Re-apply: Drop excess size used for run time allocated stack variables.
[gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "diagnostic-core.h"
35 #include "stor-layout.h"
36 #include "except.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "expr.h"
40 #include "common/common-target.h"
41 #include "output.h"
42
43 static rtx break_out_memory_refs (rtx);
44
45
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47
48 HOST_WIDE_INT
49 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
50 {
51 int width = GET_MODE_PRECISION (mode);
52
53 /* You want to truncate to a _what_? */
54 gcc_assert (SCALAR_INT_MODE_P (mode)
55 || POINTER_BOUNDS_MODE_P (mode));
56
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 if (mode == BImode)
59 return c & 1 ? STORE_FLAG_VALUE : 0;
60
61 /* Sign-extend for the requested mode. */
62
63 if (width < HOST_BITS_PER_WIDE_INT)
64 {
65 HOST_WIDE_INT sign = 1;
66 sign <<= width - 1;
67 c &= (sign << 1) - 1;
68 c ^= sign;
69 c -= sign;
70 }
71
72 return c;
73 }
74
75 /* Return an rtx for the sum of X and the integer C, given that X has
76 mode MODE. INPLACE is true if X can be modified inplace or false
77 if it must be treated as immutable. */
78
79 rtx
80 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
81 bool inplace)
82 {
83 RTX_CODE code;
84 rtx y;
85 rtx tem;
86 int all_constant = 0;
87
88 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
89
90 if (c == 0)
91 return x;
92
93 restart:
94
95 code = GET_CODE (x);
96 y = x;
97
98 switch (code)
99 {
100 CASE_CONST_SCALAR_INT:
101 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
102 case MEM:
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 {
109 rtx cst = get_pool_constant (XEXP (x, 0));
110
111 if (GET_CODE (cst) == CONST_VECTOR
112 && GET_MODE_INNER (GET_MODE (cst)) == mode)
113 {
114 cst = gen_lowpart (mode, cst);
115 gcc_assert (cst);
116 }
117 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
118 {
119 tem = plus_constant (mode, cst, c);
120 tem = force_const_mem (GET_MODE (x), tem);
121 /* Targets may disallow some constants in the constant pool, thus
122 force_const_mem may return NULL_RTX. */
123 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 return tem;
125 }
126 }
127 break;
128
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 if (inplace && shared_const_p (x))
133 inplace = false;
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum. Look
145 for constant term in the sum and combine with C. For an
146 integer constant term or a constant term that is not an
147 explicit integer, we combine or group them together anyway.
148
149 We may not immediately return from the recursive call here, lest
150 all_constant gets lost. */
151
152 if (CONSTANT_P (XEXP (x, 1)))
153 {
154 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
155 if (term == const0_rtx)
156 x = XEXP (x, 0);
157 else if (inplace)
158 XEXP (x, 1) = term;
159 else
160 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
161 c = 0;
162 }
163 else if (rtx *const_loc = find_constant_term_loc (&y))
164 {
165 if (!inplace)
166 {
167 /* We need to be careful since X may be shared and we can't
168 modify it in place. */
169 x = copy_rtx (x);
170 const_loc = find_constant_term_loc (&x);
171 }
172 *const_loc = plus_constant (mode, *const_loc, c, true);
173 c = 0;
174 }
175 break;
176
177 default:
178 break;
179 }
180
181 if (c != 0)
182 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
183
184 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
185 return x;
186 else if (all_constant)
187 return gen_rtx_CONST (mode, x);
188 else
189 return x;
190 }
191 \f
192 /* If X is a sum, return a new sum like X but lacking any constant terms.
193 Add all the removed constant terms into *CONSTPTR.
194 X itself is not altered. The result != X if and only if
195 it is not isomorphic to X. */
196
197 rtx
198 eliminate_constant_term (rtx x, rtx *constptr)
199 {
200 rtx x0, x1;
201 rtx tem;
202
203 if (GET_CODE (x) != PLUS)
204 return x;
205
206 /* First handle constants appearing at this level explicitly. */
207 if (CONST_INT_P (XEXP (x, 1))
208 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
209 XEXP (x, 1)))
210 && CONST_INT_P (tem))
211 {
212 *constptr = tem;
213 return eliminate_constant_term (XEXP (x, 0), constptr);
214 }
215
216 tem = const0_rtx;
217 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
218 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
219 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
220 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
221 *constptr, tem))
222 && CONST_INT_P (tem))
223 {
224 *constptr = tem;
225 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
226 }
227
228 return x;
229 }
230
231 \f
232 /* Return a copy of X in which all memory references
233 and all constants that involve symbol refs
234 have been replaced with new temporary registers.
235 Also emit code to load the memory locations and constants
236 into those registers.
237
238 If X contains no such constants or memory references,
239 X itself (not a copy) is returned.
240
241 If a constant is found in the address that is not a legitimate constant
242 in an insn, it is left alone in the hope that it might be valid in the
243 address.
244
245 X may contain no arithmetic except addition, subtraction and multiplication.
246 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
247
248 static rtx
249 break_out_memory_refs (rtx x)
250 {
251 if (MEM_P (x)
252 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
253 && GET_MODE (x) != VOIDmode))
254 x = force_reg (GET_MODE (x), x);
255 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
256 || GET_CODE (x) == MULT)
257 {
258 rtx op0 = break_out_memory_refs (XEXP (x, 0));
259 rtx op1 = break_out_memory_refs (XEXP (x, 1));
260
261 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
262 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
263 }
264
265 return x;
266 }
267
268 /* Given X, a memory address in address space AS' pointer mode, convert it to
269 an address in the address space's address mode, or vice versa (TO_MODE says
270 which way). We take advantage of the fact that pointers are not allowed to
271 overflow by commuting arithmetic operations over conversions so that address
272 arithmetic insns can be used. IN_CONST is true if this conversion is inside
273 a CONST. NO_EMIT is true if no insns should be emitted, and instead
274 it should return NULL if it can't be simplified without emitting insns. */
275
276 rtx
277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
278 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
279 bool in_const ATTRIBUTE_UNUSED,
280 bool no_emit ATTRIBUTE_UNUSED)
281 {
282 #ifndef POINTERS_EXTEND_UNSIGNED
283 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
284 return x;
285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
286 machine_mode pointer_mode, address_mode, from_mode;
287 rtx temp;
288 enum rtx_code code;
289
290 /* If X already has the right mode, just return it. */
291 if (GET_MODE (x) == to_mode)
292 return x;
293
294 pointer_mode = targetm.addr_space.pointer_mode (as);
295 address_mode = targetm.addr_space.address_mode (as);
296 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
297
298 /* Here we handle some special cases. If none of them apply, fall through
299 to the default case. */
300 switch (GET_CODE (x))
301 {
302 CASE_CONST_SCALAR_INT:
303 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
304 code = TRUNCATE;
305 else if (POINTERS_EXTEND_UNSIGNED < 0)
306 break;
307 else if (POINTERS_EXTEND_UNSIGNED > 0)
308 code = ZERO_EXTEND;
309 else
310 code = SIGN_EXTEND;
311 temp = simplify_unary_operation (code, to_mode, x, from_mode);
312 if (temp)
313 return temp;
314 break;
315
316 case SUBREG:
317 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
318 && GET_MODE (SUBREG_REG (x)) == to_mode)
319 return SUBREG_REG (x);
320 break;
321
322 case LABEL_REF:
323 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
324 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
325 return temp;
326
327 case SYMBOL_REF:
328 temp = shallow_copy_rtx (x);
329 PUT_MODE (temp, to_mode);
330 return temp;
331
332 case CONST:
333 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
334 true, no_emit);
335 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
336
337 case PLUS:
338 case MULT:
339 /* For addition we can safely permute the conversion and addition
340 operation if one operand is a constant and converting the constant
341 does not change it or if one operand is a constant and we are
342 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
343 We can always safely permute them if we are making the address
344 narrower. Inside a CONST RTL, this is safe for both pointers
345 zero or sign extended as pointers cannot wrap. */
346 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
347 || (GET_CODE (x) == PLUS
348 && CONST_INT_P (XEXP (x, 1))
349 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
350 || XEXP (x, 1) == convert_memory_address_addr_space_1
351 (to_mode, XEXP (x, 1), as, in_const,
352 no_emit)
353 || POINTERS_EXTEND_UNSIGNED < 0)))
354 {
355 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
356 as, in_const, no_emit);
357 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
358 temp, XEXP (x, 1))
359 : temp);
360 }
361 break;
362
363 default:
364 break;
365 }
366
367 if (no_emit)
368 return NULL_RTX;
369
370 return convert_modes (to_mode, from_mode,
371 x, POINTERS_EXTEND_UNSIGNED);
372 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
373 }
374
375 /* Given X, a memory address in address space AS' pointer mode, convert it to
376 an address in the address space's address mode, or vice versa (TO_MODE says
377 which way). We take advantage of the fact that pointers are not allowed to
378 overflow by commuting arithmetic operations over conversions so that address
379 arithmetic insns can be used. */
380
381 rtx
382 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
383 {
384 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
385 }
386 \f
387
388 /* Return something equivalent to X but valid as a memory address for something
389 of mode MODE in the named address space AS. When X is not itself valid,
390 this works by copying X or subexpressions of it into registers. */
391
392 rtx
393 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
394 {
395 rtx oldx = x;
396 machine_mode address_mode = targetm.addr_space.address_mode (as);
397
398 x = convert_memory_address_addr_space (address_mode, x, as);
399
400 /* By passing constant addresses through registers
401 we get a chance to cse them. */
402 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
403 x = force_reg (address_mode, x);
404
405 /* We get better cse by rejecting indirect addressing at this stage.
406 Let the combiner create indirect addresses where appropriate.
407 For now, generate the code so that the subexpressions useful to share
408 are visible. But not if cse won't be done! */
409 else
410 {
411 if (! cse_not_expected && !REG_P (x))
412 x = break_out_memory_refs (x);
413
414 /* At this point, any valid address is accepted. */
415 if (memory_address_addr_space_p (mode, x, as))
416 goto done;
417
418 /* If it was valid before but breaking out memory refs invalidated it,
419 use it the old way. */
420 if (memory_address_addr_space_p (mode, oldx, as))
421 {
422 x = oldx;
423 goto done;
424 }
425
426 /* Perform machine-dependent transformations on X
427 in certain cases. This is not necessary since the code
428 below can handle all possible cases, but machine-dependent
429 transformations can make better code. */
430 {
431 rtx orig_x = x;
432 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
433 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
434 goto done;
435 }
436
437 /* PLUS and MULT can appear in special ways
438 as the result of attempts to make an address usable for indexing.
439 Usually they are dealt with by calling force_operand, below.
440 But a sum containing constant terms is special
441 if removing them makes the sum a valid address:
442 then we generate that address in a register
443 and index off of it. We do this because it often makes
444 shorter code, and because the addresses thus generated
445 in registers often become common subexpressions. */
446 if (GET_CODE (x) == PLUS)
447 {
448 rtx constant_term = const0_rtx;
449 rtx y = eliminate_constant_term (x, &constant_term);
450 if (constant_term == const0_rtx
451 || ! memory_address_addr_space_p (mode, y, as))
452 x = force_operand (x, NULL_RTX);
453 else
454 {
455 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
456 if (! memory_address_addr_space_p (mode, y, as))
457 x = force_operand (x, NULL_RTX);
458 else
459 x = y;
460 }
461 }
462
463 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
464 x = force_operand (x, NULL_RTX);
465
466 /* If we have a register that's an invalid address,
467 it must be a hard reg of the wrong class. Copy it to a pseudo. */
468 else if (REG_P (x))
469 x = copy_to_reg (x);
470
471 /* Last resort: copy the value to a register, since
472 the register is a valid address. */
473 else
474 x = force_reg (address_mode, x);
475 }
476
477 done:
478
479 gcc_assert (memory_address_addr_space_p (mode, x, as));
480 /* If we didn't change the address, we are done. Otherwise, mark
481 a reg as a pointer if we have REG or REG + CONST_INT. */
482 if (oldx == x)
483 return x;
484 else if (REG_P (x))
485 mark_reg_pointer (x, BITS_PER_UNIT);
486 else if (GET_CODE (x) == PLUS
487 && REG_P (XEXP (x, 0))
488 && CONST_INT_P (XEXP (x, 1)))
489 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
490
491 /* OLDX may have been the address on a temporary. Update the address
492 to indicate that X is now used. */
493 update_temp_slot_address (oldx, x);
494
495 return x;
496 }
497
498 /* Convert a mem ref into one with a valid memory address.
499 Pass through anything else unchanged. */
500
501 rtx
502 validize_mem (rtx ref)
503 {
504 if (!MEM_P (ref))
505 return ref;
506 ref = use_anchored_address (ref);
507 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
508 MEM_ADDR_SPACE (ref)))
509 return ref;
510
511 /* Don't alter REF itself, since that is probably a stack slot. */
512 return replace_equiv_address (ref, XEXP (ref, 0));
513 }
514
515 /* If X is a memory reference to a member of an object block, try rewriting
516 it to use an anchor instead. Return the new memory reference on success
517 and the old one on failure. */
518
519 rtx
520 use_anchored_address (rtx x)
521 {
522 rtx base;
523 HOST_WIDE_INT offset;
524 machine_mode mode;
525
526 if (!flag_section_anchors)
527 return x;
528
529 if (!MEM_P (x))
530 return x;
531
532 /* Split the address into a base and offset. */
533 base = XEXP (x, 0);
534 offset = 0;
535 if (GET_CODE (base) == CONST
536 && GET_CODE (XEXP (base, 0)) == PLUS
537 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
538 {
539 offset += INTVAL (XEXP (XEXP (base, 0), 1));
540 base = XEXP (XEXP (base, 0), 0);
541 }
542
543 /* Check whether BASE is suitable for anchors. */
544 if (GET_CODE (base) != SYMBOL_REF
545 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
546 || SYMBOL_REF_ANCHOR_P (base)
547 || SYMBOL_REF_BLOCK (base) == NULL
548 || !targetm.use_anchors_for_symbol_p (base))
549 return x;
550
551 /* Decide where BASE is going to be. */
552 place_block_symbol (base);
553
554 /* Get the anchor we need to use. */
555 offset += SYMBOL_REF_BLOCK_OFFSET (base);
556 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
557 SYMBOL_REF_TLS_MODEL (base));
558
559 /* Work out the offset from the anchor. */
560 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
561
562 /* If we're going to run a CSE pass, force the anchor into a register.
563 We will then be able to reuse registers for several accesses, if the
564 target costs say that that's worthwhile. */
565 mode = GET_MODE (base);
566 if (!cse_not_expected)
567 base = force_reg (mode, base);
568
569 return replace_equiv_address (x, plus_constant (mode, base, offset));
570 }
571 \f
572 /* Copy the value or contents of X to a new temp reg and return that reg. */
573
574 rtx
575 copy_to_reg (rtx x)
576 {
577 rtx temp = gen_reg_rtx (GET_MODE (x));
578
579 /* If not an operand, must be an address with PLUS and MULT so
580 do the computation. */
581 if (! general_operand (x, VOIDmode))
582 x = force_operand (x, temp);
583
584 if (x != temp)
585 emit_move_insn (temp, x);
586
587 return temp;
588 }
589
590 /* Like copy_to_reg but always give the new register mode Pmode
591 in case X is a constant. */
592
593 rtx
594 copy_addr_to_reg (rtx x)
595 {
596 return copy_to_mode_reg (Pmode, x);
597 }
598
599 /* Like copy_to_reg but always give the new register mode MODE
600 in case X is a constant. */
601
602 rtx
603 copy_to_mode_reg (machine_mode mode, rtx x)
604 {
605 rtx temp = gen_reg_rtx (mode);
606
607 /* If not an operand, must be an address with PLUS and MULT so
608 do the computation. */
609 if (! general_operand (x, VOIDmode))
610 x = force_operand (x, temp);
611
612 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
613 if (x != temp)
614 emit_move_insn (temp, x);
615 return temp;
616 }
617
618 /* Load X into a register if it is not already one.
619 Use mode MODE for the register.
620 X should be valid for mode MODE, but it may be a constant which
621 is valid for all integer modes; that's why caller must specify MODE.
622
623 The caller must not alter the value in the register we return,
624 since we mark it as a "constant" register. */
625
626 rtx
627 force_reg (machine_mode mode, rtx x)
628 {
629 rtx temp, set;
630 rtx_insn *insn;
631
632 if (REG_P (x))
633 return x;
634
635 if (general_operand (x, mode))
636 {
637 temp = gen_reg_rtx (mode);
638 insn = emit_move_insn (temp, x);
639 }
640 else
641 {
642 temp = force_operand (x, NULL_RTX);
643 if (REG_P (temp))
644 insn = get_last_insn ();
645 else
646 {
647 rtx temp2 = gen_reg_rtx (mode);
648 insn = emit_move_insn (temp2, temp);
649 temp = temp2;
650 }
651 }
652
653 /* Let optimizers know that TEMP's value never changes
654 and that X can be substituted for it. Don't get confused
655 if INSN set something else (such as a SUBREG of TEMP). */
656 if (CONSTANT_P (x)
657 && (set = single_set (insn)) != 0
658 && SET_DEST (set) == temp
659 && ! rtx_equal_p (x, SET_SRC (set)))
660 set_unique_reg_note (insn, REG_EQUAL, x);
661
662 /* Let optimizers know that TEMP is a pointer, and if so, the
663 known alignment of that pointer. */
664 {
665 unsigned align = 0;
666 if (GET_CODE (x) == SYMBOL_REF)
667 {
668 align = BITS_PER_UNIT;
669 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
670 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
671 }
672 else if (GET_CODE (x) == LABEL_REF)
673 align = BITS_PER_UNIT;
674 else if (GET_CODE (x) == CONST
675 && GET_CODE (XEXP (x, 0)) == PLUS
676 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
677 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
678 {
679 rtx s = XEXP (XEXP (x, 0), 0);
680 rtx c = XEXP (XEXP (x, 0), 1);
681 unsigned sa, ca;
682
683 sa = BITS_PER_UNIT;
684 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
685 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
686
687 if (INTVAL (c) == 0)
688 align = sa;
689 else
690 {
691 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
692 align = MIN (sa, ca);
693 }
694 }
695
696 if (align || (MEM_P (x) && MEM_POINTER (x)))
697 mark_reg_pointer (temp, align);
698 }
699
700 return temp;
701 }
702
703 /* If X is a memory ref, copy its contents to a new temp reg and return
704 that reg. Otherwise, return X. */
705
706 rtx
707 force_not_mem (rtx x)
708 {
709 rtx temp;
710
711 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
712 return x;
713
714 temp = gen_reg_rtx (GET_MODE (x));
715
716 if (MEM_POINTER (x))
717 REG_POINTER (temp) = 1;
718
719 emit_move_insn (temp, x);
720 return temp;
721 }
722
723 /* Copy X to TARGET (if it's nonzero and a reg)
724 or to a new temp reg and return that reg.
725 MODE is the mode to use for X in case it is a constant. */
726
727 rtx
728 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
729 {
730 rtx temp;
731
732 if (target && REG_P (target))
733 temp = target;
734 else
735 temp = gen_reg_rtx (mode);
736
737 emit_move_insn (temp, x);
738 return temp;
739 }
740 \f
741 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
742 PUNSIGNEDP points to the signedness of the type and may be adjusted
743 to show what signedness to use on extension operations.
744
745 FOR_RETURN is nonzero if the caller is promoting the return value
746 of FNDECL, else it is for promoting args. */
747
748 machine_mode
749 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
750 const_tree funtype, int for_return)
751 {
752 /* Called without a type node for a libcall. */
753 if (type == NULL_TREE)
754 {
755 if (INTEGRAL_MODE_P (mode))
756 return targetm.calls.promote_function_mode (NULL_TREE, mode,
757 punsignedp, funtype,
758 for_return);
759 else
760 return mode;
761 }
762
763 switch (TREE_CODE (type))
764 {
765 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
766 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
767 case POINTER_TYPE: case REFERENCE_TYPE:
768 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
769 for_return);
770
771 default:
772 return mode;
773 }
774 }
775 /* Return the mode to use to store a scalar of TYPE and MODE.
776 PUNSIGNEDP points to the signedness of the type and may be adjusted
777 to show what signedness to use on extension operations. */
778
779 machine_mode
780 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
781 int *punsignedp ATTRIBUTE_UNUSED)
782 {
783 #ifdef PROMOTE_MODE
784 enum tree_code code;
785 int unsignedp;
786 #endif
787
788 /* For libcalls this is invoked without TYPE from the backends
789 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
790 case. */
791 if (type == NULL_TREE)
792 return mode;
793
794 /* FIXME: this is the same logic that was there until GCC 4.4, but we
795 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
796 is not defined. The affected targets are M32C, S390, SPARC. */
797 #ifdef PROMOTE_MODE
798 code = TREE_CODE (type);
799 unsignedp = *punsignedp;
800
801 switch (code)
802 {
803 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
804 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
805 PROMOTE_MODE (mode, unsignedp, type);
806 *punsignedp = unsignedp;
807 return mode;
808
809 #ifdef POINTERS_EXTEND_UNSIGNED
810 case REFERENCE_TYPE:
811 case POINTER_TYPE:
812 *punsignedp = POINTERS_EXTEND_UNSIGNED;
813 return targetm.addr_space.address_mode
814 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
815 #endif
816
817 default:
818 return mode;
819 }
820 #else
821 return mode;
822 #endif
823 }
824
825
826 /* Use one of promote_mode or promote_function_mode to find the promoted
827 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
828 of DECL after promotion. */
829
830 machine_mode
831 promote_decl_mode (const_tree decl, int *punsignedp)
832 {
833 tree type = TREE_TYPE (decl);
834 int unsignedp = TYPE_UNSIGNED (type);
835 machine_mode mode = DECL_MODE (decl);
836 machine_mode pmode;
837
838 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
839 pmode = promote_function_mode (type, mode, &unsignedp,
840 TREE_TYPE (current_function_decl), 1);
841 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
842 pmode = promote_function_mode (type, mode, &unsignedp,
843 TREE_TYPE (current_function_decl), 2);
844 else
845 pmode = promote_mode (type, mode, &unsignedp);
846
847 if (punsignedp)
848 *punsignedp = unsignedp;
849 return pmode;
850 }
851
852 /* Return the promoted mode for name. If it is a named SSA_NAME, it
853 is the same as promote_decl_mode. Otherwise, it is the promoted
854 mode of a temp decl of same type as the SSA_NAME, if we had created
855 one. */
856
857 machine_mode
858 promote_ssa_mode (const_tree name, int *punsignedp)
859 {
860 gcc_assert (TREE_CODE (name) == SSA_NAME);
861
862 /* Partitions holding parms and results must be promoted as expected
863 by function.c. */
864 if (SSA_NAME_VAR (name)
865 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
866 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
867 {
868 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
869 if (mode != BLKmode)
870 return mode;
871 }
872
873 tree type = TREE_TYPE (name);
874 int unsignedp = TYPE_UNSIGNED (type);
875 machine_mode mode = TYPE_MODE (type);
876
877 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
878 if (mode == BLKmode)
879 {
880 gcc_assert (VECTOR_TYPE_P (type));
881 mode = type->type_common.mode;
882 }
883
884 machine_mode pmode = promote_mode (type, mode, &unsignedp);
885 if (punsignedp)
886 *punsignedp = unsignedp;
887
888 return pmode;
889 }
890
891
892 \f
893 /* Controls the behavior of {anti_,}adjust_stack. */
894 static bool suppress_reg_args_size;
895
896 /* A helper for adjust_stack and anti_adjust_stack. */
897
898 static void
899 adjust_stack_1 (rtx adjust, bool anti_p)
900 {
901 rtx temp;
902 rtx_insn *insn;
903
904 /* Hereafter anti_p means subtract_p. */
905 if (!STACK_GROWS_DOWNWARD)
906 anti_p = !anti_p;
907
908 temp = expand_binop (Pmode,
909 anti_p ? sub_optab : add_optab,
910 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
911 OPTAB_LIB_WIDEN);
912
913 if (temp != stack_pointer_rtx)
914 insn = emit_move_insn (stack_pointer_rtx, temp);
915 else
916 {
917 insn = get_last_insn ();
918 temp = single_set (insn);
919 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
920 }
921
922 if (!suppress_reg_args_size)
923 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
924 }
925
926 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
927 This pops when ADJUST is positive. ADJUST need not be constant. */
928
929 void
930 adjust_stack (rtx adjust)
931 {
932 if (adjust == const0_rtx)
933 return;
934
935 /* We expect all variable sized adjustments to be multiple of
936 PREFERRED_STACK_BOUNDARY. */
937 if (CONST_INT_P (adjust))
938 stack_pointer_delta -= INTVAL (adjust);
939
940 adjust_stack_1 (adjust, false);
941 }
942
943 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
944 This pushes when ADJUST is positive. ADJUST need not be constant. */
945
946 void
947 anti_adjust_stack (rtx adjust)
948 {
949 if (adjust == const0_rtx)
950 return;
951
952 /* We expect all variable sized adjustments to be multiple of
953 PREFERRED_STACK_BOUNDARY. */
954 if (CONST_INT_P (adjust))
955 stack_pointer_delta += INTVAL (adjust);
956
957 adjust_stack_1 (adjust, true);
958 }
959
960 /* Round the size of a block to be pushed up to the boundary required
961 by this machine. SIZE is the desired size, which need not be constant. */
962
963 static rtx
964 round_push (rtx size)
965 {
966 rtx align_rtx, alignm1_rtx;
967
968 if (!SUPPORTS_STACK_ALIGNMENT
969 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
970 {
971 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
972
973 if (align == 1)
974 return size;
975
976 if (CONST_INT_P (size))
977 {
978 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
979
980 if (INTVAL (size) != new_size)
981 size = GEN_INT (new_size);
982 return size;
983 }
984
985 align_rtx = GEN_INT (align);
986 alignm1_rtx = GEN_INT (align - 1);
987 }
988 else
989 {
990 /* If crtl->preferred_stack_boundary might still grow, use
991 virtual_preferred_stack_boundary_rtx instead. This will be
992 substituted by the right value in vregs pass and optimized
993 during combine. */
994 align_rtx = virtual_preferred_stack_boundary_rtx;
995 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
996 NULL_RTX);
997 }
998
999 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1000 but we know it can't. So add ourselves and then do
1001 TRUNC_DIV_EXPR. */
1002 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1003 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1004 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1005 NULL_RTX, 1);
1006 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1007
1008 return size;
1009 }
1010 \f
1011 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1012 to a previously-created save area. If no save area has been allocated,
1013 this function will allocate one. If a save area is specified, it
1014 must be of the proper mode. */
1015
1016 void
1017 emit_stack_save (enum save_level save_level, rtx *psave)
1018 {
1019 rtx sa = *psave;
1020 /* The default is that we use a move insn and save in a Pmode object. */
1021 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1022 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1023
1024 /* See if this machine has anything special to do for this kind of save. */
1025 switch (save_level)
1026 {
1027 case SAVE_BLOCK:
1028 if (targetm.have_save_stack_block ())
1029 fcn = targetm.gen_save_stack_block;
1030 break;
1031 case SAVE_FUNCTION:
1032 if (targetm.have_save_stack_function ())
1033 fcn = targetm.gen_save_stack_function;
1034 break;
1035 case SAVE_NONLOCAL:
1036 if (targetm.have_save_stack_nonlocal ())
1037 fcn = targetm.gen_save_stack_nonlocal;
1038 break;
1039 default:
1040 break;
1041 }
1042
1043 /* If there is no save area and we have to allocate one, do so. Otherwise
1044 verify the save area is the proper mode. */
1045
1046 if (sa == 0)
1047 {
1048 if (mode != VOIDmode)
1049 {
1050 if (save_level == SAVE_NONLOCAL)
1051 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1052 else
1053 *psave = sa = gen_reg_rtx (mode);
1054 }
1055 }
1056
1057 do_pending_stack_adjust ();
1058 if (sa != 0)
1059 sa = validize_mem (sa);
1060 emit_insn (fcn (sa, stack_pointer_rtx));
1061 }
1062
1063 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1064 area made by emit_stack_save. If it is zero, we have nothing to do. */
1065
1066 void
1067 emit_stack_restore (enum save_level save_level, rtx sa)
1068 {
1069 /* The default is that we use a move insn. */
1070 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1071
1072 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1073 STACK_POINTER and HARD_FRAME_POINTER.
1074 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1075 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1076 aligned variables, which is reflected in ix86_can_eliminate.
1077 We normally still have the realigned STACK_POINTER that we can use.
1078 But if there is a stack restore still present at reload, it can trigger
1079 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1080 FRAME_POINTER into a hard reg.
1081 To prevent this situation, we force need_drap if we emit a stack
1082 restore. */
1083 if (SUPPORTS_STACK_ALIGNMENT)
1084 crtl->need_drap = true;
1085
1086 /* See if this machine has anything special to do for this kind of save. */
1087 switch (save_level)
1088 {
1089 case SAVE_BLOCK:
1090 if (targetm.have_restore_stack_block ())
1091 fcn = targetm.gen_restore_stack_block;
1092 break;
1093 case SAVE_FUNCTION:
1094 if (targetm.have_restore_stack_function ())
1095 fcn = targetm.gen_restore_stack_function;
1096 break;
1097 case SAVE_NONLOCAL:
1098 if (targetm.have_restore_stack_nonlocal ())
1099 fcn = targetm.gen_restore_stack_nonlocal;
1100 break;
1101 default:
1102 break;
1103 }
1104
1105 if (sa != 0)
1106 {
1107 sa = validize_mem (sa);
1108 /* These clobbers prevent the scheduler from moving
1109 references to variable arrays below the code
1110 that deletes (pops) the arrays. */
1111 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1112 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1113 }
1114
1115 discard_pending_stack_adjust ();
1116
1117 emit_insn (fcn (stack_pointer_rtx, sa));
1118 }
1119
1120 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1121 function. This should be called whenever we allocate or deallocate
1122 dynamic stack space. */
1123
1124 void
1125 update_nonlocal_goto_save_area (void)
1126 {
1127 tree t_save;
1128 rtx r_save;
1129
1130 /* The nonlocal_goto_save_area object is an array of N pointers. The
1131 first one is used for the frame pointer save; the rest are sized by
1132 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1133 of the stack save area slots. */
1134 t_save = build4 (ARRAY_REF,
1135 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1136 cfun->nonlocal_goto_save_area,
1137 integer_one_node, NULL_TREE, NULL_TREE);
1138 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1139
1140 emit_stack_save (SAVE_NONLOCAL, &r_save);
1141 }
1142
1143 /* Record a new stack level for the current function. This should be called
1144 whenever we allocate or deallocate dynamic stack space. */
1145
1146 void
1147 record_new_stack_level (void)
1148 {
1149 /* Record the new stack level for nonlocal gotos. */
1150 if (cfun->nonlocal_goto_save_area)
1151 update_nonlocal_goto_save_area ();
1152
1153 /* Record the new stack level for SJLJ exceptions. */
1154 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1155 update_sjlj_context ();
1156 }
1157 \f
1158 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1159 static rtx
1160 align_dynamic_address (rtx target, unsigned required_align)
1161 {
1162 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1163 but we know it can't. So add ourselves and then do
1164 TRUNC_DIV_EXPR. */
1165 target = expand_binop (Pmode, add_optab, target,
1166 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1167 Pmode),
1168 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1169 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1170 gen_int_mode (required_align / BITS_PER_UNIT,
1171 Pmode),
1172 NULL_RTX, 1);
1173 target = expand_mult (Pmode, target,
1174 gen_int_mode (required_align / BITS_PER_UNIT,
1175 Pmode),
1176 NULL_RTX, 1);
1177
1178 return target;
1179 }
1180
1181 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1182 be dynamically pushed on the stack.
1183
1184 *PSIZE is an rtx representing the size of the area.
1185
1186 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1187 parameter may be zero. If so, a proper value will be extracted
1188 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1189
1190 REQUIRED_ALIGN is the alignment (in bits) required for the region
1191 of memory.
1192
1193 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1194 the additional size returned. */
1195 void
1196 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1197 unsigned required_align,
1198 HOST_WIDE_INT *pstack_usage_size)
1199 {
1200 unsigned extra = 0;
1201 rtx size = *psize;
1202
1203 /* Ensure the size is in the proper mode. */
1204 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1205 size = convert_to_mode (Pmode, size, 1);
1206
1207 if (CONST_INT_P (size))
1208 {
1209 unsigned HOST_WIDE_INT lsb;
1210
1211 lsb = INTVAL (size);
1212 lsb &= -lsb;
1213
1214 /* Watch out for overflow truncating to "unsigned". */
1215 if (lsb > UINT_MAX / BITS_PER_UNIT)
1216 size_align = 1u << (HOST_BITS_PER_INT - 1);
1217 else
1218 size_align = (unsigned)lsb * BITS_PER_UNIT;
1219 }
1220 else if (size_align < BITS_PER_UNIT)
1221 size_align = BITS_PER_UNIT;
1222
1223 /* We can't attempt to minimize alignment necessary, because we don't
1224 know the final value of preferred_stack_boundary yet while executing
1225 this code. */
1226 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1227 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1228
1229 /* We will need to ensure that the address we return is aligned to
1230 REQUIRED_ALIGN. At this point in the compilation, we don't always
1231 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1232 (it might depend on the size of the outgoing parameter lists, for
1233 example), so we must preventively align the value. We leave space
1234 in SIZE for the hole that might result from the alignment operation. */
1235
1236 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1237 if (known_align == 0)
1238 known_align = BITS_PER_UNIT;
1239 if (required_align > known_align)
1240 {
1241 extra = (required_align - known_align) / BITS_PER_UNIT;
1242 size = plus_constant (Pmode, size, extra);
1243 size = force_operand (size, NULL_RTX);
1244 }
1245
1246 if (flag_stack_usage_info && pstack_usage_size)
1247 *pstack_usage_size += extra;
1248
1249 if (extra && size_align > BITS_PER_UNIT)
1250 size_align = BITS_PER_UNIT;
1251
1252 /* Round the size to a multiple of the required stack alignment.
1253 Since the stack is presumed to be rounded before this allocation,
1254 this will maintain the required alignment.
1255
1256 If the stack grows downward, we could save an insn by subtracting
1257 SIZE from the stack pointer and then aligning the stack pointer.
1258 The problem with this is that the stack pointer may be unaligned
1259 between the execution of the subtraction and alignment insns and
1260 some machines do not allow this. Even on those that do, some
1261 signal handlers malfunction if a signal should occur between those
1262 insns. Since this is an extremely rare event, we have no reliable
1263 way of knowing which systems have this problem. So we avoid even
1264 momentarily mis-aligning the stack. */
1265 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1266 {
1267 size = round_push (size);
1268
1269 if (flag_stack_usage_info && pstack_usage_size)
1270 {
1271 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1272 *pstack_usage_size =
1273 (*pstack_usage_size + align - 1) / align * align;
1274 }
1275 }
1276
1277 *psize = size;
1278 }
1279
1280 /* Return an rtx representing the address of an area of memory dynamically
1281 pushed on the stack.
1282
1283 Any required stack pointer alignment is preserved.
1284
1285 SIZE is an rtx representing the size of the area.
1286
1287 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1288 parameter may be zero. If so, a proper value will be extracted
1289 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1290
1291 REQUIRED_ALIGN is the alignment (in bits) required for the region
1292 of memory.
1293
1294 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1295 stack space allocated by the generated code cannot be added with itself
1296 in the course of the execution of the function. It is always safe to
1297 pass FALSE here and the following criterion is sufficient in order to
1298 pass TRUE: every path in the CFG that starts at the allocation point and
1299 loops to it executes the associated deallocation code. */
1300
1301 rtx
1302 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1303 unsigned required_align, bool cannot_accumulate)
1304 {
1305 HOST_WIDE_INT stack_usage_size = -1;
1306 rtx_code_label *final_label;
1307 rtx final_target, target;
1308
1309 /* If we're asking for zero bytes, it doesn't matter what we point
1310 to since we can't dereference it. But return a reasonable
1311 address anyway. */
1312 if (size == const0_rtx)
1313 return virtual_stack_dynamic_rtx;
1314
1315 /* Otherwise, show we're calling alloca or equivalent. */
1316 cfun->calls_alloca = 1;
1317
1318 /* If stack usage info is requested, look into the size we are passed.
1319 We need to do so this early to avoid the obfuscation that may be
1320 introduced later by the various alignment operations. */
1321 if (flag_stack_usage_info)
1322 {
1323 if (CONST_INT_P (size))
1324 stack_usage_size = INTVAL (size);
1325 else if (REG_P (size))
1326 {
1327 /* Look into the last emitted insn and see if we can deduce
1328 something for the register. */
1329 rtx_insn *insn;
1330 rtx set, note;
1331 insn = get_last_insn ();
1332 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1333 {
1334 if (CONST_INT_P (SET_SRC (set)))
1335 stack_usage_size = INTVAL (SET_SRC (set));
1336 else if ((note = find_reg_equal_equiv_note (insn))
1337 && CONST_INT_P (XEXP (note, 0)))
1338 stack_usage_size = INTVAL (XEXP (note, 0));
1339 }
1340 }
1341
1342 /* If the size is not constant, we can't say anything. */
1343 if (stack_usage_size == -1)
1344 {
1345 current_function_has_unbounded_dynamic_stack_size = 1;
1346 stack_usage_size = 0;
1347 }
1348 }
1349
1350 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1351
1352 target = gen_reg_rtx (Pmode);
1353
1354 /* The size is supposed to be fully adjusted at this point so record it
1355 if stack usage info is requested. */
1356 if (flag_stack_usage_info)
1357 {
1358 current_function_dynamic_stack_size += stack_usage_size;
1359
1360 /* ??? This is gross but the only safe stance in the absence
1361 of stack usage oriented flow analysis. */
1362 if (!cannot_accumulate)
1363 current_function_has_unbounded_dynamic_stack_size = 1;
1364 }
1365
1366 do_pending_stack_adjust ();
1367
1368 final_label = NULL;
1369 final_target = NULL_RTX;
1370
1371 /* If we are splitting the stack, we need to ask the backend whether
1372 there is enough room on the current stack. If there isn't, or if
1373 the backend doesn't know how to tell is, then we need to call a
1374 function to allocate memory in some other way. This memory will
1375 be released when we release the current stack segment. The
1376 effect is that stack allocation becomes less efficient, but at
1377 least it doesn't cause a stack overflow. */
1378 if (flag_split_stack)
1379 {
1380 rtx_code_label *available_label;
1381 rtx ask, space, func;
1382
1383 available_label = NULL;
1384
1385 if (targetm.have_split_stack_space_check ())
1386 {
1387 available_label = gen_label_rtx ();
1388
1389 /* This instruction will branch to AVAILABLE_LABEL if there
1390 are SIZE bytes available on the stack. */
1391 emit_insn (targetm.gen_split_stack_space_check
1392 (size, available_label));
1393 }
1394
1395 /* The __morestack_allocate_stack_space function will allocate
1396 memory using malloc. If the alignment of the memory returned
1397 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1398 make sure we allocate enough space. */
1399 if (MALLOC_ABI_ALIGNMENT >= required_align)
1400 ask = size;
1401 else
1402 ask = expand_binop (Pmode, add_optab, size,
1403 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1404 Pmode),
1405 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1406
1407 func = init_one_libfunc ("__morestack_allocate_stack_space");
1408
1409 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1410 1, ask, Pmode);
1411
1412 if (available_label == NULL_RTX)
1413 return space;
1414
1415 final_target = gen_reg_rtx (Pmode);
1416
1417 emit_move_insn (final_target, space);
1418
1419 final_label = gen_label_rtx ();
1420 emit_jump (final_label);
1421
1422 emit_label (available_label);
1423 }
1424
1425 /* We ought to be called always on the toplevel and stack ought to be aligned
1426 properly. */
1427 gcc_assert (!(stack_pointer_delta
1428 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1429
1430 /* If needed, check that we have the required amount of stack. Take into
1431 account what has already been checked. */
1432 if (STACK_CHECK_MOVING_SP)
1433 ;
1434 else if (flag_stack_check == GENERIC_STACK_CHECK)
1435 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1436 size);
1437 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1438 probe_stack_range (STACK_CHECK_PROTECT, size);
1439
1440 /* Don't let anti_adjust_stack emit notes. */
1441 suppress_reg_args_size = true;
1442
1443 /* Perform the required allocation from the stack. Some systems do
1444 this differently than simply incrementing/decrementing from the
1445 stack pointer, such as acquiring the space by calling malloc(). */
1446 if (targetm.have_allocate_stack ())
1447 {
1448 struct expand_operand ops[2];
1449 /* We don't have to check against the predicate for operand 0 since
1450 TARGET is known to be a pseudo of the proper mode, which must
1451 be valid for the operand. */
1452 create_fixed_operand (&ops[0], target);
1453 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1454 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1455 }
1456 else
1457 {
1458 int saved_stack_pointer_delta;
1459
1460 if (!STACK_GROWS_DOWNWARD)
1461 emit_move_insn (target, virtual_stack_dynamic_rtx);
1462
1463 /* Check stack bounds if necessary. */
1464 if (crtl->limit_stack)
1465 {
1466 rtx available;
1467 rtx_code_label *space_available = gen_label_rtx ();
1468 if (STACK_GROWS_DOWNWARD)
1469 available = expand_binop (Pmode, sub_optab,
1470 stack_pointer_rtx, stack_limit_rtx,
1471 NULL_RTX, 1, OPTAB_WIDEN);
1472 else
1473 available = expand_binop (Pmode, sub_optab,
1474 stack_limit_rtx, stack_pointer_rtx,
1475 NULL_RTX, 1, OPTAB_WIDEN);
1476
1477 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1478 space_available);
1479 if (targetm.have_trap ())
1480 emit_insn (targetm.gen_trap ());
1481 else
1482 error ("stack limits not supported on this target");
1483 emit_barrier ();
1484 emit_label (space_available);
1485 }
1486
1487 saved_stack_pointer_delta = stack_pointer_delta;
1488
1489 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1490 anti_adjust_stack_and_probe (size, false);
1491 else
1492 anti_adjust_stack (size);
1493
1494 /* Even if size is constant, don't modify stack_pointer_delta.
1495 The constant size alloca should preserve
1496 crtl->preferred_stack_boundary alignment. */
1497 stack_pointer_delta = saved_stack_pointer_delta;
1498
1499 if (STACK_GROWS_DOWNWARD)
1500 emit_move_insn (target, virtual_stack_dynamic_rtx);
1501 }
1502
1503 suppress_reg_args_size = false;
1504
1505 /* Finish up the split stack handling. */
1506 if (final_label != NULL_RTX)
1507 {
1508 gcc_assert (flag_split_stack);
1509 emit_move_insn (final_target, target);
1510 emit_label (final_label);
1511 target = final_target;
1512 }
1513
1514 target = align_dynamic_address (target, required_align);
1515
1516 /* Now that we've committed to a return value, mark its alignment. */
1517 mark_reg_pointer (target, required_align);
1518
1519 /* Record the new stack level. */
1520 record_new_stack_level ();
1521
1522 return target;
1523 }
1524
1525 /* Return an rtx representing the address of an area of memory already
1526 statically pushed onto the stack in the virtual stack vars area. (It is
1527 assumed that the area is allocated in the function prologue.)
1528
1529 Any required stack pointer alignment is preserved.
1530
1531 OFFSET is the offset of the area into the virtual stack vars area.
1532
1533 REQUIRED_ALIGN is the alignment (in bits) required for the region
1534 of memory. */
1535
1536 rtx
1537 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1538 {
1539 rtx target;
1540
1541 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1542 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1543
1544 target = gen_reg_rtx (Pmode);
1545 emit_move_insn (target, virtual_stack_vars_rtx);
1546 target = expand_binop (Pmode, add_optab, target,
1547 gen_int_mode (offset, Pmode),
1548 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1549 target = align_dynamic_address (target, required_align);
1550
1551 /* Now that we've committed to a return value, mark its alignment. */
1552 mark_reg_pointer (target, required_align);
1553
1554 return target;
1555 }
1556 \f
1557 /* A front end may want to override GCC's stack checking by providing a
1558 run-time routine to call to check the stack, so provide a mechanism for
1559 calling that routine. */
1560
1561 static GTY(()) rtx stack_check_libfunc;
1562
1563 void
1564 set_stack_check_libfunc (const char *libfunc_name)
1565 {
1566 gcc_assert (stack_check_libfunc == NULL_RTX);
1567 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1568 }
1569 \f
1570 /* Emit one stack probe at ADDRESS, an address within the stack. */
1571
1572 void
1573 emit_stack_probe (rtx address)
1574 {
1575 if (targetm.have_probe_stack_address ())
1576 emit_insn (targetm.gen_probe_stack_address (address));
1577 else
1578 {
1579 rtx memref = gen_rtx_MEM (word_mode, address);
1580
1581 MEM_VOLATILE_P (memref) = 1;
1582
1583 /* See if we have an insn to probe the stack. */
1584 if (targetm.have_probe_stack ())
1585 emit_insn (targetm.gen_probe_stack (memref));
1586 else
1587 emit_move_insn (memref, const0_rtx);
1588 }
1589 }
1590
1591 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1592 FIRST is a constant and size is a Pmode RTX. These are offsets from
1593 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1594 or subtract them from the stack pointer. */
1595
1596 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1597
1598 #if STACK_GROWS_DOWNWARD
1599 #define STACK_GROW_OP MINUS
1600 #define STACK_GROW_OPTAB sub_optab
1601 #define STACK_GROW_OFF(off) -(off)
1602 #else
1603 #define STACK_GROW_OP PLUS
1604 #define STACK_GROW_OPTAB add_optab
1605 #define STACK_GROW_OFF(off) (off)
1606 #endif
1607
1608 void
1609 probe_stack_range (HOST_WIDE_INT first, rtx size)
1610 {
1611 /* First ensure SIZE is Pmode. */
1612 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1613 size = convert_to_mode (Pmode, size, 1);
1614
1615 /* Next see if we have a function to check the stack. */
1616 if (stack_check_libfunc)
1617 {
1618 rtx addr = memory_address (Pmode,
1619 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1620 stack_pointer_rtx,
1621 plus_constant (Pmode,
1622 size, first)));
1623 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1624 Pmode);
1625 }
1626
1627 /* Next see if we have an insn to check the stack. */
1628 else if (targetm.have_check_stack ())
1629 {
1630 struct expand_operand ops[1];
1631 rtx addr = memory_address (Pmode,
1632 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1633 stack_pointer_rtx,
1634 plus_constant (Pmode,
1635 size, first)));
1636 bool success;
1637 create_input_operand (&ops[0], addr, Pmode);
1638 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1639 gcc_assert (success);
1640 }
1641
1642 /* Otherwise we have to generate explicit probes. If we have a constant
1643 small number of them to generate, that's the easy case. */
1644 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1645 {
1646 HOST_WIDE_INT isize = INTVAL (size), i;
1647 rtx addr;
1648
1649 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1650 it exceeds SIZE. If only one probe is needed, this will not
1651 generate any code. Then probe at FIRST + SIZE. */
1652 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1653 {
1654 addr = memory_address (Pmode,
1655 plus_constant (Pmode, stack_pointer_rtx,
1656 STACK_GROW_OFF (first + i)));
1657 emit_stack_probe (addr);
1658 }
1659
1660 addr = memory_address (Pmode,
1661 plus_constant (Pmode, stack_pointer_rtx,
1662 STACK_GROW_OFF (first + isize)));
1663 emit_stack_probe (addr);
1664 }
1665
1666 /* In the variable case, do the same as above, but in a loop. Note that we
1667 must be extra careful with variables wrapping around because we might be
1668 at the very top (or the very bottom) of the address space and we have to
1669 be able to handle this case properly; in particular, we use an equality
1670 test for the loop condition. */
1671 else
1672 {
1673 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1674 rtx_code_label *loop_lab = gen_label_rtx ();
1675 rtx_code_label *end_lab = gen_label_rtx ();
1676
1677 /* Step 1: round SIZE to the previous multiple of the interval. */
1678
1679 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1680 rounded_size
1681 = simplify_gen_binary (AND, Pmode, size,
1682 gen_int_mode (-PROBE_INTERVAL, Pmode));
1683 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1684
1685
1686 /* Step 2: compute initial and final value of the loop counter. */
1687
1688 /* TEST_ADDR = SP + FIRST. */
1689 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1690 stack_pointer_rtx,
1691 gen_int_mode (first, Pmode)),
1692 NULL_RTX);
1693
1694 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1695 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1696 test_addr,
1697 rounded_size_op), NULL_RTX);
1698
1699
1700 /* Step 3: the loop
1701
1702 while (TEST_ADDR != LAST_ADDR)
1703 {
1704 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1705 probe at TEST_ADDR
1706 }
1707
1708 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1709 until it is equal to ROUNDED_SIZE. */
1710
1711 emit_label (loop_lab);
1712
1713 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1714 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1715 end_lab);
1716
1717 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1718 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1719 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1720 1, OPTAB_WIDEN);
1721
1722 gcc_assert (temp == test_addr);
1723
1724 /* Probe at TEST_ADDR. */
1725 emit_stack_probe (test_addr);
1726
1727 emit_jump (loop_lab);
1728
1729 emit_label (end_lab);
1730
1731
1732 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1733 that SIZE is equal to ROUNDED_SIZE. */
1734
1735 /* TEMP = SIZE - ROUNDED_SIZE. */
1736 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1737 if (temp != const0_rtx)
1738 {
1739 rtx addr;
1740
1741 if (CONST_INT_P (temp))
1742 {
1743 /* Use [base + disp} addressing mode if supported. */
1744 HOST_WIDE_INT offset = INTVAL (temp);
1745 addr = memory_address (Pmode,
1746 plus_constant (Pmode, last_addr,
1747 STACK_GROW_OFF (offset)));
1748 }
1749 else
1750 {
1751 /* Manual CSE if the difference is not known at compile-time. */
1752 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1753 addr = memory_address (Pmode,
1754 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1755 last_addr, temp));
1756 }
1757
1758 emit_stack_probe (addr);
1759 }
1760 }
1761
1762 /* Make sure nothing is scheduled before we are done. */
1763 emit_insn (gen_blockage ());
1764 }
1765
1766 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1767 while probing it. This pushes when SIZE is positive. SIZE need not
1768 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1769 by plus SIZE at the end. */
1770
1771 void
1772 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1773 {
1774 /* We skip the probe for the first interval + a small dope of 4 words and
1775 probe that many bytes past the specified size to maintain a protection
1776 area at the botton of the stack. */
1777 const int dope = 4 * UNITS_PER_WORD;
1778
1779 /* First ensure SIZE is Pmode. */
1780 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1781 size = convert_to_mode (Pmode, size, 1);
1782
1783 /* If we have a constant small number of probes to generate, that's the
1784 easy case. */
1785 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1786 {
1787 HOST_WIDE_INT isize = INTVAL (size), i;
1788 bool first_probe = true;
1789
1790 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1791 values of N from 1 until it exceeds SIZE. If only one probe is
1792 needed, this will not generate any code. Then adjust and probe
1793 to PROBE_INTERVAL + SIZE. */
1794 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1795 {
1796 if (first_probe)
1797 {
1798 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1799 first_probe = false;
1800 }
1801 else
1802 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1803 emit_stack_probe (stack_pointer_rtx);
1804 }
1805
1806 if (first_probe)
1807 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1808 else
1809 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1810 emit_stack_probe (stack_pointer_rtx);
1811 }
1812
1813 /* In the variable case, do the same as above, but in a loop. Note that we
1814 must be extra careful with variables wrapping around because we might be
1815 at the very top (or the very bottom) of the address space and we have to
1816 be able to handle this case properly; in particular, we use an equality
1817 test for the loop condition. */
1818 else
1819 {
1820 rtx rounded_size, rounded_size_op, last_addr, temp;
1821 rtx_code_label *loop_lab = gen_label_rtx ();
1822 rtx_code_label *end_lab = gen_label_rtx ();
1823
1824
1825 /* Step 1: round SIZE to the previous multiple of the interval. */
1826
1827 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1828 rounded_size
1829 = simplify_gen_binary (AND, Pmode, size,
1830 gen_int_mode (-PROBE_INTERVAL, Pmode));
1831 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1832
1833
1834 /* Step 2: compute initial and final value of the loop counter. */
1835
1836 /* SP = SP_0 + PROBE_INTERVAL. */
1837 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1838
1839 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1840 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1841 stack_pointer_rtx,
1842 rounded_size_op), NULL_RTX);
1843
1844
1845 /* Step 3: the loop
1846
1847 while (SP != LAST_ADDR)
1848 {
1849 SP = SP + PROBE_INTERVAL
1850 probe at SP
1851 }
1852
1853 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1854 values of N from 1 until it is equal to ROUNDED_SIZE. */
1855
1856 emit_label (loop_lab);
1857
1858 /* Jump to END_LAB if SP == LAST_ADDR. */
1859 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1860 Pmode, 1, end_lab);
1861
1862 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1863 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1864 emit_stack_probe (stack_pointer_rtx);
1865
1866 emit_jump (loop_lab);
1867
1868 emit_label (end_lab);
1869
1870
1871 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1872 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1873
1874 /* TEMP = SIZE - ROUNDED_SIZE. */
1875 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1876 if (temp != const0_rtx)
1877 {
1878 /* Manual CSE if the difference is not known at compile-time. */
1879 if (GET_CODE (temp) != CONST_INT)
1880 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1881 anti_adjust_stack (temp);
1882 emit_stack_probe (stack_pointer_rtx);
1883 }
1884 }
1885
1886 /* Adjust back and account for the additional first interval. */
1887 if (adjust_back)
1888 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1889 else
1890 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1891 }
1892
1893 /* Return an rtx representing the register or memory location
1894 in which a scalar value of data type VALTYPE
1895 was returned by a function call to function FUNC.
1896 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1897 function is known, otherwise 0.
1898 OUTGOING is 1 if on a machine with register windows this function
1899 should return the register in which the function will put its result
1900 and 0 otherwise. */
1901
1902 rtx
1903 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1904 int outgoing ATTRIBUTE_UNUSED)
1905 {
1906 rtx val;
1907
1908 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1909
1910 if (REG_P (val)
1911 && GET_MODE (val) == BLKmode)
1912 {
1913 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1914 machine_mode tmpmode;
1915
1916 /* int_size_in_bytes can return -1. We don't need a check here
1917 since the value of bytes will then be large enough that no
1918 mode will match anyway. */
1919
1920 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1921 tmpmode != VOIDmode;
1922 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1923 {
1924 /* Have we found a large enough mode? */
1925 if (GET_MODE_SIZE (tmpmode) >= bytes)
1926 break;
1927 }
1928
1929 /* No suitable mode found. */
1930 gcc_assert (tmpmode != VOIDmode);
1931
1932 PUT_MODE (val, tmpmode);
1933 }
1934 return val;
1935 }
1936
1937 /* Return an rtx representing the register or memory location
1938 in which a scalar value of mode MODE was returned by a library call. */
1939
1940 rtx
1941 hard_libcall_value (machine_mode mode, rtx fun)
1942 {
1943 return targetm.calls.libcall_value (mode, fun);
1944 }
1945
1946 /* Look up the tree code for a given rtx code
1947 to provide the arithmetic operation for real_arithmetic.
1948 The function returns an int because the caller may not know
1949 what `enum tree_code' means. */
1950
1951 int
1952 rtx_to_tree_code (enum rtx_code code)
1953 {
1954 enum tree_code tcode;
1955
1956 switch (code)
1957 {
1958 case PLUS:
1959 tcode = PLUS_EXPR;
1960 break;
1961 case MINUS:
1962 tcode = MINUS_EXPR;
1963 break;
1964 case MULT:
1965 tcode = MULT_EXPR;
1966 break;
1967 case DIV:
1968 tcode = RDIV_EXPR;
1969 break;
1970 case SMIN:
1971 tcode = MIN_EXPR;
1972 break;
1973 case SMAX:
1974 tcode = MAX_EXPR;
1975 break;
1976 default:
1977 tcode = LAST_AND_UNUSED_TREE_CODE;
1978 break;
1979 }
1980 return ((int) tcode);
1981 }
1982
1983 #include "gt-explow.h"