re PR target/9703 ([arm] Accessing data through constant pool more times could be...
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
43
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46
47
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 {
53 int width = GET_MODE_BITSIZE (mode);
54
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
57
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
61
62 /* Sign-extend for the requested mode. */
63
64 if (width < HOST_BITS_PER_WIDE_INT)
65 {
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
71 }
72
73 return c;
74 }
75
76 /* Return an rtx for the sum of X and the integer C. */
77
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size;
244
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
248 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
249
250 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
251 }
252
253 /* Return a wide integer for the size in bytes of the value of EXP, or -1
254 if the size can vary or is larger than an integer. */
255
256 HOST_WIDE_INT
257 int_expr_size (tree exp)
258 {
259 tree size;
260
261 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
262 size = TREE_OPERAND (exp, 1);
263 else
264 size = lang_hooks.expr_size (exp);
265
266 if (size == 0 || !host_integerp (size, 0))
267 return -1;
268
269 return tree_low_cst (size, 0);
270 }
271 \f
272 /* Return a copy of X in which all memory references
273 and all constants that involve symbol refs
274 have been replaced with new temporary registers.
275 Also emit code to load the memory locations and constants
276 into those registers.
277
278 If X contains no such constants or memory references,
279 X itself (not a copy) is returned.
280
281 If a constant is found in the address that is not a legitimate constant
282 in an insn, it is left alone in the hope that it might be valid in the
283 address.
284
285 X may contain no arithmetic except addition, subtraction and multiplication.
286 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
287
288 static rtx
289 break_out_memory_refs (rtx x)
290 {
291 if (MEM_P (x)
292 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
293 && GET_MODE (x) != VOIDmode))
294 x = force_reg (GET_MODE (x), x);
295 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
296 || GET_CODE (x) == MULT)
297 {
298 rtx op0 = break_out_memory_refs (XEXP (x, 0));
299 rtx op1 = break_out_memory_refs (XEXP (x, 1));
300
301 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
302 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
303 }
304
305 return x;
306 }
307
308 /* Given X, a memory address in ptr_mode, convert it to an address
309 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
310 the fact that pointers are not allowed to overflow by commuting arithmetic
311 operations over conversions so that address arithmetic insns can be
312 used. */
313
314 rtx
315 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
316 rtx x)
317 {
318 #ifndef POINTERS_EXTEND_UNSIGNED
319 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
320 return x;
321 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
322 enum machine_mode from_mode;
323 rtx temp;
324 enum rtx_code code;
325
326 /* If X already has the right mode, just return it. */
327 if (GET_MODE (x) == to_mode)
328 return x;
329
330 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
331
332 /* Here we handle some special cases. If none of them apply, fall through
333 to the default case. */
334 switch (GET_CODE (x))
335 {
336 case CONST_INT:
337 case CONST_DOUBLE:
338 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
339 code = TRUNCATE;
340 else if (POINTERS_EXTEND_UNSIGNED < 0)
341 break;
342 else if (POINTERS_EXTEND_UNSIGNED > 0)
343 code = ZERO_EXTEND;
344 else
345 code = SIGN_EXTEND;
346 temp = simplify_unary_operation (code, to_mode, x, from_mode);
347 if (temp)
348 return temp;
349 break;
350
351 case SUBREG:
352 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
353 && GET_MODE (SUBREG_REG (x)) == to_mode)
354 return SUBREG_REG (x);
355 break;
356
357 case LABEL_REF:
358 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
359 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
360 return temp;
361 break;
362
363 case SYMBOL_REF:
364 temp = shallow_copy_rtx (x);
365 PUT_MODE (temp, to_mode);
366 return temp;
367 break;
368
369 case CONST:
370 return gen_rtx_CONST (to_mode,
371 convert_memory_address (to_mode, XEXP (x, 0)));
372 break;
373
374 case PLUS:
375 case MULT:
376 /* For addition we can safely permute the conversion and addition
377 operation if one operand is a constant and converting the constant
378 does not change it. We can always safely permute them if we are
379 making the address narrower. */
380 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
381 || (GET_CODE (x) == PLUS
382 && GET_CODE (XEXP (x, 1)) == CONST_INT
383 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
384 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
385 convert_memory_address (to_mode, XEXP (x, 0)),
386 XEXP (x, 1));
387 break;
388
389 default:
390 break;
391 }
392
393 return convert_modes (to_mode, from_mode,
394 x, POINTERS_EXTEND_UNSIGNED);
395 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
396 }
397 \f
398 /* Return something equivalent to X but valid as a memory address
399 for something of mode MODE. When X is not itself valid, this
400 works by copying X or subexpressions of it into registers. */
401
402 rtx
403 memory_address (enum machine_mode mode, rtx x)
404 {
405 rtx oldx = x;
406
407 x = convert_memory_address (Pmode, x);
408
409 /* By passing constant addresses through registers
410 we get a chance to cse them. */
411 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
412 x = force_reg (Pmode, x);
413
414 /* We get better cse by rejecting indirect addressing at this stage.
415 Let the combiner create indirect addresses where appropriate.
416 For now, generate the code so that the subexpressions useful to share
417 are visible. But not if cse won't be done! */
418 else
419 {
420 if (! cse_not_expected && !REG_P (x))
421 x = break_out_memory_refs (x);
422
423 /* At this point, any valid address is accepted. */
424 if (memory_address_p (mode, x))
425 goto win;
426
427 /* If it was valid before but breaking out memory refs invalidated it,
428 use it the old way. */
429 if (memory_address_p (mode, oldx))
430 goto win2;
431
432 /* Perform machine-dependent transformations on X
433 in certain cases. This is not necessary since the code
434 below can handle all possible cases, but machine-dependent
435 transformations can make better code. */
436 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
437
438 /* PLUS and MULT can appear in special ways
439 as the result of attempts to make an address usable for indexing.
440 Usually they are dealt with by calling force_operand, below.
441 But a sum containing constant terms is special
442 if removing them makes the sum a valid address:
443 then we generate that address in a register
444 and index off of it. We do this because it often makes
445 shorter code, and because the addresses thus generated
446 in registers often become common subexpressions. */
447 if (GET_CODE (x) == PLUS)
448 {
449 rtx constant_term = const0_rtx;
450 rtx y = eliminate_constant_term (x, &constant_term);
451 if (constant_term == const0_rtx
452 || ! memory_address_p (mode, y))
453 x = force_operand (x, NULL_RTX);
454 else
455 {
456 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
457 if (! memory_address_p (mode, y))
458 x = force_operand (x, NULL_RTX);
459 else
460 x = y;
461 }
462 }
463
464 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
465 x = force_operand (x, NULL_RTX);
466
467 /* If we have a register that's an invalid address,
468 it must be a hard reg of the wrong class. Copy it to a pseudo. */
469 else if (REG_P (x))
470 x = copy_to_reg (x);
471
472 /* Last resort: copy the value to a register, since
473 the register is a valid address. */
474 else
475 x = force_reg (Pmode, x);
476
477 goto done;
478
479 win2:
480 x = oldx;
481 win:
482 if (flag_force_addr && ! cse_not_expected && !REG_P (x))
483 {
484 x = force_operand (x, NULL_RTX);
485 x = force_reg (Pmode, x);
486 }
487 }
488
489 done:
490
491 /* If we didn't change the address, we are done. Otherwise, mark
492 a reg as a pointer if we have REG or REG + CONST_INT. */
493 if (oldx == x)
494 return x;
495 else if (REG_P (x))
496 mark_reg_pointer (x, BITS_PER_UNIT);
497 else if (GET_CODE (x) == PLUS
498 && REG_P (XEXP (x, 0))
499 && GET_CODE (XEXP (x, 1)) == CONST_INT)
500 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
501
502 /* OLDX may have been the address on a temporary. Update the address
503 to indicate that X is now used. */
504 update_temp_slot_address (oldx, x);
505
506 return x;
507 }
508
509 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
510
511 rtx
512 memory_address_noforce (enum machine_mode mode, rtx x)
513 {
514 int ambient_force_addr = flag_force_addr;
515 rtx val;
516
517 flag_force_addr = 0;
518 val = memory_address (mode, x);
519 flag_force_addr = ambient_force_addr;
520 return val;
521 }
522
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
525
526 rtx
527 validize_mem (rtx ref)
528 {
529 if (!MEM_P (ref))
530 return ref;
531 ref = use_anchored_address (ref);
532 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
533 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
534 return ref;
535
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref, XEXP (ref, 0));
538 }
539
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
543
544 rtx
545 use_anchored_address (rtx x)
546 {
547 rtx base;
548 HOST_WIDE_INT offset;
549
550 if (!flag_section_anchors)
551 return x;
552
553 if (!MEM_P (x))
554 return x;
555
556 /* Split the address into a base and offset. */
557 base = XEXP (x, 0);
558 offset = 0;
559 if (GET_CODE (base) == CONST
560 && GET_CODE (XEXP (base, 0)) == PLUS
561 && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
562 {
563 offset += INTVAL (XEXP (XEXP (base, 0), 1));
564 base = XEXP (XEXP (base, 0), 0);
565 }
566
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base) != SYMBOL_REF
569 || !SYMBOL_REF_IN_BLOCK_P (base)
570 || SYMBOL_REF_ANCHOR_P (base)
571 || !targetm.use_anchors_for_symbol_p (base))
572 return x;
573
574 /* Decide where BASE is going to be. */
575 place_block_symbol (base);
576
577 /* Get the anchor we need to use. */
578 offset += SYMBOL_REF_BLOCK_OFFSET (base);
579 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
580 SYMBOL_REF_TLS_MODEL (base));
581
582 /* Work out the offset from the anchor. */
583 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
584
585 /* If we're going to run a CSE pass, force the anchor into a register.
586 We will then be able to reuse registers for several accesses, if the
587 target costs say that that's worthwhile. */
588 if (!cse_not_expected)
589 base = force_reg (GET_MODE (base), base);
590
591 return replace_equiv_address (x, plus_constant (base, offset));
592 }
593 \f
594 /* Copy the value or contents of X to a new temp reg and return that reg. */
595
596 rtx
597 copy_to_reg (rtx x)
598 {
599 rtx temp = gen_reg_rtx (GET_MODE (x));
600
601 /* If not an operand, must be an address with PLUS and MULT so
602 do the computation. */
603 if (! general_operand (x, VOIDmode))
604 x = force_operand (x, temp);
605
606 if (x != temp)
607 emit_move_insn (temp, x);
608
609 return temp;
610 }
611
612 /* Like copy_to_reg but always give the new register mode Pmode
613 in case X is a constant. */
614
615 rtx
616 copy_addr_to_reg (rtx x)
617 {
618 return copy_to_mode_reg (Pmode, x);
619 }
620
621 /* Like copy_to_reg but always give the new register mode MODE
622 in case X is a constant. */
623
624 rtx
625 copy_to_mode_reg (enum machine_mode mode, rtx x)
626 {
627 rtx temp = gen_reg_rtx (mode);
628
629 /* If not an operand, must be an address with PLUS and MULT so
630 do the computation. */
631 if (! general_operand (x, VOIDmode))
632 x = force_operand (x, temp);
633
634 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
635 if (x != temp)
636 emit_move_insn (temp, x);
637 return temp;
638 }
639
640 /* Load X into a register if it is not already one.
641 Use mode MODE for the register.
642 X should be valid for mode MODE, but it may be a constant which
643 is valid for all integer modes; that's why caller must specify MODE.
644
645 The caller must not alter the value in the register we return,
646 since we mark it as a "constant" register. */
647
648 rtx
649 force_reg (enum machine_mode mode, rtx x)
650 {
651 rtx temp, insn, set;
652
653 if (REG_P (x))
654 return x;
655
656 if (general_operand (x, mode))
657 {
658 temp = gen_reg_rtx (mode);
659 insn = emit_move_insn (temp, x);
660 }
661 else
662 {
663 temp = force_operand (x, NULL_RTX);
664 if (REG_P (temp))
665 insn = get_last_insn ();
666 else
667 {
668 rtx temp2 = gen_reg_rtx (mode);
669 insn = emit_move_insn (temp2, temp);
670 temp = temp2;
671 }
672 }
673
674 /* Let optimizers know that TEMP's value never changes
675 and that X can be substituted for it. Don't get confused
676 if INSN set something else (such as a SUBREG of TEMP). */
677 if (CONSTANT_P (x)
678 && (set = single_set (insn)) != 0
679 && SET_DEST (set) == temp
680 && ! rtx_equal_p (x, SET_SRC (set)))
681 set_unique_reg_note (insn, REG_EQUAL, x);
682
683 /* Let optimizers know that TEMP is a pointer, and if so, the
684 known alignment of that pointer. */
685 {
686 unsigned align = 0;
687 if (GET_CODE (x) == SYMBOL_REF)
688 {
689 align = BITS_PER_UNIT;
690 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
691 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
692 }
693 else if (GET_CODE (x) == LABEL_REF)
694 align = BITS_PER_UNIT;
695 else if (GET_CODE (x) == CONST
696 && GET_CODE (XEXP (x, 0)) == PLUS
697 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
698 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
699 {
700 rtx s = XEXP (XEXP (x, 0), 0);
701 rtx c = XEXP (XEXP (x, 0), 1);
702 unsigned sa, ca;
703
704 sa = BITS_PER_UNIT;
705 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
706 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
707
708 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
709
710 align = MIN (sa, ca);
711 }
712
713 if (align)
714 mark_reg_pointer (temp, align);
715 }
716
717 return temp;
718 }
719
720 /* If X is a memory ref, copy its contents to a new temp reg and return
721 that reg. Otherwise, return X. */
722
723 rtx
724 force_not_mem (rtx x)
725 {
726 rtx temp;
727
728 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
729 return x;
730
731 temp = gen_reg_rtx (GET_MODE (x));
732
733 if (MEM_POINTER (x))
734 REG_POINTER (temp) = 1;
735
736 emit_move_insn (temp, x);
737 return temp;
738 }
739
740 /* Copy X to TARGET (if it's nonzero and a reg)
741 or to a new temp reg and return that reg.
742 MODE is the mode to use for X in case it is a constant. */
743
744 rtx
745 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
746 {
747 rtx temp;
748
749 if (target && REG_P (target))
750 temp = target;
751 else
752 temp = gen_reg_rtx (mode);
753
754 emit_move_insn (temp, x);
755 return temp;
756 }
757 \f
758 /* Return the mode to use to store a scalar of TYPE and MODE.
759 PUNSIGNEDP points to the signedness of the type and may be adjusted
760 to show what signedness to use on extension operations.
761
762 FOR_CALL is nonzero if this call is promoting args for a call. */
763
764 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
765 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
766 #endif
767
768 enum machine_mode
769 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
770 int for_call ATTRIBUTE_UNUSED)
771 {
772 enum tree_code code = TREE_CODE (type);
773 int unsignedp = *punsignedp;
774
775 #ifndef PROMOTE_MODE
776 if (! for_call)
777 return mode;
778 #endif
779
780 switch (code)
781 {
782 #ifdef PROMOTE_FUNCTION_MODE
783 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
784 case REAL_TYPE: case OFFSET_TYPE:
785 #ifdef PROMOTE_MODE
786 if (for_call)
787 {
788 #endif
789 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
790 #ifdef PROMOTE_MODE
791 }
792 else
793 {
794 PROMOTE_MODE (mode, unsignedp, type);
795 }
796 #endif
797 break;
798 #endif
799
800 #ifdef POINTERS_EXTEND_UNSIGNED
801 case REFERENCE_TYPE:
802 case POINTER_TYPE:
803 mode = Pmode;
804 unsignedp = POINTERS_EXTEND_UNSIGNED;
805 break;
806 #endif
807
808 default:
809 break;
810 }
811
812 *punsignedp = unsignedp;
813 return mode;
814 }
815 \f
816 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
817 This pops when ADJUST is positive. ADJUST need not be constant. */
818
819 void
820 adjust_stack (rtx adjust)
821 {
822 rtx temp;
823
824 if (adjust == const0_rtx)
825 return;
826
827 /* We expect all variable sized adjustments to be multiple of
828 PREFERRED_STACK_BOUNDARY. */
829 if (GET_CODE (adjust) == CONST_INT)
830 stack_pointer_delta -= INTVAL (adjust);
831
832 temp = expand_binop (Pmode,
833 #ifdef STACK_GROWS_DOWNWARD
834 add_optab,
835 #else
836 sub_optab,
837 #endif
838 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
839 OPTAB_LIB_WIDEN);
840
841 if (temp != stack_pointer_rtx)
842 emit_move_insn (stack_pointer_rtx, temp);
843 }
844
845 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
846 This pushes when ADJUST is positive. ADJUST need not be constant. */
847
848 void
849 anti_adjust_stack (rtx adjust)
850 {
851 rtx temp;
852
853 if (adjust == const0_rtx)
854 return;
855
856 /* We expect all variable sized adjustments to be multiple of
857 PREFERRED_STACK_BOUNDARY. */
858 if (GET_CODE (adjust) == CONST_INT)
859 stack_pointer_delta += INTVAL (adjust);
860
861 temp = expand_binop (Pmode,
862 #ifdef STACK_GROWS_DOWNWARD
863 sub_optab,
864 #else
865 add_optab,
866 #endif
867 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
868 OPTAB_LIB_WIDEN);
869
870 if (temp != stack_pointer_rtx)
871 emit_move_insn (stack_pointer_rtx, temp);
872 }
873
874 /* Round the size of a block to be pushed up to the boundary required
875 by this machine. SIZE is the desired size, which need not be constant. */
876
877 static rtx
878 round_push (rtx size)
879 {
880 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
881
882 if (align == 1)
883 return size;
884
885 if (GET_CODE (size) == CONST_INT)
886 {
887 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
888
889 if (INTVAL (size) != new)
890 size = GEN_INT (new);
891 }
892 else
893 {
894 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
895 but we know it can't. So add ourselves and then do
896 TRUNC_DIV_EXPR. */
897 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
898 NULL_RTX, 1, OPTAB_LIB_WIDEN);
899 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
900 NULL_RTX, 1);
901 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
902 }
903
904 return size;
905 }
906 \f
907 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
908 to a previously-created save area. If no save area has been allocated,
909 this function will allocate one. If a save area is specified, it
910 must be of the proper mode.
911
912 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
913 are emitted at the current position. */
914
915 void
916 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
917 {
918 rtx sa = *psave;
919 /* The default is that we use a move insn and save in a Pmode object. */
920 rtx (*fcn) (rtx, rtx) = gen_move_insn;
921 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
922
923 /* See if this machine has anything special to do for this kind of save. */
924 switch (save_level)
925 {
926 #ifdef HAVE_save_stack_block
927 case SAVE_BLOCK:
928 if (HAVE_save_stack_block)
929 fcn = gen_save_stack_block;
930 break;
931 #endif
932 #ifdef HAVE_save_stack_function
933 case SAVE_FUNCTION:
934 if (HAVE_save_stack_function)
935 fcn = gen_save_stack_function;
936 break;
937 #endif
938 #ifdef HAVE_save_stack_nonlocal
939 case SAVE_NONLOCAL:
940 if (HAVE_save_stack_nonlocal)
941 fcn = gen_save_stack_nonlocal;
942 break;
943 #endif
944 default:
945 break;
946 }
947
948 /* If there is no save area and we have to allocate one, do so. Otherwise
949 verify the save area is the proper mode. */
950
951 if (sa == 0)
952 {
953 if (mode != VOIDmode)
954 {
955 if (save_level == SAVE_NONLOCAL)
956 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
957 else
958 *psave = sa = gen_reg_rtx (mode);
959 }
960 }
961
962 if (after)
963 {
964 rtx seq;
965
966 start_sequence ();
967 do_pending_stack_adjust ();
968 /* We must validize inside the sequence, to ensure that any instructions
969 created by the validize call also get moved to the right place. */
970 if (sa != 0)
971 sa = validize_mem (sa);
972 emit_insn (fcn (sa, stack_pointer_rtx));
973 seq = get_insns ();
974 end_sequence ();
975 emit_insn_after (seq, after);
976 }
977 else
978 {
979 do_pending_stack_adjust ();
980 if (sa != 0)
981 sa = validize_mem (sa);
982 emit_insn (fcn (sa, stack_pointer_rtx));
983 }
984 }
985
986 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
987 area made by emit_stack_save. If it is zero, we have nothing to do.
988
989 Put any emitted insns after insn AFTER, if nonzero, otherwise at
990 current position. */
991
992 void
993 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
994 {
995 /* The default is that we use a move insn. */
996 rtx (*fcn) (rtx, rtx) = gen_move_insn;
997
998 /* See if this machine has anything special to do for this kind of save. */
999 switch (save_level)
1000 {
1001 #ifdef HAVE_restore_stack_block
1002 case SAVE_BLOCK:
1003 if (HAVE_restore_stack_block)
1004 fcn = gen_restore_stack_block;
1005 break;
1006 #endif
1007 #ifdef HAVE_restore_stack_function
1008 case SAVE_FUNCTION:
1009 if (HAVE_restore_stack_function)
1010 fcn = gen_restore_stack_function;
1011 break;
1012 #endif
1013 #ifdef HAVE_restore_stack_nonlocal
1014 case SAVE_NONLOCAL:
1015 if (HAVE_restore_stack_nonlocal)
1016 fcn = gen_restore_stack_nonlocal;
1017 break;
1018 #endif
1019 default:
1020 break;
1021 }
1022
1023 if (sa != 0)
1024 {
1025 sa = validize_mem (sa);
1026 /* These clobbers prevent the scheduler from moving
1027 references to variable arrays below the code
1028 that deletes (pops) the arrays. */
1029 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1030 gen_rtx_MEM (BLKmode,
1031 gen_rtx_SCRATCH (VOIDmode))));
1032 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1033 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1034 }
1035
1036 discard_pending_stack_adjust ();
1037
1038 if (after)
1039 {
1040 rtx seq;
1041
1042 start_sequence ();
1043 emit_insn (fcn (stack_pointer_rtx, sa));
1044 seq = get_insns ();
1045 end_sequence ();
1046 emit_insn_after (seq, after);
1047 }
1048 else
1049 emit_insn (fcn (stack_pointer_rtx, sa));
1050 }
1051
1052 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1053 function. This function should be called whenever we allocate or
1054 deallocate dynamic stack space. */
1055
1056 void
1057 update_nonlocal_goto_save_area (void)
1058 {
1059 tree t_save;
1060 rtx r_save;
1061
1062 /* The nonlocal_goto_save_area object is an array of N pointers. The
1063 first one is used for the frame pointer save; the rest are sized by
1064 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1065 of the stack save area slots. */
1066 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1067 integer_one_node, NULL_TREE, NULL_TREE);
1068 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1069
1070 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1071 }
1072 \f
1073 /* Return an rtx representing the address of an area of memory dynamically
1074 pushed on the stack. This region of memory is always aligned to
1075 a multiple of BIGGEST_ALIGNMENT.
1076
1077 Any required stack pointer alignment is preserved.
1078
1079 SIZE is an rtx representing the size of the area.
1080 TARGET is a place in which the address can be placed.
1081
1082 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1083
1084 rtx
1085 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1086 {
1087 /* If we're asking for zero bytes, it doesn't matter what we point
1088 to since we can't dereference it. But return a reasonable
1089 address anyway. */
1090 if (size == const0_rtx)
1091 return virtual_stack_dynamic_rtx;
1092
1093 /* Otherwise, show we're calling alloca or equivalent. */
1094 current_function_calls_alloca = 1;
1095
1096 /* Ensure the size is in the proper mode. */
1097 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1098 size = convert_to_mode (Pmode, size, 1);
1099
1100 /* We can't attempt to minimize alignment necessary, because we don't
1101 know the final value of preferred_stack_boundary yet while executing
1102 this code. */
1103 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1104
1105 /* We will need to ensure that the address we return is aligned to
1106 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1107 always know its final value at this point in the compilation (it
1108 might depend on the size of the outgoing parameter lists, for
1109 example), so we must align the value to be returned in that case.
1110 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1111 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1112 We must also do an alignment operation on the returned value if
1113 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1114
1115 If we have to align, we must leave space in SIZE for the hole
1116 that might result from the alignment operation. */
1117
1118 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1119 #define MUST_ALIGN 1
1120 #else
1121 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1122 #endif
1123
1124 if (MUST_ALIGN)
1125 size
1126 = force_operand (plus_constant (size,
1127 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1128 NULL_RTX);
1129
1130 #ifdef SETJMP_VIA_SAVE_AREA
1131 /* If setjmp restores regs from a save area in the stack frame,
1132 avoid clobbering the reg save area. Note that the offset of
1133 virtual_incoming_args_rtx includes the preallocated stack args space.
1134 It would be no problem to clobber that, but it's on the wrong side
1135 of the old save area.
1136
1137 What used to happen is that, since we did not know for sure
1138 whether setjmp() was invoked until after RTL generation, we
1139 would use reg notes to store the "optimized" size and fix things
1140 up later. These days we know this information before we ever
1141 start building RTL so the reg notes are unnecessary. */
1142 if (!current_function_calls_setjmp)
1143 {
1144 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1145
1146 /* ??? Code below assumes that the save area needs maximal
1147 alignment. This constraint may be too strong. */
1148 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1149
1150 if (GET_CODE (size) == CONST_INT)
1151 {
1152 HOST_WIDE_INT new = INTVAL (size) / align * align;
1153
1154 if (INTVAL (size) != new)
1155 size = GEN_INT (new);
1156 }
1157 else
1158 {
1159 /* Since we know overflow is not possible, we avoid using
1160 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1161 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1162 GEN_INT (align), NULL_RTX, 1);
1163 size = expand_mult (Pmode, size,
1164 GEN_INT (align), NULL_RTX, 1);
1165 }
1166 }
1167 else
1168 {
1169 rtx dynamic_offset
1170 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1171 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1172
1173 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1174 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1175 }
1176 #endif /* SETJMP_VIA_SAVE_AREA */
1177
1178 /* Round the size to a multiple of the required stack alignment.
1179 Since the stack if presumed to be rounded before this allocation,
1180 this will maintain the required alignment.
1181
1182 If the stack grows downward, we could save an insn by subtracting
1183 SIZE from the stack pointer and then aligning the stack pointer.
1184 The problem with this is that the stack pointer may be unaligned
1185 between the execution of the subtraction and alignment insns and
1186 some machines do not allow this. Even on those that do, some
1187 signal handlers malfunction if a signal should occur between those
1188 insns. Since this is an extremely rare event, we have no reliable
1189 way of knowing which systems have this problem. So we avoid even
1190 momentarily mis-aligning the stack. */
1191
1192 /* If we added a variable amount to SIZE,
1193 we can no longer assume it is aligned. */
1194 #if !defined (SETJMP_VIA_SAVE_AREA)
1195 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1196 #endif
1197 size = round_push (size);
1198
1199 do_pending_stack_adjust ();
1200
1201 /* We ought to be called always on the toplevel and stack ought to be aligned
1202 properly. */
1203 gcc_assert (!(stack_pointer_delta
1204 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1205
1206 /* If needed, check that we have the required amount of stack. Take into
1207 account what has already been checked. */
1208 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1209 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1210
1211 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1212 if (target == 0 || !REG_P (target)
1213 || REGNO (target) < FIRST_PSEUDO_REGISTER
1214 || GET_MODE (target) != Pmode)
1215 target = gen_reg_rtx (Pmode);
1216
1217 mark_reg_pointer (target, known_align);
1218
1219 /* Perform the required allocation from the stack. Some systems do
1220 this differently than simply incrementing/decrementing from the
1221 stack pointer, such as acquiring the space by calling malloc(). */
1222 #ifdef HAVE_allocate_stack
1223 if (HAVE_allocate_stack)
1224 {
1225 enum machine_mode mode = STACK_SIZE_MODE;
1226 insn_operand_predicate_fn pred;
1227
1228 /* We don't have to check against the predicate for operand 0 since
1229 TARGET is known to be a pseudo of the proper mode, which must
1230 be valid for the operand. For operand 1, convert to the
1231 proper mode and validate. */
1232 if (mode == VOIDmode)
1233 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1234
1235 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1236 if (pred && ! ((*pred) (size, mode)))
1237 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1238
1239 emit_insn (gen_allocate_stack (target, size));
1240 }
1241 else
1242 #endif
1243 {
1244 #ifndef STACK_GROWS_DOWNWARD
1245 emit_move_insn (target, virtual_stack_dynamic_rtx);
1246 #endif
1247
1248 /* Check stack bounds if necessary. */
1249 if (current_function_limit_stack)
1250 {
1251 rtx available;
1252 rtx space_available = gen_label_rtx ();
1253 #ifdef STACK_GROWS_DOWNWARD
1254 available = expand_binop (Pmode, sub_optab,
1255 stack_pointer_rtx, stack_limit_rtx,
1256 NULL_RTX, 1, OPTAB_WIDEN);
1257 #else
1258 available = expand_binop (Pmode, sub_optab,
1259 stack_limit_rtx, stack_pointer_rtx,
1260 NULL_RTX, 1, OPTAB_WIDEN);
1261 #endif
1262 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1263 space_available);
1264 #ifdef HAVE_trap
1265 if (HAVE_trap)
1266 emit_insn (gen_trap ());
1267 else
1268 #endif
1269 error ("stack limits not supported on this target");
1270 emit_barrier ();
1271 emit_label (space_available);
1272 }
1273
1274 anti_adjust_stack (size);
1275
1276 #ifdef STACK_GROWS_DOWNWARD
1277 emit_move_insn (target, virtual_stack_dynamic_rtx);
1278 #endif
1279 }
1280
1281 if (MUST_ALIGN)
1282 {
1283 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1284 but we know it can't. So add ourselves and then do
1285 TRUNC_DIV_EXPR. */
1286 target = expand_binop (Pmode, add_optab, target,
1287 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1288 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1289 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1290 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1291 NULL_RTX, 1);
1292 target = expand_mult (Pmode, target,
1293 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1294 NULL_RTX, 1);
1295 }
1296
1297 /* Record the new stack level for nonlocal gotos. */
1298 if (cfun->nonlocal_goto_save_area != 0)
1299 update_nonlocal_goto_save_area ();
1300
1301 return target;
1302 }
1303 \f
1304 /* A front end may want to override GCC's stack checking by providing a
1305 run-time routine to call to check the stack, so provide a mechanism for
1306 calling that routine. */
1307
1308 static GTY(()) rtx stack_check_libfunc;
1309
1310 void
1311 set_stack_check_libfunc (rtx libfunc)
1312 {
1313 stack_check_libfunc = libfunc;
1314 }
1315 \f
1316 /* Emit one stack probe at ADDRESS, an address within the stack. */
1317
1318 static void
1319 emit_stack_probe (rtx address)
1320 {
1321 rtx memref = gen_rtx_MEM (word_mode, address);
1322
1323 MEM_VOLATILE_P (memref) = 1;
1324
1325 if (STACK_CHECK_PROBE_LOAD)
1326 emit_move_insn (gen_reg_rtx (word_mode), memref);
1327 else
1328 emit_move_insn (memref, const0_rtx);
1329 }
1330
1331 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1332 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1333 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1334 subtract from the stack. If SIZE is constant, this is done
1335 with a fixed number of probes. Otherwise, we must make a loop. */
1336
1337 #ifdef STACK_GROWS_DOWNWARD
1338 #define STACK_GROW_OP MINUS
1339 #else
1340 #define STACK_GROW_OP PLUS
1341 #endif
1342
1343 void
1344 probe_stack_range (HOST_WIDE_INT first, rtx size)
1345 {
1346 /* First ensure SIZE is Pmode. */
1347 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1348 size = convert_to_mode (Pmode, size, 1);
1349
1350 /* Next see if the front end has set up a function for us to call to
1351 check the stack. */
1352 if (stack_check_libfunc != 0)
1353 {
1354 rtx addr = memory_address (QImode,
1355 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1356 stack_pointer_rtx,
1357 plus_constant (size, first)));
1358
1359 addr = convert_memory_address (ptr_mode, addr);
1360 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1361 ptr_mode);
1362 }
1363
1364 /* Next see if we have an insn to check the stack. Use it if so. */
1365 #ifdef HAVE_check_stack
1366 else if (HAVE_check_stack)
1367 {
1368 insn_operand_predicate_fn pred;
1369 rtx last_addr
1370 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1371 stack_pointer_rtx,
1372 plus_constant (size, first)),
1373 NULL_RTX);
1374
1375 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1376 if (pred && ! ((*pred) (last_addr, Pmode)))
1377 last_addr = copy_to_mode_reg (Pmode, last_addr);
1378
1379 emit_insn (gen_check_stack (last_addr));
1380 }
1381 #endif
1382
1383 /* If we have to generate explicit probes, see if we have a constant
1384 small number of them to generate. If so, that's the easy case. */
1385 else if (GET_CODE (size) == CONST_INT
1386 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1387 {
1388 HOST_WIDE_INT offset;
1389
1390 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1391 for values of N from 1 until it exceeds LAST. If only one
1392 probe is needed, this will not generate any code. Then probe
1393 at LAST. */
1394 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1395 offset < INTVAL (size);
1396 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1397 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1398 stack_pointer_rtx,
1399 GEN_INT (offset)));
1400
1401 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1402 stack_pointer_rtx,
1403 plus_constant (size, first)));
1404 }
1405
1406 /* In the variable case, do the same as above, but in a loop. We emit loop
1407 notes so that loop optimization can be done. */
1408 else
1409 {
1410 rtx test_addr
1411 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1412 stack_pointer_rtx,
1413 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1414 NULL_RTX);
1415 rtx last_addr
1416 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1417 stack_pointer_rtx,
1418 plus_constant (size, first)),
1419 NULL_RTX);
1420 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1421 rtx loop_lab = gen_label_rtx ();
1422 rtx test_lab = gen_label_rtx ();
1423 rtx end_lab = gen_label_rtx ();
1424 rtx temp;
1425
1426 if (!REG_P (test_addr)
1427 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1428 test_addr = force_reg (Pmode, test_addr);
1429
1430 emit_jump (test_lab);
1431
1432 emit_label (loop_lab);
1433 emit_stack_probe (test_addr);
1434
1435 #ifdef STACK_GROWS_DOWNWARD
1436 #define CMP_OPCODE GTU
1437 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1438 1, OPTAB_WIDEN);
1439 #else
1440 #define CMP_OPCODE LTU
1441 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1442 1, OPTAB_WIDEN);
1443 #endif
1444
1445 gcc_assert (temp == test_addr);
1446
1447 emit_label (test_lab);
1448 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1449 NULL_RTX, Pmode, 1, loop_lab);
1450 emit_jump (end_lab);
1451 emit_label (end_lab);
1452
1453 emit_stack_probe (last_addr);
1454 }
1455 }
1456 \f
1457 /* Return an rtx representing the register or memory location
1458 in which a scalar value of data type VALTYPE
1459 was returned by a function call to function FUNC.
1460 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1461 function is known, otherwise 0.
1462 OUTGOING is 1 if on a machine with register windows this function
1463 should return the register in which the function will put its result
1464 and 0 otherwise. */
1465
1466 rtx
1467 hard_function_value (tree valtype, tree func, tree fntype,
1468 int outgoing ATTRIBUTE_UNUSED)
1469 {
1470 rtx val;
1471
1472 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1473
1474 if (REG_P (val)
1475 && GET_MODE (val) == BLKmode)
1476 {
1477 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1478 enum machine_mode tmpmode;
1479
1480 /* int_size_in_bytes can return -1. We don't need a check here
1481 since the value of bytes will then be large enough that no
1482 mode will match anyway. */
1483
1484 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1485 tmpmode != VOIDmode;
1486 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1487 {
1488 /* Have we found a large enough mode? */
1489 if (GET_MODE_SIZE (tmpmode) >= bytes)
1490 break;
1491 }
1492
1493 /* No suitable mode found. */
1494 gcc_assert (tmpmode != VOIDmode);
1495
1496 PUT_MODE (val, tmpmode);
1497 }
1498 return val;
1499 }
1500
1501 /* Return an rtx representing the register or memory location
1502 in which a scalar value of mode MODE was returned by a library call. */
1503
1504 rtx
1505 hard_libcall_value (enum machine_mode mode)
1506 {
1507 return LIBCALL_VALUE (mode);
1508 }
1509
1510 /* Look up the tree code for a given rtx code
1511 to provide the arithmetic operation for REAL_ARITHMETIC.
1512 The function returns an int because the caller may not know
1513 what `enum tree_code' means. */
1514
1515 int
1516 rtx_to_tree_code (enum rtx_code code)
1517 {
1518 enum tree_code tcode;
1519
1520 switch (code)
1521 {
1522 case PLUS:
1523 tcode = PLUS_EXPR;
1524 break;
1525 case MINUS:
1526 tcode = MINUS_EXPR;
1527 break;
1528 case MULT:
1529 tcode = MULT_EXPR;
1530 break;
1531 case DIV:
1532 tcode = RDIV_EXPR;
1533 break;
1534 case SMIN:
1535 tcode = MIN_EXPR;
1536 break;
1537 case SMAX:
1538 tcode = MAX_EXPR;
1539 break;
1540 default:
1541 tcode = LAST_AND_UNUSED_TREE_CODE;
1542 break;
1543 }
1544 return ((int) tcode);
1545 }
1546
1547 #include "gt-explow.h"