re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
56
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
59
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
63 sequences. */
64
65 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
66 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
67
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
71
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
75
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
78 #endif
79
80 /* Reduce conditional compilation elsewhere. */
81 #ifndef HAVE_insv
82 #define HAVE_insv 0
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
85 #endif
86 #ifndef HAVE_extv
87 #define HAVE_extv 0
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
90 #endif
91 #ifndef HAVE_extzv
92 #define HAVE_extzv 0
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
95 #endif
96
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
99 static int zero_cost;
100 static int add_cost[NUM_MACHINE_MODES];
101 static int neg_cost[NUM_MACHINE_MODES];
102 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
103 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int mul_cost[NUM_MACHINE_MODES];
106 static int div_cost[NUM_MACHINE_MODES];
107 static int mul_widen_cost[NUM_MACHINE_MODES];
108 static int mul_highpart_cost[NUM_MACHINE_MODES];
109
110 void
111 init_expmed (void)
112 {
113 struct
114 {
115 struct rtx_def reg; rtunion reg_fld[2];
116 struct rtx_def plus; rtunion plus_fld1;
117 struct rtx_def neg;
118 struct rtx_def udiv; rtunion udiv_fld1;
119 struct rtx_def mult; rtunion mult_fld1;
120 struct rtx_def div; rtunion div_fld1;
121 struct rtx_def mod; rtunion mod_fld1;
122 struct rtx_def zext;
123 struct rtx_def wide_mult; rtunion wide_mult_fld1;
124 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
125 struct rtx_def wide_trunc;
126 struct rtx_def shift; rtunion shift_fld1;
127 struct rtx_def shift_mult; rtunion shift_mult_fld1;
128 struct rtx_def shift_add; rtunion shift_add_fld1;
129 struct rtx_def shift_sub; rtunion shift_sub_fld1;
130 } all;
131
132 rtx pow2[MAX_BITS_PER_WORD];
133 rtx cint[MAX_BITS_PER_WORD];
134 int m, n;
135 enum machine_mode mode, wider_mode;
136
137 zero_cost = rtx_cost (const0_rtx, 0);
138
139 for (m = 1; m < MAX_BITS_PER_WORD; m++)
140 {
141 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
142 cint[m] = GEN_INT (m);
143 }
144
145 memset (&all, 0, sizeof all);
146
147 PUT_CODE (&all.reg, REG);
148 /* Avoid using hard regs in ways which may be unsupported. */
149 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
150
151 PUT_CODE (&all.plus, PLUS);
152 XEXP (&all.plus, 0) = &all.reg;
153 XEXP (&all.plus, 1) = &all.reg;
154
155 PUT_CODE (&all.neg, NEG);
156 XEXP (&all.neg, 0) = &all.reg;
157
158 PUT_CODE (&all.udiv, UDIV);
159 XEXP (&all.udiv, 0) = &all.reg;
160 XEXP (&all.udiv, 1) = &all.reg;
161
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
165
166 PUT_CODE (&all.div, DIV);
167 XEXP (&all.div, 0) = &all.reg;
168 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
169
170 PUT_CODE (&all.mod, MOD);
171 XEXP (&all.mod, 0) = &all.reg;
172 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
173
174 PUT_CODE (&all.zext, ZERO_EXTEND);
175 XEXP (&all.zext, 0) = &all.reg;
176
177 PUT_CODE (&all.wide_mult, MULT);
178 XEXP (&all.wide_mult, 0) = &all.zext;
179 XEXP (&all.wide_mult, 1) = &all.zext;
180
181 PUT_CODE (&all.wide_lshr, LSHIFTRT);
182 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
183
184 PUT_CODE (&all.wide_trunc, TRUNCATE);
185 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
186
187 PUT_CODE (&all.shift, ASHIFT);
188 XEXP (&all.shift, 0) = &all.reg;
189
190 PUT_CODE (&all.shift_mult, MULT);
191 XEXP (&all.shift_mult, 0) = &all.reg;
192
193 PUT_CODE (&all.shift_add, PLUS);
194 XEXP (&all.shift_add, 0) = &all.shift_mult;
195 XEXP (&all.shift_add, 1) = &all.reg;
196
197 PUT_CODE (&all.shift_sub, MINUS);
198 XEXP (&all.shift_sub, 0) = &all.shift_mult;
199 XEXP (&all.shift_sub, 1) = &all.reg;
200
201 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
202 mode != VOIDmode;
203 mode = GET_MODE_WIDER_MODE (mode))
204 {
205 PUT_MODE (&all.reg, mode);
206 PUT_MODE (&all.plus, mode);
207 PUT_MODE (&all.neg, mode);
208 PUT_MODE (&all.udiv, mode);
209 PUT_MODE (&all.mult, mode);
210 PUT_MODE (&all.div, mode);
211 PUT_MODE (&all.mod, mode);
212 PUT_MODE (&all.wide_trunc, mode);
213 PUT_MODE (&all.shift, mode);
214 PUT_MODE (&all.shift_mult, mode);
215 PUT_MODE (&all.shift_add, mode);
216 PUT_MODE (&all.shift_sub, mode);
217
218 add_cost[mode] = rtx_cost (&all.plus, SET);
219 neg_cost[mode] = rtx_cost (&all.neg, SET);
220 div_cost[mode] = rtx_cost (&all.udiv, SET);
221 mul_cost[mode] = rtx_cost (&all.mult, SET);
222
223 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
224 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
225
226 wider_mode = GET_MODE_WIDER_MODE (mode);
227 if (wider_mode != VOIDmode)
228 {
229 PUT_MODE (&all.zext, wider_mode);
230 PUT_MODE (&all.wide_mult, wider_mode);
231 PUT_MODE (&all.wide_lshr, wider_mode);
232 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
233
234 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
235 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
236 }
237
238 shift_cost[mode][0] = 0;
239 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
240
241 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
242 for (m = 1; m < n; m++)
243 {
244 XEXP (&all.shift, 1) = cint[m];
245 XEXP (&all.shift_mult, 1) = pow2[m];
246
247 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
248 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
249 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
250 }
251 }
252 }
253
254 /* Return an rtx representing minus the value of X.
255 MODE is the intended mode of the result,
256 useful if X is a CONST_INT. */
257
258 rtx
259 negate_rtx (enum machine_mode mode, rtx x)
260 {
261 rtx result = simplify_unary_operation (NEG, mode, x, mode);
262
263 if (result == 0)
264 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
265
266 return result;
267 }
268
269 /* Report on the availability of insv/extv/extzv and the desired mode
270 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
271 is false; else the mode of the specified operand. If OPNO is -1,
272 all the caller cares about is whether the insn is available. */
273 enum machine_mode
274 mode_for_extraction (enum extraction_pattern pattern, int opno)
275 {
276 const struct insn_data *data;
277
278 switch (pattern)
279 {
280 case EP_insv:
281 if (HAVE_insv)
282 {
283 data = &insn_data[CODE_FOR_insv];
284 break;
285 }
286 return MAX_MACHINE_MODE;
287
288 case EP_extv:
289 if (HAVE_extv)
290 {
291 data = &insn_data[CODE_FOR_extv];
292 break;
293 }
294 return MAX_MACHINE_MODE;
295
296 case EP_extzv:
297 if (HAVE_extzv)
298 {
299 data = &insn_data[CODE_FOR_extzv];
300 break;
301 }
302 return MAX_MACHINE_MODE;
303
304 default:
305 gcc_unreachable ();
306 }
307
308 if (opno == -1)
309 return VOIDmode;
310
311 /* Everyone who uses this function used to follow it with
312 if (result == VOIDmode) result = word_mode; */
313 if (data->operand[opno].mode == VOIDmode)
314 return word_mode;
315 return data->operand[opno].mode;
316 }
317
318 \f
319 /* Generate code to store value from rtx VALUE
320 into a bit-field within structure STR_RTX
321 containing BITSIZE bits starting at bit BITNUM.
322 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
323 ALIGN is the alignment that STR_RTX is known to have.
324 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
325
326 /* ??? Note that there are two different ideas here for how
327 to determine the size to count bits within, for a register.
328 One is BITS_PER_WORD, and the other is the size of operand 3
329 of the insv pattern.
330
331 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
332 else, we use the mode of operand 3. */
333
334 rtx
335 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
336 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
337 rtx value)
338 {
339 unsigned int unit
340 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
341 unsigned HOST_WIDE_INT offset, bitpos;
342 rtx op0 = str_rtx;
343 int byte_offset;
344 rtx orig_value;
345
346 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
347
348 while (GET_CODE (op0) == SUBREG)
349 {
350 /* The following line once was done only if WORDS_BIG_ENDIAN,
351 but I think that is a mistake. WORDS_BIG_ENDIAN is
352 meaningful at a much higher level; when structures are copied
353 between memory and regs, the higher-numbered regs
354 always get higher addresses. */
355 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
356 op0 = SUBREG_REG (op0);
357 }
358
359 /* No action is needed if the target is a register and if the field
360 lies completely outside that register. This can occur if the source
361 code contains an out-of-bounds access to a small array. */
362 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
363 return value;
364
365 /* Use vec_set patterns for inserting parts of vectors whenever
366 available. */
367 if (VECTOR_MODE_P (GET_MODE (op0))
368 && !MEM_P (op0)
369 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
370 != CODE_FOR_nothing)
371 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
372 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
373 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
374 {
375 enum machine_mode outermode = GET_MODE (op0);
376 enum machine_mode innermode = GET_MODE_INNER (outermode);
377 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
378 int pos = bitnum / GET_MODE_BITSIZE (innermode);
379 rtx rtxpos = GEN_INT (pos);
380 rtx src = value;
381 rtx dest = op0;
382 rtx pat, seq;
383 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
384 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
385 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
386
387 start_sequence ();
388
389 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
390 src = copy_to_mode_reg (mode1, src);
391
392 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
393 rtxpos = copy_to_mode_reg (mode1, rtxpos);
394
395 /* We could handle this, but we should always be called with a pseudo
396 for our targets and all insns should take them as outputs. */
397 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
398 && (*insn_data[icode].operand[1].predicate) (src, mode1)
399 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
400 pat = GEN_FCN (icode) (dest, src, rtxpos);
401 seq = get_insns ();
402 end_sequence ();
403 if (pat)
404 {
405 emit_insn (seq);
406 emit_insn (pat);
407 return dest;
408 }
409 }
410
411 /* If the target is a register, overwriting the entire object, or storing
412 a full-word or multi-word field can be done with just a SUBREG.
413
414 If the target is memory, storing any naturally aligned field can be
415 done with a simple store. For targets that support fast unaligned
416 memory, any naturally sized, unit aligned field can be done directly. */
417
418 offset = bitnum / unit;
419 bitpos = bitnum % unit;
420 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
421 + (offset * UNITS_PER_WORD);
422
423 if (bitpos == 0
424 && bitsize == GET_MODE_BITSIZE (fieldmode)
425 && (!MEM_P (op0)
426 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
427 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
428 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
429 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
430 || (offset * BITS_PER_UNIT % bitsize == 0
431 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
432 {
433 if (GET_MODE (op0) != fieldmode)
434 {
435 if (MEM_P (op0))
436 op0 = adjust_address (op0, fieldmode, offset);
437 else
438 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
439 byte_offset);
440 }
441 emit_move_insn (op0, value);
442 return value;
443 }
444
445 /* Make sure we are playing with integral modes. Pun with subregs
446 if we aren't. This must come after the entire register case above,
447 since that case is valid for any mode. The following cases are only
448 valid for integral modes. */
449 {
450 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
451 if (imode != GET_MODE (op0))
452 {
453 if (MEM_P (op0))
454 op0 = adjust_address (op0, imode, 0);
455 else
456 {
457 gcc_assert (imode != BLKmode);
458 op0 = gen_lowpart (imode, op0);
459 }
460 }
461 }
462
463 /* We may be accessing data outside the field, which means
464 we can alias adjacent data. */
465 if (MEM_P (op0))
466 {
467 op0 = shallow_copy_rtx (op0);
468 set_mem_alias_set (op0, 0);
469 set_mem_expr (op0, 0);
470 }
471
472 /* If OP0 is a register, BITPOS must count within a word.
473 But as we have it, it counts within whatever size OP0 now has.
474 On a bigendian machine, these are not the same, so convert. */
475 if (BYTES_BIG_ENDIAN
476 && !MEM_P (op0)
477 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
478 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
479
480 /* Storing an lsb-aligned field in a register
481 can be done with a movestrict instruction. */
482
483 if (!MEM_P (op0)
484 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
485 && bitsize == GET_MODE_BITSIZE (fieldmode)
486 && (movstrict_optab->handlers[fieldmode].insn_code
487 != CODE_FOR_nothing))
488 {
489 int icode = movstrict_optab->handlers[fieldmode].insn_code;
490
491 /* Get appropriate low part of the value being stored. */
492 if (GET_CODE (value) == CONST_INT || REG_P (value))
493 value = gen_lowpart (fieldmode, value);
494 else if (!(GET_CODE (value) == SYMBOL_REF
495 || GET_CODE (value) == LABEL_REF
496 || GET_CODE (value) == CONST))
497 value = convert_to_mode (fieldmode, value, 0);
498
499 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
500 value = copy_to_mode_reg (fieldmode, value);
501
502 if (GET_CODE (op0) == SUBREG)
503 {
504 /* Else we've got some float mode source being extracted into
505 a different float mode destination -- this combination of
506 subregs results in Severe Tire Damage. */
507 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
508 || GET_MODE_CLASS (fieldmode) == MODE_INT
509 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
510 op0 = SUBREG_REG (op0);
511 }
512
513 emit_insn (GEN_FCN (icode)
514 (gen_rtx_SUBREG (fieldmode, op0,
515 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
516 + (offset * UNITS_PER_WORD)),
517 value));
518
519 return value;
520 }
521
522 /* Handle fields bigger than a word. */
523
524 if (bitsize > BITS_PER_WORD)
525 {
526 /* Here we transfer the words of the field
527 in the order least significant first.
528 This is because the most significant word is the one which may
529 be less than full.
530 However, only do that if the value is not BLKmode. */
531
532 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
533 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
534 unsigned int i;
535
536 /* This is the mode we must force value to, so that there will be enough
537 subwords to extract. Note that fieldmode will often (always?) be
538 VOIDmode, because that is what store_field uses to indicate that this
539 is a bit field, but passing VOIDmode to operand_subword_force
540 is not allowed. */
541 fieldmode = GET_MODE (value);
542 if (fieldmode == VOIDmode)
543 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
544
545 for (i = 0; i < nwords; i++)
546 {
547 /* If I is 0, use the low-order word in both field and target;
548 if I is 1, use the next to lowest word; and so on. */
549 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
550 unsigned int bit_offset = (backwards
551 ? MAX ((int) bitsize - ((int) i + 1)
552 * BITS_PER_WORD,
553 0)
554 : (int) i * BITS_PER_WORD);
555
556 store_bit_field (op0, MIN (BITS_PER_WORD,
557 bitsize - i * BITS_PER_WORD),
558 bitnum + bit_offset, word_mode,
559 operand_subword_force (value, wordnum, fieldmode));
560 }
561 return value;
562 }
563
564 /* From here on we can assume that the field to be stored in is
565 a full-word (whatever type that is), since it is shorter than a word. */
566
567 /* OFFSET is the number of words or bytes (UNIT says which)
568 from STR_RTX to the first word or byte containing part of the field. */
569
570 if (!MEM_P (op0))
571 {
572 if (offset != 0
573 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
574 {
575 if (!REG_P (op0))
576 {
577 /* Since this is a destination (lvalue), we can't copy
578 it to a pseudo. We can remove a SUBREG that does not
579 change the size of the operand. Such a SUBREG may
580 have been added above. */
581 gcc_assert (GET_CODE (op0) == SUBREG
582 && (GET_MODE_SIZE (GET_MODE (op0))
583 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
584 op0 = SUBREG_REG (op0);
585 }
586 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
587 op0, (offset * UNITS_PER_WORD));
588 }
589 offset = 0;
590 }
591
592 /* If VALUE has a floating-point or complex mode, access it as an
593 integer of the corresponding size. This can occur on a machine
594 with 64 bit registers that uses SFmode for float. It can also
595 occur for unaligned float or complex fields. */
596 orig_value = value;
597 if (GET_MODE (value) != VOIDmode
598 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
599 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
600 {
601 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
602 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
603 }
604
605 /* Now OFFSET is nonzero only if OP0 is memory
606 and is therefore always measured in bytes. */
607
608 if (HAVE_insv
609 && GET_MODE (value) != BLKmode
610 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
611 && bitsize > 0
612 && GET_MODE_BITSIZE (op_mode) >= bitsize
613 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
614 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
615 {
616 int xbitpos = bitpos;
617 rtx value1;
618 rtx xop0 = op0;
619 rtx last = get_last_insn ();
620 rtx pat;
621 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
622 int save_volatile_ok = volatile_ok;
623
624 volatile_ok = 1;
625
626 /* If this machine's insv can only insert into a register, copy OP0
627 into a register and save it back later. */
628 if (MEM_P (op0)
629 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
630 (op0, VOIDmode)))
631 {
632 rtx tempreg;
633 enum machine_mode bestmode;
634
635 /* Get the mode to use for inserting into this field. If OP0 is
636 BLKmode, get the smallest mode consistent with the alignment. If
637 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
638 mode. Otherwise, use the smallest mode containing the field. */
639
640 if (GET_MODE (op0) == BLKmode
641 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
642 bestmode
643 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
644 MEM_VOLATILE_P (op0));
645 else
646 bestmode = GET_MODE (op0);
647
648 if (bestmode == VOIDmode
649 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
650 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
651 goto insv_loses;
652
653 /* Adjust address to point to the containing unit of that mode.
654 Compute offset as multiple of this unit, counting in bytes. */
655 unit = GET_MODE_BITSIZE (bestmode);
656 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
657 bitpos = bitnum % unit;
658 op0 = adjust_address (op0, bestmode, offset);
659
660 /* Fetch that unit, store the bitfield in it, then store
661 the unit. */
662 tempreg = copy_to_reg (op0);
663 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
664 emit_move_insn (op0, tempreg);
665 return value;
666 }
667 volatile_ok = save_volatile_ok;
668
669 /* Add OFFSET into OP0's address. */
670 if (MEM_P (xop0))
671 xop0 = adjust_address (xop0, byte_mode, offset);
672
673 /* If xop0 is a register, we need it in MAXMODE
674 to make it acceptable to the format of insv. */
675 if (GET_CODE (xop0) == SUBREG)
676 /* We can't just change the mode, because this might clobber op0,
677 and we will need the original value of op0 if insv fails. */
678 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
679 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
680 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
681
682 /* On big-endian machines, we count bits from the most significant.
683 If the bit field insn does not, we must invert. */
684
685 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
686 xbitpos = unit - bitsize - xbitpos;
687
688 /* We have been counting XBITPOS within UNIT.
689 Count instead within the size of the register. */
690 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
691 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
692
693 unit = GET_MODE_BITSIZE (maxmode);
694
695 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
696 value1 = value;
697 if (GET_MODE (value) != maxmode)
698 {
699 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
700 {
701 /* Optimization: Don't bother really extending VALUE
702 if it has all the bits we will actually use. However,
703 if we must narrow it, be sure we do it correctly. */
704
705 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
706 {
707 rtx tmp;
708
709 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
710 if (! tmp)
711 tmp = simplify_gen_subreg (maxmode,
712 force_reg (GET_MODE (value),
713 value1),
714 GET_MODE (value), 0);
715 value1 = tmp;
716 }
717 else
718 value1 = gen_lowpart (maxmode, value1);
719 }
720 else if (GET_CODE (value) == CONST_INT)
721 value1 = gen_int_mode (INTVAL (value), maxmode);
722 else
723 /* Parse phase is supposed to make VALUE's data type
724 match that of the component reference, which is a type
725 at least as wide as the field; so VALUE should have
726 a mode that corresponds to that type. */
727 gcc_assert (CONSTANT_P (value));
728 }
729
730 /* If this machine's insv insists on a register,
731 get VALUE1 into a register. */
732 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
733 (value1, maxmode)))
734 value1 = force_reg (maxmode, value1);
735
736 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
737 if (pat)
738 emit_insn (pat);
739 else
740 {
741 delete_insns_since (last);
742 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
743 }
744 }
745 else
746 insv_loses:
747 /* Insv is not available; store using shifts and boolean ops. */
748 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
749 return value;
750 }
751 \f
752 /* Use shifts and boolean operations to store VALUE
753 into a bit field of width BITSIZE
754 in a memory location specified by OP0 except offset by OFFSET bytes.
755 (OFFSET must be 0 if OP0 is a register.)
756 The field starts at position BITPOS within the byte.
757 (If OP0 is a register, it may be a full word or a narrower mode,
758 but BITPOS still counts within a full word,
759 which is significant on bigendian machines.) */
760
761 static void
762 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
763 unsigned HOST_WIDE_INT bitsize,
764 unsigned HOST_WIDE_INT bitpos, rtx value)
765 {
766 enum machine_mode mode;
767 unsigned int total_bits = BITS_PER_WORD;
768 rtx subtarget, temp;
769 int all_zero = 0;
770 int all_one = 0;
771
772 /* There is a case not handled here:
773 a structure with a known alignment of just a halfword
774 and a field split across two aligned halfwords within the structure.
775 Or likewise a structure with a known alignment of just a byte
776 and a field split across two bytes.
777 Such cases are not supposed to be able to occur. */
778
779 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
780 {
781 gcc_assert (!offset);
782 /* Special treatment for a bit field split across two registers. */
783 if (bitsize + bitpos > BITS_PER_WORD)
784 {
785 store_split_bit_field (op0, bitsize, bitpos, value);
786 return;
787 }
788 }
789 else
790 {
791 /* Get the proper mode to use for this field. We want a mode that
792 includes the entire field. If such a mode would be larger than
793 a word, we won't be doing the extraction the normal way.
794 We don't want a mode bigger than the destination. */
795
796 mode = GET_MODE (op0);
797 if (GET_MODE_BITSIZE (mode) == 0
798 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
799 mode = word_mode;
800 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
801 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
802
803 if (mode == VOIDmode)
804 {
805 /* The only way this should occur is if the field spans word
806 boundaries. */
807 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
808 value);
809 return;
810 }
811
812 total_bits = GET_MODE_BITSIZE (mode);
813
814 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
815 be in the range 0 to total_bits-1, and put any excess bytes in
816 OFFSET. */
817 if (bitpos >= total_bits)
818 {
819 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
820 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
821 * BITS_PER_UNIT);
822 }
823
824 /* Get ref to an aligned byte, halfword, or word containing the field.
825 Adjust BITPOS to be position within a word,
826 and OFFSET to be the offset of that word.
827 Then alter OP0 to refer to that word. */
828 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
829 offset -= (offset % (total_bits / BITS_PER_UNIT));
830 op0 = adjust_address (op0, mode, offset);
831 }
832
833 mode = GET_MODE (op0);
834
835 /* Now MODE is either some integral mode for a MEM as OP0,
836 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
837 The bit field is contained entirely within OP0.
838 BITPOS is the starting bit number within OP0.
839 (OP0's mode may actually be narrower than MODE.) */
840
841 if (BYTES_BIG_ENDIAN)
842 /* BITPOS is the distance between our msb
843 and that of the containing datum.
844 Convert it to the distance from the lsb. */
845 bitpos = total_bits - bitsize - bitpos;
846
847 /* Now BITPOS is always the distance between our lsb
848 and that of OP0. */
849
850 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
851 we must first convert its mode to MODE. */
852
853 if (GET_CODE (value) == CONST_INT)
854 {
855 HOST_WIDE_INT v = INTVAL (value);
856
857 if (bitsize < HOST_BITS_PER_WIDE_INT)
858 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
859
860 if (v == 0)
861 all_zero = 1;
862 else if ((bitsize < HOST_BITS_PER_WIDE_INT
863 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
864 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
865 all_one = 1;
866
867 value = lshift_value (mode, value, bitpos, bitsize);
868 }
869 else
870 {
871 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
872 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
873
874 if (GET_MODE (value) != mode)
875 {
876 if ((REG_P (value) || GET_CODE (value) == SUBREG)
877 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
878 value = gen_lowpart (mode, value);
879 else
880 value = convert_to_mode (mode, value, 1);
881 }
882
883 if (must_and)
884 value = expand_binop (mode, and_optab, value,
885 mask_rtx (mode, 0, bitsize, 0),
886 NULL_RTX, 1, OPTAB_LIB_WIDEN);
887 if (bitpos > 0)
888 value = expand_shift (LSHIFT_EXPR, mode, value,
889 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
890 }
891
892 /* Now clear the chosen bits in OP0,
893 except that if VALUE is -1 we need not bother. */
894
895 subtarget = op0;
896
897 if (! all_one)
898 {
899 temp = expand_binop (mode, and_optab, op0,
900 mask_rtx (mode, bitpos, bitsize, 1),
901 subtarget, 1, OPTAB_LIB_WIDEN);
902 subtarget = temp;
903 }
904 else
905 temp = op0;
906
907 /* Now logical-or VALUE into OP0, unless it is zero. */
908
909 if (! all_zero)
910 temp = expand_binop (mode, ior_optab, temp, value,
911 subtarget, 1, OPTAB_LIB_WIDEN);
912 if (op0 != temp)
913 emit_move_insn (op0, temp);
914 }
915 \f
916 /* Store a bit field that is split across multiple accessible memory objects.
917
918 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
919 BITSIZE is the field width; BITPOS the position of its first bit
920 (within the word).
921 VALUE is the value to store.
922
923 This does not yet handle fields wider than BITS_PER_WORD. */
924
925 static void
926 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
927 unsigned HOST_WIDE_INT bitpos, rtx value)
928 {
929 unsigned int unit;
930 unsigned int bitsdone = 0;
931
932 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
933 much at a time. */
934 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
935 unit = BITS_PER_WORD;
936 else
937 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
938
939 /* If VALUE is a constant other than a CONST_INT, get it into a register in
940 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
941 that VALUE might be a floating-point constant. */
942 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
943 {
944 rtx word = gen_lowpart_common (word_mode, value);
945
946 if (word && (value != word))
947 value = word;
948 else
949 value = gen_lowpart_common (word_mode,
950 force_reg (GET_MODE (value) != VOIDmode
951 ? GET_MODE (value)
952 : word_mode, value));
953 }
954
955 while (bitsdone < bitsize)
956 {
957 unsigned HOST_WIDE_INT thissize;
958 rtx part, word;
959 unsigned HOST_WIDE_INT thispos;
960 unsigned HOST_WIDE_INT offset;
961
962 offset = (bitpos + bitsdone) / unit;
963 thispos = (bitpos + bitsdone) % unit;
964
965 /* THISSIZE must not overrun a word boundary. Otherwise,
966 store_fixed_bit_field will call us again, and we will mutually
967 recurse forever. */
968 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
969 thissize = MIN (thissize, unit - thispos);
970
971 if (BYTES_BIG_ENDIAN)
972 {
973 int total_bits;
974
975 /* We must do an endian conversion exactly the same way as it is
976 done in extract_bit_field, so that the two calls to
977 extract_fixed_bit_field will have comparable arguments. */
978 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
979 total_bits = BITS_PER_WORD;
980 else
981 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
982
983 /* Fetch successively less significant portions. */
984 if (GET_CODE (value) == CONST_INT)
985 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
986 >> (bitsize - bitsdone - thissize))
987 & (((HOST_WIDE_INT) 1 << thissize) - 1));
988 else
989 /* The args are chosen so that the last part includes the
990 lsb. Give extract_bit_field the value it needs (with
991 endianness compensation) to fetch the piece we want. */
992 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
993 total_bits - bitsize + bitsdone,
994 NULL_RTX, 1);
995 }
996 else
997 {
998 /* Fetch successively more significant portions. */
999 if (GET_CODE (value) == CONST_INT)
1000 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1001 >> bitsdone)
1002 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1003 else
1004 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1005 bitsdone, NULL_RTX, 1);
1006 }
1007
1008 /* If OP0 is a register, then handle OFFSET here.
1009
1010 When handling multiword bitfields, extract_bit_field may pass
1011 down a word_mode SUBREG of a larger REG for a bitfield that actually
1012 crosses a word boundary. Thus, for a SUBREG, we must find
1013 the current word starting from the base register. */
1014 if (GET_CODE (op0) == SUBREG)
1015 {
1016 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1017 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1018 GET_MODE (SUBREG_REG (op0)));
1019 offset = 0;
1020 }
1021 else if (REG_P (op0))
1022 {
1023 word = operand_subword_force (op0, offset, GET_MODE (op0));
1024 offset = 0;
1025 }
1026 else
1027 word = op0;
1028
1029 /* OFFSET is in UNITs, and UNIT is in bits.
1030 store_fixed_bit_field wants offset in bytes. */
1031 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1032 thispos, part);
1033 bitsdone += thissize;
1034 }
1035 }
1036 \f
1037 /* Generate code to extract a byte-field from STR_RTX
1038 containing BITSIZE bits, starting at BITNUM,
1039 and put it in TARGET if possible (if TARGET is nonzero).
1040 Regardless of TARGET, we return the rtx for where the value is placed.
1041
1042 STR_RTX is the structure containing the byte (a REG or MEM).
1043 UNSIGNEDP is nonzero if this is an unsigned bit field.
1044 MODE is the natural mode of the field value once extracted.
1045 TMODE is the mode the caller would like the value to have;
1046 but the value may be returned with type MODE instead.
1047
1048 TOTAL_SIZE is the size in bytes of the containing structure,
1049 or -1 if varying.
1050
1051 If a TARGET is specified and we can store in it at no extra cost,
1052 we do so, and return TARGET.
1053 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1054 if they are equally easy. */
1055
1056 rtx
1057 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1058 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1059 enum machine_mode mode, enum machine_mode tmode)
1060 {
1061 unsigned int unit
1062 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1063 unsigned HOST_WIDE_INT offset, bitpos;
1064 rtx op0 = str_rtx;
1065 rtx spec_target = target;
1066 rtx spec_target_subreg = 0;
1067 enum machine_mode int_mode;
1068 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1069 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1070 enum machine_mode mode1;
1071 int byte_offset;
1072
1073 if (tmode == VOIDmode)
1074 tmode = mode;
1075
1076 while (GET_CODE (op0) == SUBREG)
1077 {
1078 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1079 op0 = SUBREG_REG (op0);
1080 }
1081
1082 /* If we have an out-of-bounds access to a register, just return an
1083 uninitialized register of the required mode. This can occur if the
1084 source code contains an out-of-bounds access to a small array. */
1085 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1086 return gen_reg_rtx (tmode);
1087
1088 if (REG_P (op0)
1089 && mode == GET_MODE (op0)
1090 && bitnum == 0
1091 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1092 {
1093 /* We're trying to extract a full register from itself. */
1094 return op0;
1095 }
1096
1097 /* Use vec_extract patterns for extracting parts of vectors whenever
1098 available. */
1099 if (VECTOR_MODE_P (GET_MODE (op0))
1100 && !MEM_P (op0)
1101 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1102 != CODE_FOR_nothing)
1103 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1104 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1105 {
1106 enum machine_mode outermode = GET_MODE (op0);
1107 enum machine_mode innermode = GET_MODE_INNER (outermode);
1108 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1109 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1110 rtx rtxpos = GEN_INT (pos);
1111 rtx src = op0;
1112 rtx dest = NULL, pat, seq;
1113 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1114 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1115 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1116
1117 if (innermode == tmode || innermode == mode)
1118 dest = target;
1119
1120 if (!dest)
1121 dest = gen_reg_rtx (innermode);
1122
1123 start_sequence ();
1124
1125 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1126 dest = copy_to_mode_reg (mode0, dest);
1127
1128 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1129 src = copy_to_mode_reg (mode1, src);
1130
1131 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1132 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1133
1134 /* We could handle this, but we should always be called with a pseudo
1135 for our targets and all insns should take them as outputs. */
1136 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1137 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1138 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1139
1140 pat = GEN_FCN (icode) (dest, src, rtxpos);
1141 seq = get_insns ();
1142 end_sequence ();
1143 if (pat)
1144 {
1145 emit_insn (seq);
1146 emit_insn (pat);
1147 return dest;
1148 }
1149 }
1150
1151 /* Make sure we are playing with integral modes. Pun with subregs
1152 if we aren't. */
1153 {
1154 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1155 if (imode != GET_MODE (op0))
1156 {
1157 if (MEM_P (op0))
1158 op0 = adjust_address (op0, imode, 0);
1159 else
1160 {
1161 gcc_assert (imode != BLKmode);
1162 op0 = gen_lowpart (imode, op0);
1163
1164 /* If we got a SUBREG, force it into a register since we
1165 aren't going to be able to do another SUBREG on it. */
1166 if (GET_CODE (op0) == SUBREG)
1167 op0 = force_reg (imode, op0);
1168 }
1169 }
1170 }
1171
1172 /* We may be accessing data outside the field, which means
1173 we can alias adjacent data. */
1174 if (MEM_P (op0))
1175 {
1176 op0 = shallow_copy_rtx (op0);
1177 set_mem_alias_set (op0, 0);
1178 set_mem_expr (op0, 0);
1179 }
1180
1181 /* Extraction of a full-word or multi-word value from a structure
1182 in a register or aligned memory can be done with just a SUBREG.
1183 A subword value in the least significant part of a register
1184 can also be extracted with a SUBREG. For this, we need the
1185 byte offset of the value in op0. */
1186
1187 bitpos = bitnum % unit;
1188 offset = bitnum / unit;
1189 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1190
1191 /* If OP0 is a register, BITPOS must count within a word.
1192 But as we have it, it counts within whatever size OP0 now has.
1193 On a bigendian machine, these are not the same, so convert. */
1194 if (BYTES_BIG_ENDIAN
1195 && !MEM_P (op0)
1196 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1197 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1198
1199 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1200 If that's wrong, the solution is to test for it and set TARGET to 0
1201 if needed. */
1202
1203 /* Only scalar integer modes can be converted via subregs. There is an
1204 additional problem for FP modes here in that they can have a precision
1205 which is different from the size. mode_for_size uses precision, but
1206 we want a mode based on the size, so we must avoid calling it for FP
1207 modes. */
1208 mode1 = (SCALAR_INT_MODE_P (tmode)
1209 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1210 : mode);
1211
1212 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1213 && bitpos % BITS_PER_WORD == 0)
1214 || (mode1 != BLKmode
1215 /* ??? The big endian test here is wrong. This is correct
1216 if the value is in a register, and if mode_for_size is not
1217 the same mode as op0. This causes us to get unnecessarily
1218 inefficient code from the Thumb port when -mbig-endian. */
1219 && (BYTES_BIG_ENDIAN
1220 ? bitpos + bitsize == BITS_PER_WORD
1221 : bitpos == 0)))
1222 && ((!MEM_P (op0)
1223 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1224 GET_MODE_BITSIZE (GET_MODE (op0)))
1225 && GET_MODE_SIZE (mode1) != 0
1226 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1227 || (MEM_P (op0)
1228 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1229 || (offset * BITS_PER_UNIT % bitsize == 0
1230 && MEM_ALIGN (op0) % bitsize == 0)))))
1231 {
1232 if (mode1 != GET_MODE (op0))
1233 {
1234 if (MEM_P (op0))
1235 op0 = adjust_address (op0, mode1, offset);
1236 else
1237 {
1238 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1239 byte_offset);
1240 if (sub == NULL)
1241 goto no_subreg_mode_swap;
1242 op0 = sub;
1243 }
1244 }
1245 if (mode1 != mode)
1246 return convert_to_mode (tmode, op0, unsignedp);
1247 return op0;
1248 }
1249 no_subreg_mode_swap:
1250
1251 /* Handle fields bigger than a word. */
1252
1253 if (bitsize > BITS_PER_WORD)
1254 {
1255 /* Here we transfer the words of the field
1256 in the order least significant first.
1257 This is because the most significant word is the one which may
1258 be less than full. */
1259
1260 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1261 unsigned int i;
1262
1263 if (target == 0 || !REG_P (target))
1264 target = gen_reg_rtx (mode);
1265
1266 /* Indicate for flow that the entire target reg is being set. */
1267 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1268
1269 for (i = 0; i < nwords; i++)
1270 {
1271 /* If I is 0, use the low-order word in both field and target;
1272 if I is 1, use the next to lowest word; and so on. */
1273 /* Word number in TARGET to use. */
1274 unsigned int wordnum
1275 = (WORDS_BIG_ENDIAN
1276 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1277 : i);
1278 /* Offset from start of field in OP0. */
1279 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1280 ? MAX (0, ((int) bitsize - ((int) i + 1)
1281 * (int) BITS_PER_WORD))
1282 : (int) i * BITS_PER_WORD);
1283 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1284 rtx result_part
1285 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1286 bitsize - i * BITS_PER_WORD),
1287 bitnum + bit_offset, 1, target_part, mode,
1288 word_mode);
1289
1290 gcc_assert (target_part);
1291
1292 if (result_part != target_part)
1293 emit_move_insn (target_part, result_part);
1294 }
1295
1296 if (unsignedp)
1297 {
1298 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1299 need to be zero'd out. */
1300 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1301 {
1302 unsigned int i, total_words;
1303
1304 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1305 for (i = nwords; i < total_words; i++)
1306 emit_move_insn
1307 (operand_subword (target,
1308 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1309 1, VOIDmode),
1310 const0_rtx);
1311 }
1312 return target;
1313 }
1314
1315 /* Signed bit field: sign-extend with two arithmetic shifts. */
1316 target = expand_shift (LSHIFT_EXPR, mode, target,
1317 build_int_cst (NULL_TREE,
1318 GET_MODE_BITSIZE (mode) - bitsize),
1319 NULL_RTX, 0);
1320 return expand_shift (RSHIFT_EXPR, mode, target,
1321 build_int_cst (NULL_TREE,
1322 GET_MODE_BITSIZE (mode) - bitsize),
1323 NULL_RTX, 0);
1324 }
1325
1326 /* From here on we know the desired field is smaller than a word. */
1327
1328 /* Check if there is a correspondingly-sized integer field, so we can
1329 safely extract it as one size of integer, if necessary; then
1330 truncate or extend to the size that is wanted; then use SUBREGs or
1331 convert_to_mode to get one of the modes we really wanted. */
1332
1333 int_mode = int_mode_for_mode (tmode);
1334 if (int_mode == BLKmode)
1335 int_mode = int_mode_for_mode (mode);
1336 /* Should probably push op0 out to memory and then do a load. */
1337 gcc_assert (int_mode != BLKmode);
1338
1339 /* OFFSET is the number of words or bytes (UNIT says which)
1340 from STR_RTX to the first word or byte containing part of the field. */
1341 if (!MEM_P (op0))
1342 {
1343 if (offset != 0
1344 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1345 {
1346 if (!REG_P (op0))
1347 op0 = copy_to_reg (op0);
1348 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1349 op0, (offset * UNITS_PER_WORD));
1350 }
1351 offset = 0;
1352 }
1353
1354 /* Now OFFSET is nonzero only for memory operands. */
1355
1356 if (unsignedp)
1357 {
1358 if (HAVE_extzv
1359 && bitsize > 0
1360 && GET_MODE_BITSIZE (extzv_mode) >= bitsize
1361 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1362 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1363 {
1364 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1365 rtx bitsize_rtx, bitpos_rtx;
1366 rtx last = get_last_insn ();
1367 rtx xop0 = op0;
1368 rtx xtarget = target;
1369 rtx xspec_target = spec_target;
1370 rtx xspec_target_subreg = spec_target_subreg;
1371 rtx pat;
1372 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1373
1374 if (MEM_P (xop0))
1375 {
1376 int save_volatile_ok = volatile_ok;
1377 volatile_ok = 1;
1378
1379 /* Is the memory operand acceptable? */
1380 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1381 (xop0, GET_MODE (xop0))))
1382 {
1383 /* No, load into a reg and extract from there. */
1384 enum machine_mode bestmode;
1385
1386 /* Get the mode to use for inserting into this field. If
1387 OP0 is BLKmode, get the smallest mode consistent with the
1388 alignment. If OP0 is a non-BLKmode object that is no
1389 wider than MAXMODE, use its mode. Otherwise, use the
1390 smallest mode containing the field. */
1391
1392 if (GET_MODE (xop0) == BLKmode
1393 || (GET_MODE_SIZE (GET_MODE (op0))
1394 > GET_MODE_SIZE (maxmode)))
1395 bestmode = get_best_mode (bitsize, bitnum,
1396 MEM_ALIGN (xop0), maxmode,
1397 MEM_VOLATILE_P (xop0));
1398 else
1399 bestmode = GET_MODE (xop0);
1400
1401 if (bestmode == VOIDmode
1402 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1403 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1404 goto extzv_loses;
1405
1406 /* Compute offset as multiple of this unit,
1407 counting in bytes. */
1408 unit = GET_MODE_BITSIZE (bestmode);
1409 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1410 xbitpos = bitnum % unit;
1411 xop0 = adjust_address (xop0, bestmode, xoffset);
1412
1413 /* Fetch it to a register in that size. */
1414 xop0 = force_reg (bestmode, xop0);
1415
1416 /* XBITPOS counts within UNIT, which is what is expected. */
1417 }
1418 else
1419 /* Get ref to first byte containing part of the field. */
1420 xop0 = adjust_address (xop0, byte_mode, xoffset);
1421
1422 volatile_ok = save_volatile_ok;
1423 }
1424
1425 /* If op0 is a register, we need it in MAXMODE (which is usually
1426 SImode). to make it acceptable to the format of extzv. */
1427 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1428 goto extzv_loses;
1429 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1430 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1431
1432 /* On big-endian machines, we count bits from the most significant.
1433 If the bit field insn does not, we must invert. */
1434 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1435 xbitpos = unit - bitsize - xbitpos;
1436
1437 /* Now convert from counting within UNIT to counting in MAXMODE. */
1438 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1439 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1440
1441 unit = GET_MODE_BITSIZE (maxmode);
1442
1443 if (xtarget == 0)
1444 xtarget = xspec_target = gen_reg_rtx (tmode);
1445
1446 if (GET_MODE (xtarget) != maxmode)
1447 {
1448 if (REG_P (xtarget))
1449 {
1450 int wider = (GET_MODE_SIZE (maxmode)
1451 > GET_MODE_SIZE (GET_MODE (xtarget)));
1452 xtarget = gen_lowpart (maxmode, xtarget);
1453 if (wider)
1454 xspec_target_subreg = xtarget;
1455 }
1456 else
1457 xtarget = gen_reg_rtx (maxmode);
1458 }
1459
1460 /* If this machine's extzv insists on a register target,
1461 make sure we have one. */
1462 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1463 (xtarget, maxmode)))
1464 xtarget = gen_reg_rtx (maxmode);
1465
1466 bitsize_rtx = GEN_INT (bitsize);
1467 bitpos_rtx = GEN_INT (xbitpos);
1468
1469 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1470 if (pat)
1471 {
1472 emit_insn (pat);
1473 target = xtarget;
1474 spec_target = xspec_target;
1475 spec_target_subreg = xspec_target_subreg;
1476 }
1477 else
1478 {
1479 delete_insns_since (last);
1480 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1481 bitpos, target, 1);
1482 }
1483 }
1484 else
1485 extzv_loses:
1486 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1487 bitpos, target, 1);
1488 }
1489 else
1490 {
1491 if (HAVE_extv
1492 && bitsize > 0
1493 && GET_MODE_BITSIZE (extv_mode) >= bitsize
1494 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1495 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1496 {
1497 int xbitpos = bitpos, xoffset = offset;
1498 rtx bitsize_rtx, bitpos_rtx;
1499 rtx last = get_last_insn ();
1500 rtx xop0 = op0, xtarget = target;
1501 rtx xspec_target = spec_target;
1502 rtx xspec_target_subreg = spec_target_subreg;
1503 rtx pat;
1504 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1505
1506 if (MEM_P (xop0))
1507 {
1508 /* Is the memory operand acceptable? */
1509 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1510 (xop0, GET_MODE (xop0))))
1511 {
1512 /* No, load into a reg and extract from there. */
1513 enum machine_mode bestmode;
1514
1515 /* Get the mode to use for inserting into this field. If
1516 OP0 is BLKmode, get the smallest mode consistent with the
1517 alignment. If OP0 is a non-BLKmode object that is no
1518 wider than MAXMODE, use its mode. Otherwise, use the
1519 smallest mode containing the field. */
1520
1521 if (GET_MODE (xop0) == BLKmode
1522 || (GET_MODE_SIZE (GET_MODE (op0))
1523 > GET_MODE_SIZE (maxmode)))
1524 bestmode = get_best_mode (bitsize, bitnum,
1525 MEM_ALIGN (xop0), maxmode,
1526 MEM_VOLATILE_P (xop0));
1527 else
1528 bestmode = GET_MODE (xop0);
1529
1530 if (bestmode == VOIDmode
1531 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1532 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1533 goto extv_loses;
1534
1535 /* Compute offset as multiple of this unit,
1536 counting in bytes. */
1537 unit = GET_MODE_BITSIZE (bestmode);
1538 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1539 xbitpos = bitnum % unit;
1540 xop0 = adjust_address (xop0, bestmode, xoffset);
1541
1542 /* Fetch it to a register in that size. */
1543 xop0 = force_reg (bestmode, xop0);
1544
1545 /* XBITPOS counts within UNIT, which is what is expected. */
1546 }
1547 else
1548 /* Get ref to first byte containing part of the field. */
1549 xop0 = adjust_address (xop0, byte_mode, xoffset);
1550 }
1551
1552 /* If op0 is a register, we need it in MAXMODE (which is usually
1553 SImode) to make it acceptable to the format of extv. */
1554 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1555 goto extv_loses;
1556 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1557 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1558
1559 /* On big-endian machines, we count bits from the most significant.
1560 If the bit field insn does not, we must invert. */
1561 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1562 xbitpos = unit - bitsize - xbitpos;
1563
1564 /* XBITPOS counts within a size of UNIT.
1565 Adjust to count within a size of MAXMODE. */
1566 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1567 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1568
1569 unit = GET_MODE_BITSIZE (maxmode);
1570
1571 if (xtarget == 0)
1572 xtarget = xspec_target = gen_reg_rtx (tmode);
1573
1574 if (GET_MODE (xtarget) != maxmode)
1575 {
1576 if (REG_P (xtarget))
1577 {
1578 int wider = (GET_MODE_SIZE (maxmode)
1579 > GET_MODE_SIZE (GET_MODE (xtarget)));
1580 xtarget = gen_lowpart (maxmode, xtarget);
1581 if (wider)
1582 xspec_target_subreg = xtarget;
1583 }
1584 else
1585 xtarget = gen_reg_rtx (maxmode);
1586 }
1587
1588 /* If this machine's extv insists on a register target,
1589 make sure we have one. */
1590 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1591 (xtarget, maxmode)))
1592 xtarget = gen_reg_rtx (maxmode);
1593
1594 bitsize_rtx = GEN_INT (bitsize);
1595 bitpos_rtx = GEN_INT (xbitpos);
1596
1597 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1598 if (pat)
1599 {
1600 emit_insn (pat);
1601 target = xtarget;
1602 spec_target = xspec_target;
1603 spec_target_subreg = xspec_target_subreg;
1604 }
1605 else
1606 {
1607 delete_insns_since (last);
1608 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1609 bitpos, target, 0);
1610 }
1611 }
1612 else
1613 extv_loses:
1614 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1615 bitpos, target, 0);
1616 }
1617 if (target == spec_target)
1618 return target;
1619 if (target == spec_target_subreg)
1620 return spec_target;
1621 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1622 {
1623 /* If the target mode is not a scalar integral, first convert to the
1624 integer mode of that size and then access it as a floating-point
1625 value via a SUBREG. */
1626 if (!SCALAR_INT_MODE_P (tmode))
1627 {
1628 enum machine_mode smode
1629 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1630 target = convert_to_mode (smode, target, unsignedp);
1631 target = force_reg (smode, target);
1632 return gen_lowpart (tmode, target);
1633 }
1634
1635 return convert_to_mode (tmode, target, unsignedp);
1636 }
1637 return target;
1638 }
1639 \f
1640 /* Extract a bit field using shifts and boolean operations
1641 Returns an rtx to represent the value.
1642 OP0 addresses a register (word) or memory (byte).
1643 BITPOS says which bit within the word or byte the bit field starts in.
1644 OFFSET says how many bytes farther the bit field starts;
1645 it is 0 if OP0 is a register.
1646 BITSIZE says how many bits long the bit field is.
1647 (If OP0 is a register, it may be narrower than a full word,
1648 but BITPOS still counts within a full word,
1649 which is significant on bigendian machines.)
1650
1651 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1652 If TARGET is nonzero, attempts to store the value there
1653 and return TARGET, but this is not guaranteed.
1654 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1655
1656 static rtx
1657 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1658 unsigned HOST_WIDE_INT offset,
1659 unsigned HOST_WIDE_INT bitsize,
1660 unsigned HOST_WIDE_INT bitpos, rtx target,
1661 int unsignedp)
1662 {
1663 unsigned int total_bits = BITS_PER_WORD;
1664 enum machine_mode mode;
1665
1666 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1667 {
1668 /* Special treatment for a bit field split across two registers. */
1669 if (bitsize + bitpos > BITS_PER_WORD)
1670 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1671 }
1672 else
1673 {
1674 /* Get the proper mode to use for this field. We want a mode that
1675 includes the entire field. If such a mode would be larger than
1676 a word, we won't be doing the extraction the normal way. */
1677
1678 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1679 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1680
1681 if (mode == VOIDmode)
1682 /* The only way this should occur is if the field spans word
1683 boundaries. */
1684 return extract_split_bit_field (op0, bitsize,
1685 bitpos + offset * BITS_PER_UNIT,
1686 unsignedp);
1687
1688 total_bits = GET_MODE_BITSIZE (mode);
1689
1690 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1691 be in the range 0 to total_bits-1, and put any excess bytes in
1692 OFFSET. */
1693 if (bitpos >= total_bits)
1694 {
1695 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1696 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1697 * BITS_PER_UNIT);
1698 }
1699
1700 /* Get ref to an aligned byte, halfword, or word containing the field.
1701 Adjust BITPOS to be position within a word,
1702 and OFFSET to be the offset of that word.
1703 Then alter OP0 to refer to that word. */
1704 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1705 offset -= (offset % (total_bits / BITS_PER_UNIT));
1706 op0 = adjust_address (op0, mode, offset);
1707 }
1708
1709 mode = GET_MODE (op0);
1710
1711 if (BYTES_BIG_ENDIAN)
1712 /* BITPOS is the distance between our msb and that of OP0.
1713 Convert it to the distance from the lsb. */
1714 bitpos = total_bits - bitsize - bitpos;
1715
1716 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1717 We have reduced the big-endian case to the little-endian case. */
1718
1719 if (unsignedp)
1720 {
1721 if (bitpos)
1722 {
1723 /* If the field does not already start at the lsb,
1724 shift it so it does. */
1725 tree amount = build_int_cst (NULL_TREE, bitpos);
1726 /* Maybe propagate the target for the shift. */
1727 /* But not if we will return it--could confuse integrate.c. */
1728 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1729 if (tmode != mode) subtarget = 0;
1730 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1731 }
1732 /* Convert the value to the desired mode. */
1733 if (mode != tmode)
1734 op0 = convert_to_mode (tmode, op0, 1);
1735
1736 /* Unless the msb of the field used to be the msb when we shifted,
1737 mask out the upper bits. */
1738
1739 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1740 return expand_binop (GET_MODE (op0), and_optab, op0,
1741 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1742 target, 1, OPTAB_LIB_WIDEN);
1743 return op0;
1744 }
1745
1746 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1747 then arithmetic-shift its lsb to the lsb of the word. */
1748 op0 = force_reg (mode, op0);
1749 if (mode != tmode)
1750 target = 0;
1751
1752 /* Find the narrowest integer mode that contains the field. */
1753
1754 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1755 mode = GET_MODE_WIDER_MODE (mode))
1756 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1757 {
1758 op0 = convert_to_mode (mode, op0, 0);
1759 break;
1760 }
1761
1762 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1763 {
1764 tree amount
1765 = build_int_cst (NULL_TREE,
1766 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1767 /* Maybe propagate the target for the shift. */
1768 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1769 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1770 }
1771
1772 return expand_shift (RSHIFT_EXPR, mode, op0,
1773 build_int_cst (NULL_TREE,
1774 GET_MODE_BITSIZE (mode) - bitsize),
1775 target, 0);
1776 }
1777 \f
1778 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1779 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1780 complement of that if COMPLEMENT. The mask is truncated if
1781 necessary to the width of mode MODE. The mask is zero-extended if
1782 BITSIZE+BITPOS is too small for MODE. */
1783
1784 static rtx
1785 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1786 {
1787 HOST_WIDE_INT masklow, maskhigh;
1788
1789 if (bitsize == 0)
1790 masklow = 0;
1791 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1792 masklow = (HOST_WIDE_INT) -1 << bitpos;
1793 else
1794 masklow = 0;
1795
1796 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1797 masklow &= ((unsigned HOST_WIDE_INT) -1
1798 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1799
1800 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1801 maskhigh = -1;
1802 else
1803 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1804
1805 if (bitsize == 0)
1806 maskhigh = 0;
1807 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1808 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1809 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1810 else
1811 maskhigh = 0;
1812
1813 if (complement)
1814 {
1815 maskhigh = ~maskhigh;
1816 masklow = ~masklow;
1817 }
1818
1819 return immed_double_const (masklow, maskhigh, mode);
1820 }
1821
1822 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1823 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1824
1825 static rtx
1826 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1827 {
1828 unsigned HOST_WIDE_INT v = INTVAL (value);
1829 HOST_WIDE_INT low, high;
1830
1831 if (bitsize < HOST_BITS_PER_WIDE_INT)
1832 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1833
1834 if (bitpos < HOST_BITS_PER_WIDE_INT)
1835 {
1836 low = v << bitpos;
1837 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1838 }
1839 else
1840 {
1841 low = 0;
1842 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1843 }
1844
1845 return immed_double_const (low, high, mode);
1846 }
1847 \f
1848 /* Extract a bit field from a memory by forcing the alignment of the
1849 memory. This efficient only if the field spans at least 4 boundaries.
1850
1851 OP0 is the MEM.
1852 BITSIZE is the field width; BITPOS is the position of the first bit.
1853 UNSIGNEDP is true if the result should be zero-extended. */
1854
1855 static rtx
1856 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1857 unsigned HOST_WIDE_INT bitpos,
1858 int unsignedp)
1859 {
1860 enum machine_mode mode, dmode;
1861 unsigned int m_bitsize, m_size;
1862 unsigned int sign_shift_up, sign_shift_dn;
1863 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1864
1865 /* Choose a mode that will fit BITSIZE. */
1866 mode = smallest_mode_for_size (bitsize, MODE_INT);
1867 m_size = GET_MODE_SIZE (mode);
1868 m_bitsize = GET_MODE_BITSIZE (mode);
1869
1870 /* Choose a mode twice as wide. Fail if no such mode exists. */
1871 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1872 if (dmode == BLKmode)
1873 return NULL;
1874
1875 do_pending_stack_adjust ();
1876 start = get_last_insn ();
1877
1878 /* At the end, we'll need an additional shift to deal with sign/zero
1879 extension. By default this will be a left+right shift of the
1880 appropriate size. But we may be able to eliminate one of them. */
1881 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1882
1883 if (STRICT_ALIGNMENT)
1884 {
1885 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1886 bitpos %= BITS_PER_UNIT;
1887
1888 /* We load two values to be concatenate. There's an edge condition
1889 that bears notice -- an aligned value at the end of a page can
1890 only load one value lest we segfault. So the two values we load
1891 are at "base & -size" and "(base + size - 1) & -size". If base
1892 is unaligned, the addresses will be aligned and sequential; if
1893 base is aligned, the addresses will both be equal to base. */
1894
1895 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1896 GEN_INT (-(HOST_WIDE_INT)m_size),
1897 NULL, true, OPTAB_LIB_WIDEN);
1898 mark_reg_pointer (a1, m_bitsize);
1899 v1 = gen_rtx_MEM (mode, a1);
1900 set_mem_align (v1, m_bitsize);
1901 v1 = force_reg (mode, validize_mem (v1));
1902
1903 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1904 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1905 GEN_INT (-(HOST_WIDE_INT)m_size),
1906 NULL, true, OPTAB_LIB_WIDEN);
1907 v2 = gen_rtx_MEM (mode, a2);
1908 set_mem_align (v2, m_bitsize);
1909 v2 = force_reg (mode, validize_mem (v2));
1910
1911 /* Combine these two values into a double-word value. */
1912 if (m_bitsize == BITS_PER_WORD)
1913 {
1914 comb = gen_reg_rtx (dmode);
1915 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1916 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1917 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1918 }
1919 else
1920 {
1921 if (BYTES_BIG_ENDIAN)
1922 comb = v1, v1 = v2, v2 = comb;
1923 v1 = convert_modes (dmode, mode, v1, true);
1924 if (v1 == NULL)
1925 goto fail;
1926 v2 = convert_modes (dmode, mode, v2, true);
1927 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1928 NULL, true, OPTAB_LIB_WIDEN);
1929 if (v2 == NULL)
1930 goto fail;
1931 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1932 true, OPTAB_LIB_WIDEN);
1933 if (comb == NULL)
1934 goto fail;
1935 }
1936
1937 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1938 NULL, true, OPTAB_LIB_WIDEN);
1939 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1940
1941 if (bitpos != 0)
1942 {
1943 if (sign_shift_up <= bitpos)
1944 bitpos -= sign_shift_up, sign_shift_up = 0;
1945 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1946 NULL, true, OPTAB_LIB_WIDEN);
1947 }
1948 }
1949 else
1950 {
1951 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1952 bitpos %= BITS_PER_UNIT;
1953
1954 /* When strict alignment is not required, we can just load directly
1955 from memory without masking. If the remaining BITPOS offset is
1956 small enough, we may be able to do all operations in MODE as
1957 opposed to DMODE. */
1958 if (bitpos + bitsize <= m_bitsize)
1959 dmode = mode;
1960 comb = adjust_address (op0, dmode, offset);
1961
1962 if (sign_shift_up <= bitpos)
1963 bitpos -= sign_shift_up, sign_shift_up = 0;
1964 shift = GEN_INT (bitpos);
1965 }
1966
1967 /* Shift down the double-word such that the requested value is at bit 0. */
1968 if (shift != const0_rtx)
1969 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1970 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1971 if (comb == NULL)
1972 goto fail;
1973
1974 /* If the field exactly matches MODE, then all we need to do is return the
1975 lowpart. Otherwise, shift to get the sign bits set properly. */
1976 result = force_reg (mode, gen_lowpart (mode, comb));
1977
1978 if (sign_shift_up)
1979 result = expand_simple_binop (mode, ASHIFT, result,
1980 GEN_INT (sign_shift_up),
1981 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1982 if (sign_shift_dn)
1983 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1984 result, GEN_INT (sign_shift_dn),
1985 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1986
1987 return result;
1988
1989 fail:
1990 delete_insns_since (start);
1991 return NULL;
1992 }
1993
1994 /* Extract a bit field that is split across two words
1995 and return an RTX for the result.
1996
1997 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1998 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1999 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2000
2001 static rtx
2002 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2003 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2004 {
2005 unsigned int unit;
2006 unsigned int bitsdone = 0;
2007 rtx result = NULL_RTX;
2008 int first = 1;
2009
2010 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2011 much at a time. */
2012 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2013 unit = BITS_PER_WORD;
2014 else
2015 {
2016 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2017 if (0 && bitsize / unit > 2)
2018 {
2019 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2020 unsignedp);
2021 if (tmp)
2022 return tmp;
2023 }
2024 }
2025
2026 while (bitsdone < bitsize)
2027 {
2028 unsigned HOST_WIDE_INT thissize;
2029 rtx part, word;
2030 unsigned HOST_WIDE_INT thispos;
2031 unsigned HOST_WIDE_INT offset;
2032
2033 offset = (bitpos + bitsdone) / unit;
2034 thispos = (bitpos + bitsdone) % unit;
2035
2036 /* THISSIZE must not overrun a word boundary. Otherwise,
2037 extract_fixed_bit_field will call us again, and we will mutually
2038 recurse forever. */
2039 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2040 thissize = MIN (thissize, unit - thispos);
2041
2042 /* If OP0 is a register, then handle OFFSET here.
2043
2044 When handling multiword bitfields, extract_bit_field may pass
2045 down a word_mode SUBREG of a larger REG for a bitfield that actually
2046 crosses a word boundary. Thus, for a SUBREG, we must find
2047 the current word starting from the base register. */
2048 if (GET_CODE (op0) == SUBREG)
2049 {
2050 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2051 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2052 GET_MODE (SUBREG_REG (op0)));
2053 offset = 0;
2054 }
2055 else if (REG_P (op0))
2056 {
2057 word = operand_subword_force (op0, offset, GET_MODE (op0));
2058 offset = 0;
2059 }
2060 else
2061 word = op0;
2062
2063 /* Extract the parts in bit-counting order,
2064 whose meaning is determined by BYTES_PER_UNIT.
2065 OFFSET is in UNITs, and UNIT is in bits.
2066 extract_fixed_bit_field wants offset in bytes. */
2067 part = extract_fixed_bit_field (word_mode, word,
2068 offset * unit / BITS_PER_UNIT,
2069 thissize, thispos, 0, 1);
2070 bitsdone += thissize;
2071
2072 /* Shift this part into place for the result. */
2073 if (BYTES_BIG_ENDIAN)
2074 {
2075 if (bitsize != bitsdone)
2076 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2077 build_int_cst (NULL_TREE, bitsize - bitsdone),
2078 0, 1);
2079 }
2080 else
2081 {
2082 if (bitsdone != thissize)
2083 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2084 build_int_cst (NULL_TREE,
2085 bitsdone - thissize), 0, 1);
2086 }
2087
2088 if (first)
2089 result = part;
2090 else
2091 /* Combine the parts with bitwise or. This works
2092 because we extracted each part as an unsigned bit field. */
2093 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2094 OPTAB_LIB_WIDEN);
2095
2096 first = 0;
2097 }
2098
2099 /* Unsigned bit field: we are done. */
2100 if (unsignedp)
2101 return result;
2102 /* Signed bit field: sign-extend with two arithmetic shifts. */
2103 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2104 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2105 NULL_RTX, 0);
2106 return expand_shift (RSHIFT_EXPR, word_mode, result,
2107 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2108 NULL_RTX, 0);
2109 }
2110 \f
2111 /* Add INC into TARGET. */
2112
2113 void
2114 expand_inc (rtx target, rtx inc)
2115 {
2116 rtx value = expand_binop (GET_MODE (target), add_optab,
2117 target, inc,
2118 target, 0, OPTAB_LIB_WIDEN);
2119 if (value != target)
2120 emit_move_insn (target, value);
2121 }
2122
2123 /* Subtract DEC from TARGET. */
2124
2125 void
2126 expand_dec (rtx target, rtx dec)
2127 {
2128 rtx value = expand_binop (GET_MODE (target), sub_optab,
2129 target, dec,
2130 target, 0, OPTAB_LIB_WIDEN);
2131 if (value != target)
2132 emit_move_insn (target, value);
2133 }
2134 \f
2135 /* Output a shift instruction for expression code CODE,
2136 with SHIFTED being the rtx for the value to shift,
2137 and AMOUNT the tree for the amount to shift by.
2138 Store the result in the rtx TARGET, if that is convenient.
2139 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2140 Return the rtx for where the value is. */
2141
2142 rtx
2143 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2144 tree amount, rtx target, int unsignedp)
2145 {
2146 rtx op1, temp = 0;
2147 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2148 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2149 int try;
2150
2151 /* Previously detected shift-counts computed by NEGATE_EXPR
2152 and shifted in the other direction; but that does not work
2153 on all machines. */
2154
2155 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2156
2157 if (SHIFT_COUNT_TRUNCATED)
2158 {
2159 if (GET_CODE (op1) == CONST_INT
2160 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2161 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2162 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2163 % GET_MODE_BITSIZE (mode));
2164 else if (GET_CODE (op1) == SUBREG
2165 && subreg_lowpart_p (op1))
2166 op1 = SUBREG_REG (op1);
2167 }
2168
2169 if (op1 == const0_rtx)
2170 return shifted;
2171
2172 /* Check whether its cheaper to implement a left shift by a constant
2173 bit count by a sequence of additions. */
2174 if (code == LSHIFT_EXPR
2175 && GET_CODE (op1) == CONST_INT
2176 && INTVAL (op1) > 0
2177 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2178 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2179 {
2180 int i;
2181 for (i = 0; i < INTVAL (op1); i++)
2182 {
2183 temp = force_reg (mode, shifted);
2184 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2185 unsignedp, OPTAB_LIB_WIDEN);
2186 }
2187 return shifted;
2188 }
2189
2190 for (try = 0; temp == 0 && try < 3; try++)
2191 {
2192 enum optab_methods methods;
2193
2194 if (try == 0)
2195 methods = OPTAB_DIRECT;
2196 else if (try == 1)
2197 methods = OPTAB_WIDEN;
2198 else
2199 methods = OPTAB_LIB_WIDEN;
2200
2201 if (rotate)
2202 {
2203 /* Widening does not work for rotation. */
2204 if (methods == OPTAB_WIDEN)
2205 continue;
2206 else if (methods == OPTAB_LIB_WIDEN)
2207 {
2208 /* If we have been unable to open-code this by a rotation,
2209 do it as the IOR of two shifts. I.e., to rotate A
2210 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2211 where C is the bitsize of A.
2212
2213 It is theoretically possible that the target machine might
2214 not be able to perform either shift and hence we would
2215 be making two libcalls rather than just the one for the
2216 shift (similarly if IOR could not be done). We will allow
2217 this extremely unlikely lossage to avoid complicating the
2218 code below. */
2219
2220 rtx subtarget = target == shifted ? 0 : target;
2221 rtx temp1;
2222 tree type = TREE_TYPE (amount);
2223 tree new_amount = make_tree (type, op1);
2224 tree other_amount
2225 = fold_build2 (MINUS_EXPR, type,
2226 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2227 amount);
2228
2229 shifted = force_reg (mode, shifted);
2230
2231 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2232 mode, shifted, new_amount, 0, 1);
2233 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2234 mode, shifted, other_amount, subtarget, 1);
2235 return expand_binop (mode, ior_optab, temp, temp1, target,
2236 unsignedp, methods);
2237 }
2238
2239 temp = expand_binop (mode,
2240 left ? rotl_optab : rotr_optab,
2241 shifted, op1, target, unsignedp, methods);
2242 }
2243 else if (unsignedp)
2244 temp = expand_binop (mode,
2245 left ? ashl_optab : lshr_optab,
2246 shifted, op1, target, unsignedp, methods);
2247
2248 /* Do arithmetic shifts.
2249 Also, if we are going to widen the operand, we can just as well
2250 use an arithmetic right-shift instead of a logical one. */
2251 if (temp == 0 && ! rotate
2252 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2253 {
2254 enum optab_methods methods1 = methods;
2255
2256 /* If trying to widen a log shift to an arithmetic shift,
2257 don't accept an arithmetic shift of the same size. */
2258 if (unsignedp)
2259 methods1 = OPTAB_MUST_WIDEN;
2260
2261 /* Arithmetic shift */
2262
2263 temp = expand_binop (mode,
2264 left ? ashl_optab : ashr_optab,
2265 shifted, op1, target, unsignedp, methods1);
2266 }
2267
2268 /* We used to try extzv here for logical right shifts, but that was
2269 only useful for one machine, the VAX, and caused poor code
2270 generation there for lshrdi3, so the code was deleted and a
2271 define_expand for lshrsi3 was added to vax.md. */
2272 }
2273
2274 gcc_assert (temp);
2275 return temp;
2276 }
2277 \f
2278 enum alg_code {
2279 alg_unknown,
2280 alg_zero,
2281 alg_m, alg_shift,
2282 alg_add_t_m2,
2283 alg_sub_t_m2,
2284 alg_add_factor,
2285 alg_sub_factor,
2286 alg_add_t2_m,
2287 alg_sub_t2_m,
2288 alg_impossible
2289 };
2290
2291 /* This structure holds the "cost" of a multiply sequence. The
2292 "cost" field holds the total rtx_cost of every operator in the
2293 synthetic multiplication sequence, hence cost(a op b) is defined
2294 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2295 The "latency" field holds the minimum possible latency of the
2296 synthetic multiply, on a hypothetical infinitely parallel CPU.
2297 This is the critical path, or the maximum height, of the expression
2298 tree which is the sum of rtx_costs on the most expensive path from
2299 any leaf to the root. Hence latency(a op b) is defined as zero for
2300 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2301
2302 struct mult_cost {
2303 short cost; /* Total rtx_cost of the multiplication sequence. */
2304 short latency; /* The latency of the multiplication sequence. */
2305 };
2306
2307 /* This macro is used to compare a pointer to a mult_cost against an
2308 single integer "rtx_cost" value. This is equivalent to the macro
2309 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2310 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2311 || ((X)->cost == (Y) && (X)->latency < (Y)))
2312
2313 /* This macro is used to compare two pointers to mult_costs against
2314 each other. The macro returns true if X is cheaper than Y.
2315 Currently, the cheaper of two mult_costs is the one with the
2316 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2317 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2318 || ((X)->cost == (Y)->cost \
2319 && (X)->latency < (Y)->latency))
2320
2321 /* This structure records a sequence of operations.
2322 `ops' is the number of operations recorded.
2323 `cost' is their total cost.
2324 The operations are stored in `op' and the corresponding
2325 logarithms of the integer coefficients in `log'.
2326
2327 These are the operations:
2328 alg_zero total := 0;
2329 alg_m total := multiplicand;
2330 alg_shift total := total * coeff
2331 alg_add_t_m2 total := total + multiplicand * coeff;
2332 alg_sub_t_m2 total := total - multiplicand * coeff;
2333 alg_add_factor total := total * coeff + total;
2334 alg_sub_factor total := total * coeff - total;
2335 alg_add_t2_m total := total * coeff + multiplicand;
2336 alg_sub_t2_m total := total * coeff - multiplicand;
2337
2338 The first operand must be either alg_zero or alg_m. */
2339
2340 struct algorithm
2341 {
2342 struct mult_cost cost;
2343 short ops;
2344 /* The size of the OP and LOG fields are not directly related to the
2345 word size, but the worst-case algorithms will be if we have few
2346 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2347 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2348 in total wordsize operations. */
2349 enum alg_code op[MAX_BITS_PER_WORD];
2350 char log[MAX_BITS_PER_WORD];
2351 };
2352
2353 /* The entry for our multiplication cache/hash table. */
2354 struct alg_hash_entry {
2355 /* The number we are multiplying by. */
2356 unsigned int t;
2357
2358 /* The mode in which we are multiplying something by T. */
2359 enum machine_mode mode;
2360
2361 /* The best multiplication algorithm for t. */
2362 enum alg_code alg;
2363
2364 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2365 Otherwise, the cost within which multiplication by T is
2366 impossible. */
2367 struct mult_cost cost;
2368 };
2369
2370 /* The number of cache/hash entries. */
2371 #define NUM_ALG_HASH_ENTRIES 307
2372
2373 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2374 actually a hash table. If we have a collision, that the older
2375 entry is kicked out. */
2376 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2377
2378 /* Indicates the type of fixup needed after a constant multiplication.
2379 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2380 the result should be negated, and ADD_VARIANT means that the
2381 multiplicand should be added to the result. */
2382 enum mult_variant {basic_variant, negate_variant, add_variant};
2383
2384 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2385 const struct mult_cost *, enum machine_mode mode);
2386 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2387 struct algorithm *, enum mult_variant *, int);
2388 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2389 const struct algorithm *, enum mult_variant);
2390 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2391 int, rtx *, int *, int *);
2392 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2393 static rtx extract_high_half (enum machine_mode, rtx);
2394 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2395 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2396 int, int);
2397 /* Compute and return the best algorithm for multiplying by T.
2398 The algorithm must cost less than cost_limit
2399 If retval.cost >= COST_LIMIT, no algorithm was found and all
2400 other field of the returned struct are undefined.
2401 MODE is the machine mode of the multiplication. */
2402
2403 static void
2404 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2405 const struct mult_cost *cost_limit, enum machine_mode mode)
2406 {
2407 int m;
2408 struct algorithm *alg_in, *best_alg;
2409 struct mult_cost best_cost;
2410 struct mult_cost new_limit;
2411 int op_cost, op_latency;
2412 unsigned HOST_WIDE_INT q;
2413 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2414 int hash_index;
2415 bool cache_hit = false;
2416 enum alg_code cache_alg = alg_zero;
2417
2418 /* Indicate that no algorithm is yet found. If no algorithm
2419 is found, this value will be returned and indicate failure. */
2420 alg_out->cost.cost = cost_limit->cost + 1;
2421 alg_out->cost.latency = cost_limit->latency + 1;
2422
2423 if (cost_limit->cost < 0
2424 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2425 return;
2426
2427 /* Restrict the bits of "t" to the multiplication's mode. */
2428 t &= GET_MODE_MASK (mode);
2429
2430 /* t == 1 can be done in zero cost. */
2431 if (t == 1)
2432 {
2433 alg_out->ops = 1;
2434 alg_out->cost.cost = 0;
2435 alg_out->cost.latency = 0;
2436 alg_out->op[0] = alg_m;
2437 return;
2438 }
2439
2440 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2441 fail now. */
2442 if (t == 0)
2443 {
2444 if (MULT_COST_LESS (cost_limit, zero_cost))
2445 return;
2446 else
2447 {
2448 alg_out->ops = 1;
2449 alg_out->cost.cost = zero_cost;
2450 alg_out->cost.latency = zero_cost;
2451 alg_out->op[0] = alg_zero;
2452 return;
2453 }
2454 }
2455
2456 /* We'll be needing a couple extra algorithm structures now. */
2457
2458 alg_in = alloca (sizeof (struct algorithm));
2459 best_alg = alloca (sizeof (struct algorithm));
2460 best_cost = *cost_limit;
2461
2462 /* Compute the hash index. */
2463 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2464
2465 /* See if we already know what to do for T. */
2466 if (alg_hash[hash_index].t == t
2467 && alg_hash[hash_index].mode == mode
2468 && alg_hash[hash_index].alg != alg_unknown)
2469 {
2470 cache_alg = alg_hash[hash_index].alg;
2471
2472 if (cache_alg == alg_impossible)
2473 {
2474 /* The cache tells us that it's impossible to synthesize
2475 multiplication by T within alg_hash[hash_index].cost. */
2476 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2477 /* COST_LIMIT is at least as restrictive as the one
2478 recorded in the hash table, in which case we have no
2479 hope of synthesizing a multiplication. Just
2480 return. */
2481 return;
2482
2483 /* If we get here, COST_LIMIT is less restrictive than the
2484 one recorded in the hash table, so we may be able to
2485 synthesize a multiplication. Proceed as if we didn't
2486 have the cache entry. */
2487 }
2488 else
2489 {
2490 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2491 /* The cached algorithm shows that this multiplication
2492 requires more cost than COST_LIMIT. Just return. This
2493 way, we don't clobber this cache entry with
2494 alg_impossible but retain useful information. */
2495 return;
2496
2497 cache_hit = true;
2498
2499 switch (cache_alg)
2500 {
2501 case alg_shift:
2502 goto do_alg_shift;
2503
2504 case alg_add_t_m2:
2505 case alg_sub_t_m2:
2506 goto do_alg_addsub_t_m2;
2507
2508 case alg_add_factor:
2509 case alg_sub_factor:
2510 goto do_alg_addsub_factor;
2511
2512 case alg_add_t2_m:
2513 goto do_alg_add_t2_m;
2514
2515 case alg_sub_t2_m:
2516 goto do_alg_sub_t2_m;
2517
2518 default:
2519 gcc_unreachable ();
2520 }
2521 }
2522 }
2523
2524 /* If we have a group of zero bits at the low-order part of T, try
2525 multiplying by the remaining bits and then doing a shift. */
2526
2527 if ((t & 1) == 0)
2528 {
2529 do_alg_shift:
2530 m = floor_log2 (t & -t); /* m = number of low zero bits */
2531 if (m < maxm)
2532 {
2533 q = t >> m;
2534 /* The function expand_shift will choose between a shift and
2535 a sequence of additions, so the observed cost is given as
2536 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2537 op_cost = m * add_cost[mode];
2538 if (shift_cost[mode][m] < op_cost)
2539 op_cost = shift_cost[mode][m];
2540 new_limit.cost = best_cost.cost - op_cost;
2541 new_limit.latency = best_cost.latency - op_cost;
2542 synth_mult (alg_in, q, &new_limit, mode);
2543
2544 alg_in->cost.cost += op_cost;
2545 alg_in->cost.latency += op_cost;
2546 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2547 {
2548 struct algorithm *x;
2549 best_cost = alg_in->cost;
2550 x = alg_in, alg_in = best_alg, best_alg = x;
2551 best_alg->log[best_alg->ops] = m;
2552 best_alg->op[best_alg->ops] = alg_shift;
2553 }
2554 }
2555 if (cache_hit)
2556 goto done;
2557 }
2558
2559 /* If we have an odd number, add or subtract one. */
2560 if ((t & 1) != 0)
2561 {
2562 unsigned HOST_WIDE_INT w;
2563
2564 do_alg_addsub_t_m2:
2565 for (w = 1; (w & t) != 0; w <<= 1)
2566 ;
2567 /* If T was -1, then W will be zero after the loop. This is another
2568 case where T ends with ...111. Handling this with (T + 1) and
2569 subtract 1 produces slightly better code and results in algorithm
2570 selection much faster than treating it like the ...0111 case
2571 below. */
2572 if (w == 0
2573 || (w > 2
2574 /* Reject the case where t is 3.
2575 Thus we prefer addition in that case. */
2576 && t != 3))
2577 {
2578 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2579
2580 op_cost = add_cost[mode];
2581 new_limit.cost = best_cost.cost - op_cost;
2582 new_limit.latency = best_cost.latency - op_cost;
2583 synth_mult (alg_in, t + 1, &new_limit, mode);
2584
2585 alg_in->cost.cost += op_cost;
2586 alg_in->cost.latency += op_cost;
2587 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2588 {
2589 struct algorithm *x;
2590 best_cost = alg_in->cost;
2591 x = alg_in, alg_in = best_alg, best_alg = x;
2592 best_alg->log[best_alg->ops] = 0;
2593 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2594 }
2595 }
2596 else
2597 {
2598 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2599
2600 op_cost = add_cost[mode];
2601 new_limit.cost = best_cost.cost - op_cost;
2602 new_limit.latency = best_cost.latency - op_cost;
2603 synth_mult (alg_in, t - 1, &new_limit, mode);
2604
2605 alg_in->cost.cost += op_cost;
2606 alg_in->cost.latency += op_cost;
2607 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2608 {
2609 struct algorithm *x;
2610 best_cost = alg_in->cost;
2611 x = alg_in, alg_in = best_alg, best_alg = x;
2612 best_alg->log[best_alg->ops] = 0;
2613 best_alg->op[best_alg->ops] = alg_add_t_m2;
2614 }
2615 }
2616 if (cache_hit)
2617 goto done;
2618 }
2619
2620 /* Look for factors of t of the form
2621 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2622 If we find such a factor, we can multiply by t using an algorithm that
2623 multiplies by q, shift the result by m and add/subtract it to itself.
2624
2625 We search for large factors first and loop down, even if large factors
2626 are less probable than small; if we find a large factor we will find a
2627 good sequence quickly, and therefore be able to prune (by decreasing
2628 COST_LIMIT) the search. */
2629
2630 do_alg_addsub_factor:
2631 for (m = floor_log2 (t - 1); m >= 2; m--)
2632 {
2633 unsigned HOST_WIDE_INT d;
2634
2635 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2636 if (t % d == 0 && t > d && m < maxm
2637 && (!cache_hit || cache_alg == alg_add_factor))
2638 {
2639 /* If the target has a cheap shift-and-add instruction use
2640 that in preference to a shift insn followed by an add insn.
2641 Assume that the shift-and-add is "atomic" with a latency
2642 equal to its cost, otherwise assume that on superscalar
2643 hardware the shift may be executed concurrently with the
2644 earlier steps in the algorithm. */
2645 op_cost = add_cost[mode] + shift_cost[mode][m];
2646 if (shiftadd_cost[mode][m] < op_cost)
2647 {
2648 op_cost = shiftadd_cost[mode][m];
2649 op_latency = op_cost;
2650 }
2651 else
2652 op_latency = add_cost[mode];
2653
2654 new_limit.cost = best_cost.cost - op_cost;
2655 new_limit.latency = best_cost.latency - op_latency;
2656 synth_mult (alg_in, t / d, &new_limit, mode);
2657
2658 alg_in->cost.cost += op_cost;
2659 alg_in->cost.latency += op_latency;
2660 if (alg_in->cost.latency < op_cost)
2661 alg_in->cost.latency = op_cost;
2662 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2663 {
2664 struct algorithm *x;
2665 best_cost = alg_in->cost;
2666 x = alg_in, alg_in = best_alg, best_alg = x;
2667 best_alg->log[best_alg->ops] = m;
2668 best_alg->op[best_alg->ops] = alg_add_factor;
2669 }
2670 /* Other factors will have been taken care of in the recursion. */
2671 break;
2672 }
2673
2674 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2675 if (t % d == 0 && t > d && m < maxm
2676 && (!cache_hit || cache_alg == alg_sub_factor))
2677 {
2678 /* If the target has a cheap shift-and-subtract insn use
2679 that in preference to a shift insn followed by a sub insn.
2680 Assume that the shift-and-sub is "atomic" with a latency
2681 equal to it's cost, otherwise assume that on superscalar
2682 hardware the shift may be executed concurrently with the
2683 earlier steps in the algorithm. */
2684 op_cost = add_cost[mode] + shift_cost[mode][m];
2685 if (shiftsub_cost[mode][m] < op_cost)
2686 {
2687 op_cost = shiftsub_cost[mode][m];
2688 op_latency = op_cost;
2689 }
2690 else
2691 op_latency = add_cost[mode];
2692
2693 new_limit.cost = best_cost.cost - op_cost;
2694 new_limit.latency = best_cost.latency - op_latency;
2695 synth_mult (alg_in, t / d, &new_limit, mode);
2696
2697 alg_in->cost.cost += op_cost;
2698 alg_in->cost.latency += op_latency;
2699 if (alg_in->cost.latency < op_cost)
2700 alg_in->cost.latency = op_cost;
2701 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2702 {
2703 struct algorithm *x;
2704 best_cost = alg_in->cost;
2705 x = alg_in, alg_in = best_alg, best_alg = x;
2706 best_alg->log[best_alg->ops] = m;
2707 best_alg->op[best_alg->ops] = alg_sub_factor;
2708 }
2709 break;
2710 }
2711 }
2712 if (cache_hit)
2713 goto done;
2714
2715 /* Try shift-and-add (load effective address) instructions,
2716 i.e. do a*3, a*5, a*9. */
2717 if ((t & 1) != 0)
2718 {
2719 do_alg_add_t2_m:
2720 q = t - 1;
2721 q = q & -q;
2722 m = exact_log2 (q);
2723 if (m >= 0 && m < maxm)
2724 {
2725 op_cost = shiftadd_cost[mode][m];
2726 new_limit.cost = best_cost.cost - op_cost;
2727 new_limit.latency = best_cost.latency - op_cost;
2728 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2729
2730 alg_in->cost.cost += op_cost;
2731 alg_in->cost.latency += op_cost;
2732 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2733 {
2734 struct algorithm *x;
2735 best_cost = alg_in->cost;
2736 x = alg_in, alg_in = best_alg, best_alg = x;
2737 best_alg->log[best_alg->ops] = m;
2738 best_alg->op[best_alg->ops] = alg_add_t2_m;
2739 }
2740 }
2741 if (cache_hit)
2742 goto done;
2743
2744 do_alg_sub_t2_m:
2745 q = t + 1;
2746 q = q & -q;
2747 m = exact_log2 (q);
2748 if (m >= 0 && m < maxm)
2749 {
2750 op_cost = shiftsub_cost[mode][m];
2751 new_limit.cost = best_cost.cost - op_cost;
2752 new_limit.latency = best_cost.latency - op_cost;
2753 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2754
2755 alg_in->cost.cost += op_cost;
2756 alg_in->cost.latency += op_cost;
2757 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2758 {
2759 struct algorithm *x;
2760 best_cost = alg_in->cost;
2761 x = alg_in, alg_in = best_alg, best_alg = x;
2762 best_alg->log[best_alg->ops] = m;
2763 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2764 }
2765 }
2766 if (cache_hit)
2767 goto done;
2768 }
2769
2770 done:
2771 /* If best_cost has not decreased, we have not found any algorithm. */
2772 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2773 {
2774 /* We failed to find an algorithm. Record alg_impossible for
2775 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2776 we are asked to find an algorithm for T within the same or
2777 lower COST_LIMIT, we can immediately return to the
2778 caller. */
2779 alg_hash[hash_index].t = t;
2780 alg_hash[hash_index].mode = mode;
2781 alg_hash[hash_index].alg = alg_impossible;
2782 alg_hash[hash_index].cost = *cost_limit;
2783 return;
2784 }
2785
2786 /* Cache the result. */
2787 if (!cache_hit)
2788 {
2789 alg_hash[hash_index].t = t;
2790 alg_hash[hash_index].mode = mode;
2791 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2792 alg_hash[hash_index].cost.cost = best_cost.cost;
2793 alg_hash[hash_index].cost.latency = best_cost.latency;
2794 }
2795
2796 /* If we are getting a too long sequence for `struct algorithm'
2797 to record, make this search fail. */
2798 if (best_alg->ops == MAX_BITS_PER_WORD)
2799 return;
2800
2801 /* Copy the algorithm from temporary space to the space at alg_out.
2802 We avoid using structure assignment because the majority of
2803 best_alg is normally undefined, and this is a critical function. */
2804 alg_out->ops = best_alg->ops + 1;
2805 alg_out->cost = best_cost;
2806 memcpy (alg_out->op, best_alg->op,
2807 alg_out->ops * sizeof *alg_out->op);
2808 memcpy (alg_out->log, best_alg->log,
2809 alg_out->ops * sizeof *alg_out->log);
2810 }
2811 \f
2812 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2813 Try three variations:
2814
2815 - a shift/add sequence based on VAL itself
2816 - a shift/add sequence based on -VAL, followed by a negation
2817 - a shift/add sequence based on VAL - 1, followed by an addition.
2818
2819 Return true if the cheapest of these cost less than MULT_COST,
2820 describing the algorithm in *ALG and final fixup in *VARIANT. */
2821
2822 static bool
2823 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2824 struct algorithm *alg, enum mult_variant *variant,
2825 int mult_cost)
2826 {
2827 struct algorithm alg2;
2828 struct mult_cost limit;
2829 int op_cost;
2830
2831 *variant = basic_variant;
2832 limit.cost = mult_cost;
2833 limit.latency = mult_cost;
2834 synth_mult (alg, val, &limit, mode);
2835
2836 /* This works only if the inverted value actually fits in an
2837 `unsigned int' */
2838 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2839 {
2840 op_cost = neg_cost[mode];
2841 if (MULT_COST_LESS (&alg->cost, mult_cost))
2842 {
2843 limit.cost = alg->cost.cost - op_cost;
2844 limit.latency = alg->cost.latency - op_cost;
2845 }
2846 else
2847 {
2848 limit.cost = mult_cost - op_cost;
2849 limit.latency = mult_cost - op_cost;
2850 }
2851
2852 synth_mult (&alg2, -val, &limit, mode);
2853 alg2.cost.cost += op_cost;
2854 alg2.cost.latency += op_cost;
2855 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2856 *alg = alg2, *variant = negate_variant;
2857 }
2858
2859 /* This proves very useful for division-by-constant. */
2860 op_cost = add_cost[mode];
2861 if (MULT_COST_LESS (&alg->cost, mult_cost))
2862 {
2863 limit.cost = alg->cost.cost - op_cost;
2864 limit.latency = alg->cost.latency - op_cost;
2865 }
2866 else
2867 {
2868 limit.cost = mult_cost - op_cost;
2869 limit.latency = mult_cost - op_cost;
2870 }
2871
2872 synth_mult (&alg2, val - 1, &limit, mode);
2873 alg2.cost.cost += op_cost;
2874 alg2.cost.latency += op_cost;
2875 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2876 *alg = alg2, *variant = add_variant;
2877
2878 return MULT_COST_LESS (&alg->cost, mult_cost);
2879 }
2880
2881 /* A subroutine of expand_mult, used for constant multiplications.
2882 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2883 convenient. Use the shift/add sequence described by ALG and apply
2884 the final fixup specified by VARIANT. */
2885
2886 static rtx
2887 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2888 rtx target, const struct algorithm *alg,
2889 enum mult_variant variant)
2890 {
2891 HOST_WIDE_INT val_so_far;
2892 rtx insn, accum, tem;
2893 int opno;
2894 enum machine_mode nmode;
2895
2896 /* Avoid referencing memory over and over.
2897 For speed, but also for correctness when mem is volatile. */
2898 if (MEM_P (op0))
2899 op0 = force_reg (mode, op0);
2900
2901 /* ACCUM starts out either as OP0 or as a zero, depending on
2902 the first operation. */
2903
2904 if (alg->op[0] == alg_zero)
2905 {
2906 accum = copy_to_mode_reg (mode, const0_rtx);
2907 val_so_far = 0;
2908 }
2909 else if (alg->op[0] == alg_m)
2910 {
2911 accum = copy_to_mode_reg (mode, op0);
2912 val_so_far = 1;
2913 }
2914 else
2915 gcc_unreachable ();
2916
2917 for (opno = 1; opno < alg->ops; opno++)
2918 {
2919 int log = alg->log[opno];
2920 rtx shift_subtarget = optimize ? 0 : accum;
2921 rtx add_target
2922 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2923 && !optimize)
2924 ? target : 0;
2925 rtx accum_target = optimize ? 0 : accum;
2926
2927 switch (alg->op[opno])
2928 {
2929 case alg_shift:
2930 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2931 build_int_cst (NULL_TREE, log),
2932 NULL_RTX, 0);
2933 val_so_far <<= log;
2934 break;
2935
2936 case alg_add_t_m2:
2937 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2938 build_int_cst (NULL_TREE, log),
2939 NULL_RTX, 0);
2940 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2941 add_target ? add_target : accum_target);
2942 val_so_far += (HOST_WIDE_INT) 1 << log;
2943 break;
2944
2945 case alg_sub_t_m2:
2946 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2947 build_int_cst (NULL_TREE, log),
2948 NULL_RTX, 0);
2949 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2950 add_target ? add_target : accum_target);
2951 val_so_far -= (HOST_WIDE_INT) 1 << log;
2952 break;
2953
2954 case alg_add_t2_m:
2955 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2956 build_int_cst (NULL_TREE, log),
2957 shift_subtarget,
2958 0);
2959 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2960 add_target ? add_target : accum_target);
2961 val_so_far = (val_so_far << log) + 1;
2962 break;
2963
2964 case alg_sub_t2_m:
2965 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2966 build_int_cst (NULL_TREE, log),
2967 shift_subtarget, 0);
2968 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2969 add_target ? add_target : accum_target);
2970 val_so_far = (val_so_far << log) - 1;
2971 break;
2972
2973 case alg_add_factor:
2974 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2975 build_int_cst (NULL_TREE, log),
2976 NULL_RTX, 0);
2977 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2978 add_target ? add_target : accum_target);
2979 val_so_far += val_so_far << log;
2980 break;
2981
2982 case alg_sub_factor:
2983 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2984 build_int_cst (NULL_TREE, log),
2985 NULL_RTX, 0);
2986 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2987 (add_target
2988 ? add_target : (optimize ? 0 : tem)));
2989 val_so_far = (val_so_far << log) - val_so_far;
2990 break;
2991
2992 default:
2993 gcc_unreachable ();
2994 }
2995
2996 /* Write a REG_EQUAL note on the last insn so that we can cse
2997 multiplication sequences. Note that if ACCUM is a SUBREG,
2998 we've set the inner register and must properly indicate
2999 that. */
3000
3001 tem = op0, nmode = mode;
3002 if (GET_CODE (accum) == SUBREG)
3003 {
3004 nmode = GET_MODE (SUBREG_REG (accum));
3005 tem = gen_lowpart (nmode, op0);
3006 }
3007
3008 insn = get_last_insn ();
3009 set_unique_reg_note (insn, REG_EQUAL,
3010 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
3011 }
3012
3013 if (variant == negate_variant)
3014 {
3015 val_so_far = -val_so_far;
3016 accum = expand_unop (mode, neg_optab, accum, target, 0);
3017 }
3018 else if (variant == add_variant)
3019 {
3020 val_so_far = val_so_far + 1;
3021 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3022 }
3023
3024 /* Compare only the bits of val and val_so_far that are significant
3025 in the result mode, to avoid sign-/zero-extension confusion. */
3026 val &= GET_MODE_MASK (mode);
3027 val_so_far &= GET_MODE_MASK (mode);
3028 gcc_assert (val == val_so_far);
3029
3030 return accum;
3031 }
3032
3033 /* Perform a multiplication and return an rtx for the result.
3034 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3035 TARGET is a suggestion for where to store the result (an rtx).
3036
3037 We check specially for a constant integer as OP1.
3038 If you want this check for OP0 as well, then before calling
3039 you should swap the two operands if OP0 would be constant. */
3040
3041 rtx
3042 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3043 int unsignedp)
3044 {
3045 enum mult_variant variant;
3046 struct algorithm algorithm;
3047 int max_cost;
3048
3049 /* Handling const0_rtx here allows us to use zero as a rogue value for
3050 coeff below. */
3051 if (op1 == const0_rtx)
3052 return const0_rtx;
3053 if (op1 == const1_rtx)
3054 return op0;
3055 if (op1 == constm1_rtx)
3056 return expand_unop (mode,
3057 GET_MODE_CLASS (mode) == MODE_INT
3058 && !unsignedp && flag_trapv
3059 ? negv_optab : neg_optab,
3060 op0, target, 0);
3061
3062 /* These are the operations that are potentially turned into a sequence
3063 of shifts and additions. */
3064 if (SCALAR_INT_MODE_P (mode)
3065 && (unsignedp || !flag_trapv))
3066 {
3067 HOST_WIDE_INT coeff = 0;
3068 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3069
3070 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3071 less than or equal in size to `unsigned int' this doesn't matter.
3072 If the mode is larger than `unsigned int', then synth_mult works
3073 only if the constant value exactly fits in an `unsigned int' without
3074 any truncation. This means that multiplying by negative values does
3075 not work; results are off by 2^32 on a 32 bit machine. */
3076
3077 if (GET_CODE (op1) == CONST_INT)
3078 {
3079 /* Attempt to handle multiplication of DImode values by negative
3080 coefficients, by performing the multiplication by a positive
3081 multiplier and then inverting the result. */
3082 if (INTVAL (op1) < 0
3083 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3084 {
3085 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3086 result is interpreted as an unsigned coefficient.
3087 Exclude cost of op0 from max_cost to match the cost
3088 calculation of the synth_mult. */
3089 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3090 - neg_cost[mode];
3091 if (max_cost > 0
3092 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3093 &variant, max_cost))
3094 {
3095 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3096 NULL_RTX, &algorithm,
3097 variant);
3098 return expand_unop (mode, neg_optab, temp, target, 0);
3099 }
3100 }
3101 else coeff = INTVAL (op1);
3102 }
3103 else if (GET_CODE (op1) == CONST_DOUBLE)
3104 {
3105 /* If we are multiplying in DImode, it may still be a win
3106 to try to work with shifts and adds. */
3107 if (CONST_DOUBLE_HIGH (op1) == 0)
3108 coeff = CONST_DOUBLE_LOW (op1);
3109 else if (CONST_DOUBLE_LOW (op1) == 0
3110 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3111 {
3112 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3113 + HOST_BITS_PER_WIDE_INT;
3114 return expand_shift (LSHIFT_EXPR, mode, op0,
3115 build_int_cst (NULL_TREE, shift),
3116 target, unsignedp);
3117 }
3118 }
3119
3120 /* We used to test optimize here, on the grounds that it's better to
3121 produce a smaller program when -O is not used. But this causes
3122 such a terrible slowdown sometimes that it seems better to always
3123 use synth_mult. */
3124 if (coeff != 0)
3125 {
3126 /* Special case powers of two. */
3127 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3128 return expand_shift (LSHIFT_EXPR, mode, op0,
3129 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3130 target, unsignedp);
3131
3132 /* Exclude cost of op0 from max_cost to match the cost
3133 calculation of the synth_mult. */
3134 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3135 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3136 max_cost))
3137 return expand_mult_const (mode, op0, coeff, target,
3138 &algorithm, variant);
3139 }
3140 }
3141
3142 if (GET_CODE (op0) == CONST_DOUBLE)
3143 {
3144 rtx temp = op0;
3145 op0 = op1;
3146 op1 = temp;
3147 }
3148
3149 /* Expand x*2.0 as x+x. */
3150 if (GET_CODE (op1) == CONST_DOUBLE
3151 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3152 {
3153 REAL_VALUE_TYPE d;
3154 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3155
3156 if (REAL_VALUES_EQUAL (d, dconst2))
3157 {
3158 op0 = force_reg (GET_MODE (op0), op0);
3159 return expand_binop (mode, add_optab, op0, op0,
3160 target, unsignedp, OPTAB_LIB_WIDEN);
3161 }
3162 }
3163
3164 /* This used to use umul_optab if unsigned, but for non-widening multiply
3165 there is no difference between signed and unsigned. */
3166 op0 = expand_binop (mode,
3167 ! unsignedp
3168 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3169 ? smulv_optab : smul_optab,
3170 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3171 gcc_assert (op0);
3172 return op0;
3173 }
3174 \f
3175 /* Return the smallest n such that 2**n >= X. */
3176
3177 int
3178 ceil_log2 (unsigned HOST_WIDE_INT x)
3179 {
3180 return floor_log2 (x - 1) + 1;
3181 }
3182
3183 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3184 replace division by D, and put the least significant N bits of the result
3185 in *MULTIPLIER_PTR and return the most significant bit.
3186
3187 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3188 needed precision is in PRECISION (should be <= N).
3189
3190 PRECISION should be as small as possible so this function can choose
3191 multiplier more freely.
3192
3193 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3194 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3195
3196 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3197 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3198
3199 static
3200 unsigned HOST_WIDE_INT
3201 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3202 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3203 {
3204 HOST_WIDE_INT mhigh_hi, mlow_hi;
3205 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3206 int lgup, post_shift;
3207 int pow, pow2;
3208 unsigned HOST_WIDE_INT nl, dummy1;
3209 HOST_WIDE_INT nh, dummy2;
3210
3211 /* lgup = ceil(log2(divisor)); */
3212 lgup = ceil_log2 (d);
3213
3214 gcc_assert (lgup <= n);
3215
3216 pow = n + lgup;
3217 pow2 = n + lgup - precision;
3218
3219 /* We could handle this with some effort, but this case is much
3220 better handled directly with a scc insn, so rely on caller using
3221 that. */
3222 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3223
3224 /* mlow = 2^(N + lgup)/d */
3225 if (pow >= HOST_BITS_PER_WIDE_INT)
3226 {
3227 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3228 nl = 0;
3229 }
3230 else
3231 {
3232 nh = 0;
3233 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3234 }
3235 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3236 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3237
3238 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3239 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3240 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3241 else
3242 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3243 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3244 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3245
3246 gcc_assert (!mhigh_hi || nh - d < d);
3247 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3248 /* Assert that mlow < mhigh. */
3249 gcc_assert (mlow_hi < mhigh_hi
3250 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3251
3252 /* If precision == N, then mlow, mhigh exceed 2^N
3253 (but they do not exceed 2^(N+1)). */
3254
3255 /* Reduce to lowest terms. */
3256 for (post_shift = lgup; post_shift > 0; post_shift--)
3257 {
3258 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3259 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3260 if (ml_lo >= mh_lo)
3261 break;
3262
3263 mlow_hi = 0;
3264 mlow_lo = ml_lo;
3265 mhigh_hi = 0;
3266 mhigh_lo = mh_lo;
3267 }
3268
3269 *post_shift_ptr = post_shift;
3270 *lgup_ptr = lgup;
3271 if (n < HOST_BITS_PER_WIDE_INT)
3272 {
3273 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3274 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3275 return mhigh_lo >= mask;
3276 }
3277 else
3278 {
3279 *multiplier_ptr = GEN_INT (mhigh_lo);
3280 return mhigh_hi;
3281 }
3282 }
3283
3284 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3285 congruent to 1 (mod 2**N). */
3286
3287 static unsigned HOST_WIDE_INT
3288 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3289 {
3290 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3291
3292 /* The algorithm notes that the choice y = x satisfies
3293 x*y == 1 mod 2^3, since x is assumed odd.
3294 Each iteration doubles the number of bits of significance in y. */
3295
3296 unsigned HOST_WIDE_INT mask;
3297 unsigned HOST_WIDE_INT y = x;
3298 int nbit = 3;
3299
3300 mask = (n == HOST_BITS_PER_WIDE_INT
3301 ? ~(unsigned HOST_WIDE_INT) 0
3302 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3303
3304 while (nbit < n)
3305 {
3306 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3307 nbit *= 2;
3308 }
3309 return y;
3310 }
3311
3312 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3313 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3314 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3315 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3316 become signed.
3317
3318 The result is put in TARGET if that is convenient.
3319
3320 MODE is the mode of operation. */
3321
3322 rtx
3323 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3324 rtx op1, rtx target, int unsignedp)
3325 {
3326 rtx tem;
3327 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3328
3329 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3330 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3331 NULL_RTX, 0);
3332 tem = expand_and (mode, tem, op1, NULL_RTX);
3333 adj_operand
3334 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3335 adj_operand);
3336
3337 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3338 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3339 NULL_RTX, 0);
3340 tem = expand_and (mode, tem, op0, NULL_RTX);
3341 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3342 target);
3343
3344 return target;
3345 }
3346
3347 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3348
3349 static rtx
3350 extract_high_half (enum machine_mode mode, rtx op)
3351 {
3352 enum machine_mode wider_mode;
3353
3354 if (mode == word_mode)
3355 return gen_highpart (mode, op);
3356
3357 wider_mode = GET_MODE_WIDER_MODE (mode);
3358 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3359 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3360 return convert_modes (mode, wider_mode, op, 0);
3361 }
3362
3363 /* Like expand_mult_highpart, but only consider using a multiplication
3364 optab. OP1 is an rtx for the constant operand. */
3365
3366 static rtx
3367 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3368 rtx target, int unsignedp, int max_cost)
3369 {
3370 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3371 enum machine_mode wider_mode;
3372 optab moptab;
3373 rtx tem;
3374 int size;
3375
3376 wider_mode = GET_MODE_WIDER_MODE (mode);
3377 size = GET_MODE_BITSIZE (mode);
3378
3379 /* Firstly, try using a multiplication insn that only generates the needed
3380 high part of the product, and in the sign flavor of unsignedp. */
3381 if (mul_highpart_cost[mode] < max_cost)
3382 {
3383 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3384 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3385 unsignedp, OPTAB_DIRECT);
3386 if (tem)
3387 return tem;
3388 }
3389
3390 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3391 Need to adjust the result after the multiplication. */
3392 if (size - 1 < BITS_PER_WORD
3393 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3394 + 4 * add_cost[mode] < max_cost))
3395 {
3396 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3397 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3398 unsignedp, OPTAB_DIRECT);
3399 if (tem)
3400 /* We used the wrong signedness. Adjust the result. */
3401 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3402 tem, unsignedp);
3403 }
3404
3405 /* Try widening multiplication. */
3406 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3407 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3408 && mul_widen_cost[wider_mode] < max_cost)
3409 {
3410 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3411 unsignedp, OPTAB_WIDEN);
3412 if (tem)
3413 return extract_high_half (mode, tem);
3414 }
3415
3416 /* Try widening the mode and perform a non-widening multiplication. */
3417 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3418 && size - 1 < BITS_PER_WORD
3419 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3420 {
3421 rtx insns, wop0, wop1;
3422
3423 /* We need to widen the operands, for example to ensure the
3424 constant multiplier is correctly sign or zero extended.
3425 Use a sequence to clean-up any instructions emitted by
3426 the conversions if things don't work out. */
3427 start_sequence ();
3428 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3429 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3430 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3431 unsignedp, OPTAB_WIDEN);
3432 insns = get_insns ();
3433 end_sequence ();
3434
3435 if (tem)
3436 {
3437 emit_insn (insns);
3438 return extract_high_half (mode, tem);
3439 }
3440 }
3441
3442 /* Try widening multiplication of opposite signedness, and adjust. */
3443 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3444 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3445 && size - 1 < BITS_PER_WORD
3446 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3447 + 4 * add_cost[mode] < max_cost))
3448 {
3449 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3450 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3451 if (tem != 0)
3452 {
3453 tem = extract_high_half (mode, tem);
3454 /* We used the wrong signedness. Adjust the result. */
3455 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3456 target, unsignedp);
3457 }
3458 }
3459
3460 return 0;
3461 }
3462
3463 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3464 putting the high half of the result in TARGET if that is convenient,
3465 and return where the result is. If the operation can not be performed,
3466 0 is returned.
3467
3468 MODE is the mode of operation and result.
3469
3470 UNSIGNEDP nonzero means unsigned multiply.
3471
3472 MAX_COST is the total allowed cost for the expanded RTL. */
3473
3474 static rtx
3475 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3476 rtx target, int unsignedp, int max_cost)
3477 {
3478 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3479 unsigned HOST_WIDE_INT cnst1;
3480 int extra_cost;
3481 bool sign_adjust = false;
3482 enum mult_variant variant;
3483 struct algorithm alg;
3484 rtx tem;
3485
3486 /* We can't support modes wider than HOST_BITS_PER_INT. */
3487 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3488
3489 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3490
3491 /* We can't optimize modes wider than BITS_PER_WORD.
3492 ??? We might be able to perform double-word arithmetic if
3493 mode == word_mode, however all the cost calculations in
3494 synth_mult etc. assume single-word operations. */
3495 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3496 return expand_mult_highpart_optab (mode, op0, op1, target,
3497 unsignedp, max_cost);
3498
3499 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3500
3501 /* Check whether we try to multiply by a negative constant. */
3502 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3503 {
3504 sign_adjust = true;
3505 extra_cost += add_cost[mode];
3506 }
3507
3508 /* See whether shift/add multiplication is cheap enough. */
3509 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3510 max_cost - extra_cost))
3511 {
3512 /* See whether the specialized multiplication optabs are
3513 cheaper than the shift/add version. */
3514 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3515 alg.cost.cost + extra_cost);
3516 if (tem)
3517 return tem;
3518
3519 tem = convert_to_mode (wider_mode, op0, unsignedp);
3520 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3521 tem = extract_high_half (mode, tem);
3522
3523 /* Adjust result for signedness. */
3524 if (sign_adjust)
3525 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3526
3527 return tem;
3528 }
3529 return expand_mult_highpart_optab (mode, op0, op1, target,
3530 unsignedp, max_cost);
3531 }
3532
3533
3534 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3535
3536 static rtx
3537 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3538 {
3539 unsigned HOST_WIDE_INT masklow, maskhigh;
3540 rtx result, temp, shift, label;
3541 int logd;
3542
3543 logd = floor_log2 (d);
3544 result = gen_reg_rtx (mode);
3545
3546 /* Avoid conditional branches when they're expensive. */
3547 if (BRANCH_COST >= 2
3548 && !optimize_size)
3549 {
3550 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3551 mode, 0, -1);
3552 if (signmask)
3553 {
3554 signmask = force_reg (mode, signmask);
3555 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3556 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3557
3558 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3559 which instruction sequence to use. If logical right shifts
3560 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3561 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3562
3563 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3564 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3565 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3566 {
3567 temp = expand_binop (mode, xor_optab, op0, signmask,
3568 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3569 temp = expand_binop (mode, sub_optab, temp, signmask,
3570 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3571 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3572 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3573 temp = expand_binop (mode, xor_optab, temp, signmask,
3574 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3575 temp = expand_binop (mode, sub_optab, temp, signmask,
3576 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3577 }
3578 else
3579 {
3580 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3581 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3582 signmask = force_reg (mode, signmask);
3583
3584 temp = expand_binop (mode, add_optab, op0, signmask,
3585 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3586 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3587 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3588 temp = expand_binop (mode, sub_optab, temp, signmask,
3589 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3590 }
3591 return temp;
3592 }
3593 }
3594
3595 /* Mask contains the mode's signbit and the significant bits of the
3596 modulus. By including the signbit in the operation, many targets
3597 can avoid an explicit compare operation in the following comparison
3598 against zero. */
3599
3600 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3601 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3602 {
3603 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3604 maskhigh = -1;
3605 }
3606 else
3607 maskhigh = (HOST_WIDE_INT) -1
3608 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3609
3610 temp = expand_binop (mode, and_optab, op0,
3611 immed_double_const (masklow, maskhigh, mode),
3612 result, 1, OPTAB_LIB_WIDEN);
3613 if (temp != result)
3614 emit_move_insn (result, temp);
3615
3616 label = gen_label_rtx ();
3617 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3618
3619 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3620 0, OPTAB_LIB_WIDEN);
3621 masklow = (HOST_WIDE_INT) -1 << logd;
3622 maskhigh = -1;
3623 temp = expand_binop (mode, ior_optab, temp,
3624 immed_double_const (masklow, maskhigh, mode),
3625 result, 1, OPTAB_LIB_WIDEN);
3626 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3627 0, OPTAB_LIB_WIDEN);
3628 if (temp != result)
3629 emit_move_insn (result, temp);
3630 emit_label (label);
3631 return result;
3632 }
3633
3634 /* Expand signed division of OP0 by a power of two D in mode MODE.
3635 This routine is only called for positive values of D. */
3636
3637 static rtx
3638 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3639 {
3640 rtx temp, label;
3641 tree shift;
3642 int logd;
3643
3644 logd = floor_log2 (d);
3645 shift = build_int_cst (NULL_TREE, logd);
3646
3647 if (d == 2 && BRANCH_COST >= 1)
3648 {
3649 temp = gen_reg_rtx (mode);
3650 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3651 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3652 0, OPTAB_LIB_WIDEN);
3653 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3654 }
3655
3656 #ifdef HAVE_conditional_move
3657 if (BRANCH_COST >= 2)
3658 {
3659 rtx temp2;
3660
3661 /* ??? emit_conditional_move forces a stack adjustment via
3662 compare_from_rtx so, if the sequence is discarded, it will
3663 be lost. Do it now instead. */
3664 do_pending_stack_adjust ();
3665
3666 start_sequence ();
3667 temp2 = copy_to_mode_reg (mode, op0);
3668 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3669 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3670 temp = force_reg (mode, temp);
3671
3672 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3673 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3674 mode, temp, temp2, mode, 0);
3675 if (temp2)
3676 {
3677 rtx seq = get_insns ();
3678 end_sequence ();
3679 emit_insn (seq);
3680 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3681 }
3682 end_sequence ();
3683 }
3684 #endif
3685
3686 if (BRANCH_COST >= 2)
3687 {
3688 int ushift = GET_MODE_BITSIZE (mode) - logd;
3689
3690 temp = gen_reg_rtx (mode);
3691 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3692 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3693 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3694 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3695 else
3696 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3697 build_int_cst (NULL_TREE, ushift),
3698 NULL_RTX, 1);
3699 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3700 0, OPTAB_LIB_WIDEN);
3701 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3702 }
3703
3704 label = gen_label_rtx ();
3705 temp = copy_to_mode_reg (mode, op0);
3706 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3707 expand_inc (temp, GEN_INT (d - 1));
3708 emit_label (label);
3709 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3710 }
3711 \f
3712 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3713 if that is convenient, and returning where the result is.
3714 You may request either the quotient or the remainder as the result;
3715 specify REM_FLAG nonzero to get the remainder.
3716
3717 CODE is the expression code for which kind of division this is;
3718 it controls how rounding is done. MODE is the machine mode to use.
3719 UNSIGNEDP nonzero means do unsigned division. */
3720
3721 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3722 and then correct it by or'ing in missing high bits
3723 if result of ANDI is nonzero.
3724 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3725 This could optimize to a bfexts instruction.
3726 But C doesn't use these operations, so their optimizations are
3727 left for later. */
3728 /* ??? For modulo, we don't actually need the highpart of the first product,
3729 the low part will do nicely. And for small divisors, the second multiply
3730 can also be a low-part only multiply or even be completely left out.
3731 E.g. to calculate the remainder of a division by 3 with a 32 bit
3732 multiply, multiply with 0x55555556 and extract the upper two bits;
3733 the result is exact for inputs up to 0x1fffffff.
3734 The input range can be reduced by using cross-sum rules.
3735 For odd divisors >= 3, the following table gives right shift counts
3736 so that if a number is shifted by an integer multiple of the given
3737 amount, the remainder stays the same:
3738 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3739 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3740 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3741 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3742 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3743
3744 Cross-sum rules for even numbers can be derived by leaving as many bits
3745 to the right alone as the divisor has zeros to the right.
3746 E.g. if x is an unsigned 32 bit number:
3747 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3748 */
3749
3750 rtx
3751 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3752 rtx op0, rtx op1, rtx target, int unsignedp)
3753 {
3754 enum machine_mode compute_mode;
3755 rtx tquotient;
3756 rtx quotient = 0, remainder = 0;
3757 rtx last;
3758 int size;
3759 rtx insn, set;
3760 optab optab1, optab2;
3761 int op1_is_constant, op1_is_pow2 = 0;
3762 int max_cost, extra_cost;
3763 static HOST_WIDE_INT last_div_const = 0;
3764 static HOST_WIDE_INT ext_op1;
3765
3766 op1_is_constant = GET_CODE (op1) == CONST_INT;
3767 if (op1_is_constant)
3768 {
3769 ext_op1 = INTVAL (op1);
3770 if (unsignedp)
3771 ext_op1 &= GET_MODE_MASK (mode);
3772 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3773 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3774 }
3775
3776 /*
3777 This is the structure of expand_divmod:
3778
3779 First comes code to fix up the operands so we can perform the operations
3780 correctly and efficiently.
3781
3782 Second comes a switch statement with code specific for each rounding mode.
3783 For some special operands this code emits all RTL for the desired
3784 operation, for other cases, it generates only a quotient and stores it in
3785 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3786 to indicate that it has not done anything.
3787
3788 Last comes code that finishes the operation. If QUOTIENT is set and
3789 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3790 QUOTIENT is not set, it is computed using trunc rounding.
3791
3792 We try to generate special code for division and remainder when OP1 is a
3793 constant. If |OP1| = 2**n we can use shifts and some other fast
3794 operations. For other values of OP1, we compute a carefully selected
3795 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3796 by m.
3797
3798 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3799 half of the product. Different strategies for generating the product are
3800 implemented in expand_mult_highpart.
3801
3802 If what we actually want is the remainder, we generate that by another
3803 by-constant multiplication and a subtraction. */
3804
3805 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3806 code below will malfunction if we are, so check here and handle
3807 the special case if so. */
3808 if (op1 == const1_rtx)
3809 return rem_flag ? const0_rtx : op0;
3810
3811 /* When dividing by -1, we could get an overflow.
3812 negv_optab can handle overflows. */
3813 if (! unsignedp && op1 == constm1_rtx)
3814 {
3815 if (rem_flag)
3816 return const0_rtx;
3817 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3818 ? negv_optab : neg_optab, op0, target, 0);
3819 }
3820
3821 if (target
3822 /* Don't use the function value register as a target
3823 since we have to read it as well as write it,
3824 and function-inlining gets confused by this. */
3825 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3826 /* Don't clobber an operand while doing a multi-step calculation. */
3827 || ((rem_flag || op1_is_constant)
3828 && (reg_mentioned_p (target, op0)
3829 || (MEM_P (op0) && MEM_P (target))))
3830 || reg_mentioned_p (target, op1)
3831 || (MEM_P (op1) && MEM_P (target))))
3832 target = 0;
3833
3834 /* Get the mode in which to perform this computation. Normally it will
3835 be MODE, but sometimes we can't do the desired operation in MODE.
3836 If so, pick a wider mode in which we can do the operation. Convert
3837 to that mode at the start to avoid repeated conversions.
3838
3839 First see what operations we need. These depend on the expression
3840 we are evaluating. (We assume that divxx3 insns exist under the
3841 same conditions that modxx3 insns and that these insns don't normally
3842 fail. If these assumptions are not correct, we may generate less
3843 efficient code in some cases.)
3844
3845 Then see if we find a mode in which we can open-code that operation
3846 (either a division, modulus, or shift). Finally, check for the smallest
3847 mode for which we can do the operation with a library call. */
3848
3849 /* We might want to refine this now that we have division-by-constant
3850 optimization. Since expand_mult_highpart tries so many variants, it is
3851 not straightforward to generalize this. Maybe we should make an array
3852 of possible modes in init_expmed? Save this for GCC 2.7. */
3853
3854 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3855 ? (unsignedp ? lshr_optab : ashr_optab)
3856 : (unsignedp ? udiv_optab : sdiv_optab));
3857 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3858 ? optab1
3859 : (unsignedp ? udivmod_optab : sdivmod_optab));
3860
3861 for (compute_mode = mode; compute_mode != VOIDmode;
3862 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3863 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3864 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3865 break;
3866
3867 if (compute_mode == VOIDmode)
3868 for (compute_mode = mode; compute_mode != VOIDmode;
3869 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3870 if (optab1->handlers[compute_mode].libfunc
3871 || optab2->handlers[compute_mode].libfunc)
3872 break;
3873
3874 /* If we still couldn't find a mode, use MODE, but expand_binop will
3875 probably die. */
3876 if (compute_mode == VOIDmode)
3877 compute_mode = mode;
3878
3879 if (target && GET_MODE (target) == compute_mode)
3880 tquotient = target;
3881 else
3882 tquotient = gen_reg_rtx (compute_mode);
3883
3884 size = GET_MODE_BITSIZE (compute_mode);
3885 #if 0
3886 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3887 (mode), and thereby get better code when OP1 is a constant. Do that
3888 later. It will require going over all usages of SIZE below. */
3889 size = GET_MODE_BITSIZE (mode);
3890 #endif
3891
3892 /* Only deduct something for a REM if the last divide done was
3893 for a different constant. Then set the constant of the last
3894 divide. */
3895 max_cost = div_cost[compute_mode]
3896 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3897 && INTVAL (op1) == last_div_const)
3898 ? mul_cost[compute_mode] + add_cost[compute_mode]
3899 : 0);
3900
3901 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3902
3903 /* Now convert to the best mode to use. */
3904 if (compute_mode != mode)
3905 {
3906 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3907 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3908
3909 /* convert_modes may have placed op1 into a register, so we
3910 must recompute the following. */
3911 op1_is_constant = GET_CODE (op1) == CONST_INT;
3912 op1_is_pow2 = (op1_is_constant
3913 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3914 || (! unsignedp
3915 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3916 }
3917
3918 /* If one of the operands is a volatile MEM, copy it into a register. */
3919
3920 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3921 op0 = force_reg (compute_mode, op0);
3922 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3923 op1 = force_reg (compute_mode, op1);
3924
3925 /* If we need the remainder or if OP1 is constant, we need to
3926 put OP0 in a register in case it has any queued subexpressions. */
3927 if (rem_flag || op1_is_constant)
3928 op0 = force_reg (compute_mode, op0);
3929
3930 last = get_last_insn ();
3931
3932 /* Promote floor rounding to trunc rounding for unsigned operations. */
3933 if (unsignedp)
3934 {
3935 if (code == FLOOR_DIV_EXPR)
3936 code = TRUNC_DIV_EXPR;
3937 if (code == FLOOR_MOD_EXPR)
3938 code = TRUNC_MOD_EXPR;
3939 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3940 code = TRUNC_DIV_EXPR;
3941 }
3942
3943 if (op1 != const0_rtx)
3944 switch (code)
3945 {
3946 case TRUNC_MOD_EXPR:
3947 case TRUNC_DIV_EXPR:
3948 if (op1_is_constant)
3949 {
3950 if (unsignedp)
3951 {
3952 unsigned HOST_WIDE_INT mh;
3953 int pre_shift, post_shift;
3954 int dummy;
3955 rtx ml;
3956 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3957 & GET_MODE_MASK (compute_mode));
3958
3959 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3960 {
3961 pre_shift = floor_log2 (d);
3962 if (rem_flag)
3963 {
3964 remainder
3965 = expand_binop (compute_mode, and_optab, op0,
3966 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3967 remainder, 1,
3968 OPTAB_LIB_WIDEN);
3969 if (remainder)
3970 return gen_lowpart (mode, remainder);
3971 }
3972 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3973 build_int_cst (NULL_TREE,
3974 pre_shift),
3975 tquotient, 1);
3976 }
3977 else if (size <= HOST_BITS_PER_WIDE_INT)
3978 {
3979 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3980 {
3981 /* Most significant bit of divisor is set; emit an scc
3982 insn. */
3983 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3984 compute_mode, 1, 1);
3985 if (quotient == 0)
3986 goto fail1;
3987 }
3988 else
3989 {
3990 /* Find a suitable multiplier and right shift count
3991 instead of multiplying with D. */
3992
3993 mh = choose_multiplier (d, size, size,
3994 &ml, &post_shift, &dummy);
3995
3996 /* If the suggested multiplier is more than SIZE bits,
3997 we can do better for even divisors, using an
3998 initial right shift. */
3999 if (mh != 0 && (d & 1) == 0)
4000 {
4001 pre_shift = floor_log2 (d & -d);
4002 mh = choose_multiplier (d >> pre_shift, size,
4003 size - pre_shift,
4004 &ml, &post_shift, &dummy);
4005 gcc_assert (!mh);
4006 }
4007 else
4008 pre_shift = 0;
4009
4010 if (mh != 0)
4011 {
4012 rtx t1, t2, t3, t4;
4013
4014 if (post_shift - 1 >= BITS_PER_WORD)
4015 goto fail1;
4016
4017 extra_cost
4018 = (shift_cost[compute_mode][post_shift - 1]
4019 + shift_cost[compute_mode][1]
4020 + 2 * add_cost[compute_mode]);
4021 t1 = expand_mult_highpart (compute_mode, op0, ml,
4022 NULL_RTX, 1,
4023 max_cost - extra_cost);
4024 if (t1 == 0)
4025 goto fail1;
4026 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4027 op0, t1),
4028 NULL_RTX);
4029 t3 = expand_shift
4030 (RSHIFT_EXPR, compute_mode, t2,
4031 build_int_cst (NULL_TREE, 1),
4032 NULL_RTX,1);
4033 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4034 t1, t3),
4035 NULL_RTX);
4036 quotient = expand_shift
4037 (RSHIFT_EXPR, compute_mode, t4,
4038 build_int_cst (NULL_TREE, post_shift - 1),
4039 tquotient, 1);
4040 }
4041 else
4042 {
4043 rtx t1, t2;
4044
4045 if (pre_shift >= BITS_PER_WORD
4046 || post_shift >= BITS_PER_WORD)
4047 goto fail1;
4048
4049 t1 = expand_shift
4050 (RSHIFT_EXPR, compute_mode, op0,
4051 build_int_cst (NULL_TREE, pre_shift),
4052 NULL_RTX, 1);
4053 extra_cost
4054 = (shift_cost[compute_mode][pre_shift]
4055 + shift_cost[compute_mode][post_shift]);
4056 t2 = expand_mult_highpart (compute_mode, t1, ml,
4057 NULL_RTX, 1,
4058 max_cost - extra_cost);
4059 if (t2 == 0)
4060 goto fail1;
4061 quotient = expand_shift
4062 (RSHIFT_EXPR, compute_mode, t2,
4063 build_int_cst (NULL_TREE, post_shift),
4064 tquotient, 1);
4065 }
4066 }
4067 }
4068 else /* Too wide mode to use tricky code */
4069 break;
4070
4071 insn = get_last_insn ();
4072 if (insn != last
4073 && (set = single_set (insn)) != 0
4074 && SET_DEST (set) == quotient)
4075 set_unique_reg_note (insn,
4076 REG_EQUAL,
4077 gen_rtx_UDIV (compute_mode, op0, op1));
4078 }
4079 else /* TRUNC_DIV, signed */
4080 {
4081 unsigned HOST_WIDE_INT ml;
4082 int lgup, post_shift;
4083 rtx mlr;
4084 HOST_WIDE_INT d = INTVAL (op1);
4085 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4086
4087 /* n rem d = n rem -d */
4088 if (rem_flag && d < 0)
4089 {
4090 d = abs_d;
4091 op1 = gen_int_mode (abs_d, compute_mode);
4092 }
4093
4094 if (d == 1)
4095 quotient = op0;
4096 else if (d == -1)
4097 quotient = expand_unop (compute_mode, neg_optab, op0,
4098 tquotient, 0);
4099 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4100 {
4101 /* This case is not handled correctly below. */
4102 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4103 compute_mode, 1, 1);
4104 if (quotient == 0)
4105 goto fail1;
4106 }
4107 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4108 && (rem_flag ? smod_pow2_cheap[compute_mode]
4109 : sdiv_pow2_cheap[compute_mode])
4110 /* We assume that cheap metric is true if the
4111 optab has an expander for this mode. */
4112 && (((rem_flag ? smod_optab : sdiv_optab)
4113 ->handlers[compute_mode].insn_code
4114 != CODE_FOR_nothing)
4115 || (sdivmod_optab->handlers[compute_mode]
4116 .insn_code != CODE_FOR_nothing)))
4117 ;
4118 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4119 {
4120 if (rem_flag)
4121 {
4122 remainder = expand_smod_pow2 (compute_mode, op0, d);
4123 if (remainder)
4124 return gen_lowpart (mode, remainder);
4125 }
4126
4127 if (sdiv_pow2_cheap[compute_mode]
4128 && ((sdiv_optab->handlers[compute_mode].insn_code
4129 != CODE_FOR_nothing)
4130 || (sdivmod_optab->handlers[compute_mode].insn_code
4131 != CODE_FOR_nothing)))
4132 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4133 compute_mode, op0,
4134 gen_int_mode (abs_d,
4135 compute_mode),
4136 NULL_RTX, 0);
4137 else
4138 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4139
4140 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4141 negate the quotient. */
4142 if (d < 0)
4143 {
4144 insn = get_last_insn ();
4145 if (insn != last
4146 && (set = single_set (insn)) != 0
4147 && SET_DEST (set) == quotient
4148 && abs_d < ((unsigned HOST_WIDE_INT) 1
4149 << (HOST_BITS_PER_WIDE_INT - 1)))
4150 set_unique_reg_note (insn,
4151 REG_EQUAL,
4152 gen_rtx_DIV (compute_mode,
4153 op0,
4154 GEN_INT
4155 (trunc_int_for_mode
4156 (abs_d,
4157 compute_mode))));
4158
4159 quotient = expand_unop (compute_mode, neg_optab,
4160 quotient, quotient, 0);
4161 }
4162 }
4163 else if (size <= HOST_BITS_PER_WIDE_INT)
4164 {
4165 choose_multiplier (abs_d, size, size - 1,
4166 &mlr, &post_shift, &lgup);
4167 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4168 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4169 {
4170 rtx t1, t2, t3;
4171
4172 if (post_shift >= BITS_PER_WORD
4173 || size - 1 >= BITS_PER_WORD)
4174 goto fail1;
4175
4176 extra_cost = (shift_cost[compute_mode][post_shift]
4177 + shift_cost[compute_mode][size - 1]
4178 + add_cost[compute_mode]);
4179 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4180 NULL_RTX, 0,
4181 max_cost - extra_cost);
4182 if (t1 == 0)
4183 goto fail1;
4184 t2 = expand_shift
4185 (RSHIFT_EXPR, compute_mode, t1,
4186 build_int_cst (NULL_TREE, post_shift),
4187 NULL_RTX, 0);
4188 t3 = expand_shift
4189 (RSHIFT_EXPR, compute_mode, op0,
4190 build_int_cst (NULL_TREE, size - 1),
4191 NULL_RTX, 0);
4192 if (d < 0)
4193 quotient
4194 = force_operand (gen_rtx_MINUS (compute_mode,
4195 t3, t2),
4196 tquotient);
4197 else
4198 quotient
4199 = force_operand (gen_rtx_MINUS (compute_mode,
4200 t2, t3),
4201 tquotient);
4202 }
4203 else
4204 {
4205 rtx t1, t2, t3, t4;
4206
4207 if (post_shift >= BITS_PER_WORD
4208 || size - 1 >= BITS_PER_WORD)
4209 goto fail1;
4210
4211 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4212 mlr = gen_int_mode (ml, compute_mode);
4213 extra_cost = (shift_cost[compute_mode][post_shift]
4214 + shift_cost[compute_mode][size - 1]
4215 + 2 * add_cost[compute_mode]);
4216 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4217 NULL_RTX, 0,
4218 max_cost - extra_cost);
4219 if (t1 == 0)
4220 goto fail1;
4221 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4222 t1, op0),
4223 NULL_RTX);
4224 t3 = expand_shift
4225 (RSHIFT_EXPR, compute_mode, t2,
4226 build_int_cst (NULL_TREE, post_shift),
4227 NULL_RTX, 0);
4228 t4 = expand_shift
4229 (RSHIFT_EXPR, compute_mode, op0,
4230 build_int_cst (NULL_TREE, size - 1),
4231 NULL_RTX, 0);
4232 if (d < 0)
4233 quotient
4234 = force_operand (gen_rtx_MINUS (compute_mode,
4235 t4, t3),
4236 tquotient);
4237 else
4238 quotient
4239 = force_operand (gen_rtx_MINUS (compute_mode,
4240 t3, t4),
4241 tquotient);
4242 }
4243 }
4244 else /* Too wide mode to use tricky code */
4245 break;
4246
4247 insn = get_last_insn ();
4248 if (insn != last
4249 && (set = single_set (insn)) != 0
4250 && SET_DEST (set) == quotient)
4251 set_unique_reg_note (insn,
4252 REG_EQUAL,
4253 gen_rtx_DIV (compute_mode, op0, op1));
4254 }
4255 break;
4256 }
4257 fail1:
4258 delete_insns_since (last);
4259 break;
4260
4261 case FLOOR_DIV_EXPR:
4262 case FLOOR_MOD_EXPR:
4263 /* We will come here only for signed operations. */
4264 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4265 {
4266 unsigned HOST_WIDE_INT mh;
4267 int pre_shift, lgup, post_shift;
4268 HOST_WIDE_INT d = INTVAL (op1);
4269 rtx ml;
4270
4271 if (d > 0)
4272 {
4273 /* We could just as easily deal with negative constants here,
4274 but it does not seem worth the trouble for GCC 2.6. */
4275 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4276 {
4277 pre_shift = floor_log2 (d);
4278 if (rem_flag)
4279 {
4280 remainder = expand_binop (compute_mode, and_optab, op0,
4281 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4282 remainder, 0, OPTAB_LIB_WIDEN);
4283 if (remainder)
4284 return gen_lowpart (mode, remainder);
4285 }
4286 quotient = expand_shift
4287 (RSHIFT_EXPR, compute_mode, op0,
4288 build_int_cst (NULL_TREE, pre_shift),
4289 tquotient, 0);
4290 }
4291 else
4292 {
4293 rtx t1, t2, t3, t4;
4294
4295 mh = choose_multiplier (d, size, size - 1,
4296 &ml, &post_shift, &lgup);
4297 gcc_assert (!mh);
4298
4299 if (post_shift < BITS_PER_WORD
4300 && size - 1 < BITS_PER_WORD)
4301 {
4302 t1 = expand_shift
4303 (RSHIFT_EXPR, compute_mode, op0,
4304 build_int_cst (NULL_TREE, size - 1),
4305 NULL_RTX, 0);
4306 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4307 NULL_RTX, 0, OPTAB_WIDEN);
4308 extra_cost = (shift_cost[compute_mode][post_shift]
4309 + shift_cost[compute_mode][size - 1]
4310 + 2 * add_cost[compute_mode]);
4311 t3 = expand_mult_highpart (compute_mode, t2, ml,
4312 NULL_RTX, 1,
4313 max_cost - extra_cost);
4314 if (t3 != 0)
4315 {
4316 t4 = expand_shift
4317 (RSHIFT_EXPR, compute_mode, t3,
4318 build_int_cst (NULL_TREE, post_shift),
4319 NULL_RTX, 1);
4320 quotient = expand_binop (compute_mode, xor_optab,
4321 t4, t1, tquotient, 0,
4322 OPTAB_WIDEN);
4323 }
4324 }
4325 }
4326 }
4327 else
4328 {
4329 rtx nsign, t1, t2, t3, t4;
4330 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4331 op0, constm1_rtx), NULL_RTX);
4332 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4333 0, OPTAB_WIDEN);
4334 nsign = expand_shift
4335 (RSHIFT_EXPR, compute_mode, t2,
4336 build_int_cst (NULL_TREE, size - 1),
4337 NULL_RTX, 0);
4338 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4339 NULL_RTX);
4340 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4341 NULL_RTX, 0);
4342 if (t4)
4343 {
4344 rtx t5;
4345 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4346 NULL_RTX, 0);
4347 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4348 t4, t5),
4349 tquotient);
4350 }
4351 }
4352 }
4353
4354 if (quotient != 0)
4355 break;
4356 delete_insns_since (last);
4357
4358 /* Try using an instruction that produces both the quotient and
4359 remainder, using truncation. We can easily compensate the quotient
4360 or remainder to get floor rounding, once we have the remainder.
4361 Notice that we compute also the final remainder value here,
4362 and return the result right away. */
4363 if (target == 0 || GET_MODE (target) != compute_mode)
4364 target = gen_reg_rtx (compute_mode);
4365
4366 if (rem_flag)
4367 {
4368 remainder
4369 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4370 quotient = gen_reg_rtx (compute_mode);
4371 }
4372 else
4373 {
4374 quotient
4375 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4376 remainder = gen_reg_rtx (compute_mode);
4377 }
4378
4379 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4380 quotient, remainder, 0))
4381 {
4382 /* This could be computed with a branch-less sequence.
4383 Save that for later. */
4384 rtx tem;
4385 rtx label = gen_label_rtx ();
4386 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4387 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4388 NULL_RTX, 0, OPTAB_WIDEN);
4389 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4390 expand_dec (quotient, const1_rtx);
4391 expand_inc (remainder, op1);
4392 emit_label (label);
4393 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4394 }
4395
4396 /* No luck with division elimination or divmod. Have to do it
4397 by conditionally adjusting op0 *and* the result. */
4398 {
4399 rtx label1, label2, label3, label4, label5;
4400 rtx adjusted_op0;
4401 rtx tem;
4402
4403 quotient = gen_reg_rtx (compute_mode);
4404 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4405 label1 = gen_label_rtx ();
4406 label2 = gen_label_rtx ();
4407 label3 = gen_label_rtx ();
4408 label4 = gen_label_rtx ();
4409 label5 = gen_label_rtx ();
4410 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4411 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4412 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4413 quotient, 0, OPTAB_LIB_WIDEN);
4414 if (tem != quotient)
4415 emit_move_insn (quotient, tem);
4416 emit_jump_insn (gen_jump (label5));
4417 emit_barrier ();
4418 emit_label (label1);
4419 expand_inc (adjusted_op0, const1_rtx);
4420 emit_jump_insn (gen_jump (label4));
4421 emit_barrier ();
4422 emit_label (label2);
4423 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4424 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4425 quotient, 0, OPTAB_LIB_WIDEN);
4426 if (tem != quotient)
4427 emit_move_insn (quotient, tem);
4428 emit_jump_insn (gen_jump (label5));
4429 emit_barrier ();
4430 emit_label (label3);
4431 expand_dec (adjusted_op0, const1_rtx);
4432 emit_label (label4);
4433 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4434 quotient, 0, OPTAB_LIB_WIDEN);
4435 if (tem != quotient)
4436 emit_move_insn (quotient, tem);
4437 expand_dec (quotient, const1_rtx);
4438 emit_label (label5);
4439 }
4440 break;
4441
4442 case CEIL_DIV_EXPR:
4443 case CEIL_MOD_EXPR:
4444 if (unsignedp)
4445 {
4446 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4447 {
4448 rtx t1, t2, t3;
4449 unsigned HOST_WIDE_INT d = INTVAL (op1);
4450 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4451 build_int_cst (NULL_TREE, floor_log2 (d)),
4452 tquotient, 1);
4453 t2 = expand_binop (compute_mode, and_optab, op0,
4454 GEN_INT (d - 1),
4455 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4456 t3 = gen_reg_rtx (compute_mode);
4457 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4458 compute_mode, 1, 1);
4459 if (t3 == 0)
4460 {
4461 rtx lab;
4462 lab = gen_label_rtx ();
4463 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4464 expand_inc (t1, const1_rtx);
4465 emit_label (lab);
4466 quotient = t1;
4467 }
4468 else
4469 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4470 t1, t3),
4471 tquotient);
4472 break;
4473 }
4474
4475 /* Try using an instruction that produces both the quotient and
4476 remainder, using truncation. We can easily compensate the
4477 quotient or remainder to get ceiling rounding, once we have the
4478 remainder. Notice that we compute also the final remainder
4479 value here, and return the result right away. */
4480 if (target == 0 || GET_MODE (target) != compute_mode)
4481 target = gen_reg_rtx (compute_mode);
4482
4483 if (rem_flag)
4484 {
4485 remainder = (REG_P (target)
4486 ? target : gen_reg_rtx (compute_mode));
4487 quotient = gen_reg_rtx (compute_mode);
4488 }
4489 else
4490 {
4491 quotient = (REG_P (target)
4492 ? target : gen_reg_rtx (compute_mode));
4493 remainder = gen_reg_rtx (compute_mode);
4494 }
4495
4496 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4497 remainder, 1))
4498 {
4499 /* This could be computed with a branch-less sequence.
4500 Save that for later. */
4501 rtx label = gen_label_rtx ();
4502 do_cmp_and_jump (remainder, const0_rtx, EQ,
4503 compute_mode, label);
4504 expand_inc (quotient, const1_rtx);
4505 expand_dec (remainder, op1);
4506 emit_label (label);
4507 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4508 }
4509
4510 /* No luck with division elimination or divmod. Have to do it
4511 by conditionally adjusting op0 *and* the result. */
4512 {
4513 rtx label1, label2;
4514 rtx adjusted_op0, tem;
4515
4516 quotient = gen_reg_rtx (compute_mode);
4517 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4518 label1 = gen_label_rtx ();
4519 label2 = gen_label_rtx ();
4520 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4521 compute_mode, label1);
4522 emit_move_insn (quotient, const0_rtx);
4523 emit_jump_insn (gen_jump (label2));
4524 emit_barrier ();
4525 emit_label (label1);
4526 expand_dec (adjusted_op0, const1_rtx);
4527 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4528 quotient, 1, OPTAB_LIB_WIDEN);
4529 if (tem != quotient)
4530 emit_move_insn (quotient, tem);
4531 expand_inc (quotient, const1_rtx);
4532 emit_label (label2);
4533 }
4534 }
4535 else /* signed */
4536 {
4537 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4538 && INTVAL (op1) >= 0)
4539 {
4540 /* This is extremely similar to the code for the unsigned case
4541 above. For 2.7 we should merge these variants, but for
4542 2.6.1 I don't want to touch the code for unsigned since that
4543 get used in C. The signed case will only be used by other
4544 languages (Ada). */
4545
4546 rtx t1, t2, t3;
4547 unsigned HOST_WIDE_INT d = INTVAL (op1);
4548 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4549 build_int_cst (NULL_TREE, floor_log2 (d)),
4550 tquotient, 0);
4551 t2 = expand_binop (compute_mode, and_optab, op0,
4552 GEN_INT (d - 1),
4553 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4554 t3 = gen_reg_rtx (compute_mode);
4555 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4556 compute_mode, 1, 1);
4557 if (t3 == 0)
4558 {
4559 rtx lab;
4560 lab = gen_label_rtx ();
4561 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4562 expand_inc (t1, const1_rtx);
4563 emit_label (lab);
4564 quotient = t1;
4565 }
4566 else
4567 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4568 t1, t3),
4569 tquotient);
4570 break;
4571 }
4572
4573 /* Try using an instruction that produces both the quotient and
4574 remainder, using truncation. We can easily compensate the
4575 quotient or remainder to get ceiling rounding, once we have the
4576 remainder. Notice that we compute also the final remainder
4577 value here, and return the result right away. */
4578 if (target == 0 || GET_MODE (target) != compute_mode)
4579 target = gen_reg_rtx (compute_mode);
4580 if (rem_flag)
4581 {
4582 remainder= (REG_P (target)
4583 ? target : gen_reg_rtx (compute_mode));
4584 quotient = gen_reg_rtx (compute_mode);
4585 }
4586 else
4587 {
4588 quotient = (REG_P (target)
4589 ? target : gen_reg_rtx (compute_mode));
4590 remainder = gen_reg_rtx (compute_mode);
4591 }
4592
4593 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4594 remainder, 0))
4595 {
4596 /* This could be computed with a branch-less sequence.
4597 Save that for later. */
4598 rtx tem;
4599 rtx label = gen_label_rtx ();
4600 do_cmp_and_jump (remainder, const0_rtx, EQ,
4601 compute_mode, label);
4602 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4603 NULL_RTX, 0, OPTAB_WIDEN);
4604 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4605 expand_inc (quotient, const1_rtx);
4606 expand_dec (remainder, op1);
4607 emit_label (label);
4608 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4609 }
4610
4611 /* No luck with division elimination or divmod. Have to do it
4612 by conditionally adjusting op0 *and* the result. */
4613 {
4614 rtx label1, label2, label3, label4, label5;
4615 rtx adjusted_op0;
4616 rtx tem;
4617
4618 quotient = gen_reg_rtx (compute_mode);
4619 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4620 label1 = gen_label_rtx ();
4621 label2 = gen_label_rtx ();
4622 label3 = gen_label_rtx ();
4623 label4 = gen_label_rtx ();
4624 label5 = gen_label_rtx ();
4625 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4626 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4627 compute_mode, label1);
4628 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4629 quotient, 0, OPTAB_LIB_WIDEN);
4630 if (tem != quotient)
4631 emit_move_insn (quotient, tem);
4632 emit_jump_insn (gen_jump (label5));
4633 emit_barrier ();
4634 emit_label (label1);
4635 expand_dec (adjusted_op0, const1_rtx);
4636 emit_jump_insn (gen_jump (label4));
4637 emit_barrier ();
4638 emit_label (label2);
4639 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4640 compute_mode, label3);
4641 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4642 quotient, 0, OPTAB_LIB_WIDEN);
4643 if (tem != quotient)
4644 emit_move_insn (quotient, tem);
4645 emit_jump_insn (gen_jump (label5));
4646 emit_barrier ();
4647 emit_label (label3);
4648 expand_inc (adjusted_op0, const1_rtx);
4649 emit_label (label4);
4650 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4651 quotient, 0, OPTAB_LIB_WIDEN);
4652 if (tem != quotient)
4653 emit_move_insn (quotient, tem);
4654 expand_inc (quotient, const1_rtx);
4655 emit_label (label5);
4656 }
4657 }
4658 break;
4659
4660 case EXACT_DIV_EXPR:
4661 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4662 {
4663 HOST_WIDE_INT d = INTVAL (op1);
4664 unsigned HOST_WIDE_INT ml;
4665 int pre_shift;
4666 rtx t1;
4667
4668 pre_shift = floor_log2 (d & -d);
4669 ml = invert_mod2n (d >> pre_shift, size);
4670 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4671 build_int_cst (NULL_TREE, pre_shift),
4672 NULL_RTX, unsignedp);
4673 quotient = expand_mult (compute_mode, t1,
4674 gen_int_mode (ml, compute_mode),
4675 NULL_RTX, 1);
4676
4677 insn = get_last_insn ();
4678 set_unique_reg_note (insn,
4679 REG_EQUAL,
4680 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4681 compute_mode,
4682 op0, op1));
4683 }
4684 break;
4685
4686 case ROUND_DIV_EXPR:
4687 case ROUND_MOD_EXPR:
4688 if (unsignedp)
4689 {
4690 rtx tem;
4691 rtx label;
4692 label = gen_label_rtx ();
4693 quotient = gen_reg_rtx (compute_mode);
4694 remainder = gen_reg_rtx (compute_mode);
4695 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4696 {
4697 rtx tem;
4698 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4699 quotient, 1, OPTAB_LIB_WIDEN);
4700 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4701 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4702 remainder, 1, OPTAB_LIB_WIDEN);
4703 }
4704 tem = plus_constant (op1, -1);
4705 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4706 build_int_cst (NULL_TREE, 1),
4707 NULL_RTX, 1);
4708 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4709 expand_inc (quotient, const1_rtx);
4710 expand_dec (remainder, op1);
4711 emit_label (label);
4712 }
4713 else
4714 {
4715 rtx abs_rem, abs_op1, tem, mask;
4716 rtx label;
4717 label = gen_label_rtx ();
4718 quotient = gen_reg_rtx (compute_mode);
4719 remainder = gen_reg_rtx (compute_mode);
4720 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4721 {
4722 rtx tem;
4723 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4724 quotient, 0, OPTAB_LIB_WIDEN);
4725 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4726 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4727 remainder, 0, OPTAB_LIB_WIDEN);
4728 }
4729 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4730 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4731 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4732 build_int_cst (NULL_TREE, 1),
4733 NULL_RTX, 1);
4734 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4735 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4736 NULL_RTX, 0, OPTAB_WIDEN);
4737 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4738 build_int_cst (NULL_TREE, size - 1),
4739 NULL_RTX, 0);
4740 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4741 NULL_RTX, 0, OPTAB_WIDEN);
4742 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4743 NULL_RTX, 0, OPTAB_WIDEN);
4744 expand_inc (quotient, tem);
4745 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4746 NULL_RTX, 0, OPTAB_WIDEN);
4747 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4748 NULL_RTX, 0, OPTAB_WIDEN);
4749 expand_dec (remainder, tem);
4750 emit_label (label);
4751 }
4752 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4753
4754 default:
4755 gcc_unreachable ();
4756 }
4757
4758 if (quotient == 0)
4759 {
4760 if (target && GET_MODE (target) != compute_mode)
4761 target = 0;
4762
4763 if (rem_flag)
4764 {
4765 /* Try to produce the remainder without producing the quotient.
4766 If we seem to have a divmod pattern that does not require widening,
4767 don't try widening here. We should really have a WIDEN argument
4768 to expand_twoval_binop, since what we'd really like to do here is
4769 1) try a mod insn in compute_mode
4770 2) try a divmod insn in compute_mode
4771 3) try a div insn in compute_mode and multiply-subtract to get
4772 remainder
4773 4) try the same things with widening allowed. */
4774 remainder
4775 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4776 op0, op1, target,
4777 unsignedp,
4778 ((optab2->handlers[compute_mode].insn_code
4779 != CODE_FOR_nothing)
4780 ? OPTAB_DIRECT : OPTAB_WIDEN));
4781 if (remainder == 0)
4782 {
4783 /* No luck there. Can we do remainder and divide at once
4784 without a library call? */
4785 remainder = gen_reg_rtx (compute_mode);
4786 if (! expand_twoval_binop ((unsignedp
4787 ? udivmod_optab
4788 : sdivmod_optab),
4789 op0, op1,
4790 NULL_RTX, remainder, unsignedp))
4791 remainder = 0;
4792 }
4793
4794 if (remainder)
4795 return gen_lowpart (mode, remainder);
4796 }
4797
4798 /* Produce the quotient. Try a quotient insn, but not a library call.
4799 If we have a divmod in this mode, use it in preference to widening
4800 the div (for this test we assume it will not fail). Note that optab2
4801 is set to the one of the two optabs that the call below will use. */
4802 quotient
4803 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4804 op0, op1, rem_flag ? NULL_RTX : target,
4805 unsignedp,
4806 ((optab2->handlers[compute_mode].insn_code
4807 != CODE_FOR_nothing)
4808 ? OPTAB_DIRECT : OPTAB_WIDEN));
4809
4810 if (quotient == 0)
4811 {
4812 /* No luck there. Try a quotient-and-remainder insn,
4813 keeping the quotient alone. */
4814 quotient = gen_reg_rtx (compute_mode);
4815 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4816 op0, op1,
4817 quotient, NULL_RTX, unsignedp))
4818 {
4819 quotient = 0;
4820 if (! rem_flag)
4821 /* Still no luck. If we are not computing the remainder,
4822 use a library call for the quotient. */
4823 quotient = sign_expand_binop (compute_mode,
4824 udiv_optab, sdiv_optab,
4825 op0, op1, target,
4826 unsignedp, OPTAB_LIB_WIDEN);
4827 }
4828 }
4829 }
4830
4831 if (rem_flag)
4832 {
4833 if (target && GET_MODE (target) != compute_mode)
4834 target = 0;
4835
4836 if (quotient == 0)
4837 {
4838 /* No divide instruction either. Use library for remainder. */
4839 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4840 op0, op1, target,
4841 unsignedp, OPTAB_LIB_WIDEN);
4842 /* No remainder function. Try a quotient-and-remainder
4843 function, keeping the remainder. */
4844 if (!remainder)
4845 {
4846 remainder = gen_reg_rtx (compute_mode);
4847 if (!expand_twoval_binop_libfunc
4848 (unsignedp ? udivmod_optab : sdivmod_optab,
4849 op0, op1,
4850 NULL_RTX, remainder,
4851 unsignedp ? UMOD : MOD))
4852 remainder = NULL_RTX;
4853 }
4854 }
4855 else
4856 {
4857 /* We divided. Now finish doing X - Y * (X / Y). */
4858 remainder = expand_mult (compute_mode, quotient, op1,
4859 NULL_RTX, unsignedp);
4860 remainder = expand_binop (compute_mode, sub_optab, op0,
4861 remainder, target, unsignedp,
4862 OPTAB_LIB_WIDEN);
4863 }
4864 }
4865
4866 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4867 }
4868 \f
4869 /* Return a tree node with data type TYPE, describing the value of X.
4870 Usually this is an VAR_DECL, if there is no obvious better choice.
4871 X may be an expression, however we only support those expressions
4872 generated by loop.c. */
4873
4874 tree
4875 make_tree (tree type, rtx x)
4876 {
4877 tree t;
4878
4879 switch (GET_CODE (x))
4880 {
4881 case CONST_INT:
4882 {
4883 HOST_WIDE_INT hi = 0;
4884
4885 if (INTVAL (x) < 0
4886 && !(TYPE_UNSIGNED (type)
4887 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4888 < HOST_BITS_PER_WIDE_INT)))
4889 hi = -1;
4890
4891 t = build_int_cst_wide (type, INTVAL (x), hi);
4892
4893 return t;
4894 }
4895
4896 case CONST_DOUBLE:
4897 if (GET_MODE (x) == VOIDmode)
4898 t = build_int_cst_wide (type,
4899 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4900 else
4901 {
4902 REAL_VALUE_TYPE d;
4903
4904 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4905 t = build_real (type, d);
4906 }
4907
4908 return t;
4909
4910 case CONST_VECTOR:
4911 {
4912 int i, units;
4913 rtx elt;
4914 tree t = NULL_TREE;
4915
4916 units = CONST_VECTOR_NUNITS (x);
4917
4918 /* Build a tree with vector elements. */
4919 for (i = units - 1; i >= 0; --i)
4920 {
4921 elt = CONST_VECTOR_ELT (x, i);
4922 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4923 }
4924
4925 return build_vector (type, t);
4926 }
4927
4928 case PLUS:
4929 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4930 make_tree (type, XEXP (x, 1)));
4931
4932 case MINUS:
4933 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4934 make_tree (type, XEXP (x, 1)));
4935
4936 case NEG:
4937 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4938
4939 case MULT:
4940 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4941 make_tree (type, XEXP (x, 1)));
4942
4943 case ASHIFT:
4944 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4945 make_tree (type, XEXP (x, 1)));
4946
4947 case LSHIFTRT:
4948 t = lang_hooks.types.unsigned_type (type);
4949 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4950 make_tree (t, XEXP (x, 0)),
4951 make_tree (type, XEXP (x, 1))));
4952
4953 case ASHIFTRT:
4954 t = lang_hooks.types.signed_type (type);
4955 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4956 make_tree (t, XEXP (x, 0)),
4957 make_tree (type, XEXP (x, 1))));
4958
4959 case DIV:
4960 if (TREE_CODE (type) != REAL_TYPE)
4961 t = lang_hooks.types.signed_type (type);
4962 else
4963 t = type;
4964
4965 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4966 make_tree (t, XEXP (x, 0)),
4967 make_tree (t, XEXP (x, 1))));
4968 case UDIV:
4969 t = lang_hooks.types.unsigned_type (type);
4970 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4971 make_tree (t, XEXP (x, 0)),
4972 make_tree (t, XEXP (x, 1))));
4973
4974 case SIGN_EXTEND:
4975 case ZERO_EXTEND:
4976 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4977 GET_CODE (x) == ZERO_EXTEND);
4978 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4979
4980 default:
4981 t = build_decl (VAR_DECL, NULL_TREE, type);
4982
4983 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4984 ptr_mode. So convert. */
4985 if (POINTER_TYPE_P (type))
4986 x = convert_memory_address (TYPE_MODE (type), x);
4987
4988 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4989 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4990 t->decl_with_rtl.rtl = x;
4991
4992 return t;
4993 }
4994 }
4995
4996 /* Check whether the multiplication X * MULT + ADD overflows.
4997 X, MULT and ADD must be CONST_*.
4998 MODE is the machine mode for the computation.
4999 X and MULT must have mode MODE. ADD may have a different mode.
5000 So can X (defaults to same as MODE).
5001 UNSIGNEDP is nonzero to do unsigned multiplication. */
5002
5003 bool
5004 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
5005 enum machine_mode mode, int unsignedp)
5006 {
5007 tree type, mult_type, add_type, result;
5008
5009 type = lang_hooks.types.type_for_mode (mode, unsignedp);
5010
5011 /* In order to get a proper overflow indication from an unsigned
5012 type, we have to pretend that it's a sizetype. */
5013 mult_type = type;
5014 if (unsignedp)
5015 {
5016 /* FIXME:It would be nice if we could step directly from this
5017 type to its sizetype equivalent. */
5018 mult_type = build_distinct_type_copy (type);
5019 TYPE_IS_SIZETYPE (mult_type) = 1;
5020 }
5021
5022 add_type = (GET_MODE (add) == VOIDmode ? mult_type
5023 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
5024
5025 result = fold_build2 (PLUS_EXPR, mult_type,
5026 fold_build2 (MULT_EXPR, mult_type,
5027 make_tree (mult_type, x),
5028 make_tree (mult_type, mult)),
5029 make_tree (add_type, add));
5030
5031 return TREE_CONSTANT_OVERFLOW (result);
5032 }
5033
5034 /* Return an rtx representing the value of X * MULT + ADD.
5035 TARGET is a suggestion for where to store the result (an rtx).
5036 MODE is the machine mode for the computation.
5037 X and MULT must have mode MODE. ADD may have a different mode.
5038 So can X (defaults to same as MODE).
5039 UNSIGNEDP is nonzero to do unsigned multiplication.
5040 This may emit insns. */
5041
5042 rtx
5043 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
5044 int unsignedp)
5045 {
5046 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
5047 tree add_type = (GET_MODE (add) == VOIDmode
5048 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
5049 unsignedp));
5050 tree result = fold_build2 (PLUS_EXPR, type,
5051 fold_build2 (MULT_EXPR, type,
5052 make_tree (type, x),
5053 make_tree (type, mult)),
5054 make_tree (add_type, add));
5055
5056 return expand_expr (result, target, VOIDmode, 0);
5057 }
5058 \f
5059 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5060 and returning TARGET.
5061
5062 If TARGET is 0, a pseudo-register or constant is returned. */
5063
5064 rtx
5065 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5066 {
5067 rtx tem = 0;
5068
5069 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5070 tem = simplify_binary_operation (AND, mode, op0, op1);
5071 if (tem == 0)
5072 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5073
5074 if (target == 0)
5075 target = tem;
5076 else if (tem != target)
5077 emit_move_insn (target, tem);
5078 return target;
5079 }
5080 \f
5081 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5082 and storing in TARGET. Normally return TARGET.
5083 Return 0 if that cannot be done.
5084
5085 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5086 it is VOIDmode, they cannot both be CONST_INT.
5087
5088 UNSIGNEDP is for the case where we have to widen the operands
5089 to perform the operation. It says to use zero-extension.
5090
5091 NORMALIZEP is 1 if we should convert the result to be either zero
5092 or one. Normalize is -1 if we should convert the result to be
5093 either zero or -1. If NORMALIZEP is zero, the result will be left
5094 "raw" out of the scc insn. */
5095
5096 rtx
5097 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5098 enum machine_mode mode, int unsignedp, int normalizep)
5099 {
5100 rtx subtarget;
5101 enum insn_code icode;
5102 enum machine_mode compare_mode;
5103 enum machine_mode target_mode = GET_MODE (target);
5104 rtx tem;
5105 rtx last = get_last_insn ();
5106 rtx pattern, comparison;
5107
5108 if (unsignedp)
5109 code = unsigned_condition (code);
5110
5111 /* If one operand is constant, make it the second one. Only do this
5112 if the other operand is not constant as well. */
5113
5114 if (swap_commutative_operands_p (op0, op1))
5115 {
5116 tem = op0;
5117 op0 = op1;
5118 op1 = tem;
5119 code = swap_condition (code);
5120 }
5121
5122 if (mode == VOIDmode)
5123 mode = GET_MODE (op0);
5124
5125 /* For some comparisons with 1 and -1, we can convert this to
5126 comparisons with zero. This will often produce more opportunities for
5127 store-flag insns. */
5128
5129 switch (code)
5130 {
5131 case LT:
5132 if (op1 == const1_rtx)
5133 op1 = const0_rtx, code = LE;
5134 break;
5135 case LE:
5136 if (op1 == constm1_rtx)
5137 op1 = const0_rtx, code = LT;
5138 break;
5139 case GE:
5140 if (op1 == const1_rtx)
5141 op1 = const0_rtx, code = GT;
5142 break;
5143 case GT:
5144 if (op1 == constm1_rtx)
5145 op1 = const0_rtx, code = GE;
5146 break;
5147 case GEU:
5148 if (op1 == const1_rtx)
5149 op1 = const0_rtx, code = NE;
5150 break;
5151 case LTU:
5152 if (op1 == const1_rtx)
5153 op1 = const0_rtx, code = EQ;
5154 break;
5155 default:
5156 break;
5157 }
5158
5159 /* If we are comparing a double-word integer with zero or -1, we can
5160 convert the comparison into one involving a single word. */
5161 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5162 && GET_MODE_CLASS (mode) == MODE_INT
5163 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5164 {
5165 if ((code == EQ || code == NE)
5166 && (op1 == const0_rtx || op1 == constm1_rtx))
5167 {
5168 rtx op00, op01, op0both;
5169
5170 /* Do a logical OR or AND of the two words and compare the result. */
5171 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5172 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5173 op0both = expand_binop (word_mode,
5174 op1 == const0_rtx ? ior_optab : and_optab,
5175 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5176
5177 if (op0both != 0)
5178 return emit_store_flag (target, code, op0both, op1, word_mode,
5179 unsignedp, normalizep);
5180 }
5181 else if ((code == LT || code == GE) && op1 == const0_rtx)
5182 {
5183 rtx op0h;
5184
5185 /* If testing the sign bit, can just test on high word. */
5186 op0h = simplify_gen_subreg (word_mode, op0, mode,
5187 subreg_highpart_offset (word_mode, mode));
5188 return emit_store_flag (target, code, op0h, op1, word_mode,
5189 unsignedp, normalizep);
5190 }
5191 }
5192
5193 /* From now on, we won't change CODE, so set ICODE now. */
5194 icode = setcc_gen_code[(int) code];
5195
5196 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5197 complement of A (for GE) and shifting the sign bit to the low bit. */
5198 if (op1 == const0_rtx && (code == LT || code == GE)
5199 && GET_MODE_CLASS (mode) == MODE_INT
5200 && (normalizep || STORE_FLAG_VALUE == 1
5201 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5202 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5203 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5204 {
5205 subtarget = target;
5206
5207 /* If the result is to be wider than OP0, it is best to convert it
5208 first. If it is to be narrower, it is *incorrect* to convert it
5209 first. */
5210 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5211 {
5212 op0 = convert_modes (target_mode, mode, op0, 0);
5213 mode = target_mode;
5214 }
5215
5216 if (target_mode != mode)
5217 subtarget = 0;
5218
5219 if (code == GE)
5220 op0 = expand_unop (mode, one_cmpl_optab, op0,
5221 ((STORE_FLAG_VALUE == 1 || normalizep)
5222 ? 0 : subtarget), 0);
5223
5224 if (STORE_FLAG_VALUE == 1 || normalizep)
5225 /* If we are supposed to produce a 0/1 value, we want to do
5226 a logical shift from the sign bit to the low-order bit; for
5227 a -1/0 value, we do an arithmetic shift. */
5228 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5229 size_int (GET_MODE_BITSIZE (mode) - 1),
5230 subtarget, normalizep != -1);
5231
5232 if (mode != target_mode)
5233 op0 = convert_modes (target_mode, mode, op0, 0);
5234
5235 return op0;
5236 }
5237
5238 if (icode != CODE_FOR_nothing)
5239 {
5240 insn_operand_predicate_fn pred;
5241
5242 /* We think we may be able to do this with a scc insn. Emit the
5243 comparison and then the scc insn. */
5244
5245 do_pending_stack_adjust ();
5246 last = get_last_insn ();
5247
5248 comparison
5249 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5250 if (CONSTANT_P (comparison))
5251 {
5252 switch (GET_CODE (comparison))
5253 {
5254 case CONST_INT:
5255 if (comparison == const0_rtx)
5256 return const0_rtx;
5257 break;
5258
5259 #ifdef FLOAT_STORE_FLAG_VALUE
5260 case CONST_DOUBLE:
5261 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5262 return const0_rtx;
5263 break;
5264 #endif
5265 default:
5266 gcc_unreachable ();
5267 }
5268
5269 if (normalizep == 1)
5270 return const1_rtx;
5271 if (normalizep == -1)
5272 return constm1_rtx;
5273 return const_true_rtx;
5274 }
5275
5276 /* The code of COMPARISON may not match CODE if compare_from_rtx
5277 decided to swap its operands and reverse the original code.
5278
5279 We know that compare_from_rtx returns either a CONST_INT or
5280 a new comparison code, so it is safe to just extract the
5281 code from COMPARISON. */
5282 code = GET_CODE (comparison);
5283
5284 /* Get a reference to the target in the proper mode for this insn. */
5285 compare_mode = insn_data[(int) icode].operand[0].mode;
5286 subtarget = target;
5287 pred = insn_data[(int) icode].operand[0].predicate;
5288 if (optimize || ! (*pred) (subtarget, compare_mode))
5289 subtarget = gen_reg_rtx (compare_mode);
5290
5291 pattern = GEN_FCN (icode) (subtarget);
5292 if (pattern)
5293 {
5294 emit_insn (pattern);
5295
5296 /* If we are converting to a wider mode, first convert to
5297 TARGET_MODE, then normalize. This produces better combining
5298 opportunities on machines that have a SIGN_EXTRACT when we are
5299 testing a single bit. This mostly benefits the 68k.
5300
5301 If STORE_FLAG_VALUE does not have the sign bit set when
5302 interpreted in COMPARE_MODE, we can do this conversion as
5303 unsigned, which is usually more efficient. */
5304 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5305 {
5306 convert_move (target, subtarget,
5307 (GET_MODE_BITSIZE (compare_mode)
5308 <= HOST_BITS_PER_WIDE_INT)
5309 && 0 == (STORE_FLAG_VALUE
5310 & ((HOST_WIDE_INT) 1
5311 << (GET_MODE_BITSIZE (compare_mode) -1))));
5312 op0 = target;
5313 compare_mode = target_mode;
5314 }
5315 else
5316 op0 = subtarget;
5317
5318 /* If we want to keep subexpressions around, don't reuse our
5319 last target. */
5320
5321 if (optimize)
5322 subtarget = 0;
5323
5324 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5325 we don't have to do anything. */
5326 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5327 ;
5328 /* STORE_FLAG_VALUE might be the most negative number, so write
5329 the comparison this way to avoid a compiler-time warning. */
5330 else if (- normalizep == STORE_FLAG_VALUE)
5331 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5332
5333 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5334 makes it hard to use a value of just the sign bit due to
5335 ANSI integer constant typing rules. */
5336 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5337 && (STORE_FLAG_VALUE
5338 & ((HOST_WIDE_INT) 1
5339 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5340 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5341 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5342 subtarget, normalizep == 1);
5343 else
5344 {
5345 gcc_assert (STORE_FLAG_VALUE & 1);
5346
5347 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5348 if (normalizep == -1)
5349 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5350 }
5351
5352 /* If we were converting to a smaller mode, do the
5353 conversion now. */
5354 if (target_mode != compare_mode)
5355 {
5356 convert_move (target, op0, 0);
5357 return target;
5358 }
5359 else
5360 return op0;
5361 }
5362 }
5363
5364 delete_insns_since (last);
5365
5366 /* If optimizing, use different pseudo registers for each insn, instead
5367 of reusing the same pseudo. This leads to better CSE, but slows
5368 down the compiler, since there are more pseudos */
5369 subtarget = (!optimize
5370 && (target_mode == mode)) ? target : NULL_RTX;
5371
5372 /* If we reached here, we can't do this with a scc insn. However, there
5373 are some comparisons that can be done directly. For example, if
5374 this is an equality comparison of integers, we can try to exclusive-or
5375 (or subtract) the two operands and use a recursive call to try the
5376 comparison with zero. Don't do any of these cases if branches are
5377 very cheap. */
5378
5379 if (BRANCH_COST > 0
5380 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5381 && op1 != const0_rtx)
5382 {
5383 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5384 OPTAB_WIDEN);
5385
5386 if (tem == 0)
5387 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5388 OPTAB_WIDEN);
5389 if (tem != 0)
5390 tem = emit_store_flag (target, code, tem, const0_rtx,
5391 mode, unsignedp, normalizep);
5392 if (tem == 0)
5393 delete_insns_since (last);
5394 return tem;
5395 }
5396
5397 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5398 the constant zero. Reject all other comparisons at this point. Only
5399 do LE and GT if branches are expensive since they are expensive on
5400 2-operand machines. */
5401
5402 if (BRANCH_COST == 0
5403 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5404 || (code != EQ && code != NE
5405 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5406 return 0;
5407
5408 /* See what we need to return. We can only return a 1, -1, or the
5409 sign bit. */
5410
5411 if (normalizep == 0)
5412 {
5413 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5414 normalizep = STORE_FLAG_VALUE;
5415
5416 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5417 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5418 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5419 ;
5420 else
5421 return 0;
5422 }
5423
5424 /* Try to put the result of the comparison in the sign bit. Assume we can't
5425 do the necessary operation below. */
5426
5427 tem = 0;
5428
5429 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5430 the sign bit set. */
5431
5432 if (code == LE)
5433 {
5434 /* This is destructive, so SUBTARGET can't be OP0. */
5435 if (rtx_equal_p (subtarget, op0))
5436 subtarget = 0;
5437
5438 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5439 OPTAB_WIDEN);
5440 if (tem)
5441 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5442 OPTAB_WIDEN);
5443 }
5444
5445 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5446 number of bits in the mode of OP0, minus one. */
5447
5448 if (code == GT)
5449 {
5450 if (rtx_equal_p (subtarget, op0))
5451 subtarget = 0;
5452
5453 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5454 size_int (GET_MODE_BITSIZE (mode) - 1),
5455 subtarget, 0);
5456 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5457 OPTAB_WIDEN);
5458 }
5459
5460 if (code == EQ || code == NE)
5461 {
5462 /* For EQ or NE, one way to do the comparison is to apply an operation
5463 that converts the operand into a positive number if it is nonzero
5464 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5465 for NE we negate. This puts the result in the sign bit. Then we
5466 normalize with a shift, if needed.
5467
5468 Two operations that can do the above actions are ABS and FFS, so try
5469 them. If that doesn't work, and MODE is smaller than a full word,
5470 we can use zero-extension to the wider mode (an unsigned conversion)
5471 as the operation. */
5472
5473 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5474 that is compensated by the subsequent overflow when subtracting
5475 one / negating. */
5476
5477 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5478 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5479 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5480 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5481 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5482 {
5483 tem = convert_modes (word_mode, mode, op0, 1);
5484 mode = word_mode;
5485 }
5486
5487 if (tem != 0)
5488 {
5489 if (code == EQ)
5490 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5491 0, OPTAB_WIDEN);
5492 else
5493 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5494 }
5495
5496 /* If we couldn't do it that way, for NE we can "or" the two's complement
5497 of the value with itself. For EQ, we take the one's complement of
5498 that "or", which is an extra insn, so we only handle EQ if branches
5499 are expensive. */
5500
5501 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5502 {
5503 if (rtx_equal_p (subtarget, op0))
5504 subtarget = 0;
5505
5506 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5507 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5508 OPTAB_WIDEN);
5509
5510 if (tem && code == EQ)
5511 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5512 }
5513 }
5514
5515 if (tem && normalizep)
5516 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5517 size_int (GET_MODE_BITSIZE (mode) - 1),
5518 subtarget, normalizep == 1);
5519
5520 if (tem)
5521 {
5522 if (GET_MODE (tem) != target_mode)
5523 {
5524 convert_move (target, tem, 0);
5525 tem = target;
5526 }
5527 else if (!subtarget)
5528 {
5529 emit_move_insn (target, tem);
5530 tem = target;
5531 }
5532 }
5533 else
5534 delete_insns_since (last);
5535
5536 return tem;
5537 }
5538
5539 /* Like emit_store_flag, but always succeeds. */
5540
5541 rtx
5542 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5543 enum machine_mode mode, int unsignedp, int normalizep)
5544 {
5545 rtx tem, label;
5546
5547 /* First see if emit_store_flag can do the job. */
5548 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5549 if (tem != 0)
5550 return tem;
5551
5552 if (normalizep == 0)
5553 normalizep = 1;
5554
5555 /* If this failed, we have to do this with set/compare/jump/set code. */
5556
5557 if (!REG_P (target)
5558 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5559 target = gen_reg_rtx (GET_MODE (target));
5560
5561 emit_move_insn (target, const1_rtx);
5562 label = gen_label_rtx ();
5563 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5564 NULL_RTX, label);
5565
5566 emit_move_insn (target, const0_rtx);
5567 emit_label (label);
5568
5569 return target;
5570 }
5571 \f
5572 /* Perform possibly multi-word comparison and conditional jump to LABEL
5573 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5574
5575 The algorithm is based on the code in expr.c:do_jump.
5576
5577 Note that this does not perform a general comparison. Only
5578 variants generated within expmed.c are correctly handled, others
5579 could be handled if needed. */
5580
5581 static void
5582 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5583 rtx label)
5584 {
5585 /* If this mode is an integer too wide to compare properly,
5586 compare word by word. Rely on cse to optimize constant cases. */
5587
5588 if (GET_MODE_CLASS (mode) == MODE_INT
5589 && ! can_compare_p (op, mode, ccp_jump))
5590 {
5591 rtx label2 = gen_label_rtx ();
5592
5593 switch (op)
5594 {
5595 case LTU:
5596 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5597 break;
5598
5599 case LEU:
5600 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5601 break;
5602
5603 case LT:
5604 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5605 break;
5606
5607 case GT:
5608 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5609 break;
5610
5611 case GE:
5612 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5613 break;
5614
5615 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5616 that's the only equality operations we do */
5617 case EQ:
5618 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5619 do_jump_by_parts_equality_rtx (arg1, label2, label);
5620 break;
5621
5622 case NE:
5623 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5624 do_jump_by_parts_equality_rtx (arg1, label, label2);
5625 break;
5626
5627 default:
5628 gcc_unreachable ();
5629 }
5630
5631 emit_label (label2);
5632 }
5633 else
5634 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);
5635 }