Replace exact_log2(x & -x) in favor of more direct computation.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "except.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "libfuncs.h"
38 #include "hard-reg-set.h"
39 #include "insn-config.h"
40 #include "ggc.h"
41 #include "recog.h"
42 #include "langhooks.h"
43 #include "target.h"
44 #include "output.h"
45
46 static rtx break_out_memory_refs (rtx);
47
48
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 {
54 int width = GET_MODE_BITSIZE (mode);
55
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
58
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
62
63 /* Sign-extend for the requested mode. */
64
65 if (width < HOST_BITS_PER_WIDE_INT)
66 {
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
72 }
73
74 return c;
75 }
76
77 /* Return an rtx for the sum of X and the integer C. */
78
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
81 {
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
87
88 if (c == 0)
89 return x;
90
91 restart:
92
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
96
97 switch (code)
98 {
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
101
102 case CONST_DOUBLE:
103 {
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
110
111 add_double (l1, h1, l2, h2, &lv, &hv);
112
113 return immed_double_const (lv, hv, VOIDmode);
114 }
115
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 {
123 tem
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
129 }
130 break;
131
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
138
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
143
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
150
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
153
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
156
157 if (CONST_INT_P (XEXP (x, 1)))
158 {
159 c += INTVAL (XEXP (x, 1));
160
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
163
164 x = XEXP (x, 0);
165 goto restart;
166 }
167 else if (CONSTANT_P (XEXP (x, 1)))
168 {
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
171 }
172 else if (find_constant_term_loc (&y))
173 {
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
178
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
182 }
183 break;
184
185 default:
186 break;
187 }
188
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
198 }
199 \f
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
204
205 rtx
206 eliminate_constant_term (rtx x, rtx *constptr)
207 {
208 rtx x0, x1;
209 rtx tem;
210
211 if (GET_CODE (x) != PLUS)
212 return x;
213
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
219 {
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
222 }
223
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
231 {
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234 }
235
236 return x;
237 }
238
239 /* Return an rtx for the size in bytes of the value of EXP. */
240
241 rtx
242 expr_size (tree exp)
243 {
244 tree size;
245
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
249 {
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
253 }
254
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
256 }
257
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
260
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
263 {
264 tree size;
265
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
269 {
270 size = tree_expr_size (exp);
271 gcc_assert (size);
272 }
273
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
276
277 return tree_low_cst (size, 0);
278 }
279 \f
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
285
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
288
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
292
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295
296 static rtx
297 break_out_memory_refs (rtx x)
298 {
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
305 {
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
311 }
312
313 return x;
314 }
315
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
321
322 rtx
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325 {
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
333
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
337
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
345 {
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
360
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
366
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
372
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
378
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
384
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
404
405 default:
406 break;
407 }
408
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
412 }
413 \f
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
417
418 rtx
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
420 {
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
423
424 x = convert_memory_address_addr_space (address_mode, x, as);
425
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
430
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
436 {
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
439
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
443
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
447 {
448 x = oldx;
449 goto done;
450 }
451
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
456 {
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
461 }
462
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
473 {
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
480 {
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
486 }
487 }
488
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
491
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
496
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
501 }
502
503 done:
504
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
516
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
520
521 return x;
522 }
523
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
526
527 rtx
528 validize_mem (rtx ref)
529 {
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
536
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
539 }
540
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
544
545 rtx
546 use_anchored_address (rtx x)
547 {
548 rtx base;
549 HOST_WIDE_INT offset;
550
551 if (!flag_section_anchors)
552 return x;
553
554 if (!MEM_P (x))
555 return x;
556
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
563 {
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
566 }
567
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
575
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
578
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
583
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
592
593 return replace_equiv_address (x, plus_constant (base, offset));
594 }
595 \f
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
597
598 rtx
599 copy_to_reg (rtx x)
600 {
601 rtx temp = gen_reg_rtx (GET_MODE (x));
602
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
607
608 if (x != temp)
609 emit_move_insn (temp, x);
610
611 return temp;
612 }
613
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
616
617 rtx
618 copy_addr_to_reg (rtx x)
619 {
620 return copy_to_mode_reg (Pmode, x);
621 }
622
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
625
626 rtx
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 {
629 rtx temp = gen_reg_rtx (mode);
630
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
635
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
640 }
641
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
646
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
649
650 rtx
651 force_reg (enum machine_mode mode, rtx x)
652 {
653 rtx temp, insn, set;
654
655 if (REG_P (x))
656 return x;
657
658 if (general_operand (x, mode))
659 {
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
662 }
663 else
664 {
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
669 {
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
673 }
674 }
675
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
684
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
687 {
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
690 {
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 }
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
701 {
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
705
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709
710 if (INTVAL (c) == 0)
711 align = sa;
712 else
713 {
714 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
715 align = MIN (sa, ca);
716 }
717 }
718
719 if (align || (MEM_P (x) && MEM_POINTER (x)))
720 mark_reg_pointer (temp, align);
721 }
722
723 return temp;
724 }
725
726 /* If X is a memory ref, copy its contents to a new temp reg and return
727 that reg. Otherwise, return X. */
728
729 rtx
730 force_not_mem (rtx x)
731 {
732 rtx temp;
733
734 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
735 return x;
736
737 temp = gen_reg_rtx (GET_MODE (x));
738
739 if (MEM_POINTER (x))
740 REG_POINTER (temp) = 1;
741
742 emit_move_insn (temp, x);
743 return temp;
744 }
745
746 /* Copy X to TARGET (if it's nonzero and a reg)
747 or to a new temp reg and return that reg.
748 MODE is the mode to use for X in case it is a constant. */
749
750 rtx
751 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
752 {
753 rtx temp;
754
755 if (target && REG_P (target))
756 temp = target;
757 else
758 temp = gen_reg_rtx (mode);
759
760 emit_move_insn (temp, x);
761 return temp;
762 }
763 \f
764 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations.
767
768 FOR_RETURN is nonzero if the caller is promoting the return value
769 of FNDECL, else it is for promoting args. */
770
771 enum machine_mode
772 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
773 const_tree funtype, int for_return)
774 {
775 switch (TREE_CODE (type))
776 {
777 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
778 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
779 case POINTER_TYPE: case REFERENCE_TYPE:
780 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
781 for_return);
782
783 default:
784 return mode;
785 }
786 }
787 /* Return the mode to use to store a scalar of TYPE and MODE.
788 PUNSIGNEDP points to the signedness of the type and may be adjusted
789 to show what signedness to use on extension operations. */
790
791 enum machine_mode
792 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
793 int *punsignedp ATTRIBUTE_UNUSED)
794 {
795 /* FIXME: this is the same logic that was there until GCC 4.4, but we
796 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
797 is not defined. The affected targets are M32C, S390, SPARC. */
798 #ifdef PROMOTE_MODE
799 const enum tree_code code = TREE_CODE (type);
800 int unsignedp = *punsignedp;
801
802 switch (code)
803 {
804 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
805 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
806 PROMOTE_MODE (mode, unsignedp, type);
807 *punsignedp = unsignedp;
808 return mode;
809 break;
810
811 #ifdef POINTERS_EXTEND_UNSIGNED
812 case REFERENCE_TYPE:
813 case POINTER_TYPE:
814 *punsignedp = POINTERS_EXTEND_UNSIGNED;
815 return targetm.addr_space.address_mode
816 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
817 break;
818 #endif
819
820 default:
821 return mode;
822 }
823 #else
824 return mode;
825 #endif
826 }
827
828
829 /* Use one of promote_mode or promote_function_mode to find the promoted
830 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
831 of DECL after promotion. */
832
833 enum machine_mode
834 promote_decl_mode (const_tree decl, int *punsignedp)
835 {
836 tree type = TREE_TYPE (decl);
837 int unsignedp = TYPE_UNSIGNED (type);
838 enum machine_mode mode = DECL_MODE (decl);
839 enum machine_mode pmode;
840
841 if (TREE_CODE (decl) == RESULT_DECL
842 || TREE_CODE (decl) == PARM_DECL)
843 pmode = promote_function_mode (type, mode, &unsignedp,
844 TREE_TYPE (current_function_decl), 2);
845 else
846 pmode = promote_mode (type, mode, &unsignedp);
847
848 if (punsignedp)
849 *punsignedp = unsignedp;
850 return pmode;
851 }
852
853 \f
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
856
857 void
858 adjust_stack (rtx adjust)
859 {
860 rtx temp;
861
862 if (adjust == const0_rtx)
863 return;
864
865 /* We expect all variable sized adjustments to be multiple of
866 PREFERRED_STACK_BOUNDARY. */
867 if (CONST_INT_P (adjust))
868 stack_pointer_delta -= INTVAL (adjust);
869
870 temp = expand_binop (Pmode,
871 #ifdef STACK_GROWS_DOWNWARD
872 add_optab,
873 #else
874 sub_optab,
875 #endif
876 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877 OPTAB_LIB_WIDEN);
878
879 if (temp != stack_pointer_rtx)
880 emit_move_insn (stack_pointer_rtx, temp);
881 }
882
883 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
884 This pushes when ADJUST is positive. ADJUST need not be constant. */
885
886 void
887 anti_adjust_stack (rtx adjust)
888 {
889 rtx temp;
890
891 if (adjust == const0_rtx)
892 return;
893
894 /* We expect all variable sized adjustments to be multiple of
895 PREFERRED_STACK_BOUNDARY. */
896 if (CONST_INT_P (adjust))
897 stack_pointer_delta += INTVAL (adjust);
898
899 temp = expand_binop (Pmode,
900 #ifdef STACK_GROWS_DOWNWARD
901 sub_optab,
902 #else
903 add_optab,
904 #endif
905 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
906 OPTAB_LIB_WIDEN);
907
908 if (temp != stack_pointer_rtx)
909 emit_move_insn (stack_pointer_rtx, temp);
910 }
911
912 /* Round the size of a block to be pushed up to the boundary required
913 by this machine. SIZE is the desired size, which need not be constant. */
914
915 static rtx
916 round_push (rtx size)
917 {
918 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
919
920 if (align == 1)
921 return size;
922
923 if (CONST_INT_P (size))
924 {
925 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
926
927 if (INTVAL (size) != new_size)
928 size = GEN_INT (new_size);
929 }
930 else
931 {
932 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
933 but we know it can't. So add ourselves and then do
934 TRUNC_DIV_EXPR. */
935 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
936 NULL_RTX, 1, OPTAB_LIB_WIDEN);
937 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
938 NULL_RTX, 1);
939 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
940 }
941
942 return size;
943 }
944 \f
945 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
946 to a previously-created save area. If no save area has been allocated,
947 this function will allocate one. If a save area is specified, it
948 must be of the proper mode.
949
950 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
951 are emitted at the current position. */
952
953 void
954 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
955 {
956 rtx sa = *psave;
957 /* The default is that we use a move insn and save in a Pmode object. */
958 rtx (*fcn) (rtx, rtx) = gen_move_insn;
959 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
960
961 /* See if this machine has anything special to do for this kind of save. */
962 switch (save_level)
963 {
964 #ifdef HAVE_save_stack_block
965 case SAVE_BLOCK:
966 if (HAVE_save_stack_block)
967 fcn = gen_save_stack_block;
968 break;
969 #endif
970 #ifdef HAVE_save_stack_function
971 case SAVE_FUNCTION:
972 if (HAVE_save_stack_function)
973 fcn = gen_save_stack_function;
974 break;
975 #endif
976 #ifdef HAVE_save_stack_nonlocal
977 case SAVE_NONLOCAL:
978 if (HAVE_save_stack_nonlocal)
979 fcn = gen_save_stack_nonlocal;
980 break;
981 #endif
982 default:
983 break;
984 }
985
986 /* If there is no save area and we have to allocate one, do so. Otherwise
987 verify the save area is the proper mode. */
988
989 if (sa == 0)
990 {
991 if (mode != VOIDmode)
992 {
993 if (save_level == SAVE_NONLOCAL)
994 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
995 else
996 *psave = sa = gen_reg_rtx (mode);
997 }
998 }
999
1000 if (after)
1001 {
1002 rtx seq;
1003
1004 start_sequence ();
1005 do_pending_stack_adjust ();
1006 /* We must validize inside the sequence, to ensure that any instructions
1007 created by the validize call also get moved to the right place. */
1008 if (sa != 0)
1009 sa = validize_mem (sa);
1010 emit_insn (fcn (sa, stack_pointer_rtx));
1011 seq = get_insns ();
1012 end_sequence ();
1013 emit_insn_after (seq, after);
1014 }
1015 else
1016 {
1017 do_pending_stack_adjust ();
1018 if (sa != 0)
1019 sa = validize_mem (sa);
1020 emit_insn (fcn (sa, stack_pointer_rtx));
1021 }
1022 }
1023
1024 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1025 area made by emit_stack_save. If it is zero, we have nothing to do.
1026
1027 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1028 current position. */
1029
1030 void
1031 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1032 {
1033 /* The default is that we use a move insn. */
1034 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1035
1036 /* See if this machine has anything special to do for this kind of save. */
1037 switch (save_level)
1038 {
1039 #ifdef HAVE_restore_stack_block
1040 case SAVE_BLOCK:
1041 if (HAVE_restore_stack_block)
1042 fcn = gen_restore_stack_block;
1043 break;
1044 #endif
1045 #ifdef HAVE_restore_stack_function
1046 case SAVE_FUNCTION:
1047 if (HAVE_restore_stack_function)
1048 fcn = gen_restore_stack_function;
1049 break;
1050 #endif
1051 #ifdef HAVE_restore_stack_nonlocal
1052 case SAVE_NONLOCAL:
1053 if (HAVE_restore_stack_nonlocal)
1054 fcn = gen_restore_stack_nonlocal;
1055 break;
1056 #endif
1057 default:
1058 break;
1059 }
1060
1061 if (sa != 0)
1062 {
1063 sa = validize_mem (sa);
1064 /* These clobbers prevent the scheduler from moving
1065 references to variable arrays below the code
1066 that deletes (pops) the arrays. */
1067 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1068 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1069 }
1070
1071 discard_pending_stack_adjust ();
1072
1073 if (after)
1074 {
1075 rtx seq;
1076
1077 start_sequence ();
1078 emit_insn (fcn (stack_pointer_rtx, sa));
1079 seq = get_insns ();
1080 end_sequence ();
1081 emit_insn_after (seq, after);
1082 }
1083 else
1084 emit_insn (fcn (stack_pointer_rtx, sa));
1085 }
1086
1087 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1088 function. This function should be called whenever we allocate or
1089 deallocate dynamic stack space. */
1090
1091 void
1092 update_nonlocal_goto_save_area (void)
1093 {
1094 tree t_save;
1095 rtx r_save;
1096
1097 /* The nonlocal_goto_save_area object is an array of N pointers. The
1098 first one is used for the frame pointer save; the rest are sized by
1099 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1100 of the stack save area slots. */
1101 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1102 integer_one_node, NULL_TREE, NULL_TREE);
1103 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1104
1105 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1106 }
1107 \f
1108 /* Return an rtx representing the address of an area of memory dynamically
1109 pushed on the stack. This region of memory is always aligned to
1110 a multiple of BIGGEST_ALIGNMENT.
1111
1112 Any required stack pointer alignment is preserved.
1113
1114 SIZE is an rtx representing the size of the area.
1115 TARGET is a place in which the address can be placed.
1116
1117 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1118
1119 rtx
1120 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1121 {
1122 /* If we're asking for zero bytes, it doesn't matter what we point
1123 to since we can't dereference it. But return a reasonable
1124 address anyway. */
1125 if (size == const0_rtx)
1126 return virtual_stack_dynamic_rtx;
1127
1128 /* Otherwise, show we're calling alloca or equivalent. */
1129 cfun->calls_alloca = 1;
1130
1131 /* Ensure the size is in the proper mode. */
1132 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1133 size = convert_to_mode (Pmode, size, 1);
1134
1135 /* We can't attempt to minimize alignment necessary, because we don't
1136 know the final value of preferred_stack_boundary yet while executing
1137 this code. */
1138 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1139
1140 /* We will need to ensure that the address we return is aligned to
1141 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1142 always know its final value at this point in the compilation (it
1143 might depend on the size of the outgoing parameter lists, for
1144 example), so we must align the value to be returned in that case.
1145 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1146 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1147 We must also do an alignment operation on the returned value if
1148 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1149
1150 If we have to align, we must leave space in SIZE for the hole
1151 that might result from the alignment operation. */
1152
1153 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1154 #define MUST_ALIGN 1
1155 #else
1156 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1157 #endif
1158
1159 if (MUST_ALIGN)
1160 size
1161 = force_operand (plus_constant (size,
1162 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1163 NULL_RTX);
1164
1165 #ifdef SETJMP_VIA_SAVE_AREA
1166 /* If setjmp restores regs from a save area in the stack frame,
1167 avoid clobbering the reg save area. Note that the offset of
1168 virtual_incoming_args_rtx includes the preallocated stack args space.
1169 It would be no problem to clobber that, but it's on the wrong side
1170 of the old save area.
1171
1172 What used to happen is that, since we did not know for sure
1173 whether setjmp() was invoked until after RTL generation, we
1174 would use reg notes to store the "optimized" size and fix things
1175 up later. These days we know this information before we ever
1176 start building RTL so the reg notes are unnecessary. */
1177 if (!cfun->calls_setjmp)
1178 {
1179 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1180
1181 /* ??? Code below assumes that the save area needs maximal
1182 alignment. This constraint may be too strong. */
1183 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1184
1185 if (CONST_INT_P (size))
1186 {
1187 HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1188
1189 if (INTVAL (size) != new_size)
1190 size = GEN_INT (new_size);
1191 }
1192 else
1193 {
1194 /* Since we know overflow is not possible, we avoid using
1195 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1196 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1197 GEN_INT (align), NULL_RTX, 1);
1198 size = expand_mult (Pmode, size,
1199 GEN_INT (align), NULL_RTX, 1);
1200 }
1201 }
1202 else
1203 {
1204 rtx dynamic_offset
1205 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1206 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1207
1208 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1209 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1210 }
1211 #endif /* SETJMP_VIA_SAVE_AREA */
1212
1213 /* Round the size to a multiple of the required stack alignment.
1214 Since the stack if presumed to be rounded before this allocation,
1215 this will maintain the required alignment.
1216
1217 If the stack grows downward, we could save an insn by subtracting
1218 SIZE from the stack pointer and then aligning the stack pointer.
1219 The problem with this is that the stack pointer may be unaligned
1220 between the execution of the subtraction and alignment insns and
1221 some machines do not allow this. Even on those that do, some
1222 signal handlers malfunction if a signal should occur between those
1223 insns. Since this is an extremely rare event, we have no reliable
1224 way of knowing which systems have this problem. So we avoid even
1225 momentarily mis-aligning the stack. */
1226
1227 /* If we added a variable amount to SIZE,
1228 we can no longer assume it is aligned. */
1229 #if !defined (SETJMP_VIA_SAVE_AREA)
1230 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1231 #endif
1232 size = round_push (size);
1233
1234 do_pending_stack_adjust ();
1235
1236 /* We ought to be called always on the toplevel and stack ought to be aligned
1237 properly. */
1238 gcc_assert (!(stack_pointer_delta
1239 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1240
1241 /* If needed, check that we have the required amount of stack. Take into
1242 account what has already been checked. */
1243 if (STACK_CHECK_MOVING_SP)
1244 ;
1245 else if (flag_stack_check == GENERIC_STACK_CHECK)
1246 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1247 size);
1248 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1249 probe_stack_range (STACK_CHECK_PROTECT, size);
1250
1251 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1252 if (target == 0 || !REG_P (target)
1253 || REGNO (target) < FIRST_PSEUDO_REGISTER
1254 || GET_MODE (target) != Pmode)
1255 target = gen_reg_rtx (Pmode);
1256
1257 mark_reg_pointer (target, known_align);
1258
1259 /* Perform the required allocation from the stack. Some systems do
1260 this differently than simply incrementing/decrementing from the
1261 stack pointer, such as acquiring the space by calling malloc(). */
1262 #ifdef HAVE_allocate_stack
1263 if (HAVE_allocate_stack)
1264 {
1265 enum machine_mode mode = STACK_SIZE_MODE;
1266 insn_operand_predicate_fn pred;
1267
1268 /* We don't have to check against the predicate for operand 0 since
1269 TARGET is known to be a pseudo of the proper mode, which must
1270 be valid for the operand. For operand 1, convert to the
1271 proper mode and validate. */
1272 if (mode == VOIDmode)
1273 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1274
1275 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1276 if (pred && ! ((*pred) (size, mode)))
1277 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1278
1279 emit_insn (gen_allocate_stack (target, size));
1280 }
1281 else
1282 #endif
1283 {
1284 #ifndef STACK_GROWS_DOWNWARD
1285 emit_move_insn (target, virtual_stack_dynamic_rtx);
1286 #endif
1287
1288 /* Check stack bounds if necessary. */
1289 if (crtl->limit_stack)
1290 {
1291 rtx available;
1292 rtx space_available = gen_label_rtx ();
1293 #ifdef STACK_GROWS_DOWNWARD
1294 available = expand_binop (Pmode, sub_optab,
1295 stack_pointer_rtx, stack_limit_rtx,
1296 NULL_RTX, 1, OPTAB_WIDEN);
1297 #else
1298 available = expand_binop (Pmode, sub_optab,
1299 stack_limit_rtx, stack_pointer_rtx,
1300 NULL_RTX, 1, OPTAB_WIDEN);
1301 #endif
1302 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1303 space_available);
1304 #ifdef HAVE_trap
1305 if (HAVE_trap)
1306 emit_insn (gen_trap ());
1307 else
1308 #endif
1309 error ("stack limits not supported on this target");
1310 emit_barrier ();
1311 emit_label (space_available);
1312 }
1313
1314 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1315 anti_adjust_stack_and_probe (size, false);
1316 else
1317 anti_adjust_stack (size);
1318
1319 #ifdef STACK_GROWS_DOWNWARD
1320 emit_move_insn (target, virtual_stack_dynamic_rtx);
1321 #endif
1322 }
1323
1324 if (MUST_ALIGN)
1325 {
1326 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1327 but we know it can't. So add ourselves and then do
1328 TRUNC_DIV_EXPR. */
1329 target = expand_binop (Pmode, add_optab, target,
1330 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1331 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1332 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1333 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1334 NULL_RTX, 1);
1335 target = expand_mult (Pmode, target,
1336 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1337 NULL_RTX, 1);
1338 }
1339
1340 /* Record the new stack level for nonlocal gotos. */
1341 if (cfun->nonlocal_goto_save_area != 0)
1342 update_nonlocal_goto_save_area ();
1343
1344 return target;
1345 }
1346 \f
1347 /* A front end may want to override GCC's stack checking by providing a
1348 run-time routine to call to check the stack, so provide a mechanism for
1349 calling that routine. */
1350
1351 static GTY(()) rtx stack_check_libfunc;
1352
1353 void
1354 set_stack_check_libfunc (const char *libfunc_name)
1355 {
1356 gcc_assert (stack_check_libfunc == NULL_RTX);
1357 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1358 }
1359 \f
1360 /* Emit one stack probe at ADDRESS, an address within the stack. */
1361
1362 void
1363 emit_stack_probe (rtx address)
1364 {
1365 rtx memref = gen_rtx_MEM (word_mode, address);
1366
1367 MEM_VOLATILE_P (memref) = 1;
1368
1369 /* See if we have an insn to probe the stack. */
1370 #ifdef HAVE_probe_stack
1371 if (HAVE_probe_stack)
1372 emit_insn (gen_probe_stack (memref));
1373 else
1374 #endif
1375 emit_move_insn (memref, const0_rtx);
1376 }
1377
1378 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1379 FIRST is a constant and size is a Pmode RTX. These are offsets from
1380 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1381 or subtract them from the stack pointer. */
1382
1383 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1384
1385 #ifdef STACK_GROWS_DOWNWARD
1386 #define STACK_GROW_OP MINUS
1387 #define STACK_GROW_OPTAB sub_optab
1388 #define STACK_GROW_OFF(off) -(off)
1389 #else
1390 #define STACK_GROW_OP PLUS
1391 #define STACK_GROW_OPTAB add_optab
1392 #define STACK_GROW_OFF(off) (off)
1393 #endif
1394
1395 void
1396 probe_stack_range (HOST_WIDE_INT first, rtx size)
1397 {
1398 /* First ensure SIZE is Pmode. */
1399 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1400 size = convert_to_mode (Pmode, size, 1);
1401
1402 /* Next see if we have a function to check the stack. */
1403 if (stack_check_libfunc)
1404 {
1405 rtx addr = memory_address (Pmode,
1406 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1407 stack_pointer_rtx,
1408 plus_constant (size, first)));
1409 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1410 Pmode);
1411 }
1412
1413 /* Next see if we have an insn to check the stack. */
1414 #ifdef HAVE_check_stack
1415 else if (HAVE_check_stack)
1416 {
1417 rtx addr = memory_address (Pmode,
1418 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1419 stack_pointer_rtx,
1420 plus_constant (size, first)));
1421 insn_operand_predicate_fn pred
1422 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1423 if (pred && !((*pred) (addr, Pmode)))
1424 addr = copy_to_mode_reg (Pmode, addr);
1425
1426 emit_insn (gen_check_stack (addr));
1427 }
1428 #endif
1429
1430 /* Otherwise we have to generate explicit probes. If we have a constant
1431 small number of them to generate, that's the easy case. */
1432 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1433 {
1434 HOST_WIDE_INT isize = INTVAL (size), i;
1435 rtx addr;
1436
1437 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1438 it exceeds SIZE. If only one probe is needed, this will not
1439 generate any code. Then probe at FIRST + SIZE. */
1440 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1441 {
1442 addr = memory_address (Pmode,
1443 plus_constant (stack_pointer_rtx,
1444 STACK_GROW_OFF (first + i)));
1445 emit_stack_probe (addr);
1446 }
1447
1448 addr = memory_address (Pmode,
1449 plus_constant (stack_pointer_rtx,
1450 STACK_GROW_OFF (first + isize)));
1451 emit_stack_probe (addr);
1452 }
1453
1454 /* In the variable case, do the same as above, but in a loop. Note that we
1455 must be extra careful with variables wrapping around because we might be
1456 at the very top (or the very bottom) of the address space and we have to
1457 be able to handle this case properly; in particular, we use an equality
1458 test for the loop condition. */
1459 else
1460 {
1461 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1462 rtx loop_lab = gen_label_rtx ();
1463 rtx end_lab = gen_label_rtx ();
1464
1465
1466 /* Step 1: round SIZE to the previous multiple of the interval. */
1467
1468 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1469 rounded_size
1470 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1471 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1472
1473
1474 /* Step 2: compute initial and final value of the loop counter. */
1475
1476 /* TEST_ADDR = SP + FIRST. */
1477 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1478 stack_pointer_rtx,
1479 GEN_INT (first)), NULL_RTX);
1480
1481 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1482 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1483 test_addr,
1484 rounded_size_op), NULL_RTX);
1485
1486
1487 /* Step 3: the loop
1488
1489 while (TEST_ADDR != LAST_ADDR)
1490 {
1491 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1492 probe at TEST_ADDR
1493 }
1494
1495 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1496 until it is equal to ROUNDED_SIZE. */
1497
1498 emit_label (loop_lab);
1499
1500 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1501 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1502 end_lab);
1503
1504 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1505 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1506 GEN_INT (PROBE_INTERVAL), test_addr,
1507 1, OPTAB_WIDEN);
1508
1509 gcc_assert (temp == test_addr);
1510
1511 /* Probe at TEST_ADDR. */
1512 emit_stack_probe (test_addr);
1513
1514 emit_jump (loop_lab);
1515
1516 emit_label (end_lab);
1517
1518
1519 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1520 that SIZE is equal to ROUNDED_SIZE. */
1521
1522 /* TEMP = SIZE - ROUNDED_SIZE. */
1523 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1524 if (temp != const0_rtx)
1525 {
1526 rtx addr;
1527
1528 if (GET_CODE (temp) == CONST_INT)
1529 {
1530 /* Use [base + disp} addressing mode if supported. */
1531 HOST_WIDE_INT offset = INTVAL (temp);
1532 addr = memory_address (Pmode,
1533 plus_constant (last_addr,
1534 STACK_GROW_OFF (offset)));
1535 }
1536 else
1537 {
1538 /* Manual CSE if the difference is not known at compile-time. */
1539 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1540 addr = memory_address (Pmode,
1541 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1542 last_addr, temp));
1543 }
1544
1545 emit_stack_probe (addr);
1546 }
1547 }
1548 }
1549
1550 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1551 while probing it. This pushes when SIZE is positive. SIZE need not
1552 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1553 by plus SIZE at the end. */
1554
1555 void
1556 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1557 {
1558 /* We skip the probe for the first interval + a small dope of 4 words and
1559 probe that many bytes past the specified size to maintain a protection
1560 area at the botton of the stack. */
1561 const int dope = 4 * UNITS_PER_WORD;
1562
1563 /* First ensure SIZE is Pmode. */
1564 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1565 size = convert_to_mode (Pmode, size, 1);
1566
1567 /* If we have a constant small number of probes to generate, that's the
1568 easy case. */
1569 if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1570 {
1571 HOST_WIDE_INT isize = INTVAL (size), i;
1572 bool first_probe = true;
1573
1574 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1575 values of N from 1 until it exceeds SIZE. If only one probe is
1576 needed, this will not generate any code. Then adjust and probe
1577 to PROBE_INTERVAL + SIZE. */
1578 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1579 {
1580 if (first_probe)
1581 {
1582 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1583 first_probe = false;
1584 }
1585 else
1586 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1587 emit_stack_probe (stack_pointer_rtx);
1588 }
1589
1590 if (first_probe)
1591 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1592 else
1593 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1594 emit_stack_probe (stack_pointer_rtx);
1595 }
1596
1597 /* In the variable case, do the same as above, but in a loop. Note that we
1598 must be extra careful with variables wrapping around because we might be
1599 at the very top (or the very bottom) of the address space and we have to
1600 be able to handle this case properly; in particular, we use an equality
1601 test for the loop condition. */
1602 else
1603 {
1604 rtx rounded_size, rounded_size_op, last_addr, temp;
1605 rtx loop_lab = gen_label_rtx ();
1606 rtx end_lab = gen_label_rtx ();
1607
1608
1609 /* Step 1: round SIZE to the previous multiple of the interval. */
1610
1611 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1612 rounded_size
1613 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1614 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1615
1616
1617 /* Step 2: compute initial and final value of the loop counter. */
1618
1619 /* SP = SP_0 + PROBE_INTERVAL. */
1620 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1621
1622 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1623 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1624 stack_pointer_rtx,
1625 rounded_size_op), NULL_RTX);
1626
1627
1628 /* Step 3: the loop
1629
1630 while (SP != LAST_ADDR)
1631 {
1632 SP = SP + PROBE_INTERVAL
1633 probe at SP
1634 }
1635
1636 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1637 values of N from 1 until it is equal to ROUNDED_SIZE. */
1638
1639 emit_label (loop_lab);
1640
1641 /* Jump to END_LAB if SP == LAST_ADDR. */
1642 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1643 Pmode, 1, end_lab);
1644
1645 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1646 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1647 emit_stack_probe (stack_pointer_rtx);
1648
1649 emit_jump (loop_lab);
1650
1651 emit_label (end_lab);
1652
1653
1654 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1655 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1656
1657 /* TEMP = SIZE - ROUNDED_SIZE. */
1658 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1659 if (temp != const0_rtx)
1660 {
1661 /* Manual CSE if the difference is not known at compile-time. */
1662 if (GET_CODE (temp) != CONST_INT)
1663 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1664 anti_adjust_stack (temp);
1665 emit_stack_probe (stack_pointer_rtx);
1666 }
1667 }
1668
1669 /* Adjust back and account for the additional first interval. */
1670 if (adjust_back)
1671 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1672 else
1673 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1674 }
1675
1676 /* Return an rtx representing the register or memory location
1677 in which a scalar value of data type VALTYPE
1678 was returned by a function call to function FUNC.
1679 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1680 function is known, otherwise 0.
1681 OUTGOING is 1 if on a machine with register windows this function
1682 should return the register in which the function will put its result
1683 and 0 otherwise. */
1684
1685 rtx
1686 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1687 int outgoing ATTRIBUTE_UNUSED)
1688 {
1689 rtx val;
1690
1691 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1692
1693 if (REG_P (val)
1694 && GET_MODE (val) == BLKmode)
1695 {
1696 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1697 enum machine_mode tmpmode;
1698
1699 /* int_size_in_bytes can return -1. We don't need a check here
1700 since the value of bytes will then be large enough that no
1701 mode will match anyway. */
1702
1703 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1704 tmpmode != VOIDmode;
1705 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1706 {
1707 /* Have we found a large enough mode? */
1708 if (GET_MODE_SIZE (tmpmode) >= bytes)
1709 break;
1710 }
1711
1712 /* No suitable mode found. */
1713 gcc_assert (tmpmode != VOIDmode);
1714
1715 PUT_MODE (val, tmpmode);
1716 }
1717 return val;
1718 }
1719
1720 /* Return an rtx representing the register or memory location
1721 in which a scalar value of mode MODE was returned by a library call. */
1722
1723 rtx
1724 hard_libcall_value (enum machine_mode mode, rtx fun)
1725 {
1726 return targetm.calls.libcall_value (mode, fun);
1727 }
1728
1729 /* Look up the tree code for a given rtx code
1730 to provide the arithmetic operation for REAL_ARITHMETIC.
1731 The function returns an int because the caller may not know
1732 what `enum tree_code' means. */
1733
1734 int
1735 rtx_to_tree_code (enum rtx_code code)
1736 {
1737 enum tree_code tcode;
1738
1739 switch (code)
1740 {
1741 case PLUS:
1742 tcode = PLUS_EXPR;
1743 break;
1744 case MINUS:
1745 tcode = MINUS_EXPR;
1746 break;
1747 case MULT:
1748 tcode = MULT_EXPR;
1749 break;
1750 case DIV:
1751 tcode = RDIV_EXPR;
1752 break;
1753 case SMIN:
1754 tcode = MIN_EXPR;
1755 break;
1756 case SMAX:
1757 tcode = MAX_EXPR;
1758 break;
1759 default:
1760 tcode = LAST_AND_UNUSED_TREE_CODE;
1761 break;
1762 }
1763 return ((int) tcode);
1764 }
1765
1766 #include "gt-explow.h"