expr.c (emit_group_load_1): Update calls to extract_bit_field.
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "diagnostic-core.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
41 #include "expmed.h"
42
43 struct target_expmed default_target_expmed;
44 #if SWITCHABLE_TARGET
45 struct target_expmed *this_target_expmed = &default_target_expmed;
46 #endif
47
48 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx);
51 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, rtx);
53 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
54 unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT,
56 unsigned HOST_WIDE_INT, rtx, int, bool);
57 static rtx mask_rtx (enum machine_mode, int, int, int);
58 static rtx lshift_value (enum machine_mode, rtx, int, int);
59 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
60 unsigned HOST_WIDE_INT, int);
61 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
62 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
63 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
64
65 /* Test whether a value is zero of a power of two. */
66 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
67
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
71
72
73 /* Reduce conditional compilation elsewhere. */
74 #ifndef HAVE_insv
75 #define HAVE_insv 0
76 #define CODE_FOR_insv CODE_FOR_nothing
77 #define gen_insv(a,b,c,d) NULL_RTX
78 #endif
79 #ifndef HAVE_extv
80 #define HAVE_extv 0
81 #define CODE_FOR_extv CODE_FOR_nothing
82 #define gen_extv(a,b,c,d) NULL_RTX
83 #endif
84 #ifndef HAVE_extzv
85 #define HAVE_extzv 0
86 #define CODE_FOR_extzv CODE_FOR_nothing
87 #define gen_extzv(a,b,c,d) NULL_RTX
88 #endif
89
90 void
91 init_expmed (void)
92 {
93 struct
94 {
95 struct rtx_def reg; rtunion reg_fld[2];
96 struct rtx_def plus; rtunion plus_fld1;
97 struct rtx_def neg;
98 struct rtx_def mult; rtunion mult_fld1;
99 struct rtx_def sdiv; rtunion sdiv_fld1;
100 struct rtx_def udiv; rtunion udiv_fld1;
101 struct rtx_def zext;
102 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
103 struct rtx_def smod_32; rtunion smod_32_fld1;
104 struct rtx_def wide_mult; rtunion wide_mult_fld1;
105 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
106 struct rtx_def wide_trunc;
107 struct rtx_def shift; rtunion shift_fld1;
108 struct rtx_def shift_mult; rtunion shift_mult_fld1;
109 struct rtx_def shift_add; rtunion shift_add_fld1;
110 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
111 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
112 } all;
113
114 rtx pow2[MAX_BITS_PER_WORD];
115 rtx cint[MAX_BITS_PER_WORD];
116 int m, n;
117 enum machine_mode mode, wider_mode;
118 int speed;
119
120
121 for (m = 1; m < MAX_BITS_PER_WORD; m++)
122 {
123 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
124 cint[m] = GEN_INT (m);
125 }
126 memset (&all, 0, sizeof all);
127
128 PUT_CODE (&all.reg, REG);
129 /* Avoid using hard regs in ways which may be unsupported. */
130 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
131
132 PUT_CODE (&all.plus, PLUS);
133 XEXP (&all.plus, 0) = &all.reg;
134 XEXP (&all.plus, 1) = &all.reg;
135
136 PUT_CODE (&all.neg, NEG);
137 XEXP (&all.neg, 0) = &all.reg;
138
139 PUT_CODE (&all.mult, MULT);
140 XEXP (&all.mult, 0) = &all.reg;
141 XEXP (&all.mult, 1) = &all.reg;
142
143 PUT_CODE (&all.sdiv, DIV);
144 XEXP (&all.sdiv, 0) = &all.reg;
145 XEXP (&all.sdiv, 1) = &all.reg;
146
147 PUT_CODE (&all.udiv, UDIV);
148 XEXP (&all.udiv, 0) = &all.reg;
149 XEXP (&all.udiv, 1) = &all.reg;
150
151 PUT_CODE (&all.sdiv_32, DIV);
152 XEXP (&all.sdiv_32, 0) = &all.reg;
153 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
154
155 PUT_CODE (&all.smod_32, MOD);
156 XEXP (&all.smod_32, 0) = &all.reg;
157 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
158
159 PUT_CODE (&all.zext, ZERO_EXTEND);
160 XEXP (&all.zext, 0) = &all.reg;
161
162 PUT_CODE (&all.wide_mult, MULT);
163 XEXP (&all.wide_mult, 0) = &all.zext;
164 XEXP (&all.wide_mult, 1) = &all.zext;
165
166 PUT_CODE (&all.wide_lshr, LSHIFTRT);
167 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
168
169 PUT_CODE (&all.wide_trunc, TRUNCATE);
170 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
171
172 PUT_CODE (&all.shift, ASHIFT);
173 XEXP (&all.shift, 0) = &all.reg;
174
175 PUT_CODE (&all.shift_mult, MULT);
176 XEXP (&all.shift_mult, 0) = &all.reg;
177
178 PUT_CODE (&all.shift_add, PLUS);
179 XEXP (&all.shift_add, 0) = &all.shift_mult;
180 XEXP (&all.shift_add, 1) = &all.reg;
181
182 PUT_CODE (&all.shift_sub0, MINUS);
183 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
184 XEXP (&all.shift_sub0, 1) = &all.reg;
185
186 PUT_CODE (&all.shift_sub1, MINUS);
187 XEXP (&all.shift_sub1, 0) = &all.reg;
188 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
189
190 for (speed = 0; speed < 2; speed++)
191 {
192 crtl->maybe_hot_insn_p = speed;
193 zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
194
195 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
196 mode != VOIDmode;
197 mode = GET_MODE_WIDER_MODE (mode))
198 {
199 PUT_MODE (&all.reg, mode);
200 PUT_MODE (&all.plus, mode);
201 PUT_MODE (&all.neg, mode);
202 PUT_MODE (&all.mult, mode);
203 PUT_MODE (&all.sdiv, mode);
204 PUT_MODE (&all.udiv, mode);
205 PUT_MODE (&all.sdiv_32, mode);
206 PUT_MODE (&all.smod_32, mode);
207 PUT_MODE (&all.wide_trunc, mode);
208 PUT_MODE (&all.shift, mode);
209 PUT_MODE (&all.shift_mult, mode);
210 PUT_MODE (&all.shift_add, mode);
211 PUT_MODE (&all.shift_sub0, mode);
212 PUT_MODE (&all.shift_sub1, mode);
213
214 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
215 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
216 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
217 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
218 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
219
220 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
221 <= 2 * add_cost[speed][mode]);
222 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
223 <= 4 * add_cost[speed][mode]);
224
225 wider_mode = GET_MODE_WIDER_MODE (mode);
226 if (wider_mode != VOIDmode)
227 {
228 PUT_MODE (&all.zext, wider_mode);
229 PUT_MODE (&all.wide_mult, wider_mode);
230 PUT_MODE (&all.wide_lshr, wider_mode);
231 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
232
233 mul_widen_cost[speed][wider_mode]
234 = rtx_cost (&all.wide_mult, SET, speed);
235 mul_highpart_cost[speed][mode]
236 = rtx_cost (&all.wide_trunc, SET, speed);
237 }
238
239 shift_cost[speed][mode][0] = 0;
240 shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
241 = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
242
243 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
244 for (m = 1; m < n; m++)
245 {
246 XEXP (&all.shift, 1) = cint[m];
247 XEXP (&all.shift_mult, 1) = pow2[m];
248
249 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
250 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
251 shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
252 shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
253 }
254 }
255 }
256 if (alg_hash_used_p)
257 memset (alg_hash, 0, sizeof (alg_hash));
258 else
259 alg_hash_used_p = true;
260 default_rtl_profile ();
261 }
262
263 /* Return an rtx representing minus the value of X.
264 MODE is the intended mode of the result,
265 useful if X is a CONST_INT. */
266
267 rtx
268 negate_rtx (enum machine_mode mode, rtx x)
269 {
270 rtx result = simplify_unary_operation (NEG, mode, x, mode);
271
272 if (result == 0)
273 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
274
275 return result;
276 }
277
278 /* Report on the availability of insv/extv/extzv and the desired mode
279 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
280 is false; else the mode of the specified operand. If OPNO is -1,
281 all the caller cares about is whether the insn is available. */
282 enum machine_mode
283 mode_for_extraction (enum extraction_pattern pattern, int opno)
284 {
285 const struct insn_data_d *data;
286
287 switch (pattern)
288 {
289 case EP_insv:
290 if (HAVE_insv)
291 {
292 data = &insn_data[CODE_FOR_insv];
293 break;
294 }
295 return MAX_MACHINE_MODE;
296
297 case EP_extv:
298 if (HAVE_extv)
299 {
300 data = &insn_data[CODE_FOR_extv];
301 break;
302 }
303 return MAX_MACHINE_MODE;
304
305 case EP_extzv:
306 if (HAVE_extzv)
307 {
308 data = &insn_data[CODE_FOR_extzv];
309 break;
310 }
311 return MAX_MACHINE_MODE;
312
313 default:
314 gcc_unreachable ();
315 }
316
317 if (opno == -1)
318 return VOIDmode;
319
320 /* Everyone who uses this function used to follow it with
321 if (result == VOIDmode) result = word_mode; */
322 if (data->operand[opno].mode == VOIDmode)
323 return word_mode;
324 return data->operand[opno].mode;
325 }
326
327 /* Return true if X, of mode MODE, matches the predicate for operand
328 OPNO of instruction ICODE. Allow volatile memories, regardless of
329 the ambient volatile_ok setting. */
330
331 static bool
332 check_predicate_volatile_ok (enum insn_code icode, int opno,
333 rtx x, enum machine_mode mode)
334 {
335 bool save_volatile_ok, result;
336
337 save_volatile_ok = volatile_ok;
338 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
339 volatile_ok = save_volatile_ok;
340 return result;
341 }
342 \f
343 /* A subroutine of store_bit_field, with the same arguments. Return true
344 if the operation could be implemented.
345
346 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
347 no other way of implementing the operation. If FALLBACK_P is false,
348 return false instead. */
349
350 static bool
351 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
352 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
353 rtx value, bool fallback_p)
354 {
355 unsigned int unit
356 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
357 unsigned HOST_WIDE_INT offset, bitpos;
358 rtx op0 = str_rtx;
359 int byte_offset;
360 rtx orig_value;
361
362 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
363
364 while (GET_CODE (op0) == SUBREG)
365 {
366 /* The following line once was done only if WORDS_BIG_ENDIAN,
367 but I think that is a mistake. WORDS_BIG_ENDIAN is
368 meaningful at a much higher level; when structures are copied
369 between memory and regs, the higher-numbered regs
370 always get higher addresses. */
371 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
372 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
373
374 byte_offset = 0;
375
376 /* Paradoxical subregs need special handling on big endian machines. */
377 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
378 {
379 int difference = inner_mode_size - outer_mode_size;
380
381 if (WORDS_BIG_ENDIAN)
382 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
383 if (BYTES_BIG_ENDIAN)
384 byte_offset += difference % UNITS_PER_WORD;
385 }
386 else
387 byte_offset = SUBREG_BYTE (op0);
388
389 bitnum += byte_offset * BITS_PER_UNIT;
390 op0 = SUBREG_REG (op0);
391 }
392
393 /* No action is needed if the target is a register and if the field
394 lies completely outside that register. This can occur if the source
395 code contains an out-of-bounds access to a small array. */
396 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
397 return true;
398
399 /* Use vec_set patterns for inserting parts of vectors whenever
400 available. */
401 if (VECTOR_MODE_P (GET_MODE (op0))
402 && !MEM_P (op0)
403 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
404 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
405 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
406 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
407 {
408 enum machine_mode outermode = GET_MODE (op0);
409 enum machine_mode innermode = GET_MODE_INNER (outermode);
410 int icode = (int) optab_handler (vec_set_optab, outermode);
411 int pos = bitnum / GET_MODE_BITSIZE (innermode);
412 rtx rtxpos = GEN_INT (pos);
413 rtx src = value;
414 rtx dest = op0;
415 rtx pat, seq;
416 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
417 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
418 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
419
420 start_sequence ();
421
422 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
423 src = copy_to_mode_reg (mode1, src);
424
425 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
426 rtxpos = copy_to_mode_reg (mode1, rtxpos);
427
428 /* We could handle this, but we should always be called with a pseudo
429 for our targets and all insns should take them as outputs. */
430 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
431 && (*insn_data[icode].operand[1].predicate) (src, mode1)
432 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
433 pat = GEN_FCN (icode) (dest, src, rtxpos);
434 seq = get_insns ();
435 end_sequence ();
436 if (pat)
437 {
438 emit_insn (seq);
439 emit_insn (pat);
440 return true;
441 }
442 }
443
444 /* If the target is a register, overwriting the entire object, or storing
445 a full-word or multi-word field can be done with just a SUBREG.
446
447 If the target is memory, storing any naturally aligned field can be
448 done with a simple store. For targets that support fast unaligned
449 memory, any naturally sized, unit aligned field can be done directly. */
450
451 offset = bitnum / unit;
452 bitpos = bitnum % unit;
453 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
454 + (offset * UNITS_PER_WORD);
455
456 if (bitpos == 0
457 && bitsize == GET_MODE_BITSIZE (fieldmode)
458 && (!MEM_P (op0)
459 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
460 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
461 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
462 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
463 || (offset * BITS_PER_UNIT % bitsize == 0
464 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
465 {
466 if (MEM_P (op0))
467 op0 = adjust_address (op0, fieldmode, offset);
468 else if (GET_MODE (op0) != fieldmode)
469 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
470 byte_offset);
471 emit_move_insn (op0, value);
472 return true;
473 }
474
475 /* Make sure we are playing with integral modes. Pun with subregs
476 if we aren't. This must come after the entire register case above,
477 since that case is valid for any mode. The following cases are only
478 valid for integral modes. */
479 {
480 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
481 if (imode != GET_MODE (op0))
482 {
483 if (MEM_P (op0))
484 op0 = adjust_address (op0, imode, 0);
485 else
486 {
487 gcc_assert (imode != BLKmode);
488 op0 = gen_lowpart (imode, op0);
489 }
490 }
491 }
492
493 /* We may be accessing data outside the field, which means
494 we can alias adjacent data. */
495 if (MEM_P (op0))
496 {
497 op0 = shallow_copy_rtx (op0);
498 set_mem_alias_set (op0, 0);
499 set_mem_expr (op0, 0);
500 }
501
502 /* If OP0 is a register, BITPOS must count within a word.
503 But as we have it, it counts within whatever size OP0 now has.
504 On a bigendian machine, these are not the same, so convert. */
505 if (BYTES_BIG_ENDIAN
506 && !MEM_P (op0)
507 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
508 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
509
510 /* Storing an lsb-aligned field in a register
511 can be done with a movestrict instruction. */
512
513 if (!MEM_P (op0)
514 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
515 && bitsize == GET_MODE_BITSIZE (fieldmode)
516 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
517 {
518 int icode = optab_handler (movstrict_optab, fieldmode);
519 rtx insn;
520 rtx start = get_last_insn ();
521 rtx arg0 = op0;
522
523 /* Get appropriate low part of the value being stored. */
524 if (CONST_INT_P (value) || REG_P (value))
525 value = gen_lowpart (fieldmode, value);
526 else if (!(GET_CODE (value) == SYMBOL_REF
527 || GET_CODE (value) == LABEL_REF
528 || GET_CODE (value) == CONST))
529 value = convert_to_mode (fieldmode, value, 0);
530
531 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
532 value = copy_to_mode_reg (fieldmode, value);
533
534 if (GET_CODE (op0) == SUBREG)
535 {
536 /* Else we've got some float mode source being extracted into
537 a different float mode destination -- this combination of
538 subregs results in Severe Tire Damage. */
539 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
540 || GET_MODE_CLASS (fieldmode) == MODE_INT
541 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
542 arg0 = SUBREG_REG (op0);
543 }
544
545 insn = (GEN_FCN (icode)
546 (gen_rtx_SUBREG (fieldmode, arg0,
547 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
548 + (offset * UNITS_PER_WORD)),
549 value));
550 if (insn)
551 {
552 emit_insn (insn);
553 return true;
554 }
555 delete_insns_since (start);
556 }
557
558 /* Handle fields bigger than a word. */
559
560 if (bitsize > BITS_PER_WORD)
561 {
562 /* Here we transfer the words of the field
563 in the order least significant first.
564 This is because the most significant word is the one which may
565 be less than full.
566 However, only do that if the value is not BLKmode. */
567
568 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
569 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
570 unsigned int i;
571 rtx last;
572
573 /* This is the mode we must force value to, so that there will be enough
574 subwords to extract. Note that fieldmode will often (always?) be
575 VOIDmode, because that is what store_field uses to indicate that this
576 is a bit field, but passing VOIDmode to operand_subword_force
577 is not allowed. */
578 fieldmode = GET_MODE (value);
579 if (fieldmode == VOIDmode)
580 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
581
582 last = get_last_insn ();
583 for (i = 0; i < nwords; i++)
584 {
585 /* If I is 0, use the low-order word in both field and target;
586 if I is 1, use the next to lowest word; and so on. */
587 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
588 unsigned int bit_offset = (backwards
589 ? MAX ((int) bitsize - ((int) i + 1)
590 * BITS_PER_WORD,
591 0)
592 : (int) i * BITS_PER_WORD);
593 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
594
595 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
596 bitsize - i * BITS_PER_WORD),
597 bitnum + bit_offset, word_mode,
598 value_word, fallback_p))
599 {
600 delete_insns_since (last);
601 return false;
602 }
603 }
604 return true;
605 }
606
607 /* From here on we can assume that the field to be stored in is
608 a full-word (whatever type that is), since it is shorter than a word. */
609
610 /* OFFSET is the number of words or bytes (UNIT says which)
611 from STR_RTX to the first word or byte containing part of the field. */
612
613 if (!MEM_P (op0))
614 {
615 if (offset != 0
616 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
617 {
618 if (!REG_P (op0))
619 {
620 /* Since this is a destination (lvalue), we can't copy
621 it to a pseudo. We can remove a SUBREG that does not
622 change the size of the operand. Such a SUBREG may
623 have been added above. */
624 gcc_assert (GET_CODE (op0) == SUBREG
625 && (GET_MODE_SIZE (GET_MODE (op0))
626 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
627 op0 = SUBREG_REG (op0);
628 }
629 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
630 op0, (offset * UNITS_PER_WORD));
631 }
632 offset = 0;
633 }
634
635 /* If VALUE has a floating-point or complex mode, access it as an
636 integer of the corresponding size. This can occur on a machine
637 with 64 bit registers that uses SFmode for float. It can also
638 occur for unaligned float or complex fields. */
639 orig_value = value;
640 if (GET_MODE (value) != VOIDmode
641 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
642 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
643 {
644 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
645 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
646 }
647
648 /* Now OFFSET is nonzero only if OP0 is memory
649 and is therefore always measured in bytes. */
650
651 if (HAVE_insv
652 && GET_MODE (value) != BLKmode
653 && bitsize > 0
654 && GET_MODE_BITSIZE (op_mode) >= bitsize
655 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
656 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
657 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
658 VOIDmode)
659 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
660 {
661 int xbitpos = bitpos;
662 rtx value1;
663 rtx xop0 = op0;
664 rtx last = get_last_insn ();
665 rtx pat;
666 bool copy_back = false;
667
668 /* Add OFFSET into OP0's address. */
669 if (MEM_P (xop0))
670 xop0 = adjust_address (xop0, byte_mode, offset);
671
672 /* If xop0 is a register, we need it in OP_MODE
673 to make it acceptable to the format of insv. */
674 if (GET_CODE (xop0) == SUBREG)
675 /* We can't just change the mode, because this might clobber op0,
676 and we will need the original value of op0 if insv fails. */
677 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
678 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
679 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
680
681 /* If the destination is a paradoxical subreg such that we need a
682 truncate to the inner mode, perform the insertion on a temporary and
683 truncate the result to the original destination. Note that we can't
684 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
685 X) 0)) is (reg:N X). */
686 if (GET_CODE (xop0) == SUBREG
687 && REG_P (SUBREG_REG (xop0))
688 && (!TRULY_NOOP_TRUNCATION
689 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
690 GET_MODE_BITSIZE (op_mode))))
691 {
692 rtx tem = gen_reg_rtx (op_mode);
693 emit_move_insn (tem, xop0);
694 xop0 = tem;
695 copy_back = true;
696 }
697
698 /* On big-endian machines, we count bits from the most significant.
699 If the bit field insn does not, we must invert. */
700
701 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
702 xbitpos = unit - bitsize - xbitpos;
703
704 /* We have been counting XBITPOS within UNIT.
705 Count instead within the size of the register. */
706 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
707 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
708
709 unit = GET_MODE_BITSIZE (op_mode);
710
711 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
712 value1 = value;
713 if (GET_MODE (value) != op_mode)
714 {
715 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
716 {
717 /* Optimization: Don't bother really extending VALUE
718 if it has all the bits we will actually use. However,
719 if we must narrow it, be sure we do it correctly. */
720
721 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
722 {
723 rtx tmp;
724
725 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
726 if (! tmp)
727 tmp = simplify_gen_subreg (op_mode,
728 force_reg (GET_MODE (value),
729 value1),
730 GET_MODE (value), 0);
731 value1 = tmp;
732 }
733 else
734 value1 = gen_lowpart (op_mode, value1);
735 }
736 else if (CONST_INT_P (value))
737 value1 = gen_int_mode (INTVAL (value), op_mode);
738 else
739 /* Parse phase is supposed to make VALUE's data type
740 match that of the component reference, which is a type
741 at least as wide as the field; so VALUE should have
742 a mode that corresponds to that type. */
743 gcc_assert (CONSTANT_P (value));
744 }
745
746 /* If this machine's insv insists on a register,
747 get VALUE1 into a register. */
748 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
749 (value1, op_mode)))
750 value1 = force_reg (op_mode, value1);
751
752 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
753 if (pat)
754 {
755 emit_insn (pat);
756
757 if (copy_back)
758 convert_move (op0, xop0, true);
759 return true;
760 }
761 delete_insns_since (last);
762 }
763
764 /* If OP0 is a memory, try copying it to a register and seeing if a
765 cheap register alternative is available. */
766 if (HAVE_insv && MEM_P (op0))
767 {
768 enum machine_mode bestmode;
769
770 /* Get the mode to use for inserting into this field. If OP0 is
771 BLKmode, get the smallest mode consistent with the alignment. If
772 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
773 mode. Otherwise, use the smallest mode containing the field. */
774
775 if (GET_MODE (op0) == BLKmode
776 || (op_mode != MAX_MACHINE_MODE
777 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
778 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
779 (op_mode == MAX_MACHINE_MODE
780 ? VOIDmode : op_mode),
781 MEM_VOLATILE_P (op0));
782 else
783 bestmode = GET_MODE (op0);
784
785 if (bestmode != VOIDmode
786 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
787 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
788 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
789 {
790 rtx last, tempreg, xop0;
791 unsigned HOST_WIDE_INT xoffset, xbitpos;
792
793 last = get_last_insn ();
794
795 /* Adjust address to point to the containing unit of
796 that mode. Compute the offset as a multiple of this unit,
797 counting in bytes. */
798 unit = GET_MODE_BITSIZE (bestmode);
799 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
800 xbitpos = bitnum % unit;
801 xop0 = adjust_address (op0, bestmode, xoffset);
802
803 /* Fetch that unit, store the bitfield in it, then store
804 the unit. */
805 tempreg = copy_to_reg (xop0);
806 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
807 fieldmode, orig_value, false))
808 {
809 emit_move_insn (xop0, tempreg);
810 return true;
811 }
812 delete_insns_since (last);
813 }
814 }
815
816 if (!fallback_p)
817 return false;
818
819 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
820 return true;
821 }
822
823 /* Generate code to store value from rtx VALUE
824 into a bit-field within structure STR_RTX
825 containing BITSIZE bits starting at bit BITNUM.
826 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
827
828 void
829 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
830 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
831 rtx value)
832 {
833 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
834 gcc_unreachable ();
835 }
836 \f
837 /* Use shifts and boolean operations to store VALUE
838 into a bit field of width BITSIZE
839 in a memory location specified by OP0 except offset by OFFSET bytes.
840 (OFFSET must be 0 if OP0 is a register.)
841 The field starts at position BITPOS within the byte.
842 (If OP0 is a register, it may be a full word or a narrower mode,
843 but BITPOS still counts within a full word,
844 which is significant on bigendian machines.) */
845
846 static void
847 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
848 unsigned HOST_WIDE_INT bitsize,
849 unsigned HOST_WIDE_INT bitpos, rtx value)
850 {
851 enum machine_mode mode;
852 unsigned int total_bits = BITS_PER_WORD;
853 rtx temp;
854 int all_zero = 0;
855 int all_one = 0;
856
857 /* There is a case not handled here:
858 a structure with a known alignment of just a halfword
859 and a field split across two aligned halfwords within the structure.
860 Or likewise a structure with a known alignment of just a byte
861 and a field split across two bytes.
862 Such cases are not supposed to be able to occur. */
863
864 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
865 {
866 gcc_assert (!offset);
867 /* Special treatment for a bit field split across two registers. */
868 if (bitsize + bitpos > BITS_PER_WORD)
869 {
870 store_split_bit_field (op0, bitsize, bitpos, value);
871 return;
872 }
873 }
874 else
875 {
876 /* Get the proper mode to use for this field. We want a mode that
877 includes the entire field. If such a mode would be larger than
878 a word, we won't be doing the extraction the normal way.
879 We don't want a mode bigger than the destination. */
880
881 mode = GET_MODE (op0);
882 if (GET_MODE_BITSIZE (mode) == 0
883 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
884 mode = word_mode;
885
886 if (MEM_VOLATILE_P (op0)
887 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
888 && flag_strict_volatile_bitfields > 0)
889 mode = GET_MODE (op0);
890 else
891 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
892 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
893
894 if (mode == VOIDmode)
895 {
896 /* The only way this should occur is if the field spans word
897 boundaries. */
898 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
899 value);
900 return;
901 }
902
903 total_bits = GET_MODE_BITSIZE (mode);
904
905 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
906 be in the range 0 to total_bits-1, and put any excess bytes in
907 OFFSET. */
908 if (bitpos >= total_bits)
909 {
910 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
911 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
912 * BITS_PER_UNIT);
913 }
914
915 /* Get ref to an aligned byte, halfword, or word containing the field.
916 Adjust BITPOS to be position within a word,
917 and OFFSET to be the offset of that word.
918 Then alter OP0 to refer to that word. */
919 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
920 offset -= (offset % (total_bits / BITS_PER_UNIT));
921 op0 = adjust_address (op0, mode, offset);
922 }
923
924 mode = GET_MODE (op0);
925
926 /* Now MODE is either some integral mode for a MEM as OP0,
927 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
928 The bit field is contained entirely within OP0.
929 BITPOS is the starting bit number within OP0.
930 (OP0's mode may actually be narrower than MODE.) */
931
932 if (BYTES_BIG_ENDIAN)
933 /* BITPOS is the distance between our msb
934 and that of the containing datum.
935 Convert it to the distance from the lsb. */
936 bitpos = total_bits - bitsize - bitpos;
937
938 /* Now BITPOS is always the distance between our lsb
939 and that of OP0. */
940
941 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
942 we must first convert its mode to MODE. */
943
944 if (CONST_INT_P (value))
945 {
946 HOST_WIDE_INT v = INTVAL (value);
947
948 if (bitsize < HOST_BITS_PER_WIDE_INT)
949 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
950
951 if (v == 0)
952 all_zero = 1;
953 else if ((bitsize < HOST_BITS_PER_WIDE_INT
954 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
955 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
956 all_one = 1;
957
958 value = lshift_value (mode, value, bitpos, bitsize);
959 }
960 else
961 {
962 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
963 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
964
965 if (GET_MODE (value) != mode)
966 value = convert_to_mode (mode, value, 1);
967
968 if (must_and)
969 value = expand_binop (mode, and_optab, value,
970 mask_rtx (mode, 0, bitsize, 0),
971 NULL_RTX, 1, OPTAB_LIB_WIDEN);
972 if (bitpos > 0)
973 value = expand_shift (LSHIFT_EXPR, mode, value,
974 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
975 }
976
977 /* Now clear the chosen bits in OP0,
978 except that if VALUE is -1 we need not bother. */
979 /* We keep the intermediates in registers to allow CSE to combine
980 consecutive bitfield assignments. */
981
982 temp = force_reg (mode, op0);
983
984 if (! all_one)
985 {
986 temp = expand_binop (mode, and_optab, temp,
987 mask_rtx (mode, bitpos, bitsize, 1),
988 NULL_RTX, 1, OPTAB_LIB_WIDEN);
989 temp = force_reg (mode, temp);
990 }
991
992 /* Now logical-or VALUE into OP0, unless it is zero. */
993
994 if (! all_zero)
995 {
996 temp = expand_binop (mode, ior_optab, temp, value,
997 NULL_RTX, 1, OPTAB_LIB_WIDEN);
998 temp = force_reg (mode, temp);
999 }
1000
1001 if (op0 != temp)
1002 {
1003 op0 = copy_rtx (op0);
1004 emit_move_insn (op0, temp);
1005 }
1006 }
1007 \f
1008 /* Store a bit field that is split across multiple accessible memory objects.
1009
1010 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1011 BITSIZE is the field width; BITPOS the position of its first bit
1012 (within the word).
1013 VALUE is the value to store.
1014
1015 This does not yet handle fields wider than BITS_PER_WORD. */
1016
1017 static void
1018 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1019 unsigned HOST_WIDE_INT bitpos, rtx value)
1020 {
1021 unsigned int unit;
1022 unsigned int bitsdone = 0;
1023
1024 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1025 much at a time. */
1026 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1027 unit = BITS_PER_WORD;
1028 else
1029 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1030
1031 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1032 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1033 that VALUE might be a floating-point constant. */
1034 if (CONSTANT_P (value) && !CONST_INT_P (value))
1035 {
1036 rtx word = gen_lowpart_common (word_mode, value);
1037
1038 if (word && (value != word))
1039 value = word;
1040 else
1041 value = gen_lowpart_common (word_mode,
1042 force_reg (GET_MODE (value) != VOIDmode
1043 ? GET_MODE (value)
1044 : word_mode, value));
1045 }
1046
1047 while (bitsdone < bitsize)
1048 {
1049 unsigned HOST_WIDE_INT thissize;
1050 rtx part, word;
1051 unsigned HOST_WIDE_INT thispos;
1052 unsigned HOST_WIDE_INT offset;
1053
1054 offset = (bitpos + bitsdone) / unit;
1055 thispos = (bitpos + bitsdone) % unit;
1056
1057 /* THISSIZE must not overrun a word boundary. Otherwise,
1058 store_fixed_bit_field will call us again, and we will mutually
1059 recurse forever. */
1060 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1061 thissize = MIN (thissize, unit - thispos);
1062
1063 if (BYTES_BIG_ENDIAN)
1064 {
1065 int total_bits;
1066
1067 /* We must do an endian conversion exactly the same way as it is
1068 done in extract_bit_field, so that the two calls to
1069 extract_fixed_bit_field will have comparable arguments. */
1070 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1071 total_bits = BITS_PER_WORD;
1072 else
1073 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1074
1075 /* Fetch successively less significant portions. */
1076 if (CONST_INT_P (value))
1077 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1078 >> (bitsize - bitsdone - thissize))
1079 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1080 else
1081 /* The args are chosen so that the last part includes the
1082 lsb. Give extract_bit_field the value it needs (with
1083 endianness compensation) to fetch the piece we want. */
1084 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1085 total_bits - bitsize + bitsdone,
1086 NULL_RTX, 1, false);
1087 }
1088 else
1089 {
1090 /* Fetch successively more significant portions. */
1091 if (CONST_INT_P (value))
1092 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1093 >> bitsdone)
1094 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1095 else
1096 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1097 bitsdone, NULL_RTX, 1, false);
1098 }
1099
1100 /* If OP0 is a register, then handle OFFSET here.
1101
1102 When handling multiword bitfields, extract_bit_field may pass
1103 down a word_mode SUBREG of a larger REG for a bitfield that actually
1104 crosses a word boundary. Thus, for a SUBREG, we must find
1105 the current word starting from the base register. */
1106 if (GET_CODE (op0) == SUBREG)
1107 {
1108 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1109 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1110 GET_MODE (SUBREG_REG (op0)));
1111 offset = 0;
1112 }
1113 else if (REG_P (op0))
1114 {
1115 word = operand_subword_force (op0, offset, GET_MODE (op0));
1116 offset = 0;
1117 }
1118 else
1119 word = op0;
1120
1121 /* OFFSET is in UNITs, and UNIT is in bits.
1122 store_fixed_bit_field wants offset in bytes. */
1123 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1124 thispos, part);
1125 bitsdone += thissize;
1126 }
1127 }
1128 \f
1129 /* A subroutine of extract_bit_field_1 that converts return value X
1130 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1131 to extract_bit_field. */
1132
1133 static rtx
1134 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1135 enum machine_mode tmode, bool unsignedp)
1136 {
1137 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1138 return x;
1139
1140 /* If the x mode is not a scalar integral, first convert to the
1141 integer mode of that size and then access it as a floating-point
1142 value via a SUBREG. */
1143 if (!SCALAR_INT_MODE_P (tmode))
1144 {
1145 enum machine_mode smode;
1146
1147 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1148 x = convert_to_mode (smode, x, unsignedp);
1149 x = force_reg (smode, x);
1150 return gen_lowpart (tmode, x);
1151 }
1152
1153 return convert_to_mode (tmode, x, unsignedp);
1154 }
1155
1156 /* A subroutine of extract_bit_field, with the same arguments.
1157 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1158 if we can find no other means of implementing the operation.
1159 if FALLBACK_P is false, return NULL instead. */
1160
1161 static rtx
1162 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1163 unsigned HOST_WIDE_INT bitnum,
1164 int unsignedp, bool packedp, rtx target,
1165 enum machine_mode mode, enum machine_mode tmode,
1166 bool fallback_p)
1167 {
1168 unsigned int unit
1169 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1170 unsigned HOST_WIDE_INT offset, bitpos;
1171 rtx op0 = str_rtx;
1172 enum machine_mode int_mode;
1173 enum machine_mode ext_mode;
1174 enum machine_mode mode1;
1175 enum insn_code icode;
1176 int byte_offset;
1177
1178 if (tmode == VOIDmode)
1179 tmode = mode;
1180
1181 while (GET_CODE (op0) == SUBREG)
1182 {
1183 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1184 op0 = SUBREG_REG (op0);
1185 }
1186
1187 /* If we have an out-of-bounds access to a register, just return an
1188 uninitialized register of the required mode. This can occur if the
1189 source code contains an out-of-bounds access to a small array. */
1190 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1191 return gen_reg_rtx (tmode);
1192
1193 if (REG_P (op0)
1194 && mode == GET_MODE (op0)
1195 && bitnum == 0
1196 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1197 {
1198 /* We're trying to extract a full register from itself. */
1199 return op0;
1200 }
1201
1202 /* See if we can get a better vector mode before extracting. */
1203 if (VECTOR_MODE_P (GET_MODE (op0))
1204 && !MEM_P (op0)
1205 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1206 {
1207 enum machine_mode new_mode;
1208 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1209
1210 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1211 new_mode = MIN_MODE_VECTOR_FLOAT;
1212 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1213 new_mode = MIN_MODE_VECTOR_FRACT;
1214 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1215 new_mode = MIN_MODE_VECTOR_UFRACT;
1216 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1217 new_mode = MIN_MODE_VECTOR_ACCUM;
1218 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1219 new_mode = MIN_MODE_VECTOR_UACCUM;
1220 else
1221 new_mode = MIN_MODE_VECTOR_INT;
1222
1223 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1224 if (GET_MODE_NUNITS (new_mode) == nunits
1225 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1226 && targetm.vector_mode_supported_p (new_mode))
1227 break;
1228 if (new_mode != VOIDmode)
1229 op0 = gen_lowpart (new_mode, op0);
1230 }
1231
1232 /* Use vec_extract patterns for extracting parts of vectors whenever
1233 available. */
1234 if (VECTOR_MODE_P (GET_MODE (op0))
1235 && !MEM_P (op0)
1236 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1237 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1238 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1239 {
1240 enum machine_mode outermode = GET_MODE (op0);
1241 enum machine_mode innermode = GET_MODE_INNER (outermode);
1242 int icode = (int) optab_handler (vec_extract_optab, outermode);
1243 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1244 rtx rtxpos = GEN_INT (pos);
1245 rtx src = op0;
1246 rtx dest = NULL, pat, seq;
1247 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1248 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1249 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1250
1251 if (innermode == tmode || innermode == mode)
1252 dest = target;
1253
1254 if (!dest)
1255 dest = gen_reg_rtx (innermode);
1256
1257 start_sequence ();
1258
1259 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1260 dest = copy_to_mode_reg (mode0, dest);
1261
1262 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1263 src = copy_to_mode_reg (mode1, src);
1264
1265 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1266 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1267
1268 /* We could handle this, but we should always be called with a pseudo
1269 for our targets and all insns should take them as outputs. */
1270 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1271 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1272 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1273
1274 pat = GEN_FCN (icode) (dest, src, rtxpos);
1275 seq = get_insns ();
1276 end_sequence ();
1277 if (pat)
1278 {
1279 emit_insn (seq);
1280 emit_insn (pat);
1281 if (mode0 != mode)
1282 return gen_lowpart (tmode, dest);
1283 return dest;
1284 }
1285 }
1286
1287 /* Make sure we are playing with integral modes. Pun with subregs
1288 if we aren't. */
1289 {
1290 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1291 if (imode != GET_MODE (op0))
1292 {
1293 if (MEM_P (op0))
1294 op0 = adjust_address (op0, imode, 0);
1295 else if (imode != BLKmode)
1296 {
1297 op0 = gen_lowpart (imode, op0);
1298
1299 /* If we got a SUBREG, force it into a register since we
1300 aren't going to be able to do another SUBREG on it. */
1301 if (GET_CODE (op0) == SUBREG)
1302 op0 = force_reg (imode, op0);
1303 }
1304 else if (REG_P (op0))
1305 {
1306 rtx reg, subreg;
1307 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1308 MODE_INT);
1309 reg = gen_reg_rtx (imode);
1310 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1311 emit_move_insn (subreg, op0);
1312 op0 = reg;
1313 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1314 }
1315 else
1316 {
1317 rtx mem = assign_stack_temp (GET_MODE (op0),
1318 GET_MODE_SIZE (GET_MODE (op0)), 0);
1319 emit_move_insn (mem, op0);
1320 op0 = adjust_address (mem, BLKmode, 0);
1321 }
1322 }
1323 }
1324
1325 /* We may be accessing data outside the field, which means
1326 we can alias adjacent data. */
1327 if (MEM_P (op0))
1328 {
1329 op0 = shallow_copy_rtx (op0);
1330 set_mem_alias_set (op0, 0);
1331 set_mem_expr (op0, 0);
1332 }
1333
1334 /* Extraction of a full-word or multi-word value from a structure
1335 in a register or aligned memory can be done with just a SUBREG.
1336 A subword value in the least significant part of a register
1337 can also be extracted with a SUBREG. For this, we need the
1338 byte offset of the value in op0. */
1339
1340 bitpos = bitnum % unit;
1341 offset = bitnum / unit;
1342 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1343
1344 /* If OP0 is a register, BITPOS must count within a word.
1345 But as we have it, it counts within whatever size OP0 now has.
1346 On a bigendian machine, these are not the same, so convert. */
1347 if (BYTES_BIG_ENDIAN
1348 && !MEM_P (op0)
1349 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1350 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1351
1352 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1353 If that's wrong, the solution is to test for it and set TARGET to 0
1354 if needed. */
1355
1356 /* Only scalar integer modes can be converted via subregs. There is an
1357 additional problem for FP modes here in that they can have a precision
1358 which is different from the size. mode_for_size uses precision, but
1359 we want a mode based on the size, so we must avoid calling it for FP
1360 modes. */
1361 mode1 = (SCALAR_INT_MODE_P (tmode)
1362 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1363 : mode);
1364
1365 /* If the bitfield is volatile, we need to make sure the access
1366 remains on a type-aligned boundary. */
1367 if (GET_CODE (op0) == MEM
1368 && MEM_VOLATILE_P (op0)
1369 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
1370 && flag_strict_volatile_bitfields > 0)
1371 goto no_subreg_mode_swap;
1372
1373 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1374 && bitpos % BITS_PER_WORD == 0)
1375 || (mode1 != BLKmode
1376 /* ??? The big endian test here is wrong. This is correct
1377 if the value is in a register, and if mode_for_size is not
1378 the same mode as op0. This causes us to get unnecessarily
1379 inefficient code from the Thumb port when -mbig-endian. */
1380 && (BYTES_BIG_ENDIAN
1381 ? bitpos + bitsize == BITS_PER_WORD
1382 : bitpos == 0)))
1383 && ((!MEM_P (op0)
1384 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1385 GET_MODE_BITSIZE (GET_MODE (op0)))
1386 && GET_MODE_SIZE (mode1) != 0
1387 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1388 || (MEM_P (op0)
1389 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1390 || (offset * BITS_PER_UNIT % bitsize == 0
1391 && MEM_ALIGN (op0) % bitsize == 0)))))
1392 {
1393 if (MEM_P (op0))
1394 op0 = adjust_address (op0, mode1, offset);
1395 else if (mode1 != GET_MODE (op0))
1396 {
1397 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1398 byte_offset);
1399 if (sub == NULL)
1400 goto no_subreg_mode_swap;
1401 op0 = sub;
1402 }
1403 if (mode1 != mode)
1404 return convert_to_mode (tmode, op0, unsignedp);
1405 return op0;
1406 }
1407 no_subreg_mode_swap:
1408
1409 /* Handle fields bigger than a word. */
1410
1411 if (bitsize > BITS_PER_WORD)
1412 {
1413 /* Here we transfer the words of the field
1414 in the order least significant first.
1415 This is because the most significant word is the one which may
1416 be less than full. */
1417
1418 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1419 unsigned int i;
1420
1421 if (target == 0 || !REG_P (target))
1422 target = gen_reg_rtx (mode);
1423
1424 /* Indicate for flow that the entire target reg is being set. */
1425 emit_clobber (target);
1426
1427 for (i = 0; i < nwords; i++)
1428 {
1429 /* If I is 0, use the low-order word in both field and target;
1430 if I is 1, use the next to lowest word; and so on. */
1431 /* Word number in TARGET to use. */
1432 unsigned int wordnum
1433 = (WORDS_BIG_ENDIAN
1434 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1435 : i);
1436 /* Offset from start of field in OP0. */
1437 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1438 ? MAX (0, ((int) bitsize - ((int) i + 1)
1439 * (int) BITS_PER_WORD))
1440 : (int) i * BITS_PER_WORD);
1441 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1442 rtx result_part
1443 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1444 bitsize - i * BITS_PER_WORD),
1445 bitnum + bit_offset, 1, false, target_part, mode,
1446 word_mode);
1447
1448 gcc_assert (target_part);
1449
1450 if (result_part != target_part)
1451 emit_move_insn (target_part, result_part);
1452 }
1453
1454 if (unsignedp)
1455 {
1456 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1457 need to be zero'd out. */
1458 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1459 {
1460 unsigned int i, total_words;
1461
1462 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1463 for (i = nwords; i < total_words; i++)
1464 emit_move_insn
1465 (operand_subword (target,
1466 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1467 1, VOIDmode),
1468 const0_rtx);
1469 }
1470 return target;
1471 }
1472
1473 /* Signed bit field: sign-extend with two arithmetic shifts. */
1474 target = expand_shift (LSHIFT_EXPR, mode, target,
1475 build_int_cst (NULL_TREE,
1476 GET_MODE_BITSIZE (mode) - bitsize),
1477 NULL_RTX, 0);
1478 return expand_shift (RSHIFT_EXPR, mode, target,
1479 build_int_cst (NULL_TREE,
1480 GET_MODE_BITSIZE (mode) - bitsize),
1481 NULL_RTX, 0);
1482 }
1483
1484 /* From here on we know the desired field is smaller than a word. */
1485
1486 /* Check if there is a correspondingly-sized integer field, so we can
1487 safely extract it as one size of integer, if necessary; then
1488 truncate or extend to the size that is wanted; then use SUBREGs or
1489 convert_to_mode to get one of the modes we really wanted. */
1490
1491 int_mode = int_mode_for_mode (tmode);
1492 if (int_mode == BLKmode)
1493 int_mode = int_mode_for_mode (mode);
1494 /* Should probably push op0 out to memory and then do a load. */
1495 gcc_assert (int_mode != BLKmode);
1496
1497 /* OFFSET is the number of words or bytes (UNIT says which)
1498 from STR_RTX to the first word or byte containing part of the field. */
1499 if (!MEM_P (op0))
1500 {
1501 if (offset != 0
1502 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1503 {
1504 if (!REG_P (op0))
1505 op0 = copy_to_reg (op0);
1506 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1507 op0, (offset * UNITS_PER_WORD));
1508 }
1509 offset = 0;
1510 }
1511
1512 /* Now OFFSET is nonzero only for memory operands. */
1513 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1514 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1515 if (ext_mode != MAX_MACHINE_MODE
1516 && bitsize > 0
1517 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1518 /* If op0 is a register, we need it in EXT_MODE to make it
1519 acceptable to the format of ext(z)v. */
1520 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1521 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1522 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1523 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1524 {
1525 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1526 rtx bitsize_rtx, bitpos_rtx;
1527 rtx last = get_last_insn ();
1528 rtx xop0 = op0;
1529 rtx xtarget = target;
1530 rtx xspec_target = target;
1531 rtx xspec_target_subreg = 0;
1532 rtx pat;
1533
1534 /* If op0 is a register, we need it in EXT_MODE to make it
1535 acceptable to the format of ext(z)v. */
1536 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1537 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1538 if (MEM_P (xop0))
1539 /* Get ref to first byte containing part of the field. */
1540 xop0 = adjust_address (xop0, byte_mode, xoffset);
1541
1542 /* On big-endian machines, we count bits from the most significant.
1543 If the bit field insn does not, we must invert. */
1544 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1545 xbitpos = unit - bitsize - xbitpos;
1546
1547 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1548 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1549 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1550
1551 unit = GET_MODE_BITSIZE (ext_mode);
1552
1553 if (xtarget == 0)
1554 xtarget = xspec_target = gen_reg_rtx (tmode);
1555
1556 if (GET_MODE (xtarget) != ext_mode)
1557 {
1558 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1559 between the mode of the extraction (word_mode) and the target
1560 mode. Instead, create a temporary and use convert_move to set
1561 the target. */
1562 if (REG_P (xtarget)
1563 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1564 GET_MODE_BITSIZE (ext_mode)))
1565 {
1566 xtarget = gen_lowpart (ext_mode, xtarget);
1567 if (GET_MODE_SIZE (ext_mode)
1568 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1569 xspec_target_subreg = xtarget;
1570 }
1571 else
1572 xtarget = gen_reg_rtx (ext_mode);
1573 }
1574
1575 /* If this machine's ext(z)v insists on a register target,
1576 make sure we have one. */
1577 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1578 xtarget = gen_reg_rtx (ext_mode);
1579
1580 bitsize_rtx = GEN_INT (bitsize);
1581 bitpos_rtx = GEN_INT (xbitpos);
1582
1583 pat = (unsignedp
1584 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1585 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1586 if (pat)
1587 {
1588 emit_insn (pat);
1589 if (xtarget == xspec_target)
1590 return xtarget;
1591 if (xtarget == xspec_target_subreg)
1592 return xspec_target;
1593 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1594 }
1595 delete_insns_since (last);
1596 }
1597
1598 /* If OP0 is a memory, try copying it to a register and seeing if a
1599 cheap register alternative is available. */
1600 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1601 {
1602 enum machine_mode bestmode;
1603
1604 /* Get the mode to use for inserting into this field. If
1605 OP0 is BLKmode, get the smallest mode consistent with the
1606 alignment. If OP0 is a non-BLKmode object that is no
1607 wider than EXT_MODE, use its mode. Otherwise, use the
1608 smallest mode containing the field. */
1609
1610 if (GET_MODE (op0) == BLKmode
1611 || (ext_mode != MAX_MACHINE_MODE
1612 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1613 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1614 (ext_mode == MAX_MACHINE_MODE
1615 ? VOIDmode : ext_mode),
1616 MEM_VOLATILE_P (op0));
1617 else
1618 bestmode = GET_MODE (op0);
1619
1620 if (bestmode != VOIDmode
1621 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1622 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1623 {
1624 unsigned HOST_WIDE_INT xoffset, xbitpos;
1625
1626 /* Compute the offset as a multiple of this unit,
1627 counting in bytes. */
1628 unit = GET_MODE_BITSIZE (bestmode);
1629 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1630 xbitpos = bitnum % unit;
1631
1632 /* Make sure the register is big enough for the whole field. */
1633 if (xoffset * BITS_PER_UNIT + unit
1634 >= offset * BITS_PER_UNIT + bitsize)
1635 {
1636 rtx last, result, xop0;
1637
1638 last = get_last_insn ();
1639
1640 /* Fetch it to a register in that size. */
1641 xop0 = adjust_address (op0, bestmode, xoffset);
1642 xop0 = force_reg (bestmode, xop0);
1643 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1644 unsignedp, packedp, target,
1645 mode, tmode, false);
1646 if (result)
1647 return result;
1648
1649 delete_insns_since (last);
1650 }
1651 }
1652 }
1653
1654 if (!fallback_p)
1655 return NULL;
1656
1657 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1658 bitpos, target, unsignedp, packedp);
1659 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1660 }
1661
1662 /* Generate code to extract a byte-field from STR_RTX
1663 containing BITSIZE bits, starting at BITNUM,
1664 and put it in TARGET if possible (if TARGET is nonzero).
1665 Regardless of TARGET, we return the rtx for where the value is placed.
1666
1667 STR_RTX is the structure containing the byte (a REG or MEM).
1668 UNSIGNEDP is nonzero if this is an unsigned bit field.
1669 PACKEDP is nonzero if the field has the packed attribute.
1670 MODE is the natural mode of the field value once extracted.
1671 TMODE is the mode the caller would like the value to have;
1672 but the value may be returned with type MODE instead.
1673
1674 If a TARGET is specified and we can store in it at no extra cost,
1675 we do so, and return TARGET.
1676 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1677 if they are equally easy. */
1678
1679 rtx
1680 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1681 unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
1682 rtx target, enum machine_mode mode, enum machine_mode tmode)
1683 {
1684 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
1685 target, mode, tmode, true);
1686 }
1687 \f
1688 /* Extract a bit field using shifts and boolean operations
1689 Returns an rtx to represent the value.
1690 OP0 addresses a register (word) or memory (byte).
1691 BITPOS says which bit within the word or byte the bit field starts in.
1692 OFFSET says how many bytes farther the bit field starts;
1693 it is 0 if OP0 is a register.
1694 BITSIZE says how many bits long the bit field is.
1695 (If OP0 is a register, it may be narrower than a full word,
1696 but BITPOS still counts within a full word,
1697 which is significant on bigendian machines.)
1698
1699 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1700 PACKEDP is true if the field has the packed attribute.
1701
1702 If TARGET is nonzero, attempts to store the value there
1703 and return TARGET, but this is not guaranteed.
1704 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1705
1706 static rtx
1707 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1708 unsigned HOST_WIDE_INT offset,
1709 unsigned HOST_WIDE_INT bitsize,
1710 unsigned HOST_WIDE_INT bitpos, rtx target,
1711 int unsignedp, bool packedp)
1712 {
1713 unsigned int total_bits = BITS_PER_WORD;
1714 enum machine_mode mode;
1715
1716 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1717 {
1718 /* Special treatment for a bit field split across two registers. */
1719 if (bitsize + bitpos > BITS_PER_WORD)
1720 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1721 }
1722 else
1723 {
1724 /* Get the proper mode to use for this field. We want a mode that
1725 includes the entire field. If such a mode would be larger than
1726 a word, we won't be doing the extraction the normal way. */
1727
1728 if (MEM_VOLATILE_P (op0)
1729 && flag_strict_volatile_bitfields > 0)
1730 {
1731 if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1732 mode = GET_MODE (op0);
1733 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1734 mode = GET_MODE (target);
1735 else
1736 mode = tmode;
1737 }
1738 else
1739 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1740 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1741
1742 if (mode == VOIDmode)
1743 /* The only way this should occur is if the field spans word
1744 boundaries. */
1745 return extract_split_bit_field (op0, bitsize,
1746 bitpos + offset * BITS_PER_UNIT,
1747 unsignedp);
1748
1749 total_bits = GET_MODE_BITSIZE (mode);
1750
1751 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1752 be in the range 0 to total_bits-1, and put any excess bytes in
1753 OFFSET. */
1754 if (bitpos >= total_bits)
1755 {
1756 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1757 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1758 * BITS_PER_UNIT);
1759 }
1760
1761 /* If we're accessing a volatile MEM, we can't do the next
1762 alignment step if it results in a multi-word access where we
1763 otherwise wouldn't have one. So, check for that case
1764 here. */
1765 if (MEM_P (op0)
1766 && MEM_VOLATILE_P (op0)
1767 && flag_strict_volatile_bitfields > 0
1768 && bitpos + bitsize <= total_bits
1769 && bitpos + bitsize + (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT > total_bits)
1770 {
1771 if (STRICT_ALIGNMENT)
1772 {
1773 static bool informed_about_misalignment = false;
1774 bool warned;
1775
1776 if (packedp)
1777 {
1778 if (bitsize == total_bits)
1779 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1780 "multiple accesses to volatile structure member"
1781 " because of packed attribute");
1782 else
1783 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1784 "multiple accesses to volatile structure bitfield"
1785 " because of packed attribute");
1786
1787 return extract_split_bit_field (op0, bitsize,
1788 bitpos + offset * BITS_PER_UNIT,
1789 unsignedp);
1790 }
1791
1792 if (bitsize == total_bits)
1793 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1794 "mis-aligned access used for structure member");
1795 else
1796 warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
1797 "mis-aligned access used for structure bitfield");
1798
1799 if (! informed_about_misalignment && warned)
1800 {
1801 informed_about_misalignment = true;
1802 inform (input_location,
1803 "When a volatile object spans multiple type-sized locations,"
1804 " the compiler must choose between using a single mis-aligned access to"
1805 " preserve the volatility, or using multiple aligned accesses to avoid"
1806 " runtime faults. This code may fail at runtime if the hardware does"
1807 " not allow this access.");
1808 }
1809 }
1810 }
1811 else
1812 {
1813
1814 /* Get ref to an aligned byte, halfword, or word containing the field.
1815 Adjust BITPOS to be position within a word,
1816 and OFFSET to be the offset of that word.
1817 Then alter OP0 to refer to that word. */
1818 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1819 offset -= (offset % (total_bits / BITS_PER_UNIT));
1820 }
1821
1822 op0 = adjust_address (op0, mode, offset);
1823 }
1824
1825 mode = GET_MODE (op0);
1826
1827 if (BYTES_BIG_ENDIAN)
1828 /* BITPOS is the distance between our msb and that of OP0.
1829 Convert it to the distance from the lsb. */
1830 bitpos = total_bits - bitsize - bitpos;
1831
1832 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1833 We have reduced the big-endian case to the little-endian case. */
1834
1835 if (unsignedp)
1836 {
1837 if (bitpos)
1838 {
1839 /* If the field does not already start at the lsb,
1840 shift it so it does. */
1841 tree amount = build_int_cst (NULL_TREE, bitpos);
1842 /* Maybe propagate the target for the shift. */
1843 /* But not if we will return it--could confuse integrate.c. */
1844 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1845 if (tmode != mode) subtarget = 0;
1846 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1847 }
1848 /* Convert the value to the desired mode. */
1849 if (mode != tmode)
1850 op0 = convert_to_mode (tmode, op0, 1);
1851
1852 /* Unless the msb of the field used to be the msb when we shifted,
1853 mask out the upper bits. */
1854
1855 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1856 return expand_binop (GET_MODE (op0), and_optab, op0,
1857 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1858 target, 1, OPTAB_LIB_WIDEN);
1859 return op0;
1860 }
1861
1862 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1863 then arithmetic-shift its lsb to the lsb of the word. */
1864 op0 = force_reg (mode, op0);
1865 if (mode != tmode)
1866 target = 0;
1867
1868 /* Find the narrowest integer mode that contains the field. */
1869
1870 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1871 mode = GET_MODE_WIDER_MODE (mode))
1872 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1873 {
1874 op0 = convert_to_mode (mode, op0, 0);
1875 break;
1876 }
1877
1878 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1879 {
1880 tree amount
1881 = build_int_cst (NULL_TREE,
1882 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1883 /* Maybe propagate the target for the shift. */
1884 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1885 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1886 }
1887
1888 return expand_shift (RSHIFT_EXPR, mode, op0,
1889 build_int_cst (NULL_TREE,
1890 GET_MODE_BITSIZE (mode) - bitsize),
1891 target, 0);
1892 }
1893 \f
1894 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1895 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1896 complement of that if COMPLEMENT. The mask is truncated if
1897 necessary to the width of mode MODE. The mask is zero-extended if
1898 BITSIZE+BITPOS is too small for MODE. */
1899
1900 static rtx
1901 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1902 {
1903 double_int mask;
1904
1905 mask = double_int_mask (bitsize);
1906 mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1907
1908 if (complement)
1909 mask = double_int_not (mask);
1910
1911 return immed_double_int_const (mask, mode);
1912 }
1913
1914 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1915 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1916
1917 static rtx
1918 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1919 {
1920 double_int val;
1921
1922 val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
1923 val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1924
1925 return immed_double_int_const (val, mode);
1926 }
1927 \f
1928 /* Extract a bit field that is split across two words
1929 and return an RTX for the result.
1930
1931 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1932 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1933 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1934
1935 static rtx
1936 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1937 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1938 {
1939 unsigned int unit;
1940 unsigned int bitsdone = 0;
1941 rtx result = NULL_RTX;
1942 int first = 1;
1943
1944 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1945 much at a time. */
1946 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1947 unit = BITS_PER_WORD;
1948 else
1949 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1950
1951 while (bitsdone < bitsize)
1952 {
1953 unsigned HOST_WIDE_INT thissize;
1954 rtx part, word;
1955 unsigned HOST_WIDE_INT thispos;
1956 unsigned HOST_WIDE_INT offset;
1957
1958 offset = (bitpos + bitsdone) / unit;
1959 thispos = (bitpos + bitsdone) % unit;
1960
1961 /* THISSIZE must not overrun a word boundary. Otherwise,
1962 extract_fixed_bit_field will call us again, and we will mutually
1963 recurse forever. */
1964 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1965 thissize = MIN (thissize, unit - thispos);
1966
1967 /* If OP0 is a register, then handle OFFSET here.
1968
1969 When handling multiword bitfields, extract_bit_field may pass
1970 down a word_mode SUBREG of a larger REG for a bitfield that actually
1971 crosses a word boundary. Thus, for a SUBREG, we must find
1972 the current word starting from the base register. */
1973 if (GET_CODE (op0) == SUBREG)
1974 {
1975 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1976 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1977 GET_MODE (SUBREG_REG (op0)));
1978 offset = 0;
1979 }
1980 else if (REG_P (op0))
1981 {
1982 word = operand_subword_force (op0, offset, GET_MODE (op0));
1983 offset = 0;
1984 }
1985 else
1986 word = op0;
1987
1988 /* Extract the parts in bit-counting order,
1989 whose meaning is determined by BYTES_PER_UNIT.
1990 OFFSET is in UNITs, and UNIT is in bits.
1991 extract_fixed_bit_field wants offset in bytes. */
1992 part = extract_fixed_bit_field (word_mode, word,
1993 offset * unit / BITS_PER_UNIT,
1994 thissize, thispos, 0, 1, false);
1995 bitsdone += thissize;
1996
1997 /* Shift this part into place for the result. */
1998 if (BYTES_BIG_ENDIAN)
1999 {
2000 if (bitsize != bitsdone)
2001 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2002 build_int_cst (NULL_TREE, bitsize - bitsdone),
2003 0, 1);
2004 }
2005 else
2006 {
2007 if (bitsdone != thissize)
2008 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2009 build_int_cst (NULL_TREE,
2010 bitsdone - thissize), 0, 1);
2011 }
2012
2013 if (first)
2014 result = part;
2015 else
2016 /* Combine the parts with bitwise or. This works
2017 because we extracted each part as an unsigned bit field. */
2018 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2019 OPTAB_LIB_WIDEN);
2020
2021 first = 0;
2022 }
2023
2024 /* Unsigned bit field: we are done. */
2025 if (unsignedp)
2026 return result;
2027 /* Signed bit field: sign-extend with two arithmetic shifts. */
2028 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2029 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2030 NULL_RTX, 0);
2031 return expand_shift (RSHIFT_EXPR, word_mode, result,
2032 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2033 NULL_RTX, 0);
2034 }
2035 \f
2036 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2037 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2038 MODE, fill the upper bits with zeros. Fail if the layout of either
2039 mode is unknown (as for CC modes) or if the extraction would involve
2040 unprofitable mode punning. Return the value on success, otherwise
2041 return null.
2042
2043 This is different from gen_lowpart* in these respects:
2044
2045 - the returned value must always be considered an rvalue
2046
2047 - when MODE is wider than SRC_MODE, the extraction involves
2048 a zero extension
2049
2050 - when MODE is smaller than SRC_MODE, the extraction involves
2051 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2052
2053 In other words, this routine performs a computation, whereas the
2054 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2055 operations. */
2056
2057 rtx
2058 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2059 {
2060 enum machine_mode int_mode, src_int_mode;
2061
2062 if (mode == src_mode)
2063 return src;
2064
2065 if (CONSTANT_P (src))
2066 {
2067 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2068 fails, it will happily create (subreg (symbol_ref)) or similar
2069 invalid SUBREGs. */
2070 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2071 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2072 if (ret)
2073 return ret;
2074
2075 if (GET_MODE (src) == VOIDmode
2076 || !validate_subreg (mode, src_mode, src, byte))
2077 return NULL_RTX;
2078
2079 src = force_reg (GET_MODE (src), src);
2080 return gen_rtx_SUBREG (mode, src, byte);
2081 }
2082
2083 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2084 return NULL_RTX;
2085
2086 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2087 && MODES_TIEABLE_P (mode, src_mode))
2088 {
2089 rtx x = gen_lowpart_common (mode, src);
2090 if (x)
2091 return x;
2092 }
2093
2094 src_int_mode = int_mode_for_mode (src_mode);
2095 int_mode = int_mode_for_mode (mode);
2096 if (src_int_mode == BLKmode || int_mode == BLKmode)
2097 return NULL_RTX;
2098
2099 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2100 return NULL_RTX;
2101 if (!MODES_TIEABLE_P (int_mode, mode))
2102 return NULL_RTX;
2103
2104 src = gen_lowpart (src_int_mode, src);
2105 src = convert_modes (int_mode, src_int_mode, src, true);
2106 src = gen_lowpart (mode, src);
2107 return src;
2108 }
2109 \f
2110 /* Add INC into TARGET. */
2111
2112 void
2113 expand_inc (rtx target, rtx inc)
2114 {
2115 rtx value = expand_binop (GET_MODE (target), add_optab,
2116 target, inc,
2117 target, 0, OPTAB_LIB_WIDEN);
2118 if (value != target)
2119 emit_move_insn (target, value);
2120 }
2121
2122 /* Subtract DEC from TARGET. */
2123
2124 void
2125 expand_dec (rtx target, rtx dec)
2126 {
2127 rtx value = expand_binop (GET_MODE (target), sub_optab,
2128 target, dec,
2129 target, 0, OPTAB_LIB_WIDEN);
2130 if (value != target)
2131 emit_move_insn (target, value);
2132 }
2133 \f
2134 /* Output a shift instruction for expression code CODE,
2135 with SHIFTED being the rtx for the value to shift,
2136 and AMOUNT the tree for the amount to shift by.
2137 Store the result in the rtx TARGET, if that is convenient.
2138 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2139 Return the rtx for where the value is. */
2140
2141 rtx
2142 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2143 tree amount, rtx target, int unsignedp)
2144 {
2145 rtx op1, temp = 0;
2146 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2147 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2148 optab lshift_optab = ashl_optab;
2149 optab rshift_arith_optab = ashr_optab;
2150 optab rshift_uns_optab = lshr_optab;
2151 optab lrotate_optab = rotl_optab;
2152 optab rrotate_optab = rotr_optab;
2153 enum machine_mode op1_mode;
2154 int attempt;
2155 bool speed = optimize_insn_for_speed_p ();
2156
2157 op1 = expand_normal (amount);
2158 op1_mode = GET_MODE (op1);
2159
2160 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2161 shift amount is a vector, use the vector/vector shift patterns. */
2162 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2163 {
2164 lshift_optab = vashl_optab;
2165 rshift_arith_optab = vashr_optab;
2166 rshift_uns_optab = vlshr_optab;
2167 lrotate_optab = vrotl_optab;
2168 rrotate_optab = vrotr_optab;
2169 }
2170
2171 /* Previously detected shift-counts computed by NEGATE_EXPR
2172 and shifted in the other direction; but that does not work
2173 on all machines. */
2174
2175 if (SHIFT_COUNT_TRUNCATED)
2176 {
2177 if (CONST_INT_P (op1)
2178 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2179 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2180 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2181 % GET_MODE_BITSIZE (mode));
2182 else if (GET_CODE (op1) == SUBREG
2183 && subreg_lowpart_p (op1)
2184 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2185 op1 = SUBREG_REG (op1);
2186 }
2187
2188 if (op1 == const0_rtx)
2189 return shifted;
2190
2191 /* Check whether its cheaper to implement a left shift by a constant
2192 bit count by a sequence of additions. */
2193 if (code == LSHIFT_EXPR
2194 && CONST_INT_P (op1)
2195 && INTVAL (op1) > 0
2196 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2197 && INTVAL (op1) < MAX_BITS_PER_WORD
2198 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2199 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2200 {
2201 int i;
2202 for (i = 0; i < INTVAL (op1); i++)
2203 {
2204 temp = force_reg (mode, shifted);
2205 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2206 unsignedp, OPTAB_LIB_WIDEN);
2207 }
2208 return shifted;
2209 }
2210
2211 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2212 {
2213 enum optab_methods methods;
2214
2215 if (attempt == 0)
2216 methods = OPTAB_DIRECT;
2217 else if (attempt == 1)
2218 methods = OPTAB_WIDEN;
2219 else
2220 methods = OPTAB_LIB_WIDEN;
2221
2222 if (rotate)
2223 {
2224 /* Widening does not work for rotation. */
2225 if (methods == OPTAB_WIDEN)
2226 continue;
2227 else if (methods == OPTAB_LIB_WIDEN)
2228 {
2229 /* If we have been unable to open-code this by a rotation,
2230 do it as the IOR of two shifts. I.e., to rotate A
2231 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2232 where C is the bitsize of A.
2233
2234 It is theoretically possible that the target machine might
2235 not be able to perform either shift and hence we would
2236 be making two libcalls rather than just the one for the
2237 shift (similarly if IOR could not be done). We will allow
2238 this extremely unlikely lossage to avoid complicating the
2239 code below. */
2240
2241 rtx subtarget = target == shifted ? 0 : target;
2242 tree new_amount, other_amount;
2243 rtx temp1;
2244 tree type = TREE_TYPE (amount);
2245 if (GET_MODE (op1) != TYPE_MODE (type)
2246 && GET_MODE (op1) != VOIDmode)
2247 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2248 new_amount = make_tree (type, op1);
2249 other_amount
2250 = fold_build2 (MINUS_EXPR, type,
2251 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2252 new_amount);
2253
2254 shifted = force_reg (mode, shifted);
2255
2256 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2257 mode, shifted, new_amount, 0, 1);
2258 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2259 mode, shifted, other_amount, subtarget, 1);
2260 return expand_binop (mode, ior_optab, temp, temp1, target,
2261 unsignedp, methods);
2262 }
2263
2264 temp = expand_binop (mode,
2265 left ? lrotate_optab : rrotate_optab,
2266 shifted, op1, target, unsignedp, methods);
2267 }
2268 else if (unsignedp)
2269 temp = expand_binop (mode,
2270 left ? lshift_optab : rshift_uns_optab,
2271 shifted, op1, target, unsignedp, methods);
2272
2273 /* Do arithmetic shifts.
2274 Also, if we are going to widen the operand, we can just as well
2275 use an arithmetic right-shift instead of a logical one. */
2276 if (temp == 0 && ! rotate
2277 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2278 {
2279 enum optab_methods methods1 = methods;
2280
2281 /* If trying to widen a log shift to an arithmetic shift,
2282 don't accept an arithmetic shift of the same size. */
2283 if (unsignedp)
2284 methods1 = OPTAB_MUST_WIDEN;
2285
2286 /* Arithmetic shift */
2287
2288 temp = expand_binop (mode,
2289 left ? lshift_optab : rshift_arith_optab,
2290 shifted, op1, target, unsignedp, methods1);
2291 }
2292
2293 /* We used to try extzv here for logical right shifts, but that was
2294 only useful for one machine, the VAX, and caused poor code
2295 generation there for lshrdi3, so the code was deleted and a
2296 define_expand for lshrsi3 was added to vax.md. */
2297 }
2298
2299 gcc_assert (temp);
2300 return temp;
2301 }
2302 \f
2303 /* Indicates the type of fixup needed after a constant multiplication.
2304 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2305 the result should be negated, and ADD_VARIANT means that the
2306 multiplicand should be added to the result. */
2307 enum mult_variant {basic_variant, negate_variant, add_variant};
2308
2309 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2310 const struct mult_cost *, enum machine_mode mode);
2311 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2312 struct algorithm *, enum mult_variant *, int);
2313 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2314 const struct algorithm *, enum mult_variant);
2315 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2316 int, rtx *, int *, int *);
2317 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2318 static rtx extract_high_half (enum machine_mode, rtx);
2319 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2320 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2321 int, int);
2322 /* Compute and return the best algorithm for multiplying by T.
2323 The algorithm must cost less than cost_limit
2324 If retval.cost >= COST_LIMIT, no algorithm was found and all
2325 other field of the returned struct are undefined.
2326 MODE is the machine mode of the multiplication. */
2327
2328 static void
2329 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2330 const struct mult_cost *cost_limit, enum machine_mode mode)
2331 {
2332 int m;
2333 struct algorithm *alg_in, *best_alg;
2334 struct mult_cost best_cost;
2335 struct mult_cost new_limit;
2336 int op_cost, op_latency;
2337 unsigned HOST_WIDE_INT orig_t = t;
2338 unsigned HOST_WIDE_INT q;
2339 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2340 int hash_index;
2341 bool cache_hit = false;
2342 enum alg_code cache_alg = alg_zero;
2343 bool speed = optimize_insn_for_speed_p ();
2344
2345 /* Indicate that no algorithm is yet found. If no algorithm
2346 is found, this value will be returned and indicate failure. */
2347 alg_out->cost.cost = cost_limit->cost + 1;
2348 alg_out->cost.latency = cost_limit->latency + 1;
2349
2350 if (cost_limit->cost < 0
2351 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2352 return;
2353
2354 /* Restrict the bits of "t" to the multiplication's mode. */
2355 t &= GET_MODE_MASK (mode);
2356
2357 /* t == 1 can be done in zero cost. */
2358 if (t == 1)
2359 {
2360 alg_out->ops = 1;
2361 alg_out->cost.cost = 0;
2362 alg_out->cost.latency = 0;
2363 alg_out->op[0] = alg_m;
2364 return;
2365 }
2366
2367 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2368 fail now. */
2369 if (t == 0)
2370 {
2371 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2372 return;
2373 else
2374 {
2375 alg_out->ops = 1;
2376 alg_out->cost.cost = zero_cost[speed];
2377 alg_out->cost.latency = zero_cost[speed];
2378 alg_out->op[0] = alg_zero;
2379 return;
2380 }
2381 }
2382
2383 /* We'll be needing a couple extra algorithm structures now. */
2384
2385 alg_in = XALLOCA (struct algorithm);
2386 best_alg = XALLOCA (struct algorithm);
2387 best_cost = *cost_limit;
2388
2389 /* Compute the hash index. */
2390 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2391
2392 /* See if we already know what to do for T. */
2393 if (alg_hash[hash_index].t == t
2394 && alg_hash[hash_index].mode == mode
2395 && alg_hash[hash_index].mode == mode
2396 && alg_hash[hash_index].speed == speed
2397 && alg_hash[hash_index].alg != alg_unknown)
2398 {
2399 cache_alg = alg_hash[hash_index].alg;
2400
2401 if (cache_alg == alg_impossible)
2402 {
2403 /* The cache tells us that it's impossible to synthesize
2404 multiplication by T within alg_hash[hash_index].cost. */
2405 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2406 /* COST_LIMIT is at least as restrictive as the one
2407 recorded in the hash table, in which case we have no
2408 hope of synthesizing a multiplication. Just
2409 return. */
2410 return;
2411
2412 /* If we get here, COST_LIMIT is less restrictive than the
2413 one recorded in the hash table, so we may be able to
2414 synthesize a multiplication. Proceed as if we didn't
2415 have the cache entry. */
2416 }
2417 else
2418 {
2419 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2420 /* The cached algorithm shows that this multiplication
2421 requires more cost than COST_LIMIT. Just return. This
2422 way, we don't clobber this cache entry with
2423 alg_impossible but retain useful information. */
2424 return;
2425
2426 cache_hit = true;
2427
2428 switch (cache_alg)
2429 {
2430 case alg_shift:
2431 goto do_alg_shift;
2432
2433 case alg_add_t_m2:
2434 case alg_sub_t_m2:
2435 goto do_alg_addsub_t_m2;
2436
2437 case alg_add_factor:
2438 case alg_sub_factor:
2439 goto do_alg_addsub_factor;
2440
2441 case alg_add_t2_m:
2442 goto do_alg_add_t2_m;
2443
2444 case alg_sub_t2_m:
2445 goto do_alg_sub_t2_m;
2446
2447 default:
2448 gcc_unreachable ();
2449 }
2450 }
2451 }
2452
2453 /* If we have a group of zero bits at the low-order part of T, try
2454 multiplying by the remaining bits and then doing a shift. */
2455
2456 if ((t & 1) == 0)
2457 {
2458 do_alg_shift:
2459 m = floor_log2 (t & -t); /* m = number of low zero bits */
2460 if (m < maxm)
2461 {
2462 q = t >> m;
2463 /* The function expand_shift will choose between a shift and
2464 a sequence of additions, so the observed cost is given as
2465 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2466 op_cost = m * add_cost[speed][mode];
2467 if (shift_cost[speed][mode][m] < op_cost)
2468 op_cost = shift_cost[speed][mode][m];
2469 new_limit.cost = best_cost.cost - op_cost;
2470 new_limit.latency = best_cost.latency - op_cost;
2471 synth_mult (alg_in, q, &new_limit, mode);
2472
2473 alg_in->cost.cost += op_cost;
2474 alg_in->cost.latency += op_cost;
2475 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2476 {
2477 struct algorithm *x;
2478 best_cost = alg_in->cost;
2479 x = alg_in, alg_in = best_alg, best_alg = x;
2480 best_alg->log[best_alg->ops] = m;
2481 best_alg->op[best_alg->ops] = alg_shift;
2482 }
2483
2484 /* See if treating ORIG_T as a signed number yields a better
2485 sequence. Try this sequence only for a negative ORIG_T
2486 as it would be useless for a non-negative ORIG_T. */
2487 if ((HOST_WIDE_INT) orig_t < 0)
2488 {
2489 /* Shift ORIG_T as follows because a right shift of a
2490 negative-valued signed type is implementation
2491 defined. */
2492 q = ~(~orig_t >> m);
2493 /* The function expand_shift will choose between a shift
2494 and a sequence of additions, so the observed cost is
2495 given as MIN (m * add_cost[speed][mode],
2496 shift_cost[speed][mode][m]). */
2497 op_cost = m * add_cost[speed][mode];
2498 if (shift_cost[speed][mode][m] < op_cost)
2499 op_cost = shift_cost[speed][mode][m];
2500 new_limit.cost = best_cost.cost - op_cost;
2501 new_limit.latency = best_cost.latency - op_cost;
2502 synth_mult (alg_in, q, &new_limit, mode);
2503
2504 alg_in->cost.cost += op_cost;
2505 alg_in->cost.latency += op_cost;
2506 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2507 {
2508 struct algorithm *x;
2509 best_cost = alg_in->cost;
2510 x = alg_in, alg_in = best_alg, best_alg = x;
2511 best_alg->log[best_alg->ops] = m;
2512 best_alg->op[best_alg->ops] = alg_shift;
2513 }
2514 }
2515 }
2516 if (cache_hit)
2517 goto done;
2518 }
2519
2520 /* If we have an odd number, add or subtract one. */
2521 if ((t & 1) != 0)
2522 {
2523 unsigned HOST_WIDE_INT w;
2524
2525 do_alg_addsub_t_m2:
2526 for (w = 1; (w & t) != 0; w <<= 1)
2527 ;
2528 /* If T was -1, then W will be zero after the loop. This is another
2529 case where T ends with ...111. Handling this with (T + 1) and
2530 subtract 1 produces slightly better code and results in algorithm
2531 selection much faster than treating it like the ...0111 case
2532 below. */
2533 if (w == 0
2534 || (w > 2
2535 /* Reject the case where t is 3.
2536 Thus we prefer addition in that case. */
2537 && t != 3))
2538 {
2539 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2540
2541 op_cost = add_cost[speed][mode];
2542 new_limit.cost = best_cost.cost - op_cost;
2543 new_limit.latency = best_cost.latency - op_cost;
2544 synth_mult (alg_in, t + 1, &new_limit, mode);
2545
2546 alg_in->cost.cost += op_cost;
2547 alg_in->cost.latency += op_cost;
2548 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2549 {
2550 struct algorithm *x;
2551 best_cost = alg_in->cost;
2552 x = alg_in, alg_in = best_alg, best_alg = x;
2553 best_alg->log[best_alg->ops] = 0;
2554 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2555 }
2556 }
2557 else
2558 {
2559 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2560
2561 op_cost = add_cost[speed][mode];
2562 new_limit.cost = best_cost.cost - op_cost;
2563 new_limit.latency = best_cost.latency - op_cost;
2564 synth_mult (alg_in, t - 1, &new_limit, mode);
2565
2566 alg_in->cost.cost += op_cost;
2567 alg_in->cost.latency += op_cost;
2568 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2569 {
2570 struct algorithm *x;
2571 best_cost = alg_in->cost;
2572 x = alg_in, alg_in = best_alg, best_alg = x;
2573 best_alg->log[best_alg->ops] = 0;
2574 best_alg->op[best_alg->ops] = alg_add_t_m2;
2575 }
2576 }
2577
2578 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2579 quickly with a - a * n for some appropriate constant n. */
2580 m = exact_log2 (-orig_t + 1);
2581 if (m >= 0 && m < maxm)
2582 {
2583 op_cost = shiftsub1_cost[speed][mode][m];
2584 new_limit.cost = best_cost.cost - op_cost;
2585 new_limit.latency = best_cost.latency - op_cost;
2586 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
2587
2588 alg_in->cost.cost += op_cost;
2589 alg_in->cost.latency += op_cost;
2590 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2591 {
2592 struct algorithm *x;
2593 best_cost = alg_in->cost;
2594 x = alg_in, alg_in = best_alg, best_alg = x;
2595 best_alg->log[best_alg->ops] = m;
2596 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2597 }
2598 }
2599
2600 if (cache_hit)
2601 goto done;
2602 }
2603
2604 /* Look for factors of t of the form
2605 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2606 If we find such a factor, we can multiply by t using an algorithm that
2607 multiplies by q, shift the result by m and add/subtract it to itself.
2608
2609 We search for large factors first and loop down, even if large factors
2610 are less probable than small; if we find a large factor we will find a
2611 good sequence quickly, and therefore be able to prune (by decreasing
2612 COST_LIMIT) the search. */
2613
2614 do_alg_addsub_factor:
2615 for (m = floor_log2 (t - 1); m >= 2; m--)
2616 {
2617 unsigned HOST_WIDE_INT d;
2618
2619 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2620 if (t % d == 0 && t > d && m < maxm
2621 && (!cache_hit || cache_alg == alg_add_factor))
2622 {
2623 /* If the target has a cheap shift-and-add instruction use
2624 that in preference to a shift insn followed by an add insn.
2625 Assume that the shift-and-add is "atomic" with a latency
2626 equal to its cost, otherwise assume that on superscalar
2627 hardware the shift may be executed concurrently with the
2628 earlier steps in the algorithm. */
2629 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2630 if (shiftadd_cost[speed][mode][m] < op_cost)
2631 {
2632 op_cost = shiftadd_cost[speed][mode][m];
2633 op_latency = op_cost;
2634 }
2635 else
2636 op_latency = add_cost[speed][mode];
2637
2638 new_limit.cost = best_cost.cost - op_cost;
2639 new_limit.latency = best_cost.latency - op_latency;
2640 synth_mult (alg_in, t / d, &new_limit, mode);
2641
2642 alg_in->cost.cost += op_cost;
2643 alg_in->cost.latency += op_latency;
2644 if (alg_in->cost.latency < op_cost)
2645 alg_in->cost.latency = op_cost;
2646 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2647 {
2648 struct algorithm *x;
2649 best_cost = alg_in->cost;
2650 x = alg_in, alg_in = best_alg, best_alg = x;
2651 best_alg->log[best_alg->ops] = m;
2652 best_alg->op[best_alg->ops] = alg_add_factor;
2653 }
2654 /* Other factors will have been taken care of in the recursion. */
2655 break;
2656 }
2657
2658 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2659 if (t % d == 0 && t > d && m < maxm
2660 && (!cache_hit || cache_alg == alg_sub_factor))
2661 {
2662 /* If the target has a cheap shift-and-subtract insn use
2663 that in preference to a shift insn followed by a sub insn.
2664 Assume that the shift-and-sub is "atomic" with a latency
2665 equal to it's cost, otherwise assume that on superscalar
2666 hardware the shift may be executed concurrently with the
2667 earlier steps in the algorithm. */
2668 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2669 if (shiftsub0_cost[speed][mode][m] < op_cost)
2670 {
2671 op_cost = shiftsub0_cost[speed][mode][m];
2672 op_latency = op_cost;
2673 }
2674 else
2675 op_latency = add_cost[speed][mode];
2676
2677 new_limit.cost = best_cost.cost - op_cost;
2678 new_limit.latency = best_cost.latency - op_latency;
2679 synth_mult (alg_in, t / d, &new_limit, mode);
2680
2681 alg_in->cost.cost += op_cost;
2682 alg_in->cost.latency += op_latency;
2683 if (alg_in->cost.latency < op_cost)
2684 alg_in->cost.latency = op_cost;
2685 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2686 {
2687 struct algorithm *x;
2688 best_cost = alg_in->cost;
2689 x = alg_in, alg_in = best_alg, best_alg = x;
2690 best_alg->log[best_alg->ops] = m;
2691 best_alg->op[best_alg->ops] = alg_sub_factor;
2692 }
2693 break;
2694 }
2695 }
2696 if (cache_hit)
2697 goto done;
2698
2699 /* Try shift-and-add (load effective address) instructions,
2700 i.e. do a*3, a*5, a*9. */
2701 if ((t & 1) != 0)
2702 {
2703 do_alg_add_t2_m:
2704 q = t - 1;
2705 q = q & -q;
2706 m = exact_log2 (q);
2707 if (m >= 0 && m < maxm)
2708 {
2709 op_cost = shiftadd_cost[speed][mode][m];
2710 new_limit.cost = best_cost.cost - op_cost;
2711 new_limit.latency = best_cost.latency - op_cost;
2712 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2713
2714 alg_in->cost.cost += op_cost;
2715 alg_in->cost.latency += op_cost;
2716 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2717 {
2718 struct algorithm *x;
2719 best_cost = alg_in->cost;
2720 x = alg_in, alg_in = best_alg, best_alg = x;
2721 best_alg->log[best_alg->ops] = m;
2722 best_alg->op[best_alg->ops] = alg_add_t2_m;
2723 }
2724 }
2725 if (cache_hit)
2726 goto done;
2727
2728 do_alg_sub_t2_m:
2729 q = t + 1;
2730 q = q & -q;
2731 m = exact_log2 (q);
2732 if (m >= 0 && m < maxm)
2733 {
2734 op_cost = shiftsub0_cost[speed][mode][m];
2735 new_limit.cost = best_cost.cost - op_cost;
2736 new_limit.latency = best_cost.latency - op_cost;
2737 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2738
2739 alg_in->cost.cost += op_cost;
2740 alg_in->cost.latency += op_cost;
2741 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2742 {
2743 struct algorithm *x;
2744 best_cost = alg_in->cost;
2745 x = alg_in, alg_in = best_alg, best_alg = x;
2746 best_alg->log[best_alg->ops] = m;
2747 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2748 }
2749 }
2750 if (cache_hit)
2751 goto done;
2752 }
2753
2754 done:
2755 /* If best_cost has not decreased, we have not found any algorithm. */
2756 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2757 {
2758 /* We failed to find an algorithm. Record alg_impossible for
2759 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2760 we are asked to find an algorithm for T within the same or
2761 lower COST_LIMIT, we can immediately return to the
2762 caller. */
2763 alg_hash[hash_index].t = t;
2764 alg_hash[hash_index].mode = mode;
2765 alg_hash[hash_index].speed = speed;
2766 alg_hash[hash_index].alg = alg_impossible;
2767 alg_hash[hash_index].cost = *cost_limit;
2768 return;
2769 }
2770
2771 /* Cache the result. */
2772 if (!cache_hit)
2773 {
2774 alg_hash[hash_index].t = t;
2775 alg_hash[hash_index].mode = mode;
2776 alg_hash[hash_index].speed = speed;
2777 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2778 alg_hash[hash_index].cost.cost = best_cost.cost;
2779 alg_hash[hash_index].cost.latency = best_cost.latency;
2780 }
2781
2782 /* If we are getting a too long sequence for `struct algorithm'
2783 to record, make this search fail. */
2784 if (best_alg->ops == MAX_BITS_PER_WORD)
2785 return;
2786
2787 /* Copy the algorithm from temporary space to the space at alg_out.
2788 We avoid using structure assignment because the majority of
2789 best_alg is normally undefined, and this is a critical function. */
2790 alg_out->ops = best_alg->ops + 1;
2791 alg_out->cost = best_cost;
2792 memcpy (alg_out->op, best_alg->op,
2793 alg_out->ops * sizeof *alg_out->op);
2794 memcpy (alg_out->log, best_alg->log,
2795 alg_out->ops * sizeof *alg_out->log);
2796 }
2797 \f
2798 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2799 Try three variations:
2800
2801 - a shift/add sequence based on VAL itself
2802 - a shift/add sequence based on -VAL, followed by a negation
2803 - a shift/add sequence based on VAL - 1, followed by an addition.
2804
2805 Return true if the cheapest of these cost less than MULT_COST,
2806 describing the algorithm in *ALG and final fixup in *VARIANT. */
2807
2808 static bool
2809 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2810 struct algorithm *alg, enum mult_variant *variant,
2811 int mult_cost)
2812 {
2813 struct algorithm alg2;
2814 struct mult_cost limit;
2815 int op_cost;
2816 bool speed = optimize_insn_for_speed_p ();
2817
2818 /* Fail quickly for impossible bounds. */
2819 if (mult_cost < 0)
2820 return false;
2821
2822 /* Ensure that mult_cost provides a reasonable upper bound.
2823 Any constant multiplication can be performed with less
2824 than 2 * bits additions. */
2825 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2826 if (mult_cost > op_cost)
2827 mult_cost = op_cost;
2828
2829 *variant = basic_variant;
2830 limit.cost = mult_cost;
2831 limit.latency = mult_cost;
2832 synth_mult (alg, val, &limit, mode);
2833
2834 /* This works only if the inverted value actually fits in an
2835 `unsigned int' */
2836 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2837 {
2838 op_cost = neg_cost[speed][mode];
2839 if (MULT_COST_LESS (&alg->cost, mult_cost))
2840 {
2841 limit.cost = alg->cost.cost - op_cost;
2842 limit.latency = alg->cost.latency - op_cost;
2843 }
2844 else
2845 {
2846 limit.cost = mult_cost - op_cost;
2847 limit.latency = mult_cost - op_cost;
2848 }
2849
2850 synth_mult (&alg2, -val, &limit, mode);
2851 alg2.cost.cost += op_cost;
2852 alg2.cost.latency += op_cost;
2853 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2854 *alg = alg2, *variant = negate_variant;
2855 }
2856
2857 /* This proves very useful for division-by-constant. */
2858 op_cost = add_cost[speed][mode];
2859 if (MULT_COST_LESS (&alg->cost, mult_cost))
2860 {
2861 limit.cost = alg->cost.cost - op_cost;
2862 limit.latency = alg->cost.latency - op_cost;
2863 }
2864 else
2865 {
2866 limit.cost = mult_cost - op_cost;
2867 limit.latency = mult_cost - op_cost;
2868 }
2869
2870 synth_mult (&alg2, val - 1, &limit, mode);
2871 alg2.cost.cost += op_cost;
2872 alg2.cost.latency += op_cost;
2873 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2874 *alg = alg2, *variant = add_variant;
2875
2876 return MULT_COST_LESS (&alg->cost, mult_cost);
2877 }
2878
2879 /* A subroutine of expand_mult, used for constant multiplications.
2880 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2881 convenient. Use the shift/add sequence described by ALG and apply
2882 the final fixup specified by VARIANT. */
2883
2884 static rtx
2885 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2886 rtx target, const struct algorithm *alg,
2887 enum mult_variant variant)
2888 {
2889 HOST_WIDE_INT val_so_far;
2890 rtx insn, accum, tem;
2891 int opno;
2892 enum machine_mode nmode;
2893
2894 /* Avoid referencing memory over and over and invalid sharing
2895 on SUBREGs. */
2896 op0 = force_reg (mode, op0);
2897
2898 /* ACCUM starts out either as OP0 or as a zero, depending on
2899 the first operation. */
2900
2901 if (alg->op[0] == alg_zero)
2902 {
2903 accum = copy_to_mode_reg (mode, const0_rtx);
2904 val_so_far = 0;
2905 }
2906 else if (alg->op[0] == alg_m)
2907 {
2908 accum = copy_to_mode_reg (mode, op0);
2909 val_so_far = 1;
2910 }
2911 else
2912 gcc_unreachable ();
2913
2914 for (opno = 1; opno < alg->ops; opno++)
2915 {
2916 int log = alg->log[opno];
2917 rtx shift_subtarget = optimize ? 0 : accum;
2918 rtx add_target
2919 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2920 && !optimize)
2921 ? target : 0;
2922 rtx accum_target = optimize ? 0 : accum;
2923
2924 switch (alg->op[opno])
2925 {
2926 case alg_shift:
2927 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2928 build_int_cst (NULL_TREE, log),
2929 NULL_RTX, 0);
2930 /* REG_EQUAL note will be attached to the following insn. */
2931 emit_move_insn (accum, tem);
2932 val_so_far <<= log;
2933 break;
2934
2935 case alg_add_t_m2:
2936 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2937 build_int_cst (NULL_TREE, log),
2938 NULL_RTX, 0);
2939 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2940 add_target ? add_target : accum_target);
2941 val_so_far += (HOST_WIDE_INT) 1 << log;
2942 break;
2943
2944 case alg_sub_t_m2:
2945 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2946 build_int_cst (NULL_TREE, log),
2947 NULL_RTX, 0);
2948 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2949 add_target ? add_target : accum_target);
2950 val_so_far -= (HOST_WIDE_INT) 1 << log;
2951 break;
2952
2953 case alg_add_t2_m:
2954 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2955 build_int_cst (NULL_TREE, log),
2956 shift_subtarget,
2957 0);
2958 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2959 add_target ? add_target : accum_target);
2960 val_so_far = (val_so_far << log) + 1;
2961 break;
2962
2963 case alg_sub_t2_m:
2964 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2965 build_int_cst (NULL_TREE, log),
2966 shift_subtarget, 0);
2967 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2968 add_target ? add_target : accum_target);
2969 val_so_far = (val_so_far << log) - 1;
2970 break;
2971
2972 case alg_add_factor:
2973 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2974 build_int_cst (NULL_TREE, log),
2975 NULL_RTX, 0);
2976 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2977 add_target ? add_target : accum_target);
2978 val_so_far += val_so_far << log;
2979 break;
2980
2981 case alg_sub_factor:
2982 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2983 build_int_cst (NULL_TREE, log),
2984 NULL_RTX, 0);
2985 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2986 (add_target
2987 ? add_target : (optimize ? 0 : tem)));
2988 val_so_far = (val_so_far << log) - val_so_far;
2989 break;
2990
2991 default:
2992 gcc_unreachable ();
2993 }
2994
2995 /* Write a REG_EQUAL note on the last insn so that we can cse
2996 multiplication sequences. Note that if ACCUM is a SUBREG,
2997 we've set the inner register and must properly indicate
2998 that. */
2999
3000 tem = op0, nmode = mode;
3001 if (GET_CODE (accum) == SUBREG)
3002 {
3003 nmode = GET_MODE (SUBREG_REG (accum));
3004 tem = gen_lowpart (nmode, op0);
3005 }
3006
3007 insn = get_last_insn ();
3008 set_unique_reg_note (insn, REG_EQUAL,
3009 gen_rtx_MULT (nmode, tem,
3010 GEN_INT (val_so_far)));
3011 }
3012
3013 if (variant == negate_variant)
3014 {
3015 val_so_far = -val_so_far;
3016 accum = expand_unop (mode, neg_optab, accum, target, 0);
3017 }
3018 else if (variant == add_variant)
3019 {
3020 val_so_far = val_so_far + 1;
3021 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3022 }
3023
3024 /* Compare only the bits of val and val_so_far that are significant
3025 in the result mode, to avoid sign-/zero-extension confusion. */
3026 val &= GET_MODE_MASK (mode);
3027 val_so_far &= GET_MODE_MASK (mode);
3028 gcc_assert (val == val_so_far);
3029
3030 return accum;
3031 }
3032
3033 /* Perform a multiplication and return an rtx for the result.
3034 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3035 TARGET is a suggestion for where to store the result (an rtx).
3036
3037 We check specially for a constant integer as OP1.
3038 If you want this check for OP0 as well, then before calling
3039 you should swap the two operands if OP0 would be constant. */
3040
3041 rtx
3042 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3043 int unsignedp)
3044 {
3045 enum mult_variant variant;
3046 struct algorithm algorithm;
3047 int max_cost;
3048 bool speed = optimize_insn_for_speed_p ();
3049
3050 /* Handling const0_rtx here allows us to use zero as a rogue value for
3051 coeff below. */
3052 if (op1 == const0_rtx)
3053 return const0_rtx;
3054 if (op1 == const1_rtx)
3055 return op0;
3056 if (op1 == constm1_rtx)
3057 return expand_unop (mode,
3058 GET_MODE_CLASS (mode) == MODE_INT
3059 && !unsignedp && flag_trapv
3060 ? negv_optab : neg_optab,
3061 op0, target, 0);
3062
3063 /* These are the operations that are potentially turned into a sequence
3064 of shifts and additions. */
3065 if (SCALAR_INT_MODE_P (mode)
3066 && (unsignedp || !flag_trapv))
3067 {
3068 HOST_WIDE_INT coeff = 0;
3069 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3070
3071 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3072 less than or equal in size to `unsigned int' this doesn't matter.
3073 If the mode is larger than `unsigned int', then synth_mult works
3074 only if the constant value exactly fits in an `unsigned int' without
3075 any truncation. This means that multiplying by negative values does
3076 not work; results are off by 2^32 on a 32 bit machine. */
3077
3078 if (CONST_INT_P (op1))
3079 {
3080 /* Attempt to handle multiplication of DImode values by negative
3081 coefficients, by performing the multiplication by a positive
3082 multiplier and then inverting the result. */
3083 if (INTVAL (op1) < 0
3084 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3085 {
3086 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3087 result is interpreted as an unsigned coefficient.
3088 Exclude cost of op0 from max_cost to match the cost
3089 calculation of the synth_mult. */
3090 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3091 - neg_cost[speed][mode];
3092 if (max_cost > 0
3093 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3094 &variant, max_cost))
3095 {
3096 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3097 NULL_RTX, &algorithm,
3098 variant);
3099 return expand_unop (mode, neg_optab, temp, target, 0);
3100 }
3101 }
3102 else coeff = INTVAL (op1);
3103 }
3104 else if (GET_CODE (op1) == CONST_DOUBLE)
3105 {
3106 /* If we are multiplying in DImode, it may still be a win
3107 to try to work with shifts and adds. */
3108 if (CONST_DOUBLE_HIGH (op1) == 0
3109 && CONST_DOUBLE_LOW (op1) > 0)
3110 coeff = CONST_DOUBLE_LOW (op1);
3111 else if (CONST_DOUBLE_LOW (op1) == 0
3112 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3113 {
3114 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3115 + HOST_BITS_PER_WIDE_INT;
3116 return expand_shift (LSHIFT_EXPR, mode, op0,
3117 build_int_cst (NULL_TREE, shift),
3118 target, unsignedp);
3119 }
3120 }
3121
3122 /* We used to test optimize here, on the grounds that it's better to
3123 produce a smaller program when -O is not used. But this causes
3124 such a terrible slowdown sometimes that it seems better to always
3125 use synth_mult. */
3126 if (coeff != 0)
3127 {
3128 /* Special case powers of two. */
3129 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3130 return expand_shift (LSHIFT_EXPR, mode, op0,
3131 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3132 target, unsignedp);
3133
3134 /* Exclude cost of op0 from max_cost to match the cost
3135 calculation of the synth_mult. */
3136 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3137 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3138 max_cost))
3139 return expand_mult_const (mode, op0, coeff, target,
3140 &algorithm, variant);
3141 }
3142 }
3143
3144 if (GET_CODE (op0) == CONST_DOUBLE)
3145 {
3146 rtx temp = op0;
3147 op0 = op1;
3148 op1 = temp;
3149 }
3150
3151 /* Expand x*2.0 as x+x. */
3152 if (GET_CODE (op1) == CONST_DOUBLE
3153 && SCALAR_FLOAT_MODE_P (mode))
3154 {
3155 REAL_VALUE_TYPE d;
3156 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3157
3158 if (REAL_VALUES_EQUAL (d, dconst2))
3159 {
3160 op0 = force_reg (GET_MODE (op0), op0);
3161 return expand_binop (mode, add_optab, op0, op0,
3162 target, unsignedp, OPTAB_LIB_WIDEN);
3163 }
3164 }
3165
3166 /* This used to use umul_optab if unsigned, but for non-widening multiply
3167 there is no difference between signed and unsigned. */
3168 op0 = expand_binop (mode,
3169 ! unsignedp
3170 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3171 ? smulv_optab : smul_optab,
3172 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3173 gcc_assert (op0);
3174 return op0;
3175 }
3176
3177 /* Perform a widening multiplication and return an rtx for the result.
3178 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3179 TARGET is a suggestion for where to store the result (an rtx).
3180 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3181 or smul_widen_optab.
3182
3183 We check specially for a constant integer as OP1, comparing the
3184 cost of a widening multiply against the cost of a sequence of shifts
3185 and adds. */
3186
3187 rtx
3188 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3189 int unsignedp, optab this_optab)
3190 {
3191 bool speed = optimize_insn_for_speed_p ();
3192
3193 if (CONST_INT_P (op1)
3194 && (INTVAL (op1) >= 0
3195 || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT))
3196 {
3197 HOST_WIDE_INT coeff = INTVAL (op1);
3198 int max_cost;
3199 enum mult_variant variant;
3200 struct algorithm algorithm;
3201
3202 /* Special case powers of two. */
3203 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3204 {
3205 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3206 return expand_shift (LSHIFT_EXPR, mode, op0,
3207 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3208 target, unsignedp);
3209 }
3210
3211 /* Exclude cost of op0 from max_cost to match the cost
3212 calculation of the synth_mult. */
3213 max_cost = mul_widen_cost[speed][mode];
3214 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3215 max_cost))
3216 {
3217 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3218 return expand_mult_const (mode, op0, coeff, target,
3219 &algorithm, variant);
3220 }
3221 }
3222 return expand_binop (mode, this_optab, op0, op1, target,
3223 unsignedp, OPTAB_LIB_WIDEN);
3224 }
3225 \f
3226 /* Return the smallest n such that 2**n >= X. */
3227
3228 int
3229 ceil_log2 (unsigned HOST_WIDE_INT x)
3230 {
3231 return floor_log2 (x - 1) + 1;
3232 }
3233
3234 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3235 replace division by D, and put the least significant N bits of the result
3236 in *MULTIPLIER_PTR and return the most significant bit.
3237
3238 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3239 needed precision is in PRECISION (should be <= N).
3240
3241 PRECISION should be as small as possible so this function can choose
3242 multiplier more freely.
3243
3244 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3245 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3246
3247 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3248 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3249
3250 static
3251 unsigned HOST_WIDE_INT
3252 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3253 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3254 {
3255 HOST_WIDE_INT mhigh_hi, mlow_hi;
3256 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3257 int lgup, post_shift;
3258 int pow, pow2;
3259 unsigned HOST_WIDE_INT nl, dummy1;
3260 HOST_WIDE_INT nh, dummy2;
3261
3262 /* lgup = ceil(log2(divisor)); */
3263 lgup = ceil_log2 (d);
3264
3265 gcc_assert (lgup <= n);
3266
3267 pow = n + lgup;
3268 pow2 = n + lgup - precision;
3269
3270 /* We could handle this with some effort, but this case is much
3271 better handled directly with a scc insn, so rely on caller using
3272 that. */
3273 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3274
3275 /* mlow = 2^(N + lgup)/d */
3276 if (pow >= HOST_BITS_PER_WIDE_INT)
3277 {
3278 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3279 nl = 0;
3280 }
3281 else
3282 {
3283 nh = 0;
3284 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3285 }
3286 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3287 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3288
3289 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3290 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3291 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3292 else
3293 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3294 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3295 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3296
3297 gcc_assert (!mhigh_hi || nh - d < d);
3298 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3299 /* Assert that mlow < mhigh. */
3300 gcc_assert (mlow_hi < mhigh_hi
3301 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3302
3303 /* If precision == N, then mlow, mhigh exceed 2^N
3304 (but they do not exceed 2^(N+1)). */
3305
3306 /* Reduce to lowest terms. */
3307 for (post_shift = lgup; post_shift > 0; post_shift--)
3308 {
3309 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3310 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3311 if (ml_lo >= mh_lo)
3312 break;
3313
3314 mlow_hi = 0;
3315 mlow_lo = ml_lo;
3316 mhigh_hi = 0;
3317 mhigh_lo = mh_lo;
3318 }
3319
3320 *post_shift_ptr = post_shift;
3321 *lgup_ptr = lgup;
3322 if (n < HOST_BITS_PER_WIDE_INT)
3323 {
3324 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3325 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3326 return mhigh_lo >= mask;
3327 }
3328 else
3329 {
3330 *multiplier_ptr = GEN_INT (mhigh_lo);
3331 return mhigh_hi;
3332 }
3333 }
3334
3335 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3336 congruent to 1 (mod 2**N). */
3337
3338 static unsigned HOST_WIDE_INT
3339 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3340 {
3341 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3342
3343 /* The algorithm notes that the choice y = x satisfies
3344 x*y == 1 mod 2^3, since x is assumed odd.
3345 Each iteration doubles the number of bits of significance in y. */
3346
3347 unsigned HOST_WIDE_INT mask;
3348 unsigned HOST_WIDE_INT y = x;
3349 int nbit = 3;
3350
3351 mask = (n == HOST_BITS_PER_WIDE_INT
3352 ? ~(unsigned HOST_WIDE_INT) 0
3353 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3354
3355 while (nbit < n)
3356 {
3357 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3358 nbit *= 2;
3359 }
3360 return y;
3361 }
3362
3363 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3364 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3365 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3366 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3367 become signed.
3368
3369 The result is put in TARGET if that is convenient.
3370
3371 MODE is the mode of operation. */
3372
3373 rtx
3374 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3375 rtx op1, rtx target, int unsignedp)
3376 {
3377 rtx tem;
3378 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3379
3380 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3381 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3382 NULL_RTX, 0);
3383 tem = expand_and (mode, tem, op1, NULL_RTX);
3384 adj_operand
3385 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3386 adj_operand);
3387
3388 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3389 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3390 NULL_RTX, 0);
3391 tem = expand_and (mode, tem, op0, NULL_RTX);
3392 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3393 target);
3394
3395 return target;
3396 }
3397
3398 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3399
3400 static rtx
3401 extract_high_half (enum machine_mode mode, rtx op)
3402 {
3403 enum machine_mode wider_mode;
3404
3405 if (mode == word_mode)
3406 return gen_highpart (mode, op);
3407
3408 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3409
3410 wider_mode = GET_MODE_WIDER_MODE (mode);
3411 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3412 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3413 return convert_modes (mode, wider_mode, op, 0);
3414 }
3415
3416 /* Like expand_mult_highpart, but only consider using a multiplication
3417 optab. OP1 is an rtx for the constant operand. */
3418
3419 static rtx
3420 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3421 rtx target, int unsignedp, int max_cost)
3422 {
3423 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3424 enum machine_mode wider_mode;
3425 optab moptab;
3426 rtx tem;
3427 int size;
3428 bool speed = optimize_insn_for_speed_p ();
3429
3430 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3431
3432 wider_mode = GET_MODE_WIDER_MODE (mode);
3433 size = GET_MODE_BITSIZE (mode);
3434
3435 /* Firstly, try using a multiplication insn that only generates the needed
3436 high part of the product, and in the sign flavor of unsignedp. */
3437 if (mul_highpart_cost[speed][mode] < max_cost)
3438 {
3439 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3440 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3441 unsignedp, OPTAB_DIRECT);
3442 if (tem)
3443 return tem;
3444 }
3445
3446 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3447 Need to adjust the result after the multiplication. */
3448 if (size - 1 < BITS_PER_WORD
3449 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3450 + 4 * add_cost[speed][mode] < max_cost))
3451 {
3452 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3453 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3454 unsignedp, OPTAB_DIRECT);
3455 if (tem)
3456 /* We used the wrong signedness. Adjust the result. */
3457 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3458 tem, unsignedp);
3459 }
3460
3461 /* Try widening multiplication. */
3462 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3463 if (optab_handler (moptab, wider_mode) != CODE_FOR_nothing
3464 && mul_widen_cost[speed][wider_mode] < max_cost)
3465 {
3466 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3467 unsignedp, OPTAB_WIDEN);
3468 if (tem)
3469 return extract_high_half (mode, tem);
3470 }
3471
3472 /* Try widening the mode and perform a non-widening multiplication. */
3473 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3474 && size - 1 < BITS_PER_WORD
3475 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3476 {
3477 rtx insns, wop0, wop1;
3478
3479 /* We need to widen the operands, for example to ensure the
3480 constant multiplier is correctly sign or zero extended.
3481 Use a sequence to clean-up any instructions emitted by
3482 the conversions if things don't work out. */
3483 start_sequence ();
3484 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3485 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3486 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3487 unsignedp, OPTAB_WIDEN);
3488 insns = get_insns ();
3489 end_sequence ();
3490
3491 if (tem)
3492 {
3493 emit_insn (insns);
3494 return extract_high_half (mode, tem);
3495 }
3496 }
3497
3498 /* Try widening multiplication of opposite signedness, and adjust. */
3499 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3500 if (optab_handler (moptab, wider_mode) != CODE_FOR_nothing
3501 && size - 1 < BITS_PER_WORD
3502 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3503 + 4 * add_cost[speed][mode] < max_cost))
3504 {
3505 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3506 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3507 if (tem != 0)
3508 {
3509 tem = extract_high_half (mode, tem);
3510 /* We used the wrong signedness. Adjust the result. */
3511 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3512 target, unsignedp);
3513 }
3514 }
3515
3516 return 0;
3517 }
3518
3519 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3520 putting the high half of the result in TARGET if that is convenient,
3521 and return where the result is. If the operation can not be performed,
3522 0 is returned.
3523
3524 MODE is the mode of operation and result.
3525
3526 UNSIGNEDP nonzero means unsigned multiply.
3527
3528 MAX_COST is the total allowed cost for the expanded RTL. */
3529
3530 static rtx
3531 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3532 rtx target, int unsignedp, int max_cost)
3533 {
3534 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3535 unsigned HOST_WIDE_INT cnst1;
3536 int extra_cost;
3537 bool sign_adjust = false;
3538 enum mult_variant variant;
3539 struct algorithm alg;
3540 rtx tem;
3541 bool speed = optimize_insn_for_speed_p ();
3542
3543 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3544 /* We can't support modes wider than HOST_BITS_PER_INT. */
3545 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3546
3547 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3548
3549 /* We can't optimize modes wider than BITS_PER_WORD.
3550 ??? We might be able to perform double-word arithmetic if
3551 mode == word_mode, however all the cost calculations in
3552 synth_mult etc. assume single-word operations. */
3553 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3554 return expand_mult_highpart_optab (mode, op0, op1, target,
3555 unsignedp, max_cost);
3556
3557 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3558
3559 /* Check whether we try to multiply by a negative constant. */
3560 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3561 {
3562 sign_adjust = true;
3563 extra_cost += add_cost[speed][mode];
3564 }
3565
3566 /* See whether shift/add multiplication is cheap enough. */
3567 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3568 max_cost - extra_cost))
3569 {
3570 /* See whether the specialized multiplication optabs are
3571 cheaper than the shift/add version. */
3572 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3573 alg.cost.cost + extra_cost);
3574 if (tem)
3575 return tem;
3576
3577 tem = convert_to_mode (wider_mode, op0, unsignedp);
3578 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3579 tem = extract_high_half (mode, tem);
3580
3581 /* Adjust result for signedness. */
3582 if (sign_adjust)
3583 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3584
3585 return tem;
3586 }
3587 return expand_mult_highpart_optab (mode, op0, op1, target,
3588 unsignedp, max_cost);
3589 }
3590
3591
3592 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3593
3594 static rtx
3595 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3596 {
3597 unsigned HOST_WIDE_INT masklow, maskhigh;
3598 rtx result, temp, shift, label;
3599 int logd;
3600
3601 logd = floor_log2 (d);
3602 result = gen_reg_rtx (mode);
3603
3604 /* Avoid conditional branches when they're expensive. */
3605 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3606 && optimize_insn_for_speed_p ())
3607 {
3608 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3609 mode, 0, -1);
3610 if (signmask)
3611 {
3612 signmask = force_reg (mode, signmask);
3613 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3614 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3615
3616 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3617 which instruction sequence to use. If logical right shifts
3618 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3619 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3620
3621 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3622 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3623 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3624 {
3625 temp = expand_binop (mode, xor_optab, op0, signmask,
3626 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3627 temp = expand_binop (mode, sub_optab, temp, signmask,
3628 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3629 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3630 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3631 temp = expand_binop (mode, xor_optab, temp, signmask,
3632 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3633 temp = expand_binop (mode, sub_optab, temp, signmask,
3634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3635 }
3636 else
3637 {
3638 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3639 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3640 signmask = force_reg (mode, signmask);
3641
3642 temp = expand_binop (mode, add_optab, op0, signmask,
3643 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3645 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3646 temp = expand_binop (mode, sub_optab, temp, signmask,
3647 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3648 }
3649 return temp;
3650 }
3651 }
3652
3653 /* Mask contains the mode's signbit and the significant bits of the
3654 modulus. By including the signbit in the operation, many targets
3655 can avoid an explicit compare operation in the following comparison
3656 against zero. */
3657
3658 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3659 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3660 {
3661 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3662 maskhigh = -1;
3663 }
3664 else
3665 maskhigh = (HOST_WIDE_INT) -1
3666 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3667
3668 temp = expand_binop (mode, and_optab, op0,
3669 immed_double_const (masklow, maskhigh, mode),
3670 result, 1, OPTAB_LIB_WIDEN);
3671 if (temp != result)
3672 emit_move_insn (result, temp);
3673
3674 label = gen_label_rtx ();
3675 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3676
3677 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3678 0, OPTAB_LIB_WIDEN);
3679 masklow = (HOST_WIDE_INT) -1 << logd;
3680 maskhigh = -1;
3681 temp = expand_binop (mode, ior_optab, temp,
3682 immed_double_const (masklow, maskhigh, mode),
3683 result, 1, OPTAB_LIB_WIDEN);
3684 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3685 0, OPTAB_LIB_WIDEN);
3686 if (temp != result)
3687 emit_move_insn (result, temp);
3688 emit_label (label);
3689 return result;
3690 }
3691
3692 /* Expand signed division of OP0 by a power of two D in mode MODE.
3693 This routine is only called for positive values of D. */
3694
3695 static rtx
3696 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3697 {
3698 rtx temp, label;
3699 tree shift;
3700 int logd;
3701
3702 logd = floor_log2 (d);
3703 shift = build_int_cst (NULL_TREE, logd);
3704
3705 if (d == 2
3706 && BRANCH_COST (optimize_insn_for_speed_p (),
3707 false) >= 1)
3708 {
3709 temp = gen_reg_rtx (mode);
3710 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3711 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3712 0, OPTAB_LIB_WIDEN);
3713 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3714 }
3715
3716 #ifdef HAVE_conditional_move
3717 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3718 >= 2)
3719 {
3720 rtx temp2;
3721
3722 /* ??? emit_conditional_move forces a stack adjustment via
3723 compare_from_rtx so, if the sequence is discarded, it will
3724 be lost. Do it now instead. */
3725 do_pending_stack_adjust ();
3726
3727 start_sequence ();
3728 temp2 = copy_to_mode_reg (mode, op0);
3729 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3730 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3731 temp = force_reg (mode, temp);
3732
3733 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3734 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3735 mode, temp, temp2, mode, 0);
3736 if (temp2)
3737 {
3738 rtx seq = get_insns ();
3739 end_sequence ();
3740 emit_insn (seq);
3741 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3742 }
3743 end_sequence ();
3744 }
3745 #endif
3746
3747 if (BRANCH_COST (optimize_insn_for_speed_p (),
3748 false) >= 2)
3749 {
3750 int ushift = GET_MODE_BITSIZE (mode) - logd;
3751
3752 temp = gen_reg_rtx (mode);
3753 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3754 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3755 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3756 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3757 else
3758 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3759 build_int_cst (NULL_TREE, ushift),
3760 NULL_RTX, 1);
3761 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3762 0, OPTAB_LIB_WIDEN);
3763 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3764 }
3765
3766 label = gen_label_rtx ();
3767 temp = copy_to_mode_reg (mode, op0);
3768 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3769 expand_inc (temp, GEN_INT (d - 1));
3770 emit_label (label);
3771 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3772 }
3773 \f
3774 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3775 if that is convenient, and returning where the result is.
3776 You may request either the quotient or the remainder as the result;
3777 specify REM_FLAG nonzero to get the remainder.
3778
3779 CODE is the expression code for which kind of division this is;
3780 it controls how rounding is done. MODE is the machine mode to use.
3781 UNSIGNEDP nonzero means do unsigned division. */
3782
3783 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3784 and then correct it by or'ing in missing high bits
3785 if result of ANDI is nonzero.
3786 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3787 This could optimize to a bfexts instruction.
3788 But C doesn't use these operations, so their optimizations are
3789 left for later. */
3790 /* ??? For modulo, we don't actually need the highpart of the first product,
3791 the low part will do nicely. And for small divisors, the second multiply
3792 can also be a low-part only multiply or even be completely left out.
3793 E.g. to calculate the remainder of a division by 3 with a 32 bit
3794 multiply, multiply with 0x55555556 and extract the upper two bits;
3795 the result is exact for inputs up to 0x1fffffff.
3796 The input range can be reduced by using cross-sum rules.
3797 For odd divisors >= 3, the following table gives right shift counts
3798 so that if a number is shifted by an integer multiple of the given
3799 amount, the remainder stays the same:
3800 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3801 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3802 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3803 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3804 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3805
3806 Cross-sum rules for even numbers can be derived by leaving as many bits
3807 to the right alone as the divisor has zeros to the right.
3808 E.g. if x is an unsigned 32 bit number:
3809 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3810 */
3811
3812 rtx
3813 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3814 rtx op0, rtx op1, rtx target, int unsignedp)
3815 {
3816 enum machine_mode compute_mode;
3817 rtx tquotient;
3818 rtx quotient = 0, remainder = 0;
3819 rtx last;
3820 int size;
3821 rtx insn, set;
3822 optab optab1, optab2;
3823 int op1_is_constant, op1_is_pow2 = 0;
3824 int max_cost, extra_cost;
3825 static HOST_WIDE_INT last_div_const = 0;
3826 static HOST_WIDE_INT ext_op1;
3827 bool speed = optimize_insn_for_speed_p ();
3828
3829 op1_is_constant = CONST_INT_P (op1);
3830 if (op1_is_constant)
3831 {
3832 ext_op1 = INTVAL (op1);
3833 if (unsignedp)
3834 ext_op1 &= GET_MODE_MASK (mode);
3835 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3836 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3837 }
3838
3839 /*
3840 This is the structure of expand_divmod:
3841
3842 First comes code to fix up the operands so we can perform the operations
3843 correctly and efficiently.
3844
3845 Second comes a switch statement with code specific for each rounding mode.
3846 For some special operands this code emits all RTL for the desired
3847 operation, for other cases, it generates only a quotient and stores it in
3848 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3849 to indicate that it has not done anything.
3850
3851 Last comes code that finishes the operation. If QUOTIENT is set and
3852 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3853 QUOTIENT is not set, it is computed using trunc rounding.
3854
3855 We try to generate special code for division and remainder when OP1 is a
3856 constant. If |OP1| = 2**n we can use shifts and some other fast
3857 operations. For other values of OP1, we compute a carefully selected
3858 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3859 by m.
3860
3861 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3862 half of the product. Different strategies for generating the product are
3863 implemented in expand_mult_highpart.
3864
3865 If what we actually want is the remainder, we generate that by another
3866 by-constant multiplication and a subtraction. */
3867
3868 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3869 code below will malfunction if we are, so check here and handle
3870 the special case if so. */
3871 if (op1 == const1_rtx)
3872 return rem_flag ? const0_rtx : op0;
3873
3874 /* When dividing by -1, we could get an overflow.
3875 negv_optab can handle overflows. */
3876 if (! unsignedp && op1 == constm1_rtx)
3877 {
3878 if (rem_flag)
3879 return const0_rtx;
3880 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3881 ? negv_optab : neg_optab, op0, target, 0);
3882 }
3883
3884 if (target
3885 /* Don't use the function value register as a target
3886 since we have to read it as well as write it,
3887 and function-inlining gets confused by this. */
3888 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3889 /* Don't clobber an operand while doing a multi-step calculation. */
3890 || ((rem_flag || op1_is_constant)
3891 && (reg_mentioned_p (target, op0)
3892 || (MEM_P (op0) && MEM_P (target))))
3893 || reg_mentioned_p (target, op1)
3894 || (MEM_P (op1) && MEM_P (target))))
3895 target = 0;
3896
3897 /* Get the mode in which to perform this computation. Normally it will
3898 be MODE, but sometimes we can't do the desired operation in MODE.
3899 If so, pick a wider mode in which we can do the operation. Convert
3900 to that mode at the start to avoid repeated conversions.
3901
3902 First see what operations we need. These depend on the expression
3903 we are evaluating. (We assume that divxx3 insns exist under the
3904 same conditions that modxx3 insns and that these insns don't normally
3905 fail. If these assumptions are not correct, we may generate less
3906 efficient code in some cases.)
3907
3908 Then see if we find a mode in which we can open-code that operation
3909 (either a division, modulus, or shift). Finally, check for the smallest
3910 mode for which we can do the operation with a library call. */
3911
3912 /* We might want to refine this now that we have division-by-constant
3913 optimization. Since expand_mult_highpart tries so many variants, it is
3914 not straightforward to generalize this. Maybe we should make an array
3915 of possible modes in init_expmed? Save this for GCC 2.7. */
3916
3917 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3918 ? (unsignedp ? lshr_optab : ashr_optab)
3919 : (unsignedp ? udiv_optab : sdiv_optab));
3920 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3921 ? optab1
3922 : (unsignedp ? udivmod_optab : sdivmod_optab));
3923
3924 for (compute_mode = mode; compute_mode != VOIDmode;
3925 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3926 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3927 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3928 break;
3929
3930 if (compute_mode == VOIDmode)
3931 for (compute_mode = mode; compute_mode != VOIDmode;
3932 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3933 if (optab_libfunc (optab1, compute_mode)
3934 || optab_libfunc (optab2, compute_mode))
3935 break;
3936
3937 /* If we still couldn't find a mode, use MODE, but expand_binop will
3938 probably die. */
3939 if (compute_mode == VOIDmode)
3940 compute_mode = mode;
3941
3942 if (target && GET_MODE (target) == compute_mode)
3943 tquotient = target;
3944 else
3945 tquotient = gen_reg_rtx (compute_mode);
3946
3947 size = GET_MODE_BITSIZE (compute_mode);
3948 #if 0
3949 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3950 (mode), and thereby get better code when OP1 is a constant. Do that
3951 later. It will require going over all usages of SIZE below. */
3952 size = GET_MODE_BITSIZE (mode);
3953 #endif
3954
3955 /* Only deduct something for a REM if the last divide done was
3956 for a different constant. Then set the constant of the last
3957 divide. */
3958 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3959 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3960 && INTVAL (op1) == last_div_const))
3961 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3962
3963 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3964
3965 /* Now convert to the best mode to use. */
3966 if (compute_mode != mode)
3967 {
3968 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3969 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3970
3971 /* convert_modes may have placed op1 into a register, so we
3972 must recompute the following. */
3973 op1_is_constant = CONST_INT_P (op1);
3974 op1_is_pow2 = (op1_is_constant
3975 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3976 || (! unsignedp
3977 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3978 }
3979
3980 /* If one of the operands is a volatile MEM, copy it into a register. */
3981
3982 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3983 op0 = force_reg (compute_mode, op0);
3984 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3985 op1 = force_reg (compute_mode, op1);
3986
3987 /* If we need the remainder or if OP1 is constant, we need to
3988 put OP0 in a register in case it has any queued subexpressions. */
3989 if (rem_flag || op1_is_constant)
3990 op0 = force_reg (compute_mode, op0);
3991
3992 last = get_last_insn ();
3993
3994 /* Promote floor rounding to trunc rounding for unsigned operations. */
3995 if (unsignedp)
3996 {
3997 if (code == FLOOR_DIV_EXPR)
3998 code = TRUNC_DIV_EXPR;
3999 if (code == FLOOR_MOD_EXPR)
4000 code = TRUNC_MOD_EXPR;
4001 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4002 code = TRUNC_DIV_EXPR;
4003 }
4004
4005 if (op1 != const0_rtx)
4006 switch (code)
4007 {
4008 case TRUNC_MOD_EXPR:
4009 case TRUNC_DIV_EXPR:
4010 if (op1_is_constant)
4011 {
4012 if (unsignedp)
4013 {
4014 unsigned HOST_WIDE_INT mh;
4015 int pre_shift, post_shift;
4016 int dummy;
4017 rtx ml;
4018 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4019 & GET_MODE_MASK (compute_mode));
4020
4021 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4022 {
4023 pre_shift = floor_log2 (d);
4024 if (rem_flag)
4025 {
4026 remainder
4027 = expand_binop (compute_mode, and_optab, op0,
4028 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4029 remainder, 1,
4030 OPTAB_LIB_WIDEN);
4031 if (remainder)
4032 return gen_lowpart (mode, remainder);
4033 }
4034 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4035 build_int_cst (NULL_TREE,
4036 pre_shift),
4037 tquotient, 1);
4038 }
4039 else if (size <= HOST_BITS_PER_WIDE_INT)
4040 {
4041 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4042 {
4043 /* Most significant bit of divisor is set; emit an scc
4044 insn. */
4045 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4046 compute_mode, 1, 1);
4047 }
4048 else
4049 {
4050 /* Find a suitable multiplier and right shift count
4051 instead of multiplying with D. */
4052
4053 mh = choose_multiplier (d, size, size,
4054 &ml, &post_shift, &dummy);
4055
4056 /* If the suggested multiplier is more than SIZE bits,
4057 we can do better for even divisors, using an
4058 initial right shift. */
4059 if (mh != 0 && (d & 1) == 0)
4060 {
4061 pre_shift = floor_log2 (d & -d);
4062 mh = choose_multiplier (d >> pre_shift, size,
4063 size - pre_shift,
4064 &ml, &post_shift, &dummy);
4065 gcc_assert (!mh);
4066 }
4067 else
4068 pre_shift = 0;
4069
4070 if (mh != 0)
4071 {
4072 rtx t1, t2, t3, t4;
4073
4074 if (post_shift - 1 >= BITS_PER_WORD)
4075 goto fail1;
4076
4077 extra_cost
4078 = (shift_cost[speed][compute_mode][post_shift - 1]
4079 + shift_cost[speed][compute_mode][1]
4080 + 2 * add_cost[speed][compute_mode]);
4081 t1 = expand_mult_highpart (compute_mode, op0, ml,
4082 NULL_RTX, 1,
4083 max_cost - extra_cost);
4084 if (t1 == 0)
4085 goto fail1;
4086 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4087 op0, t1),
4088 NULL_RTX);
4089 t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
4090 integer_one_node, NULL_RTX, 1);
4091 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4092 t1, t3),
4093 NULL_RTX);
4094 quotient = expand_shift
4095 (RSHIFT_EXPR, compute_mode, t4,
4096 build_int_cst (NULL_TREE, post_shift - 1),
4097 tquotient, 1);
4098 }
4099 else
4100 {
4101 rtx t1, t2;
4102
4103 if (pre_shift >= BITS_PER_WORD
4104 || post_shift >= BITS_PER_WORD)
4105 goto fail1;
4106
4107 t1 = expand_shift
4108 (RSHIFT_EXPR, compute_mode, op0,
4109 build_int_cst (NULL_TREE, pre_shift),
4110 NULL_RTX, 1);
4111 extra_cost
4112 = (shift_cost[speed][compute_mode][pre_shift]
4113 + shift_cost[speed][compute_mode][post_shift]);
4114 t2 = expand_mult_highpart (compute_mode, t1, ml,
4115 NULL_RTX, 1,
4116 max_cost - extra_cost);
4117 if (t2 == 0)
4118 goto fail1;
4119 quotient = expand_shift
4120 (RSHIFT_EXPR, compute_mode, t2,
4121 build_int_cst (NULL_TREE, post_shift),
4122 tquotient, 1);
4123 }
4124 }
4125 }
4126 else /* Too wide mode to use tricky code */
4127 break;
4128
4129 insn = get_last_insn ();
4130 if (insn != last
4131 && (set = single_set (insn)) != 0
4132 && SET_DEST (set) == quotient)
4133 set_unique_reg_note (insn,
4134 REG_EQUAL,
4135 gen_rtx_UDIV (compute_mode, op0, op1));
4136 }
4137 else /* TRUNC_DIV, signed */
4138 {
4139 unsigned HOST_WIDE_INT ml;
4140 int lgup, post_shift;
4141 rtx mlr;
4142 HOST_WIDE_INT d = INTVAL (op1);
4143 unsigned HOST_WIDE_INT abs_d;
4144
4145 /* Since d might be INT_MIN, we have to cast to
4146 unsigned HOST_WIDE_INT before negating to avoid
4147 undefined signed overflow. */
4148 abs_d = (d >= 0
4149 ? (unsigned HOST_WIDE_INT) d
4150 : - (unsigned HOST_WIDE_INT) d);
4151
4152 /* n rem d = n rem -d */
4153 if (rem_flag && d < 0)
4154 {
4155 d = abs_d;
4156 op1 = gen_int_mode (abs_d, compute_mode);
4157 }
4158
4159 if (d == 1)
4160 quotient = op0;
4161 else if (d == -1)
4162 quotient = expand_unop (compute_mode, neg_optab, op0,
4163 tquotient, 0);
4164 else if (HOST_BITS_PER_WIDE_INT >= size
4165 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4166 {
4167 /* This case is not handled correctly below. */
4168 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4169 compute_mode, 1, 1);
4170 if (quotient == 0)
4171 goto fail1;
4172 }
4173 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4174 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4175 : sdiv_pow2_cheap[speed][compute_mode])
4176 /* We assume that cheap metric is true if the
4177 optab has an expander for this mode. */
4178 && ((optab_handler ((rem_flag ? smod_optab
4179 : sdiv_optab),
4180 compute_mode)
4181 != CODE_FOR_nothing)
4182 || (optab_handler (sdivmod_optab,
4183 compute_mode)
4184 != CODE_FOR_nothing)))
4185 ;
4186 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4187 {
4188 if (rem_flag)
4189 {
4190 remainder = expand_smod_pow2 (compute_mode, op0, d);
4191 if (remainder)
4192 return gen_lowpart (mode, remainder);
4193 }
4194
4195 if (sdiv_pow2_cheap[speed][compute_mode]
4196 && ((optab_handler (sdiv_optab, compute_mode)
4197 != CODE_FOR_nothing)
4198 || (optab_handler (sdivmod_optab, compute_mode)
4199 != CODE_FOR_nothing)))
4200 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4201 compute_mode, op0,
4202 gen_int_mode (abs_d,
4203 compute_mode),
4204 NULL_RTX, 0);
4205 else
4206 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4207
4208 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4209 negate the quotient. */
4210 if (d < 0)
4211 {
4212 insn = get_last_insn ();
4213 if (insn != last
4214 && (set = single_set (insn)) != 0
4215 && SET_DEST (set) == quotient
4216 && abs_d < ((unsigned HOST_WIDE_INT) 1
4217 << (HOST_BITS_PER_WIDE_INT - 1)))
4218 set_unique_reg_note (insn,
4219 REG_EQUAL,
4220 gen_rtx_DIV (compute_mode,
4221 op0,
4222 GEN_INT
4223 (trunc_int_for_mode
4224 (abs_d,
4225 compute_mode))));
4226
4227 quotient = expand_unop (compute_mode, neg_optab,
4228 quotient, quotient, 0);
4229 }
4230 }
4231 else if (size <= HOST_BITS_PER_WIDE_INT)
4232 {
4233 choose_multiplier (abs_d, size, size - 1,
4234 &mlr, &post_shift, &lgup);
4235 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4236 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4237 {
4238 rtx t1, t2, t3;
4239
4240 if (post_shift >= BITS_PER_WORD
4241 || size - 1 >= BITS_PER_WORD)
4242 goto fail1;
4243
4244 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4245 + shift_cost[speed][compute_mode][size - 1]
4246 + add_cost[speed][compute_mode]);
4247 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4248 NULL_RTX, 0,
4249 max_cost - extra_cost);
4250 if (t1 == 0)
4251 goto fail1;
4252 t2 = expand_shift
4253 (RSHIFT_EXPR, compute_mode, t1,
4254 build_int_cst (NULL_TREE, post_shift),
4255 NULL_RTX, 0);
4256 t3 = expand_shift
4257 (RSHIFT_EXPR, compute_mode, op0,
4258 build_int_cst (NULL_TREE, size - 1),
4259 NULL_RTX, 0);
4260 if (d < 0)
4261 quotient
4262 = force_operand (gen_rtx_MINUS (compute_mode,
4263 t3, t2),
4264 tquotient);
4265 else
4266 quotient
4267 = force_operand (gen_rtx_MINUS (compute_mode,
4268 t2, t3),
4269 tquotient);
4270 }
4271 else
4272 {
4273 rtx t1, t2, t3, t4;
4274
4275 if (post_shift >= BITS_PER_WORD
4276 || size - 1 >= BITS_PER_WORD)
4277 goto fail1;
4278
4279 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4280 mlr = gen_int_mode (ml, compute_mode);
4281 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4282 + shift_cost[speed][compute_mode][size - 1]
4283 + 2 * add_cost[speed][compute_mode]);
4284 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4285 NULL_RTX, 0,
4286 max_cost - extra_cost);
4287 if (t1 == 0)
4288 goto fail1;
4289 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4290 t1, op0),
4291 NULL_RTX);
4292 t3 = expand_shift
4293 (RSHIFT_EXPR, compute_mode, t2,
4294 build_int_cst (NULL_TREE, post_shift),
4295 NULL_RTX, 0);
4296 t4 = expand_shift
4297 (RSHIFT_EXPR, compute_mode, op0,
4298 build_int_cst (NULL_TREE, size - 1),
4299 NULL_RTX, 0);
4300 if (d < 0)
4301 quotient
4302 = force_operand (gen_rtx_MINUS (compute_mode,
4303 t4, t3),
4304 tquotient);
4305 else
4306 quotient
4307 = force_operand (gen_rtx_MINUS (compute_mode,
4308 t3, t4),
4309 tquotient);
4310 }
4311 }
4312 else /* Too wide mode to use tricky code */
4313 break;
4314
4315 insn = get_last_insn ();
4316 if (insn != last
4317 && (set = single_set (insn)) != 0
4318 && SET_DEST (set) == quotient)
4319 set_unique_reg_note (insn,
4320 REG_EQUAL,
4321 gen_rtx_DIV (compute_mode, op0, op1));
4322 }
4323 break;
4324 }
4325 fail1:
4326 delete_insns_since (last);
4327 break;
4328
4329 case FLOOR_DIV_EXPR:
4330 case FLOOR_MOD_EXPR:
4331 /* We will come here only for signed operations. */
4332 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4333 {
4334 unsigned HOST_WIDE_INT mh;
4335 int pre_shift, lgup, post_shift;
4336 HOST_WIDE_INT d = INTVAL (op1);
4337 rtx ml;
4338
4339 if (d > 0)
4340 {
4341 /* We could just as easily deal with negative constants here,
4342 but it does not seem worth the trouble for GCC 2.6. */
4343 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4344 {
4345 pre_shift = floor_log2 (d);
4346 if (rem_flag)
4347 {
4348 remainder = expand_binop (compute_mode, and_optab, op0,
4349 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4350 remainder, 0, OPTAB_LIB_WIDEN);
4351 if (remainder)
4352 return gen_lowpart (mode, remainder);
4353 }
4354 quotient = expand_shift
4355 (RSHIFT_EXPR, compute_mode, op0,
4356 build_int_cst (NULL_TREE, pre_shift),
4357 tquotient, 0);
4358 }
4359 else
4360 {
4361 rtx t1, t2, t3, t4;
4362
4363 mh = choose_multiplier (d, size, size - 1,
4364 &ml, &post_shift, &lgup);
4365 gcc_assert (!mh);
4366
4367 if (post_shift < BITS_PER_WORD
4368 && size - 1 < BITS_PER_WORD)
4369 {
4370 t1 = expand_shift
4371 (RSHIFT_EXPR, compute_mode, op0,
4372 build_int_cst (NULL_TREE, size - 1),
4373 NULL_RTX, 0);
4374 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4375 NULL_RTX, 0, OPTAB_WIDEN);
4376 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4377 + shift_cost[speed][compute_mode][size - 1]
4378 + 2 * add_cost[speed][compute_mode]);
4379 t3 = expand_mult_highpart (compute_mode, t2, ml,
4380 NULL_RTX, 1,
4381 max_cost - extra_cost);
4382 if (t3 != 0)
4383 {
4384 t4 = expand_shift
4385 (RSHIFT_EXPR, compute_mode, t3,
4386 build_int_cst (NULL_TREE, post_shift),
4387 NULL_RTX, 1);
4388 quotient = expand_binop (compute_mode, xor_optab,
4389 t4, t1, tquotient, 0,
4390 OPTAB_WIDEN);
4391 }
4392 }
4393 }
4394 }
4395 else
4396 {
4397 rtx nsign, t1, t2, t3, t4;
4398 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4399 op0, constm1_rtx), NULL_RTX);
4400 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4401 0, OPTAB_WIDEN);
4402 nsign = expand_shift
4403 (RSHIFT_EXPR, compute_mode, t2,
4404 build_int_cst (NULL_TREE, size - 1),
4405 NULL_RTX, 0);
4406 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4407 NULL_RTX);
4408 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4409 NULL_RTX, 0);
4410 if (t4)
4411 {
4412 rtx t5;
4413 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4414 NULL_RTX, 0);
4415 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4416 t4, t5),
4417 tquotient);
4418 }
4419 }
4420 }
4421
4422 if (quotient != 0)
4423 break;
4424 delete_insns_since (last);
4425
4426 /* Try using an instruction that produces both the quotient and
4427 remainder, using truncation. We can easily compensate the quotient
4428 or remainder to get floor rounding, once we have the remainder.
4429 Notice that we compute also the final remainder value here,
4430 and return the result right away. */
4431 if (target == 0 || GET_MODE (target) != compute_mode)
4432 target = gen_reg_rtx (compute_mode);
4433
4434 if (rem_flag)
4435 {
4436 remainder
4437 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4438 quotient = gen_reg_rtx (compute_mode);
4439 }
4440 else
4441 {
4442 quotient
4443 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4444 remainder = gen_reg_rtx (compute_mode);
4445 }
4446
4447 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4448 quotient, remainder, 0))
4449 {
4450 /* This could be computed with a branch-less sequence.
4451 Save that for later. */
4452 rtx tem;
4453 rtx label = gen_label_rtx ();
4454 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4455 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4456 NULL_RTX, 0, OPTAB_WIDEN);
4457 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4458 expand_dec (quotient, const1_rtx);
4459 expand_inc (remainder, op1);
4460 emit_label (label);
4461 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4462 }
4463
4464 /* No luck with division elimination or divmod. Have to do it
4465 by conditionally adjusting op0 *and* the result. */
4466 {
4467 rtx label1, label2, label3, label4, label5;
4468 rtx adjusted_op0;
4469 rtx tem;
4470
4471 quotient = gen_reg_rtx (compute_mode);
4472 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4473 label1 = gen_label_rtx ();
4474 label2 = gen_label_rtx ();
4475 label3 = gen_label_rtx ();
4476 label4 = gen_label_rtx ();
4477 label5 = gen_label_rtx ();
4478 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4479 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4480 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4481 quotient, 0, OPTAB_LIB_WIDEN);
4482 if (tem != quotient)
4483 emit_move_insn (quotient, tem);
4484 emit_jump_insn (gen_jump (label5));
4485 emit_barrier ();
4486 emit_label (label1);
4487 expand_inc (adjusted_op0, const1_rtx);
4488 emit_jump_insn (gen_jump (label4));
4489 emit_barrier ();
4490 emit_label (label2);
4491 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4492 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4493 quotient, 0, OPTAB_LIB_WIDEN);
4494 if (tem != quotient)
4495 emit_move_insn (quotient, tem);
4496 emit_jump_insn (gen_jump (label5));
4497 emit_barrier ();
4498 emit_label (label3);
4499 expand_dec (adjusted_op0, const1_rtx);
4500 emit_label (label4);
4501 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4502 quotient, 0, OPTAB_LIB_WIDEN);
4503 if (tem != quotient)
4504 emit_move_insn (quotient, tem);
4505 expand_dec (quotient, const1_rtx);
4506 emit_label (label5);
4507 }
4508 break;
4509
4510 case CEIL_DIV_EXPR:
4511 case CEIL_MOD_EXPR:
4512 if (unsignedp)
4513 {
4514 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4515 {
4516 rtx t1, t2, t3;
4517 unsigned HOST_WIDE_INT d = INTVAL (op1);
4518 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4519 build_int_cst (NULL_TREE, floor_log2 (d)),
4520 tquotient, 1);
4521 t2 = expand_binop (compute_mode, and_optab, op0,
4522 GEN_INT (d - 1),
4523 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4524 t3 = gen_reg_rtx (compute_mode);
4525 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4526 compute_mode, 1, 1);
4527 if (t3 == 0)
4528 {
4529 rtx lab;
4530 lab = gen_label_rtx ();
4531 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4532 expand_inc (t1, const1_rtx);
4533 emit_label (lab);
4534 quotient = t1;
4535 }
4536 else
4537 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4538 t1, t3),
4539 tquotient);
4540 break;
4541 }
4542
4543 /* Try using an instruction that produces both the quotient and
4544 remainder, using truncation. We can easily compensate the
4545 quotient or remainder to get ceiling rounding, once we have the
4546 remainder. Notice that we compute also the final remainder
4547 value here, and return the result right away. */
4548 if (target == 0 || GET_MODE (target) != compute_mode)
4549 target = gen_reg_rtx (compute_mode);
4550
4551 if (rem_flag)
4552 {
4553 remainder = (REG_P (target)
4554 ? target : gen_reg_rtx (compute_mode));
4555 quotient = gen_reg_rtx (compute_mode);
4556 }
4557 else
4558 {
4559 quotient = (REG_P (target)
4560 ? target : gen_reg_rtx (compute_mode));
4561 remainder = gen_reg_rtx (compute_mode);
4562 }
4563
4564 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4565 remainder, 1))
4566 {
4567 /* This could be computed with a branch-less sequence.
4568 Save that for later. */
4569 rtx label = gen_label_rtx ();
4570 do_cmp_and_jump (remainder, const0_rtx, EQ,
4571 compute_mode, label);
4572 expand_inc (quotient, const1_rtx);
4573 expand_dec (remainder, op1);
4574 emit_label (label);
4575 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4576 }
4577
4578 /* No luck with division elimination or divmod. Have to do it
4579 by conditionally adjusting op0 *and* the result. */
4580 {
4581 rtx label1, label2;
4582 rtx adjusted_op0, tem;
4583
4584 quotient = gen_reg_rtx (compute_mode);
4585 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4586 label1 = gen_label_rtx ();
4587 label2 = gen_label_rtx ();
4588 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4589 compute_mode, label1);
4590 emit_move_insn (quotient, const0_rtx);
4591 emit_jump_insn (gen_jump (label2));
4592 emit_barrier ();
4593 emit_label (label1);
4594 expand_dec (adjusted_op0, const1_rtx);
4595 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4596 quotient, 1, OPTAB_LIB_WIDEN);
4597 if (tem != quotient)
4598 emit_move_insn (quotient, tem);
4599 expand_inc (quotient, const1_rtx);
4600 emit_label (label2);
4601 }
4602 }
4603 else /* signed */
4604 {
4605 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4606 && INTVAL (op1) >= 0)
4607 {
4608 /* This is extremely similar to the code for the unsigned case
4609 above. For 2.7 we should merge these variants, but for
4610 2.6.1 I don't want to touch the code for unsigned since that
4611 get used in C. The signed case will only be used by other
4612 languages (Ada). */
4613
4614 rtx t1, t2, t3;
4615 unsigned HOST_WIDE_INT d = INTVAL (op1);
4616 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4617 build_int_cst (NULL_TREE, floor_log2 (d)),
4618 tquotient, 0);
4619 t2 = expand_binop (compute_mode, and_optab, op0,
4620 GEN_INT (d - 1),
4621 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4622 t3 = gen_reg_rtx (compute_mode);
4623 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4624 compute_mode, 1, 1);
4625 if (t3 == 0)
4626 {
4627 rtx lab;
4628 lab = gen_label_rtx ();
4629 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4630 expand_inc (t1, const1_rtx);
4631 emit_label (lab);
4632 quotient = t1;
4633 }
4634 else
4635 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4636 t1, t3),
4637 tquotient);
4638 break;
4639 }
4640
4641 /* Try using an instruction that produces both the quotient and
4642 remainder, using truncation. We can easily compensate the
4643 quotient or remainder to get ceiling rounding, once we have the
4644 remainder. Notice that we compute also the final remainder
4645 value here, and return the result right away. */
4646 if (target == 0 || GET_MODE (target) != compute_mode)
4647 target = gen_reg_rtx (compute_mode);
4648 if (rem_flag)
4649 {
4650 remainder= (REG_P (target)
4651 ? target : gen_reg_rtx (compute_mode));
4652 quotient = gen_reg_rtx (compute_mode);
4653 }
4654 else
4655 {
4656 quotient = (REG_P (target)
4657 ? target : gen_reg_rtx (compute_mode));
4658 remainder = gen_reg_rtx (compute_mode);
4659 }
4660
4661 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4662 remainder, 0))
4663 {
4664 /* This could be computed with a branch-less sequence.
4665 Save that for later. */
4666 rtx tem;
4667 rtx label = gen_label_rtx ();
4668 do_cmp_and_jump (remainder, const0_rtx, EQ,
4669 compute_mode, label);
4670 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4671 NULL_RTX, 0, OPTAB_WIDEN);
4672 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4673 expand_inc (quotient, const1_rtx);
4674 expand_dec (remainder, op1);
4675 emit_label (label);
4676 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4677 }
4678
4679 /* No luck with division elimination or divmod. Have to do it
4680 by conditionally adjusting op0 *and* the result. */
4681 {
4682 rtx label1, label2, label3, label4, label5;
4683 rtx adjusted_op0;
4684 rtx tem;
4685
4686 quotient = gen_reg_rtx (compute_mode);
4687 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4688 label1 = gen_label_rtx ();
4689 label2 = gen_label_rtx ();
4690 label3 = gen_label_rtx ();
4691 label4 = gen_label_rtx ();
4692 label5 = gen_label_rtx ();
4693 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4694 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4695 compute_mode, label1);
4696 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4697 quotient, 0, OPTAB_LIB_WIDEN);
4698 if (tem != quotient)
4699 emit_move_insn (quotient, tem);
4700 emit_jump_insn (gen_jump (label5));
4701 emit_barrier ();
4702 emit_label (label1);
4703 expand_dec (adjusted_op0, const1_rtx);
4704 emit_jump_insn (gen_jump (label4));
4705 emit_barrier ();
4706 emit_label (label2);
4707 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4708 compute_mode, label3);
4709 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4710 quotient, 0, OPTAB_LIB_WIDEN);
4711 if (tem != quotient)
4712 emit_move_insn (quotient, tem);
4713 emit_jump_insn (gen_jump (label5));
4714 emit_barrier ();
4715 emit_label (label3);
4716 expand_inc (adjusted_op0, const1_rtx);
4717 emit_label (label4);
4718 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4719 quotient, 0, OPTAB_LIB_WIDEN);
4720 if (tem != quotient)
4721 emit_move_insn (quotient, tem);
4722 expand_inc (quotient, const1_rtx);
4723 emit_label (label5);
4724 }
4725 }
4726 break;
4727
4728 case EXACT_DIV_EXPR:
4729 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4730 {
4731 HOST_WIDE_INT d = INTVAL (op1);
4732 unsigned HOST_WIDE_INT ml;
4733 int pre_shift;
4734 rtx t1;
4735
4736 pre_shift = floor_log2 (d & -d);
4737 ml = invert_mod2n (d >> pre_shift, size);
4738 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4739 build_int_cst (NULL_TREE, pre_shift),
4740 NULL_RTX, unsignedp);
4741 quotient = expand_mult (compute_mode, t1,
4742 gen_int_mode (ml, compute_mode),
4743 NULL_RTX, 1);
4744
4745 insn = get_last_insn ();
4746 set_unique_reg_note (insn,
4747 REG_EQUAL,
4748 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4749 compute_mode,
4750 op0, op1));
4751 }
4752 break;
4753
4754 case ROUND_DIV_EXPR:
4755 case ROUND_MOD_EXPR:
4756 if (unsignedp)
4757 {
4758 rtx tem;
4759 rtx label;
4760 label = gen_label_rtx ();
4761 quotient = gen_reg_rtx (compute_mode);
4762 remainder = gen_reg_rtx (compute_mode);
4763 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4764 {
4765 rtx tem;
4766 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4767 quotient, 1, OPTAB_LIB_WIDEN);
4768 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4769 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4770 remainder, 1, OPTAB_LIB_WIDEN);
4771 }
4772 tem = plus_constant (op1, -1);
4773 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4774 integer_one_node, NULL_RTX, 1);
4775 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4776 expand_inc (quotient, const1_rtx);
4777 expand_dec (remainder, op1);
4778 emit_label (label);
4779 }
4780 else
4781 {
4782 rtx abs_rem, abs_op1, tem, mask;
4783 rtx label;
4784 label = gen_label_rtx ();
4785 quotient = gen_reg_rtx (compute_mode);
4786 remainder = gen_reg_rtx (compute_mode);
4787 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4788 {
4789 rtx tem;
4790 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4791 quotient, 0, OPTAB_LIB_WIDEN);
4792 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4793 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4794 remainder, 0, OPTAB_LIB_WIDEN);
4795 }
4796 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4797 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4798 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4799 integer_one_node, NULL_RTX, 1);
4800 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4801 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4802 NULL_RTX, 0, OPTAB_WIDEN);
4803 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4804 build_int_cst (NULL_TREE, size - 1),
4805 NULL_RTX, 0);
4806 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4807 NULL_RTX, 0, OPTAB_WIDEN);
4808 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4809 NULL_RTX, 0, OPTAB_WIDEN);
4810 expand_inc (quotient, tem);
4811 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4812 NULL_RTX, 0, OPTAB_WIDEN);
4813 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4814 NULL_RTX, 0, OPTAB_WIDEN);
4815 expand_dec (remainder, tem);
4816 emit_label (label);
4817 }
4818 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4819
4820 default:
4821 gcc_unreachable ();
4822 }
4823
4824 if (quotient == 0)
4825 {
4826 if (target && GET_MODE (target) != compute_mode)
4827 target = 0;
4828
4829 if (rem_flag)
4830 {
4831 /* Try to produce the remainder without producing the quotient.
4832 If we seem to have a divmod pattern that does not require widening,
4833 don't try widening here. We should really have a WIDEN argument
4834 to expand_twoval_binop, since what we'd really like to do here is
4835 1) try a mod insn in compute_mode
4836 2) try a divmod insn in compute_mode
4837 3) try a div insn in compute_mode and multiply-subtract to get
4838 remainder
4839 4) try the same things with widening allowed. */
4840 remainder
4841 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4842 op0, op1, target,
4843 unsignedp,
4844 ((optab_handler (optab2, compute_mode)
4845 != CODE_FOR_nothing)
4846 ? OPTAB_DIRECT : OPTAB_WIDEN));
4847 if (remainder == 0)
4848 {
4849 /* No luck there. Can we do remainder and divide at once
4850 without a library call? */
4851 remainder = gen_reg_rtx (compute_mode);
4852 if (! expand_twoval_binop ((unsignedp
4853 ? udivmod_optab
4854 : sdivmod_optab),
4855 op0, op1,
4856 NULL_RTX, remainder, unsignedp))
4857 remainder = 0;
4858 }
4859
4860 if (remainder)
4861 return gen_lowpart (mode, remainder);
4862 }
4863
4864 /* Produce the quotient. Try a quotient insn, but not a library call.
4865 If we have a divmod in this mode, use it in preference to widening
4866 the div (for this test we assume it will not fail). Note that optab2
4867 is set to the one of the two optabs that the call below will use. */
4868 quotient
4869 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4870 op0, op1, rem_flag ? NULL_RTX : target,
4871 unsignedp,
4872 ((optab_handler (optab2, compute_mode)
4873 != CODE_FOR_nothing)
4874 ? OPTAB_DIRECT : OPTAB_WIDEN));
4875
4876 if (quotient == 0)
4877 {
4878 /* No luck there. Try a quotient-and-remainder insn,
4879 keeping the quotient alone. */
4880 quotient = gen_reg_rtx (compute_mode);
4881 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4882 op0, op1,
4883 quotient, NULL_RTX, unsignedp))
4884 {
4885 quotient = 0;
4886 if (! rem_flag)
4887 /* Still no luck. If we are not computing the remainder,
4888 use a library call for the quotient. */
4889 quotient = sign_expand_binop (compute_mode,
4890 udiv_optab, sdiv_optab,
4891 op0, op1, target,
4892 unsignedp, OPTAB_LIB_WIDEN);
4893 }
4894 }
4895 }
4896
4897 if (rem_flag)
4898 {
4899 if (target && GET_MODE (target) != compute_mode)
4900 target = 0;
4901
4902 if (quotient == 0)
4903 {
4904 /* No divide instruction either. Use library for remainder. */
4905 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4906 op0, op1, target,
4907 unsignedp, OPTAB_LIB_WIDEN);
4908 /* No remainder function. Try a quotient-and-remainder
4909 function, keeping the remainder. */
4910 if (!remainder)
4911 {
4912 remainder = gen_reg_rtx (compute_mode);
4913 if (!expand_twoval_binop_libfunc
4914 (unsignedp ? udivmod_optab : sdivmod_optab,
4915 op0, op1,
4916 NULL_RTX, remainder,
4917 unsignedp ? UMOD : MOD))
4918 remainder = NULL_RTX;
4919 }
4920 }
4921 else
4922 {
4923 /* We divided. Now finish doing X - Y * (X / Y). */
4924 remainder = expand_mult (compute_mode, quotient, op1,
4925 NULL_RTX, unsignedp);
4926 remainder = expand_binop (compute_mode, sub_optab, op0,
4927 remainder, target, unsignedp,
4928 OPTAB_LIB_WIDEN);
4929 }
4930 }
4931
4932 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4933 }
4934 \f
4935 /* Return a tree node with data type TYPE, describing the value of X.
4936 Usually this is an VAR_DECL, if there is no obvious better choice.
4937 X may be an expression, however we only support those expressions
4938 generated by loop.c. */
4939
4940 tree
4941 make_tree (tree type, rtx x)
4942 {
4943 tree t;
4944
4945 switch (GET_CODE (x))
4946 {
4947 case CONST_INT:
4948 {
4949 HOST_WIDE_INT hi = 0;
4950
4951 if (INTVAL (x) < 0
4952 && !(TYPE_UNSIGNED (type)
4953 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4954 < HOST_BITS_PER_WIDE_INT)))
4955 hi = -1;
4956
4957 t = build_int_cst_wide (type, INTVAL (x), hi);
4958
4959 return t;
4960 }
4961
4962 case CONST_DOUBLE:
4963 if (GET_MODE (x) == VOIDmode)
4964 t = build_int_cst_wide (type,
4965 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4966 else
4967 {
4968 REAL_VALUE_TYPE d;
4969
4970 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4971 t = build_real (type, d);
4972 }
4973
4974 return t;
4975
4976 case CONST_VECTOR:
4977 {
4978 int units = CONST_VECTOR_NUNITS (x);
4979 tree itype = TREE_TYPE (type);
4980 tree t = NULL_TREE;
4981 int i;
4982
4983
4984 /* Build a tree with vector elements. */
4985 for (i = units - 1; i >= 0; --i)
4986 {
4987 rtx elt = CONST_VECTOR_ELT (x, i);
4988 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4989 }
4990
4991 return build_vector (type, t);
4992 }
4993
4994 case PLUS:
4995 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4996 make_tree (type, XEXP (x, 1)));
4997
4998 case MINUS:
4999 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5000 make_tree (type, XEXP (x, 1)));
5001
5002 case NEG:
5003 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5004
5005 case MULT:
5006 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5007 make_tree (type, XEXP (x, 1)));
5008
5009 case ASHIFT:
5010 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5011 make_tree (type, XEXP (x, 1)));
5012
5013 case LSHIFTRT:
5014 t = unsigned_type_for (type);
5015 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5016 make_tree (t, XEXP (x, 0)),
5017 make_tree (type, XEXP (x, 1))));
5018
5019 case ASHIFTRT:
5020 t = signed_type_for (type);
5021 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5022 make_tree (t, XEXP (x, 0)),
5023 make_tree (type, XEXP (x, 1))));
5024
5025 case DIV:
5026 if (TREE_CODE (type) != REAL_TYPE)
5027 t = signed_type_for (type);
5028 else
5029 t = type;
5030
5031 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5032 make_tree (t, XEXP (x, 0)),
5033 make_tree (t, XEXP (x, 1))));
5034 case UDIV:
5035 t = unsigned_type_for (type);
5036 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5037 make_tree (t, XEXP (x, 0)),
5038 make_tree (t, XEXP (x, 1))));
5039
5040 case SIGN_EXTEND:
5041 case ZERO_EXTEND:
5042 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5043 GET_CODE (x) == ZERO_EXTEND);
5044 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5045
5046 case CONST:
5047 return make_tree (type, XEXP (x, 0));
5048
5049 case SYMBOL_REF:
5050 t = SYMBOL_REF_DECL (x);
5051 if (t)
5052 return fold_convert (type, build_fold_addr_expr (t));
5053 /* else fall through. */
5054
5055 default:
5056 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5057
5058 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5059 address mode to pointer mode. */
5060 if (POINTER_TYPE_P (type))
5061 x = convert_memory_address_addr_space
5062 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5063
5064 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5065 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5066 t->decl_with_rtl.rtl = x;
5067
5068 return t;
5069 }
5070 }
5071 \f
5072 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5073 and returning TARGET.
5074
5075 If TARGET is 0, a pseudo-register or constant is returned. */
5076
5077 rtx
5078 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5079 {
5080 rtx tem = 0;
5081
5082 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5083 tem = simplify_binary_operation (AND, mode, op0, op1);
5084 if (tem == 0)
5085 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5086
5087 if (target == 0)
5088 target = tem;
5089 else if (tem != target)
5090 emit_move_insn (target, tem);
5091 return target;
5092 }
5093
5094 /* Helper function for emit_store_flag. */
5095 static rtx
5096 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5097 enum machine_mode mode, enum machine_mode compare_mode,
5098 int unsignedp, rtx x, rtx y, int normalizep,
5099 enum machine_mode target_mode)
5100 {
5101 rtx op0, last, comparison, subtarget, pattern;
5102 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5103
5104 last = get_last_insn ();
5105 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5106 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5107 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5108 if (!x || !y
5109 || !insn_data[icode].operand[2].predicate
5110 (x, insn_data[icode].operand[2].mode)
5111 || !insn_data[icode].operand[3].predicate
5112 (y, insn_data[icode].operand[3].mode)
5113 || !insn_data[icode].operand[1].predicate (comparison, VOIDmode))
5114 {
5115 delete_insns_since (last);
5116 return NULL_RTX;
5117 }
5118
5119 if (target_mode == VOIDmode)
5120 target_mode = result_mode;
5121 if (!target)
5122 target = gen_reg_rtx (target_mode);
5123
5124 if (optimize
5125 || !(insn_data[(int) icode].operand[0].predicate (target, result_mode)))
5126 subtarget = gen_reg_rtx (result_mode);
5127 else
5128 subtarget = target;
5129
5130 pattern = GEN_FCN (icode) (subtarget, comparison, x, y);
5131 if (!pattern)
5132 return NULL_RTX;
5133 emit_insn (pattern);
5134
5135 /* If we are converting to a wider mode, first convert to
5136 TARGET_MODE, then normalize. This produces better combining
5137 opportunities on machines that have a SIGN_EXTRACT when we are
5138 testing a single bit. This mostly benefits the 68k.
5139
5140 If STORE_FLAG_VALUE does not have the sign bit set when
5141 interpreted in MODE, we can do this conversion as unsigned, which
5142 is usually more efficient. */
5143 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5144 {
5145 convert_move (target, subtarget,
5146 (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT)
5147 && 0 == (STORE_FLAG_VALUE
5148 & ((HOST_WIDE_INT) 1
5149 << (GET_MODE_BITSIZE (result_mode) -1))));
5150 op0 = target;
5151 result_mode = target_mode;
5152 }
5153 else
5154 op0 = subtarget;
5155
5156 /* If we want to keep subexpressions around, don't reuse our last
5157 target. */
5158 if (optimize)
5159 subtarget = 0;
5160
5161 /* Now normalize to the proper value in MODE. Sometimes we don't
5162 have to do anything. */
5163 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5164 ;
5165 /* STORE_FLAG_VALUE might be the most negative number, so write
5166 the comparison this way to avoid a compiler-time warning. */
5167 else if (- normalizep == STORE_FLAG_VALUE)
5168 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5169
5170 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5171 it hard to use a value of just the sign bit due to ANSI integer
5172 constant typing rules. */
5173 else if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
5174 && (STORE_FLAG_VALUE
5175 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
5176 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5177 size_int (GET_MODE_BITSIZE (result_mode) - 1), subtarget,
5178 normalizep == 1);
5179 else
5180 {
5181 gcc_assert (STORE_FLAG_VALUE & 1);
5182
5183 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5184 if (normalizep == -1)
5185 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5186 }
5187
5188 /* If we were converting to a smaller mode, do the conversion now. */
5189 if (target_mode != result_mode)
5190 {
5191 convert_move (target, op0, 0);
5192 return target;
5193 }
5194 else
5195 return op0;
5196 }
5197
5198
5199 /* A subroutine of emit_store_flag only including "tricks" that do not
5200 need a recursive call. These are kept separate to avoid infinite
5201 loops. */
5202
5203 static rtx
5204 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5205 enum machine_mode mode, int unsignedp, int normalizep,
5206 enum machine_mode target_mode)
5207 {
5208 rtx subtarget;
5209 enum insn_code icode;
5210 enum machine_mode compare_mode;
5211 enum mode_class mclass;
5212 enum rtx_code scode;
5213 rtx tem;
5214
5215 if (unsignedp)
5216 code = unsigned_condition (code);
5217 scode = swap_condition (code);
5218
5219 /* If one operand is constant, make it the second one. Only do this
5220 if the other operand is not constant as well. */
5221
5222 if (swap_commutative_operands_p (op0, op1))
5223 {
5224 tem = op0;
5225 op0 = op1;
5226 op1 = tem;
5227 code = swap_condition (code);
5228 }
5229
5230 if (mode == VOIDmode)
5231 mode = GET_MODE (op0);
5232
5233 /* For some comparisons with 1 and -1, we can convert this to
5234 comparisons with zero. This will often produce more opportunities for
5235 store-flag insns. */
5236
5237 switch (code)
5238 {
5239 case LT:
5240 if (op1 == const1_rtx)
5241 op1 = const0_rtx, code = LE;
5242 break;
5243 case LE:
5244 if (op1 == constm1_rtx)
5245 op1 = const0_rtx, code = LT;
5246 break;
5247 case GE:
5248 if (op1 == const1_rtx)
5249 op1 = const0_rtx, code = GT;
5250 break;
5251 case GT:
5252 if (op1 == constm1_rtx)
5253 op1 = const0_rtx, code = GE;
5254 break;
5255 case GEU:
5256 if (op1 == const1_rtx)
5257 op1 = const0_rtx, code = NE;
5258 break;
5259 case LTU:
5260 if (op1 == const1_rtx)
5261 op1 = const0_rtx, code = EQ;
5262 break;
5263 default:
5264 break;
5265 }
5266
5267 /* If we are comparing a double-word integer with zero or -1, we can
5268 convert the comparison into one involving a single word. */
5269 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5270 && GET_MODE_CLASS (mode) == MODE_INT
5271 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5272 {
5273 if ((code == EQ || code == NE)
5274 && (op1 == const0_rtx || op1 == constm1_rtx))
5275 {
5276 rtx op00, op01;
5277
5278 /* Do a logical OR or AND of the two words and compare the
5279 result. */
5280 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5281 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5282 tem = expand_binop (word_mode,
5283 op1 == const0_rtx ? ior_optab : and_optab,
5284 op00, op01, NULL_RTX, unsignedp,
5285 OPTAB_DIRECT);
5286
5287 if (tem != 0)
5288 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5289 unsignedp, normalizep);
5290 }
5291 else if ((code == LT || code == GE) && op1 == const0_rtx)
5292 {
5293 rtx op0h;
5294
5295 /* If testing the sign bit, can just test on high word. */
5296 op0h = simplify_gen_subreg (word_mode, op0, mode,
5297 subreg_highpart_offset (word_mode,
5298 mode));
5299 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5300 unsignedp, normalizep);
5301 }
5302 else
5303 tem = NULL_RTX;
5304
5305 if (tem)
5306 {
5307 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5308 return tem;
5309 if (!target)
5310 target = gen_reg_rtx (target_mode);
5311
5312 convert_move (target, tem,
5313 0 == ((normalizep ? normalizep : STORE_FLAG_VALUE)
5314 & ((HOST_WIDE_INT) 1
5315 << (GET_MODE_BITSIZE (word_mode) -1))));
5316 return target;
5317 }
5318 }
5319
5320 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5321 complement of A (for GE) and shifting the sign bit to the low bit. */
5322 if (op1 == const0_rtx && (code == LT || code == GE)
5323 && GET_MODE_CLASS (mode) == MODE_INT
5324 && (normalizep || STORE_FLAG_VALUE == 1
5325 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5326 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5327 == ((unsigned HOST_WIDE_INT) 1
5328 << (GET_MODE_BITSIZE (mode) - 1))))))
5329 {
5330 subtarget = target;
5331
5332 if (!target)
5333 target_mode = mode;
5334
5335 /* If the result is to be wider than OP0, it is best to convert it
5336 first. If it is to be narrower, it is *incorrect* to convert it
5337 first. */
5338 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5339 {
5340 op0 = convert_modes (target_mode, mode, op0, 0);
5341 mode = target_mode;
5342 }
5343
5344 if (target_mode != mode)
5345 subtarget = 0;
5346
5347 if (code == GE)
5348 op0 = expand_unop (mode, one_cmpl_optab, op0,
5349 ((STORE_FLAG_VALUE == 1 || normalizep)
5350 ? 0 : subtarget), 0);
5351
5352 if (STORE_FLAG_VALUE == 1 || normalizep)
5353 /* If we are supposed to produce a 0/1 value, we want to do
5354 a logical shift from the sign bit to the low-order bit; for
5355 a -1/0 value, we do an arithmetic shift. */
5356 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5357 size_int (GET_MODE_BITSIZE (mode) - 1),
5358 subtarget, normalizep != -1);
5359
5360 if (mode != target_mode)
5361 op0 = convert_modes (target_mode, mode, op0, 0);
5362
5363 return op0;
5364 }
5365
5366 mclass = GET_MODE_CLASS (mode);
5367 for (compare_mode = mode; compare_mode != VOIDmode;
5368 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5369 {
5370 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5371 icode = optab_handler (cstore_optab, optab_mode);
5372 if (icode != CODE_FOR_nothing)
5373 {
5374 do_pending_stack_adjust ();
5375 tem = emit_cstore (target, icode, code, mode, compare_mode,
5376 unsignedp, op0, op1, normalizep, target_mode);
5377 if (tem)
5378 return tem;
5379
5380 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5381 {
5382 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5383 unsignedp, op1, op0, normalizep, target_mode);
5384 if (tem)
5385 return tem;
5386 }
5387 break;
5388 }
5389 }
5390
5391 return 0;
5392 }
5393
5394 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5395 and storing in TARGET. Normally return TARGET.
5396 Return 0 if that cannot be done.
5397
5398 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5399 it is VOIDmode, they cannot both be CONST_INT.
5400
5401 UNSIGNEDP is for the case where we have to widen the operands
5402 to perform the operation. It says to use zero-extension.
5403
5404 NORMALIZEP is 1 if we should convert the result to be either zero
5405 or one. Normalize is -1 if we should convert the result to be
5406 either zero or -1. If NORMALIZEP is zero, the result will be left
5407 "raw" out of the scc insn. */
5408
5409 rtx
5410 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5411 enum machine_mode mode, int unsignedp, int normalizep)
5412 {
5413 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5414 enum rtx_code rcode;
5415 rtx subtarget;
5416 rtx tem, last, trueval;
5417
5418 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5419 target_mode);
5420 if (tem)
5421 return tem;
5422
5423 /* If we reached here, we can't do this with a scc insn, however there
5424 are some comparisons that can be done in other ways. Don't do any
5425 of these cases if branches are very cheap. */
5426 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5427 return 0;
5428
5429 /* See what we need to return. We can only return a 1, -1, or the
5430 sign bit. */
5431
5432 if (normalizep == 0)
5433 {
5434 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5435 normalizep = STORE_FLAG_VALUE;
5436
5437 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5438 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5439 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5440 ;
5441 else
5442 return 0;
5443 }
5444
5445 last = get_last_insn ();
5446
5447 /* If optimizing, use different pseudo registers for each insn, instead
5448 of reusing the same pseudo. This leads to better CSE, but slows
5449 down the compiler, since there are more pseudos */
5450 subtarget = (!optimize
5451 && (target_mode == mode)) ? target : NULL_RTX;
5452 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5453
5454 /* For floating-point comparisons, try the reverse comparison or try
5455 changing the "orderedness" of the comparison. */
5456 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5457 {
5458 enum rtx_code first_code;
5459 bool and_them;
5460
5461 rcode = reverse_condition_maybe_unordered (code);
5462 if (can_compare_p (rcode, mode, ccp_store_flag)
5463 && (code == ORDERED || code == UNORDERED
5464 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5465 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5466 {
5467 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5468 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5469
5470 /* For the reverse comparison, use either an addition or a XOR. */
5471 if (want_add
5472 && rtx_cost (GEN_INT (normalizep), PLUS,
5473 optimize_insn_for_speed_p ()) == 0)
5474 {
5475 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5476 STORE_FLAG_VALUE, target_mode);
5477 if (tem)
5478 return expand_binop (target_mode, add_optab, tem,
5479 GEN_INT (normalizep),
5480 target, 0, OPTAB_WIDEN);
5481 }
5482 else if (!want_add
5483 && rtx_cost (trueval, XOR,
5484 optimize_insn_for_speed_p ()) == 0)
5485 {
5486 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5487 normalizep, target_mode);
5488 if (tem)
5489 return expand_binop (target_mode, xor_optab, tem, trueval,
5490 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5491 }
5492 }
5493
5494 delete_insns_since (last);
5495
5496 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5497 if (code == ORDERED || code == UNORDERED)
5498 return 0;
5499
5500 and_them = split_comparison (code, mode, &first_code, &code);
5501
5502 /* If there are no NaNs, the first comparison should always fall through.
5503 Effectively change the comparison to the other one. */
5504 if (!HONOR_NANS (mode))
5505 {
5506 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5507 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5508 target_mode);
5509 }
5510
5511 #ifdef HAVE_conditional_move
5512 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5513 conditional move. */
5514 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5515 normalizep, target_mode);
5516 if (tem == 0)
5517 return 0;
5518
5519 if (and_them)
5520 tem = emit_conditional_move (target, code, op0, op1, mode,
5521 tem, const0_rtx, GET_MODE (tem), 0);
5522 else
5523 tem = emit_conditional_move (target, code, op0, op1, mode,
5524 trueval, tem, GET_MODE (tem), 0);
5525
5526 if (tem == 0)
5527 delete_insns_since (last);
5528 return tem;
5529 #else
5530 return 0;
5531 #endif
5532 }
5533
5534 /* The remaining tricks only apply to integer comparisons. */
5535
5536 if (GET_MODE_CLASS (mode) != MODE_INT)
5537 return 0;
5538
5539 /* If this is an equality comparison of integers, we can try to exclusive-or
5540 (or subtract) the two operands and use a recursive call to try the
5541 comparison with zero. Don't do any of these cases if branches are
5542 very cheap. */
5543
5544 if ((code == EQ || code == NE) && op1 != const0_rtx)
5545 {
5546 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5547 OPTAB_WIDEN);
5548
5549 if (tem == 0)
5550 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5551 OPTAB_WIDEN);
5552 if (tem != 0)
5553 tem = emit_store_flag (target, code, tem, const0_rtx,
5554 mode, unsignedp, normalizep);
5555 if (tem != 0)
5556 return tem;
5557
5558 delete_insns_since (last);
5559 }
5560
5561 /* For integer comparisons, try the reverse comparison. However, for
5562 small X and if we'd have anyway to extend, implementing "X != 0"
5563 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5564 rcode = reverse_condition (code);
5565 if (can_compare_p (rcode, mode, ccp_store_flag)
5566 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5567 && code == NE
5568 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5569 && op1 == const0_rtx))
5570 {
5571 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5572 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5573
5574 /* Again, for the reverse comparison, use either an addition or a XOR. */
5575 if (want_add
5576 && rtx_cost (GEN_INT (normalizep), PLUS,
5577 optimize_insn_for_speed_p ()) == 0)
5578 {
5579 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5580 STORE_FLAG_VALUE, target_mode);
5581 if (tem != 0)
5582 tem = expand_binop (target_mode, add_optab, tem,
5583 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5584 }
5585 else if (!want_add
5586 && rtx_cost (trueval, XOR,
5587 optimize_insn_for_speed_p ()) == 0)
5588 {
5589 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5590 normalizep, target_mode);
5591 if (tem != 0)
5592 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5593 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5594 }
5595
5596 if (tem != 0)
5597 return tem;
5598 delete_insns_since (last);
5599 }
5600
5601 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5602 the constant zero. Reject all other comparisons at this point. Only
5603 do LE and GT if branches are expensive since they are expensive on
5604 2-operand machines. */
5605
5606 if (op1 != const0_rtx
5607 || (code != EQ && code != NE
5608 && (BRANCH_COST (optimize_insn_for_speed_p (),
5609 false) <= 1 || (code != LE && code != GT))))
5610 return 0;
5611
5612 /* Try to put the result of the comparison in the sign bit. Assume we can't
5613 do the necessary operation below. */
5614
5615 tem = 0;
5616
5617 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5618 the sign bit set. */
5619
5620 if (code == LE)
5621 {
5622 /* This is destructive, so SUBTARGET can't be OP0. */
5623 if (rtx_equal_p (subtarget, op0))
5624 subtarget = 0;
5625
5626 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5627 OPTAB_WIDEN);
5628 if (tem)
5629 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5630 OPTAB_WIDEN);
5631 }
5632
5633 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5634 number of bits in the mode of OP0, minus one. */
5635
5636 if (code == GT)
5637 {
5638 if (rtx_equal_p (subtarget, op0))
5639 subtarget = 0;
5640
5641 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5642 size_int (GET_MODE_BITSIZE (mode) - 1),
5643 subtarget, 0);
5644 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5645 OPTAB_WIDEN);
5646 }
5647
5648 if (code == EQ || code == NE)
5649 {
5650 /* For EQ or NE, one way to do the comparison is to apply an operation
5651 that converts the operand into a positive number if it is nonzero
5652 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5653 for NE we negate. This puts the result in the sign bit. Then we
5654 normalize with a shift, if needed.
5655
5656 Two operations that can do the above actions are ABS and FFS, so try
5657 them. If that doesn't work, and MODE is smaller than a full word,
5658 we can use zero-extension to the wider mode (an unsigned conversion)
5659 as the operation. */
5660
5661 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5662 that is compensated by the subsequent overflow when subtracting
5663 one / negating. */
5664
5665 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5666 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5667 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5668 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5669 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5670 {
5671 tem = convert_modes (word_mode, mode, op0, 1);
5672 mode = word_mode;
5673 }
5674
5675 if (tem != 0)
5676 {
5677 if (code == EQ)
5678 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5679 0, OPTAB_WIDEN);
5680 else
5681 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5682 }
5683
5684 /* If we couldn't do it that way, for NE we can "or" the two's complement
5685 of the value with itself. For EQ, we take the one's complement of
5686 that "or", which is an extra insn, so we only handle EQ if branches
5687 are expensive. */
5688
5689 if (tem == 0
5690 && (code == NE
5691 || BRANCH_COST (optimize_insn_for_speed_p (),
5692 false) > 1))
5693 {
5694 if (rtx_equal_p (subtarget, op0))
5695 subtarget = 0;
5696
5697 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5698 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5699 OPTAB_WIDEN);
5700
5701 if (tem && code == EQ)
5702 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5703 }
5704 }
5705
5706 if (tem && normalizep)
5707 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5708 size_int (GET_MODE_BITSIZE (mode) - 1),
5709 subtarget, normalizep == 1);
5710
5711 if (tem)
5712 {
5713 if (!target)
5714 ;
5715 else if (GET_MODE (tem) != target_mode)
5716 {
5717 convert_move (target, tem, 0);
5718 tem = target;
5719 }
5720 else if (!subtarget)
5721 {
5722 emit_move_insn (target, tem);
5723 tem = target;
5724 }
5725 }
5726 else
5727 delete_insns_since (last);
5728
5729 return tem;
5730 }
5731
5732 /* Like emit_store_flag, but always succeeds. */
5733
5734 rtx
5735 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5736 enum machine_mode mode, int unsignedp, int normalizep)
5737 {
5738 rtx tem, label;
5739 rtx trueval, falseval;
5740
5741 /* First see if emit_store_flag can do the job. */
5742 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5743 if (tem != 0)
5744 return tem;
5745
5746 if (!target)
5747 target = gen_reg_rtx (word_mode);
5748
5749 /* If this failed, we have to do this with set/compare/jump/set code.
5750 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5751 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5752 if (code == NE
5753 && GET_MODE_CLASS (mode) == MODE_INT
5754 && REG_P (target)
5755 && op0 == target
5756 && op1 == const0_rtx)
5757 {
5758 label = gen_label_rtx ();
5759 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5760 mode, NULL_RTX, NULL_RTX, label, -1);
5761 emit_move_insn (target, trueval);
5762 emit_label (label);
5763 return target;
5764 }
5765
5766 if (!REG_P (target)
5767 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5768 target = gen_reg_rtx (GET_MODE (target));
5769
5770 /* Jump in the right direction if the target cannot implement CODE
5771 but can jump on its reverse condition. */
5772 falseval = const0_rtx;
5773 if (! can_compare_p (code, mode, ccp_jump)
5774 && (! FLOAT_MODE_P (mode)
5775 || code == ORDERED || code == UNORDERED
5776 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5777 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5778 {
5779 enum rtx_code rcode;
5780 if (FLOAT_MODE_P (mode))
5781 rcode = reverse_condition_maybe_unordered (code);
5782 else
5783 rcode = reverse_condition (code);
5784
5785 /* Canonicalize to UNORDERED for the libcall. */
5786 if (can_compare_p (rcode, mode, ccp_jump)
5787 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5788 {
5789 falseval = trueval;
5790 trueval = const0_rtx;
5791 code = rcode;
5792 }
5793 }
5794
5795 emit_move_insn (target, trueval);
5796 label = gen_label_rtx ();
5797 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5798 NULL_RTX, label, -1);
5799
5800 emit_move_insn (target, falseval);
5801 emit_label (label);
5802
5803 return target;
5804 }
5805 \f
5806 /* Perform possibly multi-word comparison and conditional jump to LABEL
5807 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5808 now a thin wrapper around do_compare_rtx_and_jump. */
5809
5810 static void
5811 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5812 rtx label)
5813 {
5814 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5815 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5816 NULL_RTX, NULL_RTX, label, -1);
5817 }