expmed.c (extract_split_bit_field): Remove if (0) code.
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
41
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
66
67 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
69
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
73
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
77
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
81
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
98
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost;
102 static int add_cost[NUM_MACHINE_MODES];
103 static int neg_cost[NUM_MACHINE_MODES];
104 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[NUM_MACHINE_MODES];
108 static int sdiv_cost[NUM_MACHINE_MODES];
109 static int udiv_cost[NUM_MACHINE_MODES];
110 static int mul_widen_cost[NUM_MACHINE_MODES];
111 static int mul_highpart_cost[NUM_MACHINE_MODES];
112
113 void
114 init_expmed (void)
115 {
116 struct
117 {
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub; rtunion shift_sub_fld1;
134 } all;
135
136 rtx pow2[MAX_BITS_PER_WORD];
137 rtx cint[MAX_BITS_PER_WORD];
138 int m, n;
139 enum machine_mode mode, wider_mode;
140
141 zero_cost = rtx_cost (const0_rtx, 0);
142
143 for (m = 1; m < MAX_BITS_PER_WORD; m++)
144 {
145 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 cint[m] = GEN_INT (m);
147 }
148
149 memset (&all, 0, sizeof all);
150
151 PUT_CODE (&all.reg, REG);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
154
155 PUT_CODE (&all.plus, PLUS);
156 XEXP (&all.plus, 0) = &all.reg;
157 XEXP (&all.plus, 1) = &all.reg;
158
159 PUT_CODE (&all.neg, NEG);
160 XEXP (&all.neg, 0) = &all.reg;
161
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
165
166 PUT_CODE (&all.sdiv, DIV);
167 XEXP (&all.sdiv, 0) = &all.reg;
168 XEXP (&all.sdiv, 1) = &all.reg;
169
170 PUT_CODE (&all.udiv, UDIV);
171 XEXP (&all.udiv, 0) = &all.reg;
172 XEXP (&all.udiv, 1) = &all.reg;
173
174 PUT_CODE (&all.sdiv_32, DIV);
175 XEXP (&all.sdiv_32, 0) = &all.reg;
176 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
177
178 PUT_CODE (&all.smod_32, MOD);
179 XEXP (&all.smod_32, 0) = &all.reg;
180 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
181
182 PUT_CODE (&all.zext, ZERO_EXTEND);
183 XEXP (&all.zext, 0) = &all.reg;
184
185 PUT_CODE (&all.wide_mult, MULT);
186 XEXP (&all.wide_mult, 0) = &all.zext;
187 XEXP (&all.wide_mult, 1) = &all.zext;
188
189 PUT_CODE (&all.wide_lshr, LSHIFTRT);
190 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
191
192 PUT_CODE (&all.wide_trunc, TRUNCATE);
193 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
194
195 PUT_CODE (&all.shift, ASHIFT);
196 XEXP (&all.shift, 0) = &all.reg;
197
198 PUT_CODE (&all.shift_mult, MULT);
199 XEXP (&all.shift_mult, 0) = &all.reg;
200
201 PUT_CODE (&all.shift_add, PLUS);
202 XEXP (&all.shift_add, 0) = &all.shift_mult;
203 XEXP (&all.shift_add, 1) = &all.reg;
204
205 PUT_CODE (&all.shift_sub, MINUS);
206 XEXP (&all.shift_sub, 0) = &all.shift_mult;
207 XEXP (&all.shift_sub, 1) = &all.reg;
208
209 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
210 mode != VOIDmode;
211 mode = GET_MODE_WIDER_MODE (mode))
212 {
213 PUT_MODE (&all.reg, mode);
214 PUT_MODE (&all.plus, mode);
215 PUT_MODE (&all.neg, mode);
216 PUT_MODE (&all.mult, mode);
217 PUT_MODE (&all.sdiv, mode);
218 PUT_MODE (&all.udiv, mode);
219 PUT_MODE (&all.sdiv_32, mode);
220 PUT_MODE (&all.smod_32, mode);
221 PUT_MODE (&all.wide_trunc, mode);
222 PUT_MODE (&all.shift, mode);
223 PUT_MODE (&all.shift_mult, mode);
224 PUT_MODE (&all.shift_add, mode);
225 PUT_MODE (&all.shift_sub, mode);
226
227 add_cost[mode] = rtx_cost (&all.plus, SET);
228 neg_cost[mode] = rtx_cost (&all.neg, SET);
229 mul_cost[mode] = rtx_cost (&all.mult, SET);
230 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
231 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
232
233 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
234 <= 2 * add_cost[mode]);
235 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
236 <= 4 * add_cost[mode]);
237
238 wider_mode = GET_MODE_WIDER_MODE (mode);
239 if (wider_mode != VOIDmode)
240 {
241 PUT_MODE (&all.zext, wider_mode);
242 PUT_MODE (&all.wide_mult, wider_mode);
243 PUT_MODE (&all.wide_lshr, wider_mode);
244 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
245
246 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
247 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
248 }
249
250 shift_cost[mode][0] = 0;
251 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
252
253 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
254 for (m = 1; m < n; m++)
255 {
256 XEXP (&all.shift, 1) = cint[m];
257 XEXP (&all.shift_mult, 1) = pow2[m];
258
259 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
260 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
261 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
262 }
263 }
264 }
265
266 /* Return an rtx representing minus the value of X.
267 MODE is the intended mode of the result,
268 useful if X is a CONST_INT. */
269
270 rtx
271 negate_rtx (enum machine_mode mode, rtx x)
272 {
273 rtx result = simplify_unary_operation (NEG, mode, x, mode);
274
275 if (result == 0)
276 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
277
278 return result;
279 }
280
281 /* Report on the availability of insv/extv/extzv and the desired mode
282 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
283 is false; else the mode of the specified operand. If OPNO is -1,
284 all the caller cares about is whether the insn is available. */
285 enum machine_mode
286 mode_for_extraction (enum extraction_pattern pattern, int opno)
287 {
288 const struct insn_data *data;
289
290 switch (pattern)
291 {
292 case EP_insv:
293 if (HAVE_insv)
294 {
295 data = &insn_data[CODE_FOR_insv];
296 break;
297 }
298 return MAX_MACHINE_MODE;
299
300 case EP_extv:
301 if (HAVE_extv)
302 {
303 data = &insn_data[CODE_FOR_extv];
304 break;
305 }
306 return MAX_MACHINE_MODE;
307
308 case EP_extzv:
309 if (HAVE_extzv)
310 {
311 data = &insn_data[CODE_FOR_extzv];
312 break;
313 }
314 return MAX_MACHINE_MODE;
315
316 default:
317 gcc_unreachable ();
318 }
319
320 if (opno == -1)
321 return VOIDmode;
322
323 /* Everyone who uses this function used to follow it with
324 if (result == VOIDmode) result = word_mode; */
325 if (data->operand[opno].mode == VOIDmode)
326 return word_mode;
327 return data->operand[opno].mode;
328 }
329
330 /* Return true if X, of mode MODE, matches the predicate for operand
331 OPNO of instruction ICODE. Allow volatile memories, regardless of
332 the ambient volatile_ok setting. */
333
334 static bool
335 check_predicate_volatile_ok (enum insn_code icode, int opno,
336 rtx x, enum machine_mode mode)
337 {
338 bool save_volatile_ok, result;
339
340 save_volatile_ok = volatile_ok;
341 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
342 volatile_ok = save_volatile_ok;
343 return result;
344 }
345 \f
346 /* A subroutine of store_bit_field, with the same arguments. Return true
347 if the operation could be implemented.
348
349 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
350 no other way of implementing the operation. If FALLBACK_P is false,
351 return false instead. */
352
353 static bool
354 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
355 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
356 rtx value, bool fallback_p)
357 {
358 unsigned int unit
359 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
360 unsigned HOST_WIDE_INT offset, bitpos;
361 rtx op0 = str_rtx;
362 int byte_offset;
363 rtx orig_value;
364
365 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
366
367 while (GET_CODE (op0) == SUBREG)
368 {
369 /* The following line once was done only if WORDS_BIG_ENDIAN,
370 but I think that is a mistake. WORDS_BIG_ENDIAN is
371 meaningful at a much higher level; when structures are copied
372 between memory and regs, the higher-numbered regs
373 always get higher addresses. */
374 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
375 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
376
377 byte_offset = 0;
378
379 /* Paradoxical subregs need special handling on big endian machines. */
380 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
381 {
382 int difference = inner_mode_size - outer_mode_size;
383
384 if (WORDS_BIG_ENDIAN)
385 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
386 if (BYTES_BIG_ENDIAN)
387 byte_offset += difference % UNITS_PER_WORD;
388 }
389 else
390 byte_offset = SUBREG_BYTE (op0);
391
392 bitnum += byte_offset * BITS_PER_UNIT;
393 op0 = SUBREG_REG (op0);
394 }
395
396 /* No action is needed if the target is a register and if the field
397 lies completely outside that register. This can occur if the source
398 code contains an out-of-bounds access to a small array. */
399 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
400 return true;
401
402 /* Use vec_set patterns for inserting parts of vectors whenever
403 available. */
404 if (VECTOR_MODE_P (GET_MODE (op0))
405 && !MEM_P (op0)
406 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
407 != CODE_FOR_nothing)
408 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
409 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
410 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
411 {
412 enum machine_mode outermode = GET_MODE (op0);
413 enum machine_mode innermode = GET_MODE_INNER (outermode);
414 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
415 int pos = bitnum / GET_MODE_BITSIZE (innermode);
416 rtx rtxpos = GEN_INT (pos);
417 rtx src = value;
418 rtx dest = op0;
419 rtx pat, seq;
420 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
421 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
422 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
423
424 start_sequence ();
425
426 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
427 src = copy_to_mode_reg (mode1, src);
428
429 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
430 rtxpos = copy_to_mode_reg (mode1, rtxpos);
431
432 /* We could handle this, but we should always be called with a pseudo
433 for our targets and all insns should take them as outputs. */
434 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
435 && (*insn_data[icode].operand[1].predicate) (src, mode1)
436 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
437 pat = GEN_FCN (icode) (dest, src, rtxpos);
438 seq = get_insns ();
439 end_sequence ();
440 if (pat)
441 {
442 emit_insn (seq);
443 emit_insn (pat);
444 return true;
445 }
446 }
447
448 /* If the target is a register, overwriting the entire object, or storing
449 a full-word or multi-word field can be done with just a SUBREG.
450
451 If the target is memory, storing any naturally aligned field can be
452 done with a simple store. For targets that support fast unaligned
453 memory, any naturally sized, unit aligned field can be done directly. */
454
455 offset = bitnum / unit;
456 bitpos = bitnum % unit;
457 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
458 + (offset * UNITS_PER_WORD);
459
460 if (bitpos == 0
461 && bitsize == GET_MODE_BITSIZE (fieldmode)
462 && (!MEM_P (op0)
463 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
464 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
465 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
466 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
467 || (offset * BITS_PER_UNIT % bitsize == 0
468 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
469 {
470 if (MEM_P (op0))
471 op0 = adjust_address (op0, fieldmode, offset);
472 else if (GET_MODE (op0) != fieldmode)
473 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
474 byte_offset);
475 emit_move_insn (op0, value);
476 return true;
477 }
478
479 /* Make sure we are playing with integral modes. Pun with subregs
480 if we aren't. This must come after the entire register case above,
481 since that case is valid for any mode. The following cases are only
482 valid for integral modes. */
483 {
484 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
485 if (imode != GET_MODE (op0))
486 {
487 if (MEM_P (op0))
488 op0 = adjust_address (op0, imode, 0);
489 else
490 {
491 gcc_assert (imode != BLKmode);
492 op0 = gen_lowpart (imode, op0);
493 }
494 }
495 }
496
497 /* We may be accessing data outside the field, which means
498 we can alias adjacent data. */
499 if (MEM_P (op0))
500 {
501 op0 = shallow_copy_rtx (op0);
502 set_mem_alias_set (op0, 0);
503 set_mem_expr (op0, 0);
504 }
505
506 /* If OP0 is a register, BITPOS must count within a word.
507 But as we have it, it counts within whatever size OP0 now has.
508 On a bigendian machine, these are not the same, so convert. */
509 if (BYTES_BIG_ENDIAN
510 && !MEM_P (op0)
511 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
512 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
513
514 /* Storing an lsb-aligned field in a register
515 can be done with a movestrict instruction. */
516
517 if (!MEM_P (op0)
518 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
519 && bitsize == GET_MODE_BITSIZE (fieldmode)
520 && (optab_handler (movstrict_optab, fieldmode)->insn_code
521 != CODE_FOR_nothing))
522 {
523 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
524
525 /* Get appropriate low part of the value being stored. */
526 if (GET_CODE (value) == CONST_INT || REG_P (value))
527 value = gen_lowpart (fieldmode, value);
528 else if (!(GET_CODE (value) == SYMBOL_REF
529 || GET_CODE (value) == LABEL_REF
530 || GET_CODE (value) == CONST))
531 value = convert_to_mode (fieldmode, value, 0);
532
533 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
534 value = copy_to_mode_reg (fieldmode, value);
535
536 if (GET_CODE (op0) == SUBREG)
537 {
538 /* Else we've got some float mode source being extracted into
539 a different float mode destination -- this combination of
540 subregs results in Severe Tire Damage. */
541 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
542 || GET_MODE_CLASS (fieldmode) == MODE_INT
543 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
544 op0 = SUBREG_REG (op0);
545 }
546
547 emit_insn (GEN_FCN (icode)
548 (gen_rtx_SUBREG (fieldmode, op0,
549 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
550 + (offset * UNITS_PER_WORD)),
551 value));
552
553 return true;
554 }
555
556 /* Handle fields bigger than a word. */
557
558 if (bitsize > BITS_PER_WORD)
559 {
560 /* Here we transfer the words of the field
561 in the order least significant first.
562 This is because the most significant word is the one which may
563 be less than full.
564 However, only do that if the value is not BLKmode. */
565
566 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
567 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
568 unsigned int i;
569 rtx last;
570
571 /* This is the mode we must force value to, so that there will be enough
572 subwords to extract. Note that fieldmode will often (always?) be
573 VOIDmode, because that is what store_field uses to indicate that this
574 is a bit field, but passing VOIDmode to operand_subword_force
575 is not allowed. */
576 fieldmode = GET_MODE (value);
577 if (fieldmode == VOIDmode)
578 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
579
580 last = get_last_insn ();
581 for (i = 0; i < nwords; i++)
582 {
583 /* If I is 0, use the low-order word in both field and target;
584 if I is 1, use the next to lowest word; and so on. */
585 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
586 unsigned int bit_offset = (backwards
587 ? MAX ((int) bitsize - ((int) i + 1)
588 * BITS_PER_WORD,
589 0)
590 : (int) i * BITS_PER_WORD);
591 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
592
593 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
594 bitsize - i * BITS_PER_WORD),
595 bitnum + bit_offset, word_mode,
596 value_word, fallback_p))
597 {
598 delete_insns_since (last);
599 return false;
600 }
601 }
602 return true;
603 }
604
605 /* From here on we can assume that the field to be stored in is
606 a full-word (whatever type that is), since it is shorter than a word. */
607
608 /* OFFSET is the number of words or bytes (UNIT says which)
609 from STR_RTX to the first word or byte containing part of the field. */
610
611 if (!MEM_P (op0))
612 {
613 if (offset != 0
614 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
615 {
616 if (!REG_P (op0))
617 {
618 /* Since this is a destination (lvalue), we can't copy
619 it to a pseudo. We can remove a SUBREG that does not
620 change the size of the operand. Such a SUBREG may
621 have been added above. */
622 gcc_assert (GET_CODE (op0) == SUBREG
623 && (GET_MODE_SIZE (GET_MODE (op0))
624 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
625 op0 = SUBREG_REG (op0);
626 }
627 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
628 op0, (offset * UNITS_PER_WORD));
629 }
630 offset = 0;
631 }
632
633 /* If VALUE has a floating-point or complex mode, access it as an
634 integer of the corresponding size. This can occur on a machine
635 with 64 bit registers that uses SFmode for float. It can also
636 occur for unaligned float or complex fields. */
637 orig_value = value;
638 if (GET_MODE (value) != VOIDmode
639 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
640 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
641 {
642 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
643 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
644 }
645
646 /* Now OFFSET is nonzero only if OP0 is memory
647 and is therefore always measured in bytes. */
648
649 if (HAVE_insv
650 && GET_MODE (value) != BLKmode
651 && bitsize > 0
652 && GET_MODE_BITSIZE (op_mode) >= bitsize
653 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
654 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
655 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
656 VOIDmode)
657 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
658 {
659 int xbitpos = bitpos;
660 rtx value1;
661 rtx xop0 = op0;
662 rtx last = get_last_insn ();
663 rtx pat;
664
665 /* Add OFFSET into OP0's address. */
666 if (MEM_P (xop0))
667 xop0 = adjust_address (xop0, byte_mode, offset);
668
669 /* If xop0 is a register, we need it in OP_MODE
670 to make it acceptable to the format of insv. */
671 if (GET_CODE (xop0) == SUBREG)
672 /* We can't just change the mode, because this might clobber op0,
673 and we will need the original value of op0 if insv fails. */
674 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
675 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
676 xop0 = gen_rtx_SUBREG (op_mode, xop0, 0);
677
678 /* On big-endian machines, we count bits from the most significant.
679 If the bit field insn does not, we must invert. */
680
681 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
682 xbitpos = unit - bitsize - xbitpos;
683
684 /* We have been counting XBITPOS within UNIT.
685 Count instead within the size of the register. */
686 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
687 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
688
689 unit = GET_MODE_BITSIZE (op_mode);
690
691 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
692 value1 = value;
693 if (GET_MODE (value) != op_mode)
694 {
695 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
696 {
697 /* Optimization: Don't bother really extending VALUE
698 if it has all the bits we will actually use. However,
699 if we must narrow it, be sure we do it correctly. */
700
701 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
702 {
703 rtx tmp;
704
705 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
706 if (! tmp)
707 tmp = simplify_gen_subreg (op_mode,
708 force_reg (GET_MODE (value),
709 value1),
710 GET_MODE (value), 0);
711 value1 = tmp;
712 }
713 else
714 value1 = gen_lowpart (op_mode, value1);
715 }
716 else if (GET_CODE (value) == CONST_INT)
717 value1 = gen_int_mode (INTVAL (value), op_mode);
718 else
719 /* Parse phase is supposed to make VALUE's data type
720 match that of the component reference, which is a type
721 at least as wide as the field; so VALUE should have
722 a mode that corresponds to that type. */
723 gcc_assert (CONSTANT_P (value));
724 }
725
726 /* If this machine's insv insists on a register,
727 get VALUE1 into a register. */
728 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
729 (value1, op_mode)))
730 value1 = force_reg (op_mode, value1);
731
732 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
733 if (pat)
734 {
735 emit_insn (pat);
736 return true;
737 }
738 delete_insns_since (last);
739 }
740
741 /* If OP0 is a memory, try copying it to a register and seeing if a
742 cheap register alternative is available. */
743 if (HAVE_insv && MEM_P (op0))
744 {
745 enum machine_mode bestmode;
746
747 /* Get the mode to use for inserting into this field. If OP0 is
748 BLKmode, get the smallest mode consistent with the alignment. If
749 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
750 mode. Otherwise, use the smallest mode containing the field. */
751
752 if (GET_MODE (op0) == BLKmode
753 || (op_mode != MAX_MACHINE_MODE
754 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
755 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
756 (op_mode == MAX_MACHINE_MODE
757 ? VOIDmode : op_mode),
758 MEM_VOLATILE_P (op0));
759 else
760 bestmode = GET_MODE (op0);
761
762 if (bestmode != VOIDmode
763 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
764 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
765 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
766 {
767 rtx last, tempreg, xop0;
768 unsigned HOST_WIDE_INT xoffset, xbitpos;
769
770 last = get_last_insn ();
771
772 /* Adjust address to point to the containing unit of
773 that mode. Compute the offset as a multiple of this unit,
774 counting in bytes. */
775 unit = GET_MODE_BITSIZE (bestmode);
776 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
777 xbitpos = bitnum % unit;
778 xop0 = adjust_address (op0, bestmode, xoffset);
779
780 /* Fetch that unit, store the bitfield in it, then store
781 the unit. */
782 tempreg = copy_to_reg (xop0);
783 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
784 fieldmode, orig_value, false))
785 {
786 emit_move_insn (xop0, tempreg);
787 return true;
788 }
789 delete_insns_since (last);
790 }
791 }
792
793 if (!fallback_p)
794 return false;
795
796 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
797 return true;
798 }
799
800 /* Generate code to store value from rtx VALUE
801 into a bit-field within structure STR_RTX
802 containing BITSIZE bits starting at bit BITNUM.
803 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
804
805 void
806 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
807 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
808 rtx value)
809 {
810 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
811 gcc_unreachable ();
812 }
813 \f
814 /* Use shifts and boolean operations to store VALUE
815 into a bit field of width BITSIZE
816 in a memory location specified by OP0 except offset by OFFSET bytes.
817 (OFFSET must be 0 if OP0 is a register.)
818 The field starts at position BITPOS within the byte.
819 (If OP0 is a register, it may be a full word or a narrower mode,
820 but BITPOS still counts within a full word,
821 which is significant on bigendian machines.) */
822
823 static void
824 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
825 unsigned HOST_WIDE_INT bitsize,
826 unsigned HOST_WIDE_INT bitpos, rtx value)
827 {
828 enum machine_mode mode;
829 unsigned int total_bits = BITS_PER_WORD;
830 rtx temp;
831 int all_zero = 0;
832 int all_one = 0;
833
834 /* There is a case not handled here:
835 a structure with a known alignment of just a halfword
836 and a field split across two aligned halfwords within the structure.
837 Or likewise a structure with a known alignment of just a byte
838 and a field split across two bytes.
839 Such cases are not supposed to be able to occur. */
840
841 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
842 {
843 gcc_assert (!offset);
844 /* Special treatment for a bit field split across two registers. */
845 if (bitsize + bitpos > BITS_PER_WORD)
846 {
847 store_split_bit_field (op0, bitsize, bitpos, value);
848 return;
849 }
850 }
851 else
852 {
853 /* Get the proper mode to use for this field. We want a mode that
854 includes the entire field. If such a mode would be larger than
855 a word, we won't be doing the extraction the normal way.
856 We don't want a mode bigger than the destination. */
857
858 mode = GET_MODE (op0);
859 if (GET_MODE_BITSIZE (mode) == 0
860 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
861 mode = word_mode;
862 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
863 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
864
865 if (mode == VOIDmode)
866 {
867 /* The only way this should occur is if the field spans word
868 boundaries. */
869 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
870 value);
871 return;
872 }
873
874 total_bits = GET_MODE_BITSIZE (mode);
875
876 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
877 be in the range 0 to total_bits-1, and put any excess bytes in
878 OFFSET. */
879 if (bitpos >= total_bits)
880 {
881 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
882 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
883 * BITS_PER_UNIT);
884 }
885
886 /* Get ref to an aligned byte, halfword, or word containing the field.
887 Adjust BITPOS to be position within a word,
888 and OFFSET to be the offset of that word.
889 Then alter OP0 to refer to that word. */
890 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
891 offset -= (offset % (total_bits / BITS_PER_UNIT));
892 op0 = adjust_address (op0, mode, offset);
893 }
894
895 mode = GET_MODE (op0);
896
897 /* Now MODE is either some integral mode for a MEM as OP0,
898 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
899 The bit field is contained entirely within OP0.
900 BITPOS is the starting bit number within OP0.
901 (OP0's mode may actually be narrower than MODE.) */
902
903 if (BYTES_BIG_ENDIAN)
904 /* BITPOS is the distance between our msb
905 and that of the containing datum.
906 Convert it to the distance from the lsb. */
907 bitpos = total_bits - bitsize - bitpos;
908
909 /* Now BITPOS is always the distance between our lsb
910 and that of OP0. */
911
912 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
913 we must first convert its mode to MODE. */
914
915 if (GET_CODE (value) == CONST_INT)
916 {
917 HOST_WIDE_INT v = INTVAL (value);
918
919 if (bitsize < HOST_BITS_PER_WIDE_INT)
920 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
921
922 if (v == 0)
923 all_zero = 1;
924 else if ((bitsize < HOST_BITS_PER_WIDE_INT
925 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
926 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
927 all_one = 1;
928
929 value = lshift_value (mode, value, bitpos, bitsize);
930 }
931 else
932 {
933 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
934 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
935
936 if (GET_MODE (value) != mode)
937 {
938 if ((REG_P (value) || GET_CODE (value) == SUBREG)
939 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
940 value = gen_lowpart (mode, value);
941 else
942 value = convert_to_mode (mode, value, 1);
943 }
944
945 if (must_and)
946 value = expand_binop (mode, and_optab, value,
947 mask_rtx (mode, 0, bitsize, 0),
948 NULL_RTX, 1, OPTAB_LIB_WIDEN);
949 if (bitpos > 0)
950 value = expand_shift (LSHIFT_EXPR, mode, value,
951 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
952 }
953
954 /* Now clear the chosen bits in OP0,
955 except that if VALUE is -1 we need not bother. */
956 /* We keep the intermediates in registers to allow CSE to combine
957 consecutive bitfield assignments. */
958
959 temp = force_reg (mode, op0);
960
961 if (! all_one)
962 {
963 temp = expand_binop (mode, and_optab, temp,
964 mask_rtx (mode, bitpos, bitsize, 1),
965 NULL_RTX, 1, OPTAB_LIB_WIDEN);
966 temp = force_reg (mode, temp);
967 }
968
969 /* Now logical-or VALUE into OP0, unless it is zero. */
970
971 if (! all_zero)
972 {
973 temp = expand_binop (mode, ior_optab, temp, value,
974 NULL_RTX, 1, OPTAB_LIB_WIDEN);
975 temp = force_reg (mode, temp);
976 }
977
978 if (op0 != temp)
979 emit_move_insn (op0, temp);
980 }
981 \f
982 /* Store a bit field that is split across multiple accessible memory objects.
983
984 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
985 BITSIZE is the field width; BITPOS the position of its first bit
986 (within the word).
987 VALUE is the value to store.
988
989 This does not yet handle fields wider than BITS_PER_WORD. */
990
991 static void
992 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
993 unsigned HOST_WIDE_INT bitpos, rtx value)
994 {
995 unsigned int unit;
996 unsigned int bitsdone = 0;
997
998 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
999 much at a time. */
1000 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1001 unit = BITS_PER_WORD;
1002 else
1003 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1004
1005 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1006 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1007 that VALUE might be a floating-point constant. */
1008 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
1009 {
1010 rtx word = gen_lowpart_common (word_mode, value);
1011
1012 if (word && (value != word))
1013 value = word;
1014 else
1015 value = gen_lowpart_common (word_mode,
1016 force_reg (GET_MODE (value) != VOIDmode
1017 ? GET_MODE (value)
1018 : word_mode, value));
1019 }
1020
1021 while (bitsdone < bitsize)
1022 {
1023 unsigned HOST_WIDE_INT thissize;
1024 rtx part, word;
1025 unsigned HOST_WIDE_INT thispos;
1026 unsigned HOST_WIDE_INT offset;
1027
1028 offset = (bitpos + bitsdone) / unit;
1029 thispos = (bitpos + bitsdone) % unit;
1030
1031 /* THISSIZE must not overrun a word boundary. Otherwise,
1032 store_fixed_bit_field will call us again, and we will mutually
1033 recurse forever. */
1034 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1035 thissize = MIN (thissize, unit - thispos);
1036
1037 if (BYTES_BIG_ENDIAN)
1038 {
1039 int total_bits;
1040
1041 /* We must do an endian conversion exactly the same way as it is
1042 done in extract_bit_field, so that the two calls to
1043 extract_fixed_bit_field will have comparable arguments. */
1044 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1045 total_bits = BITS_PER_WORD;
1046 else
1047 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1048
1049 /* Fetch successively less significant portions. */
1050 if (GET_CODE (value) == CONST_INT)
1051 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1052 >> (bitsize - bitsdone - thissize))
1053 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1054 else
1055 /* The args are chosen so that the last part includes the
1056 lsb. Give extract_bit_field the value it needs (with
1057 endianness compensation) to fetch the piece we want. */
1058 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1059 total_bits - bitsize + bitsdone,
1060 NULL_RTX, 1);
1061 }
1062 else
1063 {
1064 /* Fetch successively more significant portions. */
1065 if (GET_CODE (value) == CONST_INT)
1066 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1067 >> bitsdone)
1068 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1069 else
1070 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1071 bitsdone, NULL_RTX, 1);
1072 }
1073
1074 /* If OP0 is a register, then handle OFFSET here.
1075
1076 When handling multiword bitfields, extract_bit_field may pass
1077 down a word_mode SUBREG of a larger REG for a bitfield that actually
1078 crosses a word boundary. Thus, for a SUBREG, we must find
1079 the current word starting from the base register. */
1080 if (GET_CODE (op0) == SUBREG)
1081 {
1082 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1083 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1084 GET_MODE (SUBREG_REG (op0)));
1085 offset = 0;
1086 }
1087 else if (REG_P (op0))
1088 {
1089 word = operand_subword_force (op0, offset, GET_MODE (op0));
1090 offset = 0;
1091 }
1092 else
1093 word = op0;
1094
1095 /* OFFSET is in UNITs, and UNIT is in bits.
1096 store_fixed_bit_field wants offset in bytes. */
1097 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1098 thispos, part);
1099 bitsdone += thissize;
1100 }
1101 }
1102 \f
1103 /* A subroutine of extract_bit_field_1 that converts return value X
1104 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1105 to extract_bit_field. */
1106
1107 static rtx
1108 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1109 enum machine_mode tmode, bool unsignedp)
1110 {
1111 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1112 return x;
1113
1114 /* If the x mode is not a scalar integral, first convert to the
1115 integer mode of that size and then access it as a floating-point
1116 value via a SUBREG. */
1117 if (!SCALAR_INT_MODE_P (tmode))
1118 {
1119 enum machine_mode smode;
1120
1121 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1122 x = convert_to_mode (smode, x, unsignedp);
1123 x = force_reg (smode, x);
1124 return gen_lowpart (tmode, x);
1125 }
1126
1127 return convert_to_mode (tmode, x, unsignedp);
1128 }
1129
1130 /* A subroutine of extract_bit_field, with the same arguments.
1131 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1132 if we can find no other means of implementing the operation.
1133 if FALLBACK_P is false, return NULL instead. */
1134
1135 static rtx
1136 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1137 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1138 enum machine_mode mode, enum machine_mode tmode,
1139 bool fallback_p)
1140 {
1141 unsigned int unit
1142 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1143 unsigned HOST_WIDE_INT offset, bitpos;
1144 rtx op0 = str_rtx;
1145 enum machine_mode int_mode;
1146 enum machine_mode ext_mode;
1147 enum machine_mode mode1;
1148 enum insn_code icode;
1149 int byte_offset;
1150
1151 if (tmode == VOIDmode)
1152 tmode = mode;
1153
1154 while (GET_CODE (op0) == SUBREG)
1155 {
1156 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1157 op0 = SUBREG_REG (op0);
1158 }
1159
1160 /* If we have an out-of-bounds access to a register, just return an
1161 uninitialized register of the required mode. This can occur if the
1162 source code contains an out-of-bounds access to a small array. */
1163 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1164 return gen_reg_rtx (tmode);
1165
1166 if (REG_P (op0)
1167 && mode == GET_MODE (op0)
1168 && bitnum == 0
1169 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1170 {
1171 /* We're trying to extract a full register from itself. */
1172 return op0;
1173 }
1174
1175 /* See if we can get a better vector mode before extracting. */
1176 if (VECTOR_MODE_P (GET_MODE (op0))
1177 && !MEM_P (op0)
1178 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1179 {
1180 enum machine_mode new_mode;
1181 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1182
1183 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1184 new_mode = MIN_MODE_VECTOR_FLOAT;
1185 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1186 new_mode = MIN_MODE_VECTOR_FRACT;
1187 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1188 new_mode = MIN_MODE_VECTOR_UFRACT;
1189 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1190 new_mode = MIN_MODE_VECTOR_ACCUM;
1191 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1192 new_mode = MIN_MODE_VECTOR_UACCUM;
1193 else
1194 new_mode = MIN_MODE_VECTOR_INT;
1195
1196 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1197 if (GET_MODE_NUNITS (new_mode) == nunits
1198 && GET_MODE_INNER (new_mode) == tmode
1199 && targetm.vector_mode_supported_p (new_mode))
1200 break;
1201 if (new_mode != VOIDmode)
1202 op0 = gen_lowpart (new_mode, op0);
1203 }
1204
1205 /* Use vec_extract patterns for extracting parts of vectors whenever
1206 available. */
1207 if (VECTOR_MODE_P (GET_MODE (op0))
1208 && !MEM_P (op0)
1209 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1210 != CODE_FOR_nothing)
1211 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1212 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1213 {
1214 enum machine_mode outermode = GET_MODE (op0);
1215 enum machine_mode innermode = GET_MODE_INNER (outermode);
1216 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1217 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1218 rtx rtxpos = GEN_INT (pos);
1219 rtx src = op0;
1220 rtx dest = NULL, pat, seq;
1221 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1222 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1223 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1224
1225 if (innermode == tmode || innermode == mode)
1226 dest = target;
1227
1228 if (!dest)
1229 dest = gen_reg_rtx (innermode);
1230
1231 start_sequence ();
1232
1233 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1234 dest = copy_to_mode_reg (mode0, dest);
1235
1236 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1237 src = copy_to_mode_reg (mode1, src);
1238
1239 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1240 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1241
1242 /* We could handle this, but we should always be called with a pseudo
1243 for our targets and all insns should take them as outputs. */
1244 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1245 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1246 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1247
1248 pat = GEN_FCN (icode) (dest, src, rtxpos);
1249 seq = get_insns ();
1250 end_sequence ();
1251 if (pat)
1252 {
1253 emit_insn (seq);
1254 emit_insn (pat);
1255 if (mode0 != mode)
1256 return gen_lowpart (tmode, dest);
1257 return dest;
1258 }
1259 }
1260
1261 /* Make sure we are playing with integral modes. Pun with subregs
1262 if we aren't. */
1263 {
1264 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1265 if (imode != GET_MODE (op0))
1266 {
1267 if (MEM_P (op0))
1268 op0 = adjust_address (op0, imode, 0);
1269 else
1270 {
1271 gcc_assert (imode != BLKmode);
1272 op0 = gen_lowpart (imode, op0);
1273
1274 /* If we got a SUBREG, force it into a register since we
1275 aren't going to be able to do another SUBREG on it. */
1276 if (GET_CODE (op0) == SUBREG)
1277 op0 = force_reg (imode, op0);
1278 }
1279 }
1280 }
1281
1282 /* We may be accessing data outside the field, which means
1283 we can alias adjacent data. */
1284 if (MEM_P (op0))
1285 {
1286 op0 = shallow_copy_rtx (op0);
1287 set_mem_alias_set (op0, 0);
1288 set_mem_expr (op0, 0);
1289 }
1290
1291 /* Extraction of a full-word or multi-word value from a structure
1292 in a register or aligned memory can be done with just a SUBREG.
1293 A subword value in the least significant part of a register
1294 can also be extracted with a SUBREG. For this, we need the
1295 byte offset of the value in op0. */
1296
1297 bitpos = bitnum % unit;
1298 offset = bitnum / unit;
1299 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1300
1301 /* If OP0 is a register, BITPOS must count within a word.
1302 But as we have it, it counts within whatever size OP0 now has.
1303 On a bigendian machine, these are not the same, so convert. */
1304 if (BYTES_BIG_ENDIAN
1305 && !MEM_P (op0)
1306 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1307 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1308
1309 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1310 If that's wrong, the solution is to test for it and set TARGET to 0
1311 if needed. */
1312
1313 /* Only scalar integer modes can be converted via subregs. There is an
1314 additional problem for FP modes here in that they can have a precision
1315 which is different from the size. mode_for_size uses precision, but
1316 we want a mode based on the size, so we must avoid calling it for FP
1317 modes. */
1318 mode1 = (SCALAR_INT_MODE_P (tmode)
1319 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1320 : mode);
1321
1322 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1323 && bitpos % BITS_PER_WORD == 0)
1324 || (mode1 != BLKmode
1325 /* ??? The big endian test here is wrong. This is correct
1326 if the value is in a register, and if mode_for_size is not
1327 the same mode as op0. This causes us to get unnecessarily
1328 inefficient code from the Thumb port when -mbig-endian. */
1329 && (BYTES_BIG_ENDIAN
1330 ? bitpos + bitsize == BITS_PER_WORD
1331 : bitpos == 0)))
1332 && ((!MEM_P (op0)
1333 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1334 GET_MODE_BITSIZE (GET_MODE (op0)))
1335 && GET_MODE_SIZE (mode1) != 0
1336 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1337 || (MEM_P (op0)
1338 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1339 || (offset * BITS_PER_UNIT % bitsize == 0
1340 && MEM_ALIGN (op0) % bitsize == 0)))))
1341 {
1342 if (MEM_P (op0))
1343 op0 = adjust_address (op0, mode1, offset);
1344 else if (mode1 != GET_MODE (op0))
1345 {
1346 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1347 byte_offset);
1348 if (sub == NULL)
1349 goto no_subreg_mode_swap;
1350 op0 = sub;
1351 }
1352 if (mode1 != mode)
1353 return convert_to_mode (tmode, op0, unsignedp);
1354 return op0;
1355 }
1356 no_subreg_mode_swap:
1357
1358 /* Handle fields bigger than a word. */
1359
1360 if (bitsize > BITS_PER_WORD)
1361 {
1362 /* Here we transfer the words of the field
1363 in the order least significant first.
1364 This is because the most significant word is the one which may
1365 be less than full. */
1366
1367 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1368 unsigned int i;
1369
1370 if (target == 0 || !REG_P (target))
1371 target = gen_reg_rtx (mode);
1372
1373 /* Indicate for flow that the entire target reg is being set. */
1374 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1375
1376 for (i = 0; i < nwords; i++)
1377 {
1378 /* If I is 0, use the low-order word in both field and target;
1379 if I is 1, use the next to lowest word; and so on. */
1380 /* Word number in TARGET to use. */
1381 unsigned int wordnum
1382 = (WORDS_BIG_ENDIAN
1383 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1384 : i);
1385 /* Offset from start of field in OP0. */
1386 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1387 ? MAX (0, ((int) bitsize - ((int) i + 1)
1388 * (int) BITS_PER_WORD))
1389 : (int) i * BITS_PER_WORD);
1390 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1391 rtx result_part
1392 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1393 bitsize - i * BITS_PER_WORD),
1394 bitnum + bit_offset, 1, target_part, mode,
1395 word_mode);
1396
1397 gcc_assert (target_part);
1398
1399 if (result_part != target_part)
1400 emit_move_insn (target_part, result_part);
1401 }
1402
1403 if (unsignedp)
1404 {
1405 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1406 need to be zero'd out. */
1407 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1408 {
1409 unsigned int i, total_words;
1410
1411 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1412 for (i = nwords; i < total_words; i++)
1413 emit_move_insn
1414 (operand_subword (target,
1415 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1416 1, VOIDmode),
1417 const0_rtx);
1418 }
1419 return target;
1420 }
1421
1422 /* Signed bit field: sign-extend with two arithmetic shifts. */
1423 target = expand_shift (LSHIFT_EXPR, mode, target,
1424 build_int_cst (NULL_TREE,
1425 GET_MODE_BITSIZE (mode) - bitsize),
1426 NULL_RTX, 0);
1427 return expand_shift (RSHIFT_EXPR, mode, target,
1428 build_int_cst (NULL_TREE,
1429 GET_MODE_BITSIZE (mode) - bitsize),
1430 NULL_RTX, 0);
1431 }
1432
1433 /* From here on we know the desired field is smaller than a word. */
1434
1435 /* Check if there is a correspondingly-sized integer field, so we can
1436 safely extract it as one size of integer, if necessary; then
1437 truncate or extend to the size that is wanted; then use SUBREGs or
1438 convert_to_mode to get one of the modes we really wanted. */
1439
1440 int_mode = int_mode_for_mode (tmode);
1441 if (int_mode == BLKmode)
1442 int_mode = int_mode_for_mode (mode);
1443 /* Should probably push op0 out to memory and then do a load. */
1444 gcc_assert (int_mode != BLKmode);
1445
1446 /* OFFSET is the number of words or bytes (UNIT says which)
1447 from STR_RTX to the first word or byte containing part of the field. */
1448 if (!MEM_P (op0))
1449 {
1450 if (offset != 0
1451 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1452 {
1453 if (!REG_P (op0))
1454 op0 = copy_to_reg (op0);
1455 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1456 op0, (offset * UNITS_PER_WORD));
1457 }
1458 offset = 0;
1459 }
1460
1461 /* Now OFFSET is nonzero only for memory operands. */
1462 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1463 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1464 if (ext_mode != MAX_MACHINE_MODE
1465 && bitsize > 0
1466 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1467 /* If op0 is a register, we need it in EXT_MODE to make it
1468 acceptable to the format of ext(z)v. */
1469 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1470 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1471 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1472 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1473 {
1474 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1475 rtx bitsize_rtx, bitpos_rtx;
1476 rtx last = get_last_insn ();
1477 rtx xop0 = op0;
1478 rtx xtarget = target;
1479 rtx xspec_target = target;
1480 rtx xspec_target_subreg = 0;
1481 rtx pat;
1482
1483 /* If op0 is a register, we need it in EXT_MODE to make it
1484 acceptable to the format of ext(z)v. */
1485 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1486 xop0 = gen_rtx_SUBREG (ext_mode, xop0, 0);
1487 if (MEM_P (xop0))
1488 /* Get ref to first byte containing part of the field. */
1489 xop0 = adjust_address (xop0, byte_mode, xoffset);
1490
1491 /* On big-endian machines, we count bits from the most significant.
1492 If the bit field insn does not, we must invert. */
1493 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1494 xbitpos = unit - bitsize - xbitpos;
1495
1496 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1497 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1498 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1499
1500 unit = GET_MODE_BITSIZE (ext_mode);
1501
1502 if (xtarget == 0)
1503 xtarget = xspec_target = gen_reg_rtx (tmode);
1504
1505 if (GET_MODE (xtarget) != ext_mode)
1506 {
1507 if (REG_P (xtarget))
1508 {
1509 xtarget = gen_lowpart (ext_mode, xtarget);
1510 if (GET_MODE_SIZE (ext_mode)
1511 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1512 xspec_target_subreg = xtarget;
1513 }
1514 else
1515 xtarget = gen_reg_rtx (ext_mode);
1516 }
1517
1518 /* If this machine's ext(z)v insists on a register target,
1519 make sure we have one. */
1520 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1521 xtarget = gen_reg_rtx (ext_mode);
1522
1523 bitsize_rtx = GEN_INT (bitsize);
1524 bitpos_rtx = GEN_INT (xbitpos);
1525
1526 pat = (unsignedp
1527 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1528 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1529 if (pat)
1530 {
1531 emit_insn (pat);
1532 if (xtarget == xspec_target)
1533 return xtarget;
1534 if (xtarget == xspec_target_subreg)
1535 return xspec_target;
1536 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1537 }
1538 delete_insns_since (last);
1539 }
1540
1541 /* If OP0 is a memory, try copying it to a register and seeing if a
1542 cheap register alternative is available. */
1543 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1544 {
1545 enum machine_mode bestmode;
1546
1547 /* Get the mode to use for inserting into this field. If
1548 OP0 is BLKmode, get the smallest mode consistent with the
1549 alignment. If OP0 is a non-BLKmode object that is no
1550 wider than EXT_MODE, use its mode. Otherwise, use the
1551 smallest mode containing the field. */
1552
1553 if (GET_MODE (op0) == BLKmode
1554 || (ext_mode != MAX_MACHINE_MODE
1555 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1556 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1557 (ext_mode == MAX_MACHINE_MODE
1558 ? VOIDmode : ext_mode),
1559 MEM_VOLATILE_P (op0));
1560 else
1561 bestmode = GET_MODE (op0);
1562
1563 if (bestmode != VOIDmode
1564 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1565 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1566 {
1567 unsigned HOST_WIDE_INT xoffset, xbitpos;
1568
1569 /* Compute the offset as a multiple of this unit,
1570 counting in bytes. */
1571 unit = GET_MODE_BITSIZE (bestmode);
1572 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1573 xbitpos = bitnum % unit;
1574
1575 /* Make sure the register is big enough for the whole field. */
1576 if (xoffset * BITS_PER_UNIT + unit
1577 >= offset * BITS_PER_UNIT + bitsize)
1578 {
1579 rtx last, result, xop0;
1580
1581 last = get_last_insn ();
1582
1583 /* Fetch it to a register in that size. */
1584 xop0 = adjust_address (op0, bestmode, xoffset);
1585 xop0 = force_reg (bestmode, xop0);
1586 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1587 unsignedp, target,
1588 mode, tmode, false);
1589 if (result)
1590 return result;
1591
1592 delete_insns_since (last);
1593 }
1594 }
1595 }
1596
1597 if (!fallback_p)
1598 return NULL;
1599
1600 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1601 bitpos, target, unsignedp);
1602 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1603 }
1604
1605 /* Generate code to extract a byte-field from STR_RTX
1606 containing BITSIZE bits, starting at BITNUM,
1607 and put it in TARGET if possible (if TARGET is nonzero).
1608 Regardless of TARGET, we return the rtx for where the value is placed.
1609
1610 STR_RTX is the structure containing the byte (a REG or MEM).
1611 UNSIGNEDP is nonzero if this is an unsigned bit field.
1612 MODE is the natural mode of the field value once extracted.
1613 TMODE is the mode the caller would like the value to have;
1614 but the value may be returned with type MODE instead.
1615
1616 If a TARGET is specified and we can store in it at no extra cost,
1617 we do so, and return TARGET.
1618 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1619 if they are equally easy. */
1620
1621 rtx
1622 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1623 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1624 enum machine_mode mode, enum machine_mode tmode)
1625 {
1626 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1627 target, mode, tmode, true);
1628 }
1629 \f
1630 /* Extract a bit field using shifts and boolean operations
1631 Returns an rtx to represent the value.
1632 OP0 addresses a register (word) or memory (byte).
1633 BITPOS says which bit within the word or byte the bit field starts in.
1634 OFFSET says how many bytes farther the bit field starts;
1635 it is 0 if OP0 is a register.
1636 BITSIZE says how many bits long the bit field is.
1637 (If OP0 is a register, it may be narrower than a full word,
1638 but BITPOS still counts within a full word,
1639 which is significant on bigendian machines.)
1640
1641 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1642 If TARGET is nonzero, attempts to store the value there
1643 and return TARGET, but this is not guaranteed.
1644 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1645
1646 static rtx
1647 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1648 unsigned HOST_WIDE_INT offset,
1649 unsigned HOST_WIDE_INT bitsize,
1650 unsigned HOST_WIDE_INT bitpos, rtx target,
1651 int unsignedp)
1652 {
1653 unsigned int total_bits = BITS_PER_WORD;
1654 enum machine_mode mode;
1655
1656 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1657 {
1658 /* Special treatment for a bit field split across two registers. */
1659 if (bitsize + bitpos > BITS_PER_WORD)
1660 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1661 }
1662 else
1663 {
1664 /* Get the proper mode to use for this field. We want a mode that
1665 includes the entire field. If such a mode would be larger than
1666 a word, we won't be doing the extraction the normal way. */
1667
1668 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1669 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1670
1671 if (mode == VOIDmode)
1672 /* The only way this should occur is if the field spans word
1673 boundaries. */
1674 return extract_split_bit_field (op0, bitsize,
1675 bitpos + offset * BITS_PER_UNIT,
1676 unsignedp);
1677
1678 total_bits = GET_MODE_BITSIZE (mode);
1679
1680 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1681 be in the range 0 to total_bits-1, and put any excess bytes in
1682 OFFSET. */
1683 if (bitpos >= total_bits)
1684 {
1685 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1686 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1687 * BITS_PER_UNIT);
1688 }
1689
1690 /* Get ref to an aligned byte, halfword, or word containing the field.
1691 Adjust BITPOS to be position within a word,
1692 and OFFSET to be the offset of that word.
1693 Then alter OP0 to refer to that word. */
1694 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1695 offset -= (offset % (total_bits / BITS_PER_UNIT));
1696 op0 = adjust_address (op0, mode, offset);
1697 }
1698
1699 mode = GET_MODE (op0);
1700
1701 if (BYTES_BIG_ENDIAN)
1702 /* BITPOS is the distance between our msb and that of OP0.
1703 Convert it to the distance from the lsb. */
1704 bitpos = total_bits - bitsize - bitpos;
1705
1706 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1707 We have reduced the big-endian case to the little-endian case. */
1708
1709 if (unsignedp)
1710 {
1711 if (bitpos)
1712 {
1713 /* If the field does not already start at the lsb,
1714 shift it so it does. */
1715 tree amount = build_int_cst (NULL_TREE, bitpos);
1716 /* Maybe propagate the target for the shift. */
1717 /* But not if we will return it--could confuse integrate.c. */
1718 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1719 if (tmode != mode) subtarget = 0;
1720 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1721 }
1722 /* Convert the value to the desired mode. */
1723 if (mode != tmode)
1724 op0 = convert_to_mode (tmode, op0, 1);
1725
1726 /* Unless the msb of the field used to be the msb when we shifted,
1727 mask out the upper bits. */
1728
1729 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1730 return expand_binop (GET_MODE (op0), and_optab, op0,
1731 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1732 target, 1, OPTAB_LIB_WIDEN);
1733 return op0;
1734 }
1735
1736 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1737 then arithmetic-shift its lsb to the lsb of the word. */
1738 op0 = force_reg (mode, op0);
1739 if (mode != tmode)
1740 target = 0;
1741
1742 /* Find the narrowest integer mode that contains the field. */
1743
1744 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1745 mode = GET_MODE_WIDER_MODE (mode))
1746 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1747 {
1748 op0 = convert_to_mode (mode, op0, 0);
1749 break;
1750 }
1751
1752 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1753 {
1754 tree amount
1755 = build_int_cst (NULL_TREE,
1756 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1757 /* Maybe propagate the target for the shift. */
1758 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1759 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1760 }
1761
1762 return expand_shift (RSHIFT_EXPR, mode, op0,
1763 build_int_cst (NULL_TREE,
1764 GET_MODE_BITSIZE (mode) - bitsize),
1765 target, 0);
1766 }
1767 \f
1768 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1769 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1770 complement of that if COMPLEMENT. The mask is truncated if
1771 necessary to the width of mode MODE. The mask is zero-extended if
1772 BITSIZE+BITPOS is too small for MODE. */
1773
1774 static rtx
1775 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1776 {
1777 HOST_WIDE_INT masklow, maskhigh;
1778
1779 if (bitsize == 0)
1780 masklow = 0;
1781 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1782 masklow = (HOST_WIDE_INT) -1 << bitpos;
1783 else
1784 masklow = 0;
1785
1786 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1787 masklow &= ((unsigned HOST_WIDE_INT) -1
1788 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1789
1790 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1791 maskhigh = -1;
1792 else
1793 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1794
1795 if (bitsize == 0)
1796 maskhigh = 0;
1797 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1798 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1799 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1800 else
1801 maskhigh = 0;
1802
1803 if (complement)
1804 {
1805 maskhigh = ~maskhigh;
1806 masklow = ~masklow;
1807 }
1808
1809 return immed_double_const (masklow, maskhigh, mode);
1810 }
1811
1812 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1813 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1814
1815 static rtx
1816 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1817 {
1818 unsigned HOST_WIDE_INT v = INTVAL (value);
1819 HOST_WIDE_INT low, high;
1820
1821 if (bitsize < HOST_BITS_PER_WIDE_INT)
1822 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1823
1824 if (bitpos < HOST_BITS_PER_WIDE_INT)
1825 {
1826 low = v << bitpos;
1827 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1828 }
1829 else
1830 {
1831 low = 0;
1832 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1833 }
1834
1835 return immed_double_const (low, high, mode);
1836 }
1837 \f
1838 /* Extract a bit field from a memory by forcing the alignment of the
1839 memory. This efficient only if the field spans at least 4 boundaries.
1840
1841 OP0 is the MEM.
1842 BITSIZE is the field width; BITPOS is the position of the first bit.
1843 UNSIGNEDP is true if the result should be zero-extended. */
1844
1845 static rtx
1846 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1847 unsigned HOST_WIDE_INT bitpos,
1848 int unsignedp)
1849 {
1850 enum machine_mode mode, dmode;
1851 unsigned int m_bitsize, m_size;
1852 unsigned int sign_shift_up, sign_shift_dn;
1853 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1854
1855 /* Choose a mode that will fit BITSIZE. */
1856 mode = smallest_mode_for_size (bitsize, MODE_INT);
1857 m_size = GET_MODE_SIZE (mode);
1858 m_bitsize = GET_MODE_BITSIZE (mode);
1859
1860 /* Choose a mode twice as wide. Fail if no such mode exists. */
1861 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1862 if (dmode == BLKmode)
1863 return NULL;
1864
1865 do_pending_stack_adjust ();
1866 start = get_last_insn ();
1867
1868 /* At the end, we'll need an additional shift to deal with sign/zero
1869 extension. By default this will be a left+right shift of the
1870 appropriate size. But we may be able to eliminate one of them. */
1871 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1872
1873 if (STRICT_ALIGNMENT)
1874 {
1875 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1876 bitpos %= BITS_PER_UNIT;
1877
1878 /* We load two values to be concatenate. There's an edge condition
1879 that bears notice -- an aligned value at the end of a page can
1880 only load one value lest we segfault. So the two values we load
1881 are at "base & -size" and "(base + size - 1) & -size". If base
1882 is unaligned, the addresses will be aligned and sequential; if
1883 base is aligned, the addresses will both be equal to base. */
1884
1885 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1886 GEN_INT (-(HOST_WIDE_INT)m_size),
1887 NULL, true, OPTAB_LIB_WIDEN);
1888 mark_reg_pointer (a1, m_bitsize);
1889 v1 = gen_rtx_MEM (mode, a1);
1890 set_mem_align (v1, m_bitsize);
1891 v1 = force_reg (mode, validize_mem (v1));
1892
1893 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1894 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1895 GEN_INT (-(HOST_WIDE_INT)m_size),
1896 NULL, true, OPTAB_LIB_WIDEN);
1897 v2 = gen_rtx_MEM (mode, a2);
1898 set_mem_align (v2, m_bitsize);
1899 v2 = force_reg (mode, validize_mem (v2));
1900
1901 /* Combine these two values into a double-word value. */
1902 if (m_bitsize == BITS_PER_WORD)
1903 {
1904 comb = gen_reg_rtx (dmode);
1905 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1906 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1907 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1908 }
1909 else
1910 {
1911 if (BYTES_BIG_ENDIAN)
1912 comb = v1, v1 = v2, v2 = comb;
1913 v1 = convert_modes (dmode, mode, v1, true);
1914 if (v1 == NULL)
1915 goto fail;
1916 v2 = convert_modes (dmode, mode, v2, true);
1917 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1918 NULL, true, OPTAB_LIB_WIDEN);
1919 if (v2 == NULL)
1920 goto fail;
1921 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1922 true, OPTAB_LIB_WIDEN);
1923 if (comb == NULL)
1924 goto fail;
1925 }
1926
1927 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1928 NULL, true, OPTAB_LIB_WIDEN);
1929 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1930
1931 if (bitpos != 0)
1932 {
1933 if (sign_shift_up <= bitpos)
1934 bitpos -= sign_shift_up, sign_shift_up = 0;
1935 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1936 NULL, true, OPTAB_LIB_WIDEN);
1937 }
1938 }
1939 else
1940 {
1941 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1942 bitpos %= BITS_PER_UNIT;
1943
1944 /* When strict alignment is not required, we can just load directly
1945 from memory without masking. If the remaining BITPOS offset is
1946 small enough, we may be able to do all operations in MODE as
1947 opposed to DMODE. */
1948 if (bitpos + bitsize <= m_bitsize)
1949 dmode = mode;
1950 comb = adjust_address (op0, dmode, offset);
1951
1952 if (sign_shift_up <= bitpos)
1953 bitpos -= sign_shift_up, sign_shift_up = 0;
1954 shift = GEN_INT (bitpos);
1955 }
1956
1957 /* Shift down the double-word such that the requested value is at bit 0. */
1958 if (shift != const0_rtx)
1959 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1960 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1961 if (comb == NULL)
1962 goto fail;
1963
1964 /* If the field exactly matches MODE, then all we need to do is return the
1965 lowpart. Otherwise, shift to get the sign bits set properly. */
1966 result = force_reg (mode, gen_lowpart (mode, comb));
1967
1968 if (sign_shift_up)
1969 result = expand_simple_binop (mode, ASHIFT, result,
1970 GEN_INT (sign_shift_up),
1971 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1972 if (sign_shift_dn)
1973 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1974 result, GEN_INT (sign_shift_dn),
1975 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1976
1977 return result;
1978
1979 fail:
1980 delete_insns_since (start);
1981 return NULL;
1982 }
1983
1984 /* Extract a bit field that is split across two words
1985 and return an RTX for the result.
1986
1987 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1988 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1989 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1990
1991 static rtx
1992 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1993 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1994 {
1995 unsigned int unit;
1996 unsigned int bitsdone = 0;
1997 rtx result = NULL_RTX;
1998 int first = 1;
1999
2000 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2001 much at a time. */
2002 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2003 unit = BITS_PER_WORD;
2004 else
2005 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2006
2007 while (bitsdone < bitsize)
2008 {
2009 unsigned HOST_WIDE_INT thissize;
2010 rtx part, word;
2011 unsigned HOST_WIDE_INT thispos;
2012 unsigned HOST_WIDE_INT offset;
2013
2014 offset = (bitpos + bitsdone) / unit;
2015 thispos = (bitpos + bitsdone) % unit;
2016
2017 /* THISSIZE must not overrun a word boundary. Otherwise,
2018 extract_fixed_bit_field will call us again, and we will mutually
2019 recurse forever. */
2020 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2021 thissize = MIN (thissize, unit - thispos);
2022
2023 /* If OP0 is a register, then handle OFFSET here.
2024
2025 When handling multiword bitfields, extract_bit_field may pass
2026 down a word_mode SUBREG of a larger REG for a bitfield that actually
2027 crosses a word boundary. Thus, for a SUBREG, we must find
2028 the current word starting from the base register. */
2029 if (GET_CODE (op0) == SUBREG)
2030 {
2031 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2032 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2033 GET_MODE (SUBREG_REG (op0)));
2034 offset = 0;
2035 }
2036 else if (REG_P (op0))
2037 {
2038 word = operand_subword_force (op0, offset, GET_MODE (op0));
2039 offset = 0;
2040 }
2041 else
2042 word = op0;
2043
2044 /* Extract the parts in bit-counting order,
2045 whose meaning is determined by BYTES_PER_UNIT.
2046 OFFSET is in UNITs, and UNIT is in bits.
2047 extract_fixed_bit_field wants offset in bytes. */
2048 part = extract_fixed_bit_field (word_mode, word,
2049 offset * unit / BITS_PER_UNIT,
2050 thissize, thispos, 0, 1);
2051 bitsdone += thissize;
2052
2053 /* Shift this part into place for the result. */
2054 if (BYTES_BIG_ENDIAN)
2055 {
2056 if (bitsize != bitsdone)
2057 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2058 build_int_cst (NULL_TREE, bitsize - bitsdone),
2059 0, 1);
2060 }
2061 else
2062 {
2063 if (bitsdone != thissize)
2064 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2065 build_int_cst (NULL_TREE,
2066 bitsdone - thissize), 0, 1);
2067 }
2068
2069 if (first)
2070 result = part;
2071 else
2072 /* Combine the parts with bitwise or. This works
2073 because we extracted each part as an unsigned bit field. */
2074 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2075 OPTAB_LIB_WIDEN);
2076
2077 first = 0;
2078 }
2079
2080 /* Unsigned bit field: we are done. */
2081 if (unsignedp)
2082 return result;
2083 /* Signed bit field: sign-extend with two arithmetic shifts. */
2084 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2085 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2086 NULL_RTX, 0);
2087 return expand_shift (RSHIFT_EXPR, word_mode, result,
2088 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2089 NULL_RTX, 0);
2090 }
2091 \f
2092 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2093 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2094 MODE, fill the upper bits with zeros. Fail if the layout of either
2095 mode is unknown (as for CC modes) or if the extraction would involve
2096 unprofitable mode punning. Return the value on success, otherwise
2097 return null.
2098
2099 This is different from gen_lowpart* in these respects:
2100
2101 - the returned value must always be considered an rvalue
2102
2103 - when MODE is wider than SRC_MODE, the extraction involves
2104 a zero extension
2105
2106 - when MODE is smaller than SRC_MODE, the extraction involves
2107 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2108
2109 In other words, this routine performs a computation, whereas the
2110 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2111 operations. */
2112
2113 rtx
2114 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2115 {
2116 enum machine_mode int_mode, src_int_mode;
2117
2118 if (mode == src_mode)
2119 return src;
2120
2121 if (CONSTANT_P (src))
2122 return simplify_gen_subreg (mode, src, src_mode,
2123 subreg_lowpart_offset (mode, src_mode));
2124
2125 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2126 return NULL_RTX;
2127
2128 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2129 && MODES_TIEABLE_P (mode, src_mode))
2130 {
2131 rtx x = gen_lowpart_common (mode, src);
2132 if (x)
2133 return x;
2134 }
2135
2136 src_int_mode = int_mode_for_mode (src_mode);
2137 int_mode = int_mode_for_mode (mode);
2138 if (src_int_mode == BLKmode || int_mode == BLKmode)
2139 return NULL_RTX;
2140
2141 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2142 return NULL_RTX;
2143 if (!MODES_TIEABLE_P (int_mode, mode))
2144 return NULL_RTX;
2145
2146 src = gen_lowpart (src_int_mode, src);
2147 src = convert_modes (int_mode, src_int_mode, src, true);
2148 src = gen_lowpart (mode, src);
2149 return src;
2150 }
2151 \f
2152 /* Add INC into TARGET. */
2153
2154 void
2155 expand_inc (rtx target, rtx inc)
2156 {
2157 rtx value = expand_binop (GET_MODE (target), add_optab,
2158 target, inc,
2159 target, 0, OPTAB_LIB_WIDEN);
2160 if (value != target)
2161 emit_move_insn (target, value);
2162 }
2163
2164 /* Subtract DEC from TARGET. */
2165
2166 void
2167 expand_dec (rtx target, rtx dec)
2168 {
2169 rtx value = expand_binop (GET_MODE (target), sub_optab,
2170 target, dec,
2171 target, 0, OPTAB_LIB_WIDEN);
2172 if (value != target)
2173 emit_move_insn (target, value);
2174 }
2175 \f
2176 /* Output a shift instruction for expression code CODE,
2177 with SHIFTED being the rtx for the value to shift,
2178 and AMOUNT the tree for the amount to shift by.
2179 Store the result in the rtx TARGET, if that is convenient.
2180 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2181 Return the rtx for where the value is. */
2182
2183 rtx
2184 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2185 tree amount, rtx target, int unsignedp)
2186 {
2187 rtx op1, temp = 0;
2188 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2189 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2190 int try;
2191
2192 /* Previously detected shift-counts computed by NEGATE_EXPR
2193 and shifted in the other direction; but that does not work
2194 on all machines. */
2195
2196 op1 = expand_normal (amount);
2197
2198 if (SHIFT_COUNT_TRUNCATED)
2199 {
2200 if (GET_CODE (op1) == CONST_INT
2201 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2202 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2203 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2204 % GET_MODE_BITSIZE (mode));
2205 else if (GET_CODE (op1) == SUBREG
2206 && subreg_lowpart_p (op1))
2207 op1 = SUBREG_REG (op1);
2208 }
2209
2210 if (op1 == const0_rtx)
2211 return shifted;
2212
2213 /* Check whether its cheaper to implement a left shift by a constant
2214 bit count by a sequence of additions. */
2215 if (code == LSHIFT_EXPR
2216 && GET_CODE (op1) == CONST_INT
2217 && INTVAL (op1) > 0
2218 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2219 && INTVAL (op1) < MAX_BITS_PER_WORD
2220 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
2221 && shift_cost[mode][INTVAL (op1)] != MAX_COST)
2222 {
2223 int i;
2224 for (i = 0; i < INTVAL (op1); i++)
2225 {
2226 temp = force_reg (mode, shifted);
2227 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2228 unsignedp, OPTAB_LIB_WIDEN);
2229 }
2230 return shifted;
2231 }
2232
2233 for (try = 0; temp == 0 && try < 3; try++)
2234 {
2235 enum optab_methods methods;
2236
2237 if (try == 0)
2238 methods = OPTAB_DIRECT;
2239 else if (try == 1)
2240 methods = OPTAB_WIDEN;
2241 else
2242 methods = OPTAB_LIB_WIDEN;
2243
2244 if (rotate)
2245 {
2246 /* Widening does not work for rotation. */
2247 if (methods == OPTAB_WIDEN)
2248 continue;
2249 else if (methods == OPTAB_LIB_WIDEN)
2250 {
2251 /* If we have been unable to open-code this by a rotation,
2252 do it as the IOR of two shifts. I.e., to rotate A
2253 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2254 where C is the bitsize of A.
2255
2256 It is theoretically possible that the target machine might
2257 not be able to perform either shift and hence we would
2258 be making two libcalls rather than just the one for the
2259 shift (similarly if IOR could not be done). We will allow
2260 this extremely unlikely lossage to avoid complicating the
2261 code below. */
2262
2263 rtx subtarget = target == shifted ? 0 : target;
2264 tree new_amount, other_amount;
2265 rtx temp1;
2266 tree type = TREE_TYPE (amount);
2267 if (GET_MODE (op1) != TYPE_MODE (type)
2268 && GET_MODE (op1) != VOIDmode)
2269 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2270 new_amount = make_tree (type, op1);
2271 other_amount
2272 = fold_build2 (MINUS_EXPR, type,
2273 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2274 new_amount);
2275
2276 shifted = force_reg (mode, shifted);
2277
2278 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2279 mode, shifted, new_amount, 0, 1);
2280 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2281 mode, shifted, other_amount, subtarget, 1);
2282 return expand_binop (mode, ior_optab, temp, temp1, target,
2283 unsignedp, methods);
2284 }
2285
2286 temp = expand_binop (mode,
2287 left ? rotl_optab : rotr_optab,
2288 shifted, op1, target, unsignedp, methods);
2289 }
2290 else if (unsignedp)
2291 temp = expand_binop (mode,
2292 left ? ashl_optab : lshr_optab,
2293 shifted, op1, target, unsignedp, methods);
2294
2295 /* Do arithmetic shifts.
2296 Also, if we are going to widen the operand, we can just as well
2297 use an arithmetic right-shift instead of a logical one. */
2298 if (temp == 0 && ! rotate
2299 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2300 {
2301 enum optab_methods methods1 = methods;
2302
2303 /* If trying to widen a log shift to an arithmetic shift,
2304 don't accept an arithmetic shift of the same size. */
2305 if (unsignedp)
2306 methods1 = OPTAB_MUST_WIDEN;
2307
2308 /* Arithmetic shift */
2309
2310 temp = expand_binop (mode,
2311 left ? ashl_optab : ashr_optab,
2312 shifted, op1, target, unsignedp, methods1);
2313 }
2314
2315 /* We used to try extzv here for logical right shifts, but that was
2316 only useful for one machine, the VAX, and caused poor code
2317 generation there for lshrdi3, so the code was deleted and a
2318 define_expand for lshrsi3 was added to vax.md. */
2319 }
2320
2321 gcc_assert (temp);
2322 return temp;
2323 }
2324 \f
2325 enum alg_code {
2326 alg_unknown,
2327 alg_zero,
2328 alg_m, alg_shift,
2329 alg_add_t_m2,
2330 alg_sub_t_m2,
2331 alg_add_factor,
2332 alg_sub_factor,
2333 alg_add_t2_m,
2334 alg_sub_t2_m,
2335 alg_impossible
2336 };
2337
2338 /* This structure holds the "cost" of a multiply sequence. The
2339 "cost" field holds the total rtx_cost of every operator in the
2340 synthetic multiplication sequence, hence cost(a op b) is defined
2341 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2342 The "latency" field holds the minimum possible latency of the
2343 synthetic multiply, on a hypothetical infinitely parallel CPU.
2344 This is the critical path, or the maximum height, of the expression
2345 tree which is the sum of rtx_costs on the most expensive path from
2346 any leaf to the root. Hence latency(a op b) is defined as zero for
2347 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2348
2349 struct mult_cost {
2350 short cost; /* Total rtx_cost of the multiplication sequence. */
2351 short latency; /* The latency of the multiplication sequence. */
2352 };
2353
2354 /* This macro is used to compare a pointer to a mult_cost against an
2355 single integer "rtx_cost" value. This is equivalent to the macro
2356 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2357 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2358 || ((X)->cost == (Y) && (X)->latency < (Y)))
2359
2360 /* This macro is used to compare two pointers to mult_costs against
2361 each other. The macro returns true if X is cheaper than Y.
2362 Currently, the cheaper of two mult_costs is the one with the
2363 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2364 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2365 || ((X)->cost == (Y)->cost \
2366 && (X)->latency < (Y)->latency))
2367
2368 /* This structure records a sequence of operations.
2369 `ops' is the number of operations recorded.
2370 `cost' is their total cost.
2371 The operations are stored in `op' and the corresponding
2372 logarithms of the integer coefficients in `log'.
2373
2374 These are the operations:
2375 alg_zero total := 0;
2376 alg_m total := multiplicand;
2377 alg_shift total := total * coeff
2378 alg_add_t_m2 total := total + multiplicand * coeff;
2379 alg_sub_t_m2 total := total - multiplicand * coeff;
2380 alg_add_factor total := total * coeff + total;
2381 alg_sub_factor total := total * coeff - total;
2382 alg_add_t2_m total := total * coeff + multiplicand;
2383 alg_sub_t2_m total := total * coeff - multiplicand;
2384
2385 The first operand must be either alg_zero or alg_m. */
2386
2387 struct algorithm
2388 {
2389 struct mult_cost cost;
2390 short ops;
2391 /* The size of the OP and LOG fields are not directly related to the
2392 word size, but the worst-case algorithms will be if we have few
2393 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2394 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2395 in total wordsize operations. */
2396 enum alg_code op[MAX_BITS_PER_WORD];
2397 char log[MAX_BITS_PER_WORD];
2398 };
2399
2400 /* The entry for our multiplication cache/hash table. */
2401 struct alg_hash_entry {
2402 /* The number we are multiplying by. */
2403 unsigned HOST_WIDE_INT t;
2404
2405 /* The mode in which we are multiplying something by T. */
2406 enum machine_mode mode;
2407
2408 /* The best multiplication algorithm for t. */
2409 enum alg_code alg;
2410
2411 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2412 Otherwise, the cost within which multiplication by T is
2413 impossible. */
2414 struct mult_cost cost;
2415 };
2416
2417 /* The number of cache/hash entries. */
2418 #if HOST_BITS_PER_WIDE_INT == 64
2419 #define NUM_ALG_HASH_ENTRIES 1031
2420 #else
2421 #define NUM_ALG_HASH_ENTRIES 307
2422 #endif
2423
2424 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2425 actually a hash table. If we have a collision, that the older
2426 entry is kicked out. */
2427 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2428
2429 /* Indicates the type of fixup needed after a constant multiplication.
2430 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2431 the result should be negated, and ADD_VARIANT means that the
2432 multiplicand should be added to the result. */
2433 enum mult_variant {basic_variant, negate_variant, add_variant};
2434
2435 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2436 const struct mult_cost *, enum machine_mode mode);
2437 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2438 struct algorithm *, enum mult_variant *, int);
2439 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2440 const struct algorithm *, enum mult_variant);
2441 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2442 int, rtx *, int *, int *);
2443 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2444 static rtx extract_high_half (enum machine_mode, rtx);
2445 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2446 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2447 int, int);
2448 /* Compute and return the best algorithm for multiplying by T.
2449 The algorithm must cost less than cost_limit
2450 If retval.cost >= COST_LIMIT, no algorithm was found and all
2451 other field of the returned struct are undefined.
2452 MODE is the machine mode of the multiplication. */
2453
2454 static void
2455 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2456 const struct mult_cost *cost_limit, enum machine_mode mode)
2457 {
2458 int m;
2459 struct algorithm *alg_in, *best_alg;
2460 struct mult_cost best_cost;
2461 struct mult_cost new_limit;
2462 int op_cost, op_latency;
2463 unsigned HOST_WIDE_INT q;
2464 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2465 int hash_index;
2466 bool cache_hit = false;
2467 enum alg_code cache_alg = alg_zero;
2468
2469 /* Indicate that no algorithm is yet found. If no algorithm
2470 is found, this value will be returned and indicate failure. */
2471 alg_out->cost.cost = cost_limit->cost + 1;
2472 alg_out->cost.latency = cost_limit->latency + 1;
2473
2474 if (cost_limit->cost < 0
2475 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2476 return;
2477
2478 /* Restrict the bits of "t" to the multiplication's mode. */
2479 t &= GET_MODE_MASK (mode);
2480
2481 /* t == 1 can be done in zero cost. */
2482 if (t == 1)
2483 {
2484 alg_out->ops = 1;
2485 alg_out->cost.cost = 0;
2486 alg_out->cost.latency = 0;
2487 alg_out->op[0] = alg_m;
2488 return;
2489 }
2490
2491 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2492 fail now. */
2493 if (t == 0)
2494 {
2495 if (MULT_COST_LESS (cost_limit, zero_cost))
2496 return;
2497 else
2498 {
2499 alg_out->ops = 1;
2500 alg_out->cost.cost = zero_cost;
2501 alg_out->cost.latency = zero_cost;
2502 alg_out->op[0] = alg_zero;
2503 return;
2504 }
2505 }
2506
2507 /* We'll be needing a couple extra algorithm structures now. */
2508
2509 alg_in = alloca (sizeof (struct algorithm));
2510 best_alg = alloca (sizeof (struct algorithm));
2511 best_cost = *cost_limit;
2512
2513 /* Compute the hash index. */
2514 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2515
2516 /* See if we already know what to do for T. */
2517 if (alg_hash[hash_index].t == t
2518 && alg_hash[hash_index].mode == mode
2519 && alg_hash[hash_index].alg != alg_unknown)
2520 {
2521 cache_alg = alg_hash[hash_index].alg;
2522
2523 if (cache_alg == alg_impossible)
2524 {
2525 /* The cache tells us that it's impossible to synthesize
2526 multiplication by T within alg_hash[hash_index].cost. */
2527 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2528 /* COST_LIMIT is at least as restrictive as the one
2529 recorded in the hash table, in which case we have no
2530 hope of synthesizing a multiplication. Just
2531 return. */
2532 return;
2533
2534 /* If we get here, COST_LIMIT is less restrictive than the
2535 one recorded in the hash table, so we may be able to
2536 synthesize a multiplication. Proceed as if we didn't
2537 have the cache entry. */
2538 }
2539 else
2540 {
2541 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2542 /* The cached algorithm shows that this multiplication
2543 requires more cost than COST_LIMIT. Just return. This
2544 way, we don't clobber this cache entry with
2545 alg_impossible but retain useful information. */
2546 return;
2547
2548 cache_hit = true;
2549
2550 switch (cache_alg)
2551 {
2552 case alg_shift:
2553 goto do_alg_shift;
2554
2555 case alg_add_t_m2:
2556 case alg_sub_t_m2:
2557 goto do_alg_addsub_t_m2;
2558
2559 case alg_add_factor:
2560 case alg_sub_factor:
2561 goto do_alg_addsub_factor;
2562
2563 case alg_add_t2_m:
2564 goto do_alg_add_t2_m;
2565
2566 case alg_sub_t2_m:
2567 goto do_alg_sub_t2_m;
2568
2569 default:
2570 gcc_unreachable ();
2571 }
2572 }
2573 }
2574
2575 /* If we have a group of zero bits at the low-order part of T, try
2576 multiplying by the remaining bits and then doing a shift. */
2577
2578 if ((t & 1) == 0)
2579 {
2580 do_alg_shift:
2581 m = floor_log2 (t & -t); /* m = number of low zero bits */
2582 if (m < maxm)
2583 {
2584 q = t >> m;
2585 /* The function expand_shift will choose between a shift and
2586 a sequence of additions, so the observed cost is given as
2587 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2588 op_cost = m * add_cost[mode];
2589 if (shift_cost[mode][m] < op_cost)
2590 op_cost = shift_cost[mode][m];
2591 new_limit.cost = best_cost.cost - op_cost;
2592 new_limit.latency = best_cost.latency - op_cost;
2593 synth_mult (alg_in, q, &new_limit, mode);
2594
2595 alg_in->cost.cost += op_cost;
2596 alg_in->cost.latency += op_cost;
2597 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2598 {
2599 struct algorithm *x;
2600 best_cost = alg_in->cost;
2601 x = alg_in, alg_in = best_alg, best_alg = x;
2602 best_alg->log[best_alg->ops] = m;
2603 best_alg->op[best_alg->ops] = alg_shift;
2604 }
2605 }
2606 if (cache_hit)
2607 goto done;
2608 }
2609
2610 /* If we have an odd number, add or subtract one. */
2611 if ((t & 1) != 0)
2612 {
2613 unsigned HOST_WIDE_INT w;
2614
2615 do_alg_addsub_t_m2:
2616 for (w = 1; (w & t) != 0; w <<= 1)
2617 ;
2618 /* If T was -1, then W will be zero after the loop. This is another
2619 case where T ends with ...111. Handling this with (T + 1) and
2620 subtract 1 produces slightly better code and results in algorithm
2621 selection much faster than treating it like the ...0111 case
2622 below. */
2623 if (w == 0
2624 || (w > 2
2625 /* Reject the case where t is 3.
2626 Thus we prefer addition in that case. */
2627 && t != 3))
2628 {
2629 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2630
2631 op_cost = add_cost[mode];
2632 new_limit.cost = best_cost.cost - op_cost;
2633 new_limit.latency = best_cost.latency - op_cost;
2634 synth_mult (alg_in, t + 1, &new_limit, mode);
2635
2636 alg_in->cost.cost += op_cost;
2637 alg_in->cost.latency += op_cost;
2638 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2639 {
2640 struct algorithm *x;
2641 best_cost = alg_in->cost;
2642 x = alg_in, alg_in = best_alg, best_alg = x;
2643 best_alg->log[best_alg->ops] = 0;
2644 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2645 }
2646 }
2647 else
2648 {
2649 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2650
2651 op_cost = add_cost[mode];
2652 new_limit.cost = best_cost.cost - op_cost;
2653 new_limit.latency = best_cost.latency - op_cost;
2654 synth_mult (alg_in, t - 1, &new_limit, mode);
2655
2656 alg_in->cost.cost += op_cost;
2657 alg_in->cost.latency += op_cost;
2658 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2659 {
2660 struct algorithm *x;
2661 best_cost = alg_in->cost;
2662 x = alg_in, alg_in = best_alg, best_alg = x;
2663 best_alg->log[best_alg->ops] = 0;
2664 best_alg->op[best_alg->ops] = alg_add_t_m2;
2665 }
2666 }
2667 if (cache_hit)
2668 goto done;
2669 }
2670
2671 /* Look for factors of t of the form
2672 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2673 If we find such a factor, we can multiply by t using an algorithm that
2674 multiplies by q, shift the result by m and add/subtract it to itself.
2675
2676 We search for large factors first and loop down, even if large factors
2677 are less probable than small; if we find a large factor we will find a
2678 good sequence quickly, and therefore be able to prune (by decreasing
2679 COST_LIMIT) the search. */
2680
2681 do_alg_addsub_factor:
2682 for (m = floor_log2 (t - 1); m >= 2; m--)
2683 {
2684 unsigned HOST_WIDE_INT d;
2685
2686 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2687 if (t % d == 0 && t > d && m < maxm
2688 && (!cache_hit || cache_alg == alg_add_factor))
2689 {
2690 /* If the target has a cheap shift-and-add instruction use
2691 that in preference to a shift insn followed by an add insn.
2692 Assume that the shift-and-add is "atomic" with a latency
2693 equal to its cost, otherwise assume that on superscalar
2694 hardware the shift may be executed concurrently with the
2695 earlier steps in the algorithm. */
2696 op_cost = add_cost[mode] + shift_cost[mode][m];
2697 if (shiftadd_cost[mode][m] < op_cost)
2698 {
2699 op_cost = shiftadd_cost[mode][m];
2700 op_latency = op_cost;
2701 }
2702 else
2703 op_latency = add_cost[mode];
2704
2705 new_limit.cost = best_cost.cost - op_cost;
2706 new_limit.latency = best_cost.latency - op_latency;
2707 synth_mult (alg_in, t / d, &new_limit, mode);
2708
2709 alg_in->cost.cost += op_cost;
2710 alg_in->cost.latency += op_latency;
2711 if (alg_in->cost.latency < op_cost)
2712 alg_in->cost.latency = op_cost;
2713 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2714 {
2715 struct algorithm *x;
2716 best_cost = alg_in->cost;
2717 x = alg_in, alg_in = best_alg, best_alg = x;
2718 best_alg->log[best_alg->ops] = m;
2719 best_alg->op[best_alg->ops] = alg_add_factor;
2720 }
2721 /* Other factors will have been taken care of in the recursion. */
2722 break;
2723 }
2724
2725 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2726 if (t % d == 0 && t > d && m < maxm
2727 && (!cache_hit || cache_alg == alg_sub_factor))
2728 {
2729 /* If the target has a cheap shift-and-subtract insn use
2730 that in preference to a shift insn followed by a sub insn.
2731 Assume that the shift-and-sub is "atomic" with a latency
2732 equal to it's cost, otherwise assume that on superscalar
2733 hardware the shift may be executed concurrently with the
2734 earlier steps in the algorithm. */
2735 op_cost = add_cost[mode] + shift_cost[mode][m];
2736 if (shiftsub_cost[mode][m] < op_cost)
2737 {
2738 op_cost = shiftsub_cost[mode][m];
2739 op_latency = op_cost;
2740 }
2741 else
2742 op_latency = add_cost[mode];
2743
2744 new_limit.cost = best_cost.cost - op_cost;
2745 new_limit.latency = best_cost.latency - op_latency;
2746 synth_mult (alg_in, t / d, &new_limit, mode);
2747
2748 alg_in->cost.cost += op_cost;
2749 alg_in->cost.latency += op_latency;
2750 if (alg_in->cost.latency < op_cost)
2751 alg_in->cost.latency = op_cost;
2752 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2753 {
2754 struct algorithm *x;
2755 best_cost = alg_in->cost;
2756 x = alg_in, alg_in = best_alg, best_alg = x;
2757 best_alg->log[best_alg->ops] = m;
2758 best_alg->op[best_alg->ops] = alg_sub_factor;
2759 }
2760 break;
2761 }
2762 }
2763 if (cache_hit)
2764 goto done;
2765
2766 /* Try shift-and-add (load effective address) instructions,
2767 i.e. do a*3, a*5, a*9. */
2768 if ((t & 1) != 0)
2769 {
2770 do_alg_add_t2_m:
2771 q = t - 1;
2772 q = q & -q;
2773 m = exact_log2 (q);
2774 if (m >= 0 && m < maxm)
2775 {
2776 op_cost = shiftadd_cost[mode][m];
2777 new_limit.cost = best_cost.cost - op_cost;
2778 new_limit.latency = best_cost.latency - op_cost;
2779 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2780
2781 alg_in->cost.cost += op_cost;
2782 alg_in->cost.latency += op_cost;
2783 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2784 {
2785 struct algorithm *x;
2786 best_cost = alg_in->cost;
2787 x = alg_in, alg_in = best_alg, best_alg = x;
2788 best_alg->log[best_alg->ops] = m;
2789 best_alg->op[best_alg->ops] = alg_add_t2_m;
2790 }
2791 }
2792 if (cache_hit)
2793 goto done;
2794
2795 do_alg_sub_t2_m:
2796 q = t + 1;
2797 q = q & -q;
2798 m = exact_log2 (q);
2799 if (m >= 0 && m < maxm)
2800 {
2801 op_cost = shiftsub_cost[mode][m];
2802 new_limit.cost = best_cost.cost - op_cost;
2803 new_limit.latency = best_cost.latency - op_cost;
2804 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2805
2806 alg_in->cost.cost += op_cost;
2807 alg_in->cost.latency += op_cost;
2808 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2809 {
2810 struct algorithm *x;
2811 best_cost = alg_in->cost;
2812 x = alg_in, alg_in = best_alg, best_alg = x;
2813 best_alg->log[best_alg->ops] = m;
2814 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2815 }
2816 }
2817 if (cache_hit)
2818 goto done;
2819 }
2820
2821 done:
2822 /* If best_cost has not decreased, we have not found any algorithm. */
2823 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2824 {
2825 /* We failed to find an algorithm. Record alg_impossible for
2826 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2827 we are asked to find an algorithm for T within the same or
2828 lower COST_LIMIT, we can immediately return to the
2829 caller. */
2830 alg_hash[hash_index].t = t;
2831 alg_hash[hash_index].mode = mode;
2832 alg_hash[hash_index].alg = alg_impossible;
2833 alg_hash[hash_index].cost = *cost_limit;
2834 return;
2835 }
2836
2837 /* Cache the result. */
2838 if (!cache_hit)
2839 {
2840 alg_hash[hash_index].t = t;
2841 alg_hash[hash_index].mode = mode;
2842 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2843 alg_hash[hash_index].cost.cost = best_cost.cost;
2844 alg_hash[hash_index].cost.latency = best_cost.latency;
2845 }
2846
2847 /* If we are getting a too long sequence for `struct algorithm'
2848 to record, make this search fail. */
2849 if (best_alg->ops == MAX_BITS_PER_WORD)
2850 return;
2851
2852 /* Copy the algorithm from temporary space to the space at alg_out.
2853 We avoid using structure assignment because the majority of
2854 best_alg is normally undefined, and this is a critical function. */
2855 alg_out->ops = best_alg->ops + 1;
2856 alg_out->cost = best_cost;
2857 memcpy (alg_out->op, best_alg->op,
2858 alg_out->ops * sizeof *alg_out->op);
2859 memcpy (alg_out->log, best_alg->log,
2860 alg_out->ops * sizeof *alg_out->log);
2861 }
2862 \f
2863 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2864 Try three variations:
2865
2866 - a shift/add sequence based on VAL itself
2867 - a shift/add sequence based on -VAL, followed by a negation
2868 - a shift/add sequence based on VAL - 1, followed by an addition.
2869
2870 Return true if the cheapest of these cost less than MULT_COST,
2871 describing the algorithm in *ALG and final fixup in *VARIANT. */
2872
2873 static bool
2874 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2875 struct algorithm *alg, enum mult_variant *variant,
2876 int mult_cost)
2877 {
2878 struct algorithm alg2;
2879 struct mult_cost limit;
2880 int op_cost;
2881
2882 /* Fail quickly for impossible bounds. */
2883 if (mult_cost < 0)
2884 return false;
2885
2886 /* Ensure that mult_cost provides a reasonable upper bound.
2887 Any constant multiplication can be performed with less
2888 than 2 * bits additions. */
2889 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2890 if (mult_cost > op_cost)
2891 mult_cost = op_cost;
2892
2893 *variant = basic_variant;
2894 limit.cost = mult_cost;
2895 limit.latency = mult_cost;
2896 synth_mult (alg, val, &limit, mode);
2897
2898 /* This works only if the inverted value actually fits in an
2899 `unsigned int' */
2900 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2901 {
2902 op_cost = neg_cost[mode];
2903 if (MULT_COST_LESS (&alg->cost, mult_cost))
2904 {
2905 limit.cost = alg->cost.cost - op_cost;
2906 limit.latency = alg->cost.latency - op_cost;
2907 }
2908 else
2909 {
2910 limit.cost = mult_cost - op_cost;
2911 limit.latency = mult_cost - op_cost;
2912 }
2913
2914 synth_mult (&alg2, -val, &limit, mode);
2915 alg2.cost.cost += op_cost;
2916 alg2.cost.latency += op_cost;
2917 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2918 *alg = alg2, *variant = negate_variant;
2919 }
2920
2921 /* This proves very useful for division-by-constant. */
2922 op_cost = add_cost[mode];
2923 if (MULT_COST_LESS (&alg->cost, mult_cost))
2924 {
2925 limit.cost = alg->cost.cost - op_cost;
2926 limit.latency = alg->cost.latency - op_cost;
2927 }
2928 else
2929 {
2930 limit.cost = mult_cost - op_cost;
2931 limit.latency = mult_cost - op_cost;
2932 }
2933
2934 synth_mult (&alg2, val - 1, &limit, mode);
2935 alg2.cost.cost += op_cost;
2936 alg2.cost.latency += op_cost;
2937 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2938 *alg = alg2, *variant = add_variant;
2939
2940 return MULT_COST_LESS (&alg->cost, mult_cost);
2941 }
2942
2943 /* A subroutine of expand_mult, used for constant multiplications.
2944 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2945 convenient. Use the shift/add sequence described by ALG and apply
2946 the final fixup specified by VARIANT. */
2947
2948 static rtx
2949 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2950 rtx target, const struct algorithm *alg,
2951 enum mult_variant variant)
2952 {
2953 HOST_WIDE_INT val_so_far;
2954 rtx insn, accum, tem;
2955 int opno;
2956 enum machine_mode nmode;
2957
2958 /* Avoid referencing memory over and over and invalid sharing
2959 on SUBREGs. */
2960 op0 = force_reg (mode, op0);
2961
2962 /* ACCUM starts out either as OP0 or as a zero, depending on
2963 the first operation. */
2964
2965 if (alg->op[0] == alg_zero)
2966 {
2967 accum = copy_to_mode_reg (mode, const0_rtx);
2968 val_so_far = 0;
2969 }
2970 else if (alg->op[0] == alg_m)
2971 {
2972 accum = copy_to_mode_reg (mode, op0);
2973 val_so_far = 1;
2974 }
2975 else
2976 gcc_unreachable ();
2977
2978 for (opno = 1; opno < alg->ops; opno++)
2979 {
2980 int log = alg->log[opno];
2981 rtx shift_subtarget = optimize ? 0 : accum;
2982 rtx add_target
2983 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2984 && !optimize)
2985 ? target : 0;
2986 rtx accum_target = optimize ? 0 : accum;
2987
2988 switch (alg->op[opno])
2989 {
2990 case alg_shift:
2991 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2992 build_int_cst (NULL_TREE, log),
2993 NULL_RTX, 0);
2994 val_so_far <<= log;
2995 break;
2996
2997 case alg_add_t_m2:
2998 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2999 build_int_cst (NULL_TREE, log),
3000 NULL_RTX, 0);
3001 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3002 add_target ? add_target : accum_target);
3003 val_so_far += (HOST_WIDE_INT) 1 << log;
3004 break;
3005
3006 case alg_sub_t_m2:
3007 tem = expand_shift (LSHIFT_EXPR, mode, op0,
3008 build_int_cst (NULL_TREE, log),
3009 NULL_RTX, 0);
3010 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3011 add_target ? add_target : accum_target);
3012 val_so_far -= (HOST_WIDE_INT) 1 << log;
3013 break;
3014
3015 case alg_add_t2_m:
3016 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3017 build_int_cst (NULL_TREE, log),
3018 shift_subtarget,
3019 0);
3020 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3021 add_target ? add_target : accum_target);
3022 val_so_far = (val_so_far << log) + 1;
3023 break;
3024
3025 case alg_sub_t2_m:
3026 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3027 build_int_cst (NULL_TREE, log),
3028 shift_subtarget, 0);
3029 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3030 add_target ? add_target : accum_target);
3031 val_so_far = (val_so_far << log) - 1;
3032 break;
3033
3034 case alg_add_factor:
3035 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3036 build_int_cst (NULL_TREE, log),
3037 NULL_RTX, 0);
3038 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3039 add_target ? add_target : accum_target);
3040 val_so_far += val_so_far << log;
3041 break;
3042
3043 case alg_sub_factor:
3044 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3045 build_int_cst (NULL_TREE, log),
3046 NULL_RTX, 0);
3047 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3048 (add_target
3049 ? add_target : (optimize ? 0 : tem)));
3050 val_so_far = (val_so_far << log) - val_so_far;
3051 break;
3052
3053 default:
3054 gcc_unreachable ();
3055 }
3056
3057 /* Write a REG_EQUAL note on the last insn so that we can cse
3058 multiplication sequences. Note that if ACCUM is a SUBREG,
3059 we've set the inner register and must properly indicate
3060 that. */
3061
3062 tem = op0, nmode = mode;
3063 if (GET_CODE (accum) == SUBREG)
3064 {
3065 nmode = GET_MODE (SUBREG_REG (accum));
3066 tem = gen_lowpart (nmode, op0);
3067 }
3068
3069 insn = get_last_insn ();
3070 set_unique_reg_note (insn, REG_EQUAL,
3071 gen_rtx_MULT (nmode, tem,
3072 GEN_INT (val_so_far)));
3073 }
3074
3075 if (variant == negate_variant)
3076 {
3077 val_so_far = -val_so_far;
3078 accum = expand_unop (mode, neg_optab, accum, target, 0);
3079 }
3080 else if (variant == add_variant)
3081 {
3082 val_so_far = val_so_far + 1;
3083 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3084 }
3085
3086 /* Compare only the bits of val and val_so_far that are significant
3087 in the result mode, to avoid sign-/zero-extension confusion. */
3088 val &= GET_MODE_MASK (mode);
3089 val_so_far &= GET_MODE_MASK (mode);
3090 gcc_assert (val == val_so_far);
3091
3092 return accum;
3093 }
3094
3095 /* Perform a multiplication and return an rtx for the result.
3096 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3097 TARGET is a suggestion for where to store the result (an rtx).
3098
3099 We check specially for a constant integer as OP1.
3100 If you want this check for OP0 as well, then before calling
3101 you should swap the two operands if OP0 would be constant. */
3102
3103 rtx
3104 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3105 int unsignedp)
3106 {
3107 enum mult_variant variant;
3108 struct algorithm algorithm;
3109 int max_cost;
3110
3111 /* Handling const0_rtx here allows us to use zero as a rogue value for
3112 coeff below. */
3113 if (op1 == const0_rtx)
3114 return const0_rtx;
3115 if (op1 == const1_rtx)
3116 return op0;
3117 if (op1 == constm1_rtx)
3118 return expand_unop (mode,
3119 GET_MODE_CLASS (mode) == MODE_INT
3120 && !unsignedp && flag_trapv
3121 ? negv_optab : neg_optab,
3122 op0, target, 0);
3123
3124 /* These are the operations that are potentially turned into a sequence
3125 of shifts and additions. */
3126 if (SCALAR_INT_MODE_P (mode)
3127 && (unsignedp || !flag_trapv))
3128 {
3129 HOST_WIDE_INT coeff = 0;
3130 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3131
3132 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3133 less than or equal in size to `unsigned int' this doesn't matter.
3134 If the mode is larger than `unsigned int', then synth_mult works
3135 only if the constant value exactly fits in an `unsigned int' without
3136 any truncation. This means that multiplying by negative values does
3137 not work; results are off by 2^32 on a 32 bit machine. */
3138
3139 if (GET_CODE (op1) == CONST_INT)
3140 {
3141 /* Attempt to handle multiplication of DImode values by negative
3142 coefficients, by performing the multiplication by a positive
3143 multiplier and then inverting the result. */
3144 if (INTVAL (op1) < 0
3145 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3146 {
3147 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3148 result is interpreted as an unsigned coefficient.
3149 Exclude cost of op0 from max_cost to match the cost
3150 calculation of the synth_mult. */
3151 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3152 - neg_cost[mode];
3153 if (max_cost > 0
3154 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3155 &variant, max_cost))
3156 {
3157 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3158 NULL_RTX, &algorithm,
3159 variant);
3160 return expand_unop (mode, neg_optab, temp, target, 0);
3161 }
3162 }
3163 else coeff = INTVAL (op1);
3164 }
3165 else if (GET_CODE (op1) == CONST_DOUBLE)
3166 {
3167 /* If we are multiplying in DImode, it may still be a win
3168 to try to work with shifts and adds. */
3169 if (CONST_DOUBLE_HIGH (op1) == 0)
3170 coeff = CONST_DOUBLE_LOW (op1);
3171 else if (CONST_DOUBLE_LOW (op1) == 0
3172 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3173 {
3174 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3175 + HOST_BITS_PER_WIDE_INT;
3176 return expand_shift (LSHIFT_EXPR, mode, op0,
3177 build_int_cst (NULL_TREE, shift),
3178 target, unsignedp);
3179 }
3180 }
3181
3182 /* We used to test optimize here, on the grounds that it's better to
3183 produce a smaller program when -O is not used. But this causes
3184 such a terrible slowdown sometimes that it seems better to always
3185 use synth_mult. */
3186 if (coeff != 0)
3187 {
3188 /* Special case powers of two. */
3189 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3190 return expand_shift (LSHIFT_EXPR, mode, op0,
3191 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3192 target, unsignedp);
3193
3194 /* Exclude cost of op0 from max_cost to match the cost
3195 calculation of the synth_mult. */
3196 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3197 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3198 max_cost))
3199 return expand_mult_const (mode, op0, coeff, target,
3200 &algorithm, variant);
3201 }
3202 }
3203
3204 if (GET_CODE (op0) == CONST_DOUBLE)
3205 {
3206 rtx temp = op0;
3207 op0 = op1;
3208 op1 = temp;
3209 }
3210
3211 /* Expand x*2.0 as x+x. */
3212 if (GET_CODE (op1) == CONST_DOUBLE
3213 && SCALAR_FLOAT_MODE_P (mode))
3214 {
3215 REAL_VALUE_TYPE d;
3216 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3217
3218 if (REAL_VALUES_EQUAL (d, dconst2))
3219 {
3220 op0 = force_reg (GET_MODE (op0), op0);
3221 return expand_binop (mode, add_optab, op0, op0,
3222 target, unsignedp, OPTAB_LIB_WIDEN);
3223 }
3224 }
3225
3226 /* This used to use umul_optab if unsigned, but for non-widening multiply
3227 there is no difference between signed and unsigned. */
3228 op0 = expand_binop (mode,
3229 ! unsignedp
3230 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3231 ? smulv_optab : smul_optab,
3232 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3233 gcc_assert (op0);
3234 return op0;
3235 }
3236 \f
3237 /* Return the smallest n such that 2**n >= X. */
3238
3239 int
3240 ceil_log2 (unsigned HOST_WIDE_INT x)
3241 {
3242 return floor_log2 (x - 1) + 1;
3243 }
3244
3245 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3246 replace division by D, and put the least significant N bits of the result
3247 in *MULTIPLIER_PTR and return the most significant bit.
3248
3249 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3250 needed precision is in PRECISION (should be <= N).
3251
3252 PRECISION should be as small as possible so this function can choose
3253 multiplier more freely.
3254
3255 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3256 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3257
3258 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3259 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3260
3261 static
3262 unsigned HOST_WIDE_INT
3263 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3264 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3265 {
3266 HOST_WIDE_INT mhigh_hi, mlow_hi;
3267 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3268 int lgup, post_shift;
3269 int pow, pow2;
3270 unsigned HOST_WIDE_INT nl, dummy1;
3271 HOST_WIDE_INT nh, dummy2;
3272
3273 /* lgup = ceil(log2(divisor)); */
3274 lgup = ceil_log2 (d);
3275
3276 gcc_assert (lgup <= n);
3277
3278 pow = n + lgup;
3279 pow2 = n + lgup - precision;
3280
3281 /* We could handle this with some effort, but this case is much
3282 better handled directly with a scc insn, so rely on caller using
3283 that. */
3284 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3285
3286 /* mlow = 2^(N + lgup)/d */
3287 if (pow >= HOST_BITS_PER_WIDE_INT)
3288 {
3289 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3290 nl = 0;
3291 }
3292 else
3293 {
3294 nh = 0;
3295 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3296 }
3297 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3298 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3299
3300 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3301 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3302 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3303 else
3304 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3305 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3306 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3307
3308 gcc_assert (!mhigh_hi || nh - d < d);
3309 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3310 /* Assert that mlow < mhigh. */
3311 gcc_assert (mlow_hi < mhigh_hi
3312 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3313
3314 /* If precision == N, then mlow, mhigh exceed 2^N
3315 (but they do not exceed 2^(N+1)). */
3316
3317 /* Reduce to lowest terms. */
3318 for (post_shift = lgup; post_shift > 0; post_shift--)
3319 {
3320 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3321 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3322 if (ml_lo >= mh_lo)
3323 break;
3324
3325 mlow_hi = 0;
3326 mlow_lo = ml_lo;
3327 mhigh_hi = 0;
3328 mhigh_lo = mh_lo;
3329 }
3330
3331 *post_shift_ptr = post_shift;
3332 *lgup_ptr = lgup;
3333 if (n < HOST_BITS_PER_WIDE_INT)
3334 {
3335 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3336 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3337 return mhigh_lo >= mask;
3338 }
3339 else
3340 {
3341 *multiplier_ptr = GEN_INT (mhigh_lo);
3342 return mhigh_hi;
3343 }
3344 }
3345
3346 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3347 congruent to 1 (mod 2**N). */
3348
3349 static unsigned HOST_WIDE_INT
3350 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3351 {
3352 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3353
3354 /* The algorithm notes that the choice y = x satisfies
3355 x*y == 1 mod 2^3, since x is assumed odd.
3356 Each iteration doubles the number of bits of significance in y. */
3357
3358 unsigned HOST_WIDE_INT mask;
3359 unsigned HOST_WIDE_INT y = x;
3360 int nbit = 3;
3361
3362 mask = (n == HOST_BITS_PER_WIDE_INT
3363 ? ~(unsigned HOST_WIDE_INT) 0
3364 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3365
3366 while (nbit < n)
3367 {
3368 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3369 nbit *= 2;
3370 }
3371 return y;
3372 }
3373
3374 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3375 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3376 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3377 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3378 become signed.
3379
3380 The result is put in TARGET if that is convenient.
3381
3382 MODE is the mode of operation. */
3383
3384 rtx
3385 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3386 rtx op1, rtx target, int unsignedp)
3387 {
3388 rtx tem;
3389 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3390
3391 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3392 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3393 NULL_RTX, 0);
3394 tem = expand_and (mode, tem, op1, NULL_RTX);
3395 adj_operand
3396 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3397 adj_operand);
3398
3399 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3400 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3401 NULL_RTX, 0);
3402 tem = expand_and (mode, tem, op0, NULL_RTX);
3403 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3404 target);
3405
3406 return target;
3407 }
3408
3409 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3410
3411 static rtx
3412 extract_high_half (enum machine_mode mode, rtx op)
3413 {
3414 enum machine_mode wider_mode;
3415
3416 if (mode == word_mode)
3417 return gen_highpart (mode, op);
3418
3419 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3420
3421 wider_mode = GET_MODE_WIDER_MODE (mode);
3422 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3423 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3424 return convert_modes (mode, wider_mode, op, 0);
3425 }
3426
3427 /* Like expand_mult_highpart, but only consider using a multiplication
3428 optab. OP1 is an rtx for the constant operand. */
3429
3430 static rtx
3431 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3432 rtx target, int unsignedp, int max_cost)
3433 {
3434 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3435 enum machine_mode wider_mode;
3436 optab moptab;
3437 rtx tem;
3438 int size;
3439
3440 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3441
3442 wider_mode = GET_MODE_WIDER_MODE (mode);
3443 size = GET_MODE_BITSIZE (mode);
3444
3445 /* Firstly, try using a multiplication insn that only generates the needed
3446 high part of the product, and in the sign flavor of unsignedp. */
3447 if (mul_highpart_cost[mode] < max_cost)
3448 {
3449 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3450 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3451 unsignedp, OPTAB_DIRECT);
3452 if (tem)
3453 return tem;
3454 }
3455
3456 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3457 Need to adjust the result after the multiplication. */
3458 if (size - 1 < BITS_PER_WORD
3459 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3460 + 4 * add_cost[mode] < max_cost))
3461 {
3462 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3463 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3464 unsignedp, OPTAB_DIRECT);
3465 if (tem)
3466 /* We used the wrong signedness. Adjust the result. */
3467 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3468 tem, unsignedp);
3469 }
3470
3471 /* Try widening multiplication. */
3472 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3473 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3474 && mul_widen_cost[wider_mode] < max_cost)
3475 {
3476 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3477 unsignedp, OPTAB_WIDEN);
3478 if (tem)
3479 return extract_high_half (mode, tem);
3480 }
3481
3482 /* Try widening the mode and perform a non-widening multiplication. */
3483 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3484 && size - 1 < BITS_PER_WORD
3485 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3486 {
3487 rtx insns, wop0, wop1;
3488
3489 /* We need to widen the operands, for example to ensure the
3490 constant multiplier is correctly sign or zero extended.
3491 Use a sequence to clean-up any instructions emitted by
3492 the conversions if things don't work out. */
3493 start_sequence ();
3494 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3495 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3496 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3497 unsignedp, OPTAB_WIDEN);
3498 insns = get_insns ();
3499 end_sequence ();
3500
3501 if (tem)
3502 {
3503 emit_insn (insns);
3504 return extract_high_half (mode, tem);
3505 }
3506 }
3507
3508 /* Try widening multiplication of opposite signedness, and adjust. */
3509 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3510 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3511 && size - 1 < BITS_PER_WORD
3512 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3513 + 4 * add_cost[mode] < max_cost))
3514 {
3515 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3516 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3517 if (tem != 0)
3518 {
3519 tem = extract_high_half (mode, tem);
3520 /* We used the wrong signedness. Adjust the result. */
3521 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3522 target, unsignedp);
3523 }
3524 }
3525
3526 return 0;
3527 }
3528
3529 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3530 putting the high half of the result in TARGET if that is convenient,
3531 and return where the result is. If the operation can not be performed,
3532 0 is returned.
3533
3534 MODE is the mode of operation and result.
3535
3536 UNSIGNEDP nonzero means unsigned multiply.
3537
3538 MAX_COST is the total allowed cost for the expanded RTL. */
3539
3540 static rtx
3541 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3542 rtx target, int unsignedp, int max_cost)
3543 {
3544 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3545 unsigned HOST_WIDE_INT cnst1;
3546 int extra_cost;
3547 bool sign_adjust = false;
3548 enum mult_variant variant;
3549 struct algorithm alg;
3550 rtx tem;
3551
3552 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3553 /* We can't support modes wider than HOST_BITS_PER_INT. */
3554 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3555
3556 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3557
3558 /* We can't optimize modes wider than BITS_PER_WORD.
3559 ??? We might be able to perform double-word arithmetic if
3560 mode == word_mode, however all the cost calculations in
3561 synth_mult etc. assume single-word operations. */
3562 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3563 return expand_mult_highpart_optab (mode, op0, op1, target,
3564 unsignedp, max_cost);
3565
3566 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3567
3568 /* Check whether we try to multiply by a negative constant. */
3569 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3570 {
3571 sign_adjust = true;
3572 extra_cost += add_cost[mode];
3573 }
3574
3575 /* See whether shift/add multiplication is cheap enough. */
3576 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3577 max_cost - extra_cost))
3578 {
3579 /* See whether the specialized multiplication optabs are
3580 cheaper than the shift/add version. */
3581 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3582 alg.cost.cost + extra_cost);
3583 if (tem)
3584 return tem;
3585
3586 tem = convert_to_mode (wider_mode, op0, unsignedp);
3587 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3588 tem = extract_high_half (mode, tem);
3589
3590 /* Adjust result for signedness. */
3591 if (sign_adjust)
3592 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3593
3594 return tem;
3595 }
3596 return expand_mult_highpart_optab (mode, op0, op1, target,
3597 unsignedp, max_cost);
3598 }
3599
3600
3601 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3602
3603 static rtx
3604 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3605 {
3606 unsigned HOST_WIDE_INT masklow, maskhigh;
3607 rtx result, temp, shift, label;
3608 int logd;
3609
3610 logd = floor_log2 (d);
3611 result = gen_reg_rtx (mode);
3612
3613 /* Avoid conditional branches when they're expensive. */
3614 if (BRANCH_COST >= 2
3615 && !optimize_size)
3616 {
3617 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3618 mode, 0, -1);
3619 if (signmask)
3620 {
3621 signmask = force_reg (mode, signmask);
3622 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3623 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3624
3625 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3626 which instruction sequence to use. If logical right shifts
3627 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3628 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3629
3630 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3631 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3632 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3633 {
3634 temp = expand_binop (mode, xor_optab, op0, signmask,
3635 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3636 temp = expand_binop (mode, sub_optab, temp, signmask,
3637 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3638 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3639 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3640 temp = expand_binop (mode, xor_optab, temp, signmask,
3641 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3642 temp = expand_binop (mode, sub_optab, temp, signmask,
3643 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644 }
3645 else
3646 {
3647 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3648 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3649 signmask = force_reg (mode, signmask);
3650
3651 temp = expand_binop (mode, add_optab, op0, signmask,
3652 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3653 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3654 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3655 temp = expand_binop (mode, sub_optab, temp, signmask,
3656 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3657 }
3658 return temp;
3659 }
3660 }
3661
3662 /* Mask contains the mode's signbit and the significant bits of the
3663 modulus. By including the signbit in the operation, many targets
3664 can avoid an explicit compare operation in the following comparison
3665 against zero. */
3666
3667 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3668 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3669 {
3670 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3671 maskhigh = -1;
3672 }
3673 else
3674 maskhigh = (HOST_WIDE_INT) -1
3675 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3676
3677 temp = expand_binop (mode, and_optab, op0,
3678 immed_double_const (masklow, maskhigh, mode),
3679 result, 1, OPTAB_LIB_WIDEN);
3680 if (temp != result)
3681 emit_move_insn (result, temp);
3682
3683 label = gen_label_rtx ();
3684 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3685
3686 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3687 0, OPTAB_LIB_WIDEN);
3688 masklow = (HOST_WIDE_INT) -1 << logd;
3689 maskhigh = -1;
3690 temp = expand_binop (mode, ior_optab, temp,
3691 immed_double_const (masklow, maskhigh, mode),
3692 result, 1, OPTAB_LIB_WIDEN);
3693 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3694 0, OPTAB_LIB_WIDEN);
3695 if (temp != result)
3696 emit_move_insn (result, temp);
3697 emit_label (label);
3698 return result;
3699 }
3700
3701 /* Expand signed division of OP0 by a power of two D in mode MODE.
3702 This routine is only called for positive values of D. */
3703
3704 static rtx
3705 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3706 {
3707 rtx temp, label;
3708 tree shift;
3709 int logd;
3710
3711 logd = floor_log2 (d);
3712 shift = build_int_cst (NULL_TREE, logd);
3713
3714 if (d == 2 && BRANCH_COST >= 1)
3715 {
3716 temp = gen_reg_rtx (mode);
3717 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3718 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3719 0, OPTAB_LIB_WIDEN);
3720 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3721 }
3722
3723 #ifdef HAVE_conditional_move
3724 if (BRANCH_COST >= 2)
3725 {
3726 rtx temp2;
3727
3728 /* ??? emit_conditional_move forces a stack adjustment via
3729 compare_from_rtx so, if the sequence is discarded, it will
3730 be lost. Do it now instead. */
3731 do_pending_stack_adjust ();
3732
3733 start_sequence ();
3734 temp2 = copy_to_mode_reg (mode, op0);
3735 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3736 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3737 temp = force_reg (mode, temp);
3738
3739 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3740 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3741 mode, temp, temp2, mode, 0);
3742 if (temp2)
3743 {
3744 rtx seq = get_insns ();
3745 end_sequence ();
3746 emit_insn (seq);
3747 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3748 }
3749 end_sequence ();
3750 }
3751 #endif
3752
3753 if (BRANCH_COST >= 2)
3754 {
3755 int ushift = GET_MODE_BITSIZE (mode) - logd;
3756
3757 temp = gen_reg_rtx (mode);
3758 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3759 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3760 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3761 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3762 else
3763 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3764 build_int_cst (NULL_TREE, ushift),
3765 NULL_RTX, 1);
3766 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3767 0, OPTAB_LIB_WIDEN);
3768 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3769 }
3770
3771 label = gen_label_rtx ();
3772 temp = copy_to_mode_reg (mode, op0);
3773 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3774 expand_inc (temp, GEN_INT (d - 1));
3775 emit_label (label);
3776 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3777 }
3778 \f
3779 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3780 if that is convenient, and returning where the result is.
3781 You may request either the quotient or the remainder as the result;
3782 specify REM_FLAG nonzero to get the remainder.
3783
3784 CODE is the expression code for which kind of division this is;
3785 it controls how rounding is done. MODE is the machine mode to use.
3786 UNSIGNEDP nonzero means do unsigned division. */
3787
3788 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3789 and then correct it by or'ing in missing high bits
3790 if result of ANDI is nonzero.
3791 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3792 This could optimize to a bfexts instruction.
3793 But C doesn't use these operations, so their optimizations are
3794 left for later. */
3795 /* ??? For modulo, we don't actually need the highpart of the first product,
3796 the low part will do nicely. And for small divisors, the second multiply
3797 can also be a low-part only multiply or even be completely left out.
3798 E.g. to calculate the remainder of a division by 3 with a 32 bit
3799 multiply, multiply with 0x55555556 and extract the upper two bits;
3800 the result is exact for inputs up to 0x1fffffff.
3801 The input range can be reduced by using cross-sum rules.
3802 For odd divisors >= 3, the following table gives right shift counts
3803 so that if a number is shifted by an integer multiple of the given
3804 amount, the remainder stays the same:
3805 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3806 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3807 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3808 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3809 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3810
3811 Cross-sum rules for even numbers can be derived by leaving as many bits
3812 to the right alone as the divisor has zeros to the right.
3813 E.g. if x is an unsigned 32 bit number:
3814 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3815 */
3816
3817 rtx
3818 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3819 rtx op0, rtx op1, rtx target, int unsignedp)
3820 {
3821 enum machine_mode compute_mode;
3822 rtx tquotient;
3823 rtx quotient = 0, remainder = 0;
3824 rtx last;
3825 int size;
3826 rtx insn, set;
3827 optab optab1, optab2;
3828 int op1_is_constant, op1_is_pow2 = 0;
3829 int max_cost, extra_cost;
3830 static HOST_WIDE_INT last_div_const = 0;
3831 static HOST_WIDE_INT ext_op1;
3832
3833 op1_is_constant = GET_CODE (op1) == CONST_INT;
3834 if (op1_is_constant)
3835 {
3836 ext_op1 = INTVAL (op1);
3837 if (unsignedp)
3838 ext_op1 &= GET_MODE_MASK (mode);
3839 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3840 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3841 }
3842
3843 /*
3844 This is the structure of expand_divmod:
3845
3846 First comes code to fix up the operands so we can perform the operations
3847 correctly and efficiently.
3848
3849 Second comes a switch statement with code specific for each rounding mode.
3850 For some special operands this code emits all RTL for the desired
3851 operation, for other cases, it generates only a quotient and stores it in
3852 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3853 to indicate that it has not done anything.
3854
3855 Last comes code that finishes the operation. If QUOTIENT is set and
3856 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3857 QUOTIENT is not set, it is computed using trunc rounding.
3858
3859 We try to generate special code for division and remainder when OP1 is a
3860 constant. If |OP1| = 2**n we can use shifts and some other fast
3861 operations. For other values of OP1, we compute a carefully selected
3862 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3863 by m.
3864
3865 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3866 half of the product. Different strategies for generating the product are
3867 implemented in expand_mult_highpart.
3868
3869 If what we actually want is the remainder, we generate that by another
3870 by-constant multiplication and a subtraction. */
3871
3872 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3873 code below will malfunction if we are, so check here and handle
3874 the special case if so. */
3875 if (op1 == const1_rtx)
3876 return rem_flag ? const0_rtx : op0;
3877
3878 /* When dividing by -1, we could get an overflow.
3879 negv_optab can handle overflows. */
3880 if (! unsignedp && op1 == constm1_rtx)
3881 {
3882 if (rem_flag)
3883 return const0_rtx;
3884 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3885 ? negv_optab : neg_optab, op0, target, 0);
3886 }
3887
3888 if (target
3889 /* Don't use the function value register as a target
3890 since we have to read it as well as write it,
3891 and function-inlining gets confused by this. */
3892 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3893 /* Don't clobber an operand while doing a multi-step calculation. */
3894 || ((rem_flag || op1_is_constant)
3895 && (reg_mentioned_p (target, op0)
3896 || (MEM_P (op0) && MEM_P (target))))
3897 || reg_mentioned_p (target, op1)
3898 || (MEM_P (op1) && MEM_P (target))))
3899 target = 0;
3900
3901 /* Get the mode in which to perform this computation. Normally it will
3902 be MODE, but sometimes we can't do the desired operation in MODE.
3903 If so, pick a wider mode in which we can do the operation. Convert
3904 to that mode at the start to avoid repeated conversions.
3905
3906 First see what operations we need. These depend on the expression
3907 we are evaluating. (We assume that divxx3 insns exist under the
3908 same conditions that modxx3 insns and that these insns don't normally
3909 fail. If these assumptions are not correct, we may generate less
3910 efficient code in some cases.)
3911
3912 Then see if we find a mode in which we can open-code that operation
3913 (either a division, modulus, or shift). Finally, check for the smallest
3914 mode for which we can do the operation with a library call. */
3915
3916 /* We might want to refine this now that we have division-by-constant
3917 optimization. Since expand_mult_highpart tries so many variants, it is
3918 not straightforward to generalize this. Maybe we should make an array
3919 of possible modes in init_expmed? Save this for GCC 2.7. */
3920
3921 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3922 ? (unsignedp ? lshr_optab : ashr_optab)
3923 : (unsignedp ? udiv_optab : sdiv_optab));
3924 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3925 ? optab1
3926 : (unsignedp ? udivmod_optab : sdivmod_optab));
3927
3928 for (compute_mode = mode; compute_mode != VOIDmode;
3929 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3930 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3931 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3932 break;
3933
3934 if (compute_mode == VOIDmode)
3935 for (compute_mode = mode; compute_mode != VOIDmode;
3936 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3937 if (optab_libfunc (optab1, compute_mode)
3938 || optab_libfunc (optab2, compute_mode))
3939 break;
3940
3941 /* If we still couldn't find a mode, use MODE, but expand_binop will
3942 probably die. */
3943 if (compute_mode == VOIDmode)
3944 compute_mode = mode;
3945
3946 if (target && GET_MODE (target) == compute_mode)
3947 tquotient = target;
3948 else
3949 tquotient = gen_reg_rtx (compute_mode);
3950
3951 size = GET_MODE_BITSIZE (compute_mode);
3952 #if 0
3953 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3954 (mode), and thereby get better code when OP1 is a constant. Do that
3955 later. It will require going over all usages of SIZE below. */
3956 size = GET_MODE_BITSIZE (mode);
3957 #endif
3958
3959 /* Only deduct something for a REM if the last divide done was
3960 for a different constant. Then set the constant of the last
3961 divide. */
3962 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3963 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3964 && INTVAL (op1) == last_div_const))
3965 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3966
3967 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3968
3969 /* Now convert to the best mode to use. */
3970 if (compute_mode != mode)
3971 {
3972 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3973 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3974
3975 /* convert_modes may have placed op1 into a register, so we
3976 must recompute the following. */
3977 op1_is_constant = GET_CODE (op1) == CONST_INT;
3978 op1_is_pow2 = (op1_is_constant
3979 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3980 || (! unsignedp
3981 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3982 }
3983
3984 /* If one of the operands is a volatile MEM, copy it into a register. */
3985
3986 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3987 op0 = force_reg (compute_mode, op0);
3988 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3989 op1 = force_reg (compute_mode, op1);
3990
3991 /* If we need the remainder or if OP1 is constant, we need to
3992 put OP0 in a register in case it has any queued subexpressions. */
3993 if (rem_flag || op1_is_constant)
3994 op0 = force_reg (compute_mode, op0);
3995
3996 last = get_last_insn ();
3997
3998 /* Promote floor rounding to trunc rounding for unsigned operations. */
3999 if (unsignedp)
4000 {
4001 if (code == FLOOR_DIV_EXPR)
4002 code = TRUNC_DIV_EXPR;
4003 if (code == FLOOR_MOD_EXPR)
4004 code = TRUNC_MOD_EXPR;
4005 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4006 code = TRUNC_DIV_EXPR;
4007 }
4008
4009 if (op1 != const0_rtx)
4010 switch (code)
4011 {
4012 case TRUNC_MOD_EXPR:
4013 case TRUNC_DIV_EXPR:
4014 if (op1_is_constant)
4015 {
4016 if (unsignedp)
4017 {
4018 unsigned HOST_WIDE_INT mh;
4019 int pre_shift, post_shift;
4020 int dummy;
4021 rtx ml;
4022 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4023 & GET_MODE_MASK (compute_mode));
4024
4025 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4026 {
4027 pre_shift = floor_log2 (d);
4028 if (rem_flag)
4029 {
4030 remainder
4031 = expand_binop (compute_mode, and_optab, op0,
4032 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4033 remainder, 1,
4034 OPTAB_LIB_WIDEN);
4035 if (remainder)
4036 return gen_lowpart (mode, remainder);
4037 }
4038 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4039 build_int_cst (NULL_TREE,
4040 pre_shift),
4041 tquotient, 1);
4042 }
4043 else if (size <= HOST_BITS_PER_WIDE_INT)
4044 {
4045 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4046 {
4047 /* Most significant bit of divisor is set; emit an scc
4048 insn. */
4049 quotient = emit_store_flag (tquotient, GEU, op0, op1,
4050 compute_mode, 1, 1);
4051 if (quotient == 0)
4052 goto fail1;
4053 }
4054 else
4055 {
4056 /* Find a suitable multiplier and right shift count
4057 instead of multiplying with D. */
4058
4059 mh = choose_multiplier (d, size, size,
4060 &ml, &post_shift, &dummy);
4061
4062 /* If the suggested multiplier is more than SIZE bits,
4063 we can do better for even divisors, using an
4064 initial right shift. */
4065 if (mh != 0 && (d & 1) == 0)
4066 {
4067 pre_shift = floor_log2 (d & -d);
4068 mh = choose_multiplier (d >> pre_shift, size,
4069 size - pre_shift,
4070 &ml, &post_shift, &dummy);
4071 gcc_assert (!mh);
4072 }
4073 else
4074 pre_shift = 0;
4075
4076 if (mh != 0)
4077 {
4078 rtx t1, t2, t3, t4;
4079
4080 if (post_shift - 1 >= BITS_PER_WORD)
4081 goto fail1;
4082
4083 extra_cost
4084 = (shift_cost[compute_mode][post_shift - 1]
4085 + shift_cost[compute_mode][1]
4086 + 2 * add_cost[compute_mode]);
4087 t1 = expand_mult_highpart (compute_mode, op0, ml,
4088 NULL_RTX, 1,
4089 max_cost - extra_cost);
4090 if (t1 == 0)
4091 goto fail1;
4092 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4093 op0, t1),
4094 NULL_RTX);
4095 t3 = expand_shift
4096 (RSHIFT_EXPR, compute_mode, t2,
4097 build_int_cst (NULL_TREE, 1),
4098 NULL_RTX,1);
4099 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4100 t1, t3),
4101 NULL_RTX);
4102 quotient = expand_shift
4103 (RSHIFT_EXPR, compute_mode, t4,
4104 build_int_cst (NULL_TREE, post_shift - 1),
4105 tquotient, 1);
4106 }
4107 else
4108 {
4109 rtx t1, t2;
4110
4111 if (pre_shift >= BITS_PER_WORD
4112 || post_shift >= BITS_PER_WORD)
4113 goto fail1;
4114
4115 t1 = expand_shift
4116 (RSHIFT_EXPR, compute_mode, op0,
4117 build_int_cst (NULL_TREE, pre_shift),
4118 NULL_RTX, 1);
4119 extra_cost
4120 = (shift_cost[compute_mode][pre_shift]
4121 + shift_cost[compute_mode][post_shift]);
4122 t2 = expand_mult_highpart (compute_mode, t1, ml,
4123 NULL_RTX, 1,
4124 max_cost - extra_cost);
4125 if (t2 == 0)
4126 goto fail1;
4127 quotient = expand_shift
4128 (RSHIFT_EXPR, compute_mode, t2,
4129 build_int_cst (NULL_TREE, post_shift),
4130 tquotient, 1);
4131 }
4132 }
4133 }
4134 else /* Too wide mode to use tricky code */
4135 break;
4136
4137 insn = get_last_insn ();
4138 if (insn != last
4139 && (set = single_set (insn)) != 0
4140 && SET_DEST (set) == quotient)
4141 set_unique_reg_note (insn,
4142 REG_EQUAL,
4143 gen_rtx_UDIV (compute_mode, op0, op1));
4144 }
4145 else /* TRUNC_DIV, signed */
4146 {
4147 unsigned HOST_WIDE_INT ml;
4148 int lgup, post_shift;
4149 rtx mlr;
4150 HOST_WIDE_INT d = INTVAL (op1);
4151 unsigned HOST_WIDE_INT abs_d;
4152
4153 /* Since d might be INT_MIN, we have to cast to
4154 unsigned HOST_WIDE_INT before negating to avoid
4155 undefined signed overflow. */
4156 abs_d = (d >= 0
4157 ? (unsigned HOST_WIDE_INT) d
4158 : - (unsigned HOST_WIDE_INT) d);
4159
4160 /* n rem d = n rem -d */
4161 if (rem_flag && d < 0)
4162 {
4163 d = abs_d;
4164 op1 = gen_int_mode (abs_d, compute_mode);
4165 }
4166
4167 if (d == 1)
4168 quotient = op0;
4169 else if (d == -1)
4170 quotient = expand_unop (compute_mode, neg_optab, op0,
4171 tquotient, 0);
4172 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4173 {
4174 /* This case is not handled correctly below. */
4175 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4176 compute_mode, 1, 1);
4177 if (quotient == 0)
4178 goto fail1;
4179 }
4180 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4181 && (rem_flag ? smod_pow2_cheap[compute_mode]
4182 : sdiv_pow2_cheap[compute_mode])
4183 /* We assume that cheap metric is true if the
4184 optab has an expander for this mode. */
4185 && ((optab_handler ((rem_flag ? smod_optab
4186 : sdiv_optab),
4187 compute_mode)->insn_code
4188 != CODE_FOR_nothing)
4189 || (optab_handler(sdivmod_optab,
4190 compute_mode)
4191 ->insn_code != CODE_FOR_nothing)))
4192 ;
4193 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4194 {
4195 if (rem_flag)
4196 {
4197 remainder = expand_smod_pow2 (compute_mode, op0, d);
4198 if (remainder)
4199 return gen_lowpart (mode, remainder);
4200 }
4201
4202 if (sdiv_pow2_cheap[compute_mode]
4203 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4204 != CODE_FOR_nothing)
4205 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4206 != CODE_FOR_nothing)))
4207 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4208 compute_mode, op0,
4209 gen_int_mode (abs_d,
4210 compute_mode),
4211 NULL_RTX, 0);
4212 else
4213 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4214
4215 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4216 negate the quotient. */
4217 if (d < 0)
4218 {
4219 insn = get_last_insn ();
4220 if (insn != last
4221 && (set = single_set (insn)) != 0
4222 && SET_DEST (set) == quotient
4223 && abs_d < ((unsigned HOST_WIDE_INT) 1
4224 << (HOST_BITS_PER_WIDE_INT - 1)))
4225 set_unique_reg_note (insn,
4226 REG_EQUAL,
4227 gen_rtx_DIV (compute_mode,
4228 op0,
4229 GEN_INT
4230 (trunc_int_for_mode
4231 (abs_d,
4232 compute_mode))));
4233
4234 quotient = expand_unop (compute_mode, neg_optab,
4235 quotient, quotient, 0);
4236 }
4237 }
4238 else if (size <= HOST_BITS_PER_WIDE_INT)
4239 {
4240 choose_multiplier (abs_d, size, size - 1,
4241 &mlr, &post_shift, &lgup);
4242 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4243 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4244 {
4245 rtx t1, t2, t3;
4246
4247 if (post_shift >= BITS_PER_WORD
4248 || size - 1 >= BITS_PER_WORD)
4249 goto fail1;
4250
4251 extra_cost = (shift_cost[compute_mode][post_shift]
4252 + shift_cost[compute_mode][size - 1]
4253 + add_cost[compute_mode]);
4254 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4255 NULL_RTX, 0,
4256 max_cost - extra_cost);
4257 if (t1 == 0)
4258 goto fail1;
4259 t2 = expand_shift
4260 (RSHIFT_EXPR, compute_mode, t1,
4261 build_int_cst (NULL_TREE, post_shift),
4262 NULL_RTX, 0);
4263 t3 = expand_shift
4264 (RSHIFT_EXPR, compute_mode, op0,
4265 build_int_cst (NULL_TREE, size - 1),
4266 NULL_RTX, 0);
4267 if (d < 0)
4268 quotient
4269 = force_operand (gen_rtx_MINUS (compute_mode,
4270 t3, t2),
4271 tquotient);
4272 else
4273 quotient
4274 = force_operand (gen_rtx_MINUS (compute_mode,
4275 t2, t3),
4276 tquotient);
4277 }
4278 else
4279 {
4280 rtx t1, t2, t3, t4;
4281
4282 if (post_shift >= BITS_PER_WORD
4283 || size - 1 >= BITS_PER_WORD)
4284 goto fail1;
4285
4286 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4287 mlr = gen_int_mode (ml, compute_mode);
4288 extra_cost = (shift_cost[compute_mode][post_shift]
4289 + shift_cost[compute_mode][size - 1]
4290 + 2 * add_cost[compute_mode]);
4291 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4292 NULL_RTX, 0,
4293 max_cost - extra_cost);
4294 if (t1 == 0)
4295 goto fail1;
4296 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4297 t1, op0),
4298 NULL_RTX);
4299 t3 = expand_shift
4300 (RSHIFT_EXPR, compute_mode, t2,
4301 build_int_cst (NULL_TREE, post_shift),
4302 NULL_RTX, 0);
4303 t4 = expand_shift
4304 (RSHIFT_EXPR, compute_mode, op0,
4305 build_int_cst (NULL_TREE, size - 1),
4306 NULL_RTX, 0);
4307 if (d < 0)
4308 quotient
4309 = force_operand (gen_rtx_MINUS (compute_mode,
4310 t4, t3),
4311 tquotient);
4312 else
4313 quotient
4314 = force_operand (gen_rtx_MINUS (compute_mode,
4315 t3, t4),
4316 tquotient);
4317 }
4318 }
4319 else /* Too wide mode to use tricky code */
4320 break;
4321
4322 insn = get_last_insn ();
4323 if (insn != last
4324 && (set = single_set (insn)) != 0
4325 && SET_DEST (set) == quotient)
4326 set_unique_reg_note (insn,
4327 REG_EQUAL,
4328 gen_rtx_DIV (compute_mode, op0, op1));
4329 }
4330 break;
4331 }
4332 fail1:
4333 delete_insns_since (last);
4334 break;
4335
4336 case FLOOR_DIV_EXPR:
4337 case FLOOR_MOD_EXPR:
4338 /* We will come here only for signed operations. */
4339 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4340 {
4341 unsigned HOST_WIDE_INT mh;
4342 int pre_shift, lgup, post_shift;
4343 HOST_WIDE_INT d = INTVAL (op1);
4344 rtx ml;
4345
4346 if (d > 0)
4347 {
4348 /* We could just as easily deal with negative constants here,
4349 but it does not seem worth the trouble for GCC 2.6. */
4350 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4351 {
4352 pre_shift = floor_log2 (d);
4353 if (rem_flag)
4354 {
4355 remainder = expand_binop (compute_mode, and_optab, op0,
4356 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4357 remainder, 0, OPTAB_LIB_WIDEN);
4358 if (remainder)
4359 return gen_lowpart (mode, remainder);
4360 }
4361 quotient = expand_shift
4362 (RSHIFT_EXPR, compute_mode, op0,
4363 build_int_cst (NULL_TREE, pre_shift),
4364 tquotient, 0);
4365 }
4366 else
4367 {
4368 rtx t1, t2, t3, t4;
4369
4370 mh = choose_multiplier (d, size, size - 1,
4371 &ml, &post_shift, &lgup);
4372 gcc_assert (!mh);
4373
4374 if (post_shift < BITS_PER_WORD
4375 && size - 1 < BITS_PER_WORD)
4376 {
4377 t1 = expand_shift
4378 (RSHIFT_EXPR, compute_mode, op0,
4379 build_int_cst (NULL_TREE, size - 1),
4380 NULL_RTX, 0);
4381 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4382 NULL_RTX, 0, OPTAB_WIDEN);
4383 extra_cost = (shift_cost[compute_mode][post_shift]
4384 + shift_cost[compute_mode][size - 1]
4385 + 2 * add_cost[compute_mode]);
4386 t3 = expand_mult_highpart (compute_mode, t2, ml,
4387 NULL_RTX, 1,
4388 max_cost - extra_cost);
4389 if (t3 != 0)
4390 {
4391 t4 = expand_shift
4392 (RSHIFT_EXPR, compute_mode, t3,
4393 build_int_cst (NULL_TREE, post_shift),
4394 NULL_RTX, 1);
4395 quotient = expand_binop (compute_mode, xor_optab,
4396 t4, t1, tquotient, 0,
4397 OPTAB_WIDEN);
4398 }
4399 }
4400 }
4401 }
4402 else
4403 {
4404 rtx nsign, t1, t2, t3, t4;
4405 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4406 op0, constm1_rtx), NULL_RTX);
4407 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4408 0, OPTAB_WIDEN);
4409 nsign = expand_shift
4410 (RSHIFT_EXPR, compute_mode, t2,
4411 build_int_cst (NULL_TREE, size - 1),
4412 NULL_RTX, 0);
4413 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4414 NULL_RTX);
4415 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4416 NULL_RTX, 0);
4417 if (t4)
4418 {
4419 rtx t5;
4420 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4421 NULL_RTX, 0);
4422 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4423 t4, t5),
4424 tquotient);
4425 }
4426 }
4427 }
4428
4429 if (quotient != 0)
4430 break;
4431 delete_insns_since (last);
4432
4433 /* Try using an instruction that produces both the quotient and
4434 remainder, using truncation. We can easily compensate the quotient
4435 or remainder to get floor rounding, once we have the remainder.
4436 Notice that we compute also the final remainder value here,
4437 and return the result right away. */
4438 if (target == 0 || GET_MODE (target) != compute_mode)
4439 target = gen_reg_rtx (compute_mode);
4440
4441 if (rem_flag)
4442 {
4443 remainder
4444 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4445 quotient = gen_reg_rtx (compute_mode);
4446 }
4447 else
4448 {
4449 quotient
4450 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4451 remainder = gen_reg_rtx (compute_mode);
4452 }
4453
4454 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4455 quotient, remainder, 0))
4456 {
4457 /* This could be computed with a branch-less sequence.
4458 Save that for later. */
4459 rtx tem;
4460 rtx label = gen_label_rtx ();
4461 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4462 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4463 NULL_RTX, 0, OPTAB_WIDEN);
4464 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4465 expand_dec (quotient, const1_rtx);
4466 expand_inc (remainder, op1);
4467 emit_label (label);
4468 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4469 }
4470
4471 /* No luck with division elimination or divmod. Have to do it
4472 by conditionally adjusting op0 *and* the result. */
4473 {
4474 rtx label1, label2, label3, label4, label5;
4475 rtx adjusted_op0;
4476 rtx tem;
4477
4478 quotient = gen_reg_rtx (compute_mode);
4479 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4480 label1 = gen_label_rtx ();
4481 label2 = gen_label_rtx ();
4482 label3 = gen_label_rtx ();
4483 label4 = gen_label_rtx ();
4484 label5 = gen_label_rtx ();
4485 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4486 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4487 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4488 quotient, 0, OPTAB_LIB_WIDEN);
4489 if (tem != quotient)
4490 emit_move_insn (quotient, tem);
4491 emit_jump_insn (gen_jump (label5));
4492 emit_barrier ();
4493 emit_label (label1);
4494 expand_inc (adjusted_op0, const1_rtx);
4495 emit_jump_insn (gen_jump (label4));
4496 emit_barrier ();
4497 emit_label (label2);
4498 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4499 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4500 quotient, 0, OPTAB_LIB_WIDEN);
4501 if (tem != quotient)
4502 emit_move_insn (quotient, tem);
4503 emit_jump_insn (gen_jump (label5));
4504 emit_barrier ();
4505 emit_label (label3);
4506 expand_dec (adjusted_op0, const1_rtx);
4507 emit_label (label4);
4508 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4509 quotient, 0, OPTAB_LIB_WIDEN);
4510 if (tem != quotient)
4511 emit_move_insn (quotient, tem);
4512 expand_dec (quotient, const1_rtx);
4513 emit_label (label5);
4514 }
4515 break;
4516
4517 case CEIL_DIV_EXPR:
4518 case CEIL_MOD_EXPR:
4519 if (unsignedp)
4520 {
4521 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4522 {
4523 rtx t1, t2, t3;
4524 unsigned HOST_WIDE_INT d = INTVAL (op1);
4525 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4526 build_int_cst (NULL_TREE, floor_log2 (d)),
4527 tquotient, 1);
4528 t2 = expand_binop (compute_mode, and_optab, op0,
4529 GEN_INT (d - 1),
4530 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4531 t3 = gen_reg_rtx (compute_mode);
4532 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4533 compute_mode, 1, 1);
4534 if (t3 == 0)
4535 {
4536 rtx lab;
4537 lab = gen_label_rtx ();
4538 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4539 expand_inc (t1, const1_rtx);
4540 emit_label (lab);
4541 quotient = t1;
4542 }
4543 else
4544 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4545 t1, t3),
4546 tquotient);
4547 break;
4548 }
4549
4550 /* Try using an instruction that produces both the quotient and
4551 remainder, using truncation. We can easily compensate the
4552 quotient or remainder to get ceiling rounding, once we have the
4553 remainder. Notice that we compute also the final remainder
4554 value here, and return the result right away. */
4555 if (target == 0 || GET_MODE (target) != compute_mode)
4556 target = gen_reg_rtx (compute_mode);
4557
4558 if (rem_flag)
4559 {
4560 remainder = (REG_P (target)
4561 ? target : gen_reg_rtx (compute_mode));
4562 quotient = gen_reg_rtx (compute_mode);
4563 }
4564 else
4565 {
4566 quotient = (REG_P (target)
4567 ? target : gen_reg_rtx (compute_mode));
4568 remainder = gen_reg_rtx (compute_mode);
4569 }
4570
4571 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4572 remainder, 1))
4573 {
4574 /* This could be computed with a branch-less sequence.
4575 Save that for later. */
4576 rtx label = gen_label_rtx ();
4577 do_cmp_and_jump (remainder, const0_rtx, EQ,
4578 compute_mode, label);
4579 expand_inc (quotient, const1_rtx);
4580 expand_dec (remainder, op1);
4581 emit_label (label);
4582 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4583 }
4584
4585 /* No luck with division elimination or divmod. Have to do it
4586 by conditionally adjusting op0 *and* the result. */
4587 {
4588 rtx label1, label2;
4589 rtx adjusted_op0, tem;
4590
4591 quotient = gen_reg_rtx (compute_mode);
4592 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4593 label1 = gen_label_rtx ();
4594 label2 = gen_label_rtx ();
4595 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4596 compute_mode, label1);
4597 emit_move_insn (quotient, const0_rtx);
4598 emit_jump_insn (gen_jump (label2));
4599 emit_barrier ();
4600 emit_label (label1);
4601 expand_dec (adjusted_op0, const1_rtx);
4602 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4603 quotient, 1, OPTAB_LIB_WIDEN);
4604 if (tem != quotient)
4605 emit_move_insn (quotient, tem);
4606 expand_inc (quotient, const1_rtx);
4607 emit_label (label2);
4608 }
4609 }
4610 else /* signed */
4611 {
4612 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4613 && INTVAL (op1) >= 0)
4614 {
4615 /* This is extremely similar to the code for the unsigned case
4616 above. For 2.7 we should merge these variants, but for
4617 2.6.1 I don't want to touch the code for unsigned since that
4618 get used in C. The signed case will only be used by other
4619 languages (Ada). */
4620
4621 rtx t1, t2, t3;
4622 unsigned HOST_WIDE_INT d = INTVAL (op1);
4623 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4624 build_int_cst (NULL_TREE, floor_log2 (d)),
4625 tquotient, 0);
4626 t2 = expand_binop (compute_mode, and_optab, op0,
4627 GEN_INT (d - 1),
4628 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4629 t3 = gen_reg_rtx (compute_mode);
4630 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4631 compute_mode, 1, 1);
4632 if (t3 == 0)
4633 {
4634 rtx lab;
4635 lab = gen_label_rtx ();
4636 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4637 expand_inc (t1, const1_rtx);
4638 emit_label (lab);
4639 quotient = t1;
4640 }
4641 else
4642 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4643 t1, t3),
4644 tquotient);
4645 break;
4646 }
4647
4648 /* Try using an instruction that produces both the quotient and
4649 remainder, using truncation. We can easily compensate the
4650 quotient or remainder to get ceiling rounding, once we have the
4651 remainder. Notice that we compute also the final remainder
4652 value here, and return the result right away. */
4653 if (target == 0 || GET_MODE (target) != compute_mode)
4654 target = gen_reg_rtx (compute_mode);
4655 if (rem_flag)
4656 {
4657 remainder= (REG_P (target)
4658 ? target : gen_reg_rtx (compute_mode));
4659 quotient = gen_reg_rtx (compute_mode);
4660 }
4661 else
4662 {
4663 quotient = (REG_P (target)
4664 ? target : gen_reg_rtx (compute_mode));
4665 remainder = gen_reg_rtx (compute_mode);
4666 }
4667
4668 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4669 remainder, 0))
4670 {
4671 /* This could be computed with a branch-less sequence.
4672 Save that for later. */
4673 rtx tem;
4674 rtx label = gen_label_rtx ();
4675 do_cmp_and_jump (remainder, const0_rtx, EQ,
4676 compute_mode, label);
4677 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4678 NULL_RTX, 0, OPTAB_WIDEN);
4679 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4680 expand_inc (quotient, const1_rtx);
4681 expand_dec (remainder, op1);
4682 emit_label (label);
4683 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4684 }
4685
4686 /* No luck with division elimination or divmod. Have to do it
4687 by conditionally adjusting op0 *and* the result. */
4688 {
4689 rtx label1, label2, label3, label4, label5;
4690 rtx adjusted_op0;
4691 rtx tem;
4692
4693 quotient = gen_reg_rtx (compute_mode);
4694 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4695 label1 = gen_label_rtx ();
4696 label2 = gen_label_rtx ();
4697 label3 = gen_label_rtx ();
4698 label4 = gen_label_rtx ();
4699 label5 = gen_label_rtx ();
4700 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4701 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4702 compute_mode, label1);
4703 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4704 quotient, 0, OPTAB_LIB_WIDEN);
4705 if (tem != quotient)
4706 emit_move_insn (quotient, tem);
4707 emit_jump_insn (gen_jump (label5));
4708 emit_barrier ();
4709 emit_label (label1);
4710 expand_dec (adjusted_op0, const1_rtx);
4711 emit_jump_insn (gen_jump (label4));
4712 emit_barrier ();
4713 emit_label (label2);
4714 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4715 compute_mode, label3);
4716 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4717 quotient, 0, OPTAB_LIB_WIDEN);
4718 if (tem != quotient)
4719 emit_move_insn (quotient, tem);
4720 emit_jump_insn (gen_jump (label5));
4721 emit_barrier ();
4722 emit_label (label3);
4723 expand_inc (adjusted_op0, const1_rtx);
4724 emit_label (label4);
4725 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4726 quotient, 0, OPTAB_LIB_WIDEN);
4727 if (tem != quotient)
4728 emit_move_insn (quotient, tem);
4729 expand_inc (quotient, const1_rtx);
4730 emit_label (label5);
4731 }
4732 }
4733 break;
4734
4735 case EXACT_DIV_EXPR:
4736 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4737 {
4738 HOST_WIDE_INT d = INTVAL (op1);
4739 unsigned HOST_WIDE_INT ml;
4740 int pre_shift;
4741 rtx t1;
4742
4743 pre_shift = floor_log2 (d & -d);
4744 ml = invert_mod2n (d >> pre_shift, size);
4745 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4746 build_int_cst (NULL_TREE, pre_shift),
4747 NULL_RTX, unsignedp);
4748 quotient = expand_mult (compute_mode, t1,
4749 gen_int_mode (ml, compute_mode),
4750 NULL_RTX, 1);
4751
4752 insn = get_last_insn ();
4753 set_unique_reg_note (insn,
4754 REG_EQUAL,
4755 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4756 compute_mode,
4757 op0, op1));
4758 }
4759 break;
4760
4761 case ROUND_DIV_EXPR:
4762 case ROUND_MOD_EXPR:
4763 if (unsignedp)
4764 {
4765 rtx tem;
4766 rtx label;
4767 label = gen_label_rtx ();
4768 quotient = gen_reg_rtx (compute_mode);
4769 remainder = gen_reg_rtx (compute_mode);
4770 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4771 {
4772 rtx tem;
4773 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4774 quotient, 1, OPTAB_LIB_WIDEN);
4775 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4776 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4777 remainder, 1, OPTAB_LIB_WIDEN);
4778 }
4779 tem = plus_constant (op1, -1);
4780 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4781 build_int_cst (NULL_TREE, 1),
4782 NULL_RTX, 1);
4783 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4784 expand_inc (quotient, const1_rtx);
4785 expand_dec (remainder, op1);
4786 emit_label (label);
4787 }
4788 else
4789 {
4790 rtx abs_rem, abs_op1, tem, mask;
4791 rtx label;
4792 label = gen_label_rtx ();
4793 quotient = gen_reg_rtx (compute_mode);
4794 remainder = gen_reg_rtx (compute_mode);
4795 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4796 {
4797 rtx tem;
4798 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4799 quotient, 0, OPTAB_LIB_WIDEN);
4800 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4801 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4802 remainder, 0, OPTAB_LIB_WIDEN);
4803 }
4804 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4805 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4806 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4807 build_int_cst (NULL_TREE, 1),
4808 NULL_RTX, 1);
4809 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4810 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4811 NULL_RTX, 0, OPTAB_WIDEN);
4812 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4813 build_int_cst (NULL_TREE, size - 1),
4814 NULL_RTX, 0);
4815 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4816 NULL_RTX, 0, OPTAB_WIDEN);
4817 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4818 NULL_RTX, 0, OPTAB_WIDEN);
4819 expand_inc (quotient, tem);
4820 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4821 NULL_RTX, 0, OPTAB_WIDEN);
4822 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4823 NULL_RTX, 0, OPTAB_WIDEN);
4824 expand_dec (remainder, tem);
4825 emit_label (label);
4826 }
4827 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4828
4829 default:
4830 gcc_unreachable ();
4831 }
4832
4833 if (quotient == 0)
4834 {
4835 if (target && GET_MODE (target) != compute_mode)
4836 target = 0;
4837
4838 if (rem_flag)
4839 {
4840 /* Try to produce the remainder without producing the quotient.
4841 If we seem to have a divmod pattern that does not require widening,
4842 don't try widening here. We should really have a WIDEN argument
4843 to expand_twoval_binop, since what we'd really like to do here is
4844 1) try a mod insn in compute_mode
4845 2) try a divmod insn in compute_mode
4846 3) try a div insn in compute_mode and multiply-subtract to get
4847 remainder
4848 4) try the same things with widening allowed. */
4849 remainder
4850 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4851 op0, op1, target,
4852 unsignedp,
4853 ((optab_handler (optab2, compute_mode)->insn_code
4854 != CODE_FOR_nothing)
4855 ? OPTAB_DIRECT : OPTAB_WIDEN));
4856 if (remainder == 0)
4857 {
4858 /* No luck there. Can we do remainder and divide at once
4859 without a library call? */
4860 remainder = gen_reg_rtx (compute_mode);
4861 if (! expand_twoval_binop ((unsignedp
4862 ? udivmod_optab
4863 : sdivmod_optab),
4864 op0, op1,
4865 NULL_RTX, remainder, unsignedp))
4866 remainder = 0;
4867 }
4868
4869 if (remainder)
4870 return gen_lowpart (mode, remainder);
4871 }
4872
4873 /* Produce the quotient. Try a quotient insn, but not a library call.
4874 If we have a divmod in this mode, use it in preference to widening
4875 the div (for this test we assume it will not fail). Note that optab2
4876 is set to the one of the two optabs that the call below will use. */
4877 quotient
4878 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4879 op0, op1, rem_flag ? NULL_RTX : target,
4880 unsignedp,
4881 ((optab_handler (optab2, compute_mode)->insn_code
4882 != CODE_FOR_nothing)
4883 ? OPTAB_DIRECT : OPTAB_WIDEN));
4884
4885 if (quotient == 0)
4886 {
4887 /* No luck there. Try a quotient-and-remainder insn,
4888 keeping the quotient alone. */
4889 quotient = gen_reg_rtx (compute_mode);
4890 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4891 op0, op1,
4892 quotient, NULL_RTX, unsignedp))
4893 {
4894 quotient = 0;
4895 if (! rem_flag)
4896 /* Still no luck. If we are not computing the remainder,
4897 use a library call for the quotient. */
4898 quotient = sign_expand_binop (compute_mode,
4899 udiv_optab, sdiv_optab,
4900 op0, op1, target,
4901 unsignedp, OPTAB_LIB_WIDEN);
4902 }
4903 }
4904 }
4905
4906 if (rem_flag)
4907 {
4908 if (target && GET_MODE (target) != compute_mode)
4909 target = 0;
4910
4911 if (quotient == 0)
4912 {
4913 /* No divide instruction either. Use library for remainder. */
4914 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4915 op0, op1, target,
4916 unsignedp, OPTAB_LIB_WIDEN);
4917 /* No remainder function. Try a quotient-and-remainder
4918 function, keeping the remainder. */
4919 if (!remainder)
4920 {
4921 remainder = gen_reg_rtx (compute_mode);
4922 if (!expand_twoval_binop_libfunc
4923 (unsignedp ? udivmod_optab : sdivmod_optab,
4924 op0, op1,
4925 NULL_RTX, remainder,
4926 unsignedp ? UMOD : MOD))
4927 remainder = NULL_RTX;
4928 }
4929 }
4930 else
4931 {
4932 /* We divided. Now finish doing X - Y * (X / Y). */
4933 remainder = expand_mult (compute_mode, quotient, op1,
4934 NULL_RTX, unsignedp);
4935 remainder = expand_binop (compute_mode, sub_optab, op0,
4936 remainder, target, unsignedp,
4937 OPTAB_LIB_WIDEN);
4938 }
4939 }
4940
4941 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4942 }
4943 \f
4944 /* Return a tree node with data type TYPE, describing the value of X.
4945 Usually this is an VAR_DECL, if there is no obvious better choice.
4946 X may be an expression, however we only support those expressions
4947 generated by loop.c. */
4948
4949 tree
4950 make_tree (tree type, rtx x)
4951 {
4952 tree t;
4953
4954 switch (GET_CODE (x))
4955 {
4956 case CONST_INT:
4957 {
4958 HOST_WIDE_INT hi = 0;
4959
4960 if (INTVAL (x) < 0
4961 && !(TYPE_UNSIGNED (type)
4962 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4963 < HOST_BITS_PER_WIDE_INT)))
4964 hi = -1;
4965
4966 t = build_int_cst_wide (type, INTVAL (x), hi);
4967
4968 return t;
4969 }
4970
4971 case CONST_DOUBLE:
4972 if (GET_MODE (x) == VOIDmode)
4973 t = build_int_cst_wide (type,
4974 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4975 else
4976 {
4977 REAL_VALUE_TYPE d;
4978
4979 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4980 t = build_real (type, d);
4981 }
4982
4983 return t;
4984
4985 case CONST_VECTOR:
4986 {
4987 int units = CONST_VECTOR_NUNITS (x);
4988 tree itype = TREE_TYPE (type);
4989 tree t = NULL_TREE;
4990 int i;
4991
4992
4993 /* Build a tree with vector elements. */
4994 for (i = units - 1; i >= 0; --i)
4995 {
4996 rtx elt = CONST_VECTOR_ELT (x, i);
4997 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4998 }
4999
5000 return build_vector (type, t);
5001 }
5002
5003 case PLUS:
5004 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5005 make_tree (type, XEXP (x, 1)));
5006
5007 case MINUS:
5008 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5009 make_tree (type, XEXP (x, 1)));
5010
5011 case NEG:
5012 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5013
5014 case MULT:
5015 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5016 make_tree (type, XEXP (x, 1)));
5017
5018 case ASHIFT:
5019 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5020 make_tree (type, XEXP (x, 1)));
5021
5022 case LSHIFTRT:
5023 t = unsigned_type_for (type);
5024 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5025 make_tree (t, XEXP (x, 0)),
5026 make_tree (type, XEXP (x, 1))));
5027
5028 case ASHIFTRT:
5029 t = signed_type_for (type);
5030 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5031 make_tree (t, XEXP (x, 0)),
5032 make_tree (type, XEXP (x, 1))));
5033
5034 case DIV:
5035 if (TREE_CODE (type) != REAL_TYPE)
5036 t = signed_type_for (type);
5037 else
5038 t = type;
5039
5040 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5041 make_tree (t, XEXP (x, 0)),
5042 make_tree (t, XEXP (x, 1))));
5043 case UDIV:
5044 t = unsigned_type_for (type);
5045 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5046 make_tree (t, XEXP (x, 0)),
5047 make_tree (t, XEXP (x, 1))));
5048
5049 case SIGN_EXTEND:
5050 case ZERO_EXTEND:
5051 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5052 GET_CODE (x) == ZERO_EXTEND);
5053 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5054
5055 case CONST:
5056 return make_tree (type, XEXP (x, 0));
5057
5058 case SYMBOL_REF:
5059 t = SYMBOL_REF_DECL (x);
5060 if (t)
5061 return fold_convert (type, build_fold_addr_expr (t));
5062 /* else fall through. */
5063
5064 default:
5065 t = build_decl (VAR_DECL, NULL_TREE, type);
5066
5067 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5068 ptr_mode. So convert. */
5069 if (POINTER_TYPE_P (type))
5070 x = convert_memory_address (TYPE_MODE (type), x);
5071
5072 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5073 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5074 t->decl_with_rtl.rtl = x;
5075
5076 return t;
5077 }
5078 }
5079 \f
5080 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5081 and returning TARGET.
5082
5083 If TARGET is 0, a pseudo-register or constant is returned. */
5084
5085 rtx
5086 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5087 {
5088 rtx tem = 0;
5089
5090 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5091 tem = simplify_binary_operation (AND, mode, op0, op1);
5092 if (tem == 0)
5093 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5094
5095 if (target == 0)
5096 target = tem;
5097 else if (tem != target)
5098 emit_move_insn (target, tem);
5099 return target;
5100 }
5101 \f
5102 /* Helper function for emit_store_flag. */
5103 static rtx
5104 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
5105 int normalizep)
5106 {
5107 rtx op0;
5108 enum machine_mode target_mode = GET_MODE (target);
5109
5110 /* If we are converting to a wider mode, first convert to
5111 TARGET_MODE, then normalize. This produces better combining
5112 opportunities on machines that have a SIGN_EXTRACT when we are
5113 testing a single bit. This mostly benefits the 68k.
5114
5115 If STORE_FLAG_VALUE does not have the sign bit set when
5116 interpreted in MODE, we can do this conversion as unsigned, which
5117 is usually more efficient. */
5118 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5119 {
5120 convert_move (target, subtarget,
5121 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5122 && 0 == (STORE_FLAG_VALUE
5123 & ((HOST_WIDE_INT) 1
5124 << (GET_MODE_BITSIZE (mode) -1))));
5125 op0 = target;
5126 mode = target_mode;
5127 }
5128 else
5129 op0 = subtarget;
5130
5131 /* If we want to keep subexpressions around, don't reuse our last
5132 target. */
5133 if (optimize)
5134 subtarget = 0;
5135
5136 /* Now normalize to the proper value in MODE. Sometimes we don't
5137 have to do anything. */
5138 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5139 ;
5140 /* STORE_FLAG_VALUE might be the most negative number, so write
5141 the comparison this way to avoid a compiler-time warning. */
5142 else if (- normalizep == STORE_FLAG_VALUE)
5143 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
5144
5145 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5146 it hard to use a value of just the sign bit due to ANSI integer
5147 constant typing rules. */
5148 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5149 && (STORE_FLAG_VALUE
5150 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5151 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5152 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5153 normalizep == 1);
5154 else
5155 {
5156 gcc_assert (STORE_FLAG_VALUE & 1);
5157
5158 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5159 if (normalizep == -1)
5160 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5161 }
5162
5163 /* If we were converting to a smaller mode, do the conversion now. */
5164 if (target_mode != mode)
5165 {
5166 convert_move (target, op0, 0);
5167 return target;
5168 }
5169 else
5170 return op0;
5171 }
5172
5173 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5174 and storing in TARGET. Normally return TARGET.
5175 Return 0 if that cannot be done.
5176
5177 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5178 it is VOIDmode, they cannot both be CONST_INT.
5179
5180 UNSIGNEDP is for the case where we have to widen the operands
5181 to perform the operation. It says to use zero-extension.
5182
5183 NORMALIZEP is 1 if we should convert the result to be either zero
5184 or one. Normalize is -1 if we should convert the result to be
5185 either zero or -1. If NORMALIZEP is zero, the result will be left
5186 "raw" out of the scc insn. */
5187
5188 rtx
5189 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5190 enum machine_mode mode, int unsignedp, int normalizep)
5191 {
5192 rtx subtarget;
5193 enum insn_code icode;
5194 enum machine_mode compare_mode;
5195 enum machine_mode target_mode = GET_MODE (target);
5196 rtx tem;
5197 rtx last = get_last_insn ();
5198 rtx pattern, comparison;
5199
5200 if (unsignedp)
5201 code = unsigned_condition (code);
5202
5203 /* If one operand is constant, make it the second one. Only do this
5204 if the other operand is not constant as well. */
5205
5206 if (swap_commutative_operands_p (op0, op1))
5207 {
5208 tem = op0;
5209 op0 = op1;
5210 op1 = tem;
5211 code = swap_condition (code);
5212 }
5213
5214 if (mode == VOIDmode)
5215 mode = GET_MODE (op0);
5216
5217 /* For some comparisons with 1 and -1, we can convert this to
5218 comparisons with zero. This will often produce more opportunities for
5219 store-flag insns. */
5220
5221 switch (code)
5222 {
5223 case LT:
5224 if (op1 == const1_rtx)
5225 op1 = const0_rtx, code = LE;
5226 break;
5227 case LE:
5228 if (op1 == constm1_rtx)
5229 op1 = const0_rtx, code = LT;
5230 break;
5231 case GE:
5232 if (op1 == const1_rtx)
5233 op1 = const0_rtx, code = GT;
5234 break;
5235 case GT:
5236 if (op1 == constm1_rtx)
5237 op1 = const0_rtx, code = GE;
5238 break;
5239 case GEU:
5240 if (op1 == const1_rtx)
5241 op1 = const0_rtx, code = NE;
5242 break;
5243 case LTU:
5244 if (op1 == const1_rtx)
5245 op1 = const0_rtx, code = EQ;
5246 break;
5247 default:
5248 break;
5249 }
5250
5251 /* If we are comparing a double-word integer with zero or -1, we can
5252 convert the comparison into one involving a single word. */
5253 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5254 && GET_MODE_CLASS (mode) == MODE_INT
5255 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5256 {
5257 if ((code == EQ || code == NE)
5258 && (op1 == const0_rtx || op1 == constm1_rtx))
5259 {
5260 rtx op00, op01, op0both;
5261
5262 /* Do a logical OR or AND of the two words and compare the
5263 result. */
5264 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5265 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5266 op0both = expand_binop (word_mode,
5267 op1 == const0_rtx ? ior_optab : and_optab,
5268 op00, op01, NULL_RTX, unsignedp,
5269 OPTAB_DIRECT);
5270
5271 if (op0both != 0)
5272 return emit_store_flag (target, code, op0both, op1, word_mode,
5273 unsignedp, normalizep);
5274 }
5275 else if ((code == LT || code == GE) && op1 == const0_rtx)
5276 {
5277 rtx op0h;
5278
5279 /* If testing the sign bit, can just test on high word. */
5280 op0h = simplify_gen_subreg (word_mode, op0, mode,
5281 subreg_highpart_offset (word_mode,
5282 mode));
5283 return emit_store_flag (target, code, op0h, op1, word_mode,
5284 unsignedp, normalizep);
5285 }
5286 }
5287
5288 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5289 complement of A (for GE) and shifting the sign bit to the low bit. */
5290 if (op1 == const0_rtx && (code == LT || code == GE)
5291 && GET_MODE_CLASS (mode) == MODE_INT
5292 && (normalizep || STORE_FLAG_VALUE == 1
5293 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5294 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5295 == ((unsigned HOST_WIDE_INT) 1
5296 << (GET_MODE_BITSIZE (mode) - 1))))))
5297 {
5298 subtarget = target;
5299
5300 /* If the result is to be wider than OP0, it is best to convert it
5301 first. If it is to be narrower, it is *incorrect* to convert it
5302 first. */
5303 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5304 {
5305 op0 = convert_modes (target_mode, mode, op0, 0);
5306 mode = target_mode;
5307 }
5308
5309 if (target_mode != mode)
5310 subtarget = 0;
5311
5312 if (code == GE)
5313 op0 = expand_unop (mode, one_cmpl_optab, op0,
5314 ((STORE_FLAG_VALUE == 1 || normalizep)
5315 ? 0 : subtarget), 0);
5316
5317 if (STORE_FLAG_VALUE == 1 || normalizep)
5318 /* If we are supposed to produce a 0/1 value, we want to do
5319 a logical shift from the sign bit to the low-order bit; for
5320 a -1/0 value, we do an arithmetic shift. */
5321 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5322 size_int (GET_MODE_BITSIZE (mode) - 1),
5323 subtarget, normalizep != -1);
5324
5325 if (mode != target_mode)
5326 op0 = convert_modes (target_mode, mode, op0, 0);
5327
5328 return op0;
5329 }
5330
5331 icode = setcc_gen_code[(int) code];
5332
5333 if (icode != CODE_FOR_nothing)
5334 {
5335 insn_operand_predicate_fn pred;
5336
5337 /* We think we may be able to do this with a scc insn. Emit the
5338 comparison and then the scc insn. */
5339
5340 do_pending_stack_adjust ();
5341 last = get_last_insn ();
5342
5343 comparison
5344 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5345 if (CONSTANT_P (comparison))
5346 {
5347 switch (GET_CODE (comparison))
5348 {
5349 case CONST_INT:
5350 if (comparison == const0_rtx)
5351 return const0_rtx;
5352 break;
5353
5354 #ifdef FLOAT_STORE_FLAG_VALUE
5355 case CONST_DOUBLE:
5356 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5357 return const0_rtx;
5358 break;
5359 #endif
5360 default:
5361 gcc_unreachable ();
5362 }
5363
5364 if (normalizep == 1)
5365 return const1_rtx;
5366 if (normalizep == -1)
5367 return constm1_rtx;
5368 return const_true_rtx;
5369 }
5370
5371 /* The code of COMPARISON may not match CODE if compare_from_rtx
5372 decided to swap its operands and reverse the original code.
5373
5374 We know that compare_from_rtx returns either a CONST_INT or
5375 a new comparison code, so it is safe to just extract the
5376 code from COMPARISON. */
5377 code = GET_CODE (comparison);
5378
5379 /* Get a reference to the target in the proper mode for this insn. */
5380 compare_mode = insn_data[(int) icode].operand[0].mode;
5381 subtarget = target;
5382 pred = insn_data[(int) icode].operand[0].predicate;
5383 if (optimize || ! (*pred) (subtarget, compare_mode))
5384 subtarget = gen_reg_rtx (compare_mode);
5385
5386 pattern = GEN_FCN (icode) (subtarget);
5387 if (pattern)
5388 {
5389 emit_insn (pattern);
5390 return emit_store_flag_1 (target, subtarget, compare_mode,
5391 normalizep);
5392 }
5393 }
5394 else
5395 {
5396 /* We don't have an scc insn, so try a cstore insn. */
5397
5398 for (compare_mode = mode; compare_mode != VOIDmode;
5399 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5400 {
5401 icode = optab_handler (cstore_optab, compare_mode)->insn_code;
5402 if (icode != CODE_FOR_nothing)
5403 break;
5404 }
5405
5406 if (icode != CODE_FOR_nothing)
5407 {
5408 enum machine_mode result_mode
5409 = insn_data[(int) icode].operand[0].mode;
5410 rtx cstore_op0 = op0;
5411 rtx cstore_op1 = op1;
5412
5413 do_pending_stack_adjust ();
5414 last = get_last_insn ();
5415
5416 if (compare_mode != mode)
5417 {
5418 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5419 unsignedp);
5420 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5421 unsignedp);
5422 }
5423
5424 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5425 compare_mode))
5426 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5427
5428 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5429 compare_mode))
5430 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5431
5432 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5433 cstore_op1);
5434 subtarget = target;
5435
5436 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5437 (subtarget, result_mode)))
5438 subtarget = gen_reg_rtx (result_mode);
5439
5440 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5441 cstore_op1);
5442
5443 if (pattern)
5444 {
5445 emit_insn (pattern);
5446 return emit_store_flag_1 (target, subtarget, result_mode,
5447 normalizep);
5448 }
5449 }
5450 }
5451
5452 delete_insns_since (last);
5453
5454 /* If optimizing, use different pseudo registers for each insn, instead
5455 of reusing the same pseudo. This leads to better CSE, but slows
5456 down the compiler, since there are more pseudos */
5457 subtarget = (!optimize
5458 && (target_mode == mode)) ? target : NULL_RTX;
5459
5460 /* If we reached here, we can't do this with a scc insn. However, there
5461 are some comparisons that can be done directly. For example, if
5462 this is an equality comparison of integers, we can try to exclusive-or
5463 (or subtract) the two operands and use a recursive call to try the
5464 comparison with zero. Don't do any of these cases if branches are
5465 very cheap. */
5466
5467 if (BRANCH_COST > 0
5468 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5469 && op1 != const0_rtx)
5470 {
5471 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5472 OPTAB_WIDEN);
5473
5474 if (tem == 0)
5475 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5476 OPTAB_WIDEN);
5477 if (tem != 0)
5478 tem = emit_store_flag (target, code, tem, const0_rtx,
5479 mode, unsignedp, normalizep);
5480 if (tem == 0)
5481 delete_insns_since (last);
5482 return tem;
5483 }
5484
5485 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5486 the constant zero. Reject all other comparisons at this point. Only
5487 do LE and GT if branches are expensive since they are expensive on
5488 2-operand machines. */
5489
5490 if (BRANCH_COST == 0
5491 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5492 || (code != EQ && code != NE
5493 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5494 return 0;
5495
5496 /* See what we need to return. We can only return a 1, -1, or the
5497 sign bit. */
5498
5499 if (normalizep == 0)
5500 {
5501 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5502 normalizep = STORE_FLAG_VALUE;
5503
5504 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5505 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5506 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5507 ;
5508 else
5509 return 0;
5510 }
5511
5512 /* Try to put the result of the comparison in the sign bit. Assume we can't
5513 do the necessary operation below. */
5514
5515 tem = 0;
5516
5517 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5518 the sign bit set. */
5519
5520 if (code == LE)
5521 {
5522 /* This is destructive, so SUBTARGET can't be OP0. */
5523 if (rtx_equal_p (subtarget, op0))
5524 subtarget = 0;
5525
5526 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5527 OPTAB_WIDEN);
5528 if (tem)
5529 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5530 OPTAB_WIDEN);
5531 }
5532
5533 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5534 number of bits in the mode of OP0, minus one. */
5535
5536 if (code == GT)
5537 {
5538 if (rtx_equal_p (subtarget, op0))
5539 subtarget = 0;
5540
5541 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5542 size_int (GET_MODE_BITSIZE (mode) - 1),
5543 subtarget, 0);
5544 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5545 OPTAB_WIDEN);
5546 }
5547
5548 if (code == EQ || code == NE)
5549 {
5550 /* For EQ or NE, one way to do the comparison is to apply an operation
5551 that converts the operand into a positive number if it is nonzero
5552 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5553 for NE we negate. This puts the result in the sign bit. Then we
5554 normalize with a shift, if needed.
5555
5556 Two operations that can do the above actions are ABS and FFS, so try
5557 them. If that doesn't work, and MODE is smaller than a full word,
5558 we can use zero-extension to the wider mode (an unsigned conversion)
5559 as the operation. */
5560
5561 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5562 that is compensated by the subsequent overflow when subtracting
5563 one / negating. */
5564
5565 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5566 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5567 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5568 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5569 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5570 {
5571 tem = convert_modes (word_mode, mode, op0, 1);
5572 mode = word_mode;
5573 }
5574
5575 if (tem != 0)
5576 {
5577 if (code == EQ)
5578 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5579 0, OPTAB_WIDEN);
5580 else
5581 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5582 }
5583
5584 /* If we couldn't do it that way, for NE we can "or" the two's complement
5585 of the value with itself. For EQ, we take the one's complement of
5586 that "or", which is an extra insn, so we only handle EQ if branches
5587 are expensive. */
5588
5589 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5590 {
5591 if (rtx_equal_p (subtarget, op0))
5592 subtarget = 0;
5593
5594 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5595 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5596 OPTAB_WIDEN);
5597
5598 if (tem && code == EQ)
5599 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5600 }
5601 }
5602
5603 if (tem && normalizep)
5604 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5605 size_int (GET_MODE_BITSIZE (mode) - 1),
5606 subtarget, normalizep == 1);
5607
5608 if (tem)
5609 {
5610 if (GET_MODE (tem) != target_mode)
5611 {
5612 convert_move (target, tem, 0);
5613 tem = target;
5614 }
5615 else if (!subtarget)
5616 {
5617 emit_move_insn (target, tem);
5618 tem = target;
5619 }
5620 }
5621 else
5622 delete_insns_since (last);
5623
5624 return tem;
5625 }
5626
5627 /* Like emit_store_flag, but always succeeds. */
5628
5629 rtx
5630 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5631 enum machine_mode mode, int unsignedp, int normalizep)
5632 {
5633 rtx tem, label;
5634
5635 /* First see if emit_store_flag can do the job. */
5636 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5637 if (tem != 0)
5638 return tem;
5639
5640 if (normalizep == 0)
5641 normalizep = 1;
5642
5643 /* If this failed, we have to do this with set/compare/jump/set code. */
5644
5645 if (!REG_P (target)
5646 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5647 target = gen_reg_rtx (GET_MODE (target));
5648
5649 emit_move_insn (target, const1_rtx);
5650 label = gen_label_rtx ();
5651 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5652 NULL_RTX, label);
5653
5654 emit_move_insn (target, const0_rtx);
5655 emit_label (label);
5656
5657 return target;
5658 }
5659 \f
5660 /* Perform possibly multi-word comparison and conditional jump to LABEL
5661 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5662 now a thin wrapper around do_compare_rtx_and_jump. */
5663
5664 static void
5665 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5666 rtx label)
5667 {
5668 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5669 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5670 NULL_RTX, NULL_RTX, label);
5671 }