* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "diagnostic-core.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
41 #include "expmed.h"
42
43 struct target_expmed default_target_expmed;
44 #if SWITCHABLE_TARGET
45 struct target_expmed *this_target_expmed = &default_target_expmed;
46 #endif
47
48 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx);
51 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, rtx);
53 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
54 unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT,
56 unsigned HOST_WIDE_INT, rtx, int);
57 static rtx mask_rtx (enum machine_mode, int, int, int);
58 static rtx lshift_value (enum machine_mode, rtx, int, int);
59 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
60 unsigned HOST_WIDE_INT, int);
61 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
62 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
63 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
64
65 /* Test whether a value is zero of a power of two. */
66 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
67
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
71
72
73 /* Reduce conditional compilation elsewhere. */
74 #ifndef HAVE_insv
75 #define HAVE_insv 0
76 #define CODE_FOR_insv CODE_FOR_nothing
77 #define gen_insv(a,b,c,d) NULL_RTX
78 #endif
79 #ifndef HAVE_extv
80 #define HAVE_extv 0
81 #define CODE_FOR_extv CODE_FOR_nothing
82 #define gen_extv(a,b,c,d) NULL_RTX
83 #endif
84 #ifndef HAVE_extzv
85 #define HAVE_extzv 0
86 #define CODE_FOR_extzv CODE_FOR_nothing
87 #define gen_extzv(a,b,c,d) NULL_RTX
88 #endif
89
90 void
91 init_expmed (void)
92 {
93 struct
94 {
95 struct rtx_def reg; rtunion reg_fld[2];
96 struct rtx_def plus; rtunion plus_fld1;
97 struct rtx_def neg;
98 struct rtx_def mult; rtunion mult_fld1;
99 struct rtx_def sdiv; rtunion sdiv_fld1;
100 struct rtx_def udiv; rtunion udiv_fld1;
101 struct rtx_def zext;
102 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
103 struct rtx_def smod_32; rtunion smod_32_fld1;
104 struct rtx_def wide_mult; rtunion wide_mult_fld1;
105 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
106 struct rtx_def wide_trunc;
107 struct rtx_def shift; rtunion shift_fld1;
108 struct rtx_def shift_mult; rtunion shift_mult_fld1;
109 struct rtx_def shift_add; rtunion shift_add_fld1;
110 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
111 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
112 } all;
113
114 rtx pow2[MAX_BITS_PER_WORD];
115 rtx cint[MAX_BITS_PER_WORD];
116 int m, n;
117 enum machine_mode mode, wider_mode;
118 int speed;
119
120
121 for (m = 1; m < MAX_BITS_PER_WORD; m++)
122 {
123 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
124 cint[m] = GEN_INT (m);
125 }
126 memset (&all, 0, sizeof all);
127
128 PUT_CODE (&all.reg, REG);
129 /* Avoid using hard regs in ways which may be unsupported. */
130 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
131
132 PUT_CODE (&all.plus, PLUS);
133 XEXP (&all.plus, 0) = &all.reg;
134 XEXP (&all.plus, 1) = &all.reg;
135
136 PUT_CODE (&all.neg, NEG);
137 XEXP (&all.neg, 0) = &all.reg;
138
139 PUT_CODE (&all.mult, MULT);
140 XEXP (&all.mult, 0) = &all.reg;
141 XEXP (&all.mult, 1) = &all.reg;
142
143 PUT_CODE (&all.sdiv, DIV);
144 XEXP (&all.sdiv, 0) = &all.reg;
145 XEXP (&all.sdiv, 1) = &all.reg;
146
147 PUT_CODE (&all.udiv, UDIV);
148 XEXP (&all.udiv, 0) = &all.reg;
149 XEXP (&all.udiv, 1) = &all.reg;
150
151 PUT_CODE (&all.sdiv_32, DIV);
152 XEXP (&all.sdiv_32, 0) = &all.reg;
153 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
154
155 PUT_CODE (&all.smod_32, MOD);
156 XEXP (&all.smod_32, 0) = &all.reg;
157 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
158
159 PUT_CODE (&all.zext, ZERO_EXTEND);
160 XEXP (&all.zext, 0) = &all.reg;
161
162 PUT_CODE (&all.wide_mult, MULT);
163 XEXP (&all.wide_mult, 0) = &all.zext;
164 XEXP (&all.wide_mult, 1) = &all.zext;
165
166 PUT_CODE (&all.wide_lshr, LSHIFTRT);
167 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
168
169 PUT_CODE (&all.wide_trunc, TRUNCATE);
170 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
171
172 PUT_CODE (&all.shift, ASHIFT);
173 XEXP (&all.shift, 0) = &all.reg;
174
175 PUT_CODE (&all.shift_mult, MULT);
176 XEXP (&all.shift_mult, 0) = &all.reg;
177
178 PUT_CODE (&all.shift_add, PLUS);
179 XEXP (&all.shift_add, 0) = &all.shift_mult;
180 XEXP (&all.shift_add, 1) = &all.reg;
181
182 PUT_CODE (&all.shift_sub0, MINUS);
183 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
184 XEXP (&all.shift_sub0, 1) = &all.reg;
185
186 PUT_CODE (&all.shift_sub1, MINUS);
187 XEXP (&all.shift_sub1, 0) = &all.reg;
188 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
189
190 for (speed = 0; speed < 2; speed++)
191 {
192 crtl->maybe_hot_insn_p = speed;
193 zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
194
195 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
196 mode != VOIDmode;
197 mode = GET_MODE_WIDER_MODE (mode))
198 {
199 PUT_MODE (&all.reg, mode);
200 PUT_MODE (&all.plus, mode);
201 PUT_MODE (&all.neg, mode);
202 PUT_MODE (&all.mult, mode);
203 PUT_MODE (&all.sdiv, mode);
204 PUT_MODE (&all.udiv, mode);
205 PUT_MODE (&all.sdiv_32, mode);
206 PUT_MODE (&all.smod_32, mode);
207 PUT_MODE (&all.wide_trunc, mode);
208 PUT_MODE (&all.shift, mode);
209 PUT_MODE (&all.shift_mult, mode);
210 PUT_MODE (&all.shift_add, mode);
211 PUT_MODE (&all.shift_sub0, mode);
212 PUT_MODE (&all.shift_sub1, mode);
213
214 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
215 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
216 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
217 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
218 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
219
220 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
221 <= 2 * add_cost[speed][mode]);
222 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
223 <= 4 * add_cost[speed][mode]);
224
225 wider_mode = GET_MODE_WIDER_MODE (mode);
226 if (wider_mode != VOIDmode)
227 {
228 PUT_MODE (&all.zext, wider_mode);
229 PUT_MODE (&all.wide_mult, wider_mode);
230 PUT_MODE (&all.wide_lshr, wider_mode);
231 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
232
233 mul_widen_cost[speed][wider_mode]
234 = rtx_cost (&all.wide_mult, SET, speed);
235 mul_highpart_cost[speed][mode]
236 = rtx_cost (&all.wide_trunc, SET, speed);
237 }
238
239 shift_cost[speed][mode][0] = 0;
240 shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
241 = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
242
243 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
244 for (m = 1; m < n; m++)
245 {
246 XEXP (&all.shift, 1) = cint[m];
247 XEXP (&all.shift_mult, 1) = pow2[m];
248
249 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
250 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
251 shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
252 shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
253 }
254 }
255 }
256 if (alg_hash_used_p)
257 memset (alg_hash, 0, sizeof (alg_hash));
258 else
259 alg_hash_used_p = true;
260 default_rtl_profile ();
261 }
262
263 /* Return an rtx representing minus the value of X.
264 MODE is the intended mode of the result,
265 useful if X is a CONST_INT. */
266
267 rtx
268 negate_rtx (enum machine_mode mode, rtx x)
269 {
270 rtx result = simplify_unary_operation (NEG, mode, x, mode);
271
272 if (result == 0)
273 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
274
275 return result;
276 }
277
278 /* Report on the availability of insv/extv/extzv and the desired mode
279 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
280 is false; else the mode of the specified operand. If OPNO is -1,
281 all the caller cares about is whether the insn is available. */
282 enum machine_mode
283 mode_for_extraction (enum extraction_pattern pattern, int opno)
284 {
285 const struct insn_data_d *data;
286
287 switch (pattern)
288 {
289 case EP_insv:
290 if (HAVE_insv)
291 {
292 data = &insn_data[CODE_FOR_insv];
293 break;
294 }
295 return MAX_MACHINE_MODE;
296
297 case EP_extv:
298 if (HAVE_extv)
299 {
300 data = &insn_data[CODE_FOR_extv];
301 break;
302 }
303 return MAX_MACHINE_MODE;
304
305 case EP_extzv:
306 if (HAVE_extzv)
307 {
308 data = &insn_data[CODE_FOR_extzv];
309 break;
310 }
311 return MAX_MACHINE_MODE;
312
313 default:
314 gcc_unreachable ();
315 }
316
317 if (opno == -1)
318 return VOIDmode;
319
320 /* Everyone who uses this function used to follow it with
321 if (result == VOIDmode) result = word_mode; */
322 if (data->operand[opno].mode == VOIDmode)
323 return word_mode;
324 return data->operand[opno].mode;
325 }
326
327 /* Return true if X, of mode MODE, matches the predicate for operand
328 OPNO of instruction ICODE. Allow volatile memories, regardless of
329 the ambient volatile_ok setting. */
330
331 static bool
332 check_predicate_volatile_ok (enum insn_code icode, int opno,
333 rtx x, enum machine_mode mode)
334 {
335 bool save_volatile_ok, result;
336
337 save_volatile_ok = volatile_ok;
338 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
339 volatile_ok = save_volatile_ok;
340 return result;
341 }
342 \f
343 /* A subroutine of store_bit_field, with the same arguments. Return true
344 if the operation could be implemented.
345
346 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
347 no other way of implementing the operation. If FALLBACK_P is false,
348 return false instead. */
349
350 static bool
351 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
352 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
353 rtx value, bool fallback_p)
354 {
355 unsigned int unit
356 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
357 unsigned HOST_WIDE_INT offset, bitpos;
358 rtx op0 = str_rtx;
359 int byte_offset;
360 rtx orig_value;
361
362 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
363
364 while (GET_CODE (op0) == SUBREG)
365 {
366 /* The following line once was done only if WORDS_BIG_ENDIAN,
367 but I think that is a mistake. WORDS_BIG_ENDIAN is
368 meaningful at a much higher level; when structures are copied
369 between memory and regs, the higher-numbered regs
370 always get higher addresses. */
371 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
372 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
373
374 byte_offset = 0;
375
376 /* Paradoxical subregs need special handling on big endian machines. */
377 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
378 {
379 int difference = inner_mode_size - outer_mode_size;
380
381 if (WORDS_BIG_ENDIAN)
382 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
383 if (BYTES_BIG_ENDIAN)
384 byte_offset += difference % UNITS_PER_WORD;
385 }
386 else
387 byte_offset = SUBREG_BYTE (op0);
388
389 bitnum += byte_offset * BITS_PER_UNIT;
390 op0 = SUBREG_REG (op0);
391 }
392
393 /* No action is needed if the target is a register and if the field
394 lies completely outside that register. This can occur if the source
395 code contains an out-of-bounds access to a small array. */
396 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
397 return true;
398
399 /* Use vec_set patterns for inserting parts of vectors whenever
400 available. */
401 if (VECTOR_MODE_P (GET_MODE (op0))
402 && !MEM_P (op0)
403 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
404 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
405 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
406 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
407 {
408 enum machine_mode outermode = GET_MODE (op0);
409 enum machine_mode innermode = GET_MODE_INNER (outermode);
410 int icode = (int) optab_handler (vec_set_optab, outermode);
411 int pos = bitnum / GET_MODE_BITSIZE (innermode);
412 rtx rtxpos = GEN_INT (pos);
413 rtx src = value;
414 rtx dest = op0;
415 rtx pat, seq;
416 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
417 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
418 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
419
420 start_sequence ();
421
422 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
423 src = copy_to_mode_reg (mode1, src);
424
425 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
426 rtxpos = copy_to_mode_reg (mode1, rtxpos);
427
428 /* We could handle this, but we should always be called with a pseudo
429 for our targets and all insns should take them as outputs. */
430 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
431 && (*insn_data[icode].operand[1].predicate) (src, mode1)
432 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
433 pat = GEN_FCN (icode) (dest, src, rtxpos);
434 seq = get_insns ();
435 end_sequence ();
436 if (pat)
437 {
438 emit_insn (seq);
439 emit_insn (pat);
440 return true;
441 }
442 }
443
444 /* If the target is a register, overwriting the entire object, or storing
445 a full-word or multi-word field can be done with just a SUBREG.
446
447 If the target is memory, storing any naturally aligned field can be
448 done with a simple store. For targets that support fast unaligned
449 memory, any naturally sized, unit aligned field can be done directly. */
450
451 offset = bitnum / unit;
452 bitpos = bitnum % unit;
453 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
454 + (offset * UNITS_PER_WORD);
455
456 if (bitpos == 0
457 && bitsize == GET_MODE_BITSIZE (fieldmode)
458 && (!MEM_P (op0)
459 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
460 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
461 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
462 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
463 || (offset * BITS_PER_UNIT % bitsize == 0
464 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
465 {
466 if (MEM_P (op0))
467 op0 = adjust_address (op0, fieldmode, offset);
468 else if (GET_MODE (op0) != fieldmode)
469 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
470 byte_offset);
471 emit_move_insn (op0, value);
472 return true;
473 }
474
475 /* Make sure we are playing with integral modes. Pun with subregs
476 if we aren't. This must come after the entire register case above,
477 since that case is valid for any mode. The following cases are only
478 valid for integral modes. */
479 {
480 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
481 if (imode != GET_MODE (op0))
482 {
483 if (MEM_P (op0))
484 op0 = adjust_address (op0, imode, 0);
485 else
486 {
487 gcc_assert (imode != BLKmode);
488 op0 = gen_lowpart (imode, op0);
489 }
490 }
491 }
492
493 /* We may be accessing data outside the field, which means
494 we can alias adjacent data. */
495 if (MEM_P (op0))
496 {
497 op0 = shallow_copy_rtx (op0);
498 set_mem_alias_set (op0, 0);
499 set_mem_expr (op0, 0);
500 }
501
502 /* If OP0 is a register, BITPOS must count within a word.
503 But as we have it, it counts within whatever size OP0 now has.
504 On a bigendian machine, these are not the same, so convert. */
505 if (BYTES_BIG_ENDIAN
506 && !MEM_P (op0)
507 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
508 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
509
510 /* Storing an lsb-aligned field in a register
511 can be done with a movestrict instruction. */
512
513 if (!MEM_P (op0)
514 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
515 && bitsize == GET_MODE_BITSIZE (fieldmode)
516 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
517 {
518 int icode = optab_handler (movstrict_optab, fieldmode);
519 rtx insn;
520 rtx start = get_last_insn ();
521 rtx arg0 = op0;
522
523 /* Get appropriate low part of the value being stored. */
524 if (CONST_INT_P (value) || REG_P (value))
525 value = gen_lowpart (fieldmode, value);
526 else if (!(GET_CODE (value) == SYMBOL_REF
527 || GET_CODE (value) == LABEL_REF
528 || GET_CODE (value) == CONST))
529 value = convert_to_mode (fieldmode, value, 0);
530
531 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
532 value = copy_to_mode_reg (fieldmode, value);
533
534 if (GET_CODE (op0) == SUBREG)
535 {
536 /* Else we've got some float mode source being extracted into
537 a different float mode destination -- this combination of
538 subregs results in Severe Tire Damage. */
539 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
540 || GET_MODE_CLASS (fieldmode) == MODE_INT
541 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
542 arg0 = SUBREG_REG (op0);
543 }
544
545 insn = (GEN_FCN (icode)
546 (gen_rtx_SUBREG (fieldmode, arg0,
547 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
548 + (offset * UNITS_PER_WORD)),
549 value));
550 if (insn)
551 {
552 emit_insn (insn);
553 return true;
554 }
555 delete_insns_since (start);
556 }
557
558 /* Handle fields bigger than a word. */
559
560 if (bitsize > BITS_PER_WORD)
561 {
562 /* Here we transfer the words of the field
563 in the order least significant first.
564 This is because the most significant word is the one which may
565 be less than full.
566 However, only do that if the value is not BLKmode. */
567
568 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
569 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
570 unsigned int i;
571 rtx last;
572
573 /* This is the mode we must force value to, so that there will be enough
574 subwords to extract. Note that fieldmode will often (always?) be
575 VOIDmode, because that is what store_field uses to indicate that this
576 is a bit field, but passing VOIDmode to operand_subword_force
577 is not allowed. */
578 fieldmode = GET_MODE (value);
579 if (fieldmode == VOIDmode)
580 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
581
582 last = get_last_insn ();
583 for (i = 0; i < nwords; i++)
584 {
585 /* If I is 0, use the low-order word in both field and target;
586 if I is 1, use the next to lowest word; and so on. */
587 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
588 unsigned int bit_offset = (backwards
589 ? MAX ((int) bitsize - ((int) i + 1)
590 * BITS_PER_WORD,
591 0)
592 : (int) i * BITS_PER_WORD);
593 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
594
595 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
596 bitsize - i * BITS_PER_WORD),
597 bitnum + bit_offset, word_mode,
598 value_word, fallback_p))
599 {
600 delete_insns_since (last);
601 return false;
602 }
603 }
604 return true;
605 }
606
607 /* From here on we can assume that the field to be stored in is
608 a full-word (whatever type that is), since it is shorter than a word. */
609
610 /* OFFSET is the number of words or bytes (UNIT says which)
611 from STR_RTX to the first word or byte containing part of the field. */
612
613 if (!MEM_P (op0))
614 {
615 if (offset != 0
616 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
617 {
618 if (!REG_P (op0))
619 {
620 /* Since this is a destination (lvalue), we can't copy
621 it to a pseudo. We can remove a SUBREG that does not
622 change the size of the operand. Such a SUBREG may
623 have been added above. */
624 gcc_assert (GET_CODE (op0) == SUBREG
625 && (GET_MODE_SIZE (GET_MODE (op0))
626 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
627 op0 = SUBREG_REG (op0);
628 }
629 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
630 op0, (offset * UNITS_PER_WORD));
631 }
632 offset = 0;
633 }
634
635 /* If VALUE has a floating-point or complex mode, access it as an
636 integer of the corresponding size. This can occur on a machine
637 with 64 bit registers that uses SFmode for float. It can also
638 occur for unaligned float or complex fields. */
639 orig_value = value;
640 if (GET_MODE (value) != VOIDmode
641 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
642 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
643 {
644 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
645 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
646 }
647
648 /* Now OFFSET is nonzero only if OP0 is memory
649 and is therefore always measured in bytes. */
650
651 if (HAVE_insv
652 && GET_MODE (value) != BLKmode
653 && bitsize > 0
654 && GET_MODE_BITSIZE (op_mode) >= bitsize
655 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
656 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
657 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
658 VOIDmode)
659 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
660 {
661 int xbitpos = bitpos;
662 rtx value1;
663 rtx xop0 = op0;
664 rtx last = get_last_insn ();
665 rtx pat;
666 bool copy_back = false;
667
668 /* Add OFFSET into OP0's address. */
669 if (MEM_P (xop0))
670 xop0 = adjust_address (xop0, byte_mode, offset);
671
672 /* If xop0 is a register, we need it in OP_MODE
673 to make it acceptable to the format of insv. */
674 if (GET_CODE (xop0) == SUBREG)
675 /* We can't just change the mode, because this might clobber op0,
676 and we will need the original value of op0 if insv fails. */
677 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
678 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
679 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
680
681 /* If the destination is a paradoxical subreg such that we need a
682 truncate to the inner mode, perform the insertion on a temporary and
683 truncate the result to the original destination. Note that we can't
684 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
685 X) 0)) is (reg:N X). */
686 if (GET_CODE (xop0) == SUBREG
687 && REG_P (SUBREG_REG (xop0))
688 && (!TRULY_NOOP_TRUNCATION
689 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
690 GET_MODE_BITSIZE (op_mode))))
691 {
692 rtx tem = gen_reg_rtx (op_mode);
693 emit_move_insn (tem, xop0);
694 xop0 = tem;
695 copy_back = true;
696 }
697
698 /* On big-endian machines, we count bits from the most significant.
699 If the bit field insn does not, we must invert. */
700
701 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
702 xbitpos = unit - bitsize - xbitpos;
703
704 /* We have been counting XBITPOS within UNIT.
705 Count instead within the size of the register. */
706 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
707 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
708
709 unit = GET_MODE_BITSIZE (op_mode);
710
711 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
712 value1 = value;
713 if (GET_MODE (value) != op_mode)
714 {
715 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
716 {
717 /* Optimization: Don't bother really extending VALUE
718 if it has all the bits we will actually use. However,
719 if we must narrow it, be sure we do it correctly. */
720
721 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
722 {
723 rtx tmp;
724
725 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
726 if (! tmp)
727 tmp = simplify_gen_subreg (op_mode,
728 force_reg (GET_MODE (value),
729 value1),
730 GET_MODE (value), 0);
731 value1 = tmp;
732 }
733 else
734 value1 = gen_lowpart (op_mode, value1);
735 }
736 else if (CONST_INT_P (value))
737 value1 = gen_int_mode (INTVAL (value), op_mode);
738 else
739 /* Parse phase is supposed to make VALUE's data type
740 match that of the component reference, which is a type
741 at least as wide as the field; so VALUE should have
742 a mode that corresponds to that type. */
743 gcc_assert (CONSTANT_P (value));
744 }
745
746 /* If this machine's insv insists on a register,
747 get VALUE1 into a register. */
748 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
749 (value1, op_mode)))
750 value1 = force_reg (op_mode, value1);
751
752 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
753 if (pat)
754 {
755 emit_insn (pat);
756
757 if (copy_back)
758 convert_move (op0, xop0, true);
759 return true;
760 }
761 delete_insns_since (last);
762 }
763
764 /* If OP0 is a memory, try copying it to a register and seeing if a
765 cheap register alternative is available. */
766 if (HAVE_insv && MEM_P (op0))
767 {
768 enum machine_mode bestmode;
769
770 /* Get the mode to use for inserting into this field. If OP0 is
771 BLKmode, get the smallest mode consistent with the alignment. If
772 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
773 mode. Otherwise, use the smallest mode containing the field. */
774
775 if (GET_MODE (op0) == BLKmode
776 || (op_mode != MAX_MACHINE_MODE
777 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
778 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
779 (op_mode == MAX_MACHINE_MODE
780 ? VOIDmode : op_mode),
781 MEM_VOLATILE_P (op0));
782 else
783 bestmode = GET_MODE (op0);
784
785 if (bestmode != VOIDmode
786 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
787 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
788 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
789 {
790 rtx last, tempreg, xop0;
791 unsigned HOST_WIDE_INT xoffset, xbitpos;
792
793 last = get_last_insn ();
794
795 /* Adjust address to point to the containing unit of
796 that mode. Compute the offset as a multiple of this unit,
797 counting in bytes. */
798 unit = GET_MODE_BITSIZE (bestmode);
799 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
800 xbitpos = bitnum % unit;
801 xop0 = adjust_address (op0, bestmode, xoffset);
802
803 /* Fetch that unit, store the bitfield in it, then store
804 the unit. */
805 tempreg = copy_to_reg (xop0);
806 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
807 fieldmode, orig_value, false))
808 {
809 emit_move_insn (xop0, tempreg);
810 return true;
811 }
812 delete_insns_since (last);
813 }
814 }
815
816 if (!fallback_p)
817 return false;
818
819 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
820 return true;
821 }
822
823 /* Generate code to store value from rtx VALUE
824 into a bit-field within structure STR_RTX
825 containing BITSIZE bits starting at bit BITNUM.
826 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
827
828 void
829 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
830 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
831 rtx value)
832 {
833 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
834 gcc_unreachable ();
835 }
836 \f
837 /* Use shifts and boolean operations to store VALUE
838 into a bit field of width BITSIZE
839 in a memory location specified by OP0 except offset by OFFSET bytes.
840 (OFFSET must be 0 if OP0 is a register.)
841 The field starts at position BITPOS within the byte.
842 (If OP0 is a register, it may be a full word or a narrower mode,
843 but BITPOS still counts within a full word,
844 which is significant on bigendian machines.) */
845
846 static void
847 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
848 unsigned HOST_WIDE_INT bitsize,
849 unsigned HOST_WIDE_INT bitpos, rtx value)
850 {
851 enum machine_mode mode;
852 unsigned int total_bits = BITS_PER_WORD;
853 rtx temp;
854 int all_zero = 0;
855 int all_one = 0;
856
857 /* There is a case not handled here:
858 a structure with a known alignment of just a halfword
859 and a field split across two aligned halfwords within the structure.
860 Or likewise a structure with a known alignment of just a byte
861 and a field split across two bytes.
862 Such cases are not supposed to be able to occur. */
863
864 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
865 {
866 gcc_assert (!offset);
867 /* Special treatment for a bit field split across two registers. */
868 if (bitsize + bitpos > BITS_PER_WORD)
869 {
870 store_split_bit_field (op0, bitsize, bitpos, value);
871 return;
872 }
873 }
874 else
875 {
876 /* Get the proper mode to use for this field. We want a mode that
877 includes the entire field. If such a mode would be larger than
878 a word, we won't be doing the extraction the normal way.
879 We don't want a mode bigger than the destination. */
880
881 mode = GET_MODE (op0);
882 if (GET_MODE_BITSIZE (mode) == 0
883 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
884 mode = word_mode;
885
886 if (MEM_VOLATILE_P (op0)
887 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
888 && flag_strict_volatile_bitfields > 0)
889 mode = GET_MODE (op0);
890 else
891 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
892 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
893
894 if (mode == VOIDmode)
895 {
896 /* The only way this should occur is if the field spans word
897 boundaries. */
898 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
899 value);
900 return;
901 }
902
903 total_bits = GET_MODE_BITSIZE (mode);
904
905 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
906 be in the range 0 to total_bits-1, and put any excess bytes in
907 OFFSET. */
908 if (bitpos >= total_bits)
909 {
910 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
911 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
912 * BITS_PER_UNIT);
913 }
914
915 /* Get ref to an aligned byte, halfword, or word containing the field.
916 Adjust BITPOS to be position within a word,
917 and OFFSET to be the offset of that word.
918 Then alter OP0 to refer to that word. */
919 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
920 offset -= (offset % (total_bits / BITS_PER_UNIT));
921 op0 = adjust_address (op0, mode, offset);
922 }
923
924 mode = GET_MODE (op0);
925
926 /* Now MODE is either some integral mode for a MEM as OP0,
927 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
928 The bit field is contained entirely within OP0.
929 BITPOS is the starting bit number within OP0.
930 (OP0's mode may actually be narrower than MODE.) */
931
932 if (BYTES_BIG_ENDIAN)
933 /* BITPOS is the distance between our msb
934 and that of the containing datum.
935 Convert it to the distance from the lsb. */
936 bitpos = total_bits - bitsize - bitpos;
937
938 /* Now BITPOS is always the distance between our lsb
939 and that of OP0. */
940
941 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
942 we must first convert its mode to MODE. */
943
944 if (CONST_INT_P (value))
945 {
946 HOST_WIDE_INT v = INTVAL (value);
947
948 if (bitsize < HOST_BITS_PER_WIDE_INT)
949 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
950
951 if (v == 0)
952 all_zero = 1;
953 else if ((bitsize < HOST_BITS_PER_WIDE_INT
954 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
955 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
956 all_one = 1;
957
958 value = lshift_value (mode, value, bitpos, bitsize);
959 }
960 else
961 {
962 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
963 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
964
965 if (GET_MODE (value) != mode)
966 value = convert_to_mode (mode, value, 1);
967
968 if (must_and)
969 value = expand_binop (mode, and_optab, value,
970 mask_rtx (mode, 0, bitsize, 0),
971 NULL_RTX, 1, OPTAB_LIB_WIDEN);
972 if (bitpos > 0)
973 value = expand_shift (LSHIFT_EXPR, mode, value,
974 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
975 }
976
977 /* Now clear the chosen bits in OP0,
978 except that if VALUE is -1 we need not bother. */
979 /* We keep the intermediates in registers to allow CSE to combine
980 consecutive bitfield assignments. */
981
982 temp = force_reg (mode, op0);
983
984 if (! all_one)
985 {
986 temp = expand_binop (mode, and_optab, temp,
987 mask_rtx (mode, bitpos, bitsize, 1),
988 NULL_RTX, 1, OPTAB_LIB_WIDEN);
989 temp = force_reg (mode, temp);
990 }
991
992 /* Now logical-or VALUE into OP0, unless it is zero. */
993
994 if (! all_zero)
995 {
996 temp = expand_binop (mode, ior_optab, temp, value,
997 NULL_RTX, 1, OPTAB_LIB_WIDEN);
998 temp = force_reg (mode, temp);
999 }
1000
1001 if (op0 != temp)
1002 {
1003 op0 = copy_rtx (op0);
1004 emit_move_insn (op0, temp);
1005 }
1006 }
1007 \f
1008 /* Store a bit field that is split across multiple accessible memory objects.
1009
1010 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1011 BITSIZE is the field width; BITPOS the position of its first bit
1012 (within the word).
1013 VALUE is the value to store.
1014
1015 This does not yet handle fields wider than BITS_PER_WORD. */
1016
1017 static void
1018 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1019 unsigned HOST_WIDE_INT bitpos, rtx value)
1020 {
1021 unsigned int unit;
1022 unsigned int bitsdone = 0;
1023
1024 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1025 much at a time. */
1026 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1027 unit = BITS_PER_WORD;
1028 else
1029 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1030
1031 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1032 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1033 that VALUE might be a floating-point constant. */
1034 if (CONSTANT_P (value) && !CONST_INT_P (value))
1035 {
1036 rtx word = gen_lowpart_common (word_mode, value);
1037
1038 if (word && (value != word))
1039 value = word;
1040 else
1041 value = gen_lowpart_common (word_mode,
1042 force_reg (GET_MODE (value) != VOIDmode
1043 ? GET_MODE (value)
1044 : word_mode, value));
1045 }
1046
1047 while (bitsdone < bitsize)
1048 {
1049 unsigned HOST_WIDE_INT thissize;
1050 rtx part, word;
1051 unsigned HOST_WIDE_INT thispos;
1052 unsigned HOST_WIDE_INT offset;
1053
1054 offset = (bitpos + bitsdone) / unit;
1055 thispos = (bitpos + bitsdone) % unit;
1056
1057 /* THISSIZE must not overrun a word boundary. Otherwise,
1058 store_fixed_bit_field will call us again, and we will mutually
1059 recurse forever. */
1060 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1061 thissize = MIN (thissize, unit - thispos);
1062
1063 if (BYTES_BIG_ENDIAN)
1064 {
1065 int total_bits;
1066
1067 /* We must do an endian conversion exactly the same way as it is
1068 done in extract_bit_field, so that the two calls to
1069 extract_fixed_bit_field will have comparable arguments. */
1070 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1071 total_bits = BITS_PER_WORD;
1072 else
1073 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1074
1075 /* Fetch successively less significant portions. */
1076 if (CONST_INT_P (value))
1077 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1078 >> (bitsize - bitsdone - thissize))
1079 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1080 else
1081 /* The args are chosen so that the last part includes the
1082 lsb. Give extract_bit_field the value it needs (with
1083 endianness compensation) to fetch the piece we want. */
1084 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1085 total_bits - bitsize + bitsdone,
1086 NULL_RTX, 1);
1087 }
1088 else
1089 {
1090 /* Fetch successively more significant portions. */
1091 if (CONST_INT_P (value))
1092 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1093 >> bitsdone)
1094 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1095 else
1096 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1097 bitsdone, NULL_RTX, 1);
1098 }
1099
1100 /* If OP0 is a register, then handle OFFSET here.
1101
1102 When handling multiword bitfields, extract_bit_field may pass
1103 down a word_mode SUBREG of a larger REG for a bitfield that actually
1104 crosses a word boundary. Thus, for a SUBREG, we must find
1105 the current word starting from the base register. */
1106 if (GET_CODE (op0) == SUBREG)
1107 {
1108 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1109 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1110 GET_MODE (SUBREG_REG (op0)));
1111 offset = 0;
1112 }
1113 else if (REG_P (op0))
1114 {
1115 word = operand_subword_force (op0, offset, GET_MODE (op0));
1116 offset = 0;
1117 }
1118 else
1119 word = op0;
1120
1121 /* OFFSET is in UNITs, and UNIT is in bits.
1122 store_fixed_bit_field wants offset in bytes. */
1123 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1124 thispos, part);
1125 bitsdone += thissize;
1126 }
1127 }
1128 \f
1129 /* A subroutine of extract_bit_field_1 that converts return value X
1130 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1131 to extract_bit_field. */
1132
1133 static rtx
1134 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1135 enum machine_mode tmode, bool unsignedp)
1136 {
1137 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1138 return x;
1139
1140 /* If the x mode is not a scalar integral, first convert to the
1141 integer mode of that size and then access it as a floating-point
1142 value via a SUBREG. */
1143 if (!SCALAR_INT_MODE_P (tmode))
1144 {
1145 enum machine_mode smode;
1146
1147 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1148 x = convert_to_mode (smode, x, unsignedp);
1149 x = force_reg (smode, x);
1150 return gen_lowpart (tmode, x);
1151 }
1152
1153 return convert_to_mode (tmode, x, unsignedp);
1154 }
1155
1156 /* A subroutine of extract_bit_field, with the same arguments.
1157 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1158 if we can find no other means of implementing the operation.
1159 if FALLBACK_P is false, return NULL instead. */
1160
1161 static rtx
1162 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1163 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1164 enum machine_mode mode, enum machine_mode tmode,
1165 bool fallback_p)
1166 {
1167 unsigned int unit
1168 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1169 unsigned HOST_WIDE_INT offset, bitpos;
1170 rtx op0 = str_rtx;
1171 enum machine_mode int_mode;
1172 enum machine_mode ext_mode;
1173 enum machine_mode mode1;
1174 enum insn_code icode;
1175 int byte_offset;
1176
1177 if (tmode == VOIDmode)
1178 tmode = mode;
1179
1180 while (GET_CODE (op0) == SUBREG)
1181 {
1182 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1183 op0 = SUBREG_REG (op0);
1184 }
1185
1186 /* If we have an out-of-bounds access to a register, just return an
1187 uninitialized register of the required mode. This can occur if the
1188 source code contains an out-of-bounds access to a small array. */
1189 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1190 return gen_reg_rtx (tmode);
1191
1192 if (REG_P (op0)
1193 && mode == GET_MODE (op0)
1194 && bitnum == 0
1195 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1196 {
1197 /* We're trying to extract a full register from itself. */
1198 return op0;
1199 }
1200
1201 /* See if we can get a better vector mode before extracting. */
1202 if (VECTOR_MODE_P (GET_MODE (op0))
1203 && !MEM_P (op0)
1204 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1205 {
1206 enum machine_mode new_mode;
1207 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1208
1209 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1210 new_mode = MIN_MODE_VECTOR_FLOAT;
1211 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1212 new_mode = MIN_MODE_VECTOR_FRACT;
1213 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1214 new_mode = MIN_MODE_VECTOR_UFRACT;
1215 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1216 new_mode = MIN_MODE_VECTOR_ACCUM;
1217 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1218 new_mode = MIN_MODE_VECTOR_UACCUM;
1219 else
1220 new_mode = MIN_MODE_VECTOR_INT;
1221
1222 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1223 if (GET_MODE_NUNITS (new_mode) == nunits
1224 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1225 && targetm.vector_mode_supported_p (new_mode))
1226 break;
1227 if (new_mode != VOIDmode)
1228 op0 = gen_lowpart (new_mode, op0);
1229 }
1230
1231 /* Use vec_extract patterns for extracting parts of vectors whenever
1232 available. */
1233 if (VECTOR_MODE_P (GET_MODE (op0))
1234 && !MEM_P (op0)
1235 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1236 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1237 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1238 {
1239 enum machine_mode outermode = GET_MODE (op0);
1240 enum machine_mode innermode = GET_MODE_INNER (outermode);
1241 int icode = (int) optab_handler (vec_extract_optab, outermode);
1242 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1243 rtx rtxpos = GEN_INT (pos);
1244 rtx src = op0;
1245 rtx dest = NULL, pat, seq;
1246 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1247 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1248 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1249
1250 if (innermode == tmode || innermode == mode)
1251 dest = target;
1252
1253 if (!dest)
1254 dest = gen_reg_rtx (innermode);
1255
1256 start_sequence ();
1257
1258 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1259 dest = copy_to_mode_reg (mode0, dest);
1260
1261 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1262 src = copy_to_mode_reg (mode1, src);
1263
1264 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1265 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1266
1267 /* We could handle this, but we should always be called with a pseudo
1268 for our targets and all insns should take them as outputs. */
1269 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1270 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1271 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1272
1273 pat = GEN_FCN (icode) (dest, src, rtxpos);
1274 seq = get_insns ();
1275 end_sequence ();
1276 if (pat)
1277 {
1278 emit_insn (seq);
1279 emit_insn (pat);
1280 if (mode0 != mode)
1281 return gen_lowpart (tmode, dest);
1282 return dest;
1283 }
1284 }
1285
1286 /* Make sure we are playing with integral modes. Pun with subregs
1287 if we aren't. */
1288 {
1289 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1290 if (imode != GET_MODE (op0))
1291 {
1292 if (MEM_P (op0))
1293 op0 = adjust_address (op0, imode, 0);
1294 else if (imode != BLKmode)
1295 {
1296 op0 = gen_lowpart (imode, op0);
1297
1298 /* If we got a SUBREG, force it into a register since we
1299 aren't going to be able to do another SUBREG on it. */
1300 if (GET_CODE (op0) == SUBREG)
1301 op0 = force_reg (imode, op0);
1302 }
1303 else if (REG_P (op0))
1304 {
1305 rtx reg, subreg;
1306 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1307 MODE_INT);
1308 reg = gen_reg_rtx (imode);
1309 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1310 emit_move_insn (subreg, op0);
1311 op0 = reg;
1312 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1313 }
1314 else
1315 {
1316 rtx mem = assign_stack_temp (GET_MODE (op0),
1317 GET_MODE_SIZE (GET_MODE (op0)), 0);
1318 emit_move_insn (mem, op0);
1319 op0 = adjust_address (mem, BLKmode, 0);
1320 }
1321 }
1322 }
1323
1324 /* We may be accessing data outside the field, which means
1325 we can alias adjacent data. */
1326 if (MEM_P (op0))
1327 {
1328 op0 = shallow_copy_rtx (op0);
1329 set_mem_alias_set (op0, 0);
1330 set_mem_expr (op0, 0);
1331 }
1332
1333 /* Extraction of a full-word or multi-word value from a structure
1334 in a register or aligned memory can be done with just a SUBREG.
1335 A subword value in the least significant part of a register
1336 can also be extracted with a SUBREG. For this, we need the
1337 byte offset of the value in op0. */
1338
1339 bitpos = bitnum % unit;
1340 offset = bitnum / unit;
1341 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1342
1343 /* If OP0 is a register, BITPOS must count within a word.
1344 But as we have it, it counts within whatever size OP0 now has.
1345 On a bigendian machine, these are not the same, so convert. */
1346 if (BYTES_BIG_ENDIAN
1347 && !MEM_P (op0)
1348 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1349 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1350
1351 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1352 If that's wrong, the solution is to test for it and set TARGET to 0
1353 if needed. */
1354
1355 /* Only scalar integer modes can be converted via subregs. There is an
1356 additional problem for FP modes here in that they can have a precision
1357 which is different from the size. mode_for_size uses precision, but
1358 we want a mode based on the size, so we must avoid calling it for FP
1359 modes. */
1360 mode1 = (SCALAR_INT_MODE_P (tmode)
1361 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1362 : mode);
1363
1364 /* If the bitfield is volatile, we need to make sure the access
1365 remains on a type-aligned boundary. */
1366 if (GET_CODE (op0) == MEM
1367 && MEM_VOLATILE_P (op0)
1368 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
1369 && flag_strict_volatile_bitfields > 0)
1370 goto no_subreg_mode_swap;
1371
1372 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1373 && bitpos % BITS_PER_WORD == 0)
1374 || (mode1 != BLKmode
1375 /* ??? The big endian test here is wrong. This is correct
1376 if the value is in a register, and if mode_for_size is not
1377 the same mode as op0. This causes us to get unnecessarily
1378 inefficient code from the Thumb port when -mbig-endian. */
1379 && (BYTES_BIG_ENDIAN
1380 ? bitpos + bitsize == BITS_PER_WORD
1381 : bitpos == 0)))
1382 && ((!MEM_P (op0)
1383 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1384 GET_MODE_BITSIZE (GET_MODE (op0)))
1385 && GET_MODE_SIZE (mode1) != 0
1386 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1387 || (MEM_P (op0)
1388 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1389 || (offset * BITS_PER_UNIT % bitsize == 0
1390 && MEM_ALIGN (op0) % bitsize == 0)))))
1391 {
1392 if (MEM_P (op0))
1393 op0 = adjust_address (op0, mode1, offset);
1394 else if (mode1 != GET_MODE (op0))
1395 {
1396 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1397 byte_offset);
1398 if (sub == NULL)
1399 goto no_subreg_mode_swap;
1400 op0 = sub;
1401 }
1402 if (mode1 != mode)
1403 return convert_to_mode (tmode, op0, unsignedp);
1404 return op0;
1405 }
1406 no_subreg_mode_swap:
1407
1408 /* Handle fields bigger than a word. */
1409
1410 if (bitsize > BITS_PER_WORD)
1411 {
1412 /* Here we transfer the words of the field
1413 in the order least significant first.
1414 This is because the most significant word is the one which may
1415 be less than full. */
1416
1417 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1418 unsigned int i;
1419
1420 if (target == 0 || !REG_P (target))
1421 target = gen_reg_rtx (mode);
1422
1423 /* Indicate for flow that the entire target reg is being set. */
1424 emit_clobber (target);
1425
1426 for (i = 0; i < nwords; i++)
1427 {
1428 /* If I is 0, use the low-order word in both field and target;
1429 if I is 1, use the next to lowest word; and so on. */
1430 /* Word number in TARGET to use. */
1431 unsigned int wordnum
1432 = (WORDS_BIG_ENDIAN
1433 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1434 : i);
1435 /* Offset from start of field in OP0. */
1436 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1437 ? MAX (0, ((int) bitsize - ((int) i + 1)
1438 * (int) BITS_PER_WORD))
1439 : (int) i * BITS_PER_WORD);
1440 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1441 rtx result_part
1442 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1443 bitsize - i * BITS_PER_WORD),
1444 bitnum + bit_offset, 1, target_part, mode,
1445 word_mode);
1446
1447 gcc_assert (target_part);
1448
1449 if (result_part != target_part)
1450 emit_move_insn (target_part, result_part);
1451 }
1452
1453 if (unsignedp)
1454 {
1455 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1456 need to be zero'd out. */
1457 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1458 {
1459 unsigned int i, total_words;
1460
1461 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1462 for (i = nwords; i < total_words; i++)
1463 emit_move_insn
1464 (operand_subword (target,
1465 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1466 1, VOIDmode),
1467 const0_rtx);
1468 }
1469 return target;
1470 }
1471
1472 /* Signed bit field: sign-extend with two arithmetic shifts. */
1473 target = expand_shift (LSHIFT_EXPR, mode, target,
1474 build_int_cst (NULL_TREE,
1475 GET_MODE_BITSIZE (mode) - bitsize),
1476 NULL_RTX, 0);
1477 return expand_shift (RSHIFT_EXPR, mode, target,
1478 build_int_cst (NULL_TREE,
1479 GET_MODE_BITSIZE (mode) - bitsize),
1480 NULL_RTX, 0);
1481 }
1482
1483 /* From here on we know the desired field is smaller than a word. */
1484
1485 /* Check if there is a correspondingly-sized integer field, so we can
1486 safely extract it as one size of integer, if necessary; then
1487 truncate or extend to the size that is wanted; then use SUBREGs or
1488 convert_to_mode to get one of the modes we really wanted. */
1489
1490 int_mode = int_mode_for_mode (tmode);
1491 if (int_mode == BLKmode)
1492 int_mode = int_mode_for_mode (mode);
1493 /* Should probably push op0 out to memory and then do a load. */
1494 gcc_assert (int_mode != BLKmode);
1495
1496 /* OFFSET is the number of words or bytes (UNIT says which)
1497 from STR_RTX to the first word or byte containing part of the field. */
1498 if (!MEM_P (op0))
1499 {
1500 if (offset != 0
1501 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1502 {
1503 if (!REG_P (op0))
1504 op0 = copy_to_reg (op0);
1505 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1506 op0, (offset * UNITS_PER_WORD));
1507 }
1508 offset = 0;
1509 }
1510
1511 /* Now OFFSET is nonzero only for memory operands. */
1512 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1513 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1514 if (ext_mode != MAX_MACHINE_MODE
1515 && bitsize > 0
1516 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1517 /* If op0 is a register, we need it in EXT_MODE to make it
1518 acceptable to the format of ext(z)v. */
1519 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1520 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1521 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1522 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1523 {
1524 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1525 rtx bitsize_rtx, bitpos_rtx;
1526 rtx last = get_last_insn ();
1527 rtx xop0 = op0;
1528 rtx xtarget = target;
1529 rtx xspec_target = target;
1530 rtx xspec_target_subreg = 0;
1531 rtx pat;
1532
1533 /* If op0 is a register, we need it in EXT_MODE to make it
1534 acceptable to the format of ext(z)v. */
1535 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1536 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1537 if (MEM_P (xop0))
1538 /* Get ref to first byte containing part of the field. */
1539 xop0 = adjust_address (xop0, byte_mode, xoffset);
1540
1541 /* On big-endian machines, we count bits from the most significant.
1542 If the bit field insn does not, we must invert. */
1543 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1544 xbitpos = unit - bitsize - xbitpos;
1545
1546 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1547 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1548 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1549
1550 unit = GET_MODE_BITSIZE (ext_mode);
1551
1552 if (xtarget == 0)
1553 xtarget = xspec_target = gen_reg_rtx (tmode);
1554
1555 if (GET_MODE (xtarget) != ext_mode)
1556 {
1557 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1558 between the mode of the extraction (word_mode) and the target
1559 mode. Instead, create a temporary and use convert_move to set
1560 the target. */
1561 if (REG_P (xtarget)
1562 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1563 GET_MODE_BITSIZE (ext_mode)))
1564 {
1565 xtarget = gen_lowpart (ext_mode, xtarget);
1566 if (GET_MODE_SIZE (ext_mode)
1567 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1568 xspec_target_subreg = xtarget;
1569 }
1570 else
1571 xtarget = gen_reg_rtx (ext_mode);
1572 }
1573
1574 /* If this machine's ext(z)v insists on a register target,
1575 make sure we have one. */
1576 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1577 xtarget = gen_reg_rtx (ext_mode);
1578
1579 bitsize_rtx = GEN_INT (bitsize);
1580 bitpos_rtx = GEN_INT (xbitpos);
1581
1582 pat = (unsignedp
1583 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1584 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1585 if (pat)
1586 {
1587 emit_insn (pat);
1588 if (xtarget == xspec_target)
1589 return xtarget;
1590 if (xtarget == xspec_target_subreg)
1591 return xspec_target;
1592 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1593 }
1594 delete_insns_since (last);
1595 }
1596
1597 /* If OP0 is a memory, try copying it to a register and seeing if a
1598 cheap register alternative is available. */
1599 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1600 {
1601 enum machine_mode bestmode;
1602
1603 /* Get the mode to use for inserting into this field. If
1604 OP0 is BLKmode, get the smallest mode consistent with the
1605 alignment. If OP0 is a non-BLKmode object that is no
1606 wider than EXT_MODE, use its mode. Otherwise, use the
1607 smallest mode containing the field. */
1608
1609 if (GET_MODE (op0) == BLKmode
1610 || (ext_mode != MAX_MACHINE_MODE
1611 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1612 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1613 (ext_mode == MAX_MACHINE_MODE
1614 ? VOIDmode : ext_mode),
1615 MEM_VOLATILE_P (op0));
1616 else
1617 bestmode = GET_MODE (op0);
1618
1619 if (bestmode != VOIDmode
1620 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1621 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1622 {
1623 unsigned HOST_WIDE_INT xoffset, xbitpos;
1624
1625 /* Compute the offset as a multiple of this unit,
1626 counting in bytes. */
1627 unit = GET_MODE_BITSIZE (bestmode);
1628 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1629 xbitpos = bitnum % unit;
1630
1631 /* Make sure the register is big enough for the whole field. */
1632 if (xoffset * BITS_PER_UNIT + unit
1633 >= offset * BITS_PER_UNIT + bitsize)
1634 {
1635 rtx last, result, xop0;
1636
1637 last = get_last_insn ();
1638
1639 /* Fetch it to a register in that size. */
1640 xop0 = adjust_address (op0, bestmode, xoffset);
1641 xop0 = force_reg (bestmode, xop0);
1642 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1643 unsignedp, target,
1644 mode, tmode, false);
1645 if (result)
1646 return result;
1647
1648 delete_insns_since (last);
1649 }
1650 }
1651 }
1652
1653 if (!fallback_p)
1654 return NULL;
1655
1656 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1657 bitpos, target, unsignedp);
1658 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1659 }
1660
1661 /* Generate code to extract a byte-field from STR_RTX
1662 containing BITSIZE bits, starting at BITNUM,
1663 and put it in TARGET if possible (if TARGET is nonzero).
1664 Regardless of TARGET, we return the rtx for where the value is placed.
1665
1666 STR_RTX is the structure containing the byte (a REG or MEM).
1667 UNSIGNEDP is nonzero if this is an unsigned bit field.
1668 MODE is the natural mode of the field value once extracted.
1669 TMODE is the mode the caller would like the value to have;
1670 but the value may be returned with type MODE instead.
1671
1672 If a TARGET is specified and we can store in it at no extra cost,
1673 we do so, and return TARGET.
1674 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1675 if they are equally easy. */
1676
1677 rtx
1678 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1679 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1680 enum machine_mode mode, enum machine_mode tmode)
1681 {
1682 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1683 target, mode, tmode, true);
1684 }
1685 \f
1686 /* Extract a bit field using shifts and boolean operations
1687 Returns an rtx to represent the value.
1688 OP0 addresses a register (word) or memory (byte).
1689 BITPOS says which bit within the word or byte the bit field starts in.
1690 OFFSET says how many bytes farther the bit field starts;
1691 it is 0 if OP0 is a register.
1692 BITSIZE says how many bits long the bit field is.
1693 (If OP0 is a register, it may be narrower than a full word,
1694 but BITPOS still counts within a full word,
1695 which is significant on bigendian machines.)
1696
1697 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1698 If TARGET is nonzero, attempts to store the value there
1699 and return TARGET, but this is not guaranteed.
1700 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1701
1702 static rtx
1703 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1704 unsigned HOST_WIDE_INT offset,
1705 unsigned HOST_WIDE_INT bitsize,
1706 unsigned HOST_WIDE_INT bitpos, rtx target,
1707 int unsignedp)
1708 {
1709 unsigned int total_bits = BITS_PER_WORD;
1710 enum machine_mode mode;
1711
1712 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1713 {
1714 /* Special treatment for a bit field split across two registers. */
1715 if (bitsize + bitpos > BITS_PER_WORD)
1716 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1717 }
1718 else
1719 {
1720 /* Get the proper mode to use for this field. We want a mode that
1721 includes the entire field. If such a mode would be larger than
1722 a word, we won't be doing the extraction the normal way. */
1723
1724 if (MEM_VOLATILE_P (op0)
1725 && flag_strict_volatile_bitfields > 0)
1726 {
1727 if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1728 mode = GET_MODE (op0);
1729 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1730 mode = GET_MODE (target);
1731 else
1732 mode = tmode;
1733 }
1734 else
1735 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1736 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1737
1738 if (mode == VOIDmode)
1739 /* The only way this should occur is if the field spans word
1740 boundaries. */
1741 return extract_split_bit_field (op0, bitsize,
1742 bitpos + offset * BITS_PER_UNIT,
1743 unsignedp);
1744
1745 total_bits = GET_MODE_BITSIZE (mode);
1746
1747 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1748 be in the range 0 to total_bits-1, and put any excess bytes in
1749 OFFSET. */
1750 if (bitpos >= total_bits)
1751 {
1752 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1753 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1754 * BITS_PER_UNIT);
1755 }
1756
1757 /* If we're accessing a volatile MEM, we can't do the next
1758 alignment step if it results in a multi-word access where we
1759 otherwise wouldn't have one. So, check for that case
1760 here. */
1761 if (MEM_P (op0)
1762 && MEM_VOLATILE_P (op0)
1763 && flag_strict_volatile_bitfields > 0
1764 && bitpos + bitsize <= total_bits
1765 && bitpos + bitsize + (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT > total_bits)
1766 {
1767 if (STRICT_ALIGNMENT)
1768 {
1769 static bool informed_about_misalignment = false;
1770 bool warned;
1771
1772 if (bitsize == total_bits)
1773 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1774 "mis-aligned access used for structure member");
1775 else
1776 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1777 "mis-aligned access used for structure bitfield");
1778
1779 if (! informed_about_misalignment && warned)
1780 {
1781 informed_about_misalignment = true;
1782 inform (input_location,
1783 "When a volatile object spans multiple type-sized locations,"
1784 " the compiler must choose between using a single mis-aligned access to"
1785 " preserve the volatility, or using multiple aligned accesses to avoid"
1786 " runtime faults. This code may fail at runtime if the hardware does"
1787 " not allow this access.");
1788 }
1789 }
1790 }
1791 else
1792 {
1793
1794 /* Get ref to an aligned byte, halfword, or word containing the field.
1795 Adjust BITPOS to be position within a word,
1796 and OFFSET to be the offset of that word.
1797 Then alter OP0 to refer to that word. */
1798 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1799 offset -= (offset % (total_bits / BITS_PER_UNIT));
1800 }
1801
1802 op0 = adjust_address (op0, mode, offset);
1803 }
1804
1805 mode = GET_MODE (op0);
1806
1807 if (BYTES_BIG_ENDIAN)
1808 /* BITPOS is the distance between our msb and that of OP0.
1809 Convert it to the distance from the lsb. */
1810 bitpos = total_bits - bitsize - bitpos;
1811
1812 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1813 We have reduced the big-endian case to the little-endian case. */
1814
1815 if (unsignedp)
1816 {
1817 if (bitpos)
1818 {
1819 /* If the field does not already start at the lsb,
1820 shift it so it does. */
1821 tree amount = build_int_cst (NULL_TREE, bitpos);
1822 /* Maybe propagate the target for the shift. */
1823 /* But not if we will return it--could confuse integrate.c. */
1824 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1825 if (tmode != mode) subtarget = 0;
1826 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1827 }
1828 /* Convert the value to the desired mode. */
1829 if (mode != tmode)
1830 op0 = convert_to_mode (tmode, op0, 1);
1831
1832 /* Unless the msb of the field used to be the msb when we shifted,
1833 mask out the upper bits. */
1834
1835 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1836 return expand_binop (GET_MODE (op0), and_optab, op0,
1837 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1838 target, 1, OPTAB_LIB_WIDEN);
1839 return op0;
1840 }
1841
1842 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1843 then arithmetic-shift its lsb to the lsb of the word. */
1844 op0 = force_reg (mode, op0);
1845 if (mode != tmode)
1846 target = 0;
1847
1848 /* Find the narrowest integer mode that contains the field. */
1849
1850 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1851 mode = GET_MODE_WIDER_MODE (mode))
1852 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1853 {
1854 op0 = convert_to_mode (mode, op0, 0);
1855 break;
1856 }
1857
1858 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1859 {
1860 tree amount
1861 = build_int_cst (NULL_TREE,
1862 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1863 /* Maybe propagate the target for the shift. */
1864 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1865 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1866 }
1867
1868 return expand_shift (RSHIFT_EXPR, mode, op0,
1869 build_int_cst (NULL_TREE,
1870 GET_MODE_BITSIZE (mode) - bitsize),
1871 target, 0);
1872 }
1873 \f
1874 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1875 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1876 complement of that if COMPLEMENT. The mask is truncated if
1877 necessary to the width of mode MODE. The mask is zero-extended if
1878 BITSIZE+BITPOS is too small for MODE. */
1879
1880 static rtx
1881 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1882 {
1883 double_int mask;
1884
1885 mask = double_int_mask (bitsize);
1886 mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1887
1888 if (complement)
1889 mask = double_int_not (mask);
1890
1891 return immed_double_int_const (mask, mode);
1892 }
1893
1894 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1895 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1896
1897 static rtx
1898 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1899 {
1900 double_int val;
1901
1902 val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
1903 val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1904
1905 return immed_double_int_const (val, mode);
1906 }
1907 \f
1908 /* Extract a bit field that is split across two words
1909 and return an RTX for the result.
1910
1911 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1912 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1913 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1914
1915 static rtx
1916 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1917 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1918 {
1919 unsigned int unit;
1920 unsigned int bitsdone = 0;
1921 rtx result = NULL_RTX;
1922 int first = 1;
1923
1924 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1925 much at a time. */
1926 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1927 unit = BITS_PER_WORD;
1928 else
1929 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1930
1931 while (bitsdone < bitsize)
1932 {
1933 unsigned HOST_WIDE_INT thissize;
1934 rtx part, word;
1935 unsigned HOST_WIDE_INT thispos;
1936 unsigned HOST_WIDE_INT offset;
1937
1938 offset = (bitpos + bitsdone) / unit;
1939 thispos = (bitpos + bitsdone) % unit;
1940
1941 /* THISSIZE must not overrun a word boundary. Otherwise,
1942 extract_fixed_bit_field will call us again, and we will mutually
1943 recurse forever. */
1944 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1945 thissize = MIN (thissize, unit - thispos);
1946
1947 /* If OP0 is a register, then handle OFFSET here.
1948
1949 When handling multiword bitfields, extract_bit_field may pass
1950 down a word_mode SUBREG of a larger REG for a bitfield that actually
1951 crosses a word boundary. Thus, for a SUBREG, we must find
1952 the current word starting from the base register. */
1953 if (GET_CODE (op0) == SUBREG)
1954 {
1955 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1956 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1957 GET_MODE (SUBREG_REG (op0)));
1958 offset = 0;
1959 }
1960 else if (REG_P (op0))
1961 {
1962 word = operand_subword_force (op0, offset, GET_MODE (op0));
1963 offset = 0;
1964 }
1965 else
1966 word = op0;
1967
1968 /* Extract the parts in bit-counting order,
1969 whose meaning is determined by BYTES_PER_UNIT.
1970 OFFSET is in UNITs, and UNIT is in bits.
1971 extract_fixed_bit_field wants offset in bytes. */
1972 part = extract_fixed_bit_field (word_mode, word,
1973 offset * unit / BITS_PER_UNIT,
1974 thissize, thispos, 0, 1);
1975 bitsdone += thissize;
1976
1977 /* Shift this part into place for the result. */
1978 if (BYTES_BIG_ENDIAN)
1979 {
1980 if (bitsize != bitsdone)
1981 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1982 build_int_cst (NULL_TREE, bitsize - bitsdone),
1983 0, 1);
1984 }
1985 else
1986 {
1987 if (bitsdone != thissize)
1988 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1989 build_int_cst (NULL_TREE,
1990 bitsdone - thissize), 0, 1);
1991 }
1992
1993 if (first)
1994 result = part;
1995 else
1996 /* Combine the parts with bitwise or. This works
1997 because we extracted each part as an unsigned bit field. */
1998 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1999 OPTAB_LIB_WIDEN);
2000
2001 first = 0;
2002 }
2003
2004 /* Unsigned bit field: we are done. */
2005 if (unsignedp)
2006 return result;
2007 /* Signed bit field: sign-extend with two arithmetic shifts. */
2008 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2009 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2010 NULL_RTX, 0);
2011 return expand_shift (RSHIFT_EXPR, word_mode, result,
2012 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2013 NULL_RTX, 0);
2014 }
2015 \f
2016 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2017 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2018 MODE, fill the upper bits with zeros. Fail if the layout of either
2019 mode is unknown (as for CC modes) or if the extraction would involve
2020 unprofitable mode punning. Return the value on success, otherwise
2021 return null.
2022
2023 This is different from gen_lowpart* in these respects:
2024
2025 - the returned value must always be considered an rvalue
2026
2027 - when MODE is wider than SRC_MODE, the extraction involves
2028 a zero extension
2029
2030 - when MODE is smaller than SRC_MODE, the extraction involves
2031 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2032
2033 In other words, this routine performs a computation, whereas the
2034 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2035 operations. */
2036
2037 rtx
2038 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2039 {
2040 enum machine_mode int_mode, src_int_mode;
2041
2042 if (mode == src_mode)
2043 return src;
2044
2045 if (CONSTANT_P (src))
2046 {
2047 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2048 fails, it will happily create (subreg (symbol_ref)) or similar
2049 invalid SUBREGs. */
2050 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2051 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2052 if (ret)
2053 return ret;
2054
2055 if (GET_MODE (src) == VOIDmode
2056 || !validate_subreg (mode, src_mode, src, byte))
2057 return NULL_RTX;
2058
2059 src = force_reg (GET_MODE (src), src);
2060 return gen_rtx_SUBREG (mode, src, byte);
2061 }
2062
2063 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2064 return NULL_RTX;
2065
2066 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2067 && MODES_TIEABLE_P (mode, src_mode))
2068 {
2069 rtx x = gen_lowpart_common (mode, src);
2070 if (x)
2071 return x;
2072 }
2073
2074 src_int_mode = int_mode_for_mode (src_mode);
2075 int_mode = int_mode_for_mode (mode);
2076 if (src_int_mode == BLKmode || int_mode == BLKmode)
2077 return NULL_RTX;
2078
2079 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2080 return NULL_RTX;
2081 if (!MODES_TIEABLE_P (int_mode, mode))
2082 return NULL_RTX;
2083
2084 src = gen_lowpart (src_int_mode, src);
2085 src = convert_modes (int_mode, src_int_mode, src, true);
2086 src = gen_lowpart (mode, src);
2087 return src;
2088 }
2089 \f
2090 /* Add INC into TARGET. */
2091
2092 void
2093 expand_inc (rtx target, rtx inc)
2094 {
2095 rtx value = expand_binop (GET_MODE (target), add_optab,
2096 target, inc,
2097 target, 0, OPTAB_LIB_WIDEN);
2098 if (value != target)
2099 emit_move_insn (target, value);
2100 }
2101
2102 /* Subtract DEC from TARGET. */
2103
2104 void
2105 expand_dec (rtx target, rtx dec)
2106 {
2107 rtx value = expand_binop (GET_MODE (target), sub_optab,
2108 target, dec,
2109 target, 0, OPTAB_LIB_WIDEN);
2110 if (value != target)
2111 emit_move_insn (target, value);
2112 }
2113 \f
2114 /* Output a shift instruction for expression code CODE,
2115 with SHIFTED being the rtx for the value to shift,
2116 and AMOUNT the tree for the amount to shift by.
2117 Store the result in the rtx TARGET, if that is convenient.
2118 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2119 Return the rtx for where the value is. */
2120
2121 rtx
2122 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2123 tree amount, rtx target, int unsignedp)
2124 {
2125 rtx op1, temp = 0;
2126 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2127 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2128 optab lshift_optab = ashl_optab;
2129 optab rshift_arith_optab = ashr_optab;
2130 optab rshift_uns_optab = lshr_optab;
2131 optab lrotate_optab = rotl_optab;
2132 optab rrotate_optab = rotr_optab;
2133 enum machine_mode op1_mode;
2134 int attempt;
2135 bool speed = optimize_insn_for_speed_p ();
2136
2137 op1 = expand_normal (amount);
2138 op1_mode = GET_MODE (op1);
2139
2140 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2141 shift amount is a vector, use the vector/vector shift patterns. */
2142 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2143 {
2144 lshift_optab = vashl_optab;
2145 rshift_arith_optab = vashr_optab;
2146 rshift_uns_optab = vlshr_optab;
2147 lrotate_optab = vrotl_optab;
2148 rrotate_optab = vrotr_optab;
2149 }
2150
2151 /* Previously detected shift-counts computed by NEGATE_EXPR
2152 and shifted in the other direction; but that does not work
2153 on all machines. */
2154
2155 if (SHIFT_COUNT_TRUNCATED)
2156 {
2157 if (CONST_INT_P (op1)
2158 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2159 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2160 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2161 % GET_MODE_BITSIZE (mode));
2162 else if (GET_CODE (op1) == SUBREG
2163 && subreg_lowpart_p (op1)
2164 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2165 op1 = SUBREG_REG (op1);
2166 }
2167
2168 if (op1 == const0_rtx)
2169 return shifted;
2170
2171 /* Check whether its cheaper to implement a left shift by a constant
2172 bit count by a sequence of additions. */
2173 if (code == LSHIFT_EXPR
2174 && CONST_INT_P (op1)
2175 && INTVAL (op1) > 0
2176 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2177 && INTVAL (op1) < MAX_BITS_PER_WORD
2178 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2179 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2180 {
2181 int i;
2182 for (i = 0; i < INTVAL (op1); i++)
2183 {
2184 temp = force_reg (mode, shifted);
2185 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2186 unsignedp, OPTAB_LIB_WIDEN);
2187 }
2188 return shifted;
2189 }
2190
2191 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2192 {
2193 enum optab_methods methods;
2194
2195 if (attempt == 0)
2196 methods = OPTAB_DIRECT;
2197 else if (attempt == 1)
2198 methods = OPTAB_WIDEN;
2199 else
2200 methods = OPTAB_LIB_WIDEN;
2201
2202 if (rotate)
2203 {
2204 /* Widening does not work for rotation. */
2205 if (methods == OPTAB_WIDEN)
2206 continue;
2207 else if (methods == OPTAB_LIB_WIDEN)
2208 {
2209 /* If we have been unable to open-code this by a rotation,
2210 do it as the IOR of two shifts. I.e., to rotate A
2211 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2212 where C is the bitsize of A.
2213
2214 It is theoretically possible that the target machine might
2215 not be able to perform either shift and hence we would
2216 be making two libcalls rather than just the one for the
2217 shift (similarly if IOR could not be done). We will allow
2218 this extremely unlikely lossage to avoid complicating the
2219 code below. */
2220
2221 rtx subtarget = target == shifted ? 0 : target;
2222 tree new_amount, other_amount;
2223 rtx temp1;
2224 tree type = TREE_TYPE (amount);
2225 if (GET_MODE (op1) != TYPE_MODE (type)
2226 && GET_MODE (op1) != VOIDmode)
2227 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2228 new_amount = make_tree (type, op1);
2229 other_amount
2230 = fold_build2 (MINUS_EXPR, type,
2231 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2232 new_amount);
2233
2234 shifted = force_reg (mode, shifted);
2235
2236 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2237 mode, shifted, new_amount, 0, 1);
2238 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2239 mode, shifted, other_amount, subtarget, 1);
2240 return expand_binop (mode, ior_optab, temp, temp1, target,
2241 unsignedp, methods);
2242 }
2243
2244 temp = expand_binop (mode,
2245 left ? lrotate_optab : rrotate_optab,
2246 shifted, op1, target, unsignedp, methods);
2247 }
2248 else if (unsignedp)
2249 temp = expand_binop (mode,
2250 left ? lshift_optab : rshift_uns_optab,
2251 shifted, op1, target, unsignedp, methods);
2252
2253 /* Do arithmetic shifts.
2254 Also, if we are going to widen the operand, we can just as well
2255 use an arithmetic right-shift instead of a logical one. */
2256 if (temp == 0 && ! rotate
2257 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2258 {
2259 enum optab_methods methods1 = methods;
2260
2261 /* If trying to widen a log shift to an arithmetic shift,
2262 don't accept an arithmetic shift of the same size. */
2263 if (unsignedp)
2264 methods1 = OPTAB_MUST_WIDEN;
2265
2266 /* Arithmetic shift */
2267
2268 temp = expand_binop (mode,
2269 left ? lshift_optab : rshift_arith_optab,
2270 shifted, op1, target, unsignedp, methods1);
2271 }
2272
2273 /* We used to try extzv here for logical right shifts, but that was
2274 only useful for one machine, the VAX, and caused poor code
2275 generation there for lshrdi3, so the code was deleted and a
2276 define_expand for lshrsi3 was added to vax.md. */
2277 }
2278
2279 gcc_assert (temp);
2280 return temp;
2281 }
2282 \f
2283 /* Indicates the type of fixup needed after a constant multiplication.
2284 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2285 the result should be negated, and ADD_VARIANT means that the
2286 multiplicand should be added to the result. */
2287 enum mult_variant {basic_variant, negate_variant, add_variant};
2288
2289 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2290 const struct mult_cost *, enum machine_mode mode);
2291 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2292 struct algorithm *, enum mult_variant *, int);
2293 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2294 const struct algorithm *, enum mult_variant);
2295 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2296 int, rtx *, int *, int *);
2297 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2298 static rtx extract_high_half (enum machine_mode, rtx);
2299 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2300 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2301 int, int);
2302 /* Compute and return the best algorithm for multiplying by T.
2303 The algorithm must cost less than cost_limit
2304 If retval.cost >= COST_LIMIT, no algorithm was found and all
2305 other field of the returned struct are undefined.
2306 MODE is the machine mode of the multiplication. */
2307
2308 static void
2309 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2310 const struct mult_cost *cost_limit, enum machine_mode mode)
2311 {
2312 int m;
2313 struct algorithm *alg_in, *best_alg;
2314 struct mult_cost best_cost;
2315 struct mult_cost new_limit;
2316 int op_cost, op_latency;
2317 unsigned HOST_WIDE_INT orig_t = t;
2318 unsigned HOST_WIDE_INT q;
2319 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2320 int hash_index;
2321 bool cache_hit = false;
2322 enum alg_code cache_alg = alg_zero;
2323 bool speed = optimize_insn_for_speed_p ();
2324
2325 /* Indicate that no algorithm is yet found. If no algorithm
2326 is found, this value will be returned and indicate failure. */
2327 alg_out->cost.cost = cost_limit->cost + 1;
2328 alg_out->cost.latency = cost_limit->latency + 1;
2329
2330 if (cost_limit->cost < 0
2331 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2332 return;
2333
2334 /* Restrict the bits of "t" to the multiplication's mode. */
2335 t &= GET_MODE_MASK (mode);
2336
2337 /* t == 1 can be done in zero cost. */
2338 if (t == 1)
2339 {
2340 alg_out->ops = 1;
2341 alg_out->cost.cost = 0;
2342 alg_out->cost.latency = 0;
2343 alg_out->op[0] = alg_m;
2344 return;
2345 }
2346
2347 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2348 fail now. */
2349 if (t == 0)
2350 {
2351 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2352 return;
2353 else
2354 {
2355 alg_out->ops = 1;
2356 alg_out->cost.cost = zero_cost[speed];
2357 alg_out->cost.latency = zero_cost[speed];
2358 alg_out->op[0] = alg_zero;
2359 return;
2360 }
2361 }
2362
2363 /* We'll be needing a couple extra algorithm structures now. */
2364
2365 alg_in = XALLOCA (struct algorithm);
2366 best_alg = XALLOCA (struct algorithm);
2367 best_cost = *cost_limit;
2368
2369 /* Compute the hash index. */
2370 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2371
2372 /* See if we already know what to do for T. */
2373 if (alg_hash[hash_index].t == t
2374 && alg_hash[hash_index].mode == mode
2375 && alg_hash[hash_index].mode == mode
2376 && alg_hash[hash_index].speed == speed
2377 && alg_hash[hash_index].alg != alg_unknown)
2378 {
2379 cache_alg = alg_hash[hash_index].alg;
2380
2381 if (cache_alg == alg_impossible)
2382 {
2383 /* The cache tells us that it's impossible to synthesize
2384 multiplication by T within alg_hash[hash_index].cost. */
2385 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2386 /* COST_LIMIT is at least as restrictive as the one
2387 recorded in the hash table, in which case we have no
2388 hope of synthesizing a multiplication. Just
2389 return. */
2390 return;
2391
2392 /* If we get here, COST_LIMIT is less restrictive than the
2393 one recorded in the hash table, so we may be able to
2394 synthesize a multiplication. Proceed as if we didn't
2395 have the cache entry. */
2396 }
2397 else
2398 {
2399 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2400 /* The cached algorithm shows that this multiplication
2401 requires more cost than COST_LIMIT. Just return. This
2402 way, we don't clobber this cache entry with
2403 alg_impossible but retain useful information. */
2404 return;
2405
2406 cache_hit = true;
2407
2408 switch (cache_alg)
2409 {
2410 case alg_shift:
2411 goto do_alg_shift;
2412
2413 case alg_add_t_m2:
2414 case alg_sub_t_m2:
2415 goto do_alg_addsub_t_m2;
2416
2417 case alg_add_factor:
2418 case alg_sub_factor:
2419 goto do_alg_addsub_factor;
2420
2421 case alg_add_t2_m:
2422 goto do_alg_add_t2_m;
2423
2424 case alg_sub_t2_m:
2425 goto do_alg_sub_t2_m;
2426
2427 default:
2428 gcc_unreachable ();
2429 }
2430 }
2431 }
2432
2433 /* If we have a group of zero bits at the low-order part of T, try
2434 multiplying by the remaining bits and then doing a shift. */
2435
2436 if ((t & 1) == 0)
2437 {
2438 do_alg_shift:
2439 m = floor_log2 (t & -t); /* m = number of low zero bits */
2440 if (m < maxm)
2441 {
2442 q = t >> m;
2443 /* The function expand_shift will choose between a shift and
2444 a sequence of additions, so the observed cost is given as
2445 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2446 op_cost = m * add_cost[speed][mode];
2447 if (shift_cost[speed][mode][m] < op_cost)
2448 op_cost = shift_cost[speed][mode][m];
2449 new_limit.cost = best_cost.cost - op_cost;
2450 new_limit.latency = best_cost.latency - op_cost;
2451 synth_mult (alg_in, q, &new_limit, mode);
2452
2453 alg_in->cost.cost += op_cost;
2454 alg_in->cost.latency += op_cost;
2455 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2456 {
2457 struct algorithm *x;
2458 best_cost = alg_in->cost;
2459 x = alg_in, alg_in = best_alg, best_alg = x;
2460 best_alg->log[best_alg->ops] = m;
2461 best_alg->op[best_alg->ops] = alg_shift;
2462 }
2463
2464 /* See if treating ORIG_T as a signed number yields a better
2465 sequence. Try this sequence only for a negative ORIG_T
2466 as it would be useless for a non-negative ORIG_T. */
2467 if ((HOST_WIDE_INT) orig_t < 0)
2468 {
2469 /* Shift ORIG_T as follows because a right shift of a
2470 negative-valued signed type is implementation
2471 defined. */
2472 q = ~(~orig_t >> m);
2473 /* The function expand_shift will choose between a shift
2474 and a sequence of additions, so the observed cost is
2475 given as MIN (m * add_cost[speed][mode],
2476 shift_cost[speed][mode][m]). */
2477 op_cost = m * add_cost[speed][mode];
2478 if (shift_cost[speed][mode][m] < op_cost)
2479 op_cost = shift_cost[speed][mode][m];
2480 new_limit.cost = best_cost.cost - op_cost;
2481 new_limit.latency = best_cost.latency - op_cost;
2482 synth_mult (alg_in, q, &new_limit, mode);
2483
2484 alg_in->cost.cost += op_cost;
2485 alg_in->cost.latency += op_cost;
2486 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2487 {
2488 struct algorithm *x;
2489 best_cost = alg_in->cost;
2490 x = alg_in, alg_in = best_alg, best_alg = x;
2491 best_alg->log[best_alg->ops] = m;
2492 best_alg->op[best_alg->ops] = alg_shift;
2493 }
2494 }
2495 }
2496 if (cache_hit)
2497 goto done;
2498 }
2499
2500 /* If we have an odd number, add or subtract one. */
2501 if ((t & 1) != 0)
2502 {
2503 unsigned HOST_WIDE_INT w;
2504
2505 do_alg_addsub_t_m2:
2506 for (w = 1; (w & t) != 0; w <<= 1)
2507 ;
2508 /* If T was -1, then W will be zero after the loop. This is another
2509 case where T ends with ...111. Handling this with (T + 1) and
2510 subtract 1 produces slightly better code and results in algorithm
2511 selection much faster than treating it like the ...0111 case
2512 below. */
2513 if (w == 0
2514 || (w > 2
2515 /* Reject the case where t is 3.
2516 Thus we prefer addition in that case. */
2517 && t != 3))
2518 {
2519 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2520
2521 op_cost = add_cost[speed][mode];
2522 new_limit.cost = best_cost.cost - op_cost;
2523 new_limit.latency = best_cost.latency - op_cost;
2524 synth_mult (alg_in, t + 1, &new_limit, mode);
2525
2526 alg_in->cost.cost += op_cost;
2527 alg_in->cost.latency += op_cost;
2528 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2529 {
2530 struct algorithm *x;
2531 best_cost = alg_in->cost;
2532 x = alg_in, alg_in = best_alg, best_alg = x;
2533 best_alg->log[best_alg->ops] = 0;
2534 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2535 }
2536 }
2537 else
2538 {
2539 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2540
2541 op_cost = add_cost[speed][mode];
2542 new_limit.cost = best_cost.cost - op_cost;
2543 new_limit.latency = best_cost.latency - op_cost;
2544 synth_mult (alg_in, t - 1, &new_limit, mode);
2545
2546 alg_in->cost.cost += op_cost;
2547 alg_in->cost.latency += op_cost;
2548 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2549 {
2550 struct algorithm *x;
2551 best_cost = alg_in->cost;
2552 x = alg_in, alg_in = best_alg, best_alg = x;
2553 best_alg->log[best_alg->ops] = 0;
2554 best_alg->op[best_alg->ops] = alg_add_t_m2;
2555 }
2556 }
2557
2558 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2559 quickly with a - a * n for some appropriate constant n. */
2560 m = exact_log2 (-orig_t + 1);
2561 if (m >= 0 && m < maxm)
2562 {
2563 op_cost = shiftsub1_cost[speed][mode][m];
2564 new_limit.cost = best_cost.cost - op_cost;
2565 new_limit.latency = best_cost.latency - op_cost;
2566 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
2567
2568 alg_in->cost.cost += op_cost;
2569 alg_in->cost.latency += op_cost;
2570 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2571 {
2572 struct algorithm *x;
2573 best_cost = alg_in->cost;
2574 x = alg_in, alg_in = best_alg, best_alg = x;
2575 best_alg->log[best_alg->ops] = m;
2576 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2577 }
2578 }
2579
2580 if (cache_hit)
2581 goto done;
2582 }
2583
2584 /* Look for factors of t of the form
2585 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2586 If we find such a factor, we can multiply by t using an algorithm that
2587 multiplies by q, shift the result by m and add/subtract it to itself.
2588
2589 We search for large factors first and loop down, even if large factors
2590 are less probable than small; if we find a large factor we will find a
2591 good sequence quickly, and therefore be able to prune (by decreasing
2592 COST_LIMIT) the search. */
2593
2594 do_alg_addsub_factor:
2595 for (m = floor_log2 (t - 1); m >= 2; m--)
2596 {
2597 unsigned HOST_WIDE_INT d;
2598
2599 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2600 if (t % d == 0 && t > d && m < maxm
2601 && (!cache_hit || cache_alg == alg_add_factor))
2602 {
2603 /* If the target has a cheap shift-and-add instruction use
2604 that in preference to a shift insn followed by an add insn.
2605 Assume that the shift-and-add is "atomic" with a latency
2606 equal to its cost, otherwise assume that on superscalar
2607 hardware the shift may be executed concurrently with the
2608 earlier steps in the algorithm. */
2609 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2610 if (shiftadd_cost[speed][mode][m] < op_cost)
2611 {
2612 op_cost = shiftadd_cost[speed][mode][m];
2613 op_latency = op_cost;
2614 }
2615 else
2616 op_latency = add_cost[speed][mode];
2617
2618 new_limit.cost = best_cost.cost - op_cost;
2619 new_limit.latency = best_cost.latency - op_latency;
2620 synth_mult (alg_in, t / d, &new_limit, mode);
2621
2622 alg_in->cost.cost += op_cost;
2623 alg_in->cost.latency += op_latency;
2624 if (alg_in->cost.latency < op_cost)
2625 alg_in->cost.latency = op_cost;
2626 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2627 {
2628 struct algorithm *x;
2629 best_cost = alg_in->cost;
2630 x = alg_in, alg_in = best_alg, best_alg = x;
2631 best_alg->log[best_alg->ops] = m;
2632 best_alg->op[best_alg->ops] = alg_add_factor;
2633 }
2634 /* Other factors will have been taken care of in the recursion. */
2635 break;
2636 }
2637
2638 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2639 if (t % d == 0 && t > d && m < maxm
2640 && (!cache_hit || cache_alg == alg_sub_factor))
2641 {
2642 /* If the target has a cheap shift-and-subtract insn use
2643 that in preference to a shift insn followed by a sub insn.
2644 Assume that the shift-and-sub is "atomic" with a latency
2645 equal to it's cost, otherwise assume that on superscalar
2646 hardware the shift may be executed concurrently with the
2647 earlier steps in the algorithm. */
2648 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2649 if (shiftsub0_cost[speed][mode][m] < op_cost)
2650 {
2651 op_cost = shiftsub0_cost[speed][mode][m];
2652 op_latency = op_cost;
2653 }
2654 else
2655 op_latency = add_cost[speed][mode];
2656
2657 new_limit.cost = best_cost.cost - op_cost;
2658 new_limit.latency = best_cost.latency - op_latency;
2659 synth_mult (alg_in, t / d, &new_limit, mode);
2660
2661 alg_in->cost.cost += op_cost;
2662 alg_in->cost.latency += op_latency;
2663 if (alg_in->cost.latency < op_cost)
2664 alg_in->cost.latency = op_cost;
2665 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2666 {
2667 struct algorithm *x;
2668 best_cost = alg_in->cost;
2669 x = alg_in, alg_in = best_alg, best_alg = x;
2670 best_alg->log[best_alg->ops] = m;
2671 best_alg->op[best_alg->ops] = alg_sub_factor;
2672 }
2673 break;
2674 }
2675 }
2676 if (cache_hit)
2677 goto done;
2678
2679 /* Try shift-and-add (load effective address) instructions,
2680 i.e. do a*3, a*5, a*9. */
2681 if ((t & 1) != 0)
2682 {
2683 do_alg_add_t2_m:
2684 q = t - 1;
2685 q = q & -q;
2686 m = exact_log2 (q);
2687 if (m >= 0 && m < maxm)
2688 {
2689 op_cost = shiftadd_cost[speed][mode][m];
2690 new_limit.cost = best_cost.cost - op_cost;
2691 new_limit.latency = best_cost.latency - op_cost;
2692 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2693
2694 alg_in->cost.cost += op_cost;
2695 alg_in->cost.latency += op_cost;
2696 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2697 {
2698 struct algorithm *x;
2699 best_cost = alg_in->cost;
2700 x = alg_in, alg_in = best_alg, best_alg = x;
2701 best_alg->log[best_alg->ops] = m;
2702 best_alg->op[best_alg->ops] = alg_add_t2_m;
2703 }
2704 }
2705 if (cache_hit)
2706 goto done;
2707
2708 do_alg_sub_t2_m:
2709 q = t + 1;
2710 q = q & -q;
2711 m = exact_log2 (q);
2712 if (m >= 0 && m < maxm)
2713 {
2714 op_cost = shiftsub0_cost[speed][mode][m];
2715 new_limit.cost = best_cost.cost - op_cost;
2716 new_limit.latency = best_cost.latency - op_cost;
2717 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2718
2719 alg_in->cost.cost += op_cost;
2720 alg_in->cost.latency += op_cost;
2721 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2722 {
2723 struct algorithm *x;
2724 best_cost = alg_in->cost;
2725 x = alg_in, alg_in = best_alg, best_alg = x;
2726 best_alg->log[best_alg->ops] = m;
2727 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2728 }
2729 }
2730 if (cache_hit)
2731 goto done;
2732 }
2733
2734 done:
2735 /* If best_cost has not decreased, we have not found any algorithm. */
2736 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2737 {
2738 /* We failed to find an algorithm. Record alg_impossible for
2739 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2740 we are asked to find an algorithm for T within the same or
2741 lower COST_LIMIT, we can immediately return to the
2742 caller. */
2743 alg_hash[hash_index].t = t;
2744 alg_hash[hash_index].mode = mode;
2745 alg_hash[hash_index].speed = speed;
2746 alg_hash[hash_index].alg = alg_impossible;
2747 alg_hash[hash_index].cost = *cost_limit;
2748 return;
2749 }
2750
2751 /* Cache the result. */
2752 if (!cache_hit)
2753 {
2754 alg_hash[hash_index].t = t;
2755 alg_hash[hash_index].mode = mode;
2756 alg_hash[hash_index].speed = speed;
2757 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2758 alg_hash[hash_index].cost.cost = best_cost.cost;
2759 alg_hash[hash_index].cost.latency = best_cost.latency;
2760 }
2761
2762 /* If we are getting a too long sequence for `struct algorithm'
2763 to record, make this search fail. */
2764 if (best_alg->ops == MAX_BITS_PER_WORD)
2765 return;
2766
2767 /* Copy the algorithm from temporary space to the space at alg_out.
2768 We avoid using structure assignment because the majority of
2769 best_alg is normally undefined, and this is a critical function. */
2770 alg_out->ops = best_alg->ops + 1;
2771 alg_out->cost = best_cost;
2772 memcpy (alg_out->op, best_alg->op,
2773 alg_out->ops * sizeof *alg_out->op);
2774 memcpy (alg_out->log, best_alg->log,
2775 alg_out->ops * sizeof *alg_out->log);
2776 }
2777 \f
2778 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2779 Try three variations:
2780
2781 - a shift/add sequence based on VAL itself
2782 - a shift/add sequence based on -VAL, followed by a negation
2783 - a shift/add sequence based on VAL - 1, followed by an addition.
2784
2785 Return true if the cheapest of these cost less than MULT_COST,
2786 describing the algorithm in *ALG and final fixup in *VARIANT. */
2787
2788 static bool
2789 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2790 struct algorithm *alg, enum mult_variant *variant,
2791 int mult_cost)
2792 {
2793 struct algorithm alg2;
2794 struct mult_cost limit;
2795 int op_cost;
2796 bool speed = optimize_insn_for_speed_p ();
2797
2798 /* Fail quickly for impossible bounds. */
2799 if (mult_cost < 0)
2800 return false;
2801
2802 /* Ensure that mult_cost provides a reasonable upper bound.
2803 Any constant multiplication can be performed with less
2804 than 2 * bits additions. */
2805 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2806 if (mult_cost > op_cost)
2807 mult_cost = op_cost;
2808
2809 *variant = basic_variant;
2810 limit.cost = mult_cost;
2811 limit.latency = mult_cost;
2812 synth_mult (alg, val, &limit, mode);
2813
2814 /* This works only if the inverted value actually fits in an
2815 `unsigned int' */
2816 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2817 {
2818 op_cost = neg_cost[speed][mode];
2819 if (MULT_COST_LESS (&alg->cost, mult_cost))
2820 {
2821 limit.cost = alg->cost.cost - op_cost;
2822 limit.latency = alg->cost.latency - op_cost;
2823 }
2824 else
2825 {
2826 limit.cost = mult_cost - op_cost;
2827 limit.latency = mult_cost - op_cost;
2828 }
2829
2830 synth_mult (&alg2, -val, &limit, mode);
2831 alg2.cost.cost += op_cost;
2832 alg2.cost.latency += op_cost;
2833 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2834 *alg = alg2, *variant = negate_variant;
2835 }
2836
2837 /* This proves very useful for division-by-constant. */
2838 op_cost = add_cost[speed][mode];
2839 if (MULT_COST_LESS (&alg->cost, mult_cost))
2840 {
2841 limit.cost = alg->cost.cost - op_cost;
2842 limit.latency = alg->cost.latency - op_cost;
2843 }
2844 else
2845 {
2846 limit.cost = mult_cost - op_cost;
2847 limit.latency = mult_cost - op_cost;
2848 }
2849
2850 synth_mult (&alg2, val - 1, &limit, mode);
2851 alg2.cost.cost += op_cost;
2852 alg2.cost.latency += op_cost;
2853 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2854 *alg = alg2, *variant = add_variant;
2855
2856 return MULT_COST_LESS (&alg->cost, mult_cost);
2857 }
2858
2859 /* A subroutine of expand_mult, used for constant multiplications.
2860 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2861 convenient. Use the shift/add sequence described by ALG and apply
2862 the final fixup specified by VARIANT. */
2863
2864 static rtx
2865 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2866 rtx target, const struct algorithm *alg,
2867 enum mult_variant variant)
2868 {
2869 HOST_WIDE_INT val_so_far;
2870 rtx insn, accum, tem;
2871 int opno;
2872 enum machine_mode nmode;
2873
2874 /* Avoid referencing memory over and over and invalid sharing
2875 on SUBREGs. */
2876 op0 = force_reg (mode, op0);
2877
2878 /* ACCUM starts out either as OP0 or as a zero, depending on
2879 the first operation. */
2880
2881 if (alg->op[0] == alg_zero)
2882 {
2883 accum = copy_to_mode_reg (mode, const0_rtx);
2884 val_so_far = 0;
2885 }
2886 else if (alg->op[0] == alg_m)
2887 {
2888 accum = copy_to_mode_reg (mode, op0);
2889 val_so_far = 1;
2890 }
2891 else
2892 gcc_unreachable ();
2893
2894 for (opno = 1; opno < alg->ops; opno++)
2895 {
2896 int log = alg->log[opno];
2897 rtx shift_subtarget = optimize ? 0 : accum;
2898 rtx add_target
2899 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2900 && !optimize)
2901 ? target : 0;
2902 rtx accum_target = optimize ? 0 : accum;
2903
2904 switch (alg->op[opno])
2905 {
2906 case alg_shift:
2907 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2908 build_int_cst (NULL_TREE, log),
2909 NULL_RTX, 0);
2910 /* REG_EQUAL note will be attached to the following insn. */
2911 emit_move_insn (accum, tem);
2912 val_so_far <<= log;
2913 break;
2914
2915 case alg_add_t_m2:
2916 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2917 build_int_cst (NULL_TREE, log),
2918 NULL_RTX, 0);
2919 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2920 add_target ? add_target : accum_target);
2921 val_so_far += (HOST_WIDE_INT) 1 << log;
2922 break;
2923
2924 case alg_sub_t_m2:
2925 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2926 build_int_cst (NULL_TREE, log),
2927 NULL_RTX, 0);
2928 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2929 add_target ? add_target : accum_target);
2930 val_so_far -= (HOST_WIDE_INT) 1 << log;
2931 break;
2932
2933 case alg_add_t2_m:
2934 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2935 build_int_cst (NULL_TREE, log),
2936 shift_subtarget,
2937 0);
2938 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2939 add_target ? add_target : accum_target);
2940 val_so_far = (val_so_far << log) + 1;
2941 break;
2942
2943 case alg_sub_t2_m:
2944 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2945 build_int_cst (NULL_TREE, log),
2946 shift_subtarget, 0);
2947 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2948 add_target ? add_target : accum_target);
2949 val_so_far = (val_so_far << log) - 1;
2950 break;
2951
2952 case alg_add_factor:
2953 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2954 build_int_cst (NULL_TREE, log),
2955 NULL_RTX, 0);
2956 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2957 add_target ? add_target : accum_target);
2958 val_so_far += val_so_far << log;
2959 break;
2960
2961 case alg_sub_factor:
2962 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2963 build_int_cst (NULL_TREE, log),
2964 NULL_RTX, 0);
2965 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2966 (add_target
2967 ? add_target : (optimize ? 0 : tem)));
2968 val_so_far = (val_so_far << log) - val_so_far;
2969 break;
2970
2971 default:
2972 gcc_unreachable ();
2973 }
2974
2975 /* Write a REG_EQUAL note on the last insn so that we can cse
2976 multiplication sequences. Note that if ACCUM is a SUBREG,
2977 we've set the inner register and must properly indicate
2978 that. */
2979
2980 tem = op0, nmode = mode;
2981 if (GET_CODE (accum) == SUBREG)
2982 {
2983 nmode = GET_MODE (SUBREG_REG (accum));
2984 tem = gen_lowpart (nmode, op0);
2985 }
2986
2987 insn = get_last_insn ();
2988 set_unique_reg_note (insn, REG_EQUAL,
2989 gen_rtx_MULT (nmode, tem,
2990 GEN_INT (val_so_far)));
2991 }
2992
2993 if (variant == negate_variant)
2994 {
2995 val_so_far = -val_so_far;
2996 accum = expand_unop (mode, neg_optab, accum, target, 0);
2997 }
2998 else if (variant == add_variant)
2999 {
3000 val_so_far = val_so_far + 1;
3001 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3002 }
3003
3004 /* Compare only the bits of val and val_so_far that are significant
3005 in the result mode, to avoid sign-/zero-extension confusion. */
3006 val &= GET_MODE_MASK (mode);
3007 val_so_far &= GET_MODE_MASK (mode);
3008 gcc_assert (val == val_so_far);
3009
3010 return accum;
3011 }
3012
3013 /* Perform a multiplication and return an rtx for the result.
3014 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3015 TARGET is a suggestion for where to store the result (an rtx).
3016
3017 We check specially for a constant integer as OP1.
3018 If you want this check for OP0 as well, then before calling
3019 you should swap the two operands if OP0 would be constant. */
3020
3021 rtx
3022 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3023 int unsignedp)
3024 {
3025 enum mult_variant variant;
3026 struct algorithm algorithm;
3027 int max_cost;
3028 bool speed = optimize_insn_for_speed_p ();
3029
3030 /* Handling const0_rtx here allows us to use zero as a rogue value for
3031 coeff below. */
3032 if (op1 == const0_rtx)
3033 return const0_rtx;
3034 if (op1 == const1_rtx)
3035 return op0;
3036 if (op1 == constm1_rtx)
3037 return expand_unop (mode,
3038 GET_MODE_CLASS (mode) == MODE_INT
3039 && !unsignedp && flag_trapv
3040 ? negv_optab : neg_optab,
3041 op0, target, 0);
3042
3043 /* These are the operations that are potentially turned into a sequence
3044 of shifts and additions. */
3045 if (SCALAR_INT_MODE_P (mode)
3046 && (unsignedp || !flag_trapv))
3047 {
3048 HOST_WIDE_INT coeff = 0;
3049 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3050
3051 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3052 less than or equal in size to `unsigned int' this doesn't matter.
3053 If the mode is larger than `unsigned int', then synth_mult works
3054 only if the constant value exactly fits in an `unsigned int' without
3055 any truncation. This means that multiplying by negative values does
3056 not work; results are off by 2^32 on a 32 bit machine. */
3057
3058 if (CONST_INT_P (op1))
3059 {
3060 /* Attempt to handle multiplication of DImode values by negative
3061 coefficients, by performing the multiplication by a positive
3062 multiplier and then inverting the result. */
3063 if (INTVAL (op1) < 0
3064 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3065 {
3066 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3067 result is interpreted as an unsigned coefficient.
3068 Exclude cost of op0 from max_cost to match the cost
3069 calculation of the synth_mult. */
3070 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3071 - neg_cost[speed][mode];
3072 if (max_cost > 0
3073 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3074 &variant, max_cost))
3075 {
3076 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3077 NULL_RTX, &algorithm,
3078 variant);
3079 return expand_unop (mode, neg_optab, temp, target, 0);
3080 }
3081 }
3082 else coeff = INTVAL (op1);
3083 }
3084 else if (GET_CODE (op1) == CONST_DOUBLE)
3085 {
3086 /* If we are multiplying in DImode, it may still be a win
3087 to try to work with shifts and adds. */
3088 if (CONST_DOUBLE_HIGH (op1) == 0
3089 && CONST_DOUBLE_LOW (op1) > 0)
3090 coeff = CONST_DOUBLE_LOW (op1);
3091 else if (CONST_DOUBLE_LOW (op1) == 0
3092 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3093 {
3094 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3095 + HOST_BITS_PER_WIDE_INT;
3096 return expand_shift (LSHIFT_EXPR, mode, op0,
3097 build_int_cst (NULL_TREE, shift),
3098 target, unsignedp);
3099 }
3100 }
3101
3102 /* We used to test optimize here, on the grounds that it's better to
3103 produce a smaller program when -O is not used. But this causes
3104 such a terrible slowdown sometimes that it seems better to always
3105 use synth_mult. */
3106 if (coeff != 0)
3107 {
3108 /* Special case powers of two. */
3109 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3110 return expand_shift (LSHIFT_EXPR, mode, op0,
3111 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3112 target, unsignedp);
3113
3114 /* Exclude cost of op0 from max_cost to match the cost
3115 calculation of the synth_mult. */
3116 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3117 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3118 max_cost))
3119 return expand_mult_const (mode, op0, coeff, target,
3120 &algorithm, variant);
3121 }
3122 }
3123
3124 if (GET_CODE (op0) == CONST_DOUBLE)
3125 {
3126 rtx temp = op0;
3127 op0 = op1;
3128 op1 = temp;
3129 }
3130
3131 /* Expand x*2.0 as x+x. */
3132 if (GET_CODE (op1) == CONST_DOUBLE
3133 && SCALAR_FLOAT_MODE_P (mode))
3134 {
3135 REAL_VALUE_TYPE d;
3136 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3137
3138 if (REAL_VALUES_EQUAL (d, dconst2))
3139 {
3140 op0 = force_reg (GET_MODE (op0), op0);
3141 return expand_binop (mode, add_optab, op0, op0,
3142 target, unsignedp, OPTAB_LIB_WIDEN);
3143 }
3144 }
3145
3146 /* This used to use umul_optab if unsigned, but for non-widening multiply
3147 there is no difference between signed and unsigned. */
3148 op0 = expand_binop (mode,
3149 ! unsignedp
3150 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3151 ? smulv_optab : smul_optab,
3152 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3153 gcc_assert (op0);
3154 return op0;
3155 }
3156
3157 /* Perform a widening multiplication and return an rtx for the result.
3158 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3159 TARGET is a suggestion for where to store the result (an rtx).
3160 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3161 or smul_widen_optab.
3162
3163 We check specially for a constant integer as OP1, comparing the
3164 cost of a widening multiply against the cost of a sequence of shifts
3165 and adds. */
3166
3167 rtx
3168 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3169 int unsignedp, optab this_optab)
3170 {
3171 bool speed = optimize_insn_for_speed_p ();
3172
3173 if (CONST_INT_P (op1)
3174 && (INTVAL (op1) >= 0
3175 || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT))
3176 {
3177 HOST_WIDE_INT coeff = INTVAL (op1);
3178 int max_cost;
3179 enum mult_variant variant;
3180 struct algorithm algorithm;
3181
3182 /* Special case powers of two. */
3183 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3184 {
3185 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3186 return expand_shift (LSHIFT_EXPR, mode, op0,
3187 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3188 target, unsignedp);
3189 }
3190
3191 /* Exclude cost of op0 from max_cost to match the cost
3192 calculation of the synth_mult. */
3193 max_cost = mul_widen_cost[speed][mode];
3194 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3195 max_cost))
3196 {
3197 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3198 return expand_mult_const (mode, op0, coeff, target,
3199 &algorithm, variant);
3200 }
3201 }
3202 return expand_binop (mode, this_optab, op0, op1, target,
3203 unsignedp, OPTAB_LIB_WIDEN);
3204 }
3205 \f
3206 /* Return the smallest n such that 2**n >= X. */
3207
3208 int
3209 ceil_log2 (unsigned HOST_WIDE_INT x)
3210 {
3211 return floor_log2 (x - 1) + 1;
3212 }
3213
3214 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3215 replace division by D, and put the least significant N bits of the result
3216 in *MULTIPLIER_PTR and return the most significant bit.
3217
3218 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3219 needed precision is in PRECISION (should be <= N).
3220
3221 PRECISION should be as small as possible so this function can choose
3222 multiplier more freely.
3223
3224 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3225 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3226
3227 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3228 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3229
3230 static
3231 unsigned HOST_WIDE_INT
3232 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3233 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3234 {
3235 HOST_WIDE_INT mhigh_hi, mlow_hi;
3236 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3237 int lgup, post_shift;
3238 int pow, pow2;
3239 unsigned HOST_WIDE_INT nl, dummy1;
3240 HOST_WIDE_INT nh, dummy2;
3241
3242 /* lgup = ceil(log2(divisor)); */
3243 lgup = ceil_log2 (d);
3244
3245 gcc_assert (lgup <= n);
3246
3247 pow = n + lgup;
3248 pow2 = n + lgup - precision;
3249
3250 /* We could handle this with some effort, but this case is much
3251 better handled directly with a scc insn, so rely on caller using
3252 that. */
3253 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3254
3255 /* mlow = 2^(N + lgup)/d */
3256 if (pow >= HOST_BITS_PER_WIDE_INT)
3257 {
3258 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3259 nl = 0;
3260 }
3261 else
3262 {
3263 nh = 0;
3264 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3265 }
3266 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3267 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3268
3269 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3270 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3271 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3272 else
3273 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3274 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3275 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3276
3277 gcc_assert (!mhigh_hi || nh - d < d);
3278 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3279 /* Assert that mlow < mhigh. */
3280 gcc_assert (mlow_hi < mhigh_hi
3281 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3282
3283 /* If precision == N, then mlow, mhigh exceed 2^N
3284 (but they do not exceed 2^(N+1)). */
3285
3286 /* Reduce to lowest terms. */
3287 for (post_shift = lgup; post_shift > 0; post_shift--)
3288 {
3289 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3290 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3291 if (ml_lo >= mh_lo)
3292 break;
3293
3294 mlow_hi = 0;
3295 mlow_lo = ml_lo;
3296 mhigh_hi = 0;
3297 mhigh_lo = mh_lo;
3298 }
3299
3300 *post_shift_ptr = post_shift;
3301 *lgup_ptr = lgup;
3302 if (n < HOST_BITS_PER_WIDE_INT)
3303 {
3304 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3305 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3306 return mhigh_lo >= mask;
3307 }
3308 else
3309 {
3310 *multiplier_ptr = GEN_INT (mhigh_lo);
3311 return mhigh_hi;
3312 }
3313 }
3314
3315 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3316 congruent to 1 (mod 2**N). */
3317
3318 static unsigned HOST_WIDE_INT
3319 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3320 {
3321 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3322
3323 /* The algorithm notes that the choice y = x satisfies
3324 x*y == 1 mod 2^3, since x is assumed odd.
3325 Each iteration doubles the number of bits of significance in y. */
3326
3327 unsigned HOST_WIDE_INT mask;
3328 unsigned HOST_WIDE_INT y = x;
3329 int nbit = 3;
3330
3331 mask = (n == HOST_BITS_PER_WIDE_INT
3332 ? ~(unsigned HOST_WIDE_INT) 0
3333 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3334
3335 while (nbit < n)
3336 {
3337 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3338 nbit *= 2;
3339 }
3340 return y;
3341 }
3342
3343 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3344 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3345 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3346 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3347 become signed.
3348
3349 The result is put in TARGET if that is convenient.
3350
3351 MODE is the mode of operation. */
3352
3353 rtx
3354 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3355 rtx op1, rtx target, int unsignedp)
3356 {
3357 rtx tem;
3358 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3359
3360 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3361 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3362 NULL_RTX, 0);
3363 tem = expand_and (mode, tem, op1, NULL_RTX);
3364 adj_operand
3365 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3366 adj_operand);
3367
3368 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3369 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3370 NULL_RTX, 0);
3371 tem = expand_and (mode, tem, op0, NULL_RTX);
3372 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3373 target);
3374
3375 return target;
3376 }
3377
3378 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3379
3380 static rtx
3381 extract_high_half (enum machine_mode mode, rtx op)
3382 {
3383 enum machine_mode wider_mode;
3384
3385 if (mode == word_mode)
3386 return gen_highpart (mode, op);
3387
3388 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3389
3390 wider_mode = GET_MODE_WIDER_MODE (mode);
3391 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3392 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3393 return convert_modes (mode, wider_mode, op, 0);
3394 }
3395
3396 /* Like expand_mult_highpart, but only consider using a multiplication
3397 optab. OP1 is an rtx for the constant operand. */
3398
3399 static rtx
3400 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3401 rtx target, int unsignedp, int max_cost)
3402 {
3403 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3404 enum machine_mode wider_mode;
3405 optab moptab;
3406 rtx tem;
3407 int size;
3408 bool speed = optimize_insn_for_speed_p ();
3409
3410 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3411
3412 wider_mode = GET_MODE_WIDER_MODE (mode);
3413 size = GET_MODE_BITSIZE (mode);
3414
3415 /* Firstly, try using a multiplication insn that only generates the needed
3416 high part of the product, and in the sign flavor of unsignedp. */
3417 if (mul_highpart_cost[speed][mode] < max_cost)
3418 {
3419 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3420 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3421 unsignedp, OPTAB_DIRECT);
3422 if (tem)
3423 return tem;
3424 }
3425
3426 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3427 Need to adjust the result after the multiplication. */
3428 if (size - 1 < BITS_PER_WORD
3429 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3430 + 4 * add_cost[speed][mode] < max_cost))
3431 {
3432 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3433 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3434 unsignedp, OPTAB_DIRECT);
3435 if (tem)
3436 /* We used the wrong signedness. Adjust the result. */
3437 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3438 tem, unsignedp);
3439 }
3440
3441 /* Try widening multiplication. */
3442 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3443 if (optab_handler (moptab, wider_mode) != CODE_FOR_nothing
3444 && mul_widen_cost[speed][wider_mode] < max_cost)
3445 {
3446 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3447 unsignedp, OPTAB_WIDEN);
3448 if (tem)
3449 return extract_high_half (mode, tem);
3450 }
3451
3452 /* Try widening the mode and perform a non-widening multiplication. */
3453 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3454 && size - 1 < BITS_PER_WORD
3455 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3456 {
3457 rtx insns, wop0, wop1;
3458
3459 /* We need to widen the operands, for example to ensure the
3460 constant multiplier is correctly sign or zero extended.
3461 Use a sequence to clean-up any instructions emitted by
3462 the conversions if things don't work out. */
3463 start_sequence ();
3464 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3465 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3466 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3467 unsignedp, OPTAB_WIDEN);
3468 insns = get_insns ();
3469 end_sequence ();
3470
3471 if (tem)
3472 {
3473 emit_insn (insns);
3474 return extract_high_half (mode, tem);
3475 }
3476 }
3477
3478 /* Try widening multiplication of opposite signedness, and adjust. */
3479 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3480 if (optab_handler (moptab, wider_mode) != CODE_FOR_nothing
3481 && size - 1 < BITS_PER_WORD
3482 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3483 + 4 * add_cost[speed][mode] < max_cost))
3484 {
3485 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3486 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3487 if (tem != 0)
3488 {
3489 tem = extract_high_half (mode, tem);
3490 /* We used the wrong signedness. Adjust the result. */
3491 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3492 target, unsignedp);
3493 }
3494 }
3495
3496 return 0;
3497 }
3498
3499 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3500 putting the high half of the result in TARGET if that is convenient,
3501 and return where the result is. If the operation can not be performed,
3502 0 is returned.
3503
3504 MODE is the mode of operation and result.
3505
3506 UNSIGNEDP nonzero means unsigned multiply.
3507
3508 MAX_COST is the total allowed cost for the expanded RTL. */
3509
3510 static rtx
3511 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3512 rtx target, int unsignedp, int max_cost)
3513 {
3514 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3515 unsigned HOST_WIDE_INT cnst1;
3516 int extra_cost;
3517 bool sign_adjust = false;
3518 enum mult_variant variant;
3519 struct algorithm alg;
3520 rtx tem;
3521 bool speed = optimize_insn_for_speed_p ();
3522
3523 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3524 /* We can't support modes wider than HOST_BITS_PER_INT. */
3525 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3526
3527 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3528
3529 /* We can't optimize modes wider than BITS_PER_WORD.
3530 ??? We might be able to perform double-word arithmetic if
3531 mode == word_mode, however all the cost calculations in
3532 synth_mult etc. assume single-word operations. */
3533 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3534 return expand_mult_highpart_optab (mode, op0, op1, target,
3535 unsignedp, max_cost);
3536
3537 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3538
3539 /* Check whether we try to multiply by a negative constant. */
3540 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3541 {
3542 sign_adjust = true;
3543 extra_cost += add_cost[speed][mode];
3544 }
3545
3546 /* See whether shift/add multiplication is cheap enough. */
3547 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3548 max_cost - extra_cost))
3549 {
3550 /* See whether the specialized multiplication optabs are
3551 cheaper than the shift/add version. */
3552 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3553 alg.cost.cost + extra_cost);
3554 if (tem)
3555 return tem;
3556
3557 tem = convert_to_mode (wider_mode, op0, unsignedp);
3558 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3559 tem = extract_high_half (mode, tem);
3560
3561 /* Adjust result for signedness. */
3562 if (sign_adjust)
3563 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3564
3565 return tem;
3566 }
3567 return expand_mult_highpart_optab (mode, op0, op1, target,
3568 unsignedp, max_cost);
3569 }
3570
3571
3572 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3573
3574 static rtx
3575 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3576 {
3577 unsigned HOST_WIDE_INT masklow, maskhigh;
3578 rtx result, temp, shift, label;
3579 int logd;
3580
3581 logd = floor_log2 (d);
3582 result = gen_reg_rtx (mode);
3583
3584 /* Avoid conditional branches when they're expensive. */
3585 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3586 && optimize_insn_for_speed_p ())
3587 {
3588 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3589 mode, 0, -1);
3590 if (signmask)
3591 {
3592 signmask = force_reg (mode, signmask);
3593 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3594 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3595
3596 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3597 which instruction sequence to use. If logical right shifts
3598 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3599 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3600
3601 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3602 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3603 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3604 {
3605 temp = expand_binop (mode, xor_optab, op0, signmask,
3606 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3607 temp = expand_binop (mode, sub_optab, temp, signmask,
3608 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3609 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3610 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3611 temp = expand_binop (mode, xor_optab, temp, signmask,
3612 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3613 temp = expand_binop (mode, sub_optab, temp, signmask,
3614 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3615 }
3616 else
3617 {
3618 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3619 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3620 signmask = force_reg (mode, signmask);
3621
3622 temp = expand_binop (mode, add_optab, op0, signmask,
3623 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3624 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3625 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3626 temp = expand_binop (mode, sub_optab, temp, signmask,
3627 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3628 }
3629 return temp;
3630 }
3631 }
3632
3633 /* Mask contains the mode's signbit and the significant bits of the
3634 modulus. By including the signbit in the operation, many targets
3635 can avoid an explicit compare operation in the following comparison
3636 against zero. */
3637
3638 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3639 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3640 {
3641 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3642 maskhigh = -1;
3643 }
3644 else
3645 maskhigh = (HOST_WIDE_INT) -1
3646 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3647
3648 temp = expand_binop (mode, and_optab, op0,
3649 immed_double_const (masklow, maskhigh, mode),
3650 result, 1, OPTAB_LIB_WIDEN);
3651 if (temp != result)
3652 emit_move_insn (result, temp);
3653
3654 label = gen_label_rtx ();
3655 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3656
3657 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3658 0, OPTAB_LIB_WIDEN);
3659 masklow = (HOST_WIDE_INT) -1 << logd;
3660 maskhigh = -1;
3661 temp = expand_binop (mode, ior_optab, temp,
3662 immed_double_const (masklow, maskhigh, mode),
3663 result, 1, OPTAB_LIB_WIDEN);
3664 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3665 0, OPTAB_LIB_WIDEN);
3666 if (temp != result)
3667 emit_move_insn (result, temp);
3668 emit_label (label);
3669 return result;
3670 }
3671
3672 /* Expand signed division of OP0 by a power of two D in mode MODE.
3673 This routine is only called for positive values of D. */
3674
3675 static rtx
3676 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3677 {
3678 rtx temp, label;
3679 tree shift;
3680 int logd;
3681
3682 logd = floor_log2 (d);
3683 shift = build_int_cst (NULL_TREE, logd);
3684
3685 if (d == 2
3686 && BRANCH_COST (optimize_insn_for_speed_p (),
3687 false) >= 1)
3688 {
3689 temp = gen_reg_rtx (mode);
3690 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3691 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3692 0, OPTAB_LIB_WIDEN);
3693 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3694 }
3695
3696 #ifdef HAVE_conditional_move
3697 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3698 >= 2)
3699 {
3700 rtx temp2;
3701
3702 /* ??? emit_conditional_move forces a stack adjustment via
3703 compare_from_rtx so, if the sequence is discarded, it will
3704 be lost. Do it now instead. */
3705 do_pending_stack_adjust ();
3706
3707 start_sequence ();
3708 temp2 = copy_to_mode_reg (mode, op0);
3709 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3710 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3711 temp = force_reg (mode, temp);
3712
3713 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3714 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3715 mode, temp, temp2, mode, 0);
3716 if (temp2)
3717 {
3718 rtx seq = get_insns ();
3719 end_sequence ();
3720 emit_insn (seq);
3721 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3722 }
3723 end_sequence ();
3724 }
3725 #endif
3726
3727 if (BRANCH_COST (optimize_insn_for_speed_p (),
3728 false) >= 2)
3729 {
3730 int ushift = GET_MODE_BITSIZE (mode) - logd;
3731
3732 temp = gen_reg_rtx (mode);
3733 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3734 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3735 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3736 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3737 else
3738 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3739 build_int_cst (NULL_TREE, ushift),
3740 NULL_RTX, 1);
3741 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3742 0, OPTAB_LIB_WIDEN);
3743 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3744 }
3745
3746 label = gen_label_rtx ();
3747 temp = copy_to_mode_reg (mode, op0);
3748 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3749 expand_inc (temp, GEN_INT (d - 1));
3750 emit_label (label);
3751 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3752 }
3753 \f
3754 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3755 if that is convenient, and returning where the result is.
3756 You may request either the quotient or the remainder as the result;
3757 specify REM_FLAG nonzero to get the remainder.
3758
3759 CODE is the expression code for which kind of division this is;
3760 it controls how rounding is done. MODE is the machine mode to use.
3761 UNSIGNEDP nonzero means do unsigned division. */
3762
3763 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3764 and then correct it by or'ing in missing high bits
3765 if result of ANDI is nonzero.
3766 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3767 This could optimize to a bfexts instruction.
3768 But C doesn't use these operations, so their optimizations are
3769 left for later. */
3770 /* ??? For modulo, we don't actually need the highpart of the first product,
3771 the low part will do nicely. And for small divisors, the second multiply
3772 can also be a low-part only multiply or even be completely left out.
3773 E.g. to calculate the remainder of a division by 3 with a 32 bit
3774 multiply, multiply with 0x55555556 and extract the upper two bits;
3775 the result is exact for inputs up to 0x1fffffff.
3776 The input range can be reduced by using cross-sum rules.
3777 For odd divisors >= 3, the following table gives right shift counts
3778 so that if a number is shifted by an integer multiple of the given
3779 amount, the remainder stays the same:
3780 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3781 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3782 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3783 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3784 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3785
3786 Cross-sum rules for even numbers can be derived by leaving as many bits
3787 to the right alone as the divisor has zeros to the right.
3788 E.g. if x is an unsigned 32 bit number:
3789 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3790 */
3791
3792 rtx
3793 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3794 rtx op0, rtx op1, rtx target, int unsignedp)
3795 {
3796 enum machine_mode compute_mode;
3797 rtx tquotient;
3798 rtx quotient = 0, remainder = 0;
3799 rtx last;
3800 int size;
3801 rtx insn, set;
3802 optab optab1, optab2;
3803 int op1_is_constant, op1_is_pow2 = 0;
3804 int max_cost, extra_cost;
3805 static HOST_WIDE_INT last_div_const = 0;
3806 static HOST_WIDE_INT ext_op1;
3807 bool speed = optimize_insn_for_speed_p ();
3808
3809 op1_is_constant = CONST_INT_P (op1);
3810 if (op1_is_constant)
3811 {
3812 ext_op1 = INTVAL (op1);
3813 if (unsignedp)
3814 ext_op1 &= GET_MODE_MASK (mode);
3815 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3816 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3817 }
3818
3819 /*
3820 This is the structure of expand_divmod:
3821
3822 First comes code to fix up the operands so we can perform the operations
3823 correctly and efficiently.
3824
3825 Second comes a switch statement with code specific for each rounding mode.
3826 For some special operands this code emits all RTL for the desired
3827 operation, for other cases, it generates only a quotient and stores it in
3828 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3829 to indicate that it has not done anything.
3830
3831 Last comes code that finishes the operation. If QUOTIENT is set and
3832 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3833 QUOTIENT is not set, it is computed using trunc rounding.
3834
3835 We try to generate special code for division and remainder when OP1 is a
3836 constant. If |OP1| = 2**n we can use shifts and some other fast
3837 operations. For other values of OP1, we compute a carefully selected
3838 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3839 by m.
3840
3841 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3842 half of the product. Different strategies for generating the product are
3843 implemented in expand_mult_highpart.
3844
3845 If what we actually want is the remainder, we generate that by another
3846 by-constant multiplication and a subtraction. */
3847
3848 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3849 code below will malfunction if we are, so check here and handle
3850 the special case if so. */
3851 if (op1 == const1_rtx)
3852 return rem_flag ? const0_rtx : op0;
3853
3854 /* When dividing by -1, we could get an overflow.
3855 negv_optab can handle overflows. */
3856 if (! unsignedp && op1 == constm1_rtx)
3857 {
3858 if (rem_flag)
3859 return const0_rtx;
3860 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3861 ? negv_optab : neg_optab, op0, target, 0);
3862 }
3863
3864 if (target
3865 /* Don't use the function value register as a target
3866 since we have to read it as well as write it,
3867 and function-inlining gets confused by this. */
3868 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3869 /* Don't clobber an operand while doing a multi-step calculation. */
3870 || ((rem_flag || op1_is_constant)
3871 && (reg_mentioned_p (target, op0)
3872 || (MEM_P (op0) && MEM_P (target))))
3873 || reg_mentioned_p (target, op1)
3874 || (MEM_P (op1) && MEM_P (target))))
3875 target = 0;
3876
3877 /* Get the mode in which to perform this computation. Normally it will
3878 be MODE, but sometimes we can't do the desired operation in MODE.
3879 If so, pick a wider mode in which we can do the operation. Convert
3880 to that mode at the start to avoid repeated conversions.
3881
3882 First see what operations we need. These depend on the expression
3883 we are evaluating. (We assume that divxx3 insns exist under the
3884 same conditions that modxx3 insns and that these insns don't normally
3885 fail. If these assumptions are not correct, we may generate less
3886 efficient code in some cases.)
3887
3888 Then see if we find a mode in which we can open-code that operation
3889 (either a division, modulus, or shift). Finally, check for the smallest
3890 mode for which we can do the operation with a library call. */
3891
3892 /* We might want to refine this now that we have division-by-constant
3893 optimization. Since expand_mult_highpart tries so many variants, it is
3894 not straightforward to generalize this. Maybe we should make an array
3895 of possible modes in init_expmed? Save this for GCC 2.7. */
3896
3897 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3898 ? (unsignedp ? lshr_optab : ashr_optab)
3899 : (unsignedp ? udiv_optab : sdiv_optab));
3900 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3901 ? optab1
3902 : (unsignedp ? udivmod_optab : sdivmod_optab));
3903
3904 for (compute_mode = mode; compute_mode != VOIDmode;
3905 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3906 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3907 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3908 break;
3909
3910 if (compute_mode == VOIDmode)
3911 for (compute_mode = mode; compute_mode != VOIDmode;
3912 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3913 if (optab_libfunc (optab1, compute_mode)
3914 || optab_libfunc (optab2, compute_mode))
3915 break;
3916
3917 /* If we still couldn't find a mode, use MODE, but expand_binop will
3918 probably die. */
3919 if (compute_mode == VOIDmode)
3920 compute_mode = mode;
3921
3922 if (target && GET_MODE (target) == compute_mode)
3923 tquotient = target;
3924 else
3925 tquotient = gen_reg_rtx (compute_mode);
3926
3927 size = GET_MODE_BITSIZE (compute_mode);
3928 #if 0
3929 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3930 (mode), and thereby get better code when OP1 is a constant. Do that
3931 later. It will require going over all usages of SIZE below. */
3932 size = GET_MODE_BITSIZE (mode);
3933 #endif
3934
3935 /* Only deduct something for a REM if the last divide done was
3936 for a different constant. Then set the constant of the last
3937 divide. */
3938 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3939 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3940 && INTVAL (op1) == last_div_const))
3941 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3942
3943 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3944
3945 /* Now convert to the best mode to use. */
3946 if (compute_mode != mode)
3947 {
3948 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3949 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3950
3951 /* convert_modes may have placed op1 into a register, so we
3952 must recompute the following. */
3953 op1_is_constant = CONST_INT_P (op1);
3954 op1_is_pow2 = (op1_is_constant
3955 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3956 || (! unsignedp
3957 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3958 }
3959
3960 /* If one of the operands is a volatile MEM, copy it into a register. */
3961
3962 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3963 op0 = force_reg (compute_mode, op0);
3964 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3965 op1 = force_reg (compute_mode, op1);
3966
3967 /* If we need the remainder or if OP1 is constant, we need to
3968 put OP0 in a register in case it has any queued subexpressions. */
3969 if (rem_flag || op1_is_constant)
3970 op0 = force_reg (compute_mode, op0);
3971
3972 last = get_last_insn ();
3973
3974 /* Promote floor rounding to trunc rounding for unsigned operations. */
3975 if (unsignedp)
3976 {
3977 if (code == FLOOR_DIV_EXPR)
3978 code = TRUNC_DIV_EXPR;
3979 if (code == FLOOR_MOD_EXPR)
3980 code = TRUNC_MOD_EXPR;
3981 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3982 code = TRUNC_DIV_EXPR;
3983 }
3984
3985 if (op1 != const0_rtx)
3986 switch (code)
3987 {
3988 case TRUNC_MOD_EXPR:
3989 case TRUNC_DIV_EXPR:
3990 if (op1_is_constant)
3991 {
3992 if (unsignedp)
3993 {
3994 unsigned HOST_WIDE_INT mh;
3995 int pre_shift, post_shift;
3996 int dummy;
3997 rtx ml;
3998 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3999 & GET_MODE_MASK (compute_mode));
4000
4001 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4002 {
4003 pre_shift = floor_log2 (d);
4004 if (rem_flag)
4005 {
4006 remainder
4007 = expand_binop (compute_mode, and_optab, op0,
4008 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4009 remainder, 1,
4010 OPTAB_LIB_WIDEN);
4011 if (remainder)
4012 return gen_lowpart (mode, remainder);
4013 }
4014 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4015 build_int_cst (NULL_TREE,
4016 pre_shift),
4017 tquotient, 1);
4018 }
4019 else if (size <= HOST_BITS_PER_WIDE_INT)
4020 {
4021 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4022 {
4023 /* Most significant bit of divisor is set; emit an scc
4024 insn. */
4025 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4026 compute_mode, 1, 1);
4027 }
4028 else
4029 {
4030 /* Find a suitable multiplier and right shift count
4031 instead of multiplying with D. */
4032
4033 mh = choose_multiplier (d, size, size,
4034 &ml, &post_shift, &dummy);
4035
4036 /* If the suggested multiplier is more than SIZE bits,
4037 we can do better for even divisors, using an
4038 initial right shift. */
4039 if (mh != 0 && (d & 1) == 0)
4040 {
4041 pre_shift = floor_log2 (d & -d);
4042 mh = choose_multiplier (d >> pre_shift, size,
4043 size - pre_shift,
4044 &ml, &post_shift, &dummy);
4045 gcc_assert (!mh);
4046 }
4047 else
4048 pre_shift = 0;
4049
4050 if (mh != 0)
4051 {
4052 rtx t1, t2, t3, t4;
4053
4054 if (post_shift - 1 >= BITS_PER_WORD)
4055 goto fail1;
4056
4057 extra_cost
4058 = (shift_cost[speed][compute_mode][post_shift - 1]
4059 + shift_cost[speed][compute_mode][1]
4060 + 2 * add_cost[speed][compute_mode]);
4061 t1 = expand_mult_highpart (compute_mode, op0, ml,
4062 NULL_RTX, 1,
4063 max_cost - extra_cost);
4064 if (t1 == 0)
4065 goto fail1;
4066 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4067 op0, t1),
4068 NULL_RTX);
4069 t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
4070 integer_one_node, NULL_RTX, 1);
4071 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4072 t1, t3),
4073 NULL_RTX);
4074 quotient = expand_shift
4075 (RSHIFT_EXPR, compute_mode, t4,
4076 build_int_cst (NULL_TREE, post_shift - 1),
4077 tquotient, 1);
4078 }
4079 else
4080 {
4081 rtx t1, t2;
4082
4083 if (pre_shift >= BITS_PER_WORD
4084 || post_shift >= BITS_PER_WORD)
4085 goto fail1;
4086
4087 t1 = expand_shift
4088 (RSHIFT_EXPR, compute_mode, op0,
4089 build_int_cst (NULL_TREE, pre_shift),
4090 NULL_RTX, 1);
4091 extra_cost
4092 = (shift_cost[speed][compute_mode][pre_shift]
4093 + shift_cost[speed][compute_mode][post_shift]);
4094 t2 = expand_mult_highpart (compute_mode, t1, ml,
4095 NULL_RTX, 1,
4096 max_cost - extra_cost);
4097 if (t2 == 0)
4098 goto fail1;
4099 quotient = expand_shift
4100 (RSHIFT_EXPR, compute_mode, t2,
4101 build_int_cst (NULL_TREE, post_shift),
4102 tquotient, 1);
4103 }
4104 }
4105 }
4106 else /* Too wide mode to use tricky code */
4107 break;
4108
4109 insn = get_last_insn ();
4110 if (insn != last
4111 && (set = single_set (insn)) != 0
4112 && SET_DEST (set) == quotient)
4113 set_unique_reg_note (insn,
4114 REG_EQUAL,
4115 gen_rtx_UDIV (compute_mode, op0, op1));
4116 }
4117 else /* TRUNC_DIV, signed */
4118 {
4119 unsigned HOST_WIDE_INT ml;
4120 int lgup, post_shift;
4121 rtx mlr;
4122 HOST_WIDE_INT d = INTVAL (op1);
4123 unsigned HOST_WIDE_INT abs_d;
4124
4125 /* Since d might be INT_MIN, we have to cast to
4126 unsigned HOST_WIDE_INT before negating to avoid
4127 undefined signed overflow. */
4128 abs_d = (d >= 0
4129 ? (unsigned HOST_WIDE_INT) d
4130 : - (unsigned HOST_WIDE_INT) d);
4131
4132 /* n rem d = n rem -d */
4133 if (rem_flag && d < 0)
4134 {
4135 d = abs_d;
4136 op1 = gen_int_mode (abs_d, compute_mode);
4137 }
4138
4139 if (d == 1)
4140 quotient = op0;
4141 else if (d == -1)
4142 quotient = expand_unop (compute_mode, neg_optab, op0,
4143 tquotient, 0);
4144 else if (HOST_BITS_PER_WIDE_INT >= size
4145 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4146 {
4147 /* This case is not handled correctly below. */
4148 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4149 compute_mode, 1, 1);
4150 if (quotient == 0)
4151 goto fail1;
4152 }
4153 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4154 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4155 : sdiv_pow2_cheap[speed][compute_mode])
4156 /* We assume that cheap metric is true if the
4157 optab has an expander for this mode. */
4158 && ((optab_handler ((rem_flag ? smod_optab
4159 : sdiv_optab),
4160 compute_mode)
4161 != CODE_FOR_nothing)
4162 || (optab_handler (sdivmod_optab,
4163 compute_mode)
4164 != CODE_FOR_nothing)))
4165 ;
4166 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4167 {
4168 if (rem_flag)
4169 {
4170 remainder = expand_smod_pow2 (compute_mode, op0, d);
4171 if (remainder)
4172 return gen_lowpart (mode, remainder);
4173 }
4174
4175 if (sdiv_pow2_cheap[speed][compute_mode]
4176 && ((optab_handler (sdiv_optab, compute_mode)
4177 != CODE_FOR_nothing)
4178 || (optab_handler (sdivmod_optab, compute_mode)
4179 != CODE_FOR_nothing)))
4180 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4181 compute_mode, op0,
4182 gen_int_mode (abs_d,
4183 compute_mode),
4184 NULL_RTX, 0);
4185 else
4186 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4187
4188 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4189 negate the quotient. */
4190 if (d < 0)
4191 {
4192 insn = get_last_insn ();
4193 if (insn != last
4194 && (set = single_set (insn)) != 0
4195 && SET_DEST (set) == quotient
4196 && abs_d < ((unsigned HOST_WIDE_INT) 1
4197 << (HOST_BITS_PER_WIDE_INT - 1)))
4198 set_unique_reg_note (insn,
4199 REG_EQUAL,
4200 gen_rtx_DIV (compute_mode,
4201 op0,
4202 GEN_INT
4203 (trunc_int_for_mode
4204 (abs_d,
4205 compute_mode))));
4206
4207 quotient = expand_unop (compute_mode, neg_optab,
4208 quotient, quotient, 0);
4209 }
4210 }
4211 else if (size <= HOST_BITS_PER_WIDE_INT)
4212 {
4213 choose_multiplier (abs_d, size, size - 1,
4214 &mlr, &post_shift, &lgup);
4215 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4216 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4217 {
4218 rtx t1, t2, t3;
4219
4220 if (post_shift >= BITS_PER_WORD
4221 || size - 1 >= BITS_PER_WORD)
4222 goto fail1;
4223
4224 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4225 + shift_cost[speed][compute_mode][size - 1]
4226 + add_cost[speed][compute_mode]);
4227 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4228 NULL_RTX, 0,
4229 max_cost - extra_cost);
4230 if (t1 == 0)
4231 goto fail1;
4232 t2 = expand_shift
4233 (RSHIFT_EXPR, compute_mode, t1,
4234 build_int_cst (NULL_TREE, post_shift),
4235 NULL_RTX, 0);
4236 t3 = expand_shift
4237 (RSHIFT_EXPR, compute_mode, op0,
4238 build_int_cst (NULL_TREE, size - 1),
4239 NULL_RTX, 0);
4240 if (d < 0)
4241 quotient
4242 = force_operand (gen_rtx_MINUS (compute_mode,
4243 t3, t2),
4244 tquotient);
4245 else
4246 quotient
4247 = force_operand (gen_rtx_MINUS (compute_mode,
4248 t2, t3),
4249 tquotient);
4250 }
4251 else
4252 {
4253 rtx t1, t2, t3, t4;
4254
4255 if (post_shift >= BITS_PER_WORD
4256 || size - 1 >= BITS_PER_WORD)
4257 goto fail1;
4258
4259 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4260 mlr = gen_int_mode (ml, compute_mode);
4261 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4262 + shift_cost[speed][compute_mode][size - 1]
4263 + 2 * add_cost[speed][compute_mode]);
4264 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4265 NULL_RTX, 0,
4266 max_cost - extra_cost);
4267 if (t1 == 0)
4268 goto fail1;
4269 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4270 t1, op0),
4271 NULL_RTX);
4272 t3 = expand_shift
4273 (RSHIFT_EXPR, compute_mode, t2,
4274 build_int_cst (NULL_TREE, post_shift),
4275 NULL_RTX, 0);
4276 t4 = expand_shift
4277 (RSHIFT_EXPR, compute_mode, op0,
4278 build_int_cst (NULL_TREE, size - 1),
4279 NULL_RTX, 0);
4280 if (d < 0)
4281 quotient
4282 = force_operand (gen_rtx_MINUS (compute_mode,
4283 t4, t3),
4284 tquotient);
4285 else
4286 quotient
4287 = force_operand (gen_rtx_MINUS (compute_mode,
4288 t3, t4),
4289 tquotient);
4290 }
4291 }
4292 else /* Too wide mode to use tricky code */
4293 break;
4294
4295 insn = get_last_insn ();
4296 if (insn != last
4297 && (set = single_set (insn)) != 0
4298 && SET_DEST (set) == quotient)
4299 set_unique_reg_note (insn,
4300 REG_EQUAL,
4301 gen_rtx_DIV (compute_mode, op0, op1));
4302 }
4303 break;
4304 }
4305 fail1:
4306 delete_insns_since (last);
4307 break;
4308
4309 case FLOOR_DIV_EXPR:
4310 case FLOOR_MOD_EXPR:
4311 /* We will come here only for signed operations. */
4312 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4313 {
4314 unsigned HOST_WIDE_INT mh;
4315 int pre_shift, lgup, post_shift;
4316 HOST_WIDE_INT d = INTVAL (op1);
4317 rtx ml;
4318
4319 if (d > 0)
4320 {
4321 /* We could just as easily deal with negative constants here,
4322 but it does not seem worth the trouble for GCC 2.6. */
4323 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4324 {
4325 pre_shift = floor_log2 (d);
4326 if (rem_flag)
4327 {
4328 remainder = expand_binop (compute_mode, and_optab, op0,
4329 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4330 remainder, 0, OPTAB_LIB_WIDEN);
4331 if (remainder)
4332 return gen_lowpart (mode, remainder);
4333 }
4334 quotient = expand_shift
4335 (RSHIFT_EXPR, compute_mode, op0,
4336 build_int_cst (NULL_TREE, pre_shift),
4337 tquotient, 0);
4338 }
4339 else
4340 {
4341 rtx t1, t2, t3, t4;
4342
4343 mh = choose_multiplier (d, size, size - 1,
4344 &ml, &post_shift, &lgup);
4345 gcc_assert (!mh);
4346
4347 if (post_shift < BITS_PER_WORD
4348 && size - 1 < BITS_PER_WORD)
4349 {
4350 t1 = expand_shift
4351 (RSHIFT_EXPR, compute_mode, op0,
4352 build_int_cst (NULL_TREE, size - 1),
4353 NULL_RTX, 0);
4354 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4355 NULL_RTX, 0, OPTAB_WIDEN);
4356 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4357 + shift_cost[speed][compute_mode][size - 1]
4358 + 2 * add_cost[speed][compute_mode]);
4359 t3 = expand_mult_highpart (compute_mode, t2, ml,
4360 NULL_RTX, 1,
4361 max_cost - extra_cost);
4362 if (t3 != 0)
4363 {
4364 t4 = expand_shift
4365 (RSHIFT_EXPR, compute_mode, t3,
4366 build_int_cst (NULL_TREE, post_shift),
4367 NULL_RTX, 1);
4368 quotient = expand_binop (compute_mode, xor_optab,
4369 t4, t1, tquotient, 0,
4370 OPTAB_WIDEN);
4371 }
4372 }
4373 }
4374 }
4375 else
4376 {
4377 rtx nsign, t1, t2, t3, t4;
4378 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4379 op0, constm1_rtx), NULL_RTX);
4380 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4381 0, OPTAB_WIDEN);
4382 nsign = expand_shift
4383 (RSHIFT_EXPR, compute_mode, t2,
4384 build_int_cst (NULL_TREE, size - 1),
4385 NULL_RTX, 0);
4386 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4387 NULL_RTX);
4388 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4389 NULL_RTX, 0);
4390 if (t4)
4391 {
4392 rtx t5;
4393 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4394 NULL_RTX, 0);
4395 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4396 t4, t5),
4397 tquotient);
4398 }
4399 }
4400 }
4401
4402 if (quotient != 0)
4403 break;
4404 delete_insns_since (last);
4405
4406 /* Try using an instruction that produces both the quotient and
4407 remainder, using truncation. We can easily compensate the quotient
4408 or remainder to get floor rounding, once we have the remainder.
4409 Notice that we compute also the final remainder value here,
4410 and return the result right away. */
4411 if (target == 0 || GET_MODE (target) != compute_mode)
4412 target = gen_reg_rtx (compute_mode);
4413
4414 if (rem_flag)
4415 {
4416 remainder
4417 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4418 quotient = gen_reg_rtx (compute_mode);
4419 }
4420 else
4421 {
4422 quotient
4423 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4424 remainder = gen_reg_rtx (compute_mode);
4425 }
4426
4427 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4428 quotient, remainder, 0))
4429 {
4430 /* This could be computed with a branch-less sequence.
4431 Save that for later. */
4432 rtx tem;
4433 rtx label = gen_label_rtx ();
4434 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4435 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4436 NULL_RTX, 0, OPTAB_WIDEN);
4437 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4438 expand_dec (quotient, const1_rtx);
4439 expand_inc (remainder, op1);
4440 emit_label (label);
4441 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4442 }
4443
4444 /* No luck with division elimination or divmod. Have to do it
4445 by conditionally adjusting op0 *and* the result. */
4446 {
4447 rtx label1, label2, label3, label4, label5;
4448 rtx adjusted_op0;
4449 rtx tem;
4450
4451 quotient = gen_reg_rtx (compute_mode);
4452 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4453 label1 = gen_label_rtx ();
4454 label2 = gen_label_rtx ();
4455 label3 = gen_label_rtx ();
4456 label4 = gen_label_rtx ();
4457 label5 = gen_label_rtx ();
4458 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4459 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4460 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4461 quotient, 0, OPTAB_LIB_WIDEN);
4462 if (tem != quotient)
4463 emit_move_insn (quotient, tem);
4464 emit_jump_insn (gen_jump (label5));
4465 emit_barrier ();
4466 emit_label (label1);
4467 expand_inc (adjusted_op0, const1_rtx);
4468 emit_jump_insn (gen_jump (label4));
4469 emit_barrier ();
4470 emit_label (label2);
4471 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4472 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4473 quotient, 0, OPTAB_LIB_WIDEN);
4474 if (tem != quotient)
4475 emit_move_insn (quotient, tem);
4476 emit_jump_insn (gen_jump (label5));
4477 emit_barrier ();
4478 emit_label (label3);
4479 expand_dec (adjusted_op0, const1_rtx);
4480 emit_label (label4);
4481 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4482 quotient, 0, OPTAB_LIB_WIDEN);
4483 if (tem != quotient)
4484 emit_move_insn (quotient, tem);
4485 expand_dec (quotient, const1_rtx);
4486 emit_label (label5);
4487 }
4488 break;
4489
4490 case CEIL_DIV_EXPR:
4491 case CEIL_MOD_EXPR:
4492 if (unsignedp)
4493 {
4494 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4495 {
4496 rtx t1, t2, t3;
4497 unsigned HOST_WIDE_INT d = INTVAL (op1);
4498 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4499 build_int_cst (NULL_TREE, floor_log2 (d)),
4500 tquotient, 1);
4501 t2 = expand_binop (compute_mode, and_optab, op0,
4502 GEN_INT (d - 1),
4503 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4504 t3 = gen_reg_rtx (compute_mode);
4505 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4506 compute_mode, 1, 1);
4507 if (t3 == 0)
4508 {
4509 rtx lab;
4510 lab = gen_label_rtx ();
4511 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4512 expand_inc (t1, const1_rtx);
4513 emit_label (lab);
4514 quotient = t1;
4515 }
4516 else
4517 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4518 t1, t3),
4519 tquotient);
4520 break;
4521 }
4522
4523 /* Try using an instruction that produces both the quotient and
4524 remainder, using truncation. We can easily compensate the
4525 quotient or remainder to get ceiling rounding, once we have the
4526 remainder. Notice that we compute also the final remainder
4527 value here, and return the result right away. */
4528 if (target == 0 || GET_MODE (target) != compute_mode)
4529 target = gen_reg_rtx (compute_mode);
4530
4531 if (rem_flag)
4532 {
4533 remainder = (REG_P (target)
4534 ? target : gen_reg_rtx (compute_mode));
4535 quotient = gen_reg_rtx (compute_mode);
4536 }
4537 else
4538 {
4539 quotient = (REG_P (target)
4540 ? target : gen_reg_rtx (compute_mode));
4541 remainder = gen_reg_rtx (compute_mode);
4542 }
4543
4544 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4545 remainder, 1))
4546 {
4547 /* This could be computed with a branch-less sequence.
4548 Save that for later. */
4549 rtx label = gen_label_rtx ();
4550 do_cmp_and_jump (remainder, const0_rtx, EQ,
4551 compute_mode, label);
4552 expand_inc (quotient, const1_rtx);
4553 expand_dec (remainder, op1);
4554 emit_label (label);
4555 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4556 }
4557
4558 /* No luck with division elimination or divmod. Have to do it
4559 by conditionally adjusting op0 *and* the result. */
4560 {
4561 rtx label1, label2;
4562 rtx adjusted_op0, tem;
4563
4564 quotient = gen_reg_rtx (compute_mode);
4565 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4566 label1 = gen_label_rtx ();
4567 label2 = gen_label_rtx ();
4568 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4569 compute_mode, label1);
4570 emit_move_insn (quotient, const0_rtx);
4571 emit_jump_insn (gen_jump (label2));
4572 emit_barrier ();
4573 emit_label (label1);
4574 expand_dec (adjusted_op0, const1_rtx);
4575 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4576 quotient, 1, OPTAB_LIB_WIDEN);
4577 if (tem != quotient)
4578 emit_move_insn (quotient, tem);
4579 expand_inc (quotient, const1_rtx);
4580 emit_label (label2);
4581 }
4582 }
4583 else /* signed */
4584 {
4585 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4586 && INTVAL (op1) >= 0)
4587 {
4588 /* This is extremely similar to the code for the unsigned case
4589 above. For 2.7 we should merge these variants, but for
4590 2.6.1 I don't want to touch the code for unsigned since that
4591 get used in C. The signed case will only be used by other
4592 languages (Ada). */
4593
4594 rtx t1, t2, t3;
4595 unsigned HOST_WIDE_INT d = INTVAL (op1);
4596 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4597 build_int_cst (NULL_TREE, floor_log2 (d)),
4598 tquotient, 0);
4599 t2 = expand_binop (compute_mode, and_optab, op0,
4600 GEN_INT (d - 1),
4601 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4602 t3 = gen_reg_rtx (compute_mode);
4603 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4604 compute_mode, 1, 1);
4605 if (t3 == 0)
4606 {
4607 rtx lab;
4608 lab = gen_label_rtx ();
4609 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4610 expand_inc (t1, const1_rtx);
4611 emit_label (lab);
4612 quotient = t1;
4613 }
4614 else
4615 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4616 t1, t3),
4617 tquotient);
4618 break;
4619 }
4620
4621 /* Try using an instruction that produces both the quotient and
4622 remainder, using truncation. We can easily compensate the
4623 quotient or remainder to get ceiling rounding, once we have the
4624 remainder. Notice that we compute also the final remainder
4625 value here, and return the result right away. */
4626 if (target == 0 || GET_MODE (target) != compute_mode)
4627 target = gen_reg_rtx (compute_mode);
4628 if (rem_flag)
4629 {
4630 remainder= (REG_P (target)
4631 ? target : gen_reg_rtx (compute_mode));
4632 quotient = gen_reg_rtx (compute_mode);
4633 }
4634 else
4635 {
4636 quotient = (REG_P (target)
4637 ? target : gen_reg_rtx (compute_mode));
4638 remainder = gen_reg_rtx (compute_mode);
4639 }
4640
4641 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4642 remainder, 0))
4643 {
4644 /* This could be computed with a branch-less sequence.
4645 Save that for later. */
4646 rtx tem;
4647 rtx label = gen_label_rtx ();
4648 do_cmp_and_jump (remainder, const0_rtx, EQ,
4649 compute_mode, label);
4650 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4651 NULL_RTX, 0, OPTAB_WIDEN);
4652 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4653 expand_inc (quotient, const1_rtx);
4654 expand_dec (remainder, op1);
4655 emit_label (label);
4656 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4657 }
4658
4659 /* No luck with division elimination or divmod. Have to do it
4660 by conditionally adjusting op0 *and* the result. */
4661 {
4662 rtx label1, label2, label3, label4, label5;
4663 rtx adjusted_op0;
4664 rtx tem;
4665
4666 quotient = gen_reg_rtx (compute_mode);
4667 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4668 label1 = gen_label_rtx ();
4669 label2 = gen_label_rtx ();
4670 label3 = gen_label_rtx ();
4671 label4 = gen_label_rtx ();
4672 label5 = gen_label_rtx ();
4673 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4674 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4675 compute_mode, label1);
4676 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4677 quotient, 0, OPTAB_LIB_WIDEN);
4678 if (tem != quotient)
4679 emit_move_insn (quotient, tem);
4680 emit_jump_insn (gen_jump (label5));
4681 emit_barrier ();
4682 emit_label (label1);
4683 expand_dec (adjusted_op0, const1_rtx);
4684 emit_jump_insn (gen_jump (label4));
4685 emit_barrier ();
4686 emit_label (label2);
4687 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4688 compute_mode, label3);
4689 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4690 quotient, 0, OPTAB_LIB_WIDEN);
4691 if (tem != quotient)
4692 emit_move_insn (quotient, tem);
4693 emit_jump_insn (gen_jump (label5));
4694 emit_barrier ();
4695 emit_label (label3);
4696 expand_inc (adjusted_op0, const1_rtx);
4697 emit_label (label4);
4698 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4699 quotient, 0, OPTAB_LIB_WIDEN);
4700 if (tem != quotient)
4701 emit_move_insn (quotient, tem);
4702 expand_inc (quotient, const1_rtx);
4703 emit_label (label5);
4704 }
4705 }
4706 break;
4707
4708 case EXACT_DIV_EXPR:
4709 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4710 {
4711 HOST_WIDE_INT d = INTVAL (op1);
4712 unsigned HOST_WIDE_INT ml;
4713 int pre_shift;
4714 rtx t1;
4715
4716 pre_shift = floor_log2 (d & -d);
4717 ml = invert_mod2n (d >> pre_shift, size);
4718 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4719 build_int_cst (NULL_TREE, pre_shift),
4720 NULL_RTX, unsignedp);
4721 quotient = expand_mult (compute_mode, t1,
4722 gen_int_mode (ml, compute_mode),
4723 NULL_RTX, 1);
4724
4725 insn = get_last_insn ();
4726 set_unique_reg_note (insn,
4727 REG_EQUAL,
4728 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4729 compute_mode,
4730 op0, op1));
4731 }
4732 break;
4733
4734 case ROUND_DIV_EXPR:
4735 case ROUND_MOD_EXPR:
4736 if (unsignedp)
4737 {
4738 rtx tem;
4739 rtx label;
4740 label = gen_label_rtx ();
4741 quotient = gen_reg_rtx (compute_mode);
4742 remainder = gen_reg_rtx (compute_mode);
4743 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4744 {
4745 rtx tem;
4746 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4747 quotient, 1, OPTAB_LIB_WIDEN);
4748 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4749 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4750 remainder, 1, OPTAB_LIB_WIDEN);
4751 }
4752 tem = plus_constant (op1, -1);
4753 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4754 integer_one_node, NULL_RTX, 1);
4755 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4756 expand_inc (quotient, const1_rtx);
4757 expand_dec (remainder, op1);
4758 emit_label (label);
4759 }
4760 else
4761 {
4762 rtx abs_rem, abs_op1, tem, mask;
4763 rtx label;
4764 label = gen_label_rtx ();
4765 quotient = gen_reg_rtx (compute_mode);
4766 remainder = gen_reg_rtx (compute_mode);
4767 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4768 {
4769 rtx tem;
4770 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4771 quotient, 0, OPTAB_LIB_WIDEN);
4772 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4773 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4774 remainder, 0, OPTAB_LIB_WIDEN);
4775 }
4776 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4777 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4778 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4779 integer_one_node, NULL_RTX, 1);
4780 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4781 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4782 NULL_RTX, 0, OPTAB_WIDEN);
4783 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4784 build_int_cst (NULL_TREE, size - 1),
4785 NULL_RTX, 0);
4786 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4787 NULL_RTX, 0, OPTAB_WIDEN);
4788 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4789 NULL_RTX, 0, OPTAB_WIDEN);
4790 expand_inc (quotient, tem);
4791 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4792 NULL_RTX, 0, OPTAB_WIDEN);
4793 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4794 NULL_RTX, 0, OPTAB_WIDEN);
4795 expand_dec (remainder, tem);
4796 emit_label (label);
4797 }
4798 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4799
4800 default:
4801 gcc_unreachable ();
4802 }
4803
4804 if (quotient == 0)
4805 {
4806 if (target && GET_MODE (target) != compute_mode)
4807 target = 0;
4808
4809 if (rem_flag)
4810 {
4811 /* Try to produce the remainder without producing the quotient.
4812 If we seem to have a divmod pattern that does not require widening,
4813 don't try widening here. We should really have a WIDEN argument
4814 to expand_twoval_binop, since what we'd really like to do here is
4815 1) try a mod insn in compute_mode
4816 2) try a divmod insn in compute_mode
4817 3) try a div insn in compute_mode and multiply-subtract to get
4818 remainder
4819 4) try the same things with widening allowed. */
4820 remainder
4821 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4822 op0, op1, target,
4823 unsignedp,
4824 ((optab_handler (optab2, compute_mode)
4825 != CODE_FOR_nothing)
4826 ? OPTAB_DIRECT : OPTAB_WIDEN));
4827 if (remainder == 0)
4828 {
4829 /* No luck there. Can we do remainder and divide at once
4830 without a library call? */
4831 remainder = gen_reg_rtx (compute_mode);
4832 if (! expand_twoval_binop ((unsignedp
4833 ? udivmod_optab
4834 : sdivmod_optab),
4835 op0, op1,
4836 NULL_RTX, remainder, unsignedp))
4837 remainder = 0;
4838 }
4839
4840 if (remainder)
4841 return gen_lowpart (mode, remainder);
4842 }
4843
4844 /* Produce the quotient. Try a quotient insn, but not a library call.
4845 If we have a divmod in this mode, use it in preference to widening
4846 the div (for this test we assume it will not fail). Note that optab2
4847 is set to the one of the two optabs that the call below will use. */
4848 quotient
4849 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4850 op0, op1, rem_flag ? NULL_RTX : target,
4851 unsignedp,
4852 ((optab_handler (optab2, compute_mode)
4853 != CODE_FOR_nothing)
4854 ? OPTAB_DIRECT : OPTAB_WIDEN));
4855
4856 if (quotient == 0)
4857 {
4858 /* No luck there. Try a quotient-and-remainder insn,
4859 keeping the quotient alone. */
4860 quotient = gen_reg_rtx (compute_mode);
4861 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4862 op0, op1,
4863 quotient, NULL_RTX, unsignedp))
4864 {
4865 quotient = 0;
4866 if (! rem_flag)
4867 /* Still no luck. If we are not computing the remainder,
4868 use a library call for the quotient. */
4869 quotient = sign_expand_binop (compute_mode,
4870 udiv_optab, sdiv_optab,
4871 op0, op1, target,
4872 unsignedp, OPTAB_LIB_WIDEN);
4873 }
4874 }
4875 }
4876
4877 if (rem_flag)
4878 {
4879 if (target && GET_MODE (target) != compute_mode)
4880 target = 0;
4881
4882 if (quotient == 0)
4883 {
4884 /* No divide instruction either. Use library for remainder. */
4885 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4886 op0, op1, target,
4887 unsignedp, OPTAB_LIB_WIDEN);
4888 /* No remainder function. Try a quotient-and-remainder
4889 function, keeping the remainder. */
4890 if (!remainder)
4891 {
4892 remainder = gen_reg_rtx (compute_mode);
4893 if (!expand_twoval_binop_libfunc
4894 (unsignedp ? udivmod_optab : sdivmod_optab,
4895 op0, op1,
4896 NULL_RTX, remainder,
4897 unsignedp ? UMOD : MOD))
4898 remainder = NULL_RTX;
4899 }
4900 }
4901 else
4902 {
4903 /* We divided. Now finish doing X - Y * (X / Y). */
4904 remainder = expand_mult (compute_mode, quotient, op1,
4905 NULL_RTX, unsignedp);
4906 remainder = expand_binop (compute_mode, sub_optab, op0,
4907 remainder, target, unsignedp,
4908 OPTAB_LIB_WIDEN);
4909 }
4910 }
4911
4912 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4913 }
4914 \f
4915 /* Return a tree node with data type TYPE, describing the value of X.
4916 Usually this is an VAR_DECL, if there is no obvious better choice.
4917 X may be an expression, however we only support those expressions
4918 generated by loop.c. */
4919
4920 tree
4921 make_tree (tree type, rtx x)
4922 {
4923 tree t;
4924
4925 switch (GET_CODE (x))
4926 {
4927 case CONST_INT:
4928 {
4929 HOST_WIDE_INT hi = 0;
4930
4931 if (INTVAL (x) < 0
4932 && !(TYPE_UNSIGNED (type)
4933 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4934 < HOST_BITS_PER_WIDE_INT)))
4935 hi = -1;
4936
4937 t = build_int_cst_wide (type, INTVAL (x), hi);
4938
4939 return t;
4940 }
4941
4942 case CONST_DOUBLE:
4943 if (GET_MODE (x) == VOIDmode)
4944 t = build_int_cst_wide (type,
4945 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4946 else
4947 {
4948 REAL_VALUE_TYPE d;
4949
4950 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4951 t = build_real (type, d);
4952 }
4953
4954 return t;
4955
4956 case CONST_VECTOR:
4957 {
4958 int units = CONST_VECTOR_NUNITS (x);
4959 tree itype = TREE_TYPE (type);
4960 tree t = NULL_TREE;
4961 int i;
4962
4963
4964 /* Build a tree with vector elements. */
4965 for (i = units - 1; i >= 0; --i)
4966 {
4967 rtx elt = CONST_VECTOR_ELT (x, i);
4968 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4969 }
4970
4971 return build_vector (type, t);
4972 }
4973
4974 case PLUS:
4975 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4976 make_tree (type, XEXP (x, 1)));
4977
4978 case MINUS:
4979 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4980 make_tree (type, XEXP (x, 1)));
4981
4982 case NEG:
4983 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4984
4985 case MULT:
4986 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4987 make_tree (type, XEXP (x, 1)));
4988
4989 case ASHIFT:
4990 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4991 make_tree (type, XEXP (x, 1)));
4992
4993 case LSHIFTRT:
4994 t = unsigned_type_for (type);
4995 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4996 make_tree (t, XEXP (x, 0)),
4997 make_tree (type, XEXP (x, 1))));
4998
4999 case ASHIFTRT:
5000 t = signed_type_for (type);
5001 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5002 make_tree (t, XEXP (x, 0)),
5003 make_tree (type, XEXP (x, 1))));
5004
5005 case DIV:
5006 if (TREE_CODE (type) != REAL_TYPE)
5007 t = signed_type_for (type);
5008 else
5009 t = type;
5010
5011 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5012 make_tree (t, XEXP (x, 0)),
5013 make_tree (t, XEXP (x, 1))));
5014 case UDIV:
5015 t = unsigned_type_for (type);
5016 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5017 make_tree (t, XEXP (x, 0)),
5018 make_tree (t, XEXP (x, 1))));
5019
5020 case SIGN_EXTEND:
5021 case ZERO_EXTEND:
5022 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5023 GET_CODE (x) == ZERO_EXTEND);
5024 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5025
5026 case CONST:
5027 return make_tree (type, XEXP (x, 0));
5028
5029 case SYMBOL_REF:
5030 t = SYMBOL_REF_DECL (x);
5031 if (t)
5032 return fold_convert (type, build_fold_addr_expr (t));
5033 /* else fall through. */
5034
5035 default:
5036 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5037
5038 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5039 address mode to pointer mode. */
5040 if (POINTER_TYPE_P (type))
5041 x = convert_memory_address_addr_space
5042 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5043
5044 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5045 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5046 t->decl_with_rtl.rtl = x;
5047
5048 return t;
5049 }
5050 }
5051 \f
5052 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5053 and returning TARGET.
5054
5055 If TARGET is 0, a pseudo-register or constant is returned. */
5056
5057 rtx
5058 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5059 {
5060 rtx tem = 0;
5061
5062 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5063 tem = simplify_binary_operation (AND, mode, op0, op1);
5064 if (tem == 0)
5065 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5066
5067 if (target == 0)
5068 target = tem;
5069 else if (tem != target)
5070 emit_move_insn (target, tem);
5071 return target;
5072 }
5073
5074 /* Helper function for emit_store_flag. */
5075 static rtx
5076 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5077 enum machine_mode mode, enum machine_mode compare_mode,
5078 int unsignedp, rtx x, rtx y, int normalizep,
5079 enum machine_mode target_mode)
5080 {
5081 rtx op0, last, comparison, subtarget, pattern;
5082 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5083
5084 last = get_last_insn ();
5085 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5086 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5087 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5088 if (!x || !y
5089 || !insn_data[icode].operand[2].predicate
5090 (x, insn_data[icode].operand[2].mode)
5091 || !insn_data[icode].operand[3].predicate
5092 (y, insn_data[icode].operand[3].mode)
5093 || !insn_data[icode].operand[1].predicate (comparison, VOIDmode))
5094 {
5095 delete_insns_since (last);
5096 return NULL_RTX;
5097 }
5098
5099 if (target_mode == VOIDmode)
5100 target_mode = result_mode;
5101 if (!target)
5102 target = gen_reg_rtx (target_mode);
5103
5104 if (optimize
5105 || !(insn_data[(int) icode].operand[0].predicate (target, result_mode)))
5106 subtarget = gen_reg_rtx (result_mode);
5107 else
5108 subtarget = target;
5109
5110 pattern = GEN_FCN (icode) (subtarget, comparison, x, y);
5111 if (!pattern)
5112 return NULL_RTX;
5113 emit_insn (pattern);
5114
5115 /* If we are converting to a wider mode, first convert to
5116 TARGET_MODE, then normalize. This produces better combining
5117 opportunities on machines that have a SIGN_EXTRACT when we are
5118 testing a single bit. This mostly benefits the 68k.
5119
5120 If STORE_FLAG_VALUE does not have the sign bit set when
5121 interpreted in MODE, we can do this conversion as unsigned, which
5122 is usually more efficient. */
5123 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5124 {
5125 convert_move (target, subtarget,
5126 (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT)
5127 && 0 == (STORE_FLAG_VALUE
5128 & ((HOST_WIDE_INT) 1
5129 << (GET_MODE_BITSIZE (result_mode) -1))));
5130 op0 = target;
5131 result_mode = target_mode;
5132 }
5133 else
5134 op0 = subtarget;
5135
5136 /* If we want to keep subexpressions around, don't reuse our last
5137 target. */
5138 if (optimize)
5139 subtarget = 0;
5140
5141 /* Now normalize to the proper value in MODE. Sometimes we don't
5142 have to do anything. */
5143 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5144 ;
5145 /* STORE_FLAG_VALUE might be the most negative number, so write
5146 the comparison this way to avoid a compiler-time warning. */
5147 else if (- normalizep == STORE_FLAG_VALUE)
5148 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5149
5150 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5151 it hard to use a value of just the sign bit due to ANSI integer
5152 constant typing rules. */
5153 else if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
5154 && (STORE_FLAG_VALUE
5155 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
5156 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5157 size_int (GET_MODE_BITSIZE (result_mode) - 1), subtarget,
5158 normalizep == 1);
5159 else
5160 {
5161 gcc_assert (STORE_FLAG_VALUE & 1);
5162
5163 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5164 if (normalizep == -1)
5165 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5166 }
5167
5168 /* If we were converting to a smaller mode, do the conversion now. */
5169 if (target_mode != result_mode)
5170 {
5171 convert_move (target, op0, 0);
5172 return target;
5173 }
5174 else
5175 return op0;
5176 }
5177
5178
5179 /* A subroutine of emit_store_flag only including "tricks" that do not
5180 need a recursive call. These are kept separate to avoid infinite
5181 loops. */
5182
5183 static rtx
5184 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5185 enum machine_mode mode, int unsignedp, int normalizep,
5186 enum machine_mode target_mode)
5187 {
5188 rtx subtarget;
5189 enum insn_code icode;
5190 enum machine_mode compare_mode;
5191 enum mode_class mclass;
5192 enum rtx_code scode;
5193 rtx tem;
5194
5195 if (unsignedp)
5196 code = unsigned_condition (code);
5197 scode = swap_condition (code);
5198
5199 /* If one operand is constant, make it the second one. Only do this
5200 if the other operand is not constant as well. */
5201
5202 if (swap_commutative_operands_p (op0, op1))
5203 {
5204 tem = op0;
5205 op0 = op1;
5206 op1 = tem;
5207 code = swap_condition (code);
5208 }
5209
5210 if (mode == VOIDmode)
5211 mode = GET_MODE (op0);
5212
5213 /* For some comparisons with 1 and -1, we can convert this to
5214 comparisons with zero. This will often produce more opportunities for
5215 store-flag insns. */
5216
5217 switch (code)
5218 {
5219 case LT:
5220 if (op1 == const1_rtx)
5221 op1 = const0_rtx, code = LE;
5222 break;
5223 case LE:
5224 if (op1 == constm1_rtx)
5225 op1 = const0_rtx, code = LT;
5226 break;
5227 case GE:
5228 if (op1 == const1_rtx)
5229 op1 = const0_rtx, code = GT;
5230 break;
5231 case GT:
5232 if (op1 == constm1_rtx)
5233 op1 = const0_rtx, code = GE;
5234 break;
5235 case GEU:
5236 if (op1 == const1_rtx)
5237 op1 = const0_rtx, code = NE;
5238 break;
5239 case LTU:
5240 if (op1 == const1_rtx)
5241 op1 = const0_rtx, code = EQ;
5242 break;
5243 default:
5244 break;
5245 }
5246
5247 /* If we are comparing a double-word integer with zero or -1, we can
5248 convert the comparison into one involving a single word. */
5249 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5250 && GET_MODE_CLASS (mode) == MODE_INT
5251 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5252 {
5253 if ((code == EQ || code == NE)
5254 && (op1 == const0_rtx || op1 == constm1_rtx))
5255 {
5256 rtx op00, op01;
5257
5258 /* Do a logical OR or AND of the two words and compare the
5259 result. */
5260 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5261 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5262 tem = expand_binop (word_mode,
5263 op1 == const0_rtx ? ior_optab : and_optab,
5264 op00, op01, NULL_RTX, unsignedp,
5265 OPTAB_DIRECT);
5266
5267 if (tem != 0)
5268 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5269 unsignedp, normalizep);
5270 }
5271 else if ((code == LT || code == GE) && op1 == const0_rtx)
5272 {
5273 rtx op0h;
5274
5275 /* If testing the sign bit, can just test on high word. */
5276 op0h = simplify_gen_subreg (word_mode, op0, mode,
5277 subreg_highpart_offset (word_mode,
5278 mode));
5279 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5280 unsignedp, normalizep);
5281 }
5282 else
5283 tem = NULL_RTX;
5284
5285 if (tem)
5286 {
5287 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5288 return tem;
5289 if (!target)
5290 target = gen_reg_rtx (target_mode);
5291
5292 convert_move (target, tem,
5293 0 == ((normalizep ? normalizep : STORE_FLAG_VALUE)
5294 & ((HOST_WIDE_INT) 1
5295 << (GET_MODE_BITSIZE (word_mode) -1))));
5296 return target;
5297 }
5298 }
5299
5300 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5301 complement of A (for GE) and shifting the sign bit to the low bit. */
5302 if (op1 == const0_rtx && (code == LT || code == GE)
5303 && GET_MODE_CLASS (mode) == MODE_INT
5304 && (normalizep || STORE_FLAG_VALUE == 1
5305 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5306 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5307 == ((unsigned HOST_WIDE_INT) 1
5308 << (GET_MODE_BITSIZE (mode) - 1))))))
5309 {
5310 subtarget = target;
5311
5312 if (!target)
5313 target_mode = mode;
5314
5315 /* If the result is to be wider than OP0, it is best to convert it
5316 first. If it is to be narrower, it is *incorrect* to convert it
5317 first. */
5318 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5319 {
5320 op0 = convert_modes (target_mode, mode, op0, 0);
5321 mode = target_mode;
5322 }
5323
5324 if (target_mode != mode)
5325 subtarget = 0;
5326
5327 if (code == GE)
5328 op0 = expand_unop (mode, one_cmpl_optab, op0,
5329 ((STORE_FLAG_VALUE == 1 || normalizep)
5330 ? 0 : subtarget), 0);
5331
5332 if (STORE_FLAG_VALUE == 1 || normalizep)
5333 /* If we are supposed to produce a 0/1 value, we want to do
5334 a logical shift from the sign bit to the low-order bit; for
5335 a -1/0 value, we do an arithmetic shift. */
5336 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5337 size_int (GET_MODE_BITSIZE (mode) - 1),
5338 subtarget, normalizep != -1);
5339
5340 if (mode != target_mode)
5341 op0 = convert_modes (target_mode, mode, op0, 0);
5342
5343 return op0;
5344 }
5345
5346 mclass = GET_MODE_CLASS (mode);
5347 for (compare_mode = mode; compare_mode != VOIDmode;
5348 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5349 {
5350 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5351 icode = optab_handler (cstore_optab, optab_mode);
5352 if (icode != CODE_FOR_nothing)
5353 {
5354 do_pending_stack_adjust ();
5355 tem = emit_cstore (target, icode, code, mode, compare_mode,
5356 unsignedp, op0, op1, normalizep, target_mode);
5357 if (tem)
5358 return tem;
5359
5360 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5361 {
5362 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5363 unsignedp, op1, op0, normalizep, target_mode);
5364 if (tem)
5365 return tem;
5366 }
5367 break;
5368 }
5369 }
5370
5371 return 0;
5372 }
5373
5374 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5375 and storing in TARGET. Normally return TARGET.
5376 Return 0 if that cannot be done.
5377
5378 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5379 it is VOIDmode, they cannot both be CONST_INT.
5380
5381 UNSIGNEDP is for the case where we have to widen the operands
5382 to perform the operation. It says to use zero-extension.
5383
5384 NORMALIZEP is 1 if we should convert the result to be either zero
5385 or one. Normalize is -1 if we should convert the result to be
5386 either zero or -1. If NORMALIZEP is zero, the result will be left
5387 "raw" out of the scc insn. */
5388
5389 rtx
5390 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5391 enum machine_mode mode, int unsignedp, int normalizep)
5392 {
5393 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5394 enum rtx_code rcode;
5395 rtx subtarget;
5396 rtx tem, last, trueval;
5397
5398 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5399 target_mode);
5400 if (tem)
5401 return tem;
5402
5403 /* If we reached here, we can't do this with a scc insn, however there
5404 are some comparisons that can be done in other ways. Don't do any
5405 of these cases if branches are very cheap. */
5406 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5407 return 0;
5408
5409 /* See what we need to return. We can only return a 1, -1, or the
5410 sign bit. */
5411
5412 if (normalizep == 0)
5413 {
5414 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5415 normalizep = STORE_FLAG_VALUE;
5416
5417 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5418 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5419 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5420 ;
5421 else
5422 return 0;
5423 }
5424
5425 last = get_last_insn ();
5426
5427 /* If optimizing, use different pseudo registers for each insn, instead
5428 of reusing the same pseudo. This leads to better CSE, but slows
5429 down the compiler, since there are more pseudos */
5430 subtarget = (!optimize
5431 && (target_mode == mode)) ? target : NULL_RTX;
5432 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5433
5434 /* For floating-point comparisons, try the reverse comparison or try
5435 changing the "orderedness" of the comparison. */
5436 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5437 {
5438 enum rtx_code first_code;
5439 bool and_them;
5440
5441 rcode = reverse_condition_maybe_unordered (code);
5442 if (can_compare_p (rcode, mode, ccp_store_flag)
5443 && (code == ORDERED || code == UNORDERED
5444 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5445 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5446 {
5447 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5448 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5449
5450 /* For the reverse comparison, use either an addition or a XOR. */
5451 if (want_add
5452 && rtx_cost (GEN_INT (normalizep), PLUS,
5453 optimize_insn_for_speed_p ()) == 0)
5454 {
5455 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5456 STORE_FLAG_VALUE, target_mode);
5457 if (tem)
5458 return expand_binop (target_mode, add_optab, tem,
5459 GEN_INT (normalizep),
5460 target, 0, OPTAB_WIDEN);
5461 }
5462 else if (!want_add
5463 && rtx_cost (trueval, XOR,
5464 optimize_insn_for_speed_p ()) == 0)
5465 {
5466 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5467 normalizep, target_mode);
5468 if (tem)
5469 return expand_binop (target_mode, xor_optab, tem, trueval,
5470 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5471 }
5472 }
5473
5474 delete_insns_since (last);
5475
5476 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5477 if (code == ORDERED || code == UNORDERED)
5478 return 0;
5479
5480 and_them = split_comparison (code, mode, &first_code, &code);
5481
5482 /* If there are no NaNs, the first comparison should always fall through.
5483 Effectively change the comparison to the other one. */
5484 if (!HONOR_NANS (mode))
5485 {
5486 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5487 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5488 target_mode);
5489 }
5490
5491 #ifdef HAVE_conditional_move
5492 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5493 conditional move. */
5494 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5495 normalizep, target_mode);
5496 if (tem == 0)
5497 return 0;
5498
5499 if (and_them)
5500 tem = emit_conditional_move (target, code, op0, op1, mode,
5501 tem, const0_rtx, GET_MODE (tem), 0);
5502 else
5503 tem = emit_conditional_move (target, code, op0, op1, mode,
5504 trueval, tem, GET_MODE (tem), 0);
5505
5506 if (tem == 0)
5507 delete_insns_since (last);
5508 return tem;
5509 #else
5510 return 0;
5511 #endif
5512 }
5513
5514 /* The remaining tricks only apply to integer comparisons. */
5515
5516 if (GET_MODE_CLASS (mode) != MODE_INT)
5517 return 0;
5518
5519 /* If this is an equality comparison of integers, we can try to exclusive-or
5520 (or subtract) the two operands and use a recursive call to try the
5521 comparison with zero. Don't do any of these cases if branches are
5522 very cheap. */
5523
5524 if ((code == EQ || code == NE) && op1 != const0_rtx)
5525 {
5526 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5527 OPTAB_WIDEN);
5528
5529 if (tem == 0)
5530 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5531 OPTAB_WIDEN);
5532 if (tem != 0)
5533 tem = emit_store_flag (target, code, tem, const0_rtx,
5534 mode, unsignedp, normalizep);
5535 if (tem != 0)
5536 return tem;
5537
5538 delete_insns_since (last);
5539 }
5540
5541 /* For integer comparisons, try the reverse comparison. However, for
5542 small X and if we'd have anyway to extend, implementing "X != 0"
5543 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5544 rcode = reverse_condition (code);
5545 if (can_compare_p (rcode, mode, ccp_store_flag)
5546 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5547 && code == NE
5548 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5549 && op1 == const0_rtx))
5550 {
5551 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5552 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5553
5554 /* Again, for the reverse comparison, use either an addition or a XOR. */
5555 if (want_add
5556 && rtx_cost (GEN_INT (normalizep), PLUS,
5557 optimize_insn_for_speed_p ()) == 0)
5558 {
5559 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5560 STORE_FLAG_VALUE, target_mode);
5561 if (tem != 0)
5562 tem = expand_binop (target_mode, add_optab, tem,
5563 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5564 }
5565 else if (!want_add
5566 && rtx_cost (trueval, XOR,
5567 optimize_insn_for_speed_p ()) == 0)
5568 {
5569 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5570 normalizep, target_mode);
5571 if (tem != 0)
5572 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5573 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5574 }
5575
5576 if (tem != 0)
5577 return tem;
5578 delete_insns_since (last);
5579 }
5580
5581 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5582 the constant zero. Reject all other comparisons at this point. Only
5583 do LE and GT if branches are expensive since they are expensive on
5584 2-operand machines. */
5585
5586 if (op1 != const0_rtx
5587 || (code != EQ && code != NE
5588 && (BRANCH_COST (optimize_insn_for_speed_p (),
5589 false) <= 1 || (code != LE && code != GT))))
5590 return 0;
5591
5592 /* Try to put the result of the comparison in the sign bit. Assume we can't
5593 do the necessary operation below. */
5594
5595 tem = 0;
5596
5597 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5598 the sign bit set. */
5599
5600 if (code == LE)
5601 {
5602 /* This is destructive, so SUBTARGET can't be OP0. */
5603 if (rtx_equal_p (subtarget, op0))
5604 subtarget = 0;
5605
5606 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5607 OPTAB_WIDEN);
5608 if (tem)
5609 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5610 OPTAB_WIDEN);
5611 }
5612
5613 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5614 number of bits in the mode of OP0, minus one. */
5615
5616 if (code == GT)
5617 {
5618 if (rtx_equal_p (subtarget, op0))
5619 subtarget = 0;
5620
5621 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5622 size_int (GET_MODE_BITSIZE (mode) - 1),
5623 subtarget, 0);
5624 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5625 OPTAB_WIDEN);
5626 }
5627
5628 if (code == EQ || code == NE)
5629 {
5630 /* For EQ or NE, one way to do the comparison is to apply an operation
5631 that converts the operand into a positive number if it is nonzero
5632 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5633 for NE we negate. This puts the result in the sign bit. Then we
5634 normalize with a shift, if needed.
5635
5636 Two operations that can do the above actions are ABS and FFS, so try
5637 them. If that doesn't work, and MODE is smaller than a full word,
5638 we can use zero-extension to the wider mode (an unsigned conversion)
5639 as the operation. */
5640
5641 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5642 that is compensated by the subsequent overflow when subtracting
5643 one / negating. */
5644
5645 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5646 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5647 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5648 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5649 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5650 {
5651 tem = convert_modes (word_mode, mode, op0, 1);
5652 mode = word_mode;
5653 }
5654
5655 if (tem != 0)
5656 {
5657 if (code == EQ)
5658 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5659 0, OPTAB_WIDEN);
5660 else
5661 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5662 }
5663
5664 /* If we couldn't do it that way, for NE we can "or" the two's complement
5665 of the value with itself. For EQ, we take the one's complement of
5666 that "or", which is an extra insn, so we only handle EQ if branches
5667 are expensive. */
5668
5669 if (tem == 0
5670 && (code == NE
5671 || BRANCH_COST (optimize_insn_for_speed_p (),
5672 false) > 1))
5673 {
5674 if (rtx_equal_p (subtarget, op0))
5675 subtarget = 0;
5676
5677 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5678 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5679 OPTAB_WIDEN);
5680
5681 if (tem && code == EQ)
5682 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5683 }
5684 }
5685
5686 if (tem && normalizep)
5687 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5688 size_int (GET_MODE_BITSIZE (mode) - 1),
5689 subtarget, normalizep == 1);
5690
5691 if (tem)
5692 {
5693 if (!target)
5694 ;
5695 else if (GET_MODE (tem) != target_mode)
5696 {
5697 convert_move (target, tem, 0);
5698 tem = target;
5699 }
5700 else if (!subtarget)
5701 {
5702 emit_move_insn (target, tem);
5703 tem = target;
5704 }
5705 }
5706 else
5707 delete_insns_since (last);
5708
5709 return tem;
5710 }
5711
5712 /* Like emit_store_flag, but always succeeds. */
5713
5714 rtx
5715 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5716 enum machine_mode mode, int unsignedp, int normalizep)
5717 {
5718 rtx tem, label;
5719 rtx trueval, falseval;
5720
5721 /* First see if emit_store_flag can do the job. */
5722 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5723 if (tem != 0)
5724 return tem;
5725
5726 if (!target)
5727 target = gen_reg_rtx (word_mode);
5728
5729 /* If this failed, we have to do this with set/compare/jump/set code.
5730 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5731 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5732 if (code == NE
5733 && GET_MODE_CLASS (mode) == MODE_INT
5734 && REG_P (target)
5735 && op0 == target
5736 && op1 == const0_rtx)
5737 {
5738 label = gen_label_rtx ();
5739 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5740 mode, NULL_RTX, NULL_RTX, label, -1);
5741 emit_move_insn (target, trueval);
5742 emit_label (label);
5743 return target;
5744 }
5745
5746 if (!REG_P (target)
5747 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5748 target = gen_reg_rtx (GET_MODE (target));
5749
5750 /* Jump in the right direction if the target cannot implement CODE
5751 but can jump on its reverse condition. */
5752 falseval = const0_rtx;
5753 if (! can_compare_p (code, mode, ccp_jump)
5754 && (! FLOAT_MODE_P (mode)
5755 || code == ORDERED || code == UNORDERED
5756 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5757 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5758 {
5759 enum rtx_code rcode;
5760 if (FLOAT_MODE_P (mode))
5761 rcode = reverse_condition_maybe_unordered (code);
5762 else
5763 rcode = reverse_condition (code);
5764
5765 /* Canonicalize to UNORDERED for the libcall. */
5766 if (can_compare_p (rcode, mode, ccp_jump)
5767 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5768 {
5769 falseval = trueval;
5770 trueval = const0_rtx;
5771 code = rcode;
5772 }
5773 }
5774
5775 emit_move_insn (target, trueval);
5776 label = gen_label_rtx ();
5777 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5778 NULL_RTX, label, -1);
5779
5780 emit_move_insn (target, falseval);
5781 emit_label (label);
5782
5783 return target;
5784 }
5785 \f
5786 /* Perform possibly multi-word comparison and conditional jump to LABEL
5787 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5788 now a thin wrapper around do_compare_rtx_and_jump. */
5789
5790 static void
5791 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5792 rtx label)
5793 {
5794 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5795 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5796 NULL_RTX, NULL_RTX, label, -1);
5797 }