re PR debug/49864 (ICE: in maybe_record_trace_start, at dwarf2cfi.c:2439)
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "common/common-target.h"
44 #include "output.h"
45
46 static rtx break_out_memory_refs (rtx);
47
48
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 {
54 int width = GET_MODE_PRECISION (mode);
55
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
58
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
62
63 /* Sign-extend for the requested mode. */
64
65 if (width < HOST_BITS_PER_WIDE_INT)
66 {
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
72 }
73
74 return c;
75 }
76
77 /* Return an rtx for the sum of X and the integer C. */
78
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
81 {
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
87
88 if (c == 0)
89 return x;
90
91 restart:
92
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
96
97 switch (code)
98 {
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
101
102 case CONST_DOUBLE:
103 {
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
110
111 add_double (l1, h1, l2, h2, &lv, &hv);
112
113 return immed_double_const (lv, hv, VOIDmode);
114 }
115
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 {
123 tem
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
129 }
130 break;
131
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
138
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
143
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
150
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
153
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
156
157 if (CONST_INT_P (XEXP (x, 1)))
158 {
159 c += INTVAL (XEXP (x, 1));
160
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
163
164 x = XEXP (x, 0);
165 goto restart;
166 }
167 else if (CONSTANT_P (XEXP (x, 1)))
168 {
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
171 }
172 else if (find_constant_term_loc (&y))
173 {
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
178
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
182 }
183 break;
184
185 default:
186 break;
187 }
188
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
198 }
199 \f
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
204
205 rtx
206 eliminate_constant_term (rtx x, rtx *constptr)
207 {
208 rtx x0, x1;
209 rtx tem;
210
211 if (GET_CODE (x) != PLUS)
212 return x;
213
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
219 {
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
222 }
223
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
231 {
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234 }
235
236 return x;
237 }
238
239 /* Return an rtx for the size in bytes of the value of EXP. */
240
241 rtx
242 expr_size (tree exp)
243 {
244 tree size;
245
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
249 {
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
253 }
254
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
256 }
257
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
260
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
263 {
264 tree size;
265
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
269 {
270 size = tree_expr_size (exp);
271 gcc_assert (size);
272 }
273
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
276
277 return tree_low_cst (size, 0);
278 }
279 \f
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
285
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
288
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
292
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295
296 static rtx
297 break_out_memory_refs (rtx x)
298 {
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
305 {
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
311 }
312
313 return x;
314 }
315
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
321
322 rtx
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325 {
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
333
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
337
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
345 {
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
360
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
366
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
372
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
378
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
384
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
404
405 default:
406 break;
407 }
408
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
412 }
413 \f
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
417
418 rtx
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
420 {
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
423
424 x = convert_memory_address_addr_space (address_mode, x, as);
425
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
430
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
436 {
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
439
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
443
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
447 {
448 x = oldx;
449 goto done;
450 }
451
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
456 {
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
461 }
462
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
473 {
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
480 {
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
486 }
487 }
488
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
491
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
496
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
501 }
502
503 done:
504
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
516
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
520
521 return x;
522 }
523
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
526
527 rtx
528 validize_mem (rtx ref)
529 {
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
536
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
539 }
540
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
544
545 rtx
546 use_anchored_address (rtx x)
547 {
548 rtx base;
549 HOST_WIDE_INT offset;
550
551 if (!flag_section_anchors)
552 return x;
553
554 if (!MEM_P (x))
555 return x;
556
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
563 {
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
566 }
567
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
575
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
578
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
583
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
592
593 return replace_equiv_address (x, plus_constant (base, offset));
594 }
595 \f
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
597
598 rtx
599 copy_to_reg (rtx x)
600 {
601 rtx temp = gen_reg_rtx (GET_MODE (x));
602
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
607
608 if (x != temp)
609 emit_move_insn (temp, x);
610
611 return temp;
612 }
613
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
616
617 rtx
618 copy_addr_to_reg (rtx x)
619 {
620 return copy_to_mode_reg (Pmode, x);
621 }
622
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
625
626 rtx
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 {
629 rtx temp = gen_reg_rtx (mode);
630
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
635
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
640 }
641
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
646
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
649
650 rtx
651 force_reg (enum machine_mode mode, rtx x)
652 {
653 rtx temp, insn, set;
654
655 if (REG_P (x))
656 return x;
657
658 if (general_operand (x, mode))
659 {
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
662 }
663 else
664 {
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
669 {
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
673 }
674 }
675
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
684
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
687 {
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
690 {
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 }
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
701 {
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
705
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709
710 if (INTVAL (c) == 0)
711 align = sa;
712 else
713 {
714 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
715 align = MIN (sa, ca);
716 }
717 }
718
719 if (align || (MEM_P (x) && MEM_POINTER (x)))
720 mark_reg_pointer (temp, align);
721 }
722
723 return temp;
724 }
725
726 /* If X is a memory ref, copy its contents to a new temp reg and return
727 that reg. Otherwise, return X. */
728
729 rtx
730 force_not_mem (rtx x)
731 {
732 rtx temp;
733
734 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
735 return x;
736
737 temp = gen_reg_rtx (GET_MODE (x));
738
739 if (MEM_POINTER (x))
740 REG_POINTER (temp) = 1;
741
742 emit_move_insn (temp, x);
743 return temp;
744 }
745
746 /* Copy X to TARGET (if it's nonzero and a reg)
747 or to a new temp reg and return that reg.
748 MODE is the mode to use for X in case it is a constant. */
749
750 rtx
751 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
752 {
753 rtx temp;
754
755 if (target && REG_P (target))
756 temp = target;
757 else
758 temp = gen_reg_rtx (mode);
759
760 emit_move_insn (temp, x);
761 return temp;
762 }
763 \f
764 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations.
767
768 FOR_RETURN is nonzero if the caller is promoting the return value
769 of FNDECL, else it is for promoting args. */
770
771 enum machine_mode
772 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
773 const_tree funtype, int for_return)
774 {
775 /* Called without a type node for a libcall. */
776 if (type == NULL_TREE)
777 {
778 if (INTEGRAL_MODE_P (mode))
779 return targetm.calls.promote_function_mode (NULL_TREE, mode,
780 punsignedp, funtype,
781 for_return);
782 else
783 return mode;
784 }
785
786 switch (TREE_CODE (type))
787 {
788 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
789 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
790 case POINTER_TYPE: case REFERENCE_TYPE:
791 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
792 for_return);
793
794 default:
795 return mode;
796 }
797 }
798 /* Return the mode to use to store a scalar of TYPE and MODE.
799 PUNSIGNEDP points to the signedness of the type and may be adjusted
800 to show what signedness to use on extension operations. */
801
802 enum machine_mode
803 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
804 int *punsignedp ATTRIBUTE_UNUSED)
805 {
806 #ifdef PROMOTE_MODE
807 enum tree_code code;
808 int unsignedp;
809 #endif
810
811 /* For libcalls this is invoked without TYPE from the backends
812 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
813 case. */
814 if (type == NULL_TREE)
815 return mode;
816
817 /* FIXME: this is the same logic that was there until GCC 4.4, but we
818 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
819 is not defined. The affected targets are M32C, S390, SPARC. */
820 #ifdef PROMOTE_MODE
821 code = TREE_CODE (type);
822 unsignedp = *punsignedp;
823
824 switch (code)
825 {
826 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
827 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
828 PROMOTE_MODE (mode, unsignedp, type);
829 *punsignedp = unsignedp;
830 return mode;
831 break;
832
833 #ifdef POINTERS_EXTEND_UNSIGNED
834 case REFERENCE_TYPE:
835 case POINTER_TYPE:
836 *punsignedp = POINTERS_EXTEND_UNSIGNED;
837 return targetm.addr_space.address_mode
838 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
839 break;
840 #endif
841
842 default:
843 return mode;
844 }
845 #else
846 return mode;
847 #endif
848 }
849
850
851 /* Use one of promote_mode or promote_function_mode to find the promoted
852 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
853 of DECL after promotion. */
854
855 enum machine_mode
856 promote_decl_mode (const_tree decl, int *punsignedp)
857 {
858 tree type = TREE_TYPE (decl);
859 int unsignedp = TYPE_UNSIGNED (type);
860 enum machine_mode mode = DECL_MODE (decl);
861 enum machine_mode pmode;
862
863 if (TREE_CODE (decl) == RESULT_DECL
864 || TREE_CODE (decl) == PARM_DECL)
865 pmode = promote_function_mode (type, mode, &unsignedp,
866 TREE_TYPE (current_function_decl), 2);
867 else
868 pmode = promote_mode (type, mode, &unsignedp);
869
870 if (punsignedp)
871 *punsignedp = unsignedp;
872 return pmode;
873 }
874
875 \f
876 /* Controls the behaviour of {anti_,}adjust_stack. */
877 static bool suppress_reg_args_size;
878
879 /* A helper for adjust_stack and anti_adjust_stack. */
880
881 static void
882 adjust_stack_1 (rtx adjust, bool anti_p)
883 {
884 rtx temp, insn;
885
886 #ifndef STACK_GROWS_DOWNWARD
887 /* Hereafter anti_p means subtract_p. */
888 anti_p = !anti_p;
889 #endif
890
891 temp = expand_binop (Pmode,
892 anti_p ? sub_optab : add_optab,
893 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
894 OPTAB_LIB_WIDEN);
895
896 if (temp != stack_pointer_rtx)
897 insn = emit_move_insn (stack_pointer_rtx, temp);
898 else
899 {
900 insn = get_last_insn ();
901 temp = single_set (insn);
902 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
903 }
904
905 if (!suppress_reg_args_size)
906 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
907 }
908
909 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
910 This pops when ADJUST is positive. ADJUST need not be constant. */
911
912 void
913 adjust_stack (rtx adjust)
914 {
915 if (adjust == const0_rtx)
916 return;
917
918 /* We expect all variable sized adjustments to be multiple of
919 PREFERRED_STACK_BOUNDARY. */
920 if (CONST_INT_P (adjust))
921 stack_pointer_delta -= INTVAL (adjust);
922
923 adjust_stack_1 (adjust, false);
924 }
925
926 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
927 This pushes when ADJUST is positive. ADJUST need not be constant. */
928
929 void
930 anti_adjust_stack (rtx adjust)
931 {
932 if (adjust == const0_rtx)
933 return;
934
935 /* We expect all variable sized adjustments to be multiple of
936 PREFERRED_STACK_BOUNDARY. */
937 if (CONST_INT_P (adjust))
938 stack_pointer_delta += INTVAL (adjust);
939
940 adjust_stack_1 (adjust, true);
941 }
942
943 /* Round the size of a block to be pushed up to the boundary required
944 by this machine. SIZE is the desired size, which need not be constant. */
945
946 static rtx
947 round_push (rtx size)
948 {
949 rtx align_rtx, alignm1_rtx;
950
951 if (!SUPPORTS_STACK_ALIGNMENT
952 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
953 {
954 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
955
956 if (align == 1)
957 return size;
958
959 if (CONST_INT_P (size))
960 {
961 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
962
963 if (INTVAL (size) != new_size)
964 size = GEN_INT (new_size);
965 return size;
966 }
967
968 align_rtx = GEN_INT (align);
969 alignm1_rtx = GEN_INT (align - 1);
970 }
971 else
972 {
973 /* If crtl->preferred_stack_boundary might still grow, use
974 virtual_preferred_stack_boundary_rtx instead. This will be
975 substituted by the right value in vregs pass and optimized
976 during combine. */
977 align_rtx = virtual_preferred_stack_boundary_rtx;
978 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
979 }
980
981 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
982 but we know it can't. So add ourselves and then do
983 TRUNC_DIV_EXPR. */
984 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
985 NULL_RTX, 1, OPTAB_LIB_WIDEN);
986 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
987 NULL_RTX, 1);
988 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
989
990 return size;
991 }
992 \f
993 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
994 to a previously-created save area. If no save area has been allocated,
995 this function will allocate one. If a save area is specified, it
996 must be of the proper mode. */
997
998 void
999 emit_stack_save (enum save_level save_level, rtx *psave)
1000 {
1001 rtx sa = *psave;
1002 /* The default is that we use a move insn and save in a Pmode object. */
1003 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1004 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1005
1006 /* See if this machine has anything special to do for this kind of save. */
1007 switch (save_level)
1008 {
1009 #ifdef HAVE_save_stack_block
1010 case SAVE_BLOCK:
1011 if (HAVE_save_stack_block)
1012 fcn = gen_save_stack_block;
1013 break;
1014 #endif
1015 #ifdef HAVE_save_stack_function
1016 case SAVE_FUNCTION:
1017 if (HAVE_save_stack_function)
1018 fcn = gen_save_stack_function;
1019 break;
1020 #endif
1021 #ifdef HAVE_save_stack_nonlocal
1022 case SAVE_NONLOCAL:
1023 if (HAVE_save_stack_nonlocal)
1024 fcn = gen_save_stack_nonlocal;
1025 break;
1026 #endif
1027 default:
1028 break;
1029 }
1030
1031 /* If there is no save area and we have to allocate one, do so. Otherwise
1032 verify the save area is the proper mode. */
1033
1034 if (sa == 0)
1035 {
1036 if (mode != VOIDmode)
1037 {
1038 if (save_level == SAVE_NONLOCAL)
1039 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1040 else
1041 *psave = sa = gen_reg_rtx (mode);
1042 }
1043 }
1044
1045 do_pending_stack_adjust ();
1046 if (sa != 0)
1047 sa = validize_mem (sa);
1048 emit_insn (fcn (sa, stack_pointer_rtx));
1049 }
1050
1051 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1052 area made by emit_stack_save. If it is zero, we have nothing to do. */
1053
1054 void
1055 emit_stack_restore (enum save_level save_level, rtx sa)
1056 {
1057 /* The default is that we use a move insn. */
1058 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1059
1060 /* See if this machine has anything special to do for this kind of save. */
1061 switch (save_level)
1062 {
1063 #ifdef HAVE_restore_stack_block
1064 case SAVE_BLOCK:
1065 if (HAVE_restore_stack_block)
1066 fcn = gen_restore_stack_block;
1067 break;
1068 #endif
1069 #ifdef HAVE_restore_stack_function
1070 case SAVE_FUNCTION:
1071 if (HAVE_restore_stack_function)
1072 fcn = gen_restore_stack_function;
1073 break;
1074 #endif
1075 #ifdef HAVE_restore_stack_nonlocal
1076 case SAVE_NONLOCAL:
1077 if (HAVE_restore_stack_nonlocal)
1078 fcn = gen_restore_stack_nonlocal;
1079 break;
1080 #endif
1081 default:
1082 break;
1083 }
1084
1085 if (sa != 0)
1086 {
1087 sa = validize_mem (sa);
1088 /* These clobbers prevent the scheduler from moving
1089 references to variable arrays below the code
1090 that deletes (pops) the arrays. */
1091 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1092 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1093 }
1094
1095 discard_pending_stack_adjust ();
1096
1097 emit_insn (fcn (stack_pointer_rtx, sa));
1098 }
1099
1100 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1101 function. This function should be called whenever we allocate or
1102 deallocate dynamic stack space. */
1103
1104 void
1105 update_nonlocal_goto_save_area (void)
1106 {
1107 tree t_save;
1108 rtx r_save;
1109
1110 /* The nonlocal_goto_save_area object is an array of N pointers. The
1111 first one is used for the frame pointer save; the rest are sized by
1112 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1113 of the stack save area slots. */
1114 t_save = build4 (ARRAY_REF,
1115 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1116 cfun->nonlocal_goto_save_area,
1117 integer_one_node, NULL_TREE, NULL_TREE);
1118 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1119
1120 emit_stack_save (SAVE_NONLOCAL, &r_save);
1121 }
1122 \f
1123 /* Return an rtx representing the address of an area of memory dynamically
1124 pushed on the stack.
1125
1126 Any required stack pointer alignment is preserved.
1127
1128 SIZE is an rtx representing the size of the area.
1129
1130 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1131 parameter may be zero. If so, a proper value will be extracted
1132 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1133
1134 REQUIRED_ALIGN is the alignment (in bits) required for the region
1135 of memory.
1136
1137 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1138 stack space allocated by the generated code cannot be added with itself
1139 in the course of the execution of the function. It is always safe to
1140 pass FALSE here and the following criterion is sufficient in order to
1141 pass TRUE: every path in the CFG that starts at the allocation point and
1142 loops to it executes the associated deallocation code. */
1143
1144 rtx
1145 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1146 unsigned required_align, bool cannot_accumulate)
1147 {
1148 HOST_WIDE_INT stack_usage_size = -1;
1149 rtx final_label, final_target, target;
1150 unsigned extra_align = 0;
1151 bool must_align;
1152
1153 /* If we're asking for zero bytes, it doesn't matter what we point
1154 to since we can't dereference it. But return a reasonable
1155 address anyway. */
1156 if (size == const0_rtx)
1157 return virtual_stack_dynamic_rtx;
1158
1159 /* Otherwise, show we're calling alloca or equivalent. */
1160 cfun->calls_alloca = 1;
1161
1162 /* If stack usage info is requested, look into the size we are passed.
1163 We need to do so this early to avoid the obfuscation that may be
1164 introduced later by the various alignment operations. */
1165 if (flag_stack_usage_info)
1166 {
1167 if (CONST_INT_P (size))
1168 stack_usage_size = INTVAL (size);
1169 else if (REG_P (size))
1170 {
1171 /* Look into the last emitted insn and see if we can deduce
1172 something for the register. */
1173 rtx insn, set, note;
1174 insn = get_last_insn ();
1175 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1176 {
1177 if (CONST_INT_P (SET_SRC (set)))
1178 stack_usage_size = INTVAL (SET_SRC (set));
1179 else if ((note = find_reg_equal_equiv_note (insn))
1180 && CONST_INT_P (XEXP (note, 0)))
1181 stack_usage_size = INTVAL (XEXP (note, 0));
1182 }
1183 }
1184
1185 /* If the size is not constant, we can't say anything. */
1186 if (stack_usage_size == -1)
1187 {
1188 current_function_has_unbounded_dynamic_stack_size = 1;
1189 stack_usage_size = 0;
1190 }
1191 }
1192
1193 /* Ensure the size is in the proper mode. */
1194 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1195 size = convert_to_mode (Pmode, size, 1);
1196
1197 /* Adjust SIZE_ALIGN, if needed. */
1198 if (CONST_INT_P (size))
1199 {
1200 unsigned HOST_WIDE_INT lsb;
1201
1202 lsb = INTVAL (size);
1203 lsb &= -lsb;
1204
1205 /* Watch out for overflow truncating to "unsigned". */
1206 if (lsb > UINT_MAX / BITS_PER_UNIT)
1207 size_align = 1u << (HOST_BITS_PER_INT - 1);
1208 else
1209 size_align = (unsigned)lsb * BITS_PER_UNIT;
1210 }
1211 else if (size_align < BITS_PER_UNIT)
1212 size_align = BITS_PER_UNIT;
1213
1214 /* We can't attempt to minimize alignment necessary, because we don't
1215 know the final value of preferred_stack_boundary yet while executing
1216 this code. */
1217 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1218 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1219
1220 /* We will need to ensure that the address we return is aligned to
1221 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1222 always know its final value at this point in the compilation (it
1223 might depend on the size of the outgoing parameter lists, for
1224 example), so we must align the value to be returned in that case.
1225 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1226 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1227 We must also do an alignment operation on the returned value if
1228 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1229
1230 If we have to align, we must leave space in SIZE for the hole
1231 that might result from the alignment operation. */
1232
1233 must_align = (crtl->preferred_stack_boundary < required_align);
1234 if (must_align)
1235 {
1236 if (required_align > PREFERRED_STACK_BOUNDARY)
1237 extra_align = PREFERRED_STACK_BOUNDARY;
1238 else if (required_align > STACK_BOUNDARY)
1239 extra_align = STACK_BOUNDARY;
1240 else
1241 extra_align = BITS_PER_UNIT;
1242 }
1243
1244 /* ??? STACK_POINTER_OFFSET is always defined now. */
1245 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1246 must_align = true;
1247 extra_align = BITS_PER_UNIT;
1248 #endif
1249
1250 if (must_align)
1251 {
1252 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1253
1254 size = plus_constant (size, extra);
1255 size = force_operand (size, NULL_RTX);
1256
1257 if (flag_stack_usage_info)
1258 stack_usage_size += extra;
1259
1260 if (extra && size_align > extra_align)
1261 size_align = extra_align;
1262 }
1263
1264 /* Round the size to a multiple of the required stack alignment.
1265 Since the stack if presumed to be rounded before this allocation,
1266 this will maintain the required alignment.
1267
1268 If the stack grows downward, we could save an insn by subtracting
1269 SIZE from the stack pointer and then aligning the stack pointer.
1270 The problem with this is that the stack pointer may be unaligned
1271 between the execution of the subtraction and alignment insns and
1272 some machines do not allow this. Even on those that do, some
1273 signal handlers malfunction if a signal should occur between those
1274 insns. Since this is an extremely rare event, we have no reliable
1275 way of knowing which systems have this problem. So we avoid even
1276 momentarily mis-aligning the stack. */
1277 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1278 {
1279 size = round_push (size);
1280
1281 if (flag_stack_usage_info)
1282 {
1283 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1284 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1285 }
1286 }
1287
1288 target = gen_reg_rtx (Pmode);
1289
1290 /* The size is supposed to be fully adjusted at this point so record it
1291 if stack usage info is requested. */
1292 if (flag_stack_usage_info)
1293 {
1294 current_function_dynamic_stack_size += stack_usage_size;
1295
1296 /* ??? This is gross but the only safe stance in the absence
1297 of stack usage oriented flow analysis. */
1298 if (!cannot_accumulate)
1299 current_function_has_unbounded_dynamic_stack_size = 1;
1300 }
1301
1302 final_label = NULL_RTX;
1303 final_target = NULL_RTX;
1304
1305 /* If we are splitting the stack, we need to ask the backend whether
1306 there is enough room on the current stack. If there isn't, or if
1307 the backend doesn't know how to tell is, then we need to call a
1308 function to allocate memory in some other way. This memory will
1309 be released when we release the current stack segment. The
1310 effect is that stack allocation becomes less efficient, but at
1311 least it doesn't cause a stack overflow. */
1312 if (flag_split_stack)
1313 {
1314 rtx available_label, ask, space, func;
1315
1316 available_label = NULL_RTX;
1317
1318 #ifdef HAVE_split_stack_space_check
1319 if (HAVE_split_stack_space_check)
1320 {
1321 available_label = gen_label_rtx ();
1322
1323 /* This instruction will branch to AVAILABLE_LABEL if there
1324 are SIZE bytes available on the stack. */
1325 emit_insn (gen_split_stack_space_check (size, available_label));
1326 }
1327 #endif
1328
1329 /* The __morestack_allocate_stack_space function will allocate
1330 memory using malloc. If the alignment of the memory returned
1331 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1332 make sure we allocate enough space. */
1333 if (MALLOC_ABI_ALIGNMENT >= required_align)
1334 ask = size;
1335 else
1336 {
1337 ask = expand_binop (Pmode, add_optab, size,
1338 GEN_INT (required_align / BITS_PER_UNIT - 1),
1339 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1340 must_align = true;
1341 }
1342
1343 func = init_one_libfunc ("__morestack_allocate_stack_space");
1344
1345 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1346 1, ask, Pmode);
1347
1348 if (available_label == NULL_RTX)
1349 return space;
1350
1351 final_target = gen_reg_rtx (Pmode);
1352
1353 emit_move_insn (final_target, space);
1354
1355 final_label = gen_label_rtx ();
1356 emit_jump (final_label);
1357
1358 emit_label (available_label);
1359 }
1360
1361 do_pending_stack_adjust ();
1362
1363 /* We ought to be called always on the toplevel and stack ought to be aligned
1364 properly. */
1365 gcc_assert (!(stack_pointer_delta
1366 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1367
1368 /* If needed, check that we have the required amount of stack. Take into
1369 account what has already been checked. */
1370 if (STACK_CHECK_MOVING_SP)
1371 ;
1372 else if (flag_stack_check == GENERIC_STACK_CHECK)
1373 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1374 size);
1375 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1376 probe_stack_range (STACK_CHECK_PROTECT, size);
1377
1378 /* Perform the required allocation from the stack. Some systems do
1379 this differently than simply incrementing/decrementing from the
1380 stack pointer, such as acquiring the space by calling malloc(). */
1381 #ifdef HAVE_allocate_stack
1382 if (HAVE_allocate_stack)
1383 {
1384 struct expand_operand ops[2];
1385 /* We don't have to check against the predicate for operand 0 since
1386 TARGET is known to be a pseudo of the proper mode, which must
1387 be valid for the operand. */
1388 create_fixed_operand (&ops[0], target);
1389 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1390 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1391 }
1392 else
1393 #endif
1394 {
1395 int saved_stack_pointer_delta;
1396
1397 #ifndef STACK_GROWS_DOWNWARD
1398 emit_move_insn (target, virtual_stack_dynamic_rtx);
1399 #endif
1400
1401 /* Check stack bounds if necessary. */
1402 if (crtl->limit_stack)
1403 {
1404 rtx available;
1405 rtx space_available = gen_label_rtx ();
1406 #ifdef STACK_GROWS_DOWNWARD
1407 available = expand_binop (Pmode, sub_optab,
1408 stack_pointer_rtx, stack_limit_rtx,
1409 NULL_RTX, 1, OPTAB_WIDEN);
1410 #else
1411 available = expand_binop (Pmode, sub_optab,
1412 stack_limit_rtx, stack_pointer_rtx,
1413 NULL_RTX, 1, OPTAB_WIDEN);
1414 #endif
1415 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1416 space_available);
1417 #ifdef HAVE_trap
1418 if (HAVE_trap)
1419 emit_insn (gen_trap ());
1420 else
1421 #endif
1422 error ("stack limits not supported on this target");
1423 emit_barrier ();
1424 emit_label (space_available);
1425 }
1426
1427 saved_stack_pointer_delta = stack_pointer_delta;
1428 suppress_reg_args_size = true;
1429
1430 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1431 anti_adjust_stack_and_probe (size, false);
1432 else
1433 anti_adjust_stack (size);
1434
1435 /* Even if size is constant, don't modify stack_pointer_delta.
1436 The constant size alloca should preserve
1437 crtl->preferred_stack_boundary alignment. */
1438 stack_pointer_delta = saved_stack_pointer_delta;
1439 suppress_reg_args_size = false;
1440
1441 #ifdef STACK_GROWS_DOWNWARD
1442 emit_move_insn (target, virtual_stack_dynamic_rtx);
1443 #endif
1444 }
1445
1446 /* Finish up the split stack handling. */
1447 if (final_label != NULL_RTX)
1448 {
1449 gcc_assert (flag_split_stack);
1450 emit_move_insn (final_target, target);
1451 emit_label (final_label);
1452 target = final_target;
1453 }
1454
1455 if (must_align)
1456 {
1457 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1458 but we know it can't. So add ourselves and then do
1459 TRUNC_DIV_EXPR. */
1460 target = expand_binop (Pmode, add_optab, target,
1461 GEN_INT (required_align / BITS_PER_UNIT - 1),
1462 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1463 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1464 GEN_INT (required_align / BITS_PER_UNIT),
1465 NULL_RTX, 1);
1466 target = expand_mult (Pmode, target,
1467 GEN_INT (required_align / BITS_PER_UNIT),
1468 NULL_RTX, 1);
1469 }
1470
1471 /* Now that we've committed to a return value, mark its alignment. */
1472 mark_reg_pointer (target, required_align);
1473
1474 /* Record the new stack level for nonlocal gotos. */
1475 if (cfun->nonlocal_goto_save_area != 0)
1476 update_nonlocal_goto_save_area ();
1477
1478 return target;
1479 }
1480 \f
1481 /* A front end may want to override GCC's stack checking by providing a
1482 run-time routine to call to check the stack, so provide a mechanism for
1483 calling that routine. */
1484
1485 static GTY(()) rtx stack_check_libfunc;
1486
1487 void
1488 set_stack_check_libfunc (const char *libfunc_name)
1489 {
1490 gcc_assert (stack_check_libfunc == NULL_RTX);
1491 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1492 }
1493 \f
1494 /* Emit one stack probe at ADDRESS, an address within the stack. */
1495
1496 void
1497 emit_stack_probe (rtx address)
1498 {
1499 rtx memref = gen_rtx_MEM (word_mode, address);
1500
1501 MEM_VOLATILE_P (memref) = 1;
1502
1503 /* See if we have an insn to probe the stack. */
1504 #ifdef HAVE_probe_stack
1505 if (HAVE_probe_stack)
1506 emit_insn (gen_probe_stack (memref));
1507 else
1508 #endif
1509 emit_move_insn (memref, const0_rtx);
1510 }
1511
1512 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1513 FIRST is a constant and size is a Pmode RTX. These are offsets from
1514 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1515 or subtract them from the stack pointer. */
1516
1517 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1518
1519 #ifdef STACK_GROWS_DOWNWARD
1520 #define STACK_GROW_OP MINUS
1521 #define STACK_GROW_OPTAB sub_optab
1522 #define STACK_GROW_OFF(off) -(off)
1523 #else
1524 #define STACK_GROW_OP PLUS
1525 #define STACK_GROW_OPTAB add_optab
1526 #define STACK_GROW_OFF(off) (off)
1527 #endif
1528
1529 void
1530 probe_stack_range (HOST_WIDE_INT first, rtx size)
1531 {
1532 /* First ensure SIZE is Pmode. */
1533 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1534 size = convert_to_mode (Pmode, size, 1);
1535
1536 /* Next see if we have a function to check the stack. */
1537 if (stack_check_libfunc)
1538 {
1539 rtx addr = memory_address (Pmode,
1540 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1541 stack_pointer_rtx,
1542 plus_constant (size, first)));
1543 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1544 Pmode);
1545 return;
1546 }
1547
1548 /* Next see if we have an insn to check the stack. */
1549 #ifdef HAVE_check_stack
1550 if (HAVE_check_stack)
1551 {
1552 struct expand_operand ops[1];
1553 rtx addr = memory_address (Pmode,
1554 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1555 stack_pointer_rtx,
1556 plus_constant (size, first)));
1557
1558 create_input_operand (&ops[0], addr, Pmode);
1559 if (maybe_expand_insn (CODE_FOR_check_stack, 1, ops))
1560 return;
1561 }
1562 #endif
1563
1564 /* Otherwise we have to generate explicit probes. If we have a constant
1565 small number of them to generate, that's the easy case. */
1566 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1567 {
1568 HOST_WIDE_INT isize = INTVAL (size), i;
1569 rtx addr;
1570
1571 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1572 it exceeds SIZE. If only one probe is needed, this will not
1573 generate any code. Then probe at FIRST + SIZE. */
1574 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1575 {
1576 addr = memory_address (Pmode,
1577 plus_constant (stack_pointer_rtx,
1578 STACK_GROW_OFF (first + i)));
1579 emit_stack_probe (addr);
1580 }
1581
1582 addr = memory_address (Pmode,
1583 plus_constant (stack_pointer_rtx,
1584 STACK_GROW_OFF (first + isize)));
1585 emit_stack_probe (addr);
1586 }
1587
1588 /* In the variable case, do the same as above, but in a loop. Note that we
1589 must be extra careful with variables wrapping around because we might be
1590 at the very top (or the very bottom) of the address space and we have to
1591 be able to handle this case properly; in particular, we use an equality
1592 test for the loop condition. */
1593 else
1594 {
1595 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1596 rtx loop_lab = gen_label_rtx ();
1597 rtx end_lab = gen_label_rtx ();
1598
1599
1600 /* Step 1: round SIZE to the previous multiple of the interval. */
1601
1602 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1603 rounded_size
1604 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1605 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1606
1607
1608 /* Step 2: compute initial and final value of the loop counter. */
1609
1610 /* TEST_ADDR = SP + FIRST. */
1611 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1612 stack_pointer_rtx,
1613 GEN_INT (first)), NULL_RTX);
1614
1615 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1616 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1617 test_addr,
1618 rounded_size_op), NULL_RTX);
1619
1620
1621 /* Step 3: the loop
1622
1623 while (TEST_ADDR != LAST_ADDR)
1624 {
1625 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1626 probe at TEST_ADDR
1627 }
1628
1629 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1630 until it is equal to ROUNDED_SIZE. */
1631
1632 emit_label (loop_lab);
1633
1634 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1635 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1636 end_lab);
1637
1638 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1639 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1640 GEN_INT (PROBE_INTERVAL), test_addr,
1641 1, OPTAB_WIDEN);
1642
1643 gcc_assert (temp == test_addr);
1644
1645 /* Probe at TEST_ADDR. */
1646 emit_stack_probe (test_addr);
1647
1648 emit_jump (loop_lab);
1649
1650 emit_label (end_lab);
1651
1652
1653 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1654 that SIZE is equal to ROUNDED_SIZE. */
1655
1656 /* TEMP = SIZE - ROUNDED_SIZE. */
1657 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1658 if (temp != const0_rtx)
1659 {
1660 rtx addr;
1661
1662 if (CONST_INT_P (temp))
1663 {
1664 /* Use [base + disp} addressing mode if supported. */
1665 HOST_WIDE_INT offset = INTVAL (temp);
1666 addr = memory_address (Pmode,
1667 plus_constant (last_addr,
1668 STACK_GROW_OFF (offset)));
1669 }
1670 else
1671 {
1672 /* Manual CSE if the difference is not known at compile-time. */
1673 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1674 addr = memory_address (Pmode,
1675 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1676 last_addr, temp));
1677 }
1678
1679 emit_stack_probe (addr);
1680 }
1681 }
1682 }
1683
1684 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1685 while probing it. This pushes when SIZE is positive. SIZE need not
1686 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1687 by plus SIZE at the end. */
1688
1689 void
1690 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1691 {
1692 /* We skip the probe for the first interval + a small dope of 4 words and
1693 probe that many bytes past the specified size to maintain a protection
1694 area at the botton of the stack. */
1695 const int dope = 4 * UNITS_PER_WORD;
1696
1697 /* First ensure SIZE is Pmode. */
1698 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1699 size = convert_to_mode (Pmode, size, 1);
1700
1701 /* If we have a constant small number of probes to generate, that's the
1702 easy case. */
1703 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1704 {
1705 HOST_WIDE_INT isize = INTVAL (size), i;
1706 bool first_probe = true;
1707
1708 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1709 values of N from 1 until it exceeds SIZE. If only one probe is
1710 needed, this will not generate any code. Then adjust and probe
1711 to PROBE_INTERVAL + SIZE. */
1712 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1713 {
1714 if (first_probe)
1715 {
1716 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1717 first_probe = false;
1718 }
1719 else
1720 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1721 emit_stack_probe (stack_pointer_rtx);
1722 }
1723
1724 if (first_probe)
1725 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1726 else
1727 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1728 emit_stack_probe (stack_pointer_rtx);
1729 }
1730
1731 /* In the variable case, do the same as above, but in a loop. Note that we
1732 must be extra careful with variables wrapping around because we might be
1733 at the very top (or the very bottom) of the address space and we have to
1734 be able to handle this case properly; in particular, we use an equality
1735 test for the loop condition. */
1736 else
1737 {
1738 rtx rounded_size, rounded_size_op, last_addr, temp;
1739 rtx loop_lab = gen_label_rtx ();
1740 rtx end_lab = gen_label_rtx ();
1741
1742
1743 /* Step 1: round SIZE to the previous multiple of the interval. */
1744
1745 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1746 rounded_size
1747 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1748 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1749
1750
1751 /* Step 2: compute initial and final value of the loop counter. */
1752
1753 /* SP = SP_0 + PROBE_INTERVAL. */
1754 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1755
1756 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1757 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1758 stack_pointer_rtx,
1759 rounded_size_op), NULL_RTX);
1760
1761
1762 /* Step 3: the loop
1763
1764 while (SP != LAST_ADDR)
1765 {
1766 SP = SP + PROBE_INTERVAL
1767 probe at SP
1768 }
1769
1770 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1771 values of N from 1 until it is equal to ROUNDED_SIZE. */
1772
1773 emit_label (loop_lab);
1774
1775 /* Jump to END_LAB if SP == LAST_ADDR. */
1776 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1777 Pmode, 1, end_lab);
1778
1779 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1780 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1781 emit_stack_probe (stack_pointer_rtx);
1782
1783 emit_jump (loop_lab);
1784
1785 emit_label (end_lab);
1786
1787
1788 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1789 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1790
1791 /* TEMP = SIZE - ROUNDED_SIZE. */
1792 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1793 if (temp != const0_rtx)
1794 {
1795 /* Manual CSE if the difference is not known at compile-time. */
1796 if (GET_CODE (temp) != CONST_INT)
1797 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1798 anti_adjust_stack (temp);
1799 emit_stack_probe (stack_pointer_rtx);
1800 }
1801 }
1802
1803 /* Adjust back and account for the additional first interval. */
1804 if (adjust_back)
1805 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1806 else
1807 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1808 }
1809
1810 /* Return an rtx representing the register or memory location
1811 in which a scalar value of data type VALTYPE
1812 was returned by a function call to function FUNC.
1813 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1814 function is known, otherwise 0.
1815 OUTGOING is 1 if on a machine with register windows this function
1816 should return the register in which the function will put its result
1817 and 0 otherwise. */
1818
1819 rtx
1820 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1821 int outgoing ATTRIBUTE_UNUSED)
1822 {
1823 rtx val;
1824
1825 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1826
1827 if (REG_P (val)
1828 && GET_MODE (val) == BLKmode)
1829 {
1830 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1831 enum machine_mode tmpmode;
1832
1833 /* int_size_in_bytes can return -1. We don't need a check here
1834 since the value of bytes will then be large enough that no
1835 mode will match anyway. */
1836
1837 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1838 tmpmode != VOIDmode;
1839 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1840 {
1841 /* Have we found a large enough mode? */
1842 if (GET_MODE_SIZE (tmpmode) >= bytes)
1843 break;
1844 }
1845
1846 /* No suitable mode found. */
1847 gcc_assert (tmpmode != VOIDmode);
1848
1849 PUT_MODE (val, tmpmode);
1850 }
1851 return val;
1852 }
1853
1854 /* Return an rtx representing the register or memory location
1855 in which a scalar value of mode MODE was returned by a library call. */
1856
1857 rtx
1858 hard_libcall_value (enum machine_mode mode, rtx fun)
1859 {
1860 return targetm.calls.libcall_value (mode, fun);
1861 }
1862
1863 /* Look up the tree code for a given rtx code
1864 to provide the arithmetic operation for REAL_ARITHMETIC.
1865 The function returns an int because the caller may not know
1866 what `enum tree_code' means. */
1867
1868 int
1869 rtx_to_tree_code (enum rtx_code code)
1870 {
1871 enum tree_code tcode;
1872
1873 switch (code)
1874 {
1875 case PLUS:
1876 tcode = PLUS_EXPR;
1877 break;
1878 case MINUS:
1879 tcode = MINUS_EXPR;
1880 break;
1881 case MULT:
1882 tcode = MULT_EXPR;
1883 break;
1884 case DIV:
1885 tcode = RDIV_EXPR;
1886 break;
1887 case SMIN:
1888 tcode = MIN_EXPR;
1889 break;
1890 case SMAX:
1891 tcode = MAX_EXPR;
1892 break;
1893 default:
1894 tcode = LAST_AND_UNUSED_TREE_CODE;
1895 break;
1896 }
1897 return ((int) tcode);
1898 }
1899
1900 #include "gt-explow.h"