re PR middle-end/20548 (ACATS c52103x c52104x c52104y segfault)
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
43
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46 static void anti_adjust_stack_and_probe (rtx);
47
48
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 {
54 int width = GET_MODE_BITSIZE (mode);
55
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
58
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
62
63 /* Sign-extend for the requested mode. */
64
65 if (width < HOST_BITS_PER_WIDE_INT)
66 {
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
72 }
73
74 return c;
75 }
76
77 /* Return an rtx for the sum of X and the integer C. */
78
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
81 {
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
87
88 if (c == 0)
89 return x;
90
91 restart:
92
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
96
97 switch (code)
98 {
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
101
102 case CONST_DOUBLE:
103 {
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
110
111 add_double (l1, h1, l2, h2, &lv, &hv);
112
113 return immed_double_const (lv, hv, VOIDmode);
114 }
115
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 {
123 tem
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
129 }
130 break;
131
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
138
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
143
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
150
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
153
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
156
157 if (CONST_INT_P (XEXP (x, 1)))
158 {
159 c += INTVAL (XEXP (x, 1));
160
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
163
164 x = XEXP (x, 0);
165 goto restart;
166 }
167 else if (CONSTANT_P (XEXP (x, 1)))
168 {
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
171 }
172 else if (find_constant_term_loc (&y))
173 {
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
178
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
182 }
183 break;
184
185 default:
186 break;
187 }
188
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
198 }
199 \f
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
204
205 rtx
206 eliminate_constant_term (rtx x, rtx *constptr)
207 {
208 rtx x0, x1;
209 rtx tem;
210
211 if (GET_CODE (x) != PLUS)
212 return x;
213
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
219 {
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
222 }
223
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
231 {
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234 }
235
236 return x;
237 }
238
239 /* Return an rtx for the size in bytes of the value of EXP. */
240
241 rtx
242 expr_size (tree exp)
243 {
244 tree size;
245
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
249 {
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
253 }
254
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
256 }
257
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
260
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
263 {
264 tree size;
265
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
269 {
270 size = tree_expr_size (exp);
271 gcc_assert (size);
272 }
273
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
276
277 return tree_low_cst (size, 0);
278 }
279 \f
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
285
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
288
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
292
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295
296 static rtx
297 break_out_memory_refs (rtx x)
298 {
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
305 {
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
311 }
312
313 return x;
314 }
315
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
321
322 rtx
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325 {
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
333
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
337
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
345 {
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
360
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
366
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
372
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
378
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
384
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
404
405 default:
406 break;
407 }
408
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
412 }
413 \f
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
417
418 rtx
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
420 {
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
423
424 x = convert_memory_address_addr_space (address_mode, x, as);
425
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
430
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
436 {
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
439
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
443
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
447 {
448 x = oldx;
449 goto done;
450 }
451
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
456 {
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
461 }
462
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
473 {
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
480 {
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
486 }
487 }
488
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
491
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
496
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
501 }
502
503 done:
504
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
516
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
520
521 return x;
522 }
523
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
526
527 rtx
528 validize_mem (rtx ref)
529 {
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
536
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
539 }
540
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
544
545 rtx
546 use_anchored_address (rtx x)
547 {
548 rtx base;
549 HOST_WIDE_INT offset;
550
551 if (!flag_section_anchors)
552 return x;
553
554 if (!MEM_P (x))
555 return x;
556
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
563 {
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
566 }
567
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
575
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
578
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
583
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
592
593 return replace_equiv_address (x, plus_constant (base, offset));
594 }
595 \f
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
597
598 rtx
599 copy_to_reg (rtx x)
600 {
601 rtx temp = gen_reg_rtx (GET_MODE (x));
602
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
607
608 if (x != temp)
609 emit_move_insn (temp, x);
610
611 return temp;
612 }
613
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
616
617 rtx
618 copy_addr_to_reg (rtx x)
619 {
620 return copy_to_mode_reg (Pmode, x);
621 }
622
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
625
626 rtx
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 {
629 rtx temp = gen_reg_rtx (mode);
630
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
635
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
640 }
641
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
646
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
649
650 rtx
651 force_reg (enum machine_mode mode, rtx x)
652 {
653 rtx temp, insn, set;
654
655 if (REG_P (x))
656 return x;
657
658 if (general_operand (x, mode))
659 {
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
662 }
663 else
664 {
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
669 {
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
673 }
674 }
675
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
684
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
687 {
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
690 {
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 }
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
701 {
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
705
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709
710 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
711
712 align = MIN (sa, ca);
713 }
714
715 if (align || (MEM_P (x) && MEM_POINTER (x)))
716 mark_reg_pointer (temp, align);
717 }
718
719 return temp;
720 }
721
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
724
725 rtx
726 force_not_mem (rtx x)
727 {
728 rtx temp;
729
730 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
731 return x;
732
733 temp = gen_reg_rtx (GET_MODE (x));
734
735 if (MEM_POINTER (x))
736 REG_POINTER (temp) = 1;
737
738 emit_move_insn (temp, x);
739 return temp;
740 }
741
742 /* Copy X to TARGET (if it's nonzero and a reg)
743 or to a new temp reg and return that reg.
744 MODE is the mode to use for X in case it is a constant. */
745
746 rtx
747 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
748 {
749 rtx temp;
750
751 if (target && REG_P (target))
752 temp = target;
753 else
754 temp = gen_reg_rtx (mode);
755
756 emit_move_insn (temp, x);
757 return temp;
758 }
759 \f
760 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
761 PUNSIGNEDP points to the signedness of the type and may be adjusted
762 to show what signedness to use on extension operations.
763
764 FOR_RETURN is nonzero if the caller is promoting the return value
765 of FNDECL, else it is for promoting args. */
766
767 enum machine_mode
768 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
769 const_tree funtype, int for_return)
770 {
771 switch (TREE_CODE (type))
772 {
773 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
774 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
775 case POINTER_TYPE: case REFERENCE_TYPE:
776 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
777 for_return);
778
779 default:
780 return mode;
781 }
782 }
783 /* Return the mode to use to store a scalar of TYPE and MODE.
784 PUNSIGNEDP points to the signedness of the type and may be adjusted
785 to show what signedness to use on extension operations. */
786
787 enum machine_mode
788 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
789 int *punsignedp ATTRIBUTE_UNUSED)
790 {
791 /* FIXME: this is the same logic that was there until GCC 4.4, but we
792 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
793 is not defined. The affected targets are M32C, S390, SPARC. */
794 #ifdef PROMOTE_MODE
795 const enum tree_code code = TREE_CODE (type);
796 int unsignedp = *punsignedp;
797
798 switch (code)
799 {
800 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
801 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
802 PROMOTE_MODE (mode, unsignedp, type);
803 *punsignedp = unsignedp;
804 return mode;
805 break;
806
807 #ifdef POINTERS_EXTEND_UNSIGNED
808 case REFERENCE_TYPE:
809 case POINTER_TYPE:
810 *punsignedp = POINTERS_EXTEND_UNSIGNED;
811 return targetm.addr_space.address_mode
812 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
813 break;
814 #endif
815
816 default:
817 return mode;
818 }
819 #else
820 return mode;
821 #endif
822 }
823
824
825 /* Use one of promote_mode or promote_function_mode to find the promoted
826 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
827 of DECL after promotion. */
828
829 enum machine_mode
830 promote_decl_mode (const_tree decl, int *punsignedp)
831 {
832 tree type = TREE_TYPE (decl);
833 int unsignedp = TYPE_UNSIGNED (type);
834 enum machine_mode mode = DECL_MODE (decl);
835 enum machine_mode pmode;
836
837 if (TREE_CODE (decl) == RESULT_DECL
838 || TREE_CODE (decl) == PARM_DECL)
839 pmode = promote_function_mode (type, mode, &unsignedp,
840 TREE_TYPE (current_function_decl), 2);
841 else
842 pmode = promote_mode (type, mode, &unsignedp);
843
844 if (punsignedp)
845 *punsignedp = unsignedp;
846 return pmode;
847 }
848
849 \f
850 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
851 This pops when ADJUST is positive. ADJUST need not be constant. */
852
853 void
854 adjust_stack (rtx adjust)
855 {
856 rtx temp;
857
858 if (adjust == const0_rtx)
859 return;
860
861 /* We expect all variable sized adjustments to be multiple of
862 PREFERRED_STACK_BOUNDARY. */
863 if (CONST_INT_P (adjust))
864 stack_pointer_delta -= INTVAL (adjust);
865
866 temp = expand_binop (Pmode,
867 #ifdef STACK_GROWS_DOWNWARD
868 add_optab,
869 #else
870 sub_optab,
871 #endif
872 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
873 OPTAB_LIB_WIDEN);
874
875 if (temp != stack_pointer_rtx)
876 emit_move_insn (stack_pointer_rtx, temp);
877 }
878
879 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
880 This pushes when ADJUST is positive. ADJUST need not be constant. */
881
882 void
883 anti_adjust_stack (rtx adjust)
884 {
885 rtx temp;
886
887 if (adjust == const0_rtx)
888 return;
889
890 /* We expect all variable sized adjustments to be multiple of
891 PREFERRED_STACK_BOUNDARY. */
892 if (CONST_INT_P (adjust))
893 stack_pointer_delta += INTVAL (adjust);
894
895 temp = expand_binop (Pmode,
896 #ifdef STACK_GROWS_DOWNWARD
897 sub_optab,
898 #else
899 add_optab,
900 #endif
901 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
902 OPTAB_LIB_WIDEN);
903
904 if (temp != stack_pointer_rtx)
905 emit_move_insn (stack_pointer_rtx, temp);
906 }
907
908 /* Round the size of a block to be pushed up to the boundary required
909 by this machine. SIZE is the desired size, which need not be constant. */
910
911 static rtx
912 round_push (rtx size)
913 {
914 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
915
916 if (align == 1)
917 return size;
918
919 if (CONST_INT_P (size))
920 {
921 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
922
923 if (INTVAL (size) != new_size)
924 size = GEN_INT (new_size);
925 }
926 else
927 {
928 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
929 but we know it can't. So add ourselves and then do
930 TRUNC_DIV_EXPR. */
931 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
932 NULL_RTX, 1, OPTAB_LIB_WIDEN);
933 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
934 NULL_RTX, 1);
935 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
936 }
937
938 return size;
939 }
940 \f
941 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
942 to a previously-created save area. If no save area has been allocated,
943 this function will allocate one. If a save area is specified, it
944 must be of the proper mode.
945
946 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
947 are emitted at the current position. */
948
949 void
950 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
951 {
952 rtx sa = *psave;
953 /* The default is that we use a move insn and save in a Pmode object. */
954 rtx (*fcn) (rtx, rtx) = gen_move_insn;
955 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
956
957 /* See if this machine has anything special to do for this kind of save. */
958 switch (save_level)
959 {
960 #ifdef HAVE_save_stack_block
961 case SAVE_BLOCK:
962 if (HAVE_save_stack_block)
963 fcn = gen_save_stack_block;
964 break;
965 #endif
966 #ifdef HAVE_save_stack_function
967 case SAVE_FUNCTION:
968 if (HAVE_save_stack_function)
969 fcn = gen_save_stack_function;
970 break;
971 #endif
972 #ifdef HAVE_save_stack_nonlocal
973 case SAVE_NONLOCAL:
974 if (HAVE_save_stack_nonlocal)
975 fcn = gen_save_stack_nonlocal;
976 break;
977 #endif
978 default:
979 break;
980 }
981
982 /* If there is no save area and we have to allocate one, do so. Otherwise
983 verify the save area is the proper mode. */
984
985 if (sa == 0)
986 {
987 if (mode != VOIDmode)
988 {
989 if (save_level == SAVE_NONLOCAL)
990 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
991 else
992 *psave = sa = gen_reg_rtx (mode);
993 }
994 }
995
996 if (after)
997 {
998 rtx seq;
999
1000 start_sequence ();
1001 do_pending_stack_adjust ();
1002 /* We must validize inside the sequence, to ensure that any instructions
1003 created by the validize call also get moved to the right place. */
1004 if (sa != 0)
1005 sa = validize_mem (sa);
1006 emit_insn (fcn (sa, stack_pointer_rtx));
1007 seq = get_insns ();
1008 end_sequence ();
1009 emit_insn_after (seq, after);
1010 }
1011 else
1012 {
1013 do_pending_stack_adjust ();
1014 if (sa != 0)
1015 sa = validize_mem (sa);
1016 emit_insn (fcn (sa, stack_pointer_rtx));
1017 }
1018 }
1019
1020 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1021 area made by emit_stack_save. If it is zero, we have nothing to do.
1022
1023 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1024 current position. */
1025
1026 void
1027 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1028 {
1029 /* The default is that we use a move insn. */
1030 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1031
1032 /* See if this machine has anything special to do for this kind of save. */
1033 switch (save_level)
1034 {
1035 #ifdef HAVE_restore_stack_block
1036 case SAVE_BLOCK:
1037 if (HAVE_restore_stack_block)
1038 fcn = gen_restore_stack_block;
1039 break;
1040 #endif
1041 #ifdef HAVE_restore_stack_function
1042 case SAVE_FUNCTION:
1043 if (HAVE_restore_stack_function)
1044 fcn = gen_restore_stack_function;
1045 break;
1046 #endif
1047 #ifdef HAVE_restore_stack_nonlocal
1048 case SAVE_NONLOCAL:
1049 if (HAVE_restore_stack_nonlocal)
1050 fcn = gen_restore_stack_nonlocal;
1051 break;
1052 #endif
1053 default:
1054 break;
1055 }
1056
1057 if (sa != 0)
1058 {
1059 sa = validize_mem (sa);
1060 /* These clobbers prevent the scheduler from moving
1061 references to variable arrays below the code
1062 that deletes (pops) the arrays. */
1063 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1064 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1065 }
1066
1067 discard_pending_stack_adjust ();
1068
1069 if (after)
1070 {
1071 rtx seq;
1072
1073 start_sequence ();
1074 emit_insn (fcn (stack_pointer_rtx, sa));
1075 seq = get_insns ();
1076 end_sequence ();
1077 emit_insn_after (seq, after);
1078 }
1079 else
1080 emit_insn (fcn (stack_pointer_rtx, sa));
1081 }
1082
1083 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1084 function. This function should be called whenever we allocate or
1085 deallocate dynamic stack space. */
1086
1087 void
1088 update_nonlocal_goto_save_area (void)
1089 {
1090 tree t_save;
1091 rtx r_save;
1092
1093 /* The nonlocal_goto_save_area object is an array of N pointers. The
1094 first one is used for the frame pointer save; the rest are sized by
1095 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1096 of the stack save area slots. */
1097 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1098 integer_one_node, NULL_TREE, NULL_TREE);
1099 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1100
1101 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1102 }
1103 \f
1104 /* Return an rtx representing the address of an area of memory dynamically
1105 pushed on the stack. This region of memory is always aligned to
1106 a multiple of BIGGEST_ALIGNMENT.
1107
1108 Any required stack pointer alignment is preserved.
1109
1110 SIZE is an rtx representing the size of the area.
1111 TARGET is a place in which the address can be placed.
1112
1113 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1114
1115 rtx
1116 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1117 {
1118 /* If we're asking for zero bytes, it doesn't matter what we point
1119 to since we can't dereference it. But return a reasonable
1120 address anyway. */
1121 if (size == const0_rtx)
1122 return virtual_stack_dynamic_rtx;
1123
1124 /* Otherwise, show we're calling alloca or equivalent. */
1125 cfun->calls_alloca = 1;
1126
1127 /* Ensure the size is in the proper mode. */
1128 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1129 size = convert_to_mode (Pmode, size, 1);
1130
1131 /* We can't attempt to minimize alignment necessary, because we don't
1132 know the final value of preferred_stack_boundary yet while executing
1133 this code. */
1134 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1135
1136 /* We will need to ensure that the address we return is aligned to
1137 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1138 always know its final value at this point in the compilation (it
1139 might depend on the size of the outgoing parameter lists, for
1140 example), so we must align the value to be returned in that case.
1141 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1142 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1143 We must also do an alignment operation on the returned value if
1144 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1145
1146 If we have to align, we must leave space in SIZE for the hole
1147 that might result from the alignment operation. */
1148
1149 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1150 #define MUST_ALIGN 1
1151 #else
1152 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1153 #endif
1154
1155 if (MUST_ALIGN)
1156 size
1157 = force_operand (plus_constant (size,
1158 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1159 NULL_RTX);
1160
1161 #ifdef SETJMP_VIA_SAVE_AREA
1162 /* If setjmp restores regs from a save area in the stack frame,
1163 avoid clobbering the reg save area. Note that the offset of
1164 virtual_incoming_args_rtx includes the preallocated stack args space.
1165 It would be no problem to clobber that, but it's on the wrong side
1166 of the old save area.
1167
1168 What used to happen is that, since we did not know for sure
1169 whether setjmp() was invoked until after RTL generation, we
1170 would use reg notes to store the "optimized" size and fix things
1171 up later. These days we know this information before we ever
1172 start building RTL so the reg notes are unnecessary. */
1173 if (!cfun->calls_setjmp)
1174 {
1175 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1176
1177 /* ??? Code below assumes that the save area needs maximal
1178 alignment. This constraint may be too strong. */
1179 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1180
1181 if (CONST_INT_P (size))
1182 {
1183 HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1184
1185 if (INTVAL (size) != new_size)
1186 size = GEN_INT (new_size);
1187 }
1188 else
1189 {
1190 /* Since we know overflow is not possible, we avoid using
1191 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1192 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1193 GEN_INT (align), NULL_RTX, 1);
1194 size = expand_mult (Pmode, size,
1195 GEN_INT (align), NULL_RTX, 1);
1196 }
1197 }
1198 else
1199 {
1200 rtx dynamic_offset
1201 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1202 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1203
1204 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1205 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1206 }
1207 #endif /* SETJMP_VIA_SAVE_AREA */
1208
1209 /* Round the size to a multiple of the required stack alignment.
1210 Since the stack if presumed to be rounded before this allocation,
1211 this will maintain the required alignment.
1212
1213 If the stack grows downward, we could save an insn by subtracting
1214 SIZE from the stack pointer and then aligning the stack pointer.
1215 The problem with this is that the stack pointer may be unaligned
1216 between the execution of the subtraction and alignment insns and
1217 some machines do not allow this. Even on those that do, some
1218 signal handlers malfunction if a signal should occur between those
1219 insns. Since this is an extremely rare event, we have no reliable
1220 way of knowing which systems have this problem. So we avoid even
1221 momentarily mis-aligning the stack. */
1222
1223 /* If we added a variable amount to SIZE,
1224 we can no longer assume it is aligned. */
1225 #if !defined (SETJMP_VIA_SAVE_AREA)
1226 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1227 #endif
1228 size = round_push (size);
1229
1230 do_pending_stack_adjust ();
1231
1232 /* We ought to be called always on the toplevel and stack ought to be aligned
1233 properly. */
1234 gcc_assert (!(stack_pointer_delta
1235 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1236
1237 /* If needed, check that we have the required amount of stack. Take into
1238 account what has already been checked. */
1239 if (STACK_CHECK_MOVING_SP)
1240 ;
1241 else if (flag_stack_check == GENERIC_STACK_CHECK)
1242 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1243 size);
1244 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1245 probe_stack_range (STACK_CHECK_PROTECT, size);
1246
1247 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1248 if (target == 0 || !REG_P (target)
1249 || REGNO (target) < FIRST_PSEUDO_REGISTER
1250 || GET_MODE (target) != Pmode)
1251 target = gen_reg_rtx (Pmode);
1252
1253 mark_reg_pointer (target, known_align);
1254
1255 /* Perform the required allocation from the stack. Some systems do
1256 this differently than simply incrementing/decrementing from the
1257 stack pointer, such as acquiring the space by calling malloc(). */
1258 #ifdef HAVE_allocate_stack
1259 if (HAVE_allocate_stack)
1260 {
1261 enum machine_mode mode = STACK_SIZE_MODE;
1262 insn_operand_predicate_fn pred;
1263
1264 /* We don't have to check against the predicate for operand 0 since
1265 TARGET is known to be a pseudo of the proper mode, which must
1266 be valid for the operand. For operand 1, convert to the
1267 proper mode and validate. */
1268 if (mode == VOIDmode)
1269 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1270
1271 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1272 if (pred && ! ((*pred) (size, mode)))
1273 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1274
1275 emit_insn (gen_allocate_stack (target, size));
1276 }
1277 else
1278 #endif
1279 {
1280 #ifndef STACK_GROWS_DOWNWARD
1281 emit_move_insn (target, virtual_stack_dynamic_rtx);
1282 #endif
1283
1284 /* Check stack bounds if necessary. */
1285 if (crtl->limit_stack)
1286 {
1287 rtx available;
1288 rtx space_available = gen_label_rtx ();
1289 #ifdef STACK_GROWS_DOWNWARD
1290 available = expand_binop (Pmode, sub_optab,
1291 stack_pointer_rtx, stack_limit_rtx,
1292 NULL_RTX, 1, OPTAB_WIDEN);
1293 #else
1294 available = expand_binop (Pmode, sub_optab,
1295 stack_limit_rtx, stack_pointer_rtx,
1296 NULL_RTX, 1, OPTAB_WIDEN);
1297 #endif
1298 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1299 space_available);
1300 #ifdef HAVE_trap
1301 if (HAVE_trap)
1302 emit_insn (gen_trap ());
1303 else
1304 #endif
1305 error ("stack limits not supported on this target");
1306 emit_barrier ();
1307 emit_label (space_available);
1308 }
1309
1310 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1311 anti_adjust_stack_and_probe (size);
1312 else
1313 anti_adjust_stack (size);
1314
1315 #ifdef STACK_GROWS_DOWNWARD
1316 emit_move_insn (target, virtual_stack_dynamic_rtx);
1317 #endif
1318 }
1319
1320 if (MUST_ALIGN)
1321 {
1322 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1323 but we know it can't. So add ourselves and then do
1324 TRUNC_DIV_EXPR. */
1325 target = expand_binop (Pmode, add_optab, target,
1326 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1327 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1328 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1329 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1330 NULL_RTX, 1);
1331 target = expand_mult (Pmode, target,
1332 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1333 NULL_RTX, 1);
1334 }
1335
1336 /* Record the new stack level for nonlocal gotos. */
1337 if (cfun->nonlocal_goto_save_area != 0)
1338 update_nonlocal_goto_save_area ();
1339
1340 return target;
1341 }
1342 \f
1343 /* A front end may want to override GCC's stack checking by providing a
1344 run-time routine to call to check the stack, so provide a mechanism for
1345 calling that routine. */
1346
1347 static GTY(()) rtx stack_check_libfunc;
1348
1349 void
1350 set_stack_check_libfunc (rtx libfunc)
1351 {
1352 stack_check_libfunc = libfunc;
1353 }
1354 \f
1355 /* Emit one stack probe at ADDRESS, an address within the stack. */
1356
1357 static void
1358 emit_stack_probe (rtx address)
1359 {
1360 rtx memref = gen_rtx_MEM (word_mode, address);
1361
1362 MEM_VOLATILE_P (memref) = 1;
1363
1364 /* See if we have an insn to probe the stack. */
1365 #ifdef HAVE_probe_stack
1366 if (HAVE_probe_stack)
1367 emit_insn (gen_probe_stack (memref));
1368 else
1369 #endif
1370 if (STACK_CHECK_PROBE_LOAD)
1371 emit_move_insn (gen_reg_rtx (word_mode), memref);
1372 else
1373 emit_move_insn (memref, const0_rtx);
1374 }
1375
1376 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1377 FIRST is a constant and size is a Pmode RTX. These are offsets from
1378 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1379 or subtract them from the stack pointer. */
1380
1381 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1382
1383 #ifdef STACK_GROWS_DOWNWARD
1384 #define STACK_GROW_OP MINUS
1385 #define STACK_GROW_OPTAB sub_optab
1386 #define STACK_GROW_OFF(off) -(off)
1387 #else
1388 #define STACK_GROW_OP PLUS
1389 #define STACK_GROW_OPTAB add_optab
1390 #define STACK_GROW_OFF(off) (off)
1391 #endif
1392
1393 void
1394 probe_stack_range (HOST_WIDE_INT first, rtx size)
1395 {
1396 /* First ensure SIZE is Pmode. */
1397 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1398 size = convert_to_mode (Pmode, size, 1);
1399
1400 /* Next see if we have a function to check the stack. */
1401 if (stack_check_libfunc)
1402 {
1403 rtx addr = memory_address (Pmode,
1404 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1405 stack_pointer_rtx,
1406 plus_constant (size, first)));
1407 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1408 Pmode);
1409 }
1410
1411 /* Next see if we have an insn to check the stack. */
1412 #ifdef HAVE_check_stack
1413 else if (HAVE_check_stack)
1414 {
1415 rtx addr = memory_address (Pmode,
1416 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1417 stack_pointer_rtx,
1418 plus_constant (size, first)));
1419 insn_operand_predicate_fn pred
1420 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1421 if (pred && !((*pred) (addr, Pmode)))
1422 addr = copy_to_mode_reg (Pmode, addr);
1423
1424 emit_insn (gen_check_stack (addr));
1425 }
1426 #endif
1427
1428 /* Otherwise we have to generate explicit probes. If we have a constant
1429 small number of them to generate, that's the easy case. */
1430 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1431 {
1432 HOST_WIDE_INT isize = INTVAL (size), i;
1433 rtx addr;
1434
1435 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1436 it exceeds SIZE. If only one probe is needed, this will not
1437 generate any code. Then probe at FIRST + SIZE. */
1438 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1439 {
1440 addr = memory_address (Pmode,
1441 plus_constant (stack_pointer_rtx,
1442 STACK_GROW_OFF (first + i)));
1443 emit_stack_probe (addr);
1444 }
1445
1446 addr = memory_address (Pmode,
1447 plus_constant (stack_pointer_rtx,
1448 STACK_GROW_OFF (first + isize)));
1449 emit_stack_probe (addr);
1450 }
1451
1452 /* In the variable case, do the same as above, but in a loop. Note that we
1453 must be extra careful with variables wrapping around because we might be
1454 at the very top (or the very bottom) of the address space and we have to
1455 be able to handle this case properly; in particular, we use an equality
1456 test for the loop condition. */
1457 else
1458 {
1459 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1460 rtx loop_lab = gen_label_rtx ();
1461 rtx end_lab = gen_label_rtx ();
1462
1463
1464 /* Step 1: round SIZE to the previous multiple of the interval. */
1465
1466 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1467 rounded_size
1468 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1469 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1470
1471
1472 /* Step 2: compute initial and final value of the loop counter. */
1473
1474 /* TEST_ADDR = SP + FIRST. */
1475 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1476 stack_pointer_rtx,
1477 GEN_INT (first)), NULL_RTX);
1478
1479 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1480 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1481 test_addr,
1482 rounded_size_op), NULL_RTX);
1483
1484
1485 /* Step 3: the loop
1486
1487 while (TEST_ADDR != LAST_ADDR)
1488 {
1489 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1490 probe at TEST_ADDR
1491 }
1492
1493 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1494 until it is equal to ROUNDED_SIZE. */
1495
1496 emit_label (loop_lab);
1497
1498 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1499 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1500 end_lab);
1501
1502 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1503 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1504 GEN_INT (PROBE_INTERVAL), test_addr,
1505 1, OPTAB_WIDEN);
1506
1507 gcc_assert (temp == test_addr);
1508
1509 /* Probe at TEST_ADDR. */
1510 emit_stack_probe (test_addr);
1511
1512 emit_jump (loop_lab);
1513
1514 emit_label (end_lab);
1515
1516
1517 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1518 that SIZE is equal to ROUNDED_SIZE. */
1519
1520 /* TEMP = SIZE - ROUNDED_SIZE. */
1521 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1522 if (temp != const0_rtx)
1523 {
1524 rtx addr;
1525
1526 if (GET_CODE (temp) == CONST_INT)
1527 {
1528 /* Use [base + disp} addressing mode if supported. */
1529 HOST_WIDE_INT offset = INTVAL (temp);
1530 addr = memory_address (Pmode,
1531 plus_constant (last_addr,
1532 STACK_GROW_OFF (offset)));
1533 }
1534 else
1535 {
1536 /* Manual CSE if the difference is not known at compile-time. */
1537 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1538 addr = memory_address (Pmode,
1539 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1540 last_addr, temp));
1541 }
1542
1543 emit_stack_probe (addr);
1544 }
1545 }
1546 }
1547
1548 /* Adjust the stack by SIZE bytes while probing it. Note that we skip the
1549 probe for the first interval + a small dope of 4 words and instead probe
1550 that many bytes past the specified size to maintain a protection area. */
1551
1552 static void
1553 anti_adjust_stack_and_probe (rtx size)
1554 {
1555 const int dope = 4 * UNITS_PER_WORD;
1556
1557 /* First ensure SIZE is Pmode. */
1558 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1559 size = convert_to_mode (Pmode, size, 1);
1560
1561 /* If we have a constant small number of probes to generate, that's the
1562 easy case. */
1563 if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1564 {
1565 HOST_WIDE_INT isize = INTVAL (size), i;
1566 bool first_probe = true;
1567
1568 /* Adjust SP and probe to PROBE_INTERVAL + N * PROBE_INTERVAL for
1569 values of N from 1 until it exceeds SIZE. If only one probe is
1570 needed, this will not generate any code. Then adjust and probe
1571 to PROBE_INTERVAL + SIZE. */
1572 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1573 {
1574 if (first_probe)
1575 {
1576 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1577 first_probe = false;
1578 }
1579 else
1580 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1581 emit_stack_probe (stack_pointer_rtx);
1582 }
1583
1584 if (first_probe)
1585 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1586 else
1587 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1588 emit_stack_probe (stack_pointer_rtx);
1589 }
1590
1591 /* In the variable case, do the same as above, but in a loop. Note that we
1592 must be extra careful with variables wrapping around because we might be
1593 at the very top (or the very bottom) of the address space and we have to
1594 be able to handle this case properly; in particular, we use an equality
1595 test for the loop condition. */
1596 else
1597 {
1598 rtx rounded_size, rounded_size_op, last_addr, temp;
1599 rtx loop_lab = gen_label_rtx ();
1600 rtx end_lab = gen_label_rtx ();
1601
1602
1603 /* Step 1: round SIZE to the previous multiple of the interval. */
1604
1605 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1606 rounded_size
1607 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1608 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1609
1610
1611 /* Step 2: compute initial and final value of the loop counter. */
1612
1613 /* SP = SP_0 + PROBE_INTERVAL. */
1614 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1615
1616 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1617 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1618 stack_pointer_rtx,
1619 rounded_size_op), NULL_RTX);
1620
1621
1622 /* Step 3: the loop
1623
1624 while (SP != LAST_ADDR)
1625 {
1626 SP = SP + PROBE_INTERVAL
1627 probe at SP
1628 }
1629
1630 adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
1631 values of N from 1 until it is equal to ROUNDED_SIZE. */
1632
1633 emit_label (loop_lab);
1634
1635 /* Jump to END_LAB if SP == LAST_ADDR. */
1636 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1637 Pmode, 1, end_lab);
1638
1639 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1640 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1641 emit_stack_probe (stack_pointer_rtx);
1642
1643 emit_jump (loop_lab);
1644
1645 emit_label (end_lab);
1646
1647
1648 /* Step 4: adjust SP and probe to PROBE_INTERVAL + SIZE if we cannot
1649 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1650
1651 /* TEMP = SIZE - ROUNDED_SIZE. */
1652 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1653 if (temp != const0_rtx)
1654 {
1655 /* Manual CSE if the difference is not known at compile-time. */
1656 if (GET_CODE (temp) != CONST_INT)
1657 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1658 anti_adjust_stack (temp);
1659 emit_stack_probe (stack_pointer_rtx);
1660 }
1661 }
1662
1663 /* Adjust back to account for the additional first interval. */
1664 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1665 }
1666
1667 /* Return an rtx representing the register or memory location
1668 in which a scalar value of data type VALTYPE
1669 was returned by a function call to function FUNC.
1670 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1671 function is known, otherwise 0.
1672 OUTGOING is 1 if on a machine with register windows this function
1673 should return the register in which the function will put its result
1674 and 0 otherwise. */
1675
1676 rtx
1677 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1678 int outgoing ATTRIBUTE_UNUSED)
1679 {
1680 rtx val;
1681
1682 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1683
1684 if (REG_P (val)
1685 && GET_MODE (val) == BLKmode)
1686 {
1687 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1688 enum machine_mode tmpmode;
1689
1690 /* int_size_in_bytes can return -1. We don't need a check here
1691 since the value of bytes will then be large enough that no
1692 mode will match anyway. */
1693
1694 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1695 tmpmode != VOIDmode;
1696 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1697 {
1698 /* Have we found a large enough mode? */
1699 if (GET_MODE_SIZE (tmpmode) >= bytes)
1700 break;
1701 }
1702
1703 /* No suitable mode found. */
1704 gcc_assert (tmpmode != VOIDmode);
1705
1706 PUT_MODE (val, tmpmode);
1707 }
1708 return val;
1709 }
1710
1711 /* Return an rtx representing the register or memory location
1712 in which a scalar value of mode MODE was returned by a library call. */
1713
1714 rtx
1715 hard_libcall_value (enum machine_mode mode, rtx fun)
1716 {
1717 return targetm.calls.libcall_value (mode, fun);
1718 }
1719
1720 /* Look up the tree code for a given rtx code
1721 to provide the arithmetic operation for REAL_ARITHMETIC.
1722 The function returns an int because the caller may not know
1723 what `enum tree_code' means. */
1724
1725 int
1726 rtx_to_tree_code (enum rtx_code code)
1727 {
1728 enum tree_code tcode;
1729
1730 switch (code)
1731 {
1732 case PLUS:
1733 tcode = PLUS_EXPR;
1734 break;
1735 case MINUS:
1736 tcode = MINUS_EXPR;
1737 break;
1738 case MULT:
1739 tcode = MULT_EXPR;
1740 break;
1741 case DIV:
1742 tcode = RDIV_EXPR;
1743 break;
1744 case SMIN:
1745 tcode = MIN_EXPR;
1746 break;
1747 case SMAX:
1748 tcode = MAX_EXPR;
1749 break;
1750 default:
1751 tcode = LAST_AND_UNUSED_TREE_CODE;
1752 break;
1753 }
1754 return ((int) tcode);
1755 }
1756
1757 #include "gt-explow.h"