
330
331 /* Given X, a memory address in address space AS' pointer mode, convert it to
332 an address in the address space's address mode, or vice versa (TO_MODE says
333 which way). We take advantage of the fact that pointers are not allowed to
334 overflow by commuting arithmetic operations over conversions so that address
335 arithmetic insns can be used. */
336
337 rtx
338 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
339 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
340 {
341 #ifndef POINTERS_EXTEND_UNSIGNED
342 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
343 return x;
344 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
345 enum machine_mode pointer_mode, address_mode, from_mode;
346 rtx temp;
347 enum rtx_code code;
348
349 /* If X already has the right mode, just return it. */
350 if (GET_MODE (x) == to_mode)
351 return x;
352
353 pointer_mode = targetm.addr_space.pointer_mode (as);
354 address_mode = targetm.addr_space.address_mode (as);
355 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
356
357 /* Here we handle some special cases. If none of them apply, fall through
358 to the default case. */
359 switch (GET_CODE (x))
360 {
361 case CONST_INT:
362 case CONST_DOUBLE:
363 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
364 code = TRUNCATE;
365 else if (POINTERS_EXTEND_UNSIGNED < 0)
366 break;
367 else if (POINTERS_EXTEND_UNSIGNED > 0)
368 code = ZERO_EXTEND;
369 else
370 code = SIGN_EXTEND;
371 temp = simplify_unary_operation (code, to_mode, x, from_mode);
372 if (temp)
373 return temp;
374 break;
375
376 case SUBREG:
377 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
378 && GET_MODE (SUBREG_REG (x)) == to_mode)
379 return SUBREG_REG (x);
380 break;
381
382 case LABEL_REF:
383 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
384 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
385 return temp;
386 break;
387
388 case SYMBOL_REF:
389 temp = shallow_copy_rtx (x);
390 PUT_MODE (temp, to_mode);
391 return temp;
392 break;
393
394 case CONST:
395 return gen_rtx_CONST (to_mode,
396 convert_memory_address_addr_space
397 (to_mode, XEXP (x, 0), as));
398 break;
399
400 case PLUS:
401 case MULT:
402 /* FIXME: For addition, we used to permute the conversion and
403 addition operation only if one operand is a constant and
404 converting the constant does not change it or if one operand
405 is a constant and we are using a ptr_extend instruction
406 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
407 may overflow/underflow. We relax the condition to include
408 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
409 parts of the compiler depend on it. See PR 49721.
410
411 We can always safely permute them if we are making the address
412 narrower. */
413 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
414 || (GET_CODE (x) == PLUS
415 && CONST_INT_P (XEXP (x, 1))
416 && (POINTERS_EXTEND_UNSIGNED != 0
417 || XEXP (x, 1) == convert_memory_address_addr_space
418 (to_mode, XEXP (x, 1), as))))
419 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
420 convert_memory_address_addr_space
421 (to_mode, XEXP (x, 0), as),
422 XEXP (x, 1));
423 break;
424
425 default:
426 break;
427 }
428
429 return convert_modes (to_mode, from_mode,
430 x, POINTERS_EXTEND_UNSIGNED);
431 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
432 }
433 \f
434 /* Return something equivalent to X but valid as a memory address for something
435 of mode MODE in the named address space AS. When X is not itself valid,
436 this works by copying X or subexpressions of it into registers. */
437
438 rtx
439 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
440 {
441 rtx oldx = x;
442 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
443
444 x = convert_memory_address_addr_space (address_mode, x, as);
445
446 /* By passing constant addresses through registers
447 we get a chance to cse them. */
448 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
449 x = force_reg (address_mode, x);
450
451 /* We get better cse by rejecting indirect addressing at this stage.
452 Let the combiner create indirect addresses where appropriate.
453 For now, generate the code so that the subexpressions useful to share
454 are visible. But not if cse won't be done! */
455 else
456 {
457 if (! cse_not_expected && !REG_P (x))
458 x = break_out_memory_refs (x);
459
460 /* At this point, any valid address is accepted. */
461 if (memory_address_addr_space_p (mode, x, as))
462 goto done;
463
464 /* If it was valid before but breaking out memory refs invalidated it,
465 use it the old way. */
466 if (memory_address_addr_space_p (mode, oldx, as))
467 {
468 x = oldx;
469 goto done;
470 }
471
472 /* Perform machine-dependent transformations on X
473 in certain cases. This is not necessary since the code
474 below can handle all possible cases, but machine-dependent
475 transformations can make better code. */
476 {
477 rtx orig_x = x;
478 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
479 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
480 goto done;
481 }
482
483 /* PLUS and MULT can appear in special ways
484 as the result of attempts to make an address usable for indexing.
485 Usually they are dealt with by calling force_operand, below.
486 But a sum containing constant terms is special
487 if removing them makes the sum a valid address:
488 then we generate that address in a register
489 and index off of it. We do this because it often makes
490 shorter code, and because the addresses thus generated
491 in registers often become common subexpressions. */
492 if (GET_CODE (x) == PLUS)
493 {
494 rtx constant_term = const0_rtx;
495 rtx y = eliminate_constant_term (x, &constant_term);
496 if (constant_term == const0_rtx
497 || ! memory_address_addr_space_p (mode, y, as))
498 x = force_operand (x, NULL_RTX);
499 else
500 {
501 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
502 if (! memory_address_addr_space_p (mode, y, as))
503 x = force_operand (x, NULL_RTX);
504 else
505 x = y;
506 }
507 }
508
509 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
510 x = force_operand (x, NULL_RTX);
511
512 /* If we have a register that's an invalid address,
513 it must be a hard reg of the wrong class. Copy it to a pseudo. */
514 else if (REG_P (x))
515 x = copy_to_reg (x);
516
517 /* Last resort: copy the value to a register, since
518 the register is a valid address. */
519 else
520 x = force_reg (address_mode, x);
521 }
522
523 done:
524
525 gcc_assert (memory_address_addr_space_p (mode, x, as));
526 /* If we didn't change the address, we are done. Otherwise, mark
527 a reg as a pointer if we have REG or REG + CONST_INT. */
528 if (oldx == x)
529 return x;
530 else if (REG_P (x))
531 mark_reg_pointer (x, BITS_PER_UNIT);
532 else if (GET_CODE (x) == PLUS
533 && REG_P (XEXP (x, 0))
534 && CONST_INT_P (XEXP (x, 1)))
535 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
536
537 /* OLDX may have been the address on a temporary. Update the address
538 to indicate that X is now used. */
539 update_temp_slot_address (oldx, x);
540
541 return x;
542 }
543
544 /* Convert a mem ref into one with a valid memory address.
545 Pass through anything else unchanged. */
546
547 rtx
548 validize_mem (rtx ref)
549 {
550 if (!MEM_P (ref))
551 return ref;
552 ref = use_anchored_address (ref);
553 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
554 MEM_ADDR_SPACE (ref)))
555 return ref;
556
557 /* Don't alter REF itself, since that is probably a stack slot. */
558 return replace_equiv_address (ref, XEXP (ref, 0));
559 }
560
561 /* If X is a memory reference to a member of an object block, try rewriting
562 it to use an anchor instead. Return the new memory reference on success
563 and the old one on failure. */
564
565 rtx
566 use_anchored_address (rtx x)
567 {
568 rtx base;
569 HOST_WIDE_INT offset;
570
571 if (!flag_section_anchors)
572 return x;
573
574 if (!MEM_P (x))
575 return x;
576
577 /* Split the address into a base and offset. */
578 base = XEXP (x, 0);
579 offset = 0;
580 if (GET_CODE (base) == CONST
581 && GET_CODE (XEXP (base, 0)) == PLUS
582 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
583 {
584 offset += INTVAL (XEXP (XEXP (base, 0), 1));
585 base = XEXP (XEXP (base, 0), 0);
586 }
587
588 /* Check whether BASE is suitable for anchors. */
589 if (GET_CODE (base) != SYMBOL_REF
590 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
591 || SYMBOL_REF_ANCHOR_P (base)
592 || SYMBOL_REF_BLOCK (base) == NULL
593 || !targetm.use_anchors_for_symbol_p (base))
594 return x;
595
596 /* Decide where BASE is going to be. */
597 place_block_symbol (base);
598
599 /* Get the anchor we need to use. */
600 offset += SYMBOL_REF_BLOCK_OFFSET (base);
601 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
602 SYMBOL_REF_TLS_MODEL (base));
603
604 /* Work out the offset from the anchor. */
605 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
606
607 /* If we're going to run a CSE pass, force the anchor into a register.
608 We will then be able to reuse registers for several accesses, if the
609 target costs say that that's worthwhile. */
610 if (!cse_not_expected)
611 base = force_reg (GET_MODE (base), base);
612
613 return replace_equiv_address (x, plus_constant (base, offset));
614 }
615 \f
616 /* Copy the value or contents of X to a new temp reg and return that reg. */
617
618 rtx
619 copy_to_reg (rtx x)
620 {
621 rtx temp = gen_reg_rtx (GET_MODE (x));
622
623 /* If not an operand, must be an address with PLUS and MULT so
624 do the computation. */
625 if (! general_operand (x, VOIDmode))
626 x = force_operand (x, temp);
627
628 if (x != temp)
629 emit_move_insn (temp, x);
630
631 return temp;
632 }
633
634 /* Like copy_to_reg but always give the new register mode Pmode
635 in case X is a constant. */
636
637 rtx
638 copy_addr_to_reg (rtx x)
639 {
640 return copy_to_mode_reg (Pmode, x);
641 }
642
643 /* Like copy_to_reg but always give the new register mode MODE
644 in case X is a constant. */
645
646 rtx
647 copy_to_mode_reg (enum machine_mode mode, rtx x)
648 {
649 rtx temp = gen_reg_rtx (mode);
650
651 /* If not an operand, must be an address with PLUS and MULT so
652 do the computation. */
653 if (! general_operand (x, VOIDmode))
654 x = force_operand (x, temp);
655
656 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
657 if (x != temp)
658 emit_move_insn (temp, x);
659 return temp;
660 }
661
662 /* Load X into a register if it is not already one.
663 Use mode MODE for the register.
664 X should be valid for mode MODE, but it may be a constant which
665 is valid for all integer modes; that's why caller must specify MODE.
666
667 The caller must not alter the value in the register we return,
668 since we mark it as a "constant" register. */
669
670 rtx
671 force_reg (enum machine_mode mode, rtx x)
672 {
673 rtx temp, insn, set;
674
675 if (REG_P (x))
676 return x;
677
678 if (general_operand (x, mode))
679 {
680 temp = gen_reg_rtx (mode);
681 insn = emit_move_insn (temp, x);
682 }
683 else
684 {
685 temp = force_operand (x, NULL_RTX);
686 if (REG_P (temp))
687 insn = get_last_insn ();
688 else
689 {
690 rtx temp2 = gen_reg_rtx (mode);
691 insn = emit_move_insn (temp2, temp);
692 temp = temp2;
693 }
694 }
695
696 /* Let optimizers know that TEMP's value never changes
697 and that X can be substituted for it. Don't get confused
698 if INSN set something else (such as a SUBREG of TEMP). */
699 if (CONSTANT_P (x)
700 && (set = single_set (insn)) != 0
701 && SET_DEST (set) == temp
702 && ! rtx_equal_p (x, SET_SRC (set)))
703 set_unique_reg_note (insn, REG_EQUAL, x);
704
705 /* Let optimizers know that TEMP is a pointer, and if so, the
706 known alignment of that pointer. */
707 {
708 unsigned align = 0;
709 if (GET_CODE (x) == SYMBOL_REF)
710 {
711 align = BITS_PER_UNIT;
712 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
713 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
714 }
715 else if (GET_CODE (x) == LABEL_REF)
716 align = BITS_PER_UNIT;
717 else if (GET_CODE (x) == CONST
718 && GET_CODE (XEXP (x, 0)) == PLUS
719 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
720 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
721 {
722 rtx s = XEXP (XEXP (x, 0), 0);
723 rtx c = XEXP (XEXP (x, 0), 1);
724 unsigned sa, ca;
725
726 sa = BITS_PER_UNIT;
727 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
728 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
729
730 if (INTVAL (c) == 0)
731 align = sa;
732 else
733 {
734 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
735 align = MIN (sa, ca);
736 }
737 }
738
739 if (align || (MEM_P (x) && MEM_POINTER (x)))
740 mark_reg_pointer (temp, align);
741 }
742
743 return temp;
744 }
745
746 /* If X is a memory ref, copy its contents to a new temp reg and return
747 that reg. Otherwise, return X. */
748
749 rtx
750 force_not_mem (rtx x)
751 {
752 rtx temp;
753
754 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
755 return x;
756
757 temp = gen_reg_rtx (GET_MODE (x));
758
759 if (MEM_POINTER (x))
760 REG_POINTER (temp) = 1;
761
762 emit_move_insn (temp, x);
763 return temp;
764 }
765
766 /* Copy X to TARGET (if it's nonzero and a reg)
767 or to a new temp reg and return that reg.
768 MODE is the mode to use for X in case it is a constant. */
769
770 rtx
771 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
772 {
773 rtx temp;
774
775 if (target && REG_P (target))
776 temp = target;
777 else
778 temp = gen_reg_rtx (mode);
779
780 emit_move_insn (temp, x);
781 return temp;
782 }
783 \f
784 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
785 PUNSIGNEDP points to the signedness of the type and may be adjusted
786 to show what signedness to use on extension operations.
787
788 FOR_RETURN is nonzero if the caller is promoting the return value
789 of FNDECL, else it is for promoting args. */
790
791 enum machine_mode
792 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
793 const_tree funtype, int for_return)
794 {
795 /* Called without a type node for a libcall. */
796 if (type == NULL_TREE)
797 {
798 if (INTEGRAL_MODE_P (mode))
799 return targetm.calls.promote_function_mode (NULL_TREE, mode,
800 punsignedp, funtype,
801 for_return);
802 else
803 return mode;
804 }
805
806 switch (TREE_CODE (type))
807 {
808 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
809 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
810 case POINTER_TYPE: case REFERENCE_TYPE:
811 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
812 for_return);
813
814 default:
815 return mode;
816 }
817 }
818 /* Return the mode to use to store a scalar of TYPE and MODE.
819 PUNSIGNEDP points to the signedness of the type and may be adjusted
820 to show what signedness to use on extension operations. */
821
822 enum machine_mode
823 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
824 int *punsignedp ATTRIBUTE_UNUSED)
825 {
826 #ifdef PROMOTE_MODE
827 enum tree_code code;
828 int unsignedp;
829 #endif
830
831 /* For libcalls this is invoked without TYPE from the backends
832 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
833 case. */
834 if (type == NULL_TREE)
835 return mode;
836
837 /* FIXME: this is the same logic that was there until GCC 4.4, but we
838 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
839 is not defined. The affected targets are M32C, S390, SPARC. */
840 #ifdef PROMOTE_MODE
841 code = TREE_CODE (type);
842 unsignedp = *punsignedp;
843
844 switch (code)
845 {
846 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
847 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
848 PROMOTE_MODE (mode, unsignedp, type);
849 *punsignedp = unsignedp;
850 return mode;
851 break;
852
853 #ifdef POINTERS_EXTEND_UNSIGNED
854 case REFERENCE_TYPE:
855 case POINTER_TYPE:
856 *punsignedp = POINTERS_EXTEND_UNSIGNED;
857 return targetm.addr_space.address_mode
858 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
859 break;
860 #endif
861
862 default:
863 return mode;
864 }
865 #else
866 return mode;
867 #endif
868 }
869
870
871 /* Use one of promote_mode or promote_function_mode to find the promoted
872 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
873 of DECL after promotion. */
874
875 enum machine_mode
876 promote_decl_mode (const_tree decl, int *punsignedp)
877 {
878 tree type = TREE_TYPE (decl);
879 int unsignedp = TYPE_UNSIGNED (type);
880 enum machine_mode mode = DECL_MODE (decl);
881 enum machine_mode pmode;
882
883 if (TREE_CODE (decl) == RESULT_DECL
884 || TREE_CODE (decl) == PARM_DECL)
885 pmode = promote_function_mode (type, mode, &unsignedp,
886 TREE_TYPE (current_function_decl), 2);
887 else
888 pmode = promote_mode (type, mode, &unsignedp);
889
890 if (punsignedp)
891 *punsignedp = unsignedp;
892 return pmode;
893 }
894
895 \f
896 /* Controls the behaviour of {anti_,}adjust_stack. */
897 static bool suppress_reg_args_size;
898
899 /* A helper for adjust_stack and anti_adjust_stack. */
900
901 static void
902 adjust_stack_1 (rtx adjust, bool anti_p)
903 {
904 rtx temp, insn;
905
906 #ifndef STACK_GROWS_DOWNWARD
907 /* Hereafter anti_p means subtract_p. */
908 anti_p = !anti_p;
909 #endif
910
911 temp = expand_binop (Pmode,
912 anti_p ? sub_optab : add_optab,
913 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
914 OPTAB_LIB_WIDEN);
915
916 if (temp != stack_pointer_rtx)
917 insn = emit_move_insn (stack_pointer_rtx, temp);
918 else
919 {
920 insn = get_last_insn ();
921 temp = single_set (insn);
922 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
923 }
924
925 if (!suppress_reg_args_size)
926 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
927 }
928
929 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
930 This pops when ADJUST is positive. ADJUST need not be constant. */
931
932 void
933 adjust_stack (rtx adjust)
934 {
935 if (adjust == const0_rtx)
936 return;
937
938 /* We expect all variable sized adjustments to be multiple of
939 PREFERRED_STACK_BOUNDARY. */
940 if (CONST_INT_P (adjust))
941 stack_pointer_delta -= INTVAL (adjust);
942
943 adjust_stack_1 (adjust, false);
944 }
945
946 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
947 This pushes when ADJUST is positive. ADJUST need not be constant. */
948
949 void
950 anti_adjust_stack (rtx adjust)
951 {
952 if (adjust == const0_rtx)
953 return;
954
955 /* We expect all variable sized adjustments to be multiple of
956 PREFERRED_STACK_BOUNDARY. */
957 if (CONST_INT_P (adjust))
958 stack_pointer_delta += INTVAL (adjust);
959
960 adjust_stack_1 (adjust, true);
961 }
962
963 /* Round the size of a block to be pushed up to the boundary required
964 by this machine. SIZE is the desired size, which need not be constant. */
965
966 static rtx
967 round_push (rtx size)
968 {
969 rtx align_rtx, alignm1_rtx;
970
971 if (!SUPPORTS_STACK_ALIGNMENT
972 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
973 {
974 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
975
976 if (align == 1)
977 return size;
978
979 if (CONST_INT_P (size))
980 {
981 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
982
983 if (INTVAL (size) != new_size)
984 size = GEN_INT (new_size);
985 return size;
986 }
987
988 align_rtx = GEN_INT (align);
989 alignm1_rtx = GEN_INT (align - 1);
990 }
991 else
992 {
993 /* If crtl->preferred_stack_boundary might still grow, use
994 virtual_preferred_stack_boundary_rtx instead. This will be
995 substituted by the right value in vregs pass and optimized
996 during combine. */
997 align_rtx = virtual_preferred_stack_boundary_rtx;
998 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
999 }
1000
1001 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1002 but we know it can't. So add ourselves and then do
1003 TRUNC_DIV_EXPR. */
1004 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1005 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1006 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1007 NULL_RTX, 1);
1008 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1009
1010 return size;
1011 }
1012 \f
1013 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1014 to a previously-created save area. If no save area has been allocated,
1015 this function will allocate one. If a save area is specified, it
1016 must be of the proper mode. */
1017
1018 void
1019 emit_stack_save (enum save_level save_level, rtx *psave)
1020 {
1021 rtx sa = *psave;
1022 /* The default is that we use a move insn and save in a Pmode object. */
1023 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1024 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1025
1026 /* See if this machine has anything special to do for this kind of save. */
1027 switch (save_level)
1028 {
1029 #ifdef HAVE_save_stack_block
1030 case SAVE_BLOCK:
1031 if (HAVE_save_stack_block)
1032 fcn = gen_save_stack_block;
1033 break;
1034 #endif
1035 #ifdef HAVE_save_stack_function
1036 case SAVE_FUNCTION:
1037 if (HAVE_save_stack_function)
1038 fcn = gen_save_stack_function;
1039 break;
1040 #endif
1041 #ifdef HAVE_save_stack_nonlocal
1042 case SAVE_NONLOCAL:
1043 if (HAVE_save_stack_nonlocal)
1044 fcn = gen_save_stack_nonlocal;
1045 break;
1046 #endif
1047 default:
1048 break;
1049 }
1050
1051 /* If there is no save area and we have to allocate one, do so. Otherwise
1052 verify the save area is the proper mode. */
1053
1054 if (sa == 0)
1055 {
1056 if (mode != VOIDmode)
1057 {
1058 if (save_level == SAVE_NONLOCAL)
1059 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1060 else
1061 *psave = sa = gen_reg_rtx (mode);
1062 }
1063 }
1064
1065 do_pending_stack_adjust ();
1066 if (sa != 0)
1067 sa = validize_mem (sa);
1068 emit_insn (fcn (sa, stack_pointer_rtx));
1069 }
1070
1071 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1072 area made by emit_stack_save. If it is zero, we have nothing to do. */
1073
1074 void
1075 emit_stack_restore (enum save_level save_level, rtx sa)
1076 {
1077 /* The default is that we use a move insn. */
1078 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1079
1080 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1081 STACK_POINTER and HARD_FRAME_POINTER.
1082 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1083 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1084 aligned variables, which is reflected in ix86_can_eliminate.
1085 We normally still have the realigned STACK_POINTER that we can use.
1086 But if there is a stack restore still present at reload, it can trigger
1087 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1088 FRAME_POINTER into a hard reg.
1089 To prevent this situation, we force need_drap if we emit a stack
1090 restore. */
1091 if (SUPPORTS_STACK_ALIGNMENT)
1092 crtl->need_drap = true;
1093
1094 /* See if this machine has anything special to do for this kind of save. */
1095 switch (save_level)
1096 {
1097 #ifdef HAVE_restore_stack_block
1098 case SAVE_BLOCK:
1099 if (HAVE_restore_stack_block)
1100 fcn = gen_restore_stack_block;
1101 break;
1102 #endif
1103 #ifdef HAVE_restore_stack_function
1104 case SAVE_FUNCTION:
1105 if (HAVE_restore_stack_function)
1106 fcn = gen_restore_stack_function;
1107 break;
1108 #endif
1109 #ifdef HAVE_restore_stack_nonlocal
1110 case SAVE_NONLOCAL:
1111 if (HAVE_restore_stack_nonlocal)
1112 fcn = gen_restore_stack_nonlocal;
1113 break;
1114 #endif
1115 default:
1116 break;
1117 }
1118
1119 if (sa != 0)
1120 {
1121 sa = validize_mem (sa);
1122 /* These clobbers prevent the scheduler from moving
1123 references to variable arrays below the code
1124 that deletes (pops) the arrays. */
1125 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1126 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1127 }
1128
1129 discard_pending_stack_adjust ();
1130
1131 emit_insn (fcn (stack_pointer_rtx, sa));
1132 }
1133
1134 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1135 function. This function should be called whenever we allocate or
1136 deallocate dynamic stack space. */
1137
1138 void
1139 update_nonlocal_goto_save_area (void)
1140 {
1141 tree t_save;
1142 rtx r_save;
1143
1144 /* The nonlocal_goto_save_area object is an array of N pointers. The
1145 first one is used for the frame pointer save; the rest are sized by
1146 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1147 of the stack save area slots. */
1148 t_save = build4 (ARRAY_REF,
1149 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1150 cfun->nonlocal_goto_save_area,
1151 integer_one_node, NULL_TREE, NULL_TREE);
1152 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1153
1154 emit_stack_save (SAVE_NONLOCAL, &r_save);
1155 }
1156 \f
1157 /* Return an rtx representing the address of an area of memory dynamically
1158 pushed on the stack.
1159
1160 Any required stack pointer alignment is preserved.
1161
1162 SIZE is an rtx representing the size of the area.
1163
1164 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1165 parameter may be zero. If so, a proper value will be extracted
1166 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1167
1168 REQUIRED_ALIGN is the alignment (in bits) required for the region
1169 of memory.
1170
1171 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1172 stack space allocated by the generated code cannot be added with itself
1173 in the course of the execution of the function. It is always safe to
1174 pass FALSE here and the following criterion is sufficient in order to
1175 pass TRUE: every path in the CFG that starts at the allocation point and
1176 loops to it executes the associated deallocation code. */
1177
1178 rtx
1179 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1180 unsigned required_align, bool cannot_accumulate)
1181 {
1182 HOST_WIDE_INT stack_usage_size = -1;
1183 rtx final_label, final_target, target;
1184 unsigned extra_align = 0;
1185 bool must_align;
1186
1187 /* If we're asking for zero bytes, it doesn't matter what we point
1188 to since we can't dereference it. But return a reasonable
1189 address anyway. */
1190 if (size == const0_rtx)
1191 return virtual_stack_dynamic_rtx;
1192
1193 /* Otherwise, show we're calling alloca or equivalent. */
1194 cfun->calls_alloca = 1;
1195
1196 /* If stack usage info is requested, look into the size we are passed.
1197 We need to do so this early to avoid the obfuscation that may be
1198 introduced later by the various alignment operations. */
1199 if (flag_stack_usage_info)
1200 {
1201 if (CONST_INT_P (size))
1202 stack_usage_size = INTVAL (size);
1203 else if (REG_P (size))
1204 {
1205 /* Look into the last emitted insn and see if we can deduce
1206 something for the register. */
1207 rtx insn, set, note;
1208 insn = get_last_insn ();
1209 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1210 {
1211 if (CONST_INT_P (SET_SRC (set)))
1212 stack_usage_size = INTVAL (SET_SRC (set));
1213 else if ((note = find_reg_equal_equiv_note (insn))
1214 && CONST_INT_P (XEXP (note, 0)))
1215 stack_usage_size = INTVAL (XEXP (note, 0));
1216 }
1217 }
1218
1219 /* If the size is not constant, we can't say anything. */
1220 if (stack_usage_size == -1)
1221 {
1222 current_function_has_unbounded_dynamic_stack_size = 1;
1223 stack_usage_size = 0;
1224 }
1225 }
1226
1227 /* Ensure the size is in the proper mode. */
1228 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1229 size = convert_to_mode (Pmode, size, 1);
1230
1231 /* Adjust SIZE_ALIGN, if needed. */
1232 if (CONST_INT_P (size))
1233 {
1234 unsigned HOST_WIDE_INT lsb;
1235
1236 lsb = INTVAL (size);
1237 lsb &= -lsb;
1238
1239 /* Watch out for overflow truncating to "unsigned". */
1240 if (lsb > UINT_MAX / BITS_PER_UNIT)
1241 size_align = 1u << (HOST_BITS_PER_INT - 1);
1242 else
1243 size_align = (unsigned)lsb * BITS_PER_UNIT;
1244 }
1245 else if (size_align < BITS_PER_UNIT)
1246 size_align = BITS_PER_UNIT;
1247
1248 /* We can't attempt to minimize alignment necessary, because we don't
1249 know the final value of preferred_stack_boundary yet while executing
1250 this code. */
1251 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1252 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1253
1254 /* We will need to ensure that the address we return is aligned to
1255 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1256 always know its final value at this point in the compilation (it
1257 might depend on the size of the outgoing parameter lists, for
1258 example), so we must align the value to be returned in that case.
1259 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1260 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1261 We must also do an alignment operation on the returned value if
1262 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1263
1264 If we have to align, we must leave space in SIZE for the hole
1265 that might result from the alignment operation. */
1266
1267 must_align = (crtl->preferred_stack_boundary < required_align);
1268 if (must_align)
1269 {
1270 if (required_align > PREFERRED_STACK_BOUNDARY)
1271 extra_align = PREFERRED_STACK_BOUNDARY;
1272 else if (required_align > STACK_BOUNDARY)
1273 extra_align = STACK_BOUNDARY;
1274 else
1275 extra_align = BITS_PER_UNIT;
1276 }
1277
1278 /* ??? STACK_POINTER_OFFSET is always defined now. */
1279 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1280 must_align = true;
1281 extra_align = BITS_PER_UNIT;
1282 #endif
1283
1284 if (must_align)
1285 {
1286 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1287
1288 size = plus_constant (size, extra);
1289 size = force_operand (size, NULL_RTX);
1290
1291 if (flag_stack_usage_info)
1292 stack_usage_size += extra;
1293
1294 if (extra && size_align > extra_align)
1295 size_align = extra_align;
1296 }
1297
1298 /* Round the size to a multiple of the required stack alignment.
1299 Since the stack if presumed to be rounded before this allocation,
1300 this will maintain the required alignment.
1301
1302 If the stack grows downward, we could save an insn by subtracting
1303 SIZE from the stack pointer and then aligning the stack pointer.
1304 The problem with this is that the stack pointer may be unaligned
1305 between the execution of the subtraction and alignment insns and
1306 some machines do not allow this. Even on those that do, some
1307 signal handlers malfunction if a signal should occur between those
1308 insns. Since this is an extremely rare event, we have no reliable
1309 way of knowing which systems have this problem. So we avoid even
1310 momentarily mis-aligning the stack. */
1311 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1312 {
1313 size = round_push (size);
1314
1315 if (flag_stack_usage_info)
1316 {
1317 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1318 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1319 }
1320 }
1321
1322 target = gen_reg_rtx (Pmode);
1323
1324 /* The size is supposed to be fully adjusted at this point so record it
1325 if stack usage info is requested. */
1326 if (flag_stack_usage_info)
1327 {
1328 current_function_dynamic_stack_size += stack_usage_size;
1329
1330 /* ??? This is gross but the only safe stance in the absence
1331 of stack usage oriented flow analysis. */
1332 if (!cannot_accumulate)
1333 current_function_has_unbounded_dynamic_stack_size = 1;
1334 }
1335
1336 final_label = NULL_RTX;
1337 final_target = NULL_RTX;
1338
1339 /* If we are splitting the stack, we need to ask the backend whether
1340 there is enough room on the current stack. If there isn't, or if
1341 the backend doesn't know how to tell is, then we need to call a
1342 function to allocate memory in some other way. This memory will
1343 be released when we release the current stack segment. The
1344 effect is that stack allocation becomes less efficient, but at
1345 least it doesn't cause a stack overflow. */
1346 if (flag_split_stack)
1347 {
1348 rtx available_label, ask, space, func;
1349
1350 available_label = NULL_RTX;
1351
1352 #ifdef HAVE_split_stack_space_check
1353 if (HAVE_split_stack_space_check)
1354 {
1355 available_label = gen_label_rtx ();
1356
1357 /* This instruction will branch to AVAILABLE_LABEL if there
1358 are SIZE bytes available on the stack. */
1359 emit_insn (gen_split_stack_space_check (size, available_label));
1360 }
1361 #endif
1362
1363 /* The __morestack_allocate_stack_space function will allocate
1364 memory using malloc. If the alignment of the memory returned
1365 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1366 make sure we allocate enough space. */
1367 if (MALLOC_ABI_ALIGNMENT >= required_align)
1368 ask = size;
1369 else
1370 {
1371 ask = expand_binop (Pmode, add_optab, size,
1372 GEN_INT (required_align / BITS_PER_UNIT - 1),
1373 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1374 must_align = true;
1375 }
1376
1377 func = init_one_libfunc ("__morestack_allocate_stack_space");
1378
1379 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1380 1, ask, Pmode);
1381
1382 if (available_label == NULL_RTX)
1383 return space;
1384
1385 final_target = gen_reg_rtx (Pmode);
1386
1387 emit_move_insn (final_target, space);
1388
1389 final_label = gen_label_rtx ();
1390 emit_jump (final_label);
1391
1392 emit_label (available_label);
1393 }
1394
1395 do_pending_stack_adjust ();
1396
1397 /* We ought to be called always on the toplevel and stack ought to be aligned
1398 properly. */
1399 gcc_assert (!(stack_pointer_delta
1400 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1401
1402 /* If needed, check that we have the required amount of stack. Take into
1403 account what has already been checked. */
1404 if (STACK_CHECK_MOVING_SP)
1405 ;
1406 else if (flag_stack_check == GENERIC_STACK_CHECK)
1407 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1408 size);
1409 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1410 probe_stack_range (STACK_CHECK_PROTECT, size);
1411
1412 /* Don't let anti_adjust_stack emit notes. */
1413 suppress_reg_args_size = true;
1414
1415 /* Perform the required allocation from the stack. Some systems do
1416 this differently than simply incrementing/decrementing from the
1417 stack pointer, such as acquiring the space by calling malloc(). */
1418 #ifdef HAVE_allocate_stack
1419 if (HAVE_allocate_stack)
1420 {
1421 struct expand_operand ops[2];
1422 /* We don't have to check against the predicate for operand 0 since
1423 TARGET is known to be a pseudo of the proper mode, which must
1424 be valid for the operand. */
1425 create_fixed_operand (&ops[0], target);
1426 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1427 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1428 }
1429 else
1430 #endif
1431 {
1432 int saved_stack_pointer_delta;
1433
1434 #ifndef STACK_GROWS_DOWNWARD
1435 emit_move_insn (target, virtual_stack_dynamic_rtx);
1436 #endif
1437
1438 /* Check stack bounds if necessary. */
1439 if (crtl->limit_stack)
1440 {
1441 rtx available;
1442 rtx space_available = gen_label_rtx ();
1443 #ifdef STACK_GROWS_DOWNWARD
1444 available = expand_binop (Pmode, sub_optab,
1445 stack_pointer_rtx, stack_limit_rtx,
1446 NULL_RTX, 1, OPTAB_WIDEN);
1447 #else
1448 available = expand_binop (Pmode, sub_optab,
1449 stack_limit_rtx, stack_pointer_rtx,
1450 NULL_RTX, 1, OPTAB_WIDEN);
1451 #endif
1452 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1453 space_available);
1454 #ifdef HAVE_trap
1455 if (HAVE_trap)
1456 emit_insn (gen_trap ());
1457 else
1458 #endif
1459 error ("stack limits not supported on this target");
1460 emit_barrier ();
1461 emit_label (space_available);
1462 }
1463
1464 saved_stack_pointer_delta = stack_pointer_delta;
1465
1466 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1467 anti_adjust_stack_and_probe (size, false);
1468 else
1469 anti_adjust_stack (size);
1470
1471 /* Even if size is constant, don't modify stack_pointer_delta.
1472 The constant size alloca should preserve
1473 crtl->preferred_stack_boundary alignment. */
1474 stack_pointer_delta = saved_stack_pointer_delta;
1475
1476 #ifdef STACK_GROWS_DOWNWARD
1477 emit_move_insn (target, virtual_stack_dynamic_rtx);
1478 #endif
1479 }
1480
1481 suppress_reg_args_size = false;
1482
1483 /* Finish up the split stack handling. */
1484 if (final_label != NULL_RTX)
1485 {
1486 gcc_assert (flag_split_stack);
1487 emit_move_insn (final_target, target);
1488 emit_label (final_label);
1489 target = final_target;
1490 }
1491
1492 if (must_align)
1493 {
1494 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1495 but we know it can't. So add ourselves and then do
1496 TRUNC_DIV_EXPR. */
1497 target = expand_binop (Pmode, add_optab, target,
1498 GEN_INT (required_align / BITS_PER_UNIT - 1),
1499 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1500 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1501 GEN_INT (required_align / BITS_PER_UNIT),
1502 NULL_RTX, 1);
1503 target = expand_mult (Pmode, target,
1504 GEN_INT (required_align / BITS_PER_UNIT),
1505 NULL_RTX, 1);
1506 }
1507
1508 /* Now that we've committed to a return value, mark its alignment. */
1509 mark_reg_pointer (target, required_align);
1510
1511 /* Record the new stack level for nonlocal gotos. */
1512 if (cfun->nonlocal_goto_save_area != 0)
1513 update_nonlocal_goto_save_area ();
1514
1515 return target;
1516 }
1517 \f
1518 /* A front end may want to override GCC's stack checking by providing a
1519 run-time routine to call to check the stack, so provide a mechanism for
1520 calling that routine. */
1521
1522 static GTY(()) rtx stack_check_libfunc;
1523
1524 void
1525 set_stack_check_libfunc (const char *libfunc_name)
1526 {
1527 gcc_assert (stack_check_libfunc == NULL_RTX);
1528 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1529 }
1530 \f
1531 /* Emit one stack probe at ADDRESS, an address within the stack. */
1532
1533 void
1534 emit_stack_probe (rtx address)
1535 {
1536 rtx memref = gen_rtx_MEM (word_mode, address);
1537
1538 MEM_VOLATILE_P (memref) = 1;
1539
1540 /* See if we have an insn to probe the stack. */
1541 #ifdef HAVE_probe_stack
1542 if (HAVE_probe_stack)
1543 emit_insn (gen_probe_stack (memref));
1544 else
1545 #endif
1546 emit_move_insn (memref, const0_rtx);
1547 }
1548
1549 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1550 FIRST is a constant and size is a Pmode RTX. These are offsets from
1551 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1552 or subtract them from the stack pointer. */
1553
1554 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1555
1556 #ifdef STACK_GROWS_DOWNWARD
1557 #define STACK_GROW_OP MINUS
1558 #define STACK_GROW_OPTAB sub_optab
1559 #define STACK_GROW_OFF(off) -(off)
1560 #else
1561 #define STACK_GROW_OP PLUS
1562 #define STACK_GROW_OPTAB add_optab
1563 #define STACK_GROW_OFF(off) (off)
1564 #endif
1565
1566 void
1567 probe_stack_range (HOST_WIDE_INT first, rtx size)
1568 {
1569 /* First ensure SIZE is Pmode. */
1570 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1571 size = convert_to_mode (Pmode, size, 1);
1572
1573 /* Next see if we have a function to check the stack. */
1574 if (stack_check_libfunc)
1575 {
1576 rtx addr = memory_address (Pmode,
1577 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1578 stack_pointer_rtx,
1579 plus_constant (size, first)));
1580 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1581 Pmode);
1582 return;
1583 }
1584
1585 /* Next see if we have an insn to check the stack. */
1586 #ifdef HAVE_check_stack
1587 if (HAVE_check_stack)
1588 {
1589 struct expand_operand ops[1];
1590 rtx addr = memory_address (Pmode,
1591 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1592 stack_pointer_rtx,
1593 plus_constant (size, first)));
1594
1595 create_input_operand (&ops[0], addr, Pmode);
1596 if (maybe_expand_insn (CODE_FOR_check_stack, 1, ops))
1597 return;
1598 }
1599 #endif
1600
1601 /* Otherwise we have to generate explicit probes. If we have a constant
1602 small number of them to generate, that's the easy case. */
1603 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1604 {
1605 HOST_WIDE_INT isize = INTVAL (size), i;
1606 rtx addr;
1607
1608 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1609 it exceeds SIZE. If only one probe is needed, this will not
1610 generate any code. Then probe at FIRST + SIZE. */
1611 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1612 {
1613 addr = memory_address (Pmode,
1614 plus_constant (stack_pointer_rtx,
1615 STACK_GROW_OFF (first + i)));
1616 emit_stack_probe (addr);
1617 }
1618
1619 addr = memory_address (Pmode,
1620 plus_constant (stack_pointer_rtx,
1621 STACK_GROW_OFF (first + isize)));
1622 emit_stack_probe (addr);
1623 }
1624
1625 /* In the variable case, do the same as above, but in a loop. Note that we
1626 must be extra careful with variables wrapping around because we might be
1627 at the very top (or the very bottom) of the address space and we have to
1628 be able to handle this case properly; in particular, we use an equality
1629 test for the loop condition. */
1630 else
1631 {
1632 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1633 rtx loop_lab = gen_label_rtx ();
1634 rtx end_lab = gen_label_rtx ();
1635
1636
1637 /* Step 1: round SIZE to the previous multiple of the interval. */
1638
1639 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1640 rounded_size
1641 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1642 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1643
1644
1645 /* Step 2: compute initial and final value of the loop counter. */
1646
1647 /* TEST_ADDR = SP + FIRST. */
1648 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1649 stack_pointer_rtx,
1650 GEN_INT (first)), NULL_RTX);
1651
1652 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1653 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1654 test_addr,
1655 rounded_size_op), NULL_RTX);
1656
1657
1658 /* Step 3: the loop
1659
1660 while (TEST_ADDR != LAST_ADDR)
1661 {
1662 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1663 probe at TEST_ADDR
1664 }
1665
1666 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1667 until it is equal to ROUNDED_SIZE. */
1668
1669 emit_label (loop_lab);
1670
1671 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1672 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1673 end_lab);
1674
1675 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1676 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1677 GEN_INT (PROBE_INTERVAL), test_addr,
1678 1, OPTAB_WIDEN);
1679
1680 gcc_assert (temp == test_addr);
1681
1682 /* Probe at TEST_ADDR. */
1683 emit_stack_probe (test_addr);
1684
1685 emit_jump (loop_lab);
1686
1687 emit_label (end_lab);
1688
1689
1690 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1691 that SIZE is equal to ROUNDED_SIZE. */
1692
1693 /* TEMP = SIZE - ROUNDED_SIZE. */
1694 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1695 if (temp != const0_rtx)
1696 {
1697 rtx addr;
1698
1699 if (CONST_INT_P (temp))
1700 {
1701 /* Use [base + disp} addressing mode if supported. */
1702 HOST_WIDE_INT offset = INTVAL (temp);
1703 addr = memory_address (Pmode,
1704 plus_constant (last_addr,
1705 STACK_GROW_OFF (offset)));
1706 }
1707 else
1708 {
1709 /* Manual CSE if the difference is not known at compile-time. */
1710 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1711 addr = memory_address (Pmode,
1712 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1713 last_addr, temp));
1714 }
1715
1716 emit_stack_probe (addr);
1717 }
1718 }
1719 }
1720
1721 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1722 while probing it. This pushes when SIZE is positive. SIZE need not
1723 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1724 by plus SIZE at the end. */
1725
1726 void
1727 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1728 {
1729 /* We skip the probe for the first interval + a small dope of 4 words and
1730 probe that many bytes past the specified size to maintain a protection
1731 area at the botton of the stack. */
1732 const int dope = 4 * UNITS_PER_WORD;
1733
1734 /* First ensure SIZE is Pmode. */
1735 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1736 size = convert_to_mode (Pmode, size, 1);
1737
1738 /* If we have a constant small number of probes to generate, that's the
1739 easy case. */
1740 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1741 {
1742 HOST_WIDE_INT isize = INTVAL (size), i;
1743 bool first_probe = true;
1744
1745 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1746 values of N from 1 until it exceeds SIZE. If only one probe is
1747 needed, this will not generate any code. Then adjust and probe
1748 to PROBE_INTERVAL + SIZE. */
1749 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1750 {
1751 if (first_probe)
1752 {
1753 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1754 first_probe = false;
1755 }
1756 else
1757 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1758 emit_stack_probe (stack_pointer_rtx);
1759 }
1760
1761 if (first_probe)
1762 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1763 else
1764 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1765 emit_stack_probe (stack_pointer_rtx);
1766 }
1767
1768 /* In the variable case, do the same as above, but in a loop. Note that we
1769 must be extra careful with variables wrapping around because we might be
1770 at the very top (or the very bottom) of the address space and we have to
1771 be able to handle this case properly; in particular, we use an equality
1772 test for the loop condition. */
1773 else
1774 {
1775 rtx rounded_size, rounded_size_op, last_addr, temp;
1776 rtx loop_lab = gen_label_rtx ();
1777 rtx end_lab = gen_label_rtx ();
1778
1779
1780 /* Step 1: round SIZE to the previous multiple of the interval. */
1781
1782 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1783 rounded_size
1784 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1785 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1786
1787
1788 /* Step 2: compute initial and final value of the loop counter. */
1789
1790 /* SP = SP_0 + PROBE_INTERVAL. */
1791 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1792
1793 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1794 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1795 stack_pointer_rtx,
1796 rounded_size_op), NULL_RTX);
1797
1798
1799 /* Step 3: the loop
1800
1801 while (SP != LAST_ADDR)
1802 {
1803 SP = SP + PROBE_INTERVAL
1804 probe at SP
1805 }
1806
1807 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1808 values of N from 1 until it is equal to ROUNDED_SIZE. */
1809
1810 emit_label (loop_lab);
1811
1812 /* Jump to END_LAB if SP == LAST_ADDR. */
1813 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1814 Pmode, 1, end_lab);
1815
1816 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1817 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1818 emit_stack_probe (stack_pointer_rtx);
1819
1820 emit_jump (loop_lab);
1821
1822 emit_label (end_lab);
1823
1824
1825 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1826 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1827
1828 /* TEMP = SIZE - ROUNDED_SIZE. */
1829 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1830 if (temp != const0_rtx)
1831 {
1832 /* Manual CSE if the difference is not known at compile-time. */
1833 if (GET_CODE (temp) != CONST_INT)
1834 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1835 anti_adjust_stack (temp);
1836 emit_stack_probe (stack_pointer_rtx);
1837 }
1838 }
1839
1840 /* Adjust back and account for the additional first interval. */
1841 if (adjust_back)
1842 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1843 else
1844 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1845 }
1846
1847 /* Return an rtx representing the register or memory location
1848 in which a scalar value of data type VALTYPE
1849 was returned by a function call to function FUNC.
1850 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1851 function is known, otherwise 0.
1852 OUTGOING is 1 if on a machine with register windows this function
1853 should return the register in which the function will put its result
1854 and 0 otherwise. */
1855
1856 rtx
1857 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1858 int outgoing ATTRIBUTE_UNUSED)
1859 {
1860 rtx val;
1861
1862 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1863
1864 if (REG_P (val)
1865 && GET_MODE (val) == BLKmode)
1866 {
1867 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1868 enum machine_mode tmpmode;
1869
1870 /* int_size_in_bytes can return -1. We don't need a check here
1871 since the value of bytes will then be large enough that no
1872 mode will match anyway. */
1873
1874 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1875 tmpmode != VOIDmode;
1876 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1877 {
1878 /* Have we found a large enough mode? */
1879 if (GET_MODE_SIZE (tmpmode) >= bytes)
1880 break;
1881 }
1882
1883 /* No suitable mode found. */
1884 gcc_assert (tmpmode != VOIDmode);
1885
1886 PUT_MODE (val, tmpmode);
1887 }
1888 return val;
1889 }
1890
1891 /* Return an rtx representing the register or memory location
1892 in which a scalar value of mode MODE was returned by a library call. */
1893
1894 rtx
1895 hard_libcall_value (enum machine_mode mode, rtx fun)
1896 {
1897 return targetm.calls.libcall_value (mode, fun);
1898 }
1899
1900 /* Look up the tree code for a given rtx code
1901 to provide the arithmetic operation for REAL_ARITHMETIC.
1902 The function returns an int because the caller may not know
1903 what `enum tree_code' means. */
1904
1905 int
1906 rtx_to_tree_code (enum rtx_code code)
1907 {
1908 enum tree_code tcode;
1909
1910 switch (code)
1911 {
1912 case PLUS:
1913 tcode = PLUS_EXPR;
1914 break;
1915 case MINUS:
1916 tcode = MINUS_EXPR;
1917 break;
1918 case MULT:
1919 tcode = MULT_EXPR;
1920 break;
1921 case DIV:
1922 tcode = RDIV_EXPR;
1923 break;
1924 case SMIN:
1925 tcode = MIN_EXPR;
1926 break;
1927 case SMAX:
1928 tcode = MAX_EXPR;
1929 break;
1930 default:
1931 tcode = LAST_AND_UNUSED_TREE_CODE;
1932 break;
1933 }
1934 return ((int) tcode);
1935 }
1936
1937 #include "gt-explow.h"