value-prof.c (gimple_ic): Use stmt_ends_bb_p to detect the case we need to split...
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "diagnostic-core.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "recog.h"
37 #include "langhooks.h"
38 #include "df.h"
39 #include "target.h"
40 #include "expmed.h"
41
42 struct target_expmed default_target_expmed;
43 #if SWITCHABLE_TARGET
44 struct target_expmed *this_target_expmed = &default_target_expmed;
45 #endif
46
47 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT, rtx);
50 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
51 unsigned HOST_WIDE_INT, rtx);
52 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
53 unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT, rtx, int, bool);
56 static rtx mask_rtx (enum machine_mode, int, int, int);
57 static rtx lshift_value (enum machine_mode, rtx, int, int);
58 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
59 unsigned HOST_WIDE_INT, int);
60 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
61 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
62 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
63
64 /* Test whether a value is zero of a power of two. */
65 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
66
67 #ifndef SLOW_UNALIGNED_ACCESS
68 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
69 #endif
70
71
72 /* Reduce conditional compilation elsewhere. */
73 #ifndef HAVE_insv
74 #define HAVE_insv 0
75 #define CODE_FOR_insv CODE_FOR_nothing
76 #define gen_insv(a,b,c,d) NULL_RTX
77 #endif
78 #ifndef HAVE_extv
79 #define HAVE_extv 0
80 #define CODE_FOR_extv CODE_FOR_nothing
81 #define gen_extv(a,b,c,d) NULL_RTX
82 #endif
83 #ifndef HAVE_extzv
84 #define HAVE_extzv 0
85 #define CODE_FOR_extzv CODE_FOR_nothing
86 #define gen_extzv(a,b,c,d) NULL_RTX
87 #endif
88
89 void
90 init_expmed (void)
91 {
92 struct
93 {
94 struct rtx_def reg; rtunion reg_fld[2];
95 struct rtx_def plus; rtunion plus_fld1;
96 struct rtx_def neg;
97 struct rtx_def mult; rtunion mult_fld1;
98 struct rtx_def sdiv; rtunion sdiv_fld1;
99 struct rtx_def udiv; rtunion udiv_fld1;
100 struct rtx_def zext;
101 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
102 struct rtx_def smod_32; rtunion smod_32_fld1;
103 struct rtx_def wide_mult; rtunion wide_mult_fld1;
104 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
105 struct rtx_def wide_trunc;
106 struct rtx_def shift; rtunion shift_fld1;
107 struct rtx_def shift_mult; rtunion shift_mult_fld1;
108 struct rtx_def shift_add; rtunion shift_add_fld1;
109 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
110 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
111 } all;
112
113 rtx pow2[MAX_BITS_PER_WORD];
114 rtx cint[MAX_BITS_PER_WORD];
115 int m, n;
116 enum machine_mode mode, wider_mode;
117 int speed;
118
119
120 for (m = 1; m < MAX_BITS_PER_WORD; m++)
121 {
122 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
123 cint[m] = GEN_INT (m);
124 }
125 memset (&all, 0, sizeof all);
126
127 PUT_CODE (&all.reg, REG);
128 /* Avoid using hard regs in ways which may be unsupported. */
129 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
130
131 PUT_CODE (&all.plus, PLUS);
132 XEXP (&all.plus, 0) = &all.reg;
133 XEXP (&all.plus, 1) = &all.reg;
134
135 PUT_CODE (&all.neg, NEG);
136 XEXP (&all.neg, 0) = &all.reg;
137
138 PUT_CODE (&all.mult, MULT);
139 XEXP (&all.mult, 0) = &all.reg;
140 XEXP (&all.mult, 1) = &all.reg;
141
142 PUT_CODE (&all.sdiv, DIV);
143 XEXP (&all.sdiv, 0) = &all.reg;
144 XEXP (&all.sdiv, 1) = &all.reg;
145
146 PUT_CODE (&all.udiv, UDIV);
147 XEXP (&all.udiv, 0) = &all.reg;
148 XEXP (&all.udiv, 1) = &all.reg;
149
150 PUT_CODE (&all.sdiv_32, DIV);
151 XEXP (&all.sdiv_32, 0) = &all.reg;
152 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
153
154 PUT_CODE (&all.smod_32, MOD);
155 XEXP (&all.smod_32, 0) = &all.reg;
156 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
157
158 PUT_CODE (&all.zext, ZERO_EXTEND);
159 XEXP (&all.zext, 0) = &all.reg;
160
161 PUT_CODE (&all.wide_mult, MULT);
162 XEXP (&all.wide_mult, 0) = &all.zext;
163 XEXP (&all.wide_mult, 1) = &all.zext;
164
165 PUT_CODE (&all.wide_lshr, LSHIFTRT);
166 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
167
168 PUT_CODE (&all.wide_trunc, TRUNCATE);
169 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
170
171 PUT_CODE (&all.shift, ASHIFT);
172 XEXP (&all.shift, 0) = &all.reg;
173
174 PUT_CODE (&all.shift_mult, MULT);
175 XEXP (&all.shift_mult, 0) = &all.reg;
176
177 PUT_CODE (&all.shift_add, PLUS);
178 XEXP (&all.shift_add, 0) = &all.shift_mult;
179 XEXP (&all.shift_add, 1) = &all.reg;
180
181 PUT_CODE (&all.shift_sub0, MINUS);
182 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
183 XEXP (&all.shift_sub0, 1) = &all.reg;
184
185 PUT_CODE (&all.shift_sub1, MINUS);
186 XEXP (&all.shift_sub1, 0) = &all.reg;
187 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
188
189 for (speed = 0; speed < 2; speed++)
190 {
191 crtl->maybe_hot_insn_p = speed;
192 zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
193
194 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
195 mode != VOIDmode;
196 mode = GET_MODE_WIDER_MODE (mode))
197 {
198 PUT_MODE (&all.reg, mode);
199 PUT_MODE (&all.plus, mode);
200 PUT_MODE (&all.neg, mode);
201 PUT_MODE (&all.mult, mode);
202 PUT_MODE (&all.sdiv, mode);
203 PUT_MODE (&all.udiv, mode);
204 PUT_MODE (&all.sdiv_32, mode);
205 PUT_MODE (&all.smod_32, mode);
206 PUT_MODE (&all.wide_trunc, mode);
207 PUT_MODE (&all.shift, mode);
208 PUT_MODE (&all.shift_mult, mode);
209 PUT_MODE (&all.shift_add, mode);
210 PUT_MODE (&all.shift_sub0, mode);
211 PUT_MODE (&all.shift_sub1, mode);
212
213 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
214 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
215 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
216 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
217 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
218
219 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
220 <= 2 * add_cost[speed][mode]);
221 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
222 <= 4 * add_cost[speed][mode]);
223
224 wider_mode = GET_MODE_WIDER_MODE (mode);
225 if (wider_mode != VOIDmode)
226 {
227 PUT_MODE (&all.zext, wider_mode);
228 PUT_MODE (&all.wide_mult, wider_mode);
229 PUT_MODE (&all.wide_lshr, wider_mode);
230 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
231
232 mul_widen_cost[speed][wider_mode]
233 = rtx_cost (&all.wide_mult, SET, speed);
234 mul_highpart_cost[speed][mode]
235 = rtx_cost (&all.wide_trunc, SET, speed);
236 }
237
238 shift_cost[speed][mode][0] = 0;
239 shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
240 = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
241
242 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
243 for (m = 1; m < n; m++)
244 {
245 XEXP (&all.shift, 1) = cint[m];
246 XEXP (&all.shift_mult, 1) = pow2[m];
247
248 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
249 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
250 shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
251 shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
252 }
253 }
254 }
255 if (alg_hash_used_p)
256 memset (alg_hash, 0, sizeof (alg_hash));
257 else
258 alg_hash_used_p = true;
259 default_rtl_profile ();
260 }
261
262 /* Return an rtx representing minus the value of X.
263 MODE is the intended mode of the result,
264 useful if X is a CONST_INT. */
265
266 rtx
267 negate_rtx (enum machine_mode mode, rtx x)
268 {
269 rtx result = simplify_unary_operation (NEG, mode, x, mode);
270
271 if (result == 0)
272 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
273
274 return result;
275 }
276
277 /* Report on the availability of insv/extv/extzv and the desired mode
278 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
279 is false; else the mode of the specified operand. If OPNO is -1,
280 all the caller cares about is whether the insn is available. */
281 enum machine_mode
282 mode_for_extraction (enum extraction_pattern pattern, int opno)
283 {
284 const struct insn_data_d *data;
285
286 switch (pattern)
287 {
288 case EP_insv:
289 if (HAVE_insv)
290 {
291 data = &insn_data[CODE_FOR_insv];
292 break;
293 }
294 return MAX_MACHINE_MODE;
295
296 case EP_extv:
297 if (HAVE_extv)
298 {
299 data = &insn_data[CODE_FOR_extv];
300 break;
301 }
302 return MAX_MACHINE_MODE;
303
304 case EP_extzv:
305 if (HAVE_extzv)
306 {
307 data = &insn_data[CODE_FOR_extzv];
308 break;
309 }
310 return MAX_MACHINE_MODE;
311
312 default:
313 gcc_unreachable ();
314 }
315
316 if (opno == -1)
317 return VOIDmode;
318
319 /* Everyone who uses this function used to follow it with
320 if (result == VOIDmode) result = word_mode; */
321 if (data->operand[opno].mode == VOIDmode)
322 return word_mode;
323 return data->operand[opno].mode;
324 }
325
326 /* Return true if X, of mode MODE, matches the predicate for operand
327 OPNO of instruction ICODE. Allow volatile memories, regardless of
328 the ambient volatile_ok setting. */
329
330 static bool
331 check_predicate_volatile_ok (enum insn_code icode, int opno,
332 rtx x, enum machine_mode mode)
333 {
334 bool save_volatile_ok, result;
335
336 save_volatile_ok = volatile_ok;
337 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
338 volatile_ok = save_volatile_ok;
339 return result;
340 }
341 \f
342 /* A subroutine of store_bit_field, with the same arguments. Return true
343 if the operation could be implemented.
344
345 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
346 no other way of implementing the operation. If FALLBACK_P is false,
347 return false instead. */
348
349 static bool
350 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
351 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
352 rtx value, bool fallback_p)
353 {
354 unsigned int unit
355 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
356 unsigned HOST_WIDE_INT offset, bitpos;
357 rtx op0 = str_rtx;
358 int byte_offset;
359 rtx orig_value;
360
361 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
362
363 while (GET_CODE (op0) == SUBREG)
364 {
365 /* The following line once was done only if WORDS_BIG_ENDIAN,
366 but I think that is a mistake. WORDS_BIG_ENDIAN is
367 meaningful at a much higher level; when structures are copied
368 between memory and regs, the higher-numbered regs
369 always get higher addresses. */
370 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
371 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
372
373 byte_offset = 0;
374
375 /* Paradoxical subregs need special handling on big endian machines. */
376 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
377 {
378 int difference = inner_mode_size - outer_mode_size;
379
380 if (WORDS_BIG_ENDIAN)
381 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
382 if (BYTES_BIG_ENDIAN)
383 byte_offset += difference % UNITS_PER_WORD;
384 }
385 else
386 byte_offset = SUBREG_BYTE (op0);
387
388 bitnum += byte_offset * BITS_PER_UNIT;
389 op0 = SUBREG_REG (op0);
390 }
391
392 /* No action is needed if the target is a register and if the field
393 lies completely outside that register. This can occur if the source
394 code contains an out-of-bounds access to a small array. */
395 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
396 return true;
397
398 /* Use vec_set patterns for inserting parts of vectors whenever
399 available. */
400 if (VECTOR_MODE_P (GET_MODE (op0))
401 && !MEM_P (op0)
402 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
403 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
404 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
405 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
406 {
407 enum machine_mode outermode = GET_MODE (op0);
408 enum machine_mode innermode = GET_MODE_INNER (outermode);
409 int icode = (int) optab_handler (vec_set_optab, outermode);
410 int pos = bitnum / GET_MODE_BITSIZE (innermode);
411 rtx rtxpos = GEN_INT (pos);
412 rtx src = value;
413 rtx dest = op0;
414 rtx pat, seq;
415 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
416 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
417 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
418
419 start_sequence ();
420
421 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
422 src = copy_to_mode_reg (mode1, src);
423
424 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
425 rtxpos = copy_to_mode_reg (mode1, rtxpos);
426
427 /* We could handle this, but we should always be called with a pseudo
428 for our targets and all insns should take them as outputs. */
429 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
430 && (*insn_data[icode].operand[1].predicate) (src, mode1)
431 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
432 pat = GEN_FCN (icode) (dest, src, rtxpos);
433 seq = get_insns ();
434 end_sequence ();
435 if (pat)
436 {
437 emit_insn (seq);
438 emit_insn (pat);
439 return true;
440 }
441 }
442
443 /* If the target is a register, overwriting the entire object, or storing
444 a full-word or multi-word field can be done with just a SUBREG.
445
446 If the target is memory, storing any naturally aligned field can be
447 done with a simple store. For targets that support fast unaligned
448 memory, any naturally sized, unit aligned field can be done directly. */
449
450 offset = bitnum / unit;
451 bitpos = bitnum % unit;
452 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
453 + (offset * UNITS_PER_WORD);
454
455 if (bitpos == 0
456 && bitsize == GET_MODE_BITSIZE (fieldmode)
457 && (!MEM_P (op0)
458 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
459 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
460 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
461 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
462 || (offset * BITS_PER_UNIT % bitsize == 0
463 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
464 {
465 if (MEM_P (op0))
466 op0 = adjust_address (op0, fieldmode, offset);
467 else if (GET_MODE (op0) != fieldmode)
468 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
469 byte_offset);
470 emit_move_insn (op0, value);
471 return true;
472 }
473
474 /* Make sure we are playing with integral modes. Pun with subregs
475 if we aren't. This must come after the entire register case above,
476 since that case is valid for any mode. The following cases are only
477 valid for integral modes. */
478 {
479 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
480 if (imode != GET_MODE (op0))
481 {
482 if (MEM_P (op0))
483 op0 = adjust_address (op0, imode, 0);
484 else
485 {
486 gcc_assert (imode != BLKmode);
487 op0 = gen_lowpart (imode, op0);
488 }
489 }
490 }
491
492 /* We may be accessing data outside the field, which means
493 we can alias adjacent data. */
494 if (MEM_P (op0))
495 {
496 op0 = shallow_copy_rtx (op0);
497 set_mem_alias_set (op0, 0);
498 set_mem_expr (op0, 0);
499 }
500
501 /* If OP0 is a register, BITPOS must count within a word.
502 But as we have it, it counts within whatever size OP0 now has.
503 On a bigendian machine, these are not the same, so convert. */
504 if (BYTES_BIG_ENDIAN
505 && !MEM_P (op0)
506 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
507 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
508
509 /* Storing an lsb-aligned field in a register
510 can be done with a movestrict instruction. */
511
512 if (!MEM_P (op0)
513 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
514 && bitsize == GET_MODE_BITSIZE (fieldmode)
515 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
516 {
517 int icode = optab_handler (movstrict_optab, fieldmode);
518 rtx insn;
519 rtx start = get_last_insn ();
520 rtx arg0 = op0;
521
522 /* Get appropriate low part of the value being stored. */
523 if (CONST_INT_P (value) || REG_P (value))
524 value = gen_lowpart (fieldmode, value);
525 else if (!(GET_CODE (value) == SYMBOL_REF
526 || GET_CODE (value) == LABEL_REF
527 || GET_CODE (value) == CONST))
528 value = convert_to_mode (fieldmode, value, 0);
529
530 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
531 value = copy_to_mode_reg (fieldmode, value);
532
533 if (GET_CODE (op0) == SUBREG)
534 {
535 /* Else we've got some float mode source being extracted into
536 a different float mode destination -- this combination of
537 subregs results in Severe Tire Damage. */
538 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
539 || GET_MODE_CLASS (fieldmode) == MODE_INT
540 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
541 arg0 = SUBREG_REG (op0);
542 }
543
544 insn = (GEN_FCN (icode)
545 (gen_rtx_SUBREG (fieldmode, arg0,
546 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
547 + (offset * UNITS_PER_WORD)),
548 value));
549 if (insn)
550 {
551 emit_insn (insn);
552 return true;
553 }
554 delete_insns_since (start);
555 }
556
557 /* Handle fields bigger than a word. */
558
559 if (bitsize > BITS_PER_WORD)
560 {
561 /* Here we transfer the words of the field
562 in the order least significant first.
563 This is because the most significant word is the one which may
564 be less than full.
565 However, only do that if the value is not BLKmode. */
566
567 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
568 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
569 unsigned int i;
570 rtx last;
571
572 /* This is the mode we must force value to, so that there will be enough
573 subwords to extract. Note that fieldmode will often (always?) be
574 VOIDmode, because that is what store_field uses to indicate that this
575 is a bit field, but passing VOIDmode to operand_subword_force
576 is not allowed. */
577 fieldmode = GET_MODE (value);
578 if (fieldmode == VOIDmode)
579 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
580
581 last = get_last_insn ();
582 for (i = 0; i < nwords; i++)
583 {
584 /* If I is 0, use the low-order word in both field and target;
585 if I is 1, use the next to lowest word; and so on. */
586 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
587 unsigned int bit_offset = (backwards
588 ? MAX ((int) bitsize - ((int) i + 1)
589 * BITS_PER_WORD,
590 0)
591 : (int) i * BITS_PER_WORD);
592 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
593
594 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
595 bitsize - i * BITS_PER_WORD),
596 bitnum + bit_offset, word_mode,
597 value_word, fallback_p))
598 {
599 delete_insns_since (last);
600 return false;
601 }
602 }
603 return true;
604 }
605
606 /* From here on we can assume that the field to be stored in is
607 a full-word (whatever type that is), since it is shorter than a word. */
608
609 /* OFFSET is the number of words or bytes (UNIT says which)
610 from STR_RTX to the first word or byte containing part of the field. */
611
612 if (!MEM_P (op0))
613 {
614 if (offset != 0
615 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
616 {
617 if (!REG_P (op0))
618 {
619 /* Since this is a destination (lvalue), we can't copy
620 it to a pseudo. We can remove a SUBREG that does not
621 change the size of the operand. Such a SUBREG may
622 have been added above. */
623 gcc_assert (GET_CODE (op0) == SUBREG
624 && (GET_MODE_SIZE (GET_MODE (op0))
625 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
626 op0 = SUBREG_REG (op0);
627 }
628 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
629 op0, (offset * UNITS_PER_WORD));
630 }
631 offset = 0;
632 }
633
634 /* If VALUE has a floating-point or complex mode, access it as an
635 integer of the corresponding size. This can occur on a machine
636 with 64 bit registers that uses SFmode for float. It can also
637 occur for unaligned float or complex fields. */
638 orig_value = value;
639 if (GET_MODE (value) != VOIDmode
640 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
641 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
642 {
643 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
644 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
645 }
646
647 /* Now OFFSET is nonzero only if OP0 is memory
648 and is therefore always measured in bytes. */
649
650 if (HAVE_insv
651 && GET_MODE (value) != BLKmode
652 && bitsize > 0
653 && GET_MODE_BITSIZE (op_mode) >= bitsize
654 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
655 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
656 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
657 VOIDmode)
658 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
659 {
660 int xbitpos = bitpos;
661 rtx value1;
662 rtx xop0 = op0;
663 rtx last = get_last_insn ();
664 rtx pat;
665 bool copy_back = false;
666
667 /* Add OFFSET into OP0's address. */
668 if (MEM_P (xop0))
669 xop0 = adjust_address (xop0, byte_mode, offset);
670
671 /* If xop0 is a register, we need it in OP_MODE
672 to make it acceptable to the format of insv. */
673 if (GET_CODE (xop0) == SUBREG)
674 /* We can't just change the mode, because this might clobber op0,
675 and we will need the original value of op0 if insv fails. */
676 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
677 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
678 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
679
680 /* If the destination is a paradoxical subreg such that we need a
681 truncate to the inner mode, perform the insertion on a temporary and
682 truncate the result to the original destination. Note that we can't
683 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
684 X) 0)) is (reg:N X). */
685 if (GET_CODE (xop0) == SUBREG
686 && REG_P (SUBREG_REG (xop0))
687 && (!TRULY_NOOP_TRUNCATION
688 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
689 GET_MODE_BITSIZE (op_mode))))
690 {
691 rtx tem = gen_reg_rtx (op_mode);
692 emit_move_insn (tem, xop0);
693 xop0 = tem;
694 copy_back = true;
695 }
696
697 /* On big-endian machines, we count bits from the most significant.
698 If the bit field insn does not, we must invert. */
699
700 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
701 xbitpos = unit - bitsize - xbitpos;
702
703 /* We have been counting XBITPOS within UNIT.
704 Count instead within the size of the register. */
705 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
706 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
707
708 unit = GET_MODE_BITSIZE (op_mode);
709
710 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
711 value1 = value;
712 if (GET_MODE (value) != op_mode)
713 {
714 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
715 {
716 /* Optimization: Don't bother really extending VALUE
717 if it has all the bits we will actually use. However,
718 if we must narrow it, be sure we do it correctly. */
719
720 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
721 {
722 rtx tmp;
723
724 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
725 if (! tmp)
726 tmp = simplify_gen_subreg (op_mode,
727 force_reg (GET_MODE (value),
728 value1),
729 GET_MODE (value), 0);
730 value1 = tmp;
731 }
732 else
733 value1 = gen_lowpart (op_mode, value1);
734 }
735 else if (CONST_INT_P (value))
736 value1 = gen_int_mode (INTVAL (value), op_mode);
737 else
738 /* Parse phase is supposed to make VALUE's data type
739 match that of the component reference, which is a type
740 at least as wide as the field; so VALUE should have
741 a mode that corresponds to that type. */
742 gcc_assert (CONSTANT_P (value));
743 }
744
745 /* If this machine's insv insists on a register,
746 get VALUE1 into a register. */
747 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
748 (value1, op_mode)))
749 value1 = force_reg (op_mode, value1);
750
751 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
752 if (pat)
753 {
754 emit_insn (pat);
755
756 if (copy_back)
757 convert_move (op0, xop0, true);
758 return true;
759 }
760 delete_insns_since (last);
761 }
762
763 /* If OP0 is a memory, try copying it to a register and seeing if a
764 cheap register alternative is available. */
765 if (HAVE_insv && MEM_P (op0))
766 {
767 enum machine_mode bestmode;
768
769 /* Get the mode to use for inserting into this field. If OP0 is
770 BLKmode, get the smallest mode consistent with the alignment. If
771 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
772 mode. Otherwise, use the smallest mode containing the field. */
773
774 if (GET_MODE (op0) == BLKmode
775 || (op_mode != MAX_MACHINE_MODE
776 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
777 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
778 (op_mode == MAX_MACHINE_MODE
779 ? VOIDmode : op_mode),
780 MEM_VOLATILE_P (op0));
781 else
782 bestmode = GET_MODE (op0);
783
784 if (bestmode != VOIDmode
785 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
786 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
787 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
788 {
789 rtx last, tempreg, xop0;
790 unsigned HOST_WIDE_INT xoffset, xbitpos;
791
792 last = get_last_insn ();
793
794 /* Adjust address to point to the containing unit of
795 that mode. Compute the offset as a multiple of this unit,
796 counting in bytes. */
797 unit = GET_MODE_BITSIZE (bestmode);
798 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
799 xbitpos = bitnum % unit;
800 xop0 = adjust_address (op0, bestmode, xoffset);
801
802 /* Fetch that unit, store the bitfield in it, then store
803 the unit. */
804 tempreg = copy_to_reg (xop0);
805 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
806 fieldmode, orig_value, false))
807 {
808 emit_move_insn (xop0, tempreg);
809 return true;
810 }
811 delete_insns_since (last);
812 }
813 }
814
815 if (!fallback_p)
816 return false;
817
818 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
819 return true;
820 }
821
822 /* Generate code to store value from rtx VALUE
823 into a bit-field within structure STR_RTX
824 containing BITSIZE bits starting at bit BITNUM.
825 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
826
827 void
828 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
829 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
830 rtx value)
831 {
832 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
833 gcc_unreachable ();
834 }
835 \f
836 /* Use shifts and boolean operations to store VALUE
837 into a bit field of width BITSIZE
838 in a memory location specified by OP0 except offset by OFFSET bytes.
839 (OFFSET must be 0 if OP0 is a register.)
840 The field starts at position BITPOS within the byte.
841 (If OP0 is a register, it may be a full word or a narrower mode,
842 but BITPOS still counts within a full word,
843 which is significant on bigendian machines.) */
844
845 static void
846 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
847 unsigned HOST_WIDE_INT bitsize,
848 unsigned HOST_WIDE_INT bitpos, rtx value)
849 {
850 enum machine_mode mode;
851 unsigned int total_bits = BITS_PER_WORD;
852 rtx temp;
853 int all_zero = 0;
854 int all_one = 0;
855
856 /* There is a case not handled here:
857 a structure with a known alignment of just a halfword
858 and a field split across two aligned halfwords within the structure.
859 Or likewise a structure with a known alignment of just a byte
860 and a field split across two bytes.
861 Such cases are not supposed to be able to occur. */
862
863 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
864 {
865 gcc_assert (!offset);
866 /* Special treatment for a bit field split across two registers. */
867 if (bitsize + bitpos > BITS_PER_WORD)
868 {
869 store_split_bit_field (op0, bitsize, bitpos, value);
870 return;
871 }
872 }
873 else
874 {
875 /* Get the proper mode to use for this field. We want a mode that
876 includes the entire field. If such a mode would be larger than
877 a word, we won't be doing the extraction the normal way.
878 We don't want a mode bigger than the destination. */
879
880 mode = GET_MODE (op0);
881 if (GET_MODE_BITSIZE (mode) == 0
882 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
883 mode = word_mode;
884
885 if (MEM_VOLATILE_P (op0)
886 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
887 && flag_strict_volatile_bitfields > 0)
888 mode = GET_MODE (op0);
889 else
890 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
891 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
892
893 if (mode == VOIDmode)
894 {
895 /* The only way this should occur is if the field spans word
896 boundaries. */
897 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
898 value);
899 return;
900 }
901
902 total_bits = GET_MODE_BITSIZE (mode);
903
904 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
905 be in the range 0 to total_bits-1, and put any excess bytes in
906 OFFSET. */
907 if (bitpos >= total_bits)
908 {
909 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
910 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
911 * BITS_PER_UNIT);
912 }
913
914 /* Get ref to an aligned byte, halfword, or word containing the field.
915 Adjust BITPOS to be position within a word,
916 and OFFSET to be the offset of that word.
917 Then alter OP0 to refer to that word. */
918 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
919 offset -= (offset % (total_bits / BITS_PER_UNIT));
920 op0 = adjust_address (op0, mode, offset);
921 }
922
923 mode = GET_MODE (op0);
924
925 /* Now MODE is either some integral mode for a MEM as OP0,
926 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
927 The bit field is contained entirely within OP0.
928 BITPOS is the starting bit number within OP0.
929 (OP0's mode may actually be narrower than MODE.) */
930
931 if (BYTES_BIG_ENDIAN)
932 /* BITPOS is the distance between our msb
933 and that of the containing datum.
934 Convert it to the distance from the lsb. */
935 bitpos = total_bits - bitsize - bitpos;
936
937 /* Now BITPOS is always the distance between our lsb
938 and that of OP0. */
939
940 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
941 we must first convert its mode to MODE. */
942
943 if (CONST_INT_P (value))
944 {
945 HOST_WIDE_INT v = INTVAL (value);
946
947 if (bitsize < HOST_BITS_PER_WIDE_INT)
948 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
949
950 if (v == 0)
951 all_zero = 1;
952 else if ((bitsize < HOST_BITS_PER_WIDE_INT
953 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
954 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
955 all_one = 1;
956
957 value = lshift_value (mode, value, bitpos, bitsize);
958 }
959 else
960 {
961 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
962 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
963
964 if (GET_MODE (value) != mode)
965 value = convert_to_mode (mode, value, 1);
966
967 if (must_and)
968 value = expand_binop (mode, and_optab, value,
969 mask_rtx (mode, 0, bitsize, 0),
970 NULL_RTX, 1, OPTAB_LIB_WIDEN);
971 if (bitpos > 0)
972 value = expand_shift (LSHIFT_EXPR, mode, value,
973 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
974 }
975
976 /* Now clear the chosen bits in OP0,
977 except that if VALUE is -1 we need not bother. */
978 /* We keep the intermediates in registers to allow CSE to combine
979 consecutive bitfield assignments. */
980
981 temp = force_reg (mode, op0);
982
983 if (! all_one)
984 {
985 temp = expand_binop (mode, and_optab, temp,
986 mask_rtx (mode, bitpos, bitsize, 1),
987 NULL_RTX, 1, OPTAB_LIB_WIDEN);
988 temp = force_reg (mode, temp);
989 }
990
991 /* Now logical-or VALUE into OP0, unless it is zero. */
992
993 if (! all_zero)
994 {
995 temp = expand_binop (mode, ior_optab, temp, value,
996 NULL_RTX, 1, OPTAB_LIB_WIDEN);
997 temp = force_reg (mode, temp);
998 }
999
1000 if (op0 != temp)
1001 {
1002 op0 = copy_rtx (op0);
1003 emit_move_insn (op0, temp);
1004 }
1005 }
1006 \f
1007 /* Store a bit field that is split across multiple accessible memory objects.
1008
1009 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1010 BITSIZE is the field width; BITPOS the position of its first bit
1011 (within the word).
1012 VALUE is the value to store.
1013
1014 This does not yet handle fields wider than BITS_PER_WORD. */
1015
1016 static void
1017 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1018 unsigned HOST_WIDE_INT bitpos, rtx value)
1019 {
1020 unsigned int unit;
1021 unsigned int bitsdone = 0;
1022
1023 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1024 much at a time. */
1025 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1026 unit = BITS_PER_WORD;
1027 else
1028 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1029
1030 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1031 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1032 that VALUE might be a floating-point constant. */
1033 if (CONSTANT_P (value) && !CONST_INT_P (value))
1034 {
1035 rtx word = gen_lowpart_common (word_mode, value);
1036
1037 if (word && (value != word))
1038 value = word;
1039 else
1040 value = gen_lowpart_common (word_mode,
1041 force_reg (GET_MODE (value) != VOIDmode
1042 ? GET_MODE (value)
1043 : word_mode, value));
1044 }
1045
1046 while (bitsdone < bitsize)
1047 {
1048 unsigned HOST_WIDE_INT thissize;
1049 rtx part, word;
1050 unsigned HOST_WIDE_INT thispos;
1051 unsigned HOST_WIDE_INT offset;
1052
1053 offset = (bitpos + bitsdone) / unit;
1054 thispos = (bitpos + bitsdone) % unit;
1055
1056 /* THISSIZE must not overrun a word boundary. Otherwise,
1057 store_fixed_bit_field will call us again, and we will mutually
1058 recurse forever. */
1059 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1060 thissize = MIN (thissize, unit - thispos);
1061
1062 if (BYTES_BIG_ENDIAN)
1063 {
1064 int total_bits;
1065
1066 /* We must do an endian conversion exactly the same way as it is
1067 done in extract_bit_field, so that the two calls to
1068 extract_fixed_bit_field will have comparable arguments. */
1069 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1070 total_bits = BITS_PER_WORD;
1071 else
1072 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1073
1074 /* Fetch successively less significant portions. */
1075 if (CONST_INT_P (value))
1076 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1077 >> (bitsize - bitsdone - thissize))
1078 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1079 else
1080 /* The args are chosen so that the last part includes the
1081 lsb. Give extract_bit_field the value it needs (with
1082 endianness compensation) to fetch the piece we want. */
1083 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1084 total_bits - bitsize + bitsdone,
1085 NULL_RTX, 1, false);
1086 }
1087 else
1088 {
1089 /* Fetch successively more significant portions. */
1090 if (CONST_INT_P (value))
1091 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1092 >> bitsdone)
1093 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1094 else
1095 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1096 bitsdone, NULL_RTX, 1, false);
1097 }
1098
1099 /* If OP0 is a register, then handle OFFSET here.
1100
1101 When handling multiword bitfields, extract_bit_field may pass
1102 down a word_mode SUBREG of a larger REG for a bitfield that actually
1103 crosses a word boundary. Thus, for a SUBREG, we must find
1104 the current word starting from the base register. */
1105 if (GET_CODE (op0) == SUBREG)
1106 {
1107 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1108 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1109 GET_MODE (SUBREG_REG (op0)));
1110 offset = 0;
1111 }
1112 else if (REG_P (op0))
1113 {
1114 word = operand_subword_force (op0, offset, GET_MODE (op0));
1115 offset = 0;
1116 }
1117 else
1118 word = op0;
1119
1120 /* OFFSET is in UNITs, and UNIT is in bits.
1121 store_fixed_bit_field wants offset in bytes. */
1122 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1123 thispos, part);
1124 bitsdone += thissize;
1125 }
1126 }
1127 \f
1128 /* A subroutine of extract_bit_field_1 that converts return value X
1129 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1130 to extract_bit_field. */
1131
1132 static rtx
1133 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1134 enum machine_mode tmode, bool unsignedp)
1135 {
1136 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1137 return x;
1138
1139 /* If the x mode is not a scalar integral, first convert to the
1140 integer mode of that size and then access it as a floating-point
1141 value via a SUBREG. */
1142 if (!SCALAR_INT_MODE_P (tmode))
1143 {
1144 enum machine_mode smode;
1145
1146 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1147 x = convert_to_mode (smode, x, unsignedp);
1148 x = force_reg (smode, x);
1149 return gen_lowpart (tmode, x);
1150 }
1151
1152 return convert_to_mode (tmode, x, unsignedp);
1153 }
1154
1155 /* A subroutine of extract_bit_field, with the same arguments.
1156 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1157 if we can find no other means of implementing the operation.
1158 if FALLBACK_P is false, return NULL instead. */
1159
1160 static rtx
1161 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1162 unsigned HOST_WIDE_INT bitnum,
1163 int unsignedp, bool packedp, rtx target,
1164 enum machine_mode mode, enum machine_mode tmode,
1165 bool fallback_p)
1166 {
1167 unsigned int unit
1168 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1169 unsigned HOST_WIDE_INT offset, bitpos;
1170 rtx op0 = str_rtx;
1171 enum machine_mode int_mode;
1172 enum machine_mode ext_mode;
1173 enum machine_mode mode1;
1174 enum insn_code icode;
1175 int byte_offset;
1176
1177 if (tmode == VOIDmode)
1178 tmode = mode;
1179
1180 while (GET_CODE (op0) == SUBREG)
1181 {
1182 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1183 op0 = SUBREG_REG (op0);
1184 }
1185
1186 /* If we have an out-of-bounds access to a register, just return an
1187 uninitialized register of the required mode. This can occur if the
1188 source code contains an out-of-bounds access to a small array. */
1189 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1190 return gen_reg_rtx (tmode);
1191
1192 if (REG_P (op0)
1193 && mode == GET_MODE (op0)
1194 && bitnum == 0
1195 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1196 {
1197 /* We're trying to extract a full register from itself. */
1198 return op0;
1199 }
1200
1201 /* See if we can get a better vector mode before extracting. */
1202 if (VECTOR_MODE_P (GET_MODE (op0))
1203 && !MEM_P (op0)
1204 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1205 {
1206 enum machine_mode new_mode;
1207 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1208
1209 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1210 new_mode = MIN_MODE_VECTOR_FLOAT;
1211 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1212 new_mode = MIN_MODE_VECTOR_FRACT;
1213 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1214 new_mode = MIN_MODE_VECTOR_UFRACT;
1215 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1216 new_mode = MIN_MODE_VECTOR_ACCUM;
1217 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1218 new_mode = MIN_MODE_VECTOR_UACCUM;
1219 else
1220 new_mode = MIN_MODE_VECTOR_INT;
1221
1222 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1223 if (GET_MODE_NUNITS (new_mode) == nunits
1224 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1225 && targetm.vector_mode_supported_p (new_mode))
1226 break;
1227 if (new_mode != VOIDmode)
1228 op0 = gen_lowpart (new_mode, op0);
1229 }
1230
1231 /* Use vec_extract patterns for extracting parts of vectors whenever
1232 available. */
1233 if (VECTOR_MODE_P (GET_MODE (op0))
1234 && !MEM_P (op0)
1235 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1236 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1237 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1238 {
1239 enum machine_mode outermode = GET_MODE (op0);
1240 enum machine_mode innermode = GET_MODE_INNER (outermode);
1241 int icode = (int) optab_handler (vec_extract_optab, outermode);
1242 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1243 rtx rtxpos = GEN_INT (pos);
1244 rtx src = op0;
1245 rtx dest = NULL, pat, seq;
1246 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1247 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1248 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1249
1250 if (innermode == tmode || innermode == mode)
1251 dest = target;
1252
1253 if (!dest)
1254 dest = gen_reg_rtx (innermode);
1255
1256 start_sequence ();
1257
1258 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1259 dest = copy_to_mode_reg (mode0, dest);
1260
1261 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1262 src = copy_to_mode_reg (mode1, src);
1263
1264 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1265 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1266
1267 /* We could handle this, but we should always be called with a pseudo
1268 for our targets and all insns should take them as outputs. */
1269 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1270 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1271 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1272
1273 pat = GEN_FCN (icode) (dest, src, rtxpos);
1274 seq = get_insns ();
1275 end_sequence ();
1276 if (pat)
1277 {
1278 emit_insn (seq);
1279 emit_insn (pat);
1280 if (mode0 != mode)
1281 return gen_lowpart (tmode, dest);
1282 return dest;
1283 }
1284 }
1285
1286 /* Make sure we are playing with integral modes. Pun with subregs
1287 if we aren't. */
1288 {
1289 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1290 if (imode != GET_MODE (op0))
1291 {
1292 if (MEM_P (op0))
1293 op0 = adjust_address (op0, imode, 0);
1294 else if (imode != BLKmode)
1295 {
1296 op0 = gen_lowpart (imode, op0);
1297
1298 /* If we got a SUBREG, force it into a register since we
1299 aren't going to be able to do another SUBREG on it. */
1300 if (GET_CODE (op0) == SUBREG)
1301 op0 = force_reg (imode, op0);
1302 }
1303 else if (REG_P (op0))
1304 {
1305 rtx reg, subreg;
1306 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1307 MODE_INT);
1308 reg = gen_reg_rtx (imode);
1309 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1310 emit_move_insn (subreg, op0);
1311 op0 = reg;
1312 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1313 }
1314 else
1315 {
1316 rtx mem = assign_stack_temp (GET_MODE (op0),
1317 GET_MODE_SIZE (GET_MODE (op0)), 0);
1318 emit_move_insn (mem, op0);
1319 op0 = adjust_address (mem, BLKmode, 0);
1320 }
1321 }
1322 }
1323
1324 /* We may be accessing data outside the field, which means
1325 we can alias adjacent data. */
1326 if (MEM_P (op0))
1327 {
1328 op0 = shallow_copy_rtx (op0);
1329 set_mem_alias_set (op0, 0);
1330 set_mem_expr (op0, 0);
1331 }
1332
1333 /* Extraction of a full-word or multi-word value from a structure
1334 in a register or aligned memory can be done with just a SUBREG.
1335 A subword value in the least significant part of a register
1336 can also be extracted with a SUBREG. For this, we need the
1337 byte offset of the value in op0. */
1338
1339 bitpos = bitnum % unit;
1340 offset = bitnum / unit;
1341 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1342
1343 /* If OP0 is a register, BITPOS must count within a word.
1344 But as we have it, it counts within whatever size OP0 now has.
1345 On a bigendian machine, these are not the same, so convert. */
1346 if (BYTES_BIG_ENDIAN
1347 && !MEM_P (op0)
1348 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1349 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1350
1351 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1352 If that's wrong, the solution is to test for it and set TARGET to 0
1353 if needed. */
1354
1355 /* Only scalar integer modes can be converted via subregs. There is an
1356 additional problem for FP modes here in that they can have a precision
1357 which is different from the size. mode_for_size uses precision, but
1358 we want a mode based on the size, so we must avoid calling it for FP
1359 modes. */
1360 mode1 = (SCALAR_INT_MODE_P (tmode)
1361 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1362 : mode);
1363
1364 /* If the bitfield is volatile, we need to make sure the access
1365 remains on a type-aligned boundary. */
1366 if (GET_CODE (op0) == MEM
1367 && MEM_VOLATILE_P (op0)
1368 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
1369 && flag_strict_volatile_bitfields > 0)
1370 goto no_subreg_mode_swap;
1371
1372 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1373 && bitpos % BITS_PER_WORD == 0)
1374 || (mode1 != BLKmode
1375 /* ??? The big endian test here is wrong. This is correct
1376 if the value is in a register, and if mode_for_size is not
1377 the same mode as op0. This causes us to get unnecessarily
1378 inefficient code from the Thumb port when -mbig-endian. */
1379 && (BYTES_BIG_ENDIAN
1380 ? bitpos + bitsize == BITS_PER_WORD
1381 : bitpos == 0)))
1382 && ((!MEM_P (op0)
1383 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1384 GET_MODE_BITSIZE (GET_MODE (op0)))
1385 && GET_MODE_SIZE (mode1) != 0
1386 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1387 || (MEM_P (op0)
1388 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1389 || (offset * BITS_PER_UNIT % bitsize == 0
1390 && MEM_ALIGN (op0) % bitsize == 0)))))
1391 {
1392 if (MEM_P (op0))
1393 op0 = adjust_address (op0, mode1, offset);
1394 else if (mode1 != GET_MODE (op0))
1395 {
1396 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1397 byte_offset);
1398 if (sub == NULL)
1399 goto no_subreg_mode_swap;
1400 op0 = sub;
1401 }
1402 if (mode1 != mode)
1403 return convert_to_mode (tmode, op0, unsignedp);
1404 return op0;
1405 }
1406 no_subreg_mode_swap:
1407
1408 /* Handle fields bigger than a word. */
1409
1410 if (bitsize > BITS_PER_WORD)
1411 {
1412 /* Here we transfer the words of the field
1413 in the order least significant first.
1414 This is because the most significant word is the one which may
1415 be less than full. */
1416
1417 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1418 unsigned int i;
1419
1420 if (target == 0 || !REG_P (target))
1421 target = gen_reg_rtx (mode);
1422
1423 /* Indicate for flow that the entire target reg is being set. */
1424 emit_clobber (target);
1425
1426 for (i = 0; i < nwords; i++)
1427 {
1428 /* If I is 0, use the low-order word in both field and target;
1429 if I is 1, use the next to lowest word; and so on. */
1430 /* Word number in TARGET to use. */
1431 unsigned int wordnum
1432 = (WORDS_BIG_ENDIAN
1433 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1434 : i);
1435 /* Offset from start of field in OP0. */
1436 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1437 ? MAX (0, ((int) bitsize - ((int) i + 1)
1438 * (int) BITS_PER_WORD))
1439 : (int) i * BITS_PER_WORD);
1440 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1441 rtx result_part
1442 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1443 bitsize - i * BITS_PER_WORD),
1444 bitnum + bit_offset, 1, false, target_part, mode,
1445 word_mode);
1446
1447 gcc_assert (target_part);
1448
1449 if (result_part != target_part)
1450 emit_move_insn (target_part, result_part);
1451 }
1452
1453 if (unsignedp)
1454 {
1455 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1456 need to be zero'd out. */
1457 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1458 {
1459 unsigned int i, total_words;
1460
1461 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1462 for (i = nwords; i < total_words; i++)
1463 emit_move_insn
1464 (operand_subword (target,
1465 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1466 1, VOIDmode),
1467 const0_rtx);
1468 }
1469 return target;
1470 }
1471
1472 /* Signed bit field: sign-extend with two arithmetic shifts. */
1473 target = expand_shift (LSHIFT_EXPR, mode, target,
1474 build_int_cst (NULL_TREE,
1475 GET_MODE_BITSIZE (mode) - bitsize),
1476 NULL_RTX, 0);
1477 return expand_shift (RSHIFT_EXPR, mode, target,
1478 build_int_cst (NULL_TREE,
1479 GET_MODE_BITSIZE (mode) - bitsize),
1480 NULL_RTX, 0);
1481 }
1482
1483 /* From here on we know the desired field is smaller than a word. */
1484
1485 /* Check if there is a correspondingly-sized integer field, so we can
1486 safely extract it as one size of integer, if necessary; then
1487 truncate or extend to the size that is wanted; then use SUBREGs or
1488 convert_to_mode to get one of the modes we really wanted. */
1489
1490 int_mode = int_mode_for_mode (tmode);
1491 if (int_mode == BLKmode)
1492 int_mode = int_mode_for_mode (mode);
1493 /* Should probably push op0 out to memory and then do a load. */
1494 gcc_assert (int_mode != BLKmode);
1495
1496 /* OFFSET is the number of words or bytes (UNIT says which)
1497 from STR_RTX to the first word or byte containing part of the field. */
1498 if (!MEM_P (op0))
1499 {
1500 if (offset != 0
1501 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1502 {
1503 if (!REG_P (op0))
1504 op0 = copy_to_reg (op0);
1505 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1506 op0, (offset * UNITS_PER_WORD));
1507 }
1508 offset = 0;
1509 }
1510
1511 /* Now OFFSET is nonzero only for memory operands. */
1512 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1513 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1514 if (ext_mode != MAX_MACHINE_MODE
1515 && bitsize > 0
1516 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1517 /* If op0 is a register, we need it in EXT_MODE to make it
1518 acceptable to the format of ext(z)v. */
1519 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1520 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1521 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1522 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1523 {
1524 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1525 rtx bitsize_rtx, bitpos_rtx;
1526 rtx last = get_last_insn ();
1527 rtx xop0 = op0;
1528 rtx xtarget = target;
1529 rtx xspec_target = target;
1530 rtx xspec_target_subreg = 0;
1531 rtx pat;
1532
1533 /* If op0 is a register, we need it in EXT_MODE to make it
1534 acceptable to the format of ext(z)v. */
1535 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1536 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1537 if (MEM_P (xop0))
1538 /* Get ref to first byte containing part of the field. */
1539 xop0 = adjust_address (xop0, byte_mode, xoffset);
1540
1541 /* On big-endian machines, we count bits from the most significant.
1542 If the bit field insn does not, we must invert. */
1543 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1544 xbitpos = unit - bitsize - xbitpos;
1545
1546 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1547 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1548 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1549
1550 unit = GET_MODE_BITSIZE (ext_mode);
1551
1552 if (xtarget == 0)
1553 xtarget = xspec_target = gen_reg_rtx (tmode);
1554
1555 if (GET_MODE (xtarget) != ext_mode)
1556 {
1557 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1558 between the mode of the extraction (word_mode) and the target
1559 mode. Instead, create a temporary and use convert_move to set
1560 the target. */
1561 if (REG_P (xtarget)
1562 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1563 GET_MODE_BITSIZE (ext_mode)))
1564 {
1565 xtarget = gen_lowpart (ext_mode, xtarget);
1566 if (GET_MODE_SIZE (ext_mode)
1567 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1568 xspec_target_subreg = xtarget;
1569 }
1570 else
1571 xtarget = gen_reg_rtx (ext_mode);
1572 }
1573
1574 /* If this machine's ext(z)v insists on a register target,
1575 make sure we have one. */
1576 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1577 xtarget = gen_reg_rtx (ext_mode);
1578
1579 bitsize_rtx = GEN_INT (bitsize);
1580 bitpos_rtx = GEN_INT (xbitpos);
1581
1582 pat = (unsignedp
1583 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1584 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1585 if (pat)
1586 {
1587 emit_insn (pat);
1588 if (xtarget == xspec_target)
1589 return xtarget;
1590 if (xtarget == xspec_target_subreg)
1591 return xspec_target;
1592 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1593 }
1594 delete_insns_since (last);
1595 }
1596
1597 /* If OP0 is a memory, try copying it to a register and seeing if a
1598 cheap register alternative is available. */
1599 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1600 {
1601 enum machine_mode bestmode;
1602
1603 /* Get the mode to use for inserting into this field. If
1604 OP0 is BLKmode, get the smallest mode consistent with the
1605 alignment. If OP0 is a non-BLKmode object that is no
1606 wider than EXT_MODE, use its mode. Otherwise, use the
1607 smallest mode containing the field. */
1608
1609 if (GET_MODE (op0) == BLKmode
1610 || (ext_mode != MAX_MACHINE_MODE
1611 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1612 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1613 (ext_mode == MAX_MACHINE_MODE
1614 ? VOIDmode : ext_mode),
1615 MEM_VOLATILE_P (op0));
1616 else
1617 bestmode = GET_MODE (op0);
1618
1619 if (bestmode != VOIDmode
1620 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1621 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1622 {
1623 unsigned HOST_WIDE_INT xoffset, xbitpos;
1624
1625 /* Compute the offset as a multiple of this unit,
1626 counting in bytes. */
1627 unit = GET_MODE_BITSIZE (bestmode);
1628 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1629 xbitpos = bitnum % unit;
1630
1631 /* Make sure the register is big enough for the whole field. */
1632 if (xoffset * BITS_PER_UNIT + unit
1633 >= offset * BITS_PER_UNIT + bitsize)
1634 {
1635 rtx last, result, xop0;
1636
1637 last = get_last_insn ();
1638
1639 /* Fetch it to a register in that size. */
1640 xop0 = adjust_address (op0, bestmode, xoffset);
1641 xop0 = force_reg (bestmode, xop0);
1642 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1643 unsignedp, packedp, target,
1644 mode, tmode, false);
1645 if (result)
1646 return result;
1647
1648 delete_insns_since (last);
1649 }
1650 }
1651 }
1652
1653 if (!fallback_p)
1654 return NULL;
1655
1656 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1657 bitpos, target, unsignedp, packedp);
1658 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1659 }
1660
1661 /* Generate code to extract a byte-field from STR_RTX
1662 containing BITSIZE bits, starting at BITNUM,
1663 and put it in TARGET if possible (if TARGET is nonzero).
1664 Regardless of TARGET, we return the rtx for where the value is placed.
1665
1666 STR_RTX is the structure containing the byte (a REG or MEM).
1667 UNSIGNEDP is nonzero if this is an unsigned bit field.
1668 PACKEDP is nonzero if the field has the packed attribute.
1669 MODE is the natural mode of the field value once extracted.
1670 TMODE is the mode the caller would like the value to have;
1671 but the value may be returned with type MODE instead.
1672
1673 If a TARGET is specified and we can store in it at no extra cost,
1674 we do so, and return TARGET.
1675 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1676 if they are equally easy. */
1677
1678 rtx
1679 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1680 unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
1681 rtx target, enum machine_mode mode, enum machine_mode tmode)
1682 {
1683 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
1684 target, mode, tmode, true);
1685 }
1686 \f
1687 /* Extract a bit field using shifts and boolean operations
1688 Returns an rtx to represent the value.
1689 OP0 addresses a register (word) or memory (byte).
1690 BITPOS says which bit within the word or byte the bit field starts in.
1691 OFFSET says how many bytes farther the bit field starts;
1692 it is 0 if OP0 is a register.
1693 BITSIZE says how many bits long the bit field is.
1694 (If OP0 is a register, it may be narrower than a full word,
1695 but BITPOS still counts within a full word,
1696 which is significant on bigendian machines.)
1697
1698 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1699 PACKEDP is true if the field has the packed attribute.
1700
1701 If TARGET is nonzero, attempts to store the value there
1702 and return TARGET, but this is not guaranteed.
1703 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1704
1705 static rtx
1706 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1707 unsigned HOST_WIDE_INT offset,
1708 unsigned HOST_WIDE_INT bitsize,
1709 unsigned HOST_WIDE_INT bitpos, rtx target,
1710 int unsignedp, bool packedp)
1711 {
1712 unsigned int total_bits = BITS_PER_WORD;
1713 enum machine_mode mode;
1714
1715 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1716 {
1717 /* Special treatment for a bit field split across two registers. */
1718 if (bitsize + bitpos > BITS_PER_WORD)
1719 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1720 }
1721 else
1722 {
1723 /* Get the proper mode to use for this field. We want a mode that
1724 includes the entire field. If such a mode would be larger than
1725 a word, we won't be doing the extraction the normal way. */
1726
1727 if (MEM_VOLATILE_P (op0)
1728 && flag_strict_volatile_bitfields > 0)
1729 {
1730 if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1731 mode = GET_MODE (op0);
1732 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1733 mode = GET_MODE (target);
1734 else
1735 mode = tmode;
1736 }
1737 else
1738 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1739 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1740
1741 if (mode == VOIDmode)
1742 /* The only way this should occur is if the field spans word
1743 boundaries. */
1744 return extract_split_bit_field (op0, bitsize,
1745 bitpos + offset * BITS_PER_UNIT,
1746 unsignedp);
1747
1748 total_bits = GET_MODE_BITSIZE (mode);
1749
1750 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1751 be in the range 0 to total_bits-1, and put any excess bytes in
1752 OFFSET. */
1753 if (bitpos >= total_bits)
1754 {
1755 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1756 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1757 * BITS_PER_UNIT);
1758 }
1759
1760 /* If we're accessing a volatile MEM, we can't do the next
1761 alignment step if it results in a multi-word access where we
1762 otherwise wouldn't have one. So, check for that case
1763 here. */
1764 if (MEM_P (op0)
1765 && MEM_VOLATILE_P (op0)
1766 && flag_strict_volatile_bitfields > 0
1767 && bitpos + bitsize <= total_bits
1768 && bitpos + bitsize + (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT > total_bits)
1769 {
1770 if (STRICT_ALIGNMENT)
1771 {
1772 static bool informed_about_misalignment = false;
1773 bool warned;
1774
1775 if (packedp)
1776 {
1777 if (bitsize == total_bits)
1778 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1779 "multiple accesses to volatile structure member"
1780 " because of packed attribute");
1781 else
1782 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1783 "multiple accesses to volatile structure bitfield"
1784 " because of packed attribute");
1785
1786 return extract_split_bit_field (op0, bitsize,
1787 bitpos + offset * BITS_PER_UNIT,
1788 unsignedp);
1789 }
1790
1791 if (bitsize == total_bits)
1792 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1793 "mis-aligned access used for structure member");
1794 else
1795 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1796 "mis-aligned access used for structure bitfield");
1797
1798 if (! informed_about_misalignment && warned)
1799 {
1800 informed_about_misalignment = true;
1801 inform (input_location,
1802 "when a volatile object spans multiple type-sized locations,"
1803 " the compiler must choose between using a single mis-aligned access to"
1804 " preserve the volatility, or using multiple aligned accesses to avoid"
1805 " runtime faults; this code may fail at runtime if the hardware does"
1806 " not allow this access");
1807 }
1808 }
1809 }
1810 else
1811 {
1812
1813 /* Get ref to an aligned byte, halfword, or word containing the field.
1814 Adjust BITPOS to be position within a word,
1815 and OFFSET to be the offset of that word.
1816 Then alter OP0 to refer to that word. */
1817 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1818 offset -= (offset % (total_bits / BITS_PER_UNIT));
1819 }
1820
1821 op0 = adjust_address (op0, mode, offset);
1822 }
1823
1824 mode = GET_MODE (op0);
1825
1826 if (BYTES_BIG_ENDIAN)
1827 /* BITPOS is the distance between our msb and that of OP0.
1828 Convert it to the distance from the lsb. */
1829 bitpos = total_bits - bitsize - bitpos;
1830
1831 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1832 We have reduced the big-endian case to the little-endian case. */
1833
1834 if (unsignedp)
1835 {
1836 if (bitpos)
1837 {
1838 /* If the field does not already start at the lsb,
1839 shift it so it does. */
1840 tree amount = build_int_cst (NULL_TREE, bitpos);
1841 /* Maybe propagate the target for the shift. */
1842 /* But not if we will return it--could confuse integrate.c. */
1843 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1844 if (tmode != mode) subtarget = 0;
1845 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1846 }
1847 /* Convert the value to the desired mode. */
1848 if (mode != tmode)
1849 op0 = convert_to_mode (tmode, op0, 1);
1850
1851 /* Unless the msb of the field used to be the msb when we shifted,
1852 mask out the upper bits. */
1853
1854 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1855 return expand_binop (GET_MODE (op0), and_optab, op0,
1856 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1857 target, 1, OPTAB_LIB_WIDEN);
1858 return op0;
1859 }
1860
1861 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1862 then arithmetic-shift its lsb to the lsb of the word. */
1863 op0 = force_reg (mode, op0);
1864 if (mode != tmode)
1865 target = 0;
1866
1867 /* Find the narrowest integer mode that contains the field. */
1868
1869 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1870 mode = GET_MODE_WIDER_MODE (mode))
1871 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1872 {
1873 op0 = convert_to_mode (mode, op0, 0);
1874 break;
1875 }
1876
1877 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1878 {
1879 tree amount
1880 = build_int_cst (NULL_TREE,
1881 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1882 /* Maybe propagate the target for the shift. */
1883 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1884 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1885 }
1886
1887 return expand_shift (RSHIFT_EXPR, mode, op0,
1888 build_int_cst (NULL_TREE,
1889 GET_MODE_BITSIZE (mode) - bitsize),
1890 target, 0);
1891 }
1892 \f
1893 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1894 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1895 complement of that if COMPLEMENT. The mask is truncated if
1896 necessary to the width of mode MODE. The mask is zero-extended if
1897 BITSIZE+BITPOS is too small for MODE. */
1898
1899 static rtx
1900 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1901 {
1902 double_int mask;
1903
1904 mask = double_int_mask (bitsize);
1905 mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1906
1907 if (complement)
1908 mask = double_int_not (mask);
1909
1910 return immed_double_int_const (mask, mode);
1911 }
1912
1913 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1914 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1915
1916 static rtx
1917 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1918 {
1919 double_int val;
1920
1921 val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
1922 val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1923
1924 return immed_double_int_const (val, mode);
1925 }
1926 \f
1927 /* Extract a bit field that is split across two words
1928 and return an RTX for the result.
1929
1930 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1931 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1932 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1933
1934 static rtx
1935 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1936 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1937 {
1938 unsigned int unit;
1939 unsigned int bitsdone = 0;
1940 rtx result = NULL_RTX;
1941 int first = 1;
1942
1943 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1944 much at a time. */
1945 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1946 unit = BITS_PER_WORD;
1947 else
1948 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1949
1950 while (bitsdone < bitsize)
1951 {
1952 unsigned HOST_WIDE_INT thissize;
1953 rtx part, word;
1954 unsigned HOST_WIDE_INT thispos;
1955 unsigned HOST_WIDE_INT offset;
1956
1957 offset = (bitpos + bitsdone) / unit;
1958 thispos = (bitpos + bitsdone) % unit;
1959
1960 /* THISSIZE must not overrun a word boundary. Otherwise,
1961 extract_fixed_bit_field will call us again, and we will mutually
1962 recurse forever. */
1963 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1964 thissize = MIN (thissize, unit - thispos);
1965
1966 /* If OP0 is a register, then handle OFFSET here.
1967
1968 When handling multiword bitfields, extract_bit_field may pass
1969 down a word_mode SUBREG of a larger REG for a bitfield that actually
1970 crosses a word boundary. Thus, for a SUBREG, we must find
1971 the current word starting from the base register. */
1972 if (GET_CODE (op0) == SUBREG)
1973 {
1974 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1975 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1976 GET_MODE (SUBREG_REG (op0)));
1977 offset = 0;
1978 }
1979 else if (REG_P (op0))
1980 {
1981 word = operand_subword_force (op0, offset, GET_MODE (op0));
1982 offset = 0;
1983 }
1984 else
1985 word = op0;
1986
1987 /* Extract the parts in bit-counting order,
1988 whose meaning is determined by BYTES_PER_UNIT.
1989 OFFSET is in UNITs, and UNIT is in bits.
1990 extract_fixed_bit_field wants offset in bytes. */
1991 part = extract_fixed_bit_field (word_mode, word,
1992 offset * unit / BITS_PER_UNIT,
1993 thissize, thispos, 0, 1, false);
1994 bitsdone += thissize;
1995
1996 /* Shift this part into place for the result. */
1997 if (BYTES_BIG_ENDIAN)
1998 {
1999 if (bitsize != bitsdone)
2000 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2001 build_int_cst (NULL_TREE, bitsize - bitsdone),
2002 0, 1);
2003 }
2004 else
2005 {
2006 if (bitsdone != thissize)
2007 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2008 build_int_cst (NULL_TREE,
2009 bitsdone - thissize), 0, 1);
2010 }
2011
2012 if (first)
2013 result = part;
2014 else
2015 /* Combine the parts with bitwise or. This works
2016 because we extracted each part as an unsigned bit field. */
2017 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2018 OPTAB_LIB_WIDEN);
2019
2020 first = 0;
2021 }
2022
2023 /* Unsigned bit field: we are done. */
2024 if (unsignedp)
2025 return result;
2026 /* Signed bit field: sign-extend with two arithmetic shifts. */
2027 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2028 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2029 NULL_RTX, 0);
2030 return expand_shift (RSHIFT_EXPR, word_mode, result,
2031 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2032 NULL_RTX, 0);
2033 }
2034 \f
2035 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2036 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2037 MODE, fill the upper bits with zeros. Fail if the layout of either
2038 mode is unknown (as for CC modes) or if the extraction would involve
2039 unprofitable mode punning. Return the value on success, otherwise
2040 return null.
2041
2042 This is different from gen_lowpart* in these respects:
2043
2044 - the returned value must always be considered an rvalue
2045
2046 - when MODE is wider than SRC_MODE, the extraction involves
2047 a zero extension
2048
2049 - when MODE is smaller than SRC_MODE, the extraction involves
2050 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2051
2052 In other words, this routine performs a computation, whereas the
2053 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2054 operations. */
2055
2056 rtx
2057 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2058 {
2059 enum machine_mode int_mode, src_int_mode;
2060
2061 if (mode == src_mode)
2062 return src;
2063
2064 if (CONSTANT_P (src))
2065 {
2066 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2067 fails, it will happily create (subreg (symbol_ref)) or similar
2068 invalid SUBREGs. */
2069 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2070 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2071 if (ret)
2072 return ret;
2073
2074 if (GET_MODE (src) == VOIDmode
2075 || !validate_subreg (mode, src_mode, src, byte))
2076 return NULL_RTX;
2077
2078 src = force_reg (GET_MODE (src), src);
2079 return gen_rtx_SUBREG (mode, src, byte);
2080 }
2081
2082 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2083 return NULL_RTX;
2084
2085 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2086 && MODES_TIEABLE_P (mode, src_mode))
2087 {
2088 rtx x = gen_lowpart_common (mode, src);
2089 if (x)
2090 return x;
2091 }
2092
2093 src_int_mode = int_mode_for_mode (src_mode);
2094 int_mode = int_mode_for_mode (mode);
2095 if (src_int_mode == BLKmode || int_mode == BLKmode)
2096 return NULL_RTX;
2097
2098 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2099 return NULL_RTX;
2100 if (!MODES_TIEABLE_P (int_mode, mode))
2101 return NULL_RTX;
2102
2103 src = gen_lowpart (src_int_mode, src);
2104 src = convert_modes (int_mode, src_int_mode, src, true);
2105 src = gen_lowpart (mode, src);
2106 return src;
2107 }
2108 \f
2109 /* Add INC into TARGET. */
2110
2111 void
2112 expand_inc (rtx target, rtx inc)
2113 {
2114 rtx value = expand_binop (GET_MODE (target), add_optab,
2115 target, inc,
2116 target, 0, OPTAB_LIB_WIDEN);
2117 if (value != target)
2118 emit_move_insn (target, value);
2119 }
2120
2121 /* Subtract DEC from TARGET. */
2122
2123 void
2124 expand_dec (rtx target, rtx dec)
2125 {
2126 rtx value = expand_binop (GET_MODE (target), sub_optab,
2127 target, dec,
2128 target, 0, OPTAB_LIB_WIDEN);
2129 if (value != target)
2130 emit_move_insn (target, value);
2131 }
2132 \f
2133 /* Output a shift instruction for expression code CODE,
2134 with SHIFTED being the rtx for the value to shift,
2135 and AMOUNT the tree for the amount to shift by.
2136 Store the result in the rtx TARGET, if that is convenient.
2137 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2138 Return the rtx for where the value is. */
2139
2140 rtx
2141 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2142 tree amount, rtx target, int unsignedp)
2143 {
2144 rtx op1, temp = 0;
2145 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2146 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2147 optab lshift_optab = ashl_optab;
2148 optab rshift_arith_optab = ashr_optab;
2149 optab rshift_uns_optab = lshr_optab;
2150 optab lrotate_optab = rotl_optab;
2151 optab rrotate_optab = rotr_optab;
2152 enum machine_mode op1_mode;
2153 int attempt;
2154 bool speed = optimize_insn_for_speed_p ();
2155
2156 op1 = expand_normal (amount);
2157 op1_mode = GET_MODE (op1);
2158
2159 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2160 shift amount is a vector, use the vector/vector shift patterns. */
2161 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2162 {
2163 lshift_optab = vashl_optab;
2164 rshift_arith_optab = vashr_optab;
2165 rshift_uns_optab = vlshr_optab;
2166 lrotate_optab = vrotl_optab;
2167 rrotate_optab = vrotr_optab;
2168 }
2169
2170 /* Previously detected shift-counts computed by NEGATE_EXPR
2171 and shifted in the other direction; but that does not work
2172 on all machines. */
2173
2174 if (SHIFT_COUNT_TRUNCATED)
2175 {
2176 if (CONST_INT_P (op1)
2177 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2178 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2179 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2180 % GET_MODE_BITSIZE (mode));
2181 else if (GET_CODE (op1) == SUBREG
2182 && subreg_lowpart_p (op1)
2183 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2184 op1 = SUBREG_REG (op1);
2185 }
2186
2187 if (op1 == const0_rtx)
2188 return shifted;
2189
2190 /* Check whether its cheaper to implement a left shift by a constant
2191 bit count by a sequence of additions. */
2192 if (code == LSHIFT_EXPR
2193 && CONST_INT_P (op1)
2194 && INTVAL (op1) > 0
2195 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2196 && INTVAL (op1) < MAX_BITS_PER_WORD
2197 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2198 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2199 {
2200 int i;
2201 for (i = 0; i < INTVAL (op1); i++)
2202 {
2203 temp = force_reg (mode, shifted);
2204 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2205 unsignedp, OPTAB_LIB_WIDEN);
2206 }
2207 return shifted;
2208 }
2209
2210 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2211 {
2212 enum optab_methods methods;
2213
2214 if (attempt == 0)
2215 methods = OPTAB_DIRECT;
2216 else if (attempt == 1)
2217 methods = OPTAB_WIDEN;
2218 else
2219 methods = OPTAB_LIB_WIDEN;
2220
2221 if (rotate)
2222 {
2223 /* Widening does not work for rotation. */
2224 if (methods == OPTAB_WIDEN)
2225 continue;
2226 else if (methods == OPTAB_LIB_WIDEN)
2227 {
2228 /* If we have been unable to open-code this by a rotation,
2229 do it as the IOR of two shifts. I.e., to rotate A
2230 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2231 where C is the bitsize of A.
2232
2233 It is theoretically possible that the target machine might
2234 not be able to perform either shift and hence we would
2235 be making two libcalls rather than just the one for the
2236 shift (similarly if IOR could not be done). We will allow
2237 this extremely unlikely lossage to avoid complicating the
2238 code below. */
2239
2240 rtx subtarget = target == shifted ? 0 : target;
2241 tree new_amount, other_amount;
2242 rtx temp1;
2243 tree type = TREE_TYPE (amount);
2244 if (GET_MODE (op1) != TYPE_MODE (type)
2245 && GET_MODE (op1) != VOIDmode)
2246 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2247 new_amount = make_tree (type, op1);
2248 other_amount
2249 = fold_build2 (MINUS_EXPR, type,
2250 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2251 new_amount);
2252
2253 shifted = force_reg (mode, shifted);
2254
2255 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2256 mode, shifted, new_amount, 0, 1);
2257 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2258 mode, shifted, other_amount, subtarget, 1);
2259 return expand_binop (mode, ior_optab, temp, temp1, target,
2260 unsignedp, methods);
2261 }
2262
2263 temp = expand_binop (mode,
2264 left ? lrotate_optab : rrotate_optab,
2265 shifted, op1, target, unsignedp, methods);
2266 }
2267 else if (unsignedp)
2268 temp = expand_binop (mode,
2269 left ? lshift_optab : rshift_uns_optab,
2270 shifted, op1, target, unsignedp, methods);
2271
2272 /* Do arithmetic shifts.
2273 Also, if we are going to widen the operand, we can just as well
2274 use an arithmetic right-shift instead of a logical one. */
2275 if (temp == 0 && ! rotate
2276 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2277 {
2278 enum optab_methods methods1 = methods;
2279
2280 /* If trying to widen a log shift to an arithmetic shift,
2281 don't accept an arithmetic shift of the same size. */
2282 if (unsignedp)
2283 methods1 = OPTAB_MUST_WIDEN;
2284
2285 /* Arithmetic shift */
2286
2287 temp = expand_binop (mode,
2288 left ? lshift_optab : rshift_arith_optab,
2289 shifted, op1, target, unsignedp, methods1);
2290 }
2291
2292 /* We used to try extzv here for logical right shifts, but that was
2293 only useful for one machine, the VAX, and caused poor code
2294 generation there for lshrdi3, so the code was deleted and a
2295 define_expand for lshrsi3 was added to vax.md. */
2296 }
2297
2298 gcc_assert (temp);
2299 return temp;
2300 }
2301 \f
2302 /* Indicates the type of fixup needed after a constant multiplication.
2303 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2304 the result should be negated, and ADD_VARIANT means that the
2305 multiplicand should be added to the result. */
2306 enum mult_variant {basic_variant, negate_variant, add_variant};
2307
2308 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2309 const struct mult_cost *, enum machine_mode mode);
2310 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2311 struct algorithm *, enum mult_variant *, int);
2312 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2313 const struct algorithm *, enum mult_variant);
2314 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2315 int, rtx *, int *, int *);
2316 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2317 static rtx extract_high_half (enum machine_mode, rtx);
2318 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2319 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2320 int, int);
2321 /* Compute and return the best algorithm for multiplying by T.
2322 The algorithm must cost less than cost_limit
2323 If retval.cost >= COST_LIMIT, no algorithm was found and all
2324 other field of the returned struct are undefined.
2325 MODE is the machine mode of the multiplication. */
2326
2327 static void
2328 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2329 const struct mult_cost *cost_limit, enum machine_mode mode)
2330 {
2331 int m;
2332 struct algorithm *alg_in, *best_alg;
2333 struct mult_cost best_cost;
2334 struct mult_cost new_limit;
2335 int op_cost, op_latency;
2336 unsigned HOST_WIDE_INT orig_t = t;
2337 unsigned HOST_WIDE_INT q;
2338 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2339 int hash_index;
2340 bool cache_hit = false;
2341 enum alg_code cache_alg = alg_zero;
2342 bool speed = optimize_insn_for_speed_p ();
2343
2344 /* Indicate that no algorithm is yet found. If no algorithm
2345 is found, this value will be returned and indicate failure. */
2346 alg_out->cost.cost = cost_limit->cost + 1;
2347 alg_out->cost.latency = cost_limit->latency + 1;
2348
2349 if (cost_limit->cost < 0
2350 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2351 return;
2352
2353 /* Restrict the bits of "t" to the multiplication's mode. */
2354 t &= GET_MODE_MASK (mode);
2355
2356 /* t == 1 can be done in zero cost. */
2357 if (t == 1)
2358 {
2359 alg_out->ops = 1;
2360 alg_out->cost.cost = 0;
2361 alg_out->cost.latency = 0;
2362 alg_out->op[0] = alg_m;
2363 return;
2364 }
2365
2366 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2367 fail now. */
2368 if (t == 0)
2369 {
2370 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2371 return;
2372 else
2373 {
2374 alg_out->ops = 1;
2375 alg_out->cost.cost = zero_cost[speed];
2376 alg_out->cost.latency = zero_cost[speed];
2377 alg_out->op[0] = alg_zero;
2378 return;
2379 }
2380 }
2381
2382 /* We'll be needing a couple extra algorithm structures now. */
2383
2384 alg_in = XALLOCA (struct algorithm);
2385 best_alg = XALLOCA (struct algorithm);
2386 best_cost = *cost_limit;
2387
2388 /* Compute the hash index. */
2389 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2390
2391 /* See if we already know what to do for T. */
2392 if (alg_hash[hash_index].t == t
2393 && alg_hash[hash_index].mode == mode
2394 && alg_hash[hash_index].mode == mode
2395 && alg_hash[hash_index].speed == speed
2396 && alg_hash[hash_index].alg != alg_unknown)
2397 {
2398 cache_alg = alg_hash[hash_index].alg;
2399
2400 if (cache_alg == alg_impossible)
2401 {
2402 /* The cache tells us that it's impossible to synthesize
2403 multiplication by T within alg_hash[hash_index].cost. */
2404 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2405 /* COST_LIMIT is at least as restrictive as the one
2406 recorded in the hash table, in which case we have no
2407 hope of synthesizing a multiplication. Just
2408 return. */
2409 return;
2410
2411 /* If we get here, COST_LIMIT is less restrictive than the
2412 one recorded in the hash table, so we may be able to
2413 synthesize a multiplication. Proceed as if we didn't
2414 have the cache entry. */
2415 }
2416 else
2417 {
2418 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2419 /* The cached algorithm shows that this multiplication
2420 requires more cost than COST_LIMIT. Just return. This
2421 way, we don't clobber this cache entry with
2422 alg_impossible but retain useful information. */
2423 return;
2424
2425 cache_hit = true;
2426
2427 switch (cache_alg)
2428 {
2429 case alg_shift:
2430 goto do_alg_shift;
2431
2432 case alg_add_t_m2:
2433 case alg_sub_t_m2:
2434 goto do_alg_addsub_t_m2;
2435
2436 case alg_add_factor:
2437 case alg_sub_factor:
2438 goto do_alg_addsub_factor;
2439
2440 case alg_add_t2_m:
2441 goto do_alg_add_t2_m;
2442
2443 case alg_sub_t2_m:
2444 goto do_alg_sub_t2_m;
2445
2446 default:
2447 gcc_unreachable ();
2448 }
2449 }
2450 }
2451
2452 /* If we have a group of zero bits at the low-order part of T, try
2453 multiplying by the remaining bits and then doing a shift. */
2454
2455 if ((t & 1) == 0)
2456 {
2457 do_alg_shift:
2458 m = floor_log2 (t & -t); /* m = number of low zero bits */
2459 if (m < maxm)
2460 {
2461 q = t >> m;
2462 /* The function expand_shift will choose between a shift and
2463 a sequence of additions, so the observed cost is given as
2464 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2465 op_cost = m * add_cost[speed][mode];
2466 if (shift_cost[speed][mode][m] < op_cost)
2467 op_cost = shift_cost[speed][mode][m];
2468 new_limit.cost = best_cost.cost - op_cost;
2469 new_limit.latency = best_cost.latency - op_cost;
2470 synth_mult (alg_in, q, &new_limit, mode);
2471
2472 alg_in->cost.cost += op_cost;
2473 alg_in->cost.latency += op_cost;
2474 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2475 {
2476 struct algorithm *x;
2477 best_cost = alg_in->cost;
2478 x = alg_in, alg_in = best_alg, best_alg = x;
2479 best_alg->log[best_alg->ops] = m;
2480 best_alg->op[best_alg->ops] = alg_shift;
2481 }
2482
2483 /* See if treating ORIG_T as a signed number yields a better
2484 sequence. Try this sequence only for a negative ORIG_T
2485 as it would be useless for a non-negative ORIG_T. */
2486 if ((HOST_WIDE_INT) orig_t < 0)
2487 {
2488 /* Shift ORIG_T as follows because a right shift of a
2489 negative-valued signed type is implementation
2490 defined. */
2491 q = ~(~orig_t >> m);
2492 /* The function expand_shift will choose between a shift
2493 and a sequence of additions, so the observed cost is
2494 given as MIN (m * add_cost[speed][mode],
2495 shift_cost[speed][mode][m]). */
2496 op_cost = m * add_cost[speed][mode];
2497 if (shift_cost[speed][mode][m] < op_cost)
2498 op_cost = shift_cost[speed][mode][m];
2499 new_limit.cost = best_cost.cost - op_cost;
2500 new_limit.latency = best_cost.latency - op_cost;
2501 synth_mult (alg_in, q, &new_limit, mode);
2502
2503 alg_in->cost.cost += op_cost;
2504 alg_in->cost.latency += op_cost;
2505 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2506 {
2507 struct algorithm *x;
2508 best_cost = alg_in->cost;
2509 x = alg_in, alg_in = best_alg, best_alg = x;
2510 best_alg->log[best_alg->ops] = m;
2511 best_alg->op[best_alg->ops] = alg_shift;
2512 }
2513 }
2514 }
2515 if (cache_hit)
2516 goto done;
2517 }
2518
2519 /* If we have an odd number, add or subtract one. */
2520 if ((t & 1) != 0)
2521 {
2522 unsigned HOST_WIDE_INT w;
2523
2524 do_alg_addsub_t_m2:
2525 for (w = 1; (w & t) != 0; w <<= 1)
2526 ;
2527 /* If T was -1, then W will be zero after the loop. This is another
2528 case where T ends with ...111. Handling this with (T + 1) and
2529 subtract 1 produces slightly better code and results in algorithm
2530 selection much faster than treating it like the ...0111 case
2531 below. */
2532 if (w == 0
2533 || (w > 2
2534 /* Reject the case where t is 3.
2535 Thus we prefer addition in that case. */
2536 && t != 3))
2537 {
2538 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2539
2540 op_cost = add_cost[speed][mode];
2541 new_limit.cost = best_cost.cost - op_cost;
2542 new_limit.latency = best_cost.latency - op_cost;
2543 synth_mult (alg_in, t + 1, &new_limit, mode);
2544
2545 alg_in->cost.cost += op_cost;
2546 alg_in->cost.latency += op_cost;
2547 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2548 {
2549 struct algorithm *x;
2550 best_cost = alg_in->cost;
2551 x = alg_in, alg_in = best_alg, best_alg = x;
2552 best_alg->log[best_alg->ops] = 0;
2553 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2554 }
2555 }
2556 else
2557 {
2558 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2559
2560 op_cost = add_cost[speed][mode];
2561 new_limit.cost = best_cost.cost - op_cost;
2562 new_limit.latency = best_cost.latency - op_cost;
2563 synth_mult (alg_in, t - 1, &new_limit, mode);
2564
2565 alg_in->cost.cost += op_cost;
2566 alg_in->cost.latency += op_cost;
2567 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2568 {
2569 struct algorithm *x;
2570 best_cost = alg_in->cost;
2571 x = alg_in, alg_in = best_alg, best_alg = x;
2572 best_alg->log[best_alg->ops] = 0;
2573 best_alg->op[best_alg->ops] = alg_add_t_m2;
2574 }
2575 }
2576
2577 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2578 quickly with a - a * n for some appropriate constant n. */
2579 m = exact_log2 (-orig_t + 1);
2580 if (m >= 0 && m < maxm)
2581 {
2582 op_cost = shiftsub1_cost[speed][mode][m];
2583 new_limit.cost = best_cost.cost - op_cost;
2584 new_limit.latency = best_cost.latency - op_cost;
2585 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
2586
2587 alg_in->cost.cost += op_cost;
2588 alg_in->cost.latency += op_cost;
2589 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2590 {
2591 struct algorithm *x;
2592 best_cost = alg_in->cost;
2593 x = alg_in, alg_in = best_alg, best_alg = x;
2594 best_alg->log[best_alg->ops] = m;
2595 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2596 }
2597 }
2598
2599 if (cache_hit)
2600 goto done;
2601 }
2602
2603 /* Look for factors of t of the form
2604 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2605 If we find such a factor, we can multiply by t using an algorithm that
2606 multiplies by q, shift the result by m and add/subtract it to itself.
2607
2608 We search for large factors first and loop down, even if large factors
2609 are less probable than small; if we find a large factor we will find a
2610 good sequence quickly, and therefore be able to prune (by decreasing
2611 COST_LIMIT) the search. */
2612
2613 do_alg_addsub_factor:
2614 for (m = floor_log2 (t - 1); m >= 2; m--)
2615 {
2616 unsigned HOST_WIDE_INT d;
2617
2618 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2619 if (t % d == 0 && t > d && m < maxm
2620 && (!cache_hit || cache_alg == alg_add_factor))
2621 {
2622 /* If the target has a cheap shift-and-add instruction use
2623 that in preference to a shift insn followed by an add insn.
2624 Assume that the shift-and-add is "atomic" with a latency
2625 equal to its cost, otherwise assume that on superscalar
2626 hardware the shift may be executed concurrently with the
2627 earlier steps in the algorithm. */
2628 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2629 if (shiftadd_cost[speed][mode][m] < op_cost)
2630 {
2631 op_cost = shiftadd_cost[speed][mode][m];
2632 op_latency = op_cost;
2633 }
2634 else
2635 op_latency = add_cost[speed][mode];
2636
2637 new_limit.cost = best_cost.cost - op_cost;
2638 new_limit.latency = best_cost.latency - op_latency;
2639 synth_mult (alg_in, t / d, &new_limit, mode);
2640
2641 alg_in->cost.cost += op_cost;
2642 alg_in->cost.latency += op_latency;
2643 if (alg_in->cost.latency < op_cost)
2644 alg_in->cost.latency = op_cost;
2645 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2646 {
2647 struct algorithm *x;
2648 best_cost = alg_in->cost;
2649 x = alg_in, alg_in = best_alg, best_alg = x;
2650 best_alg->log[best_alg->ops] = m;
2651 best_alg->op[best_alg->ops] = alg_add_factor;
2652 }
2653 /* Other factors will have been taken care of in the recursion. */
2654 break;
2655 }
2656
2657 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2658 if (t % d == 0 && t > d && m < maxm
2659 && (!cache_hit || cache_alg == alg_sub_factor))
2660 {
2661 /* If the target has a cheap shift-and-subtract insn use
2662 that in preference to a shift insn followed by a sub insn.
2663 Assume that the shift-and-sub is "atomic" with a latency
2664 equal to it's cost, otherwise assume that on superscalar
2665 hardware the shift may be executed concurrently with the
2666 earlier steps in the algorithm. */
2667 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2668 if (shiftsub0_cost[speed][mode][m] < op_cost)
2669 {
2670 op_cost = shiftsub0_cost[speed][mode][m];
2671 op_latency = op_cost;
2672 }
2673 else
2674 op_latency = add_cost[speed][mode];
2675
2676 new_limit.cost = best_cost.cost - op_cost;
2677 new_limit.latency = best_cost.latency - op_latency;
2678 synth_mult (alg_in, t / d, &new_limit, mode);
2679
2680 alg_in->cost.cost += op_cost;
2681 alg_in->cost.latency += op_latency;
2682 if (alg_in->cost.latency < op_cost)
2683 alg_in->cost.latency = op_cost;
2684 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2685 {
2686 struct algorithm *x;
2687 best_cost = alg_in->cost;
2688 x = alg_in, alg_in = best_alg, best_alg = x;
2689 best_alg->log[best_alg->ops] = m;
2690 best_alg->op[best_alg->ops] = alg_sub_factor;
2691 }
2692 break;
2693 }
2694 }
2695 if (cache_hit)
2696 goto done;
2697
2698 /* Try shift-and-add (load effective address) instructions,
2699 i.e. do a*3, a*5, a*9. */
2700 if ((t & 1) != 0)
2701 {
2702 do_alg_add_t2_m:
2703 q = t - 1;
2704 q = q & -q;
2705 m = exact_log2 (q);
2706 if (m >= 0 && m < maxm)
2707 {
2708 op_cost = shiftadd_cost[speed][mode][m];
2709 new_limit.cost = best_cost.cost - op_cost;
2710 new_limit.latency = best_cost.latency - op_cost;
2711 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2712
2713 alg_in->cost.cost += op_cost;
2714 alg_in->cost.latency += op_cost;
2715 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2716 {
2717 struct algorithm *x;
2718 best_cost = alg_in->cost;
2719 x = alg_in, alg_in = best_alg, best_alg = x;
2720 best_alg->log[best_alg->ops] = m;
2721 best_alg->op[best_alg->ops] = alg_add_t2_m;
2722 }
2723 }
2724 if (cache_hit)
2725 goto done;
2726
2727 do_alg_sub_t2_m:
2728 q = t + 1;
2729 q = q & -q;
2730 m = exact_log2 (q);
2731 if (m >= 0 && m < maxm)
2732 {
2733 op_cost = shiftsub0_cost[speed][mode][m];
2734 new_limit.cost = best_cost.cost - op_cost;
2735 new_limit.latency = best_cost.latency - op_cost;
2736 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2737
2738 alg_in->cost.cost += op_cost;
2739 alg_in->cost.latency += op_cost;
2740 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2741 {
2742 struct algorithm *x;
2743 best_cost = alg_in->cost;
2744 x = alg_in, alg_in = best_alg, best_alg = x;
2745 best_alg->log[best_alg->ops] = m;
2746 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2747 }
2748 }
2749 if (cache_hit)
2750 goto done;
2751 }
2752
2753 done:
2754 /* If best_cost has not decreased, we have not found any algorithm. */
2755 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2756 {
2757 /* We failed to find an algorithm. Record alg_impossible for
2758 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2759 we are asked to find an algorithm for T within the same or
2760 lower COST_LIMIT, we can immediately return to the
2761 caller. */
2762 alg_hash[hash_index].t = t;
2763 alg_hash[hash_index].mode = mode;
2764 alg_hash[hash_index].speed = speed;
2765 alg_hash[hash_index].alg = alg_impossible;
2766 alg_hash[hash_index].cost = *cost_limit;
2767 return;
2768 }
2769
2770 /* Cache the result. */
2771 if (!cache_hit)
2772 {
2773 alg_hash[hash_index].t = t;
2774 alg_hash[hash_index].mode = mode;
2775 alg_hash[hash_index].speed = speed;
2776 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2777 alg_hash[hash_index].cost.cost = best_cost.cost;
2778 alg_hash[hash_index].cost.latency = best_cost.latency;
2779 }
2780
2781 /* If we are getting a too long sequence for `struct algorithm'
2782 to record, make this search fail. */
2783 if (best_alg->ops == MAX_BITS_PER_WORD)
2784 return;
2785
2786 /* Copy the algorithm from temporary space to the space at alg_out.
2787 We avoid using structure assignment because the majority of
2788 best_alg is normally undefined, and this is a critical function. */
2789 alg_out->ops = best_alg->ops + 1;
2790 alg_out->cost = best_cost;
2791 memcpy (alg_out->op, best_alg->op,
2792 alg_out->ops * sizeof *alg_out->op);
2793 memcpy (alg_out->log, best_alg->log,
2794 alg_out->ops * sizeof *alg_out->log);
2795 }
2796 \f
2797 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2798 Try three variations:
2799
2800 - a shift/add sequence based on VAL itself
2801 - a shift/add sequence based on -VAL, followed by a negation
2802 - a shift/add sequence based on VAL - 1, followed by an addition.
2803
2804 Return true if the cheapest of these cost less than MULT_COST,
2805 describing the algorithm in *ALG and final fixup in *VARIANT. */
2806
2807 static bool
2808 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2809 struct algorithm *alg, enum mult_variant *variant,
2810 int mult_cost)
2811 {
2812 struct algorithm alg2;
2813 struct mult_cost limit;
2814 int op_cost;
2815 bool speed = optimize_insn_for_speed_p ();
2816
2817 /* Fail quickly for impossible bounds. */
2818 if (mult_cost < 0)
2819 return false;
2820
2821 /* Ensure that mult_cost provides a reasonable upper bound.
2822 Any constant multiplication can be performed with less
2823 than 2 * bits additions. */
2824 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2825 if (mult_cost > op_cost)
2826 mult_cost = op_cost;
2827
2828 *variant = basic_variant;
2829 limit.cost = mult_cost;
2830 limit.latency = mult_cost;
2831 synth_mult (alg, val, &limit, mode);
2832
2833 /* This works only if the inverted value actually fits in an
2834 `unsigned int' */
2835 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2836 {
2837 op_cost = neg_cost[speed][mode];
2838 if (MULT_COST_LESS (&alg->cost, mult_cost))
2839 {
2840 limit.cost = alg->cost.cost - op_cost;
2841 limit.latency = alg->cost.latency - op_cost;
2842 }
2843 else
2844 {
2845 limit.cost = mult_cost - op_cost;
2846 limit.latency = mult_cost - op_cost;
2847 }
2848
2849 synth_mult (&alg2, -val, &limit, mode);
2850 alg2.cost.cost += op_cost;
2851 alg2.cost.latency += op_cost;
2852 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2853 *alg = alg2, *variant = negate_variant;
2854 }
2855
2856 /* This proves very useful for division-by-constant. */
2857 op_cost = add_cost[speed][mode];
2858 if (MULT_COST_LESS (&alg->cost, mult_cost))
2859 {
2860 limit.cost = alg->cost.cost - op_cost;
2861 limit.latency = alg->cost.latency - op_cost;
2862 }
2863 else
2864 {
2865 limit.cost = mult_cost - op_cost;
2866 limit.latency = mult_cost - op_cost;
2867 }
2868
2869 synth_mult (&alg2, val - 1, &limit, mode);
2870 alg2.cost.cost += op_cost;
2871 alg2.cost.latency += op_cost;
2872 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2873 *alg = alg2, *variant = add_variant;
2874
2875 return MULT_COST_LESS (&alg->cost, mult_cost);
2876 }
2877
2878 /* A subroutine of expand_mult, used for constant multiplications.
2879 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2880 convenient. Use the shift/add sequence described by ALG and apply
2881 the final fixup specified by VARIANT. */
2882
2883 static rtx
2884 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2885 rtx target, const struct algorithm *alg,
2886 enum mult_variant variant)
2887 {
2888 HOST_WIDE_INT val_so_far;
2889 rtx insn, accum, tem;
2890 int opno;
2891 enum machine_mode nmode;
2892
2893 /* Avoid referencing memory over and over and invalid sharing
2894 on SUBREGs. */
2895 op0 = force_reg (mode, op0);
2896
2897 /* ACCUM starts out either as OP0 or as a zero, depending on
2898 the first operation. */
2899
2900 if (alg->op[0] == alg_zero)
2901 {
2902 accum = copy_to_mode_reg (mode, const0_rtx);
2903 val_so_far = 0;
2904 }
2905 else if (alg->op[0] == alg_m)
2906 {
2907 accum = copy_to_mode_reg (mode, op0);
2908 val_so_far = 1;
2909 }
2910 else
2911 gcc_unreachable ();
2912
2913 for (opno = 1; opno < alg->ops; opno++)
2914 {
2915 int log = alg->log[opno];
2916 rtx shift_subtarget = optimize ? 0 : accum;
2917 rtx add_target
2918 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2919 && !optimize)
2920 ? target : 0;
2921 rtx accum_target = optimize ? 0 : accum;
2922
2923 switch (alg->op[opno])
2924 {
2925 case alg_shift:
2926 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2927 build_int_cst (NULL_TREE, log),
2928 NULL_RTX, 0);
2929 /* REG_EQUAL note will be attached to the following insn. */
2930 emit_move_insn (accum, tem);
2931 val_so_far <<= log;
2932 break;
2933
2934 case alg_add_t_m2:
2935 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2936 build_int_cst (NULL_TREE, log),
2937 NULL_RTX, 0);
2938 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2939 add_target ? add_target : accum_target);
2940 val_so_far += (HOST_WIDE_INT) 1 << log;
2941 break;
2942
2943 case alg_sub_t_m2:
2944 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2945 build_int_cst (NULL_TREE, log),
2946 NULL_RTX, 0);
2947 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2948 add_target ? add_target : accum_target);
2949 val_so_far -= (HOST_WIDE_INT) 1 << log;
2950 break;
2951
2952 case alg_add_t2_m:
2953 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2954 build_int_cst (NULL_TREE, log),
2955 shift_subtarget,
2956 0);
2957 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2958 add_target ? add_target : accum_target);
2959 val_so_far = (val_so_far << log) + 1;
2960 break;
2961
2962 case alg_sub_t2_m:
2963 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2964 build_int_cst (NULL_TREE, log),
2965 shift_subtarget, 0);
2966 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2967 add_target ? add_target : accum_target);
2968 val_so_far = (val_so_far << log) - 1;
2969 break;
2970
2971 case alg_add_factor:
2972 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2973 build_int_cst (NULL_TREE, log),
2974 NULL_RTX, 0);
2975 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2976 add_target ? add_target : accum_target);
2977 val_so_far += val_so_far << log;
2978 break;
2979
2980 case alg_sub_factor:
2981 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2982 build_int_cst (NULL_TREE, log),
2983 NULL_RTX, 0);
2984 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2985 (add_target
2986 ? add_target : (optimize ? 0 : tem)));
2987 val_so_far = (val_so_far << log) - val_so_far;
2988 break;
2989
2990 default:
2991 gcc_unreachable ();
2992 }
2993
2994 /* Write a REG_EQUAL note on the last insn so that we can cse
2995 multiplication sequences. Note that if ACCUM is a SUBREG,
2996 we've set the inner register and must properly indicate
2997 that. */
2998
2999 tem = op0, nmode = mode;
3000 if (GET_CODE (accum) == SUBREG)
3001 {
3002 nmode = GET_MODE (SUBREG_REG (accum));
3003 tem = gen_lowpart (nmode, op0);
3004 }
3005
3006 insn = get_last_insn ();
3007 set_unique_reg_note (insn, REG_EQUAL,
3008 gen_rtx_MULT (nmode, tem,
3009 GEN_INT (val_so_far)));
3010 }
3011
3012 if (variant == negate_variant)
3013 {
3014 val_so_far = -val_so_far;
3015 accum = expand_unop (mode, neg_optab, accum, target, 0);
3016 }
3017 else if (variant == add_variant)
3018 {
3019 val_so_far = val_so_far + 1;
3020 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3021 }
3022
3023 /* Compare only the bits of val and val_so_far that are significant
3024 in the result mode, to avoid sign-/zero-extension confusion. */
3025 val &= GET_MODE_MASK (mode);
3026 val_so_far &= GET_MODE_MASK (mode);
3027 gcc_assert (val == val_so_far);
3028
3029 return accum;
3030 }
3031
3032 /* Perform a multiplication and return an rtx for the result.
3033 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3034 TARGET is a suggestion for where to store the result (an rtx).
3035
3036 We check specially for a constant integer as OP1.
3037 If you want this check for OP0 as well, then before calling
3038 you should swap the two operands if OP0 would be constant. */
3039
3040 rtx
3041 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3042 int unsignedp)
3043 {
3044 enum mult_variant variant;
3045 struct algorithm algorithm;
3046 int max_cost;
3047 bool speed = optimize_insn_for_speed_p ();
3048
3049 /* Handling const0_rtx here allows us to use zero as a rogue value for
3050 coeff below. */
3051 if (op1 == const0_rtx)
3052 return const0_rtx;
3053 if (op1 == const1_rtx)
3054 return op0;
3055 if (op1 == constm1_rtx)
3056 return expand_unop (mode,
3057 GET_MODE_CLASS (mode) == MODE_INT
3058 && !unsignedp && flag_trapv
3059 ? negv_optab : neg_optab,
3060 op0, target, 0);
3061
3062 /* These are the operations that are potentially turned into a sequence
3063 of shifts and additions. */
3064 if (SCALAR_INT_MODE_P (mode)
3065 && (unsignedp || !flag_trapv))
3066 {
3067 HOST_WIDE_INT coeff = 0;
3068 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3069
3070 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3071 less than or equal in size to `unsigned int' this doesn't matter.
3072 If the mode is larger than `unsigned int', then synth_mult works
3073 only if the constant value exactly fits in an `unsigned int' without
3074 any truncation. This means that multiplying by negative values does
3075 not work; results are off by 2^32 on a 32 bit machine. */
3076
3077 if (CONST_INT_P (op1))
3078 {
3079 /* Attempt to handle multiplication of DImode values by negative
3080 coefficients, by performing the multiplication by a positive
3081 multiplier and then inverting the result. */
3082 if (INTVAL (op1) < 0
3083 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3084 {
3085 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3086 result is interpreted as an unsigned coefficient.
3087 Exclude cost of op0 from max_cost to match the cost
3088 calculation of the synth_mult. */
3089 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3090 - neg_cost[speed][mode];
3091 if (max_cost > 0
3092 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3093 &variant, max_cost))
3094 {
3095 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3096 NULL_RTX, &algorithm,
3097 variant);
3098 return expand_unop (mode, neg_optab, temp, target, 0);
3099 }
3100 }
3101 else coeff = INTVAL (op1);
3102 }
3103 else if (GET_CODE (op1) == CONST_DOUBLE)
3104 {
3105 /* If we are multiplying in DImode, it may still be a win
3106 to try to work with shifts and adds. */
3107 if (CONST_DOUBLE_HIGH (op1) == 0
3108 && CONST_DOUBLE_LOW (op1) > 0)
3109 coeff = CONST_DOUBLE_LOW (op1);
3110 else if (CONST_DOUBLE_LOW (op1) == 0
3111 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3112 {
3113 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3114 + HOST_BITS_PER_WIDE_INT;
3115 return expand_shift (LSHIFT_EXPR, mode, op0,
3116 build_int_cst (NULL_TREE, shift),
3117 target, unsignedp);
3118 }
3119 }
3120
3121 /* We used to test optimize here, on the grounds that it's better to
3122 produce a smaller program when -O is not used. But this causes
3123 such a terrible slowdown sometimes that it seems better to always
3124 use synth_mult. */
3125 if (coeff != 0)
3126 {
3127 /* Special case powers of two. */
3128 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3129 return expand_shift (LSHIFT_EXPR, mode, op0,
3130 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3131 target, unsignedp);
3132
3133 /* Exclude cost of op0 from max_cost to match the cost
3134 calculation of the synth_mult. */
3135 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3136 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3137 max_cost))
3138 return expand_mult_const (mode, op0, coeff, target,
3139 &algorithm, variant);
3140 }
3141 }
3142
3143 if (GET_CODE (op0) == CONST_DOUBLE)
3144 {
3145 rtx temp = op0;
3146 op0 = op1;
3147 op1 = temp;
3148 }
3149
3150 /* Expand x*2.0 as x+x. */
3151 if (GET_CODE (op1) == CONST_DOUBLE
3152 && SCALAR_FLOAT_MODE_P (mode))
3153 {
3154 REAL_VALUE_TYPE d;
3155 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3156
3157 if (REAL_VALUES_EQUAL (d, dconst2))
3158 {
3159 op0 = force_reg (GET_MODE (op0), op0);
3160 return expand_binop (mode, add_optab, op0, op0,
3161 target, unsignedp, OPTAB_LIB_WIDEN);
3162 }
3163 }
3164
3165 /* This used to use umul_optab if unsigned, but for non-widening multiply
3166 there is no difference between signed and unsigned. */
3167 op0 = expand_binop (mode,
3168 ! unsignedp
3169 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3170 ? smulv_optab : smul_optab,
3171 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3172 gcc_assert (op0);
3173 return op0;
3174 }
3175
3176 /* Perform a widening multiplication and return an rtx for the result.
3177 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3178 TARGET is a suggestion for where to store the result (an rtx).
3179 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3180 or smul_widen_optab.
3181
3182 We check specially for a constant integer as OP1, comparing the
3183 cost of a widening multiply against the cost of a sequence of shifts
3184 and adds. */
3185
3186 rtx
3187 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3188 int unsignedp, optab this_optab)
3189 {
3190 bool speed = optimize_insn_for_speed_p ();
3191
3192 if (CONST_INT_P (op1)
3193 && (INTVAL (op1) >= 0
3194 || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT))
3195 {
3196 HOST_WIDE_INT coeff = INTVAL (op1);
3197 int max_cost;
3198 enum mult_variant variant;
3199 struct algorithm algorithm;
3200
3201 /* Special case powers of two. */
3202 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3203 {
3204 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3205 return expand_shift (LSHIFT_EXPR, mode, op0,
3206 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3207 target, unsignedp);
3208 }
3209
3210 /* Exclude cost of op0 from max_cost to match the cost
3211 calculation of the synth_mult. */
3212 max_cost = mul_widen_cost[speed][mode];
3213 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3214 max_cost))
3215 {
3216 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3217 return expand_mult_const (mode, op0, coeff, target,
3218 &algorithm, variant);
3219 }
3220 }
3221 return expand_binop (mode, this_optab, op0, op1, target,
3222 unsignedp, OPTAB_LIB_WIDEN);
3223 }
3224 \f
3225 /* Return the smallest n such that 2**n >= X. */
3226
3227 int
3228 ceil_log2 (unsigned HOST_WIDE_INT x)
3229 {
3230 return floor_log2 (x - 1) + 1;
3231 }
3232
3233 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3234 replace division by D, and put the least significant N bits of the result
3235 in *MULTIPLIER_PTR and return the most significant bit.
3236
3237 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3238 needed precision is in PRECISION (should be <= N).
3239
3240 PRECISION should be as small as possible so this function can choose
3241 multiplier more freely.
3242
3243 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3244 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3245
3246 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3247 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3248
3249 static
3250 unsigned HOST_WIDE_INT
3251 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3252 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3253 {
3254 HOST_WIDE_INT mhigh_hi, mlow_hi;
3255 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3256 int lgup, post_shift;
3257 int pow, pow2;
3258 unsigned HOST_WIDE_INT nl, dummy1;
3259 HOST_WIDE_INT nh, dummy2;
3260
3261 /* lgup = ceil(log2(divisor)); */
3262 lgup = ceil_log2 (d);
3263
3264 gcc_assert (lgup <= n);
3265
3266 pow = n + lgup;
3267 pow2 = n + lgup - precision;
3268
3269 /* We could handle this with some effort, but this case is much
3270 better handled directly with a scc insn, so rely on caller using
3271 that. */
3272 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3273
3274 /* mlow = 2^(N + lgup)/d */
3275 if (pow >= HOST_BITS_PER_WIDE_INT)
3276 {
3277 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3278 nl = 0;
3279 }
3280 else
3281 {
3282 nh = 0;
3283 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3284 }
3285 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3286 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3287
3288 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3289 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3290 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3291 else
3292 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3293 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3294 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3295
3296 gcc_assert (!mhigh_hi || nh - d < d);
3297 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3298 /* Assert that mlow < mhigh. */
3299 gcc_assert (mlow_hi < mhigh_hi
3300 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3301
3302 /* If precision == N, then mlow, mhigh exceed 2^N
3303 (but they do not exceed 2^(N+1)). */
3304
3305 /* Reduce to lowest terms. */
3306 for (post_shift = lgup; post_shift > 0; post_shift--)
3307 {
3308 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3309 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3310 if (ml_lo >= mh_lo)
3311 break;
3312
3313 mlow_hi = 0;
3314 mlow_lo = ml_lo;
3315 mhigh_hi = 0;
3316 mhigh_lo = mh_lo;
3317 }
3318
3319 *post_shift_ptr = post_shift;
3320 *lgup_ptr = lgup;
3321 if (n < HOST_BITS_PER_WIDE_INT)
3322 {
3323 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3324 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3325 return mhigh_lo >= mask;
3326 }
3327 else
3328 {
3329 *multiplier_ptr = GEN_INT (mhigh_lo);
3330 return mhigh_hi;
3331 }
3332 }
3333
3334 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3335 congruent to 1 (mod 2**N). */
3336
3337 static unsigned HOST_WIDE_INT
3338 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3339 {
3340 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3341
3342 /* The algorithm notes that the choice y = x satisfies
3343 x*y == 1 mod 2^3, since x is assumed odd.
3344 Each iteration doubles the number of bits of significance in y. */
3345
3346 unsigned HOST_WIDE_INT mask;
3347 unsigned HOST_WIDE_INT y = x;
3348 int nbit = 3;
3349
3350 mask = (n == HOST_BITS_PER_WIDE_INT
3351 ? ~(unsigned HOST_WIDE_INT) 0
3352 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3353
3354 while (nbit < n)
3355 {
3356 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3357 nbit *= 2;
3358 }
3359 return y;
3360 }
3361
3362 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3363 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3364 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3365 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3366 become signed.
3367
3368 The result is put in TARGET if that is convenient.
3369
3370 MODE is the mode of operation. */
3371
3372 rtx
3373 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3374 rtx op1, rtx target, int unsignedp)
3375 {
3376 rtx tem;
3377 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3378
3379 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3380 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3381 NULL_RTX, 0);
3382 tem = expand_and (mode, tem, op1, NULL_RTX);
3383 adj_operand
3384 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3385 adj_operand);
3386
3387 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3388 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3389 NULL_RTX, 0);
3390 tem = expand_and (mode, tem, op0, NULL_RTX);
3391 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3392 target);
3393
3394 return target;
3395 }
3396
3397 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3398
3399 static rtx
3400 extract_high_half (enum machine_mode mode, rtx op)
3401 {
3402 enum machine_mode wider_mode;
3403
3404 if (mode == word_mode)
3405 return gen_highpart (mode, op);
3406
3407 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3408
3409 wider_mode = GET_MODE_WIDER_MODE (mode);
3410 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3411 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3412 return convert_modes (mode, wider_mode, op, 0);
3413 }
3414
3415 /* Like expand_mult_highpart, but only consider using a multiplication
3416 optab. OP1 is an rtx for the constant operand. */
3417
3418 static rtx
3419 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3420 rtx target, int unsignedp, int max_cost)
3421 {
3422 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3423 enum machine_mode wider_mode;
3424 optab moptab;
3425 rtx tem;
3426 int size;
3427 bool speed = optimize_insn_for_speed_p ();
3428
3429 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3430
3431 wider_mode = GET_MODE_WIDER_MODE (mode);
3432 size = GET_MODE_BITSIZE (mode);
3433
3434 /* Firstly, try using a multiplication insn that only generates the needed
3435 high part of the product, and in the sign flavor of unsignedp. */
3436 if (mul_highpart_cost[speed][mode] < max_cost)
3437 {
3438 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3439 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3440 unsignedp, OPTAB_DIRECT);
3441 if (tem)
3442 return tem;
3443 }
3444
3445 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3446 Need to adjust the result after the multiplication. */
3447 if (size - 1 < BITS_PER_WORD
3448 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3449 + 4 * add_cost[speed][mode] < max_cost))
3450 {
3451 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3452 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3453 unsignedp, OPTAB_DIRECT);
3454 if (tem)
3455 /* We used the wrong signedness. Adjust the result. */
3456 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3457 tem, unsignedp);
3458 }
3459
3460 /* Try widening multiplication. */
3461 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3462 if (optab_handler (moptab, wider_mode) != CODE_FOR_nothing
3463 && mul_widen_cost[speed][wider_mode] < max_cost)
3464 {
3465 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3466 unsignedp, OPTAB_WIDEN);
3467 if (tem)
3468 return extract_high_half (mode, tem);
3469 }
3470
3471 /* Try widening the mode and perform a non-widening multiplication. */
3472 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3473 && size - 1 < BITS_PER_WORD
3474 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3475 {
3476 rtx insns, wop0, wop1;
3477
3478 /* We need to widen the operands, for example to ensure the
3479 constant multiplier is correctly sign or zero extended.
3480 Use a sequence to clean-up any instructions emitted by
3481 the conversions if things don't work out. */
3482 start_sequence ();
3483 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3484 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3485 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3486 unsignedp, OPTAB_WIDEN);
3487 insns = get_insns ();
3488 end_sequence ();
3489
3490 if (tem)
3491 {
3492 emit_insn (insns);
3493 return extract_high_half (mode, tem);
3494 }
3495 }
3496
3497 /* Try widening multiplication of opposite signedness, and adjust. */
3498 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3499 if (optab_handler (moptab, wider_mode) != CODE_FOR_nothing
3500 && size - 1 < BITS_PER_WORD
3501 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3502 + 4 * add_cost[speed][mode] < max_cost))
3503 {
3504 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3505 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3506 if (tem != 0)
3507 {
3508 tem = extract_high_half (mode, tem);
3509 /* We used the wrong signedness. Adjust the result. */
3510 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3511 target, unsignedp);
3512 }
3513 }
3514
3515 return 0;
3516 }
3517
3518 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3519 putting the high half of the result in TARGET if that is convenient,
3520 and return where the result is. If the operation can not be performed,
3521 0 is returned.
3522
3523 MODE is the mode of operation and result.
3524
3525 UNSIGNEDP nonzero means unsigned multiply.
3526
3527 MAX_COST is the total allowed cost for the expanded RTL. */
3528
3529 static rtx
3530 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3531 rtx target, int unsignedp, int max_cost)
3532 {
3533 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3534 unsigned HOST_WIDE_INT cnst1;
3535 int extra_cost;
3536 bool sign_adjust = false;
3537 enum mult_variant variant;
3538 struct algorithm alg;
3539 rtx tem;
3540 bool speed = optimize_insn_for_speed_p ();
3541
3542 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3543 /* We can't support modes wider than HOST_BITS_PER_INT. */
3544 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3545
3546 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3547
3548 /* We can't optimize modes wider than BITS_PER_WORD.
3549 ??? We might be able to perform double-word arithmetic if
3550 mode == word_mode, however all the cost calculations in
3551 synth_mult etc. assume single-word operations. */
3552 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3553 return expand_mult_highpart_optab (mode, op0, op1, target,
3554 unsignedp, max_cost);
3555
3556 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3557
3558 /* Check whether we try to multiply by a negative constant. */
3559 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3560 {
3561 sign_adjust = true;
3562 extra_cost += add_cost[speed][mode];
3563 }
3564
3565 /* See whether shift/add multiplication is cheap enough. */
3566 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3567 max_cost - extra_cost))
3568 {
3569 /* See whether the specialized multiplication optabs are
3570 cheaper than the shift/add version. */
3571 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3572 alg.cost.cost + extra_cost);
3573 if (tem)
3574 return tem;
3575
3576 tem = convert_to_mode (wider_mode, op0, unsignedp);
3577 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3578 tem = extract_high_half (mode, tem);
3579
3580 /* Adjust result for signedness. */
3581 if (sign_adjust)
3582 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3583
3584 return tem;
3585 }
3586 return expand_mult_highpart_optab (mode, op0, op1, target,
3587 unsignedp, max_cost);
3588 }
3589
3590
3591 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3592
3593 static rtx
3594 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3595 {
3596 unsigned HOST_WIDE_INT masklow, maskhigh;
3597 rtx result, temp, shift, label;
3598 int logd;
3599
3600 logd = floor_log2 (d);
3601 result = gen_reg_rtx (mode);
3602
3603 /* Avoid conditional branches when they're expensive. */
3604 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3605 && optimize_insn_for_speed_p ())
3606 {
3607 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3608 mode, 0, -1);
3609 if (signmask)
3610 {
3611 signmask = force_reg (mode, signmask);
3612 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3613 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3614
3615 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3616 which instruction sequence to use. If logical right shifts
3617 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3618 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3619
3620 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3621 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3622 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3623 {
3624 temp = expand_binop (mode, xor_optab, op0, signmask,
3625 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3626 temp = expand_binop (mode, sub_optab, temp, signmask,
3627 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3628 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3629 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3630 temp = expand_binop (mode, xor_optab, temp, signmask,
3631 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3632 temp = expand_binop (mode, sub_optab, temp, signmask,
3633 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3634 }
3635 else
3636 {
3637 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3638 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3639 signmask = force_reg (mode, signmask);
3640
3641 temp = expand_binop (mode, add_optab, op0, signmask,
3642 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3643 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3644 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3645 temp = expand_binop (mode, sub_optab, temp, signmask,
3646 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3647 }
3648 return temp;
3649 }
3650 }
3651
3652 /* Mask contains the mode's signbit and the significant bits of the
3653 modulus. By including the signbit in the operation, many targets
3654 can avoid an explicit compare operation in the following comparison
3655 against zero. */
3656
3657 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3658 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3659 {
3660 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3661 maskhigh = -1;
3662 }
3663 else
3664 maskhigh = (HOST_WIDE_INT) -1
3665 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3666
3667 temp = expand_binop (mode, and_optab, op0,
3668 immed_double_const (masklow, maskhigh, mode),
3669 result, 1, OPTAB_LIB_WIDEN);
3670 if (temp != result)
3671 emit_move_insn (result, temp);
3672
3673 label = gen_label_rtx ();
3674 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3675
3676 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3677 0, OPTAB_LIB_WIDEN);
3678 masklow = (HOST_WIDE_INT) -1 << logd;
3679 maskhigh = -1;
3680 temp = expand_binop (mode, ior_optab, temp,
3681 immed_double_const (masklow, maskhigh, mode),
3682 result, 1, OPTAB_LIB_WIDEN);
3683 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3684 0, OPTAB_LIB_WIDEN);
3685 if (temp != result)
3686 emit_move_insn (result, temp);
3687 emit_label (label);
3688 return result;
3689 }
3690
3691 /* Expand signed division of OP0 by a power of two D in mode MODE.
3692 This routine is only called for positive values of D. */
3693
3694 static rtx
3695 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3696 {
3697 rtx temp, label;
3698 tree shift;
3699 int logd;
3700
3701 logd = floor_log2 (d);
3702 shift = build_int_cst (NULL_TREE, logd);
3703
3704 if (d == 2
3705 && BRANCH_COST (optimize_insn_for_speed_p (),
3706 false) >= 1)
3707 {
3708 temp = gen_reg_rtx (mode);
3709 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3710 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3711 0, OPTAB_LIB_WIDEN);
3712 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3713 }
3714
3715 #ifdef HAVE_conditional_move
3716 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3717 >= 2)
3718 {
3719 rtx temp2;
3720
3721 /* ??? emit_conditional_move forces a stack adjustment via
3722 compare_from_rtx so, if the sequence is discarded, it will
3723 be lost. Do it now instead. */
3724 do_pending_stack_adjust ();
3725
3726 start_sequence ();
3727 temp2 = copy_to_mode_reg (mode, op0);
3728 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3729 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3730 temp = force_reg (mode, temp);
3731
3732 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3733 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3734 mode, temp, temp2, mode, 0);
3735 if (temp2)
3736 {
3737 rtx seq = get_insns ();
3738 end_sequence ();
3739 emit_insn (seq);
3740 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3741 }
3742 end_sequence ();
3743 }
3744 #endif
3745
3746 if (BRANCH_COST (optimize_insn_for_speed_p (),
3747 false) >= 2)
3748 {
3749 int ushift = GET_MODE_BITSIZE (mode) - logd;
3750
3751 temp = gen_reg_rtx (mode);
3752 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3753 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3754 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3755 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3756 else
3757 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3758 build_int_cst (NULL_TREE, ushift),
3759 NULL_RTX, 1);
3760 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3761 0, OPTAB_LIB_WIDEN);
3762 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3763 }
3764
3765 label = gen_label_rtx ();
3766 temp = copy_to_mode_reg (mode, op0);
3767 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3768 expand_inc (temp, GEN_INT (d - 1));
3769 emit_label (label);
3770 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3771 }
3772 \f
3773 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3774 if that is convenient, and returning where the result is.
3775 You may request either the quotient or the remainder as the result;
3776 specify REM_FLAG nonzero to get the remainder.
3777
3778 CODE is the expression code for which kind of division this is;
3779 it controls how rounding is done. MODE is the machine mode to use.
3780 UNSIGNEDP nonzero means do unsigned division. */
3781
3782 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3783 and then correct it by or'ing in missing high bits
3784 if result of ANDI is nonzero.
3785 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3786 This could optimize to a bfexts instruction.
3787 But C doesn't use these operations, so their optimizations are
3788 left for later. */
3789 /* ??? For modulo, we don't actually need the highpart of the first product,
3790 the low part will do nicely. And for small divisors, the second multiply
3791 can also be a low-part only multiply or even be completely left out.
3792 E.g. to calculate the remainder of a division by 3 with a 32 bit
3793 multiply, multiply with 0x55555556 and extract the upper two bits;
3794 the result is exact for inputs up to 0x1fffffff.
3795 The input range can be reduced by using cross-sum rules.
3796 For odd divisors >= 3, the following table gives right shift counts
3797 so that if a number is shifted by an integer multiple of the given
3798 amount, the remainder stays the same:
3799 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3800 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3801 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3802 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3803 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3804
3805 Cross-sum rules for even numbers can be derived by leaving as many bits
3806 to the right alone as the divisor has zeros to the right.
3807 E.g. if x is an unsigned 32 bit number:
3808 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3809 */
3810
3811 rtx
3812 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3813 rtx op0, rtx op1, rtx target, int unsignedp)
3814 {
3815 enum machine_mode compute_mode;
3816 rtx tquotient;
3817 rtx quotient = 0, remainder = 0;
3818 rtx last;
3819 int size;
3820 rtx insn, set;
3821 optab optab1, optab2;
3822 int op1_is_constant, op1_is_pow2 = 0;
3823 int max_cost, extra_cost;
3824 static HOST_WIDE_INT last_div_const = 0;
3825 static HOST_WIDE_INT ext_op1;
3826 bool speed = optimize_insn_for_speed_p ();
3827
3828 op1_is_constant = CONST_INT_P (op1);
3829 if (op1_is_constant)
3830 {
3831 ext_op1 = INTVAL (op1);
3832 if (unsignedp)
3833 ext_op1 &= GET_MODE_MASK (mode);
3834 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3835 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3836 }
3837
3838 /*
3839 This is the structure of expand_divmod:
3840
3841 First comes code to fix up the operands so we can perform the operations
3842 correctly and efficiently.
3843
3844 Second comes a switch statement with code specific for each rounding mode.
3845 For some special operands this code emits all RTL for the desired
3846 operation, for other cases, it generates only a quotient and stores it in
3847 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3848 to indicate that it has not done anything.
3849
3850 Last comes code that finishes the operation. If QUOTIENT is set and
3851 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3852 QUOTIENT is not set, it is computed using trunc rounding.
3853
3854 We try to generate special code for division and remainder when OP1 is a
3855 constant. If |OP1| = 2**n we can use shifts and some other fast
3856 operations. For other values of OP1, we compute a carefully selected
3857 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3858 by m.
3859
3860 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3861 half of the product. Different strategies for generating the product are
3862 implemented in expand_mult_highpart.
3863
3864 If what we actually want is the remainder, we generate that by another
3865 by-constant multiplication and a subtraction. */
3866
3867 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3868 code below will malfunction if we are, so check here and handle
3869 the special case if so. */
3870 if (op1 == const1_rtx)
3871 return rem_flag ? const0_rtx : op0;
3872
3873 /* When dividing by -1, we could get an overflow.
3874 negv_optab can handle overflows. */
3875 if (! unsignedp && op1 == constm1_rtx)
3876 {
3877 if (rem_flag)
3878 return const0_rtx;
3879 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3880 ? negv_optab : neg_optab, op0, target, 0);
3881 }
3882
3883 if (target
3884 /* Don't use the function value register as a target
3885 since we have to read it as well as write it,
3886 and function-inlining gets confused by this. */
3887 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3888 /* Don't clobber an operand while doing a multi-step calculation. */
3889 || ((rem_flag || op1_is_constant)
3890 && (reg_mentioned_p (target, op0)
3891 || (MEM_P (op0) && MEM_P (target))))
3892 || reg_mentioned_p (target, op1)
3893 || (MEM_P (op1) && MEM_P (target))))
3894 target = 0;
3895
3896 /* Get the mode in which to perform this computation. Normally it will
3897 be MODE, but sometimes we can't do the desired operation in MODE.
3898 If so, pick a wider mode in which we can do the operation. Convert
3899 to that mode at the start to avoid repeated conversions.
3900
3901 First see what operations we need. These depend on the expression
3902 we are evaluating. (We assume that divxx3 insns exist under the
3903 same conditions that modxx3 insns and that these insns don't normally
3904 fail. If these assumptions are not correct, we may generate less
3905 efficient code in some cases.)
3906
3907 Then see if we find a mode in which we can open-code that operation
3908 (either a division, modulus, or shift). Finally, check for the smallest
3909 mode for which we can do the operation with a library call. */
3910
3911 /* We might want to refine this now that we have division-by-constant
3912 optimization. Since expand_mult_highpart tries so many variants, it is
3913 not straightforward to generalize this. Maybe we should make an array
3914 of possible modes in init_expmed? Save this for GCC 2.7. */
3915
3916 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3917 ? (unsignedp ? lshr_optab : ashr_optab)
3918 : (unsignedp ? udiv_optab : sdiv_optab));
3919 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3920 ? optab1
3921 : (unsignedp ? udivmod_optab : sdivmod_optab));
3922
3923 for (compute_mode = mode; compute_mode != VOIDmode;
3924 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3925 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3926 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3927 break;
3928
3929 if (compute_mode == VOIDmode)
3930 for (compute_mode = mode; compute_mode != VOIDmode;
3931 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3932 if (optab_libfunc (optab1, compute_mode)
3933 || optab_libfunc (optab2, compute_mode))
3934 break;
3935
3936 /* If we still couldn't find a mode, use MODE, but expand_binop will
3937 probably die. */
3938 if (compute_mode == VOIDmode)
3939 compute_mode = mode;
3940
3941 if (target && GET_MODE (target) == compute_mode)
3942 tquotient = target;
3943 else
3944 tquotient = gen_reg_rtx (compute_mode);
3945
3946 size = GET_MODE_BITSIZE (compute_mode);
3947 #if 0
3948 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3949 (mode), and thereby get better code when OP1 is a constant. Do that
3950 later. It will require going over all usages of SIZE below. */
3951 size = GET_MODE_BITSIZE (mode);
3952 #endif
3953
3954 /* Only deduct something for a REM if the last divide done was
3955 for a different constant. Then set the constant of the last
3956 divide. */
3957 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3958 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3959 && INTVAL (op1) == last_div_const))
3960 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3961
3962 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3963
3964 /* Now convert to the best mode to use. */
3965 if (compute_mode != mode)
3966 {
3967 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3968 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3969
3970 /* convert_modes may have placed op1 into a register, so we
3971 must recompute the following. */
3972 op1_is_constant = CONST_INT_P (op1);
3973 op1_is_pow2 = (op1_is_constant
3974 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3975 || (! unsignedp
3976 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3977 }
3978
3979 /* If one of the operands is a volatile MEM, copy it into a register. */
3980
3981 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3982 op0 = force_reg (compute_mode, op0);
3983 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3984 op1 = force_reg (compute_mode, op1);
3985
3986 /* If we need the remainder or if OP1 is constant, we need to
3987 put OP0 in a register in case it has any queued subexpressions. */
3988 if (rem_flag || op1_is_constant)
3989 op0 = force_reg (compute_mode, op0);
3990
3991 last = get_last_insn ();
3992
3993 /* Promote floor rounding to trunc rounding for unsigned operations. */
3994 if (unsignedp)
3995 {
3996 if (code == FLOOR_DIV_EXPR)
3997 code = TRUNC_DIV_EXPR;
3998 if (code == FLOOR_MOD_EXPR)
3999 code = TRUNC_MOD_EXPR;
4000 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4001 code = TRUNC_DIV_EXPR;
4002 }
4003
4004 if (op1 != const0_rtx)
4005 switch (code)
4006 {
4007 case TRUNC_MOD_EXPR:
4008 case TRUNC_DIV_EXPR:
4009 if (op1_is_constant)
4010 {
4011 if (unsignedp)
4012 {
4013 unsigned HOST_WIDE_INT mh;
4014 int pre_shift, post_shift;
4015 int dummy;
4016 rtx ml;
4017 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4018 & GET_MODE_MASK (compute_mode));
4019
4020 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4021 {
4022 pre_shift = floor_log2 (d);
4023 if (rem_flag)
4024 {
4025 remainder
4026 = expand_binop (compute_mode, and_optab, op0,
4027 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4028 remainder, 1,
4029 OPTAB_LIB_WIDEN);
4030 if (remainder)
4031 return gen_lowpart (mode, remainder);
4032 }
4033 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4034 build_int_cst (NULL_TREE,
4035 pre_shift),
4036 tquotient, 1);
4037 }
4038 else if (size <= HOST_BITS_PER_WIDE_INT)
4039 {
4040 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4041 {
4042 /* Most significant bit of divisor is set; emit an scc
4043 insn. */
4044 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4045 compute_mode, 1, 1);
4046 }
4047 else
4048 {
4049 /* Find a suitable multiplier and right shift count
4050 instead of multiplying with D. */
4051
4052 mh = choose_multiplier (d, size, size,
4053 &ml, &post_shift, &dummy);
4054
4055 /* If the suggested multiplier is more than SIZE bits,
4056 we can do better for even divisors, using an
4057 initial right shift. */
4058 if (mh != 0 && (d & 1) == 0)
4059 {
4060 pre_shift = floor_log2 (d & -d);
4061 mh = choose_multiplier (d >> pre_shift, size,
4062 size - pre_shift,
4063 &ml, &post_shift, &dummy);
4064 gcc_assert (!mh);
4065 }
4066 else
4067 pre_shift = 0;
4068
4069 if (mh != 0)
4070 {
4071 rtx t1, t2, t3, t4;
4072
4073 if (post_shift - 1 >= BITS_PER_WORD)
4074 goto fail1;
4075
4076 extra_cost
4077 = (shift_cost[speed][compute_mode][post_shift - 1]
4078 + shift_cost[speed][compute_mode][1]
4079 + 2 * add_cost[speed][compute_mode]);
4080 t1 = expand_mult_highpart (compute_mode, op0, ml,
4081 NULL_RTX, 1,
4082 max_cost - extra_cost);
4083 if (t1 == 0)
4084 goto fail1;
4085 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4086 op0, t1),
4087 NULL_RTX);
4088 t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
4089 integer_one_node, NULL_RTX, 1);
4090 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4091 t1, t3),
4092 NULL_RTX);
4093 quotient = expand_shift
4094 (RSHIFT_EXPR, compute_mode, t4,
4095 build_int_cst (NULL_TREE, post_shift - 1),
4096 tquotient, 1);
4097 }
4098 else
4099 {
4100 rtx t1, t2;
4101
4102 if (pre_shift >= BITS_PER_WORD
4103 || post_shift >= BITS_PER_WORD)
4104 goto fail1;
4105
4106 t1 = expand_shift
4107 (RSHIFT_EXPR, compute_mode, op0,
4108 build_int_cst (NULL_TREE, pre_shift),
4109 NULL_RTX, 1);
4110 extra_cost
4111 = (shift_cost[speed][compute_mode][pre_shift]
4112 + shift_cost[speed][compute_mode][post_shift]);
4113 t2 = expand_mult_highpart (compute_mode, t1, ml,
4114 NULL_RTX, 1,
4115 max_cost - extra_cost);
4116 if (t2 == 0)
4117 goto fail1;
4118 quotient = expand_shift
4119 (RSHIFT_EXPR, compute_mode, t2,
4120 build_int_cst (NULL_TREE, post_shift),
4121 tquotient, 1);
4122 }
4123 }
4124 }
4125 else /* Too wide mode to use tricky code */
4126 break;
4127
4128 insn = get_last_insn ();
4129 if (insn != last
4130 && (set = single_set (insn)) != 0
4131 && SET_DEST (set) == quotient)
4132 set_unique_reg_note (insn,
4133 REG_EQUAL,
4134 gen_rtx_UDIV (compute_mode, op0, op1));
4135 }
4136 else /* TRUNC_DIV, signed */
4137 {
4138 unsigned HOST_WIDE_INT ml;
4139 int lgup, post_shift;
4140 rtx mlr;
4141 HOST_WIDE_INT d = INTVAL (op1);
4142 unsigned HOST_WIDE_INT abs_d;
4143
4144 /* Since d might be INT_MIN, we have to cast to
4145 unsigned HOST_WIDE_INT before negating to avoid
4146 undefined signed overflow. */
4147 abs_d = (d >= 0
4148 ? (unsigned HOST_WIDE_INT) d
4149 : - (unsigned HOST_WIDE_INT) d);
4150
4151 /* n rem d = n rem -d */
4152 if (rem_flag && d < 0)
4153 {
4154 d = abs_d;
4155 op1 = gen_int_mode (abs_d, compute_mode);
4156 }
4157
4158 if (d == 1)
4159 quotient = op0;
4160 else if (d == -1)
4161 quotient = expand_unop (compute_mode, neg_optab, op0,
4162 tquotient, 0);
4163 else if (HOST_BITS_PER_WIDE_INT >= size
4164 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4165 {
4166 /* This case is not handled correctly below. */
4167 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4168 compute_mode, 1, 1);
4169 if (quotient == 0)
4170 goto fail1;
4171 }
4172 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4173 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4174 : sdiv_pow2_cheap[speed][compute_mode])
4175 /* We assume that cheap metric is true if the
4176 optab has an expander for this mode. */
4177 && ((optab_handler ((rem_flag ? smod_optab
4178 : sdiv_optab),
4179 compute_mode)
4180 != CODE_FOR_nothing)
4181 || (optab_handler (sdivmod_optab,
4182 compute_mode)
4183 != CODE_FOR_nothing)))
4184 ;
4185 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4186 {
4187 if (rem_flag)
4188 {
4189 remainder = expand_smod_pow2 (compute_mode, op0, d);
4190 if (remainder)
4191 return gen_lowpart (mode, remainder);
4192 }
4193
4194 if (sdiv_pow2_cheap[speed][compute_mode]
4195 && ((optab_handler (sdiv_optab, compute_mode)
4196 != CODE_FOR_nothing)
4197 || (optab_handler (sdivmod_optab, compute_mode)
4198 != CODE_FOR_nothing)))
4199 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4200 compute_mode, op0,
4201 gen_int_mode (abs_d,
4202 compute_mode),
4203 NULL_RTX, 0);
4204 else
4205 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4206
4207 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4208 negate the quotient. */
4209 if (d < 0)
4210 {
4211 insn = get_last_insn ();
4212 if (insn != last
4213 && (set = single_set (insn)) != 0
4214 && SET_DEST (set) == quotient
4215 && abs_d < ((unsigned HOST_WIDE_INT) 1
4216 << (HOST_BITS_PER_WIDE_INT - 1)))
4217 set_unique_reg_note (insn,
4218 REG_EQUAL,
4219 gen_rtx_DIV (compute_mode,
4220 op0,
4221 GEN_INT
4222 (trunc_int_for_mode
4223 (abs_d,
4224 compute_mode))));
4225
4226 quotient = expand_unop (compute_mode, neg_optab,
4227 quotient, quotient, 0);
4228 }
4229 }
4230 else if (size <= HOST_BITS_PER_WIDE_INT)
4231 {
4232 choose_multiplier (abs_d, size, size - 1,
4233 &mlr, &post_shift, &lgup);
4234 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4235 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4236 {
4237 rtx t1, t2, t3;
4238
4239 if (post_shift >= BITS_PER_WORD
4240 || size - 1 >= BITS_PER_WORD)
4241 goto fail1;
4242
4243 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4244 + shift_cost[speed][compute_mode][size - 1]
4245 + add_cost[speed][compute_mode]);
4246 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4247 NULL_RTX, 0,
4248 max_cost - extra_cost);
4249 if (t1 == 0)
4250 goto fail1;
4251 t2 = expand_shift
4252 (RSHIFT_EXPR, compute_mode, t1,
4253 build_int_cst (NULL_TREE, post_shift),
4254 NULL_RTX, 0);
4255 t3 = expand_shift
4256 (RSHIFT_EXPR, compute_mode, op0,
4257 build_int_cst (NULL_TREE, size - 1),
4258 NULL_RTX, 0);
4259 if (d < 0)
4260 quotient
4261 = force_operand (gen_rtx_MINUS (compute_mode,
4262 t3, t2),
4263 tquotient);
4264 else
4265 quotient
4266 = force_operand (gen_rtx_MINUS (compute_mode,
4267 t2, t3),
4268 tquotient);
4269 }
4270 else
4271 {
4272 rtx t1, t2, t3, t4;
4273
4274 if (post_shift >= BITS_PER_WORD
4275 || size - 1 >= BITS_PER_WORD)
4276 goto fail1;
4277
4278 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4279 mlr = gen_int_mode (ml, compute_mode);
4280 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4281 + shift_cost[speed][compute_mode][size - 1]
4282 + 2 * add_cost[speed][compute_mode]);
4283 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4284 NULL_RTX, 0,
4285 max_cost - extra_cost);
4286 if (t1 == 0)
4287 goto fail1;
4288 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4289 t1, op0),
4290 NULL_RTX);
4291 t3 = expand_shift
4292 (RSHIFT_EXPR, compute_mode, t2,
4293 build_int_cst (NULL_TREE, post_shift),
4294 NULL_RTX, 0);
4295 t4 = expand_shift
4296 (RSHIFT_EXPR, compute_mode, op0,
4297 build_int_cst (NULL_TREE, size - 1),
4298 NULL_RTX, 0);
4299 if (d < 0)
4300 quotient
4301 = force_operand (gen_rtx_MINUS (compute_mode,
4302 t4, t3),
4303 tquotient);
4304 else
4305 quotient
4306 = force_operand (gen_rtx_MINUS (compute_mode,
4307 t3, t4),
4308 tquotient);
4309 }
4310 }
4311 else /* Too wide mode to use tricky code */
4312 break;
4313
4314 insn = get_last_insn ();
4315 if (insn != last
4316 && (set = single_set (insn)) != 0
4317 && SET_DEST (set) == quotient)
4318 set_unique_reg_note (insn,
4319 REG_EQUAL,
4320 gen_rtx_DIV (compute_mode, op0, op1));
4321 }
4322 break;
4323 }
4324 fail1:
4325 delete_insns_since (last);
4326 break;
4327
4328 case FLOOR_DIV_EXPR:
4329 case FLOOR_MOD_EXPR:
4330 /* We will come here only for signed operations. */
4331 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4332 {
4333 unsigned HOST_WIDE_INT mh;
4334 int pre_shift, lgup, post_shift;
4335 HOST_WIDE_INT d = INTVAL (op1);
4336 rtx ml;
4337
4338 if (d > 0)
4339 {
4340 /* We could just as easily deal with negative constants here,
4341 but it does not seem worth the trouble for GCC 2.6. */
4342 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4343 {
4344 pre_shift = floor_log2 (d);
4345 if (rem_flag)
4346 {
4347 remainder = expand_binop (compute_mode, and_optab, op0,
4348 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4349 remainder, 0, OPTAB_LIB_WIDEN);
4350 if (remainder)
4351 return gen_lowpart (mode, remainder);
4352 }
4353 quotient = expand_shift
4354 (RSHIFT_EXPR, compute_mode, op0,
4355 build_int_cst (NULL_TREE, pre_shift),
4356 tquotient, 0);
4357 }
4358 else
4359 {
4360 rtx t1, t2, t3, t4;
4361
4362 mh = choose_multiplier (d, size, size - 1,
4363 &ml, &post_shift, &lgup);
4364 gcc_assert (!mh);
4365
4366 if (post_shift < BITS_PER_WORD
4367 && size - 1 < BITS_PER_WORD)
4368 {
4369 t1 = expand_shift
4370 (RSHIFT_EXPR, compute_mode, op0,
4371 build_int_cst (NULL_TREE, size - 1),
4372 NULL_RTX, 0);
4373 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4374 NULL_RTX, 0, OPTAB_WIDEN);
4375 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4376 + shift_cost[speed][compute_mode][size - 1]
4377 + 2 * add_cost[speed][compute_mode]);
4378 t3 = expand_mult_highpart (compute_mode, t2, ml,
4379 NULL_RTX, 1,
4380 max_cost - extra_cost);
4381 if (t3 != 0)
4382 {
4383 t4 = expand_shift
4384 (RSHIFT_EXPR, compute_mode, t3,
4385 build_int_cst (NULL_TREE, post_shift),
4386 NULL_RTX, 1);
4387 quotient = expand_binop (compute_mode, xor_optab,
4388 t4, t1, tquotient, 0,
4389 OPTAB_WIDEN);
4390 }
4391 }
4392 }
4393 }
4394 else
4395 {
4396 rtx nsign, t1, t2, t3, t4;
4397 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4398 op0, constm1_rtx), NULL_RTX);
4399 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4400 0, OPTAB_WIDEN);
4401 nsign = expand_shift
4402 (RSHIFT_EXPR, compute_mode, t2,
4403 build_int_cst (NULL_TREE, size - 1),
4404 NULL_RTX, 0);
4405 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4406 NULL_RTX);
4407 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4408 NULL_RTX, 0);
4409 if (t4)
4410 {
4411 rtx t5;
4412 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4413 NULL_RTX, 0);
4414 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4415 t4, t5),
4416 tquotient);
4417 }
4418 }
4419 }
4420
4421 if (quotient != 0)
4422 break;
4423 delete_insns_since (last);
4424
4425 /* Try using an instruction that produces both the quotient and
4426 remainder, using truncation. We can easily compensate the quotient
4427 or remainder to get floor rounding, once we have the remainder.
4428 Notice that we compute also the final remainder value here,
4429 and return the result right away. */
4430 if (target == 0 || GET_MODE (target) != compute_mode)
4431 target = gen_reg_rtx (compute_mode);
4432
4433 if (rem_flag)
4434 {
4435 remainder
4436 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4437 quotient = gen_reg_rtx (compute_mode);
4438 }
4439 else
4440 {
4441 quotient
4442 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4443 remainder = gen_reg_rtx (compute_mode);
4444 }
4445
4446 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4447 quotient, remainder, 0))
4448 {
4449 /* This could be computed with a branch-less sequence.
4450 Save that for later. */
4451 rtx tem;
4452 rtx label = gen_label_rtx ();
4453 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4454 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4455 NULL_RTX, 0, OPTAB_WIDEN);
4456 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4457 expand_dec (quotient, const1_rtx);
4458 expand_inc (remainder, op1);
4459 emit_label (label);
4460 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4461 }
4462
4463 /* No luck with division elimination or divmod. Have to do it
4464 by conditionally adjusting op0 *and* the result. */
4465 {
4466 rtx label1, label2, label3, label4, label5;
4467 rtx adjusted_op0;
4468 rtx tem;
4469
4470 quotient = gen_reg_rtx (compute_mode);
4471 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4472 label1 = gen_label_rtx ();
4473 label2 = gen_label_rtx ();
4474 label3 = gen_label_rtx ();
4475 label4 = gen_label_rtx ();
4476 label5 = gen_label_rtx ();
4477 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4478 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4479 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4480 quotient, 0, OPTAB_LIB_WIDEN);
4481 if (tem != quotient)
4482 emit_move_insn (quotient, tem);
4483 emit_jump_insn (gen_jump (label5));
4484 emit_barrier ();
4485 emit_label (label1);
4486 expand_inc (adjusted_op0, const1_rtx);
4487 emit_jump_insn (gen_jump (label4));
4488 emit_barrier ();
4489 emit_label (label2);
4490 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4491 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4492 quotient, 0, OPTAB_LIB_WIDEN);
4493 if (tem != quotient)
4494 emit_move_insn (quotient, tem);
4495 emit_jump_insn (gen_jump (label5));
4496 emit_barrier ();
4497 emit_label (label3);
4498 expand_dec (adjusted_op0, const1_rtx);
4499 emit_label (label4);
4500 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4501 quotient, 0, OPTAB_LIB_WIDEN);
4502 if (tem != quotient)
4503 emit_move_insn (quotient, tem);
4504 expand_dec (quotient, const1_rtx);
4505 emit_label (label5);
4506 }
4507 break;
4508
4509 case CEIL_DIV_EXPR:
4510 case CEIL_MOD_EXPR:
4511 if (unsignedp)
4512 {
4513 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4514 {
4515 rtx t1, t2, t3;
4516 unsigned HOST_WIDE_INT d = INTVAL (op1);
4517 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4518 build_int_cst (NULL_TREE, floor_log2 (d)),
4519 tquotient, 1);
4520 t2 = expand_binop (compute_mode, and_optab, op0,
4521 GEN_INT (d - 1),
4522 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4523 t3 = gen_reg_rtx (compute_mode);
4524 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4525 compute_mode, 1, 1);
4526 if (t3 == 0)
4527 {
4528 rtx lab;
4529 lab = gen_label_rtx ();
4530 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4531 expand_inc (t1, const1_rtx);
4532 emit_label (lab);
4533 quotient = t1;
4534 }
4535 else
4536 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4537 t1, t3),
4538 tquotient);
4539 break;
4540 }
4541
4542 /* Try using an instruction that produces both the quotient and
4543 remainder, using truncation. We can easily compensate the
4544 quotient or remainder to get ceiling rounding, once we have the
4545 remainder. Notice that we compute also the final remainder
4546 value here, and return the result right away. */
4547 if (target == 0 || GET_MODE (target) != compute_mode)
4548 target = gen_reg_rtx (compute_mode);
4549
4550 if (rem_flag)
4551 {
4552 remainder = (REG_P (target)
4553 ? target : gen_reg_rtx (compute_mode));
4554 quotient = gen_reg_rtx (compute_mode);
4555 }
4556 else
4557 {
4558 quotient = (REG_P (target)
4559 ? target : gen_reg_rtx (compute_mode));
4560 remainder = gen_reg_rtx (compute_mode);
4561 }
4562
4563 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4564 remainder, 1))
4565 {
4566 /* This could be computed with a branch-less sequence.
4567 Save that for later. */
4568 rtx label = gen_label_rtx ();
4569 do_cmp_and_jump (remainder, const0_rtx, EQ,
4570 compute_mode, label);
4571 expand_inc (quotient, const1_rtx);
4572 expand_dec (remainder, op1);
4573 emit_label (label);
4574 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4575 }
4576
4577 /* No luck with division elimination or divmod. Have to do it
4578 by conditionally adjusting op0 *and* the result. */
4579 {
4580 rtx label1, label2;
4581 rtx adjusted_op0, tem;
4582
4583 quotient = gen_reg_rtx (compute_mode);
4584 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4585 label1 = gen_label_rtx ();
4586 label2 = gen_label_rtx ();
4587 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4588 compute_mode, label1);
4589 emit_move_insn (quotient, const0_rtx);
4590 emit_jump_insn (gen_jump (label2));
4591 emit_barrier ();
4592 emit_label (label1);
4593 expand_dec (adjusted_op0, const1_rtx);
4594 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4595 quotient, 1, OPTAB_LIB_WIDEN);
4596 if (tem != quotient)
4597 emit_move_insn (quotient, tem);
4598 expand_inc (quotient, const1_rtx);
4599 emit_label (label2);
4600 }
4601 }
4602 else /* signed */
4603 {
4604 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4605 && INTVAL (op1) >= 0)
4606 {
4607 /* This is extremely similar to the code for the unsigned case
4608 above. For 2.7 we should merge these variants, but for
4609 2.6.1 I don't want to touch the code for unsigned since that
4610 get used in C. The signed case will only be used by other
4611 languages (Ada). */
4612
4613 rtx t1, t2, t3;
4614 unsigned HOST_WIDE_INT d = INTVAL (op1);
4615 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4616 build_int_cst (NULL_TREE, floor_log2 (d)),
4617 tquotient, 0);
4618 t2 = expand_binop (compute_mode, and_optab, op0,
4619 GEN_INT (d - 1),
4620 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4621 t3 = gen_reg_rtx (compute_mode);
4622 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4623 compute_mode, 1, 1);
4624 if (t3 == 0)
4625 {
4626 rtx lab;
4627 lab = gen_label_rtx ();
4628 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4629 expand_inc (t1, const1_rtx);
4630 emit_label (lab);
4631 quotient = t1;
4632 }
4633 else
4634 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4635 t1, t3),
4636 tquotient);
4637 break;
4638 }
4639
4640 /* Try using an instruction that produces both the quotient and
4641 remainder, using truncation. We can easily compensate the
4642 quotient or remainder to get ceiling rounding, once we have the
4643 remainder. Notice that we compute also the final remainder
4644 value here, and return the result right away. */
4645 if (target == 0 || GET_MODE (target) != compute_mode)
4646 target = gen_reg_rtx (compute_mode);
4647 if (rem_flag)
4648 {
4649 remainder= (REG_P (target)
4650 ? target : gen_reg_rtx (compute_mode));
4651 quotient = gen_reg_rtx (compute_mode);
4652 }
4653 else
4654 {
4655 quotient = (REG_P (target)
4656 ? target : gen_reg_rtx (compute_mode));
4657 remainder = gen_reg_rtx (compute_mode);
4658 }
4659
4660 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4661 remainder, 0))
4662 {
4663 /* This could be computed with a branch-less sequence.
4664 Save that for later. */
4665 rtx tem;
4666 rtx label = gen_label_rtx ();
4667 do_cmp_and_jump (remainder, const0_rtx, EQ,
4668 compute_mode, label);
4669 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4670 NULL_RTX, 0, OPTAB_WIDEN);
4671 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4672 expand_inc (quotient, const1_rtx);
4673 expand_dec (remainder, op1);
4674 emit_label (label);
4675 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4676 }
4677
4678 /* No luck with division elimination or divmod. Have to do it
4679 by conditionally adjusting op0 *and* the result. */
4680 {
4681 rtx label1, label2, label3, label4, label5;
4682 rtx adjusted_op0;
4683 rtx tem;
4684
4685 quotient = gen_reg_rtx (compute_mode);
4686 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4687 label1 = gen_label_rtx ();
4688 label2 = gen_label_rtx ();
4689 label3 = gen_label_rtx ();
4690 label4 = gen_label_rtx ();
4691 label5 = gen_label_rtx ();
4692 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4693 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4694 compute_mode, label1);
4695 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4696 quotient, 0, OPTAB_LIB_WIDEN);
4697 if (tem != quotient)
4698 emit_move_insn (quotient, tem);
4699 emit_jump_insn (gen_jump (label5));
4700 emit_barrier ();
4701 emit_label (label1);
4702 expand_dec (adjusted_op0, const1_rtx);
4703 emit_jump_insn (gen_jump (label4));
4704 emit_barrier ();
4705 emit_label (label2);
4706 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4707 compute_mode, label3);
4708 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4709 quotient, 0, OPTAB_LIB_WIDEN);
4710 if (tem != quotient)
4711 emit_move_insn (quotient, tem);
4712 emit_jump_insn (gen_jump (label5));
4713 emit_barrier ();
4714 emit_label (label3);
4715 expand_inc (adjusted_op0, const1_rtx);
4716 emit_label (label4);
4717 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4718 quotient, 0, OPTAB_LIB_WIDEN);
4719 if (tem != quotient)
4720 emit_move_insn (quotient, tem);
4721 expand_inc (quotient, const1_rtx);
4722 emit_label (label5);
4723 }
4724 }
4725 break;
4726
4727 case EXACT_DIV_EXPR:
4728 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4729 {
4730 HOST_WIDE_INT d = INTVAL (op1);
4731 unsigned HOST_WIDE_INT ml;
4732 int pre_shift;
4733 rtx t1;
4734
4735 pre_shift = floor_log2 (d & -d);
4736 ml = invert_mod2n (d >> pre_shift, size);
4737 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4738 build_int_cst (NULL_TREE, pre_shift),
4739 NULL_RTX, unsignedp);
4740 quotient = expand_mult (compute_mode, t1,
4741 gen_int_mode (ml, compute_mode),
4742 NULL_RTX, 1);
4743
4744 insn = get_last_insn ();
4745 set_unique_reg_note (insn,
4746 REG_EQUAL,
4747 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4748 compute_mode,
4749 op0, op1));
4750 }
4751 break;
4752
4753 case ROUND_DIV_EXPR:
4754 case ROUND_MOD_EXPR:
4755 if (unsignedp)
4756 {
4757 rtx tem;
4758 rtx label;
4759 label = gen_label_rtx ();
4760 quotient = gen_reg_rtx (compute_mode);
4761 remainder = gen_reg_rtx (compute_mode);
4762 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4763 {
4764 rtx tem;
4765 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4766 quotient, 1, OPTAB_LIB_WIDEN);
4767 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4768 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4769 remainder, 1, OPTAB_LIB_WIDEN);
4770 }
4771 tem = plus_constant (op1, -1);
4772 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4773 integer_one_node, NULL_RTX, 1);
4774 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4775 expand_inc (quotient, const1_rtx);
4776 expand_dec (remainder, op1);
4777 emit_label (label);
4778 }
4779 else
4780 {
4781 rtx abs_rem, abs_op1, tem, mask;
4782 rtx label;
4783 label = gen_label_rtx ();
4784 quotient = gen_reg_rtx (compute_mode);
4785 remainder = gen_reg_rtx (compute_mode);
4786 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4787 {
4788 rtx tem;
4789 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4790 quotient, 0, OPTAB_LIB_WIDEN);
4791 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4792 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4793 remainder, 0, OPTAB_LIB_WIDEN);
4794 }
4795 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4796 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4797 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4798 integer_one_node, NULL_RTX, 1);
4799 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4800 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4801 NULL_RTX, 0, OPTAB_WIDEN);
4802 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4803 build_int_cst (NULL_TREE, size - 1),
4804 NULL_RTX, 0);
4805 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4806 NULL_RTX, 0, OPTAB_WIDEN);
4807 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4808 NULL_RTX, 0, OPTAB_WIDEN);
4809 expand_inc (quotient, tem);
4810 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4811 NULL_RTX, 0, OPTAB_WIDEN);
4812 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4813 NULL_RTX, 0, OPTAB_WIDEN);
4814 expand_dec (remainder, tem);
4815 emit_label (label);
4816 }
4817 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4818
4819 default:
4820 gcc_unreachable ();
4821 }
4822
4823 if (quotient == 0)
4824 {
4825 if (target && GET_MODE (target) != compute_mode)
4826 target = 0;
4827
4828 if (rem_flag)
4829 {
4830 /* Try to produce the remainder without producing the quotient.
4831 If we seem to have a divmod pattern that does not require widening,
4832 don't try widening here. We should really have a WIDEN argument
4833 to expand_twoval_binop, since what we'd really like to do here is
4834 1) try a mod insn in compute_mode
4835 2) try a divmod insn in compute_mode
4836 3) try a div insn in compute_mode and multiply-subtract to get
4837 remainder
4838 4) try the same things with widening allowed. */
4839 remainder
4840 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4841 op0, op1, target,
4842 unsignedp,
4843 ((optab_handler (optab2, compute_mode)
4844 != CODE_FOR_nothing)
4845 ? OPTAB_DIRECT : OPTAB_WIDEN));
4846 if (remainder == 0)
4847 {
4848 /* No luck there. Can we do remainder and divide at once
4849 without a library call? */
4850 remainder = gen_reg_rtx (compute_mode);
4851 if (! expand_twoval_binop ((unsignedp
4852 ? udivmod_optab
4853 : sdivmod_optab),
4854 op0, op1,
4855 NULL_RTX, remainder, unsignedp))
4856 remainder = 0;
4857 }
4858
4859 if (remainder)
4860 return gen_lowpart (mode, remainder);
4861 }
4862
4863 /* Produce the quotient. Try a quotient insn, but not a library call.
4864 If we have a divmod in this mode, use it in preference to widening
4865 the div (for this test we assume it will not fail). Note that optab2
4866 is set to the one of the two optabs that the call below will use. */
4867 quotient
4868 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4869 op0, op1, rem_flag ? NULL_RTX : target,
4870 unsignedp,
4871 ((optab_handler (optab2, compute_mode)
4872 != CODE_FOR_nothing)
4873 ? OPTAB_DIRECT : OPTAB_WIDEN));
4874
4875 if (quotient == 0)
4876 {
4877 /* No luck there. Try a quotient-and-remainder insn,
4878 keeping the quotient alone. */
4879 quotient = gen_reg_rtx (compute_mode);
4880 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4881 op0, op1,
4882 quotient, NULL_RTX, unsignedp))
4883 {
4884 quotient = 0;
4885 if (! rem_flag)
4886 /* Still no luck. If we are not computing the remainder,
4887 use a library call for the quotient. */
4888 quotient = sign_expand_binop (compute_mode,
4889 udiv_optab, sdiv_optab,
4890 op0, op1, target,
4891 unsignedp, OPTAB_LIB_WIDEN);
4892 }
4893 }
4894 }
4895
4896 if (rem_flag)
4897 {
4898 if (target && GET_MODE (target) != compute_mode)
4899 target = 0;
4900
4901 if (quotient == 0)
4902 {
4903 /* No divide instruction either. Use library for remainder. */
4904 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4905 op0, op1, target,
4906 unsignedp, OPTAB_LIB_WIDEN);
4907 /* No remainder function. Try a quotient-and-remainder
4908 function, keeping the remainder. */
4909 if (!remainder)
4910 {
4911 remainder = gen_reg_rtx (compute_mode);
4912 if (!expand_twoval_binop_libfunc
4913 (unsignedp ? udivmod_optab : sdivmod_optab,
4914 op0, op1,
4915 NULL_RTX, remainder,
4916 unsignedp ? UMOD : MOD))
4917 remainder = NULL_RTX;
4918 }
4919 }
4920 else
4921 {
4922 /* We divided. Now finish doing X - Y * (X / Y). */
4923 remainder = expand_mult (compute_mode, quotient, op1,
4924 NULL_RTX, unsignedp);
4925 remainder = expand_binop (compute_mode, sub_optab, op0,
4926 remainder, target, unsignedp,
4927 OPTAB_LIB_WIDEN);
4928 }
4929 }
4930
4931 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4932 }
4933 \f
4934 /* Return a tree node with data type TYPE, describing the value of X.
4935 Usually this is an VAR_DECL, if there is no obvious better choice.
4936 X may be an expression, however we only support those expressions
4937 generated by loop.c. */
4938
4939 tree
4940 make_tree (tree type, rtx x)
4941 {
4942 tree t;
4943
4944 switch (GET_CODE (x))
4945 {
4946 case CONST_INT:
4947 {
4948 HOST_WIDE_INT hi = 0;
4949
4950 if (INTVAL (x) < 0
4951 && !(TYPE_UNSIGNED (type)
4952 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4953 < HOST_BITS_PER_WIDE_INT)))
4954 hi = -1;
4955
4956 t = build_int_cst_wide (type, INTVAL (x), hi);
4957
4958 return t;
4959 }
4960
4961 case CONST_DOUBLE:
4962 if (GET_MODE (x) == VOIDmode)
4963 t = build_int_cst_wide (type,
4964 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4965 else
4966 {
4967 REAL_VALUE_TYPE d;
4968
4969 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4970 t = build_real (type, d);
4971 }
4972
4973 return t;
4974
4975 case CONST_VECTOR:
4976 {
4977 int units = CONST_VECTOR_NUNITS (x);
4978 tree itype = TREE_TYPE (type);
4979 tree t = NULL_TREE;
4980 int i;
4981
4982
4983 /* Build a tree with vector elements. */
4984 for (i = units - 1; i >= 0; --i)
4985 {
4986 rtx elt = CONST_VECTOR_ELT (x, i);
4987 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4988 }
4989
4990 return build_vector (type, t);
4991 }
4992
4993 case PLUS:
4994 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4995 make_tree (type, XEXP (x, 1)));
4996
4997 case MINUS:
4998 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4999 make_tree (type, XEXP (x, 1)));
5000
5001 case NEG:
5002 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5003
5004 case MULT:
5005 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5006 make_tree (type, XEXP (x, 1)));
5007
5008 case ASHIFT:
5009 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5010 make_tree (type, XEXP (x, 1)));
5011
5012 case LSHIFTRT:
5013 t = unsigned_type_for (type);
5014 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5015 make_tree (t, XEXP (x, 0)),
5016 make_tree (type, XEXP (x, 1))));
5017
5018 case ASHIFTRT:
5019 t = signed_type_for (type);
5020 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5021 make_tree (t, XEXP (x, 0)),
5022 make_tree (type, XEXP (x, 1))));
5023
5024 case DIV:
5025 if (TREE_CODE (type) != REAL_TYPE)
5026 t = signed_type_for (type);
5027 else
5028 t = type;
5029
5030 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5031 make_tree (t, XEXP (x, 0)),
5032 make_tree (t, XEXP (x, 1))));
5033 case UDIV:
5034 t = unsigned_type_for (type);
5035 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5036 make_tree (t, XEXP (x, 0)),
5037 make_tree (t, XEXP (x, 1))));
5038
5039 case SIGN_EXTEND:
5040 case ZERO_EXTEND:
5041 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5042 GET_CODE (x) == ZERO_EXTEND);
5043 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5044
5045 case CONST:
5046 return make_tree (type, XEXP (x, 0));
5047
5048 case SYMBOL_REF:
5049 t = SYMBOL_REF_DECL (x);
5050 if (t)
5051 return fold_convert (type, build_fold_addr_expr (t));
5052 /* else fall through. */
5053
5054 default:
5055 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5056
5057 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5058 address mode to pointer mode. */
5059 if (POINTER_TYPE_P (type))
5060 x = convert_memory_address_addr_space
5061 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5062
5063 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5064 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5065 t->decl_with_rtl.rtl = x;
5066
5067 return t;
5068 }
5069 }
5070 \f
5071 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5072 and returning TARGET.
5073
5074 If TARGET is 0, a pseudo-register or constant is returned. */
5075
5076 rtx
5077 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5078 {
5079 rtx tem = 0;
5080
5081 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5082 tem = simplify_binary_operation (AND, mode, op0, op1);
5083 if (tem == 0)
5084 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5085
5086 if (target == 0)
5087 target = tem;
5088 else if (tem != target)
5089 emit_move_insn (target, tem);
5090 return target;
5091 }
5092
5093 /* Helper function for emit_store_flag. */
5094 static rtx
5095 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5096 enum machine_mode mode, enum machine_mode compare_mode,
5097 int unsignedp, rtx x, rtx y, int normalizep,
5098 enum machine_mode target_mode)
5099 {
5100 rtx op0, last, comparison, subtarget, pattern;
5101 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5102
5103 last = get_last_insn ();
5104 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5105 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5106 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5107 if (!x || !y
5108 || !insn_data[icode].operand[2].predicate
5109 (x, insn_data[icode].operand[2].mode)
5110 || !insn_data[icode].operand[3].predicate
5111 (y, insn_data[icode].operand[3].mode)
5112 || !insn_data[icode].operand[1].predicate (comparison, VOIDmode))
5113 {
5114 delete_insns_since (last);
5115 return NULL_RTX;
5116 }
5117
5118 if (target_mode == VOIDmode)
5119 target_mode = result_mode;
5120 if (!target)
5121 target = gen_reg_rtx (target_mode);
5122
5123 if (optimize
5124 || !(insn_data[(int) icode].operand[0].predicate (target, result_mode)))
5125 subtarget = gen_reg_rtx (result_mode);
5126 else
5127 subtarget = target;
5128
5129 pattern = GEN_FCN (icode) (subtarget, comparison, x, y);
5130 if (!pattern)
5131 return NULL_RTX;
5132 emit_insn (pattern);
5133
5134 /* If we are converting to a wider mode, first convert to
5135 TARGET_MODE, then normalize. This produces better combining
5136 opportunities on machines that have a SIGN_EXTRACT when we are
5137 testing a single bit. This mostly benefits the 68k.
5138
5139 If STORE_FLAG_VALUE does not have the sign bit set when
5140 interpreted in MODE, we can do this conversion as unsigned, which
5141 is usually more efficient. */
5142 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5143 {
5144 convert_move (target, subtarget,
5145 (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT)
5146 && 0 == (STORE_FLAG_VALUE
5147 & ((HOST_WIDE_INT) 1
5148 << (GET_MODE_BITSIZE (result_mode) -1))));
5149 op0 = target;
5150 result_mode = target_mode;
5151 }
5152 else
5153 op0 = subtarget;
5154
5155 /* If we want to keep subexpressions around, don't reuse our last
5156 target. */
5157 if (optimize)
5158 subtarget = 0;
5159
5160 /* Now normalize to the proper value in MODE. Sometimes we don't
5161 have to do anything. */
5162 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5163 ;
5164 /* STORE_FLAG_VALUE might be the most negative number, so write
5165 the comparison this way to avoid a compiler-time warning. */
5166 else if (- normalizep == STORE_FLAG_VALUE)
5167 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5168
5169 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5170 it hard to use a value of just the sign bit due to ANSI integer
5171 constant typing rules. */
5172 else if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
5173 && (STORE_FLAG_VALUE
5174 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
5175 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5176 size_int (GET_MODE_BITSIZE (result_mode) - 1), subtarget,
5177 normalizep == 1);
5178 else
5179 {
5180 gcc_assert (STORE_FLAG_VALUE & 1);
5181
5182 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5183 if (normalizep == -1)
5184 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5185 }
5186
5187 /* If we were converting to a smaller mode, do the conversion now. */
5188 if (target_mode != result_mode)
5189 {
5190 convert_move (target, op0, 0);
5191 return target;
5192 }
5193 else
5194 return op0;
5195 }
5196
5197
5198 /* A subroutine of emit_store_flag only including "tricks" that do not
5199 need a recursive call. These are kept separate to avoid infinite
5200 loops. */
5201
5202 static rtx
5203 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5204 enum machine_mode mode, int unsignedp, int normalizep,
5205 enum machine_mode target_mode)
5206 {
5207 rtx subtarget;
5208 enum insn_code icode;
5209 enum machine_mode compare_mode;
5210 enum mode_class mclass;
5211 enum rtx_code scode;
5212 rtx tem;
5213
5214 if (unsignedp)
5215 code = unsigned_condition (code);
5216 scode = swap_condition (code);
5217
5218 /* If one operand is constant, make it the second one. Only do this
5219 if the other operand is not constant as well. */
5220
5221 if (swap_commutative_operands_p (op0, op1))
5222 {
5223 tem = op0;
5224 op0 = op1;
5225 op1 = tem;
5226 code = swap_condition (code);
5227 }
5228
5229 if (mode == VOIDmode)
5230 mode = GET_MODE (op0);
5231
5232 /* For some comparisons with 1 and -1, we can convert this to
5233 comparisons with zero. This will often produce more opportunities for
5234 store-flag insns. */
5235
5236 switch (code)
5237 {
5238 case LT:
5239 if (op1 == const1_rtx)
5240 op1 = const0_rtx, code = LE;
5241 break;
5242 case LE:
5243 if (op1 == constm1_rtx)
5244 op1 = const0_rtx, code = LT;
5245 break;
5246 case GE:
5247 if (op1 == const1_rtx)
5248 op1 = const0_rtx, code = GT;
5249 break;
5250 case GT:
5251 if (op1 == constm1_rtx)
5252 op1 = const0_rtx, code = GE;
5253 break;
5254 case GEU:
5255 if (op1 == const1_rtx)
5256 op1 = const0_rtx, code = NE;
5257 break;
5258 case LTU:
5259 if (op1 == const1_rtx)
5260 op1 = const0_rtx, code = EQ;
5261 break;
5262 default:
5263 break;
5264 }
5265
5266 /* If we are comparing a double-word integer with zero or -1, we can
5267 convert the comparison into one involving a single word. */
5268 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5269 && GET_MODE_CLASS (mode) == MODE_INT
5270 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5271 {
5272 if ((code == EQ || code == NE)
5273 && (op1 == const0_rtx || op1 == constm1_rtx))
5274 {
5275 rtx op00, op01;
5276
5277 /* Do a logical OR or AND of the two words and compare the
5278 result. */
5279 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5280 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5281 tem = expand_binop (word_mode,
5282 op1 == const0_rtx ? ior_optab : and_optab,
5283 op00, op01, NULL_RTX, unsignedp,
5284 OPTAB_DIRECT);
5285
5286 if (tem != 0)
5287 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5288 unsignedp, normalizep);
5289 }
5290 else if ((code == LT || code == GE) && op1 == const0_rtx)
5291 {
5292 rtx op0h;
5293
5294 /* If testing the sign bit, can just test on high word. */
5295 op0h = simplify_gen_subreg (word_mode, op0, mode,
5296 subreg_highpart_offset (word_mode,
5297 mode));
5298 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5299 unsignedp, normalizep);
5300 }
5301 else
5302 tem = NULL_RTX;
5303
5304 if (tem)
5305 {
5306 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5307 return tem;
5308 if (!target)
5309 target = gen_reg_rtx (target_mode);
5310
5311 convert_move (target, tem,
5312 0 == ((normalizep ? normalizep : STORE_FLAG_VALUE)
5313 & ((HOST_WIDE_INT) 1
5314 << (GET_MODE_BITSIZE (word_mode) -1))));
5315 return target;
5316 }
5317 }
5318
5319 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5320 complement of A (for GE) and shifting the sign bit to the low bit. */
5321 if (op1 == const0_rtx && (code == LT || code == GE)
5322 && GET_MODE_CLASS (mode) == MODE_INT
5323 && (normalizep || STORE_FLAG_VALUE == 1
5324 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5325 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5326 == ((unsigned HOST_WIDE_INT) 1
5327 << (GET_MODE_BITSIZE (mode) - 1))))))
5328 {
5329 subtarget = target;
5330
5331 if (!target)
5332 target_mode = mode;
5333
5334 /* If the result is to be wider than OP0, it is best to convert it
5335 first. If it is to be narrower, it is *incorrect* to convert it
5336 first. */
5337 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5338 {
5339 op0 = convert_modes (target_mode, mode, op0, 0);
5340 mode = target_mode;
5341 }
5342
5343 if (target_mode != mode)
5344 subtarget = 0;
5345
5346 if (code == GE)
5347 op0 = expand_unop (mode, one_cmpl_optab, op0,
5348 ((STORE_FLAG_VALUE == 1 || normalizep)
5349 ? 0 : subtarget), 0);
5350
5351 if (STORE_FLAG_VALUE == 1 || normalizep)
5352 /* If we are supposed to produce a 0/1 value, we want to do
5353 a logical shift from the sign bit to the low-order bit; for
5354 a -1/0 value, we do an arithmetic shift. */
5355 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5356 size_int (GET_MODE_BITSIZE (mode) - 1),
5357 subtarget, normalizep != -1);
5358
5359 if (mode != target_mode)
5360 op0 = convert_modes (target_mode, mode, op0, 0);
5361
5362 return op0;
5363 }
5364
5365 mclass = GET_MODE_CLASS (mode);
5366 for (compare_mode = mode; compare_mode != VOIDmode;
5367 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5368 {
5369 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5370 icode = optab_handler (cstore_optab, optab_mode);
5371 if (icode != CODE_FOR_nothing)
5372 {
5373 do_pending_stack_adjust ();
5374 tem = emit_cstore (target, icode, code, mode, compare_mode,
5375 unsignedp, op0, op1, normalizep, target_mode);
5376 if (tem)
5377 return tem;
5378
5379 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5380 {
5381 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5382 unsignedp, op1, op0, normalizep, target_mode);
5383 if (tem)
5384 return tem;
5385 }
5386 break;
5387 }
5388 }
5389
5390 return 0;
5391 }
5392
5393 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5394 and storing in TARGET. Normally return TARGET.
5395 Return 0 if that cannot be done.
5396
5397 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5398 it is VOIDmode, they cannot both be CONST_INT.
5399
5400 UNSIGNEDP is for the case where we have to widen the operands
5401 to perform the operation. It says to use zero-extension.
5402
5403 NORMALIZEP is 1 if we should convert the result to be either zero
5404 or one. Normalize is -1 if we should convert the result to be
5405 either zero or -1. If NORMALIZEP is zero, the result will be left
5406 "raw" out of the scc insn. */
5407
5408 rtx
5409 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5410 enum machine_mode mode, int unsignedp, int normalizep)
5411 {
5412 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5413 enum rtx_code rcode;
5414 rtx subtarget;
5415 rtx tem, last, trueval;
5416
5417 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5418 target_mode);
5419 if (tem)
5420 return tem;
5421
5422 /* If we reached here, we can't do this with a scc insn, however there
5423 are some comparisons that can be done in other ways. Don't do any
5424 of these cases if branches are very cheap. */
5425 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5426 return 0;
5427
5428 /* See what we need to return. We can only return a 1, -1, or the
5429 sign bit. */
5430
5431 if (normalizep == 0)
5432 {
5433 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5434 normalizep = STORE_FLAG_VALUE;
5435
5436 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5437 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5438 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5439 ;
5440 else
5441 return 0;
5442 }
5443
5444 last = get_last_insn ();
5445
5446 /* If optimizing, use different pseudo registers for each insn, instead
5447 of reusing the same pseudo. This leads to better CSE, but slows
5448 down the compiler, since there are more pseudos */
5449 subtarget = (!optimize
5450 && (target_mode == mode)) ? target : NULL_RTX;
5451 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5452
5453 /* For floating-point comparisons, try the reverse comparison or try
5454 changing the "orderedness" of the comparison. */
5455 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5456 {
5457 enum rtx_code first_code;
5458 bool and_them;
5459
5460 rcode = reverse_condition_maybe_unordered (code);
5461 if (can_compare_p (rcode, mode, ccp_store_flag)
5462 && (code == ORDERED || code == UNORDERED
5463 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5464 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5465 {
5466 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5467 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5468
5469 /* For the reverse comparison, use either an addition or a XOR. */
5470 if (want_add
5471 && rtx_cost (GEN_INT (normalizep), PLUS,
5472 optimize_insn_for_speed_p ()) == 0)
5473 {
5474 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5475 STORE_FLAG_VALUE, target_mode);
5476 if (tem)
5477 return expand_binop (target_mode, add_optab, tem,
5478 GEN_INT (normalizep),
5479 target, 0, OPTAB_WIDEN);
5480 }
5481 else if (!want_add
5482 && rtx_cost (trueval, XOR,
5483 optimize_insn_for_speed_p ()) == 0)
5484 {
5485 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5486 normalizep, target_mode);
5487 if (tem)
5488 return expand_binop (target_mode, xor_optab, tem, trueval,
5489 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5490 }
5491 }
5492
5493 delete_insns_since (last);
5494
5495 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5496 if (code == ORDERED || code == UNORDERED)
5497 return 0;
5498
5499 and_them = split_comparison (code, mode, &first_code, &code);
5500
5501 /* If there are no NaNs, the first comparison should always fall through.
5502 Effectively change the comparison to the other one. */
5503 if (!HONOR_NANS (mode))
5504 {
5505 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5506 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5507 target_mode);
5508 }
5509
5510 #ifdef HAVE_conditional_move
5511 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5512 conditional move. */
5513 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5514 normalizep, target_mode);
5515 if (tem == 0)
5516 return 0;
5517
5518 if (and_them)
5519 tem = emit_conditional_move (target, code, op0, op1, mode,
5520 tem, const0_rtx, GET_MODE (tem), 0);
5521 else
5522 tem = emit_conditional_move (target, code, op0, op1, mode,
5523 trueval, tem, GET_MODE (tem), 0);
5524
5525 if (tem == 0)
5526 delete_insns_since (last);
5527 return tem;
5528 #else
5529 return 0;
5530 #endif
5531 }
5532
5533 /* The remaining tricks only apply to integer comparisons. */
5534
5535 if (GET_MODE_CLASS (mode) != MODE_INT)
5536 return 0;
5537
5538 /* If this is an equality comparison of integers, we can try to exclusive-or
5539 (or subtract) the two operands and use a recursive call to try the
5540 comparison with zero. Don't do any of these cases if branches are
5541 very cheap. */
5542
5543 if ((code == EQ || code == NE) && op1 != const0_rtx)
5544 {
5545 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5546 OPTAB_WIDEN);
5547
5548 if (tem == 0)
5549 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5550 OPTAB_WIDEN);
5551 if (tem != 0)
5552 tem = emit_store_flag (target, code, tem, const0_rtx,
5553 mode, unsignedp, normalizep);
5554 if (tem != 0)
5555 return tem;
5556
5557 delete_insns_since (last);
5558 }
5559
5560 /* For integer comparisons, try the reverse comparison. However, for
5561 small X and if we'd have anyway to extend, implementing "X != 0"
5562 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5563 rcode = reverse_condition (code);
5564 if (can_compare_p (rcode, mode, ccp_store_flag)
5565 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5566 && code == NE
5567 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5568 && op1 == const0_rtx))
5569 {
5570 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5571 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5572
5573 /* Again, for the reverse comparison, use either an addition or a XOR. */
5574 if (want_add
5575 && rtx_cost (GEN_INT (normalizep), PLUS,
5576 optimize_insn_for_speed_p ()) == 0)
5577 {
5578 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5579 STORE_FLAG_VALUE, target_mode);
5580 if (tem != 0)
5581 tem = expand_binop (target_mode, add_optab, tem,
5582 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5583 }
5584 else if (!want_add
5585 && rtx_cost (trueval, XOR,
5586 optimize_insn_for_speed_p ()) == 0)
5587 {
5588 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5589 normalizep, target_mode);
5590 if (tem != 0)
5591 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5592 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5593 }
5594
5595 if (tem != 0)
5596 return tem;
5597 delete_insns_since (last);
5598 }
5599
5600 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5601 the constant zero. Reject all other comparisons at this point. Only
5602 do LE and GT if branches are expensive since they are expensive on
5603 2-operand machines. */
5604
5605 if (op1 != const0_rtx
5606 || (code != EQ && code != NE
5607 && (BRANCH_COST (optimize_insn_for_speed_p (),
5608 false) <= 1 || (code != LE && code != GT))))
5609 return 0;
5610
5611 /* Try to put the result of the comparison in the sign bit. Assume we can't
5612 do the necessary operation below. */
5613
5614 tem = 0;
5615
5616 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5617 the sign bit set. */
5618
5619 if (code == LE)
5620 {
5621 /* This is destructive, so SUBTARGET can't be OP0. */
5622 if (rtx_equal_p (subtarget, op0))
5623 subtarget = 0;
5624
5625 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5626 OPTAB_WIDEN);
5627 if (tem)
5628 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5629 OPTAB_WIDEN);
5630 }
5631
5632 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5633 number of bits in the mode of OP0, minus one. */
5634
5635 if (code == GT)
5636 {
5637 if (rtx_equal_p (subtarget, op0))
5638 subtarget = 0;
5639
5640 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5641 size_int (GET_MODE_BITSIZE (mode) - 1),
5642 subtarget, 0);
5643 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5644 OPTAB_WIDEN);
5645 }
5646
5647 if (code == EQ || code == NE)
5648 {
5649 /* For EQ or NE, one way to do the comparison is to apply an operation
5650 that converts the operand into a positive number if it is nonzero
5651 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5652 for NE we negate. This puts the result in the sign bit. Then we
5653 normalize with a shift, if needed.
5654
5655 Two operations that can do the above actions are ABS and FFS, so try
5656 them. If that doesn't work, and MODE is smaller than a full word,
5657 we can use zero-extension to the wider mode (an unsigned conversion)
5658 as the operation. */
5659
5660 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5661 that is compensated by the subsequent overflow when subtracting
5662 one / negating. */
5663
5664 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5665 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5666 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5667 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5668 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5669 {
5670 tem = convert_modes (word_mode, mode, op0, 1);
5671 mode = word_mode;
5672 }
5673
5674 if (tem != 0)
5675 {
5676 if (code == EQ)
5677 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5678 0, OPTAB_WIDEN);
5679 else
5680 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5681 }
5682
5683 /* If we couldn't do it that way, for NE we can "or" the two's complement
5684 of the value with itself. For EQ, we take the one's complement of
5685 that "or", which is an extra insn, so we only handle EQ if branches
5686 are expensive. */
5687
5688 if (tem == 0
5689 && (code == NE
5690 || BRANCH_COST (optimize_insn_for_speed_p (),
5691 false) > 1))
5692 {
5693 if (rtx_equal_p (subtarget, op0))
5694 subtarget = 0;
5695
5696 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5697 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5698 OPTAB_WIDEN);
5699
5700 if (tem && code == EQ)
5701 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5702 }
5703 }
5704
5705 if (tem && normalizep)
5706 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5707 size_int (GET_MODE_BITSIZE (mode) - 1),
5708 subtarget, normalizep == 1);
5709
5710 if (tem)
5711 {
5712 if (!target)
5713 ;
5714 else if (GET_MODE (tem) != target_mode)
5715 {
5716 convert_move (target, tem, 0);
5717 tem = target;
5718 }
5719 else if (!subtarget)
5720 {
5721 emit_move_insn (target, tem);
5722 tem = target;
5723 }
5724 }
5725 else
5726 delete_insns_since (last);
5727
5728 return tem;
5729 }
5730
5731 /* Like emit_store_flag, but always succeeds. */
5732
5733 rtx
5734 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5735 enum machine_mode mode, int unsignedp, int normalizep)
5736 {
5737 rtx tem, label;
5738 rtx trueval, falseval;
5739
5740 /* First see if emit_store_flag can do the job. */
5741 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5742 if (tem != 0)
5743 return tem;
5744
5745 if (!target)
5746 target = gen_reg_rtx (word_mode);
5747
5748 /* If this failed, we have to do this with set/compare/jump/set code.
5749 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5750 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5751 if (code == NE
5752 && GET_MODE_CLASS (mode) == MODE_INT
5753 && REG_P (target)
5754 && op0 == target
5755 && op1 == const0_rtx)
5756 {
5757 label = gen_label_rtx ();
5758 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5759 mode, NULL_RTX, NULL_RTX, label, -1);
5760 emit_move_insn (target, trueval);
5761 emit_label (label);
5762 return target;
5763 }
5764
5765 if (!REG_P (target)
5766 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5767 target = gen_reg_rtx (GET_MODE (target));
5768
5769 /* Jump in the right direction if the target cannot implement CODE
5770 but can jump on its reverse condition. */
5771 falseval = const0_rtx;
5772 if (! can_compare_p (code, mode, ccp_jump)
5773 && (! FLOAT_MODE_P (mode)
5774 || code == ORDERED || code == UNORDERED
5775 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5776 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5777 {
5778 enum rtx_code rcode;
5779 if (FLOAT_MODE_P (mode))
5780 rcode = reverse_condition_maybe_unordered (code);
5781 else
5782 rcode = reverse_condition (code);
5783
5784 /* Canonicalize to UNORDERED for the libcall. */
5785 if (can_compare_p (rcode, mode, ccp_jump)
5786 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5787 {
5788 falseval = trueval;
5789 trueval = const0_rtx;
5790 code = rcode;
5791 }
5792 }
5793
5794 emit_move_insn (target, trueval);
5795 label = gen_label_rtx ();
5796 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5797 NULL_RTX, label, -1);
5798
5799 emit_move_insn (target, falseval);
5800 emit_label (label);
5801
5802 return target;
5803 }
5804 \f
5805 /* Perform possibly multi-word comparison and conditional jump to LABEL
5806 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5807 now a thin wrapper around do_compare_rtx_and_jump. */
5808
5809 static void
5810 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5811 rtx label)
5812 {
5813 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5814 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5815 NULL_RTX, NULL_RTX, label, -1);
5816 }