re PR middle-end/20548 (ACATS c52103x c52104x c52104y segfault)
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
43
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46
47
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 {
53 int width = GET_MODE_BITSIZE (mode);
54
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
57
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
61
62 /* Sign-extend for the requested mode. */
63
64 if (width < HOST_BITS_PER_WIDE_INT)
65 {
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
71 }
72
73 return c;
74 }
75
76 /* Return an rtx for the sum of X and the integer C. */
77
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size;
244
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
248 {
249 size = lang_hooks.expr_size (exp);
250 gcc_assert (size);
251 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp);
252 }
253
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
255 }
256
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258 if the size can vary or is larger than an integer. */
259
260 HOST_WIDE_INT
261 int_expr_size (tree exp)
262 {
263 tree size;
264
265 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266 size = TREE_OPERAND (exp, 1);
267 else
268 {
269 size = lang_hooks.expr_size (exp);
270 gcc_assert (size);
271 }
272
273 if (size == 0 || !host_integerp (size, 0))
274 return -1;
275
276 return tree_low_cst (size, 0);
277 }
278 \f
279 /* Return a copy of X in which all memory references
280 and all constants that involve symbol refs
281 have been replaced with new temporary registers.
282 Also emit code to load the memory locations and constants
283 into those registers.
284
285 If X contains no such constants or memory references,
286 X itself (not a copy) is returned.
287
288 If a constant is found in the address that is not a legitimate constant
289 in an insn, it is left alone in the hope that it might be valid in the
290 address.
291
292 X may contain no arithmetic except addition, subtraction and multiplication.
293 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
294
295 static rtx
296 break_out_memory_refs (rtx x)
297 {
298 if (MEM_P (x)
299 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 && GET_MODE (x) != VOIDmode))
301 x = force_reg (GET_MODE (x), x);
302 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 || GET_CODE (x) == MULT)
304 {
305 rtx op0 = break_out_memory_refs (XEXP (x, 0));
306 rtx op1 = break_out_memory_refs (XEXP (x, 1));
307
308 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 x = simplify_gen_binary (GET_CODE (x), Pmode, op0, op1);
310 }
311
312 return x;
313 }
314
315 /* Given X, a memory address in ptr_mode, convert it to an address
316 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
317 the fact that pointers are not allowed to overflow by commuting arithmetic
318 operations over conversions so that address arithmetic insns can be
319 used. */
320
321 rtx
322 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 rtx x)
324 {
325 #ifndef POINTERS_EXTEND_UNSIGNED
326 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327 return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329 enum machine_mode from_mode;
330 rtx temp;
331 enum rtx_code code;
332
333 /* If X already has the right mode, just return it. */
334 if (GET_MODE (x) == to_mode)
335 return x;
336
337 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
338
339 /* Here we handle some special cases. If none of them apply, fall through
340 to the default case. */
341 switch (GET_CODE (x))
342 {
343 case CONST_INT:
344 case CONST_DOUBLE:
345 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
346 code = TRUNCATE;
347 else if (POINTERS_EXTEND_UNSIGNED < 0)
348 break;
349 else if (POINTERS_EXTEND_UNSIGNED > 0)
350 code = ZERO_EXTEND;
351 else
352 code = SIGN_EXTEND;
353 temp = simplify_unary_operation (code, to_mode, x, from_mode);
354 if (temp)
355 return temp;
356 break;
357
358 case SUBREG:
359 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
360 && GET_MODE (SUBREG_REG (x)) == to_mode)
361 return SUBREG_REG (x);
362 break;
363
364 case LABEL_REF:
365 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
366 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
367 return temp;
368 break;
369
370 case SYMBOL_REF:
371 temp = shallow_copy_rtx (x);
372 PUT_MODE (temp, to_mode);
373 return temp;
374 break;
375
376 case CONST:
377 return gen_rtx_CONST (to_mode,
378 convert_memory_address (to_mode, XEXP (x, 0)));
379 break;
380
381 case PLUS:
382 case MULT:
383 /* For addition we can safely permute the conversion and addition
384 operation if one operand is a constant and converting the constant
385 does not change it or if one operand is a constant and we are
386 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
387 We can always safely permute them if we are making the address
388 narrower. */
389 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
390 || (GET_CODE (x) == PLUS
391 && GET_CODE (XEXP (x, 1)) == CONST_INT
392 && (XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))
393 || POINTERS_EXTEND_UNSIGNED < 0)))
394 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
395 convert_memory_address (to_mode, XEXP (x, 0)),
396 XEXP (x, 1));
397 break;
398
399 default:
400 break;
401 }
402
403 return convert_modes (to_mode, from_mode,
404 x, POINTERS_EXTEND_UNSIGNED);
405 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
406 }
407 \f
408 /* Return something equivalent to X but valid as a memory address
409 for something of mode MODE. When X is not itself valid, this
410 works by copying X or subexpressions of it into registers. */
411
412 rtx
413 memory_address (enum machine_mode mode, rtx x)
414 {
415 rtx oldx = x;
416
417 x = convert_memory_address (Pmode, x);
418
419 /* By passing constant addresses through registers
420 we get a chance to cse them. */
421 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
422 x = force_reg (Pmode, x);
423
424 /* We get better cse by rejecting indirect addressing at this stage.
425 Let the combiner create indirect addresses where appropriate.
426 For now, generate the code so that the subexpressions useful to share
427 are visible. But not if cse won't be done! */
428 else
429 {
430 if (! cse_not_expected && !REG_P (x))
431 x = break_out_memory_refs (x);
432
433 /* At this point, any valid address is accepted. */
434 if (memory_address_p (mode, x))
435 goto done;
436
437 /* If it was valid before but breaking out memory refs invalidated it,
438 use it the old way. */
439 if (memory_address_p (mode, oldx))
440 {
441 x = oldx;
442 goto done;
443 }
444
445 /* Perform machine-dependent transformations on X
446 in certain cases. This is not necessary since the code
447 below can handle all possible cases, but machine-dependent
448 transformations can make better code. */
449 LEGITIMIZE_ADDRESS (x, oldx, mode, done);
450
451 /* PLUS and MULT can appear in special ways
452 as the result of attempts to make an address usable for indexing.
453 Usually they are dealt with by calling force_operand, below.
454 But a sum containing constant terms is special
455 if removing them makes the sum a valid address:
456 then we generate that address in a register
457 and index off of it. We do this because it often makes
458 shorter code, and because the addresses thus generated
459 in registers often become common subexpressions. */
460 if (GET_CODE (x) == PLUS)
461 {
462 rtx constant_term = const0_rtx;
463 rtx y = eliminate_constant_term (x, &constant_term);
464 if (constant_term == const0_rtx
465 || ! memory_address_p (mode, y))
466 x = force_operand (x, NULL_RTX);
467 else
468 {
469 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
470 if (! memory_address_p (mode, y))
471 x = force_operand (x, NULL_RTX);
472 else
473 x = y;
474 }
475 }
476
477 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
478 x = force_operand (x, NULL_RTX);
479
480 /* If we have a register that's an invalid address,
481 it must be a hard reg of the wrong class. Copy it to a pseudo. */
482 else if (REG_P (x))
483 x = copy_to_reg (x);
484
485 /* Last resort: copy the value to a register, since
486 the register is a valid address. */
487 else
488 x = force_reg (Pmode, x);
489 }
490
491 done:
492
493 gcc_assert (memory_address_p (mode, x));
494 /* If we didn't change the address, we are done. Otherwise, mark
495 a reg as a pointer if we have REG or REG + CONST_INT. */
496 if (oldx == x)
497 return x;
498 else if (REG_P (x))
499 mark_reg_pointer (x, BITS_PER_UNIT);
500 else if (GET_CODE (x) == PLUS
501 && REG_P (XEXP (x, 0))
502 && GET_CODE (XEXP (x, 1)) == CONST_INT)
503 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
504
505 /* OLDX may have been the address on a temporary. Update the address
506 to indicate that X is now used. */
507 update_temp_slot_address (oldx, x);
508
509 return x;
510 }
511
512 /* Convert a mem ref into one with a valid memory address.
513 Pass through anything else unchanged. */
514
515 rtx
516 validize_mem (rtx ref)
517 {
518 if (!MEM_P (ref))
519 return ref;
520 ref = use_anchored_address (ref);
521 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
522 return ref;
523
524 /* Don't alter REF itself, since that is probably a stack slot. */
525 return replace_equiv_address (ref, XEXP (ref, 0));
526 }
527
528 /* If X is a memory reference to a member of an object block, try rewriting
529 it to use an anchor instead. Return the new memory reference on success
530 and the old one on failure. */
531
532 rtx
533 use_anchored_address (rtx x)
534 {
535 rtx base;
536 HOST_WIDE_INT offset;
537
538 if (!flag_section_anchors)
539 return x;
540
541 if (!MEM_P (x))
542 return x;
543
544 /* Split the address into a base and offset. */
545 base = XEXP (x, 0);
546 offset = 0;
547 if (GET_CODE (base) == CONST
548 && GET_CODE (XEXP (base, 0)) == PLUS
549 && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
550 {
551 offset += INTVAL (XEXP (XEXP (base, 0), 1));
552 base = XEXP (XEXP (base, 0), 0);
553 }
554
555 /* Check whether BASE is suitable for anchors. */
556 if (GET_CODE (base) != SYMBOL_REF
557 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
558 || SYMBOL_REF_ANCHOR_P (base)
559 || SYMBOL_REF_BLOCK (base) == NULL
560 || !targetm.use_anchors_for_symbol_p (base))
561 return x;
562
563 /* Decide where BASE is going to be. */
564 place_block_symbol (base);
565
566 /* Get the anchor we need to use. */
567 offset += SYMBOL_REF_BLOCK_OFFSET (base);
568 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
569 SYMBOL_REF_TLS_MODEL (base));
570
571 /* Work out the offset from the anchor. */
572 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
573
574 /* If we're going to run a CSE pass, force the anchor into a register.
575 We will then be able to reuse registers for several accesses, if the
576 target costs say that that's worthwhile. */
577 if (!cse_not_expected)
578 base = force_reg (GET_MODE (base), base);
579
580 return replace_equiv_address (x, plus_constant (base, offset));
581 }
582 \f
583 /* Copy the value or contents of X to a new temp reg and return that reg. */
584
585 rtx
586 copy_to_reg (rtx x)
587 {
588 rtx temp = gen_reg_rtx (GET_MODE (x));
589
590 /* If not an operand, must be an address with PLUS and MULT so
591 do the computation. */
592 if (! general_operand (x, VOIDmode))
593 x = force_operand (x, temp);
594
595 if (x != temp)
596 emit_move_insn (temp, x);
597
598 return temp;
599 }
600
601 /* Like copy_to_reg but always give the new register mode Pmode
602 in case X is a constant. */
603
604 rtx
605 copy_addr_to_reg (rtx x)
606 {
607 return copy_to_mode_reg (Pmode, x);
608 }
609
610 /* Like copy_to_reg but always give the new register mode MODE
611 in case X is a constant. */
612
613 rtx
614 copy_to_mode_reg (enum machine_mode mode, rtx x)
615 {
616 rtx temp = gen_reg_rtx (mode);
617
618 /* If not an operand, must be an address with PLUS and MULT so
619 do the computation. */
620 if (! general_operand (x, VOIDmode))
621 x = force_operand (x, temp);
622
623 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
624 if (x != temp)
625 emit_move_insn (temp, x);
626 return temp;
627 }
628
629 /* Load X into a register if it is not already one.
630 Use mode MODE for the register.
631 X should be valid for mode MODE, but it may be a constant which
632 is valid for all integer modes; that's why caller must specify MODE.
633
634 The caller must not alter the value in the register we return,
635 since we mark it as a "constant" register. */
636
637 rtx
638 force_reg (enum machine_mode mode, rtx x)
639 {
640 rtx temp, insn, set;
641
642 if (REG_P (x))
643 return x;
644
645 if (general_operand (x, mode))
646 {
647 temp = gen_reg_rtx (mode);
648 insn = emit_move_insn (temp, x);
649 }
650 else
651 {
652 temp = force_operand (x, NULL_RTX);
653 if (REG_P (temp))
654 insn = get_last_insn ();
655 else
656 {
657 rtx temp2 = gen_reg_rtx (mode);
658 insn = emit_move_insn (temp2, temp);
659 temp = temp2;
660 }
661 }
662
663 /* Let optimizers know that TEMP's value never changes
664 and that X can be substituted for it. Don't get confused
665 if INSN set something else (such as a SUBREG of TEMP). */
666 if (CONSTANT_P (x)
667 && (set = single_set (insn)) != 0
668 && SET_DEST (set) == temp
669 && ! rtx_equal_p (x, SET_SRC (set)))
670 set_unique_reg_note (insn, REG_EQUAL, x);
671
672 /* Let optimizers know that TEMP is a pointer, and if so, the
673 known alignment of that pointer. */
674 {
675 unsigned align = 0;
676 if (GET_CODE (x) == SYMBOL_REF)
677 {
678 align = BITS_PER_UNIT;
679 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
680 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
681 }
682 else if (GET_CODE (x) == LABEL_REF)
683 align = BITS_PER_UNIT;
684 else if (GET_CODE (x) == CONST
685 && GET_CODE (XEXP (x, 0)) == PLUS
686 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
687 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
688 {
689 rtx s = XEXP (XEXP (x, 0), 0);
690 rtx c = XEXP (XEXP (x, 0), 1);
691 unsigned sa, ca;
692
693 sa = BITS_PER_UNIT;
694 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
695 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
696
697 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
698
699 align = MIN (sa, ca);
700 }
701 else if (MEM_P (x) && MEM_POINTER (x))
702 align = MEM_ALIGN (x);
703
704 if (align)
705 mark_reg_pointer (temp, align);
706 }
707
708 return temp;
709 }
710
711 /* If X is a memory ref, copy its contents to a new temp reg and return
712 that reg. Otherwise, return X. */
713
714 rtx
715 force_not_mem (rtx x)
716 {
717 rtx temp;
718
719 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
720 return x;
721
722 temp = gen_reg_rtx (GET_MODE (x));
723
724 if (MEM_POINTER (x))
725 REG_POINTER (temp) = 1;
726
727 emit_move_insn (temp, x);
728 return temp;
729 }
730
731 /* Copy X to TARGET (if it's nonzero and a reg)
732 or to a new temp reg and return that reg.
733 MODE is the mode to use for X in case it is a constant. */
734
735 rtx
736 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
737 {
738 rtx temp;
739
740 if (target && REG_P (target))
741 temp = target;
742 else
743 temp = gen_reg_rtx (mode);
744
745 emit_move_insn (temp, x);
746 return temp;
747 }
748 \f
749 /* Return the mode to use to store a scalar of TYPE and MODE.
750 PUNSIGNEDP points to the signedness of the type and may be adjusted
751 to show what signedness to use on extension operations.
752
753 FOR_CALL is nonzero if this call is promoting args for a call. */
754
755 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
756 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
757 #endif
758
759 enum machine_mode
760 promote_mode (const_tree type, enum machine_mode mode, int *punsignedp,
761 int for_call ATTRIBUTE_UNUSED)
762 {
763 const enum tree_code code = TREE_CODE (type);
764 int unsignedp = *punsignedp;
765
766 #ifndef PROMOTE_MODE
767 if (! for_call)
768 return mode;
769 #endif
770
771 switch (code)
772 {
773 #ifdef PROMOTE_FUNCTION_MODE
774 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
775 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
776 #ifdef PROMOTE_MODE
777 if (for_call)
778 {
779 #endif
780 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
781 #ifdef PROMOTE_MODE
782 }
783 else
784 {
785 PROMOTE_MODE (mode, unsignedp, type);
786 }
787 #endif
788 break;
789 #endif
790
791 #ifdef POINTERS_EXTEND_UNSIGNED
792 case REFERENCE_TYPE:
793 case POINTER_TYPE:
794 mode = Pmode;
795 unsignedp = POINTERS_EXTEND_UNSIGNED;
796 break;
797 #endif
798
799 default:
800 break;
801 }
802
803 *punsignedp = unsignedp;
804 return mode;
805 }
806 \f
807 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
808 This pops when ADJUST is positive. ADJUST need not be constant. */
809
810 void
811 adjust_stack (rtx adjust)
812 {
813 rtx temp;
814
815 if (adjust == const0_rtx)
816 return;
817
818 /* We expect all variable sized adjustments to be multiple of
819 PREFERRED_STACK_BOUNDARY. */
820 if (GET_CODE (adjust) == CONST_INT)
821 stack_pointer_delta -= INTVAL (adjust);
822
823 temp = expand_binop (Pmode,
824 #ifdef STACK_GROWS_DOWNWARD
825 add_optab,
826 #else
827 sub_optab,
828 #endif
829 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
830 OPTAB_LIB_WIDEN);
831
832 if (temp != stack_pointer_rtx)
833 emit_move_insn (stack_pointer_rtx, temp);
834 }
835
836 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
837 This pushes when ADJUST is positive. ADJUST need not be constant. */
838
839 void
840 anti_adjust_stack (rtx adjust)
841 {
842 rtx temp;
843
844 if (adjust == const0_rtx)
845 return;
846
847 /* We expect all variable sized adjustments to be multiple of
848 PREFERRED_STACK_BOUNDARY. */
849 if (GET_CODE (adjust) == CONST_INT)
850 stack_pointer_delta += INTVAL (adjust);
851
852 temp = expand_binop (Pmode,
853 #ifdef STACK_GROWS_DOWNWARD
854 sub_optab,
855 #else
856 add_optab,
857 #endif
858 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
859 OPTAB_LIB_WIDEN);
860
861 if (temp != stack_pointer_rtx)
862 emit_move_insn (stack_pointer_rtx, temp);
863 }
864
865 /* Round the size of a block to be pushed up to the boundary required
866 by this machine. SIZE is the desired size, which need not be constant. */
867
868 static rtx
869 round_push (rtx size)
870 {
871 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
872
873 if (align == 1)
874 return size;
875
876 if (GET_CODE (size) == CONST_INT)
877 {
878 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
879
880 if (INTVAL (size) != new_size)
881 size = GEN_INT (new_size);
882 }
883 else
884 {
885 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
886 but we know it can't. So add ourselves and then do
887 TRUNC_DIV_EXPR. */
888 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
889 NULL_RTX, 1, OPTAB_LIB_WIDEN);
890 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
891 NULL_RTX, 1);
892 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
893 }
894
895 return size;
896 }
897 \f
898 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
899 to a previously-created save area. If no save area has been allocated,
900 this function will allocate one. If a save area is specified, it
901 must be of the proper mode.
902
903 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
904 are emitted at the current position. */
905
906 void
907 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
908 {
909 rtx sa = *psave;
910 /* The default is that we use a move insn and save in a Pmode object. */
911 rtx (*fcn) (rtx, rtx) = gen_move_insn;
912 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
913
914 /* See if this machine has anything special to do for this kind of save. */
915 switch (save_level)
916 {
917 #ifdef HAVE_save_stack_block
918 case SAVE_BLOCK:
919 if (HAVE_save_stack_block)
920 fcn = gen_save_stack_block;
921 break;
922 #endif
923 #ifdef HAVE_save_stack_function
924 case SAVE_FUNCTION:
925 if (HAVE_save_stack_function)
926 fcn = gen_save_stack_function;
927 break;
928 #endif
929 #ifdef HAVE_save_stack_nonlocal
930 case SAVE_NONLOCAL:
931 if (HAVE_save_stack_nonlocal)
932 fcn = gen_save_stack_nonlocal;
933 break;
934 #endif
935 default:
936 break;
937 }
938
939 /* If there is no save area and we have to allocate one, do so. Otherwise
940 verify the save area is the proper mode. */
941
942 if (sa == 0)
943 {
944 if (mode != VOIDmode)
945 {
946 if (save_level == SAVE_NONLOCAL)
947 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
948 else
949 *psave = sa = gen_reg_rtx (mode);
950 }
951 }
952
953 if (after)
954 {
955 rtx seq;
956
957 start_sequence ();
958 do_pending_stack_adjust ();
959 /* We must validize inside the sequence, to ensure that any instructions
960 created by the validize call also get moved to the right place. */
961 if (sa != 0)
962 sa = validize_mem (sa);
963 emit_insn (fcn (sa, stack_pointer_rtx));
964 seq = get_insns ();
965 end_sequence ();
966 emit_insn_after (seq, after);
967 }
968 else
969 {
970 do_pending_stack_adjust ();
971 if (sa != 0)
972 sa = validize_mem (sa);
973 emit_insn (fcn (sa, stack_pointer_rtx));
974 }
975 }
976
977 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
978 area made by emit_stack_save. If it is zero, we have nothing to do.
979
980 Put any emitted insns after insn AFTER, if nonzero, otherwise at
981 current position. */
982
983 void
984 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
985 {
986 /* The default is that we use a move insn. */
987 rtx (*fcn) (rtx, rtx) = gen_move_insn;
988
989 /* See if this machine has anything special to do for this kind of save. */
990 switch (save_level)
991 {
992 #ifdef HAVE_restore_stack_block
993 case SAVE_BLOCK:
994 if (HAVE_restore_stack_block)
995 fcn = gen_restore_stack_block;
996 break;
997 #endif
998 #ifdef HAVE_restore_stack_function
999 case SAVE_FUNCTION:
1000 if (HAVE_restore_stack_function)
1001 fcn = gen_restore_stack_function;
1002 break;
1003 #endif
1004 #ifdef HAVE_restore_stack_nonlocal
1005 case SAVE_NONLOCAL:
1006 if (HAVE_restore_stack_nonlocal)
1007 fcn = gen_restore_stack_nonlocal;
1008 break;
1009 #endif
1010 default:
1011 break;
1012 }
1013
1014 if (sa != 0)
1015 {
1016 sa = validize_mem (sa);
1017 /* These clobbers prevent the scheduler from moving
1018 references to variable arrays below the code
1019 that deletes (pops) the arrays. */
1020 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1021 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1022 }
1023
1024 discard_pending_stack_adjust ();
1025
1026 if (after)
1027 {
1028 rtx seq;
1029
1030 start_sequence ();
1031 emit_insn (fcn (stack_pointer_rtx, sa));
1032 seq = get_insns ();
1033 end_sequence ();
1034 emit_insn_after (seq, after);
1035 }
1036 else
1037 emit_insn (fcn (stack_pointer_rtx, sa));
1038 }
1039
1040 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1041 function. This function should be called whenever we allocate or
1042 deallocate dynamic stack space. */
1043
1044 void
1045 update_nonlocal_goto_save_area (void)
1046 {
1047 tree t_save;
1048 rtx r_save;
1049
1050 /* The nonlocal_goto_save_area object is an array of N pointers. The
1051 first one is used for the frame pointer save; the rest are sized by
1052 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1053 of the stack save area slots. */
1054 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1055 integer_one_node, NULL_TREE, NULL_TREE);
1056 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1057
1058 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1059 }
1060 \f
1061 /* Return an rtx representing the address of an area of memory dynamically
1062 pushed on the stack. This region of memory is always aligned to
1063 a multiple of BIGGEST_ALIGNMENT.
1064
1065 Any required stack pointer alignment is preserved.
1066
1067 SIZE is an rtx representing the size of the area.
1068 TARGET is a place in which the address can be placed.
1069
1070 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1071
1072 rtx
1073 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1074 {
1075 /* If we're asking for zero bytes, it doesn't matter what we point
1076 to since we can't dereference it. But return a reasonable
1077 address anyway. */
1078 if (size == const0_rtx)
1079 return virtual_stack_dynamic_rtx;
1080
1081 /* Otherwise, show we're calling alloca or equivalent. */
1082 cfun->calls_alloca = 1;
1083
1084 /* Ensure the size is in the proper mode. */
1085 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1086 size = convert_to_mode (Pmode, size, 1);
1087
1088 /* We can't attempt to minimize alignment necessary, because we don't
1089 know the final value of preferred_stack_boundary yet while executing
1090 this code. */
1091 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1092
1093 /* We will need to ensure that the address we return is aligned to
1094 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1095 always know its final value at this point in the compilation (it
1096 might depend on the size of the outgoing parameter lists, for
1097 example), so we must align the value to be returned in that case.
1098 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1099 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1100 We must also do an alignment operation on the returned value if
1101 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1102
1103 If we have to align, we must leave space in SIZE for the hole
1104 that might result from the alignment operation. */
1105
1106 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1107 #define MUST_ALIGN 1
1108 #else
1109 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1110 #endif
1111
1112 if (MUST_ALIGN)
1113 size
1114 = force_operand (plus_constant (size,
1115 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1116 NULL_RTX);
1117
1118 #ifdef SETJMP_VIA_SAVE_AREA
1119 /* If setjmp restores regs from a save area in the stack frame,
1120 avoid clobbering the reg save area. Note that the offset of
1121 virtual_incoming_args_rtx includes the preallocated stack args space.
1122 It would be no problem to clobber that, but it's on the wrong side
1123 of the old save area.
1124
1125 What used to happen is that, since we did not know for sure
1126 whether setjmp() was invoked until after RTL generation, we
1127 would use reg notes to store the "optimized" size and fix things
1128 up later. These days we know this information before we ever
1129 start building RTL so the reg notes are unnecessary. */
1130 if (!cfun->calls_setjmp)
1131 {
1132 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1133
1134 /* ??? Code below assumes that the save area needs maximal
1135 alignment. This constraint may be too strong. */
1136 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1137
1138 if (GET_CODE (size) == CONST_INT)
1139 {
1140 HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1141
1142 if (INTVAL (size) != new_size)
1143 size = GEN_INT (new_size);
1144 }
1145 else
1146 {
1147 /* Since we know overflow is not possible, we avoid using
1148 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1149 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1150 GEN_INT (align), NULL_RTX, 1);
1151 size = expand_mult (Pmode, size,
1152 GEN_INT (align), NULL_RTX, 1);
1153 }
1154 }
1155 else
1156 {
1157 rtx dynamic_offset
1158 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1159 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1160
1161 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1162 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1163 }
1164 #endif /* SETJMP_VIA_SAVE_AREA */
1165
1166 /* Round the size to a multiple of the required stack alignment.
1167 Since the stack if presumed to be rounded before this allocation,
1168 this will maintain the required alignment.
1169
1170 If the stack grows downward, we could save an insn by subtracting
1171 SIZE from the stack pointer and then aligning the stack pointer.
1172 The problem with this is that the stack pointer may be unaligned
1173 between the execution of the subtraction and alignment insns and
1174 some machines do not allow this. Even on those that do, some
1175 signal handlers malfunction if a signal should occur between those
1176 insns. Since this is an extremely rare event, we have no reliable
1177 way of knowing which systems have this problem. So we avoid even
1178 momentarily mis-aligning the stack. */
1179
1180 /* If we added a variable amount to SIZE,
1181 we can no longer assume it is aligned. */
1182 #if !defined (SETJMP_VIA_SAVE_AREA)
1183 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1184 #endif
1185 size = round_push (size);
1186
1187 do_pending_stack_adjust ();
1188
1189 /* We ought to be called always on the toplevel and stack ought to be aligned
1190 properly. */
1191 gcc_assert (!(stack_pointer_delta
1192 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1193
1194 /* If needed, check that we have the required amount of stack.
1195 Take into account what has already been checked. */
1196 if (flag_stack_check == GENERIC_STACK_CHECK)
1197 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1198 size);
1199 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1200 probe_stack_range (STACK_CHECK_PROTECT, size);
1201
1202 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1203 if (target == 0 || !REG_P (target)
1204 || REGNO (target) < FIRST_PSEUDO_REGISTER
1205 || GET_MODE (target) != Pmode)
1206 target = gen_reg_rtx (Pmode);
1207
1208 mark_reg_pointer (target, known_align);
1209
1210 /* Perform the required allocation from the stack. Some systems do
1211 this differently than simply incrementing/decrementing from the
1212 stack pointer, such as acquiring the space by calling malloc(). */
1213 #ifdef HAVE_allocate_stack
1214 if (HAVE_allocate_stack)
1215 {
1216 enum machine_mode mode = STACK_SIZE_MODE;
1217 insn_operand_predicate_fn pred;
1218
1219 /* We don't have to check against the predicate for operand 0 since
1220 TARGET is known to be a pseudo of the proper mode, which must
1221 be valid for the operand. For operand 1, convert to the
1222 proper mode and validate. */
1223 if (mode == VOIDmode)
1224 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1225
1226 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1227 if (pred && ! ((*pred) (size, mode)))
1228 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1229
1230 emit_insn (gen_allocate_stack (target, size));
1231 }
1232 else
1233 #endif
1234 {
1235 #ifndef STACK_GROWS_DOWNWARD
1236 emit_move_insn (target, virtual_stack_dynamic_rtx);
1237 #endif
1238
1239 /* Check stack bounds if necessary. */
1240 if (crtl->limit_stack)
1241 {
1242 rtx available;
1243 rtx space_available = gen_label_rtx ();
1244 #ifdef STACK_GROWS_DOWNWARD
1245 available = expand_binop (Pmode, sub_optab,
1246 stack_pointer_rtx, stack_limit_rtx,
1247 NULL_RTX, 1, OPTAB_WIDEN);
1248 #else
1249 available = expand_binop (Pmode, sub_optab,
1250 stack_limit_rtx, stack_pointer_rtx,
1251 NULL_RTX, 1, OPTAB_WIDEN);
1252 #endif
1253 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1254 space_available);
1255 #ifdef HAVE_trap
1256 if (HAVE_trap)
1257 emit_insn (gen_trap ());
1258 else
1259 #endif
1260 error ("stack limits not supported on this target");
1261 emit_barrier ();
1262 emit_label (space_available);
1263 }
1264
1265 anti_adjust_stack (size);
1266
1267 #ifdef STACK_GROWS_DOWNWARD
1268 emit_move_insn (target, virtual_stack_dynamic_rtx);
1269 #endif
1270 }
1271
1272 if (MUST_ALIGN)
1273 {
1274 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1275 but we know it can't. So add ourselves and then do
1276 TRUNC_DIV_EXPR. */
1277 target = expand_binop (Pmode, add_optab, target,
1278 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1279 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1280 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1281 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1282 NULL_RTX, 1);
1283 target = expand_mult (Pmode, target,
1284 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1285 NULL_RTX, 1);
1286 }
1287
1288 /* Record the new stack level for nonlocal gotos. */
1289 if (cfun->nonlocal_goto_save_area != 0)
1290 update_nonlocal_goto_save_area ();
1291
1292 return target;
1293 }
1294 \f
1295 /* A front end may want to override GCC's stack checking by providing a
1296 run-time routine to call to check the stack, so provide a mechanism for
1297 calling that routine. */
1298
1299 static GTY(()) rtx stack_check_libfunc;
1300
1301 void
1302 set_stack_check_libfunc (rtx libfunc)
1303 {
1304 stack_check_libfunc = libfunc;
1305 }
1306 \f
1307 /* Emit one stack probe at ADDRESS, an address within the stack. */
1308
1309 static void
1310 emit_stack_probe (rtx address)
1311 {
1312 rtx memref = gen_rtx_MEM (word_mode, address);
1313
1314 MEM_VOLATILE_P (memref) = 1;
1315
1316 if (STACK_CHECK_PROBE_LOAD)
1317 emit_move_insn (gen_reg_rtx (word_mode), memref);
1318 else
1319 emit_move_insn (memref, const0_rtx);
1320 }
1321
1322 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1323 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1324 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1325 subtract from the stack. If SIZE is constant, this is done
1326 with a fixed number of probes. Otherwise, we must make a loop. */
1327
1328 #ifdef STACK_GROWS_DOWNWARD
1329 #define STACK_GROW_OP MINUS
1330 #else
1331 #define STACK_GROW_OP PLUS
1332 #endif
1333
1334 void
1335 probe_stack_range (HOST_WIDE_INT first, rtx size)
1336 {
1337 /* First ensure SIZE is Pmode. */
1338 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1339 size = convert_to_mode (Pmode, size, 1);
1340
1341 /* Next see if the front end has set up a function for us to call to
1342 check the stack. */
1343 if (stack_check_libfunc != 0)
1344 {
1345 rtx addr = memory_address (QImode,
1346 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1347 stack_pointer_rtx,
1348 plus_constant (size, first)));
1349
1350 addr = convert_memory_address (ptr_mode, addr);
1351 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1352 ptr_mode);
1353 }
1354
1355 /* Next see if we have an insn to check the stack. Use it if so. */
1356 #ifdef HAVE_check_stack
1357 else if (HAVE_check_stack)
1358 {
1359 insn_operand_predicate_fn pred;
1360 rtx last_addr
1361 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1362 stack_pointer_rtx,
1363 plus_constant (size, first)),
1364 NULL_RTX);
1365
1366 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1367 if (pred && ! ((*pred) (last_addr, Pmode)))
1368 last_addr = copy_to_mode_reg (Pmode, last_addr);
1369
1370 emit_insn (gen_check_stack (last_addr));
1371 }
1372 #endif
1373
1374 /* If we have to generate explicit probes, see if we have a constant
1375 small number of them to generate. If so, that's the easy case. */
1376 else if (GET_CODE (size) == CONST_INT
1377 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1378 {
1379 HOST_WIDE_INT offset;
1380
1381 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1382 for values of N from 1 until it exceeds LAST. If only one
1383 probe is needed, this will not generate any code. Then probe
1384 at LAST. */
1385 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1386 offset < INTVAL (size);
1387 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1388 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1389 stack_pointer_rtx,
1390 GEN_INT (offset)));
1391
1392 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1393 stack_pointer_rtx,
1394 plus_constant (size, first)));
1395 }
1396
1397 /* In the variable case, do the same as above, but in a loop. We emit loop
1398 notes so that loop optimization can be done. */
1399 else
1400 {
1401 rtx test_addr
1402 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1403 stack_pointer_rtx,
1404 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1405 NULL_RTX);
1406 rtx last_addr
1407 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1408 stack_pointer_rtx,
1409 plus_constant (size, first)),
1410 NULL_RTX);
1411 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1412 rtx loop_lab = gen_label_rtx ();
1413 rtx test_lab = gen_label_rtx ();
1414 rtx end_lab = gen_label_rtx ();
1415 rtx temp;
1416
1417 if (!REG_P (test_addr)
1418 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1419 test_addr = force_reg (Pmode, test_addr);
1420
1421 emit_jump (test_lab);
1422
1423 emit_label (loop_lab);
1424 emit_stack_probe (test_addr);
1425
1426 #ifdef STACK_GROWS_DOWNWARD
1427 #define CMP_OPCODE GTU
1428 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1429 1, OPTAB_WIDEN);
1430 #else
1431 #define CMP_OPCODE LTU
1432 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1433 1, OPTAB_WIDEN);
1434 #endif
1435
1436 gcc_assert (temp == test_addr);
1437
1438 emit_label (test_lab);
1439 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1440 NULL_RTX, Pmode, 1, loop_lab);
1441 emit_jump (end_lab);
1442 emit_label (end_lab);
1443
1444 emit_stack_probe (last_addr);
1445 }
1446 }
1447 \f
1448 /* Return an rtx representing the register or memory location
1449 in which a scalar value of data type VALTYPE
1450 was returned by a function call to function FUNC.
1451 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1452 function is known, otherwise 0.
1453 OUTGOING is 1 if on a machine with register windows this function
1454 should return the register in which the function will put its result
1455 and 0 otherwise. */
1456
1457 rtx
1458 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1459 int outgoing ATTRIBUTE_UNUSED)
1460 {
1461 rtx val;
1462
1463 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1464
1465 if (REG_P (val)
1466 && GET_MODE (val) == BLKmode)
1467 {
1468 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1469 enum machine_mode tmpmode;
1470
1471 /* int_size_in_bytes can return -1. We don't need a check here
1472 since the value of bytes will then be large enough that no
1473 mode will match anyway. */
1474
1475 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1476 tmpmode != VOIDmode;
1477 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1478 {
1479 /* Have we found a large enough mode? */
1480 if (GET_MODE_SIZE (tmpmode) >= bytes)
1481 break;
1482 }
1483
1484 /* No suitable mode found. */
1485 gcc_assert (tmpmode != VOIDmode);
1486
1487 PUT_MODE (val, tmpmode);
1488 }
1489 return val;
1490 }
1491
1492 /* Return an rtx representing the register or memory location
1493 in which a scalar value of mode MODE was returned by a library call. */
1494
1495 rtx
1496 hard_libcall_value (enum machine_mode mode)
1497 {
1498 return LIBCALL_VALUE (mode);
1499 }
1500
1501 /* Look up the tree code for a given rtx code
1502 to provide the arithmetic operation for REAL_ARITHMETIC.
1503 The function returns an int because the caller may not know
1504 what `enum tree_code' means. */
1505
1506 int
1507 rtx_to_tree_code (enum rtx_code code)
1508 {
1509 enum tree_code tcode;
1510
1511 switch (code)
1512 {
1513 case PLUS:
1514 tcode = PLUS_EXPR;
1515 break;
1516 case MINUS:
1517 tcode = MINUS_EXPR;
1518 break;
1519 case MULT:
1520 tcode = MULT_EXPR;
1521 break;
1522 case DIV:
1523 tcode = RDIV_EXPR;
1524 break;
1525 case SMIN:
1526 tcode = MIN_EXPR;
1527 break;
1528 case SMAX:
1529 tcode = MAX_EXPR;
1530 break;
1531 default:
1532 tcode = LAST_AND_UNUSED_TREE_CODE;
1533 break;
1534 }
1535 return ((int) tcode);
1536 }
1537
1538 #include "gt-explow.h"