Merge dataflow branch into mainline
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "real.h"
38 #include "recog.h"
39 #include "langhooks.h"
40 #include "df.h"
41 #include "target.h"
42
43 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT,
45 unsigned HOST_WIDE_INT, rtx);
46 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT, rtx);
48 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT,
51 unsigned HOST_WIDE_INT, rtx, int);
52 static rtx mask_rtx (enum machine_mode, int, int, int);
53 static rtx lshift_value (enum machine_mode, rtx, int, int);
54 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT, int);
56 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
57 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
59
60 /* Test whether a value is zero of a power of two. */
61 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62
63 /* Nonzero means divides or modulus operations are relatively cheap for
64 powers of two, so don't use branches; emit the operation instead.
65 Usually, this will mean that the MD file will emit non-branch
66 sequences. */
67
68 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
69 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
70
71 #ifndef SLOW_UNALIGNED_ACCESS
72 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
73 #endif
74
75 /* For compilers that support multiple targets with different word sizes,
76 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
77 is the H8/300(H) compiler. */
78
79 #ifndef MAX_BITS_PER_WORD
80 #define MAX_BITS_PER_WORD BITS_PER_WORD
81 #endif
82
83 /* Reduce conditional compilation elsewhere. */
84 #ifndef HAVE_insv
85 #define HAVE_insv 0
86 #define CODE_FOR_insv CODE_FOR_nothing
87 #define gen_insv(a,b,c,d) NULL_RTX
88 #endif
89 #ifndef HAVE_extv
90 #define HAVE_extv 0
91 #define CODE_FOR_extv CODE_FOR_nothing
92 #define gen_extv(a,b,c,d) NULL_RTX
93 #endif
94 #ifndef HAVE_extzv
95 #define HAVE_extzv 0
96 #define CODE_FOR_extzv CODE_FOR_nothing
97 #define gen_extzv(a,b,c,d) NULL_RTX
98 #endif
99
100 /* Cost of various pieces of RTL. Note that some of these are indexed by
101 shift count and some by mode. */
102 static int zero_cost;
103 static int add_cost[NUM_MACHINE_MODES];
104 static int neg_cost[NUM_MACHINE_MODES];
105 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
108 static int mul_cost[NUM_MACHINE_MODES];
109 static int sdiv_cost[NUM_MACHINE_MODES];
110 static int udiv_cost[NUM_MACHINE_MODES];
111 static int mul_widen_cost[NUM_MACHINE_MODES];
112 static int mul_highpart_cost[NUM_MACHINE_MODES];
113
114 void
115 init_expmed (void)
116 {
117 struct
118 {
119 struct rtx_def reg; rtunion reg_fld[2];
120 struct rtx_def plus; rtunion plus_fld1;
121 struct rtx_def neg;
122 struct rtx_def mult; rtunion mult_fld1;
123 struct rtx_def sdiv; rtunion sdiv_fld1;
124 struct rtx_def udiv; rtunion udiv_fld1;
125 struct rtx_def zext;
126 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
127 struct rtx_def smod_32; rtunion smod_32_fld1;
128 struct rtx_def wide_mult; rtunion wide_mult_fld1;
129 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
130 struct rtx_def wide_trunc;
131 struct rtx_def shift; rtunion shift_fld1;
132 struct rtx_def shift_mult; rtunion shift_mult_fld1;
133 struct rtx_def shift_add; rtunion shift_add_fld1;
134 struct rtx_def shift_sub; rtunion shift_sub_fld1;
135 } all;
136
137 rtx pow2[MAX_BITS_PER_WORD];
138 rtx cint[MAX_BITS_PER_WORD];
139 int m, n;
140 enum machine_mode mode, wider_mode;
141
142 zero_cost = rtx_cost (const0_rtx, 0);
143
144 for (m = 1; m < MAX_BITS_PER_WORD; m++)
145 {
146 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
147 cint[m] = GEN_INT (m);
148 }
149
150 memset (&all, 0, sizeof all);
151
152 PUT_CODE (&all.reg, REG);
153 /* Avoid using hard regs in ways which may be unsupported. */
154 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
155
156 PUT_CODE (&all.plus, PLUS);
157 XEXP (&all.plus, 0) = &all.reg;
158 XEXP (&all.plus, 1) = &all.reg;
159
160 PUT_CODE (&all.neg, NEG);
161 XEXP (&all.neg, 0) = &all.reg;
162
163 PUT_CODE (&all.mult, MULT);
164 XEXP (&all.mult, 0) = &all.reg;
165 XEXP (&all.mult, 1) = &all.reg;
166
167 PUT_CODE (&all.sdiv, DIV);
168 XEXP (&all.sdiv, 0) = &all.reg;
169 XEXP (&all.sdiv, 1) = &all.reg;
170
171 PUT_CODE (&all.udiv, UDIV);
172 XEXP (&all.udiv, 0) = &all.reg;
173 XEXP (&all.udiv, 1) = &all.reg;
174
175 PUT_CODE (&all.sdiv_32, DIV);
176 XEXP (&all.sdiv_32, 0) = &all.reg;
177 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
178
179 PUT_CODE (&all.smod_32, MOD);
180 XEXP (&all.smod_32, 0) = &all.reg;
181 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
182
183 PUT_CODE (&all.zext, ZERO_EXTEND);
184 XEXP (&all.zext, 0) = &all.reg;
185
186 PUT_CODE (&all.wide_mult, MULT);
187 XEXP (&all.wide_mult, 0) = &all.zext;
188 XEXP (&all.wide_mult, 1) = &all.zext;
189
190 PUT_CODE (&all.wide_lshr, LSHIFTRT);
191 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
192
193 PUT_CODE (&all.wide_trunc, TRUNCATE);
194 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
195
196 PUT_CODE (&all.shift, ASHIFT);
197 XEXP (&all.shift, 0) = &all.reg;
198
199 PUT_CODE (&all.shift_mult, MULT);
200 XEXP (&all.shift_mult, 0) = &all.reg;
201
202 PUT_CODE (&all.shift_add, PLUS);
203 XEXP (&all.shift_add, 0) = &all.shift_mult;
204 XEXP (&all.shift_add, 1) = &all.reg;
205
206 PUT_CODE (&all.shift_sub, MINUS);
207 XEXP (&all.shift_sub, 0) = &all.shift_mult;
208 XEXP (&all.shift_sub, 1) = &all.reg;
209
210 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
211 mode != VOIDmode;
212 mode = GET_MODE_WIDER_MODE (mode))
213 {
214 PUT_MODE (&all.reg, mode);
215 PUT_MODE (&all.plus, mode);
216 PUT_MODE (&all.neg, mode);
217 PUT_MODE (&all.mult, mode);
218 PUT_MODE (&all.sdiv, mode);
219 PUT_MODE (&all.udiv, mode);
220 PUT_MODE (&all.sdiv_32, mode);
221 PUT_MODE (&all.smod_32, mode);
222 PUT_MODE (&all.wide_trunc, mode);
223 PUT_MODE (&all.shift, mode);
224 PUT_MODE (&all.shift_mult, mode);
225 PUT_MODE (&all.shift_add, mode);
226 PUT_MODE (&all.shift_sub, mode);
227
228 add_cost[mode] = rtx_cost (&all.plus, SET);
229 neg_cost[mode] = rtx_cost (&all.neg, SET);
230 mul_cost[mode] = rtx_cost (&all.mult, SET);
231 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
232 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
233
234 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
235 <= 2 * add_cost[mode]);
236 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
237 <= 4 * add_cost[mode]);
238
239 wider_mode = GET_MODE_WIDER_MODE (mode);
240 if (wider_mode != VOIDmode)
241 {
242 PUT_MODE (&all.zext, wider_mode);
243 PUT_MODE (&all.wide_mult, wider_mode);
244 PUT_MODE (&all.wide_lshr, wider_mode);
245 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
246
247 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
248 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
249 }
250
251 shift_cost[mode][0] = 0;
252 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
253
254 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
255 for (m = 1; m < n; m++)
256 {
257 XEXP (&all.shift, 1) = cint[m];
258 XEXP (&all.shift_mult, 1) = pow2[m];
259
260 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
261 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
262 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
263 }
264 }
265 }
266
267 /* Return an rtx representing minus the value of X.
268 MODE is the intended mode of the result,
269 useful if X is a CONST_INT. */
270
271 rtx
272 negate_rtx (enum machine_mode mode, rtx x)
273 {
274 rtx result = simplify_unary_operation (NEG, mode, x, mode);
275
276 if (result == 0)
277 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
278
279 return result;
280 }
281
282 /* Report on the availability of insv/extv/extzv and the desired mode
283 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
284 is false; else the mode of the specified operand. If OPNO is -1,
285 all the caller cares about is whether the insn is available. */
286 enum machine_mode
287 mode_for_extraction (enum extraction_pattern pattern, int opno)
288 {
289 const struct insn_data *data;
290
291 switch (pattern)
292 {
293 case EP_insv:
294 if (HAVE_insv)
295 {
296 data = &insn_data[CODE_FOR_insv];
297 break;
298 }
299 return MAX_MACHINE_MODE;
300
301 case EP_extv:
302 if (HAVE_extv)
303 {
304 data = &insn_data[CODE_FOR_extv];
305 break;
306 }
307 return MAX_MACHINE_MODE;
308
309 case EP_extzv:
310 if (HAVE_extzv)
311 {
312 data = &insn_data[CODE_FOR_extzv];
313 break;
314 }
315 return MAX_MACHINE_MODE;
316
317 default:
318 gcc_unreachable ();
319 }
320
321 if (opno == -1)
322 return VOIDmode;
323
324 /* Everyone who uses this function used to follow it with
325 if (result == VOIDmode) result = word_mode; */
326 if (data->operand[opno].mode == VOIDmode)
327 return word_mode;
328 return data->operand[opno].mode;
329 }
330
331 \f
332 /* Generate code to store value from rtx VALUE
333 into a bit-field within structure STR_RTX
334 containing BITSIZE bits starting at bit BITNUM.
335 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
336 ALIGN is the alignment that STR_RTX is known to have.
337 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
338
339 /* ??? Note that there are two different ideas here for how
340 to determine the size to count bits within, for a register.
341 One is BITS_PER_WORD, and the other is the size of operand 3
342 of the insv pattern.
343
344 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
345 else, we use the mode of operand 3. */
346
347 rtx
348 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
349 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
350 rtx value)
351 {
352 unsigned int unit
353 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
354 unsigned HOST_WIDE_INT offset, bitpos;
355 rtx op0 = str_rtx;
356 int byte_offset;
357 rtx orig_value;
358
359 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
360
361 while (GET_CODE (op0) == SUBREG)
362 {
363 /* The following line once was done only if WORDS_BIG_ENDIAN,
364 but I think that is a mistake. WORDS_BIG_ENDIAN is
365 meaningful at a much higher level; when structures are copied
366 between memory and regs, the higher-numbered regs
367 always get higher addresses. */
368 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
369 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
370
371 byte_offset = 0;
372
373 /* Paradoxical subregs need special handling on big endian machines. */
374 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
375 {
376 int difference = inner_mode_size - outer_mode_size;
377
378 if (WORDS_BIG_ENDIAN)
379 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
380 if (BYTES_BIG_ENDIAN)
381 byte_offset += difference % UNITS_PER_WORD;
382 }
383 else
384 byte_offset = SUBREG_BYTE (op0);
385
386 bitnum += byte_offset * BITS_PER_UNIT;
387 op0 = SUBREG_REG (op0);
388 }
389
390 /* No action is needed if the target is a register and if the field
391 lies completely outside that register. This can occur if the source
392 code contains an out-of-bounds access to a small array. */
393 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
394 return value;
395
396 /* Use vec_set patterns for inserting parts of vectors whenever
397 available. */
398 if (VECTOR_MODE_P (GET_MODE (op0))
399 && !MEM_P (op0)
400 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
401 != CODE_FOR_nothing)
402 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
403 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
404 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
405 {
406 enum machine_mode outermode = GET_MODE (op0);
407 enum machine_mode innermode = GET_MODE_INNER (outermode);
408 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
409 int pos = bitnum / GET_MODE_BITSIZE (innermode);
410 rtx rtxpos = GEN_INT (pos);
411 rtx src = value;
412 rtx dest = op0;
413 rtx pat, seq;
414 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
415 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
416 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
417
418 start_sequence ();
419
420 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
421 src = copy_to_mode_reg (mode1, src);
422
423 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
424 rtxpos = copy_to_mode_reg (mode1, rtxpos);
425
426 /* We could handle this, but we should always be called with a pseudo
427 for our targets and all insns should take them as outputs. */
428 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
429 && (*insn_data[icode].operand[1].predicate) (src, mode1)
430 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
431 pat = GEN_FCN (icode) (dest, src, rtxpos);
432 seq = get_insns ();
433 end_sequence ();
434 if (pat)
435 {
436 emit_insn (seq);
437 emit_insn (pat);
438 return dest;
439 }
440 }
441
442 /* If the target is a register, overwriting the entire object, or storing
443 a full-word or multi-word field can be done with just a SUBREG.
444
445 If the target is memory, storing any naturally aligned field can be
446 done with a simple store. For targets that support fast unaligned
447 memory, any naturally sized, unit aligned field can be done directly. */
448
449 offset = bitnum / unit;
450 bitpos = bitnum % unit;
451 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
452 + (offset * UNITS_PER_WORD);
453
454 if (bitpos == 0
455 && bitsize == GET_MODE_BITSIZE (fieldmode)
456 && (!MEM_P (op0)
457 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
458 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
459 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
460 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
461 || (offset * BITS_PER_UNIT % bitsize == 0
462 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
463 {
464 if (MEM_P (op0))
465 op0 = adjust_address (op0, fieldmode, offset);
466 else if (GET_MODE (op0) != fieldmode)
467 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
468 byte_offset);
469 emit_move_insn (op0, value);
470 return value;
471 }
472
473 /* Make sure we are playing with integral modes. Pun with subregs
474 if we aren't. This must come after the entire register case above,
475 since that case is valid for any mode. The following cases are only
476 valid for integral modes. */
477 {
478 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
479 if (imode != GET_MODE (op0))
480 {
481 if (MEM_P (op0))
482 op0 = adjust_address (op0, imode, 0);
483 else
484 {
485 gcc_assert (imode != BLKmode);
486 op0 = gen_lowpart (imode, op0);
487 }
488 }
489 }
490
491 /* We may be accessing data outside the field, which means
492 we can alias adjacent data. */
493 if (MEM_P (op0))
494 {
495 op0 = shallow_copy_rtx (op0);
496 set_mem_alias_set (op0, 0);
497 set_mem_expr (op0, 0);
498 }
499
500 /* If OP0 is a register, BITPOS must count within a word.
501 But as we have it, it counts within whatever size OP0 now has.
502 On a bigendian machine, these are not the same, so convert. */
503 if (BYTES_BIG_ENDIAN
504 && !MEM_P (op0)
505 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
506 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
507
508 /* Storing an lsb-aligned field in a register
509 can be done with a movestrict instruction. */
510
511 if (!MEM_P (op0)
512 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
513 && bitsize == GET_MODE_BITSIZE (fieldmode)
514 && (movstrict_optab->handlers[fieldmode].insn_code
515 != CODE_FOR_nothing))
516 {
517 int icode = movstrict_optab->handlers[fieldmode].insn_code;
518
519 /* Get appropriate low part of the value being stored. */
520 if (GET_CODE (value) == CONST_INT || REG_P (value))
521 value = gen_lowpart (fieldmode, value);
522 else if (!(GET_CODE (value) == SYMBOL_REF
523 || GET_CODE (value) == LABEL_REF
524 || GET_CODE (value) == CONST))
525 value = convert_to_mode (fieldmode, value, 0);
526
527 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
528 value = copy_to_mode_reg (fieldmode, value);
529
530 if (GET_CODE (op0) == SUBREG)
531 {
532 /* Else we've got some float mode source being extracted into
533 a different float mode destination -- this combination of
534 subregs results in Severe Tire Damage. */
535 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
536 || GET_MODE_CLASS (fieldmode) == MODE_INT
537 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
538 op0 = SUBREG_REG (op0);
539 }
540
541 emit_insn (GEN_FCN (icode)
542 (gen_rtx_SUBREG (fieldmode, op0,
543 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
544 + (offset * UNITS_PER_WORD)),
545 value));
546
547 return value;
548 }
549
550 /* Handle fields bigger than a word. */
551
552 if (bitsize > BITS_PER_WORD)
553 {
554 /* Here we transfer the words of the field
555 in the order least significant first.
556 This is because the most significant word is the one which may
557 be less than full.
558 However, only do that if the value is not BLKmode. */
559
560 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
561 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
562 unsigned int i;
563
564 /* This is the mode we must force value to, so that there will be enough
565 subwords to extract. Note that fieldmode will often (always?) be
566 VOIDmode, because that is what store_field uses to indicate that this
567 is a bit field, but passing VOIDmode to operand_subword_force
568 is not allowed. */
569 fieldmode = GET_MODE (value);
570 if (fieldmode == VOIDmode)
571 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
572
573 for (i = 0; i < nwords; i++)
574 {
575 /* If I is 0, use the low-order word in both field and target;
576 if I is 1, use the next to lowest word; and so on. */
577 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
578 unsigned int bit_offset = (backwards
579 ? MAX ((int) bitsize - ((int) i + 1)
580 * BITS_PER_WORD,
581 0)
582 : (int) i * BITS_PER_WORD);
583
584 store_bit_field (op0, MIN (BITS_PER_WORD,
585 bitsize - i * BITS_PER_WORD),
586 bitnum + bit_offset, word_mode,
587 operand_subword_force (value, wordnum, fieldmode));
588 }
589 return value;
590 }
591
592 /* From here on we can assume that the field to be stored in is
593 a full-word (whatever type that is), since it is shorter than a word. */
594
595 /* OFFSET is the number of words or bytes (UNIT says which)
596 from STR_RTX to the first word or byte containing part of the field. */
597
598 if (!MEM_P (op0))
599 {
600 if (offset != 0
601 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
602 {
603 if (!REG_P (op0))
604 {
605 /* Since this is a destination (lvalue), we can't copy
606 it to a pseudo. We can remove a SUBREG that does not
607 change the size of the operand. Such a SUBREG may
608 have been added above. */
609 gcc_assert (GET_CODE (op0) == SUBREG
610 && (GET_MODE_SIZE (GET_MODE (op0))
611 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
612 op0 = SUBREG_REG (op0);
613 }
614 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
615 op0, (offset * UNITS_PER_WORD));
616 }
617 offset = 0;
618 }
619
620 /* If VALUE has a floating-point or complex mode, access it as an
621 integer of the corresponding size. This can occur on a machine
622 with 64 bit registers that uses SFmode for float. It can also
623 occur for unaligned float or complex fields. */
624 orig_value = value;
625 if (GET_MODE (value) != VOIDmode
626 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
627 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
628 {
629 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
630 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
631 }
632
633 /* Now OFFSET is nonzero only if OP0 is memory
634 and is therefore always measured in bytes. */
635
636 if (HAVE_insv
637 && GET_MODE (value) != BLKmode
638 && bitsize > 0
639 && GET_MODE_BITSIZE (op_mode) >= bitsize
640 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
641 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
642 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
643 VOIDmode))
644 {
645 int xbitpos = bitpos;
646 rtx value1;
647 rtx xop0 = op0;
648 rtx last = get_last_insn ();
649 rtx pat;
650 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
651 int save_volatile_ok = volatile_ok;
652
653 volatile_ok = 1;
654
655 /* If this machine's insv can only insert into a register, copy OP0
656 into a register and save it back later. */
657 if (MEM_P (op0)
658 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
659 (op0, VOIDmode)))
660 {
661 rtx tempreg;
662 enum machine_mode bestmode;
663
664 /* Get the mode to use for inserting into this field. If OP0 is
665 BLKmode, get the smallest mode consistent with the alignment. If
666 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
667 mode. Otherwise, use the smallest mode containing the field. */
668
669 if (GET_MODE (op0) == BLKmode
670 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
671 bestmode
672 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
673 MEM_VOLATILE_P (op0));
674 else
675 bestmode = GET_MODE (op0);
676
677 if (bestmode == VOIDmode
678 || GET_MODE_SIZE (bestmode) < GET_MODE_SIZE (fieldmode)
679 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
680 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
681 goto insv_loses;
682
683 /* Adjust address to point to the containing unit of that mode.
684 Compute offset as multiple of this unit, counting in bytes. */
685 unit = GET_MODE_BITSIZE (bestmode);
686 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
687 bitpos = bitnum % unit;
688 op0 = adjust_address (op0, bestmode, offset);
689
690 /* Fetch that unit, store the bitfield in it, then store
691 the unit. */
692 tempreg = copy_to_reg (op0);
693 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
694 emit_move_insn (op0, tempreg);
695 return value;
696 }
697 volatile_ok = save_volatile_ok;
698
699 /* Add OFFSET into OP0's address. */
700 if (MEM_P (xop0))
701 xop0 = adjust_address (xop0, byte_mode, offset);
702
703 /* If xop0 is a register, we need it in MAXMODE
704 to make it acceptable to the format of insv. */
705 if (GET_CODE (xop0) == SUBREG)
706 /* We can't just change the mode, because this might clobber op0,
707 and we will need the original value of op0 if insv fails. */
708 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
709 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
710 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
711
712 /* On big-endian machines, we count bits from the most significant.
713 If the bit field insn does not, we must invert. */
714
715 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
716 xbitpos = unit - bitsize - xbitpos;
717
718 /* We have been counting XBITPOS within UNIT.
719 Count instead within the size of the register. */
720 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
721 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
722
723 unit = GET_MODE_BITSIZE (maxmode);
724
725 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
726 value1 = value;
727 if (GET_MODE (value) != maxmode)
728 {
729 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
730 {
731 /* Optimization: Don't bother really extending VALUE
732 if it has all the bits we will actually use. However,
733 if we must narrow it, be sure we do it correctly. */
734
735 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
736 {
737 rtx tmp;
738
739 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
740 if (! tmp)
741 tmp = simplify_gen_subreg (maxmode,
742 force_reg (GET_MODE (value),
743 value1),
744 GET_MODE (value), 0);
745 value1 = tmp;
746 }
747 else
748 value1 = gen_lowpart (maxmode, value1);
749 }
750 else if (GET_CODE (value) == CONST_INT)
751 value1 = gen_int_mode (INTVAL (value), maxmode);
752 else
753 /* Parse phase is supposed to make VALUE's data type
754 match that of the component reference, which is a type
755 at least as wide as the field; so VALUE should have
756 a mode that corresponds to that type. */
757 gcc_assert (CONSTANT_P (value));
758 }
759
760 /* If this machine's insv insists on a register,
761 get VALUE1 into a register. */
762 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
763 (value1, maxmode)))
764 value1 = force_reg (maxmode, value1);
765
766 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
767 if (pat)
768 emit_insn (pat);
769 else
770 {
771 delete_insns_since (last);
772 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
773 }
774 }
775 else
776 insv_loses:
777 /* Insv is not available; store using shifts and boolean ops. */
778 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
779 return value;
780 }
781 \f
782 /* Use shifts and boolean operations to store VALUE
783 into a bit field of width BITSIZE
784 in a memory location specified by OP0 except offset by OFFSET bytes.
785 (OFFSET must be 0 if OP0 is a register.)
786 The field starts at position BITPOS within the byte.
787 (If OP0 is a register, it may be a full word or a narrower mode,
788 but BITPOS still counts within a full word,
789 which is significant on bigendian machines.) */
790
791 static void
792 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
793 unsigned HOST_WIDE_INT bitsize,
794 unsigned HOST_WIDE_INT bitpos, rtx value)
795 {
796 enum machine_mode mode;
797 unsigned int total_bits = BITS_PER_WORD;
798 rtx temp;
799 int all_zero = 0;
800 int all_one = 0;
801
802 /* There is a case not handled here:
803 a structure with a known alignment of just a halfword
804 and a field split across two aligned halfwords within the structure.
805 Or likewise a structure with a known alignment of just a byte
806 and a field split across two bytes.
807 Such cases are not supposed to be able to occur. */
808
809 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
810 {
811 gcc_assert (!offset);
812 /* Special treatment for a bit field split across two registers. */
813 if (bitsize + bitpos > BITS_PER_WORD)
814 {
815 store_split_bit_field (op0, bitsize, bitpos, value);
816 return;
817 }
818 }
819 else
820 {
821 /* Get the proper mode to use for this field. We want a mode that
822 includes the entire field. If such a mode would be larger than
823 a word, we won't be doing the extraction the normal way.
824 We don't want a mode bigger than the destination. */
825
826 mode = GET_MODE (op0);
827 if (GET_MODE_BITSIZE (mode) == 0
828 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
829 mode = word_mode;
830 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
831 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
832
833 if (mode == VOIDmode)
834 {
835 /* The only way this should occur is if the field spans word
836 boundaries. */
837 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
838 value);
839 return;
840 }
841
842 total_bits = GET_MODE_BITSIZE (mode);
843
844 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
845 be in the range 0 to total_bits-1, and put any excess bytes in
846 OFFSET. */
847 if (bitpos >= total_bits)
848 {
849 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
850 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
851 * BITS_PER_UNIT);
852 }
853
854 /* Get ref to an aligned byte, halfword, or word containing the field.
855 Adjust BITPOS to be position within a word,
856 and OFFSET to be the offset of that word.
857 Then alter OP0 to refer to that word. */
858 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
859 offset -= (offset % (total_bits / BITS_PER_UNIT));
860 op0 = adjust_address (op0, mode, offset);
861 }
862
863 mode = GET_MODE (op0);
864
865 /* Now MODE is either some integral mode for a MEM as OP0,
866 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
867 The bit field is contained entirely within OP0.
868 BITPOS is the starting bit number within OP0.
869 (OP0's mode may actually be narrower than MODE.) */
870
871 if (BYTES_BIG_ENDIAN)
872 /* BITPOS is the distance between our msb
873 and that of the containing datum.
874 Convert it to the distance from the lsb. */
875 bitpos = total_bits - bitsize - bitpos;
876
877 /* Now BITPOS is always the distance between our lsb
878 and that of OP0. */
879
880 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
881 we must first convert its mode to MODE. */
882
883 if (GET_CODE (value) == CONST_INT)
884 {
885 HOST_WIDE_INT v = INTVAL (value);
886
887 if (bitsize < HOST_BITS_PER_WIDE_INT)
888 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
889
890 if (v == 0)
891 all_zero = 1;
892 else if ((bitsize < HOST_BITS_PER_WIDE_INT
893 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
894 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
895 all_one = 1;
896
897 value = lshift_value (mode, value, bitpos, bitsize);
898 }
899 else
900 {
901 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
902 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
903
904 if (GET_MODE (value) != mode)
905 {
906 if ((REG_P (value) || GET_CODE (value) == SUBREG)
907 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
908 value = gen_lowpart (mode, value);
909 else
910 value = convert_to_mode (mode, value, 1);
911 }
912
913 if (must_and)
914 value = expand_binop (mode, and_optab, value,
915 mask_rtx (mode, 0, bitsize, 0),
916 NULL_RTX, 1, OPTAB_LIB_WIDEN);
917 if (bitpos > 0)
918 value = expand_shift (LSHIFT_EXPR, mode, value,
919 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
920 }
921
922 /* Now clear the chosen bits in OP0,
923 except that if VALUE is -1 we need not bother. */
924 /* We keep the intermediates in registers to allow CSE to combine
925 consecutive bitfield assignments. */
926
927 temp = force_reg (mode, op0);
928
929 if (! all_one)
930 {
931 temp = expand_binop (mode, and_optab, temp,
932 mask_rtx (mode, bitpos, bitsize, 1),
933 NULL_RTX, 1, OPTAB_LIB_WIDEN);
934 temp = force_reg (mode, temp);
935 }
936
937 /* Now logical-or VALUE into OP0, unless it is zero. */
938
939 if (! all_zero)
940 {
941 temp = expand_binop (mode, ior_optab, temp, value,
942 NULL_RTX, 1, OPTAB_LIB_WIDEN);
943 temp = force_reg (mode, temp);
944 }
945
946 if (op0 != temp)
947 emit_move_insn (op0, temp);
948 }
949 \f
950 /* Store a bit field that is split across multiple accessible memory objects.
951
952 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
953 BITSIZE is the field width; BITPOS the position of its first bit
954 (within the word).
955 VALUE is the value to store.
956
957 This does not yet handle fields wider than BITS_PER_WORD. */
958
959 static void
960 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
961 unsigned HOST_WIDE_INT bitpos, rtx value)
962 {
963 unsigned int unit;
964 unsigned int bitsdone = 0;
965
966 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
967 much at a time. */
968 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
969 unit = BITS_PER_WORD;
970 else
971 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
972
973 /* If VALUE is a constant other than a CONST_INT, get it into a register in
974 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
975 that VALUE might be a floating-point constant. */
976 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
977 {
978 rtx word = gen_lowpart_common (word_mode, value);
979
980 if (word && (value != word))
981 value = word;
982 else
983 value = gen_lowpart_common (word_mode,
984 force_reg (GET_MODE (value) != VOIDmode
985 ? GET_MODE (value)
986 : word_mode, value));
987 }
988
989 while (bitsdone < bitsize)
990 {
991 unsigned HOST_WIDE_INT thissize;
992 rtx part, word;
993 unsigned HOST_WIDE_INT thispos;
994 unsigned HOST_WIDE_INT offset;
995
996 offset = (bitpos + bitsdone) / unit;
997 thispos = (bitpos + bitsdone) % unit;
998
999 /* THISSIZE must not overrun a word boundary. Otherwise,
1000 store_fixed_bit_field will call us again, and we will mutually
1001 recurse forever. */
1002 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1003 thissize = MIN (thissize, unit - thispos);
1004
1005 if (BYTES_BIG_ENDIAN)
1006 {
1007 int total_bits;
1008
1009 /* We must do an endian conversion exactly the same way as it is
1010 done in extract_bit_field, so that the two calls to
1011 extract_fixed_bit_field will have comparable arguments. */
1012 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1013 total_bits = BITS_PER_WORD;
1014 else
1015 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1016
1017 /* Fetch successively less significant portions. */
1018 if (GET_CODE (value) == CONST_INT)
1019 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1020 >> (bitsize - bitsdone - thissize))
1021 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1022 else
1023 /* The args are chosen so that the last part includes the
1024 lsb. Give extract_bit_field the value it needs (with
1025 endianness compensation) to fetch the piece we want. */
1026 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1027 total_bits - bitsize + bitsdone,
1028 NULL_RTX, 1);
1029 }
1030 else
1031 {
1032 /* Fetch successively more significant portions. */
1033 if (GET_CODE (value) == CONST_INT)
1034 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1035 >> bitsdone)
1036 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1037 else
1038 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1039 bitsdone, NULL_RTX, 1);
1040 }
1041
1042 /* If OP0 is a register, then handle OFFSET here.
1043
1044 When handling multiword bitfields, extract_bit_field may pass
1045 down a word_mode SUBREG of a larger REG for a bitfield that actually
1046 crosses a word boundary. Thus, for a SUBREG, we must find
1047 the current word starting from the base register. */
1048 if (GET_CODE (op0) == SUBREG)
1049 {
1050 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1051 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1052 GET_MODE (SUBREG_REG (op0)));
1053 offset = 0;
1054 }
1055 else if (REG_P (op0))
1056 {
1057 word = operand_subword_force (op0, offset, GET_MODE (op0));
1058 offset = 0;
1059 }
1060 else
1061 word = op0;
1062
1063 /* OFFSET is in UNITs, and UNIT is in bits.
1064 store_fixed_bit_field wants offset in bytes. */
1065 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1066 thispos, part);
1067 bitsdone += thissize;
1068 }
1069 }
1070 \f
1071 /* Generate code to extract a byte-field from STR_RTX
1072 containing BITSIZE bits, starting at BITNUM,
1073 and put it in TARGET if possible (if TARGET is nonzero).
1074 Regardless of TARGET, we return the rtx for where the value is placed.
1075
1076 STR_RTX is the structure containing the byte (a REG or MEM).
1077 UNSIGNEDP is nonzero if this is an unsigned bit field.
1078 MODE is the natural mode of the field value once extracted.
1079 TMODE is the mode the caller would like the value to have;
1080 but the value may be returned with type MODE instead.
1081
1082 TOTAL_SIZE is the size in bytes of the containing structure,
1083 or -1 if varying.
1084
1085 If a TARGET is specified and we can store in it at no extra cost,
1086 we do so, and return TARGET.
1087 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1088 if they are equally easy. */
1089
1090 rtx
1091 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1092 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1093 enum machine_mode mode, enum machine_mode tmode)
1094 {
1095 unsigned int unit
1096 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1097 unsigned HOST_WIDE_INT offset, bitpos;
1098 rtx op0 = str_rtx;
1099 rtx spec_target = target;
1100 rtx spec_target_subreg = 0;
1101 enum machine_mode int_mode;
1102 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1103 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1104 enum machine_mode mode1;
1105 int byte_offset;
1106
1107 if (tmode == VOIDmode)
1108 tmode = mode;
1109
1110 while (GET_CODE (op0) == SUBREG)
1111 {
1112 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1113 op0 = SUBREG_REG (op0);
1114 }
1115
1116 /* If we have an out-of-bounds access to a register, just return an
1117 uninitialized register of the required mode. This can occur if the
1118 source code contains an out-of-bounds access to a small array. */
1119 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1120 return gen_reg_rtx (tmode);
1121
1122 if (REG_P (op0)
1123 && mode == GET_MODE (op0)
1124 && bitnum == 0
1125 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1126 {
1127 /* We're trying to extract a full register from itself. */
1128 return op0;
1129 }
1130
1131 /* See if we can get a better vector mode before extracting. */
1132 if (VECTOR_MODE_P (GET_MODE (op0))
1133 && !MEM_P (op0)
1134 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1135 {
1136 enum machine_mode new_mode;
1137 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1138
1139 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1140 new_mode = MIN_MODE_VECTOR_FLOAT;
1141 else
1142 new_mode = MIN_MODE_VECTOR_INT;
1143
1144 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1145 if (GET_MODE_NUNITS (new_mode) == nunits
1146 && GET_MODE_INNER (new_mode) == tmode
1147 && targetm.vector_mode_supported_p (new_mode))
1148 break;
1149 if (new_mode != VOIDmode)
1150 op0 = gen_lowpart (new_mode, op0);
1151 }
1152
1153 /* Use vec_extract patterns for extracting parts of vectors whenever
1154 available. */
1155 if (VECTOR_MODE_P (GET_MODE (op0))
1156 && !MEM_P (op0)
1157 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1158 != CODE_FOR_nothing)
1159 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1160 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1161 {
1162 enum machine_mode outermode = GET_MODE (op0);
1163 enum machine_mode innermode = GET_MODE_INNER (outermode);
1164 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1165 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1166 rtx rtxpos = GEN_INT (pos);
1167 rtx src = op0;
1168 rtx dest = NULL, pat, seq;
1169 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1170 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1171 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1172
1173 if (innermode == tmode || innermode == mode)
1174 dest = target;
1175
1176 if (!dest)
1177 dest = gen_reg_rtx (innermode);
1178
1179 start_sequence ();
1180
1181 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1182 dest = copy_to_mode_reg (mode0, dest);
1183
1184 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1185 src = copy_to_mode_reg (mode1, src);
1186
1187 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1188 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1189
1190 /* We could handle this, but we should always be called with a pseudo
1191 for our targets and all insns should take them as outputs. */
1192 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1193 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1194 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1195
1196 pat = GEN_FCN (icode) (dest, src, rtxpos);
1197 seq = get_insns ();
1198 end_sequence ();
1199 if (pat)
1200 {
1201 emit_insn (seq);
1202 emit_insn (pat);
1203 if (mode0 != mode)
1204 return gen_lowpart (tmode, dest);
1205 return dest;
1206 }
1207 }
1208
1209 /* Make sure we are playing with integral modes. Pun with subregs
1210 if we aren't. */
1211 {
1212 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1213 if (imode != GET_MODE (op0))
1214 {
1215 if (MEM_P (op0))
1216 op0 = adjust_address (op0, imode, 0);
1217 else
1218 {
1219 gcc_assert (imode != BLKmode);
1220 op0 = gen_lowpart (imode, op0);
1221
1222 /* If we got a SUBREG, force it into a register since we
1223 aren't going to be able to do another SUBREG on it. */
1224 if (GET_CODE (op0) == SUBREG)
1225 op0 = force_reg (imode, op0);
1226 }
1227 }
1228 }
1229
1230 /* We may be accessing data outside the field, which means
1231 we can alias adjacent data. */
1232 if (MEM_P (op0))
1233 {
1234 op0 = shallow_copy_rtx (op0);
1235 set_mem_alias_set (op0, 0);
1236 set_mem_expr (op0, 0);
1237 }
1238
1239 /* Extraction of a full-word or multi-word value from a structure
1240 in a register or aligned memory can be done with just a SUBREG.
1241 A subword value in the least significant part of a register
1242 can also be extracted with a SUBREG. For this, we need the
1243 byte offset of the value in op0. */
1244
1245 bitpos = bitnum % unit;
1246 offset = bitnum / unit;
1247 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1248
1249 /* If OP0 is a register, BITPOS must count within a word.
1250 But as we have it, it counts within whatever size OP0 now has.
1251 On a bigendian machine, these are not the same, so convert. */
1252 if (BYTES_BIG_ENDIAN
1253 && !MEM_P (op0)
1254 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1255 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1256
1257 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1258 If that's wrong, the solution is to test for it and set TARGET to 0
1259 if needed. */
1260
1261 /* Only scalar integer modes can be converted via subregs. There is an
1262 additional problem for FP modes here in that they can have a precision
1263 which is different from the size. mode_for_size uses precision, but
1264 we want a mode based on the size, so we must avoid calling it for FP
1265 modes. */
1266 mode1 = (SCALAR_INT_MODE_P (tmode)
1267 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1268 : mode);
1269
1270 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1271 && bitpos % BITS_PER_WORD == 0)
1272 || (mode1 != BLKmode
1273 /* ??? The big endian test here is wrong. This is correct
1274 if the value is in a register, and if mode_for_size is not
1275 the same mode as op0. This causes us to get unnecessarily
1276 inefficient code from the Thumb port when -mbig-endian. */
1277 && (BYTES_BIG_ENDIAN
1278 ? bitpos + bitsize == BITS_PER_WORD
1279 : bitpos == 0)))
1280 && ((!MEM_P (op0)
1281 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1282 GET_MODE_BITSIZE (GET_MODE (op0)))
1283 && GET_MODE_SIZE (mode1) != 0
1284 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1285 || (MEM_P (op0)
1286 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1287 || (offset * BITS_PER_UNIT % bitsize == 0
1288 && MEM_ALIGN (op0) % bitsize == 0)))))
1289 {
1290 if (mode1 != GET_MODE (op0))
1291 {
1292 if (MEM_P (op0))
1293 op0 = adjust_address (op0, mode1, offset);
1294 else
1295 {
1296 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1297 byte_offset);
1298 if (sub == NULL)
1299 goto no_subreg_mode_swap;
1300 op0 = sub;
1301 }
1302 }
1303 if (mode1 != mode)
1304 return convert_to_mode (tmode, op0, unsignedp);
1305 return op0;
1306 }
1307 no_subreg_mode_swap:
1308
1309 /* Handle fields bigger than a word. */
1310
1311 if (bitsize > BITS_PER_WORD)
1312 {
1313 /* Here we transfer the words of the field
1314 in the order least significant first.
1315 This is because the most significant word is the one which may
1316 be less than full. */
1317
1318 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1319 unsigned int i;
1320
1321 if (target == 0 || !REG_P (target))
1322 target = gen_reg_rtx (mode);
1323
1324 /* Indicate for flow that the entire target reg is being set. */
1325 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1326
1327 for (i = 0; i < nwords; i++)
1328 {
1329 /* If I is 0, use the low-order word in both field and target;
1330 if I is 1, use the next to lowest word; and so on. */
1331 /* Word number in TARGET to use. */
1332 unsigned int wordnum
1333 = (WORDS_BIG_ENDIAN
1334 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1335 : i);
1336 /* Offset from start of field in OP0. */
1337 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1338 ? MAX (0, ((int) bitsize - ((int) i + 1)
1339 * (int) BITS_PER_WORD))
1340 : (int) i * BITS_PER_WORD);
1341 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1342 rtx result_part
1343 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1344 bitsize - i * BITS_PER_WORD),
1345 bitnum + bit_offset, 1, target_part, mode,
1346 word_mode);
1347
1348 gcc_assert (target_part);
1349
1350 if (result_part != target_part)
1351 emit_move_insn (target_part, result_part);
1352 }
1353
1354 if (unsignedp)
1355 {
1356 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1357 need to be zero'd out. */
1358 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1359 {
1360 unsigned int i, total_words;
1361
1362 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1363 for (i = nwords; i < total_words; i++)
1364 emit_move_insn
1365 (operand_subword (target,
1366 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1367 1, VOIDmode),
1368 const0_rtx);
1369 }
1370 return target;
1371 }
1372
1373 /* Signed bit field: sign-extend with two arithmetic shifts. */
1374 target = expand_shift (LSHIFT_EXPR, mode, target,
1375 build_int_cst (NULL_TREE,
1376 GET_MODE_BITSIZE (mode) - bitsize),
1377 NULL_RTX, 0);
1378 return expand_shift (RSHIFT_EXPR, mode, target,
1379 build_int_cst (NULL_TREE,
1380 GET_MODE_BITSIZE (mode) - bitsize),
1381 NULL_RTX, 0);
1382 }
1383
1384 /* From here on we know the desired field is smaller than a word. */
1385
1386 /* Check if there is a correspondingly-sized integer field, so we can
1387 safely extract it as one size of integer, if necessary; then
1388 truncate or extend to the size that is wanted; then use SUBREGs or
1389 convert_to_mode to get one of the modes we really wanted. */
1390
1391 int_mode = int_mode_for_mode (tmode);
1392 if (int_mode == BLKmode)
1393 int_mode = int_mode_for_mode (mode);
1394 /* Should probably push op0 out to memory and then do a load. */
1395 gcc_assert (int_mode != BLKmode);
1396
1397 /* OFFSET is the number of words or bytes (UNIT says which)
1398 from STR_RTX to the first word or byte containing part of the field. */
1399 if (!MEM_P (op0))
1400 {
1401 if (offset != 0
1402 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1403 {
1404 if (!REG_P (op0))
1405 op0 = copy_to_reg (op0);
1406 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1407 op0, (offset * UNITS_PER_WORD));
1408 }
1409 offset = 0;
1410 }
1411
1412 /* Now OFFSET is nonzero only for memory operands. */
1413
1414 if (unsignedp)
1415 {
1416 if (HAVE_extzv
1417 && bitsize > 0
1418 && GET_MODE_BITSIZE (extzv_mode) >= bitsize
1419 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1420 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1421 {
1422 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1423 rtx bitsize_rtx, bitpos_rtx;
1424 rtx last = get_last_insn ();
1425 rtx xop0 = op0;
1426 rtx xtarget = target;
1427 rtx xspec_target = spec_target;
1428 rtx xspec_target_subreg = spec_target_subreg;
1429 rtx pat;
1430 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1431
1432 if (MEM_P (xop0))
1433 {
1434 int save_volatile_ok = volatile_ok;
1435 volatile_ok = 1;
1436
1437 /* Is the memory operand acceptable? */
1438 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1439 (xop0, GET_MODE (xop0))))
1440 {
1441 /* No, load into a reg and extract from there. */
1442 enum machine_mode bestmode;
1443
1444 /* Get the mode to use for inserting into this field. If
1445 OP0 is BLKmode, get the smallest mode consistent with the
1446 alignment. If OP0 is a non-BLKmode object that is no
1447 wider than MAXMODE, use its mode. Otherwise, use the
1448 smallest mode containing the field. */
1449
1450 if (GET_MODE (xop0) == BLKmode
1451 || (GET_MODE_SIZE (GET_MODE (op0))
1452 > GET_MODE_SIZE (maxmode)))
1453 bestmode = get_best_mode (bitsize, bitnum,
1454 MEM_ALIGN (xop0), maxmode,
1455 MEM_VOLATILE_P (xop0));
1456 else
1457 bestmode = GET_MODE (xop0);
1458
1459 if (bestmode == VOIDmode
1460 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1461 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1462 goto extzv_loses;
1463
1464 /* Compute offset as multiple of this unit,
1465 counting in bytes. */
1466 unit = GET_MODE_BITSIZE (bestmode);
1467 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1468 xbitpos = bitnum % unit;
1469 xop0 = adjust_address (xop0, bestmode, xoffset);
1470
1471 /* Make sure register is big enough for the whole field. */
1472 if (xoffset * BITS_PER_UNIT + unit
1473 < offset * BITS_PER_UNIT + bitsize)
1474 goto extzv_loses;
1475
1476 /* Fetch it to a register in that size. */
1477 xop0 = force_reg (bestmode, xop0);
1478
1479 /* XBITPOS counts within UNIT, which is what is expected. */
1480 }
1481 else
1482 /* Get ref to first byte containing part of the field. */
1483 xop0 = adjust_address (xop0, byte_mode, xoffset);
1484
1485 volatile_ok = save_volatile_ok;
1486 }
1487
1488 /* If op0 is a register, we need it in MAXMODE (which is usually
1489 SImode). to make it acceptable to the format of extzv. */
1490 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1491 goto extzv_loses;
1492 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1493 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1494
1495 /* On big-endian machines, we count bits from the most significant.
1496 If the bit field insn does not, we must invert. */
1497 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1498 xbitpos = unit - bitsize - xbitpos;
1499
1500 /* Now convert from counting within UNIT to counting in MAXMODE. */
1501 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1502 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1503
1504 unit = GET_MODE_BITSIZE (maxmode);
1505
1506 if (xtarget == 0)
1507 xtarget = xspec_target = gen_reg_rtx (tmode);
1508
1509 if (GET_MODE (xtarget) != maxmode)
1510 {
1511 if (REG_P (xtarget))
1512 {
1513 int wider = (GET_MODE_SIZE (maxmode)
1514 > GET_MODE_SIZE (GET_MODE (xtarget)));
1515 xtarget = gen_lowpart (maxmode, xtarget);
1516 if (wider)
1517 xspec_target_subreg = xtarget;
1518 }
1519 else
1520 xtarget = gen_reg_rtx (maxmode);
1521 }
1522
1523 /* If this machine's extzv insists on a register target,
1524 make sure we have one. */
1525 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1526 (xtarget, maxmode)))
1527 xtarget = gen_reg_rtx (maxmode);
1528
1529 bitsize_rtx = GEN_INT (bitsize);
1530 bitpos_rtx = GEN_INT (xbitpos);
1531
1532 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1533 if (pat)
1534 {
1535 emit_insn (pat);
1536 target = xtarget;
1537 spec_target = xspec_target;
1538 spec_target_subreg = xspec_target_subreg;
1539 }
1540 else
1541 {
1542 delete_insns_since (last);
1543 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1544 bitpos, target, 1);
1545 }
1546 }
1547 else
1548 extzv_loses:
1549 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1550 bitpos, target, 1);
1551 }
1552 else
1553 {
1554 if (HAVE_extv
1555 && bitsize > 0
1556 && GET_MODE_BITSIZE (extv_mode) >= bitsize
1557 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1558 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1559 {
1560 int xbitpos = bitpos, xoffset = offset;
1561 rtx bitsize_rtx, bitpos_rtx;
1562 rtx last = get_last_insn ();
1563 rtx xop0 = op0, xtarget = target;
1564 rtx xspec_target = spec_target;
1565 rtx xspec_target_subreg = spec_target_subreg;
1566 rtx pat;
1567 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1568
1569 if (MEM_P (xop0))
1570 {
1571 /* Is the memory operand acceptable? */
1572 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1573 (xop0, GET_MODE (xop0))))
1574 {
1575 /* No, load into a reg and extract from there. */
1576 enum machine_mode bestmode;
1577
1578 /* Get the mode to use for inserting into this field. If
1579 OP0 is BLKmode, get the smallest mode consistent with the
1580 alignment. If OP0 is a non-BLKmode object that is no
1581 wider than MAXMODE, use its mode. Otherwise, use the
1582 smallest mode containing the field. */
1583
1584 if (GET_MODE (xop0) == BLKmode
1585 || (GET_MODE_SIZE (GET_MODE (op0))
1586 > GET_MODE_SIZE (maxmode)))
1587 bestmode = get_best_mode (bitsize, bitnum,
1588 MEM_ALIGN (xop0), maxmode,
1589 MEM_VOLATILE_P (xop0));
1590 else
1591 bestmode = GET_MODE (xop0);
1592
1593 if (bestmode == VOIDmode
1594 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1595 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1596 goto extv_loses;
1597
1598 /* Compute offset as multiple of this unit,
1599 counting in bytes. */
1600 unit = GET_MODE_BITSIZE (bestmode);
1601 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1602 xbitpos = bitnum % unit;
1603 xop0 = adjust_address (xop0, bestmode, xoffset);
1604
1605 /* Make sure register is big enough for the whole field. */
1606 if (xoffset * BITS_PER_UNIT + unit
1607 < offset * BITS_PER_UNIT + bitsize)
1608 goto extv_loses;
1609
1610 /* Fetch it to a register in that size. */
1611 xop0 = force_reg (bestmode, xop0);
1612
1613 /* XBITPOS counts within UNIT, which is what is expected. */
1614 }
1615 else
1616 /* Get ref to first byte containing part of the field. */
1617 xop0 = adjust_address (xop0, byte_mode, xoffset);
1618 }
1619
1620 /* If op0 is a register, we need it in MAXMODE (which is usually
1621 SImode) to make it acceptable to the format of extv. */
1622 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1623 goto extv_loses;
1624 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1625 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1626
1627 /* On big-endian machines, we count bits from the most significant.
1628 If the bit field insn does not, we must invert. */
1629 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1630 xbitpos = unit - bitsize - xbitpos;
1631
1632 /* XBITPOS counts within a size of UNIT.
1633 Adjust to count within a size of MAXMODE. */
1634 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1635 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1636
1637 unit = GET_MODE_BITSIZE (maxmode);
1638
1639 if (xtarget == 0)
1640 xtarget = xspec_target = gen_reg_rtx (tmode);
1641
1642 if (GET_MODE (xtarget) != maxmode)
1643 {
1644 if (REG_P (xtarget))
1645 {
1646 int wider = (GET_MODE_SIZE (maxmode)
1647 > GET_MODE_SIZE (GET_MODE (xtarget)));
1648 xtarget = gen_lowpart (maxmode, xtarget);
1649 if (wider)
1650 xspec_target_subreg = xtarget;
1651 }
1652 else
1653 xtarget = gen_reg_rtx (maxmode);
1654 }
1655
1656 /* If this machine's extv insists on a register target,
1657 make sure we have one. */
1658 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1659 (xtarget, maxmode)))
1660 xtarget = gen_reg_rtx (maxmode);
1661
1662 bitsize_rtx = GEN_INT (bitsize);
1663 bitpos_rtx = GEN_INT (xbitpos);
1664
1665 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1666 if (pat)
1667 {
1668 emit_insn (pat);
1669 target = xtarget;
1670 spec_target = xspec_target;
1671 spec_target_subreg = xspec_target_subreg;
1672 }
1673 else
1674 {
1675 delete_insns_since (last);
1676 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1677 bitpos, target, 0);
1678 }
1679 }
1680 else
1681 extv_loses:
1682 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1683 bitpos, target, 0);
1684 }
1685 if (target == spec_target)
1686 return target;
1687 if (target == spec_target_subreg)
1688 return spec_target;
1689 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1690 {
1691 /* If the target mode is not a scalar integral, first convert to the
1692 integer mode of that size and then access it as a floating-point
1693 value via a SUBREG. */
1694 if (!SCALAR_INT_MODE_P (tmode))
1695 {
1696 enum machine_mode smode
1697 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1698 target = convert_to_mode (smode, target, unsignedp);
1699 target = force_reg (smode, target);
1700 return gen_lowpart (tmode, target);
1701 }
1702
1703 return convert_to_mode (tmode, target, unsignedp);
1704 }
1705 return target;
1706 }
1707 \f
1708 /* Extract a bit field using shifts and boolean operations
1709 Returns an rtx to represent the value.
1710 OP0 addresses a register (word) or memory (byte).
1711 BITPOS says which bit within the word or byte the bit field starts in.
1712 OFFSET says how many bytes farther the bit field starts;
1713 it is 0 if OP0 is a register.
1714 BITSIZE says how many bits long the bit field is.
1715 (If OP0 is a register, it may be narrower than a full word,
1716 but BITPOS still counts within a full word,
1717 which is significant on bigendian machines.)
1718
1719 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1720 If TARGET is nonzero, attempts to store the value there
1721 and return TARGET, but this is not guaranteed.
1722 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1723
1724 static rtx
1725 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1726 unsigned HOST_WIDE_INT offset,
1727 unsigned HOST_WIDE_INT bitsize,
1728 unsigned HOST_WIDE_INT bitpos, rtx target,
1729 int unsignedp)
1730 {
1731 unsigned int total_bits = BITS_PER_WORD;
1732 enum machine_mode mode;
1733
1734 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1735 {
1736 /* Special treatment for a bit field split across two registers. */
1737 if (bitsize + bitpos > BITS_PER_WORD)
1738 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1739 }
1740 else
1741 {
1742 /* Get the proper mode to use for this field. We want a mode that
1743 includes the entire field. If such a mode would be larger than
1744 a word, we won't be doing the extraction the normal way. */
1745
1746 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1747 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1748
1749 if (mode == VOIDmode)
1750 /* The only way this should occur is if the field spans word
1751 boundaries. */
1752 return extract_split_bit_field (op0, bitsize,
1753 bitpos + offset * BITS_PER_UNIT,
1754 unsignedp);
1755
1756 total_bits = GET_MODE_BITSIZE (mode);
1757
1758 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1759 be in the range 0 to total_bits-1, and put any excess bytes in
1760 OFFSET. */
1761 if (bitpos >= total_bits)
1762 {
1763 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1764 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1765 * BITS_PER_UNIT);
1766 }
1767
1768 /* Get ref to an aligned byte, halfword, or word containing the field.
1769 Adjust BITPOS to be position within a word,
1770 and OFFSET to be the offset of that word.
1771 Then alter OP0 to refer to that word. */
1772 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1773 offset -= (offset % (total_bits / BITS_PER_UNIT));
1774 op0 = adjust_address (op0, mode, offset);
1775 }
1776
1777 mode = GET_MODE (op0);
1778
1779 if (BYTES_BIG_ENDIAN)
1780 /* BITPOS is the distance between our msb and that of OP0.
1781 Convert it to the distance from the lsb. */
1782 bitpos = total_bits - bitsize - bitpos;
1783
1784 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1785 We have reduced the big-endian case to the little-endian case. */
1786
1787 if (unsignedp)
1788 {
1789 if (bitpos)
1790 {
1791 /* If the field does not already start at the lsb,
1792 shift it so it does. */
1793 tree amount = build_int_cst (NULL_TREE, bitpos);
1794 /* Maybe propagate the target for the shift. */
1795 /* But not if we will return it--could confuse integrate.c. */
1796 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1797 if (tmode != mode) subtarget = 0;
1798 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1799 }
1800 /* Convert the value to the desired mode. */
1801 if (mode != tmode)
1802 op0 = convert_to_mode (tmode, op0, 1);
1803
1804 /* Unless the msb of the field used to be the msb when we shifted,
1805 mask out the upper bits. */
1806
1807 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1808 return expand_binop (GET_MODE (op0), and_optab, op0,
1809 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1810 target, 1, OPTAB_LIB_WIDEN);
1811 return op0;
1812 }
1813
1814 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1815 then arithmetic-shift its lsb to the lsb of the word. */
1816 op0 = force_reg (mode, op0);
1817 if (mode != tmode)
1818 target = 0;
1819
1820 /* Find the narrowest integer mode that contains the field. */
1821
1822 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1823 mode = GET_MODE_WIDER_MODE (mode))
1824 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1825 {
1826 op0 = convert_to_mode (mode, op0, 0);
1827 break;
1828 }
1829
1830 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1831 {
1832 tree amount
1833 = build_int_cst (NULL_TREE,
1834 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1835 /* Maybe propagate the target for the shift. */
1836 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1837 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1838 }
1839
1840 return expand_shift (RSHIFT_EXPR, mode, op0,
1841 build_int_cst (NULL_TREE,
1842 GET_MODE_BITSIZE (mode) - bitsize),
1843 target, 0);
1844 }
1845 \f
1846 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1847 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1848 complement of that if COMPLEMENT. The mask is truncated if
1849 necessary to the width of mode MODE. The mask is zero-extended if
1850 BITSIZE+BITPOS is too small for MODE. */
1851
1852 static rtx
1853 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1854 {
1855 HOST_WIDE_INT masklow, maskhigh;
1856
1857 if (bitsize == 0)
1858 masklow = 0;
1859 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1860 masklow = (HOST_WIDE_INT) -1 << bitpos;
1861 else
1862 masklow = 0;
1863
1864 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1865 masklow &= ((unsigned HOST_WIDE_INT) -1
1866 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1867
1868 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1869 maskhigh = -1;
1870 else
1871 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1872
1873 if (bitsize == 0)
1874 maskhigh = 0;
1875 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1876 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1877 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1878 else
1879 maskhigh = 0;
1880
1881 if (complement)
1882 {
1883 maskhigh = ~maskhigh;
1884 masklow = ~masklow;
1885 }
1886
1887 return immed_double_const (masklow, maskhigh, mode);
1888 }
1889
1890 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1891 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1892
1893 static rtx
1894 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1895 {
1896 unsigned HOST_WIDE_INT v = INTVAL (value);
1897 HOST_WIDE_INT low, high;
1898
1899 if (bitsize < HOST_BITS_PER_WIDE_INT)
1900 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1901
1902 if (bitpos < HOST_BITS_PER_WIDE_INT)
1903 {
1904 low = v << bitpos;
1905 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1906 }
1907 else
1908 {
1909 low = 0;
1910 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1911 }
1912
1913 return immed_double_const (low, high, mode);
1914 }
1915 \f
1916 /* Extract a bit field from a memory by forcing the alignment of the
1917 memory. This efficient only if the field spans at least 4 boundaries.
1918
1919 OP0 is the MEM.
1920 BITSIZE is the field width; BITPOS is the position of the first bit.
1921 UNSIGNEDP is true if the result should be zero-extended. */
1922
1923 static rtx
1924 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1925 unsigned HOST_WIDE_INT bitpos,
1926 int unsignedp)
1927 {
1928 enum machine_mode mode, dmode;
1929 unsigned int m_bitsize, m_size;
1930 unsigned int sign_shift_up, sign_shift_dn;
1931 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1932
1933 /* Choose a mode that will fit BITSIZE. */
1934 mode = smallest_mode_for_size (bitsize, MODE_INT);
1935 m_size = GET_MODE_SIZE (mode);
1936 m_bitsize = GET_MODE_BITSIZE (mode);
1937
1938 /* Choose a mode twice as wide. Fail if no such mode exists. */
1939 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1940 if (dmode == BLKmode)
1941 return NULL;
1942
1943 do_pending_stack_adjust ();
1944 start = get_last_insn ();
1945
1946 /* At the end, we'll need an additional shift to deal with sign/zero
1947 extension. By default this will be a left+right shift of the
1948 appropriate size. But we may be able to eliminate one of them. */
1949 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1950
1951 if (STRICT_ALIGNMENT)
1952 {
1953 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1954 bitpos %= BITS_PER_UNIT;
1955
1956 /* We load two values to be concatenate. There's an edge condition
1957 that bears notice -- an aligned value at the end of a page can
1958 only load one value lest we segfault. So the two values we load
1959 are at "base & -size" and "(base + size - 1) & -size". If base
1960 is unaligned, the addresses will be aligned and sequential; if
1961 base is aligned, the addresses will both be equal to base. */
1962
1963 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1964 GEN_INT (-(HOST_WIDE_INT)m_size),
1965 NULL, true, OPTAB_LIB_WIDEN);
1966 mark_reg_pointer (a1, m_bitsize);
1967 v1 = gen_rtx_MEM (mode, a1);
1968 set_mem_align (v1, m_bitsize);
1969 v1 = force_reg (mode, validize_mem (v1));
1970
1971 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1972 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1973 GEN_INT (-(HOST_WIDE_INT)m_size),
1974 NULL, true, OPTAB_LIB_WIDEN);
1975 v2 = gen_rtx_MEM (mode, a2);
1976 set_mem_align (v2, m_bitsize);
1977 v2 = force_reg (mode, validize_mem (v2));
1978
1979 /* Combine these two values into a double-word value. */
1980 if (m_bitsize == BITS_PER_WORD)
1981 {
1982 comb = gen_reg_rtx (dmode);
1983 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1984 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1985 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1986 }
1987 else
1988 {
1989 if (BYTES_BIG_ENDIAN)
1990 comb = v1, v1 = v2, v2 = comb;
1991 v1 = convert_modes (dmode, mode, v1, true);
1992 if (v1 == NULL)
1993 goto fail;
1994 v2 = convert_modes (dmode, mode, v2, true);
1995 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1996 NULL, true, OPTAB_LIB_WIDEN);
1997 if (v2 == NULL)
1998 goto fail;
1999 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
2000 true, OPTAB_LIB_WIDEN);
2001 if (comb == NULL)
2002 goto fail;
2003 }
2004
2005 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
2006 NULL, true, OPTAB_LIB_WIDEN);
2007 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
2008
2009 if (bitpos != 0)
2010 {
2011 if (sign_shift_up <= bitpos)
2012 bitpos -= sign_shift_up, sign_shift_up = 0;
2013 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
2014 NULL, true, OPTAB_LIB_WIDEN);
2015 }
2016 }
2017 else
2018 {
2019 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
2020 bitpos %= BITS_PER_UNIT;
2021
2022 /* When strict alignment is not required, we can just load directly
2023 from memory without masking. If the remaining BITPOS offset is
2024 small enough, we may be able to do all operations in MODE as
2025 opposed to DMODE. */
2026 if (bitpos + bitsize <= m_bitsize)
2027 dmode = mode;
2028 comb = adjust_address (op0, dmode, offset);
2029
2030 if (sign_shift_up <= bitpos)
2031 bitpos -= sign_shift_up, sign_shift_up = 0;
2032 shift = GEN_INT (bitpos);
2033 }
2034
2035 /* Shift down the double-word such that the requested value is at bit 0. */
2036 if (shift != const0_rtx)
2037 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
2038 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
2039 if (comb == NULL)
2040 goto fail;
2041
2042 /* If the field exactly matches MODE, then all we need to do is return the
2043 lowpart. Otherwise, shift to get the sign bits set properly. */
2044 result = force_reg (mode, gen_lowpart (mode, comb));
2045
2046 if (sign_shift_up)
2047 result = expand_simple_binop (mode, ASHIFT, result,
2048 GEN_INT (sign_shift_up),
2049 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2050 if (sign_shift_dn)
2051 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
2052 result, GEN_INT (sign_shift_dn),
2053 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2054
2055 return result;
2056
2057 fail:
2058 delete_insns_since (start);
2059 return NULL;
2060 }
2061
2062 /* Extract a bit field that is split across two words
2063 and return an RTX for the result.
2064
2065 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2066 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2067 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2068
2069 static rtx
2070 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2071 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2072 {
2073 unsigned int unit;
2074 unsigned int bitsdone = 0;
2075 rtx result = NULL_RTX;
2076 int first = 1;
2077
2078 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2079 much at a time. */
2080 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2081 unit = BITS_PER_WORD;
2082 else
2083 {
2084 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2085 if (0 && bitsize / unit > 2)
2086 {
2087 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2088 unsignedp);
2089 if (tmp)
2090 return tmp;
2091 }
2092 }
2093
2094 while (bitsdone < bitsize)
2095 {
2096 unsigned HOST_WIDE_INT thissize;
2097 rtx part, word;
2098 unsigned HOST_WIDE_INT thispos;
2099 unsigned HOST_WIDE_INT offset;
2100
2101 offset = (bitpos + bitsdone) / unit;
2102 thispos = (bitpos + bitsdone) % unit;
2103
2104 /* THISSIZE must not overrun a word boundary. Otherwise,
2105 extract_fixed_bit_field will call us again, and we will mutually
2106 recurse forever. */
2107 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2108 thissize = MIN (thissize, unit - thispos);
2109
2110 /* If OP0 is a register, then handle OFFSET here.
2111
2112 When handling multiword bitfields, extract_bit_field may pass
2113 down a word_mode SUBREG of a larger REG for a bitfield that actually
2114 crosses a word boundary. Thus, for a SUBREG, we must find
2115 the current word starting from the base register. */
2116 if (GET_CODE (op0) == SUBREG)
2117 {
2118 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2119 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2120 GET_MODE (SUBREG_REG (op0)));
2121 offset = 0;
2122 }
2123 else if (REG_P (op0))
2124 {
2125 word = operand_subword_force (op0, offset, GET_MODE (op0));
2126 offset = 0;
2127 }
2128 else
2129 word = op0;
2130
2131 /* Extract the parts in bit-counting order,
2132 whose meaning is determined by BYTES_PER_UNIT.
2133 OFFSET is in UNITs, and UNIT is in bits.
2134 extract_fixed_bit_field wants offset in bytes. */
2135 part = extract_fixed_bit_field (word_mode, word,
2136 offset * unit / BITS_PER_UNIT,
2137 thissize, thispos, 0, 1);
2138 bitsdone += thissize;
2139
2140 /* Shift this part into place for the result. */
2141 if (BYTES_BIG_ENDIAN)
2142 {
2143 if (bitsize != bitsdone)
2144 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2145 build_int_cst (NULL_TREE, bitsize - bitsdone),
2146 0, 1);
2147 }
2148 else
2149 {
2150 if (bitsdone != thissize)
2151 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2152 build_int_cst (NULL_TREE,
2153 bitsdone - thissize), 0, 1);
2154 }
2155
2156 if (first)
2157 result = part;
2158 else
2159 /* Combine the parts with bitwise or. This works
2160 because we extracted each part as an unsigned bit field. */
2161 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2162 OPTAB_LIB_WIDEN);
2163
2164 first = 0;
2165 }
2166
2167 /* Unsigned bit field: we are done. */
2168 if (unsignedp)
2169 return result;
2170 /* Signed bit field: sign-extend with two arithmetic shifts. */
2171 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2172 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2173 NULL_RTX, 0);
2174 return expand_shift (RSHIFT_EXPR, word_mode, result,
2175 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2176 NULL_RTX, 0);
2177 }
2178 \f
2179 /* Add INC into TARGET. */
2180
2181 void
2182 expand_inc (rtx target, rtx inc)
2183 {
2184 rtx value = expand_binop (GET_MODE (target), add_optab,
2185 target, inc,
2186 target, 0, OPTAB_LIB_WIDEN);
2187 if (value != target)
2188 emit_move_insn (target, value);
2189 }
2190
2191 /* Subtract DEC from TARGET. */
2192
2193 void
2194 expand_dec (rtx target, rtx dec)
2195 {
2196 rtx value = expand_binop (GET_MODE (target), sub_optab,
2197 target, dec,
2198 target, 0, OPTAB_LIB_WIDEN);
2199 if (value != target)
2200 emit_move_insn (target, value);
2201 }
2202 \f
2203 /* Output a shift instruction for expression code CODE,
2204 with SHIFTED being the rtx for the value to shift,
2205 and AMOUNT the tree for the amount to shift by.
2206 Store the result in the rtx TARGET, if that is convenient.
2207 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2208 Return the rtx for where the value is. */
2209
2210 rtx
2211 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2212 tree amount, rtx target, int unsignedp)
2213 {
2214 rtx op1, temp = 0;
2215 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2216 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2217 int try;
2218
2219 /* Previously detected shift-counts computed by NEGATE_EXPR
2220 and shifted in the other direction; but that does not work
2221 on all machines. */
2222
2223 op1 = expand_normal (amount);
2224
2225 if (SHIFT_COUNT_TRUNCATED)
2226 {
2227 if (GET_CODE (op1) == CONST_INT
2228 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2229 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2230 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2231 % GET_MODE_BITSIZE (mode));
2232 else if (GET_CODE (op1) == SUBREG
2233 && subreg_lowpart_p (op1))
2234 op1 = SUBREG_REG (op1);
2235 }
2236
2237 if (op1 == const0_rtx)
2238 return shifted;
2239
2240 /* Check whether its cheaper to implement a left shift by a constant
2241 bit count by a sequence of additions. */
2242 if (code == LSHIFT_EXPR
2243 && GET_CODE (op1) == CONST_INT
2244 && INTVAL (op1) > 0
2245 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2246 && INTVAL (op1) < MAX_BITS_PER_WORD
2247 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
2248 && shift_cost[mode][INTVAL (op1)] != MAX_COST)
2249 {
2250 int i;
2251 for (i = 0; i < INTVAL (op1); i++)
2252 {
2253 temp = force_reg (mode, shifted);
2254 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2255 unsignedp, OPTAB_LIB_WIDEN);
2256 }
2257 return shifted;
2258 }
2259
2260 for (try = 0; temp == 0 && try < 3; try++)
2261 {
2262 enum optab_methods methods;
2263
2264 if (try == 0)
2265 methods = OPTAB_DIRECT;
2266 else if (try == 1)
2267 methods = OPTAB_WIDEN;
2268 else
2269 methods = OPTAB_LIB_WIDEN;
2270
2271 if (rotate)
2272 {
2273 /* Widening does not work for rotation. */
2274 if (methods == OPTAB_WIDEN)
2275 continue;
2276 else if (methods == OPTAB_LIB_WIDEN)
2277 {
2278 /* If we have been unable to open-code this by a rotation,
2279 do it as the IOR of two shifts. I.e., to rotate A
2280 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2281 where C is the bitsize of A.
2282
2283 It is theoretically possible that the target machine might
2284 not be able to perform either shift and hence we would
2285 be making two libcalls rather than just the one for the
2286 shift (similarly if IOR could not be done). We will allow
2287 this extremely unlikely lossage to avoid complicating the
2288 code below. */
2289
2290 rtx subtarget = target == shifted ? 0 : target;
2291 tree new_amount, other_amount;
2292 rtx temp1;
2293 tree type = TREE_TYPE (amount);
2294 if (GET_MODE (op1) != TYPE_MODE (type)
2295 && GET_MODE (op1) != VOIDmode)
2296 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2297 new_amount = make_tree (type, op1);
2298 other_amount
2299 = fold_build2 (MINUS_EXPR, type,
2300 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2301 new_amount);
2302
2303 shifted = force_reg (mode, shifted);
2304
2305 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2306 mode, shifted, new_amount, 0, 1);
2307 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2308 mode, shifted, other_amount, subtarget, 1);
2309 return expand_binop (mode, ior_optab, temp, temp1, target,
2310 unsignedp, methods);
2311 }
2312
2313 temp = expand_binop (mode,
2314 left ? rotl_optab : rotr_optab,
2315 shifted, op1, target, unsignedp, methods);
2316 }
2317 else if (unsignedp)
2318 temp = expand_binop (mode,
2319 left ? ashl_optab : lshr_optab,
2320 shifted, op1, target, unsignedp, methods);
2321
2322 /* Do arithmetic shifts.
2323 Also, if we are going to widen the operand, we can just as well
2324 use an arithmetic right-shift instead of a logical one. */
2325 if (temp == 0 && ! rotate
2326 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2327 {
2328 enum optab_methods methods1 = methods;
2329
2330 /* If trying to widen a log shift to an arithmetic shift,
2331 don't accept an arithmetic shift of the same size. */
2332 if (unsignedp)
2333 methods1 = OPTAB_MUST_WIDEN;
2334
2335 /* Arithmetic shift */
2336
2337 temp = expand_binop (mode,
2338 left ? ashl_optab : ashr_optab,
2339 shifted, op1, target, unsignedp, methods1);
2340 }
2341
2342 /* We used to try extzv here for logical right shifts, but that was
2343 only useful for one machine, the VAX, and caused poor code
2344 generation there for lshrdi3, so the code was deleted and a
2345 define_expand for lshrsi3 was added to vax.md. */
2346 }
2347
2348 gcc_assert (temp);
2349 return temp;
2350 }
2351 \f
2352 enum alg_code {
2353 alg_unknown,
2354 alg_zero,
2355 alg_m, alg_shift,
2356 alg_add_t_m2,
2357 alg_sub_t_m2,
2358 alg_add_factor,
2359 alg_sub_factor,
2360 alg_add_t2_m,
2361 alg_sub_t2_m,
2362 alg_impossible
2363 };
2364
2365 /* This structure holds the "cost" of a multiply sequence. The
2366 "cost" field holds the total rtx_cost of every operator in the
2367 synthetic multiplication sequence, hence cost(a op b) is defined
2368 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2369 The "latency" field holds the minimum possible latency of the
2370 synthetic multiply, on a hypothetical infinitely parallel CPU.
2371 This is the critical path, or the maximum height, of the expression
2372 tree which is the sum of rtx_costs on the most expensive path from
2373 any leaf to the root. Hence latency(a op b) is defined as zero for
2374 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2375
2376 struct mult_cost {
2377 short cost; /* Total rtx_cost of the multiplication sequence. */
2378 short latency; /* The latency of the multiplication sequence. */
2379 };
2380
2381 /* This macro is used to compare a pointer to a mult_cost against an
2382 single integer "rtx_cost" value. This is equivalent to the macro
2383 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2384 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2385 || ((X)->cost == (Y) && (X)->latency < (Y)))
2386
2387 /* This macro is used to compare two pointers to mult_costs against
2388 each other. The macro returns true if X is cheaper than Y.
2389 Currently, the cheaper of two mult_costs is the one with the
2390 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2391 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2392 || ((X)->cost == (Y)->cost \
2393 && (X)->latency < (Y)->latency))
2394
2395 /* This structure records a sequence of operations.
2396 `ops' is the number of operations recorded.
2397 `cost' is their total cost.
2398 The operations are stored in `op' and the corresponding
2399 logarithms of the integer coefficients in `log'.
2400
2401 These are the operations:
2402 alg_zero total := 0;
2403 alg_m total := multiplicand;
2404 alg_shift total := total * coeff
2405 alg_add_t_m2 total := total + multiplicand * coeff;
2406 alg_sub_t_m2 total := total - multiplicand * coeff;
2407 alg_add_factor total := total * coeff + total;
2408 alg_sub_factor total := total * coeff - total;
2409 alg_add_t2_m total := total * coeff + multiplicand;
2410 alg_sub_t2_m total := total * coeff - multiplicand;
2411
2412 The first operand must be either alg_zero or alg_m. */
2413
2414 struct algorithm
2415 {
2416 struct mult_cost cost;
2417 short ops;
2418 /* The size of the OP and LOG fields are not directly related to the
2419 word size, but the worst-case algorithms will be if we have few
2420 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2421 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2422 in total wordsize operations. */
2423 enum alg_code op[MAX_BITS_PER_WORD];
2424 char log[MAX_BITS_PER_WORD];
2425 };
2426
2427 /* The entry for our multiplication cache/hash table. */
2428 struct alg_hash_entry {
2429 /* The number we are multiplying by. */
2430 unsigned HOST_WIDE_INT t;
2431
2432 /* The mode in which we are multiplying something by T. */
2433 enum machine_mode mode;
2434
2435 /* The best multiplication algorithm for t. */
2436 enum alg_code alg;
2437
2438 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2439 Otherwise, the cost within which multiplication by T is
2440 impossible. */
2441 struct mult_cost cost;
2442 };
2443
2444 /* The number of cache/hash entries. */
2445 #if HOST_BITS_PER_WIDE_INT == 64
2446 #define NUM_ALG_HASH_ENTRIES 1031
2447 #else
2448 #define NUM_ALG_HASH_ENTRIES 307
2449 #endif
2450
2451 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2452 actually a hash table. If we have a collision, that the older
2453 entry is kicked out. */
2454 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2455
2456 /* Indicates the type of fixup needed after a constant multiplication.
2457 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2458 the result should be negated, and ADD_VARIANT means that the
2459 multiplicand should be added to the result. */
2460 enum mult_variant {basic_variant, negate_variant, add_variant};
2461
2462 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2463 const struct mult_cost *, enum machine_mode mode);
2464 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2465 struct algorithm *, enum mult_variant *, int);
2466 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2467 const struct algorithm *, enum mult_variant);
2468 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2469 int, rtx *, int *, int *);
2470 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2471 static rtx extract_high_half (enum machine_mode, rtx);
2472 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2473 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2474 int, int);
2475 /* Compute and return the best algorithm for multiplying by T.
2476 The algorithm must cost less than cost_limit
2477 If retval.cost >= COST_LIMIT, no algorithm was found and all
2478 other field of the returned struct are undefined.
2479 MODE is the machine mode of the multiplication. */
2480
2481 static void
2482 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2483 const struct mult_cost *cost_limit, enum machine_mode mode)
2484 {
2485 int m;
2486 struct algorithm *alg_in, *best_alg;
2487 struct mult_cost best_cost;
2488 struct mult_cost new_limit;
2489 int op_cost, op_latency;
2490 unsigned HOST_WIDE_INT q;
2491 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2492 int hash_index;
2493 bool cache_hit = false;
2494 enum alg_code cache_alg = alg_zero;
2495
2496 /* Indicate that no algorithm is yet found. If no algorithm
2497 is found, this value will be returned and indicate failure. */
2498 alg_out->cost.cost = cost_limit->cost + 1;
2499 alg_out->cost.latency = cost_limit->latency + 1;
2500
2501 if (cost_limit->cost < 0
2502 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2503 return;
2504
2505 /* Restrict the bits of "t" to the multiplication's mode. */
2506 t &= GET_MODE_MASK (mode);
2507
2508 /* t == 1 can be done in zero cost. */
2509 if (t == 1)
2510 {
2511 alg_out->ops = 1;
2512 alg_out->cost.cost = 0;
2513 alg_out->cost.latency = 0;
2514 alg_out->op[0] = alg_m;
2515 return;
2516 }
2517
2518 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2519 fail now. */
2520 if (t == 0)
2521 {
2522 if (MULT_COST_LESS (cost_limit, zero_cost))
2523 return;
2524 else
2525 {
2526 alg_out->ops = 1;
2527 alg_out->cost.cost = zero_cost;
2528 alg_out->cost.latency = zero_cost;
2529 alg_out->op[0] = alg_zero;
2530 return;
2531 }
2532 }
2533
2534 /* We'll be needing a couple extra algorithm structures now. */
2535
2536 alg_in = alloca (sizeof (struct algorithm));
2537 best_alg = alloca (sizeof (struct algorithm));
2538 best_cost = *cost_limit;
2539
2540 /* Compute the hash index. */
2541 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2542
2543 /* See if we already know what to do for T. */
2544 if (alg_hash[hash_index].t == t
2545 && alg_hash[hash_index].mode == mode
2546 && alg_hash[hash_index].alg != alg_unknown)
2547 {
2548 cache_alg = alg_hash[hash_index].alg;
2549
2550 if (cache_alg == alg_impossible)
2551 {
2552 /* The cache tells us that it's impossible to synthesize
2553 multiplication by T within alg_hash[hash_index].cost. */
2554 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2555 /* COST_LIMIT is at least as restrictive as the one
2556 recorded in the hash table, in which case we have no
2557 hope of synthesizing a multiplication. Just
2558 return. */
2559 return;
2560
2561 /* If we get here, COST_LIMIT is less restrictive than the
2562 one recorded in the hash table, so we may be able to
2563 synthesize a multiplication. Proceed as if we didn't
2564 have the cache entry. */
2565 }
2566 else
2567 {
2568 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2569 /* The cached algorithm shows that this multiplication
2570 requires more cost than COST_LIMIT. Just return. This
2571 way, we don't clobber this cache entry with
2572 alg_impossible but retain useful information. */
2573 return;
2574
2575 cache_hit = true;
2576
2577 switch (cache_alg)
2578 {
2579 case alg_shift:
2580 goto do_alg_shift;
2581
2582 case alg_add_t_m2:
2583 case alg_sub_t_m2:
2584 goto do_alg_addsub_t_m2;
2585
2586 case alg_add_factor:
2587 case alg_sub_factor:
2588 goto do_alg_addsub_factor;
2589
2590 case alg_add_t2_m:
2591 goto do_alg_add_t2_m;
2592
2593 case alg_sub_t2_m:
2594 goto do_alg_sub_t2_m;
2595
2596 default:
2597 gcc_unreachable ();
2598 }
2599 }
2600 }
2601
2602 /* If we have a group of zero bits at the low-order part of T, try
2603 multiplying by the remaining bits and then doing a shift. */
2604
2605 if ((t & 1) == 0)
2606 {
2607 do_alg_shift:
2608 m = floor_log2 (t & -t); /* m = number of low zero bits */
2609 if (m < maxm)
2610 {
2611 q = t >> m;
2612 /* The function expand_shift will choose between a shift and
2613 a sequence of additions, so the observed cost is given as
2614 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2615 op_cost = m * add_cost[mode];
2616 if (shift_cost[mode][m] < op_cost)
2617 op_cost = shift_cost[mode][m];
2618 new_limit.cost = best_cost.cost - op_cost;
2619 new_limit.latency = best_cost.latency - op_cost;
2620 synth_mult (alg_in, q, &new_limit, mode);
2621
2622 alg_in->cost.cost += op_cost;
2623 alg_in->cost.latency += op_cost;
2624 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2625 {
2626 struct algorithm *x;
2627 best_cost = alg_in->cost;
2628 x = alg_in, alg_in = best_alg, best_alg = x;
2629 best_alg->log[best_alg->ops] = m;
2630 best_alg->op[best_alg->ops] = alg_shift;
2631 }
2632 }
2633 if (cache_hit)
2634 goto done;
2635 }
2636
2637 /* If we have an odd number, add or subtract one. */
2638 if ((t & 1) != 0)
2639 {
2640 unsigned HOST_WIDE_INT w;
2641
2642 do_alg_addsub_t_m2:
2643 for (w = 1; (w & t) != 0; w <<= 1)
2644 ;
2645 /* If T was -1, then W will be zero after the loop. This is another
2646 case where T ends with ...111. Handling this with (T + 1) and
2647 subtract 1 produces slightly better code and results in algorithm
2648 selection much faster than treating it like the ...0111 case
2649 below. */
2650 if (w == 0
2651 || (w > 2
2652 /* Reject the case where t is 3.
2653 Thus we prefer addition in that case. */
2654 && t != 3))
2655 {
2656 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2657
2658 op_cost = add_cost[mode];
2659 new_limit.cost = best_cost.cost - op_cost;
2660 new_limit.latency = best_cost.latency - op_cost;
2661 synth_mult (alg_in, t + 1, &new_limit, mode);
2662
2663 alg_in->cost.cost += op_cost;
2664 alg_in->cost.latency += op_cost;
2665 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2666 {
2667 struct algorithm *x;
2668 best_cost = alg_in->cost;
2669 x = alg_in, alg_in = best_alg, best_alg = x;
2670 best_alg->log[best_alg->ops] = 0;
2671 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2672 }
2673 }
2674 else
2675 {
2676 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2677
2678 op_cost = add_cost[mode];
2679 new_limit.cost = best_cost.cost - op_cost;
2680 new_limit.latency = best_cost.latency - op_cost;
2681 synth_mult (alg_in, t - 1, &new_limit, mode);
2682
2683 alg_in->cost.cost += op_cost;
2684 alg_in->cost.latency += op_cost;
2685 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2686 {
2687 struct algorithm *x;
2688 best_cost = alg_in->cost;
2689 x = alg_in, alg_in = best_alg, best_alg = x;
2690 best_alg->log[best_alg->ops] = 0;
2691 best_alg->op[best_alg->ops] = alg_add_t_m2;
2692 }
2693 }
2694 if (cache_hit)
2695 goto done;
2696 }
2697
2698 /* Look for factors of t of the form
2699 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2700 If we find such a factor, we can multiply by t using an algorithm that
2701 multiplies by q, shift the result by m and add/subtract it to itself.
2702
2703 We search for large factors first and loop down, even if large factors
2704 are less probable than small; if we find a large factor we will find a
2705 good sequence quickly, and therefore be able to prune (by decreasing
2706 COST_LIMIT) the search. */
2707
2708 do_alg_addsub_factor:
2709 for (m = floor_log2 (t - 1); m >= 2; m--)
2710 {
2711 unsigned HOST_WIDE_INT d;
2712
2713 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2714 if (t % d == 0 && t > d && m < maxm
2715 && (!cache_hit || cache_alg == alg_add_factor))
2716 {
2717 /* If the target has a cheap shift-and-add instruction use
2718 that in preference to a shift insn followed by an add insn.
2719 Assume that the shift-and-add is "atomic" with a latency
2720 equal to its cost, otherwise assume that on superscalar
2721 hardware the shift may be executed concurrently with the
2722 earlier steps in the algorithm. */
2723 op_cost = add_cost[mode] + shift_cost[mode][m];
2724 if (shiftadd_cost[mode][m] < op_cost)
2725 {
2726 op_cost = shiftadd_cost[mode][m];
2727 op_latency = op_cost;
2728 }
2729 else
2730 op_latency = add_cost[mode];
2731
2732 new_limit.cost = best_cost.cost - op_cost;
2733 new_limit.latency = best_cost.latency - op_latency;
2734 synth_mult (alg_in, t / d, &new_limit, mode);
2735
2736 alg_in->cost.cost += op_cost;
2737 alg_in->cost.latency += op_latency;
2738 if (alg_in->cost.latency < op_cost)
2739 alg_in->cost.latency = op_cost;
2740 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2741 {
2742 struct algorithm *x;
2743 best_cost = alg_in->cost;
2744 x = alg_in, alg_in = best_alg, best_alg = x;
2745 best_alg->log[best_alg->ops] = m;
2746 best_alg->op[best_alg->ops] = alg_add_factor;
2747 }
2748 /* Other factors will have been taken care of in the recursion. */
2749 break;
2750 }
2751
2752 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2753 if (t % d == 0 && t > d && m < maxm
2754 && (!cache_hit || cache_alg == alg_sub_factor))
2755 {
2756 /* If the target has a cheap shift-and-subtract insn use
2757 that in preference to a shift insn followed by a sub insn.
2758 Assume that the shift-and-sub is "atomic" with a latency
2759 equal to it's cost, otherwise assume that on superscalar
2760 hardware the shift may be executed concurrently with the
2761 earlier steps in the algorithm. */
2762 op_cost = add_cost[mode] + shift_cost[mode][m];
2763 if (shiftsub_cost[mode][m] < op_cost)
2764 {
2765 op_cost = shiftsub_cost[mode][m];
2766 op_latency = op_cost;
2767 }
2768 else
2769 op_latency = add_cost[mode];
2770
2771 new_limit.cost = best_cost.cost - op_cost;
2772 new_limit.latency = best_cost.latency - op_latency;
2773 synth_mult (alg_in, t / d, &new_limit, mode);
2774
2775 alg_in->cost.cost += op_cost;
2776 alg_in->cost.latency += op_latency;
2777 if (alg_in->cost.latency < op_cost)
2778 alg_in->cost.latency = op_cost;
2779 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2780 {
2781 struct algorithm *x;
2782 best_cost = alg_in->cost;
2783 x = alg_in, alg_in = best_alg, best_alg = x;
2784 best_alg->log[best_alg->ops] = m;
2785 best_alg->op[best_alg->ops] = alg_sub_factor;
2786 }
2787 break;
2788 }
2789 }
2790 if (cache_hit)
2791 goto done;
2792
2793 /* Try shift-and-add (load effective address) instructions,
2794 i.e. do a*3, a*5, a*9. */
2795 if ((t & 1) != 0)
2796 {
2797 do_alg_add_t2_m:
2798 q = t - 1;
2799 q = q & -q;
2800 m = exact_log2 (q);
2801 if (m >= 0 && m < maxm)
2802 {
2803 op_cost = shiftadd_cost[mode][m];
2804 new_limit.cost = best_cost.cost - op_cost;
2805 new_limit.latency = best_cost.latency - op_cost;
2806 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2807
2808 alg_in->cost.cost += op_cost;
2809 alg_in->cost.latency += op_cost;
2810 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2811 {
2812 struct algorithm *x;
2813 best_cost = alg_in->cost;
2814 x = alg_in, alg_in = best_alg, best_alg = x;
2815 best_alg->log[best_alg->ops] = m;
2816 best_alg->op[best_alg->ops] = alg_add_t2_m;
2817 }
2818 }
2819 if (cache_hit)
2820 goto done;
2821
2822 do_alg_sub_t2_m:
2823 q = t + 1;
2824 q = q & -q;
2825 m = exact_log2 (q);
2826 if (m >= 0 && m < maxm)
2827 {
2828 op_cost = shiftsub_cost[mode][m];
2829 new_limit.cost = best_cost.cost - op_cost;
2830 new_limit.latency = best_cost.latency - op_cost;
2831 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2832
2833 alg_in->cost.cost += op_cost;
2834 alg_in->cost.latency += op_cost;
2835 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2836 {
2837 struct algorithm *x;
2838 best_cost = alg_in->cost;
2839 x = alg_in, alg_in = best_alg, best_alg = x;
2840 best_alg->log[best_alg->ops] = m;
2841 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2842 }
2843 }
2844 if (cache_hit)
2845 goto done;
2846 }
2847
2848 done:
2849 /* If best_cost has not decreased, we have not found any algorithm. */
2850 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2851 {
2852 /* We failed to find an algorithm. Record alg_impossible for
2853 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2854 we are asked to find an algorithm for T within the same or
2855 lower COST_LIMIT, we can immediately return to the
2856 caller. */
2857 alg_hash[hash_index].t = t;
2858 alg_hash[hash_index].mode = mode;
2859 alg_hash[hash_index].alg = alg_impossible;
2860 alg_hash[hash_index].cost = *cost_limit;
2861 return;
2862 }
2863
2864 /* Cache the result. */
2865 if (!cache_hit)
2866 {
2867 alg_hash[hash_index].t = t;
2868 alg_hash[hash_index].mode = mode;
2869 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2870 alg_hash[hash_index].cost.cost = best_cost.cost;
2871 alg_hash[hash_index].cost.latency = best_cost.latency;
2872 }
2873
2874 /* If we are getting a too long sequence for `struct algorithm'
2875 to record, make this search fail. */
2876 if (best_alg->ops == MAX_BITS_PER_WORD)
2877 return;
2878
2879 /* Copy the algorithm from temporary space to the space at alg_out.
2880 We avoid using structure assignment because the majority of
2881 best_alg is normally undefined, and this is a critical function. */
2882 alg_out->ops = best_alg->ops + 1;
2883 alg_out->cost = best_cost;
2884 memcpy (alg_out->op, best_alg->op,
2885 alg_out->ops * sizeof *alg_out->op);
2886 memcpy (alg_out->log, best_alg->log,
2887 alg_out->ops * sizeof *alg_out->log);
2888 }
2889 \f
2890 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2891 Try three variations:
2892
2893 - a shift/add sequence based on VAL itself
2894 - a shift/add sequence based on -VAL, followed by a negation
2895 - a shift/add sequence based on VAL - 1, followed by an addition.
2896
2897 Return true if the cheapest of these cost less than MULT_COST,
2898 describing the algorithm in *ALG and final fixup in *VARIANT. */
2899
2900 static bool
2901 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2902 struct algorithm *alg, enum mult_variant *variant,
2903 int mult_cost)
2904 {
2905 struct algorithm alg2;
2906 struct mult_cost limit;
2907 int op_cost;
2908
2909 /* Fail quickly for impossible bounds. */
2910 if (mult_cost < 0)
2911 return false;
2912
2913 /* Ensure that mult_cost provides a reasonable upper bound.
2914 Any constant multiplication can be performed with less
2915 than 2 * bits additions. */
2916 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2917 if (mult_cost > op_cost)
2918 mult_cost = op_cost;
2919
2920 *variant = basic_variant;
2921 limit.cost = mult_cost;
2922 limit.latency = mult_cost;
2923 synth_mult (alg, val, &limit, mode);
2924
2925 /* This works only if the inverted value actually fits in an
2926 `unsigned int' */
2927 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2928 {
2929 op_cost = neg_cost[mode];
2930 if (MULT_COST_LESS (&alg->cost, mult_cost))
2931 {
2932 limit.cost = alg->cost.cost - op_cost;
2933 limit.latency = alg->cost.latency - op_cost;
2934 }
2935 else
2936 {
2937 limit.cost = mult_cost - op_cost;
2938 limit.latency = mult_cost - op_cost;
2939 }
2940
2941 synth_mult (&alg2, -val, &limit, mode);
2942 alg2.cost.cost += op_cost;
2943 alg2.cost.latency += op_cost;
2944 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2945 *alg = alg2, *variant = negate_variant;
2946 }
2947
2948 /* This proves very useful for division-by-constant. */
2949 op_cost = add_cost[mode];
2950 if (MULT_COST_LESS (&alg->cost, mult_cost))
2951 {
2952 limit.cost = alg->cost.cost - op_cost;
2953 limit.latency = alg->cost.latency - op_cost;
2954 }
2955 else
2956 {
2957 limit.cost = mult_cost - op_cost;
2958 limit.latency = mult_cost - op_cost;
2959 }
2960
2961 synth_mult (&alg2, val - 1, &limit, mode);
2962 alg2.cost.cost += op_cost;
2963 alg2.cost.latency += op_cost;
2964 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2965 *alg = alg2, *variant = add_variant;
2966
2967 return MULT_COST_LESS (&alg->cost, mult_cost);
2968 }
2969
2970 /* A subroutine of expand_mult, used for constant multiplications.
2971 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2972 convenient. Use the shift/add sequence described by ALG and apply
2973 the final fixup specified by VARIANT. */
2974
2975 static rtx
2976 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2977 rtx target, const struct algorithm *alg,
2978 enum mult_variant variant)
2979 {
2980 HOST_WIDE_INT val_so_far;
2981 rtx insn, accum, tem;
2982 int opno;
2983 enum machine_mode nmode;
2984
2985 /* Avoid referencing memory over and over and invalid sharing
2986 on SUBREGs. */
2987 op0 = force_reg (mode, op0);
2988
2989 /* ACCUM starts out either as OP0 or as a zero, depending on
2990 the first operation. */
2991
2992 if (alg->op[0] == alg_zero)
2993 {
2994 accum = copy_to_mode_reg (mode, const0_rtx);
2995 val_so_far = 0;
2996 }
2997 else if (alg->op[0] == alg_m)
2998 {
2999 accum = copy_to_mode_reg (mode, op0);
3000 val_so_far = 1;
3001 }
3002 else
3003 gcc_unreachable ();
3004
3005 for (opno = 1; opno < alg->ops; opno++)
3006 {
3007 int log = alg->log[opno];
3008 rtx shift_subtarget = optimize ? 0 : accum;
3009 rtx add_target
3010 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3011 && !optimize)
3012 ? target : 0;
3013 rtx accum_target = optimize ? 0 : accum;
3014
3015 switch (alg->op[opno])
3016 {
3017 case alg_shift:
3018 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3019 build_int_cst (NULL_TREE, log),
3020 NULL_RTX, 0);
3021 val_so_far <<= log;
3022 break;
3023
3024 case alg_add_t_m2:
3025 tem = expand_shift (LSHIFT_EXPR, mode, op0,
3026 build_int_cst (NULL_TREE, log),
3027 NULL_RTX, 0);
3028 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3029 add_target ? add_target : accum_target);
3030 val_so_far += (HOST_WIDE_INT) 1 << log;
3031 break;
3032
3033 case alg_sub_t_m2:
3034 tem = expand_shift (LSHIFT_EXPR, mode, op0,
3035 build_int_cst (NULL_TREE, log),
3036 NULL_RTX, 0);
3037 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3038 add_target ? add_target : accum_target);
3039 val_so_far -= (HOST_WIDE_INT) 1 << log;
3040 break;
3041
3042 case alg_add_t2_m:
3043 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3044 build_int_cst (NULL_TREE, log),
3045 shift_subtarget,
3046 0);
3047 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3048 add_target ? add_target : accum_target);
3049 val_so_far = (val_so_far << log) + 1;
3050 break;
3051
3052 case alg_sub_t2_m:
3053 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3054 build_int_cst (NULL_TREE, log),
3055 shift_subtarget, 0);
3056 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3057 add_target ? add_target : accum_target);
3058 val_so_far = (val_so_far << log) - 1;
3059 break;
3060
3061 case alg_add_factor:
3062 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3063 build_int_cst (NULL_TREE, log),
3064 NULL_RTX, 0);
3065 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3066 add_target ? add_target : accum_target);
3067 val_so_far += val_so_far << log;
3068 break;
3069
3070 case alg_sub_factor:
3071 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3072 build_int_cst (NULL_TREE, log),
3073 NULL_RTX, 0);
3074 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3075 (add_target
3076 ? add_target : (optimize ? 0 : tem)));
3077 val_so_far = (val_so_far << log) - val_so_far;
3078 break;
3079
3080 default:
3081 gcc_unreachable ();
3082 }
3083
3084 /* Write a REG_EQUAL note on the last insn so that we can cse
3085 multiplication sequences. Note that if ACCUM is a SUBREG,
3086 we've set the inner register and must properly indicate
3087 that. */
3088
3089 tem = op0, nmode = mode;
3090 if (GET_CODE (accum) == SUBREG)
3091 {
3092 nmode = GET_MODE (SUBREG_REG (accum));
3093 tem = gen_lowpart (nmode, op0);
3094 }
3095
3096 insn = get_last_insn ();
3097 set_unique_reg_note (insn, REG_EQUAL,
3098 gen_rtx_MULT (nmode, tem,
3099 GEN_INT (val_so_far)));
3100 }
3101
3102 if (variant == negate_variant)
3103 {
3104 val_so_far = -val_so_far;
3105 accum = expand_unop (mode, neg_optab, accum, target, 0);
3106 }
3107 else if (variant == add_variant)
3108 {
3109 val_so_far = val_so_far + 1;
3110 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3111 }
3112
3113 /* Compare only the bits of val and val_so_far that are significant
3114 in the result mode, to avoid sign-/zero-extension confusion. */
3115 val &= GET_MODE_MASK (mode);
3116 val_so_far &= GET_MODE_MASK (mode);
3117 gcc_assert (val == val_so_far);
3118
3119 return accum;
3120 }
3121
3122 /* Perform a multiplication and return an rtx for the result.
3123 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3124 TARGET is a suggestion for where to store the result (an rtx).
3125
3126 We check specially for a constant integer as OP1.
3127 If you want this check for OP0 as well, then before calling
3128 you should swap the two operands if OP0 would be constant. */
3129
3130 rtx
3131 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3132 int unsignedp)
3133 {
3134 enum mult_variant variant;
3135 struct algorithm algorithm;
3136 int max_cost;
3137
3138 /* Handling const0_rtx here allows us to use zero as a rogue value for
3139 coeff below. */
3140 if (op1 == const0_rtx)
3141 return const0_rtx;
3142 if (op1 == const1_rtx)
3143 return op0;
3144 if (op1 == constm1_rtx)
3145 return expand_unop (mode,
3146 GET_MODE_CLASS (mode) == MODE_INT
3147 && !unsignedp && flag_trapv
3148 ? negv_optab : neg_optab,
3149 op0, target, 0);
3150
3151 /* These are the operations that are potentially turned into a sequence
3152 of shifts and additions. */
3153 if (SCALAR_INT_MODE_P (mode)
3154 && (unsignedp || !flag_trapv))
3155 {
3156 HOST_WIDE_INT coeff = 0;
3157 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3158
3159 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3160 less than or equal in size to `unsigned int' this doesn't matter.
3161 If the mode is larger than `unsigned int', then synth_mult works
3162 only if the constant value exactly fits in an `unsigned int' without
3163 any truncation. This means that multiplying by negative values does
3164 not work; results are off by 2^32 on a 32 bit machine. */
3165
3166 if (GET_CODE (op1) == CONST_INT)
3167 {
3168 /* Attempt to handle multiplication of DImode values by negative
3169 coefficients, by performing the multiplication by a positive
3170 multiplier and then inverting the result. */
3171 if (INTVAL (op1) < 0
3172 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3173 {
3174 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3175 result is interpreted as an unsigned coefficient.
3176 Exclude cost of op0 from max_cost to match the cost
3177 calculation of the synth_mult. */
3178 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3179 - neg_cost[mode];
3180 if (max_cost > 0
3181 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3182 &variant, max_cost))
3183 {
3184 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3185 NULL_RTX, &algorithm,
3186 variant);
3187 return expand_unop (mode, neg_optab, temp, target, 0);
3188 }
3189 }
3190 else coeff = INTVAL (op1);
3191 }
3192 else if (GET_CODE (op1) == CONST_DOUBLE)
3193 {
3194 /* If we are multiplying in DImode, it may still be a win
3195 to try to work with shifts and adds. */
3196 if (CONST_DOUBLE_HIGH (op1) == 0)
3197 coeff = CONST_DOUBLE_LOW (op1);
3198 else if (CONST_DOUBLE_LOW (op1) == 0
3199 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3200 {
3201 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3202 + HOST_BITS_PER_WIDE_INT;
3203 return expand_shift (LSHIFT_EXPR, mode, op0,
3204 build_int_cst (NULL_TREE, shift),
3205 target, unsignedp);
3206 }
3207 }
3208
3209 /* We used to test optimize here, on the grounds that it's better to
3210 produce a smaller program when -O is not used. But this causes
3211 such a terrible slowdown sometimes that it seems better to always
3212 use synth_mult. */
3213 if (coeff != 0)
3214 {
3215 /* Special case powers of two. */
3216 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3217 return expand_shift (LSHIFT_EXPR, mode, op0,
3218 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3219 target, unsignedp);
3220
3221 /* Exclude cost of op0 from max_cost to match the cost
3222 calculation of the synth_mult. */
3223 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3224 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3225 max_cost))
3226 return expand_mult_const (mode, op0, coeff, target,
3227 &algorithm, variant);
3228 }
3229 }
3230
3231 if (GET_CODE (op0) == CONST_DOUBLE)
3232 {
3233 rtx temp = op0;
3234 op0 = op1;
3235 op1 = temp;
3236 }
3237
3238 /* Expand x*2.0 as x+x. */
3239 if (GET_CODE (op1) == CONST_DOUBLE
3240 && SCALAR_FLOAT_MODE_P (mode))
3241 {
3242 REAL_VALUE_TYPE d;
3243 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3244
3245 if (REAL_VALUES_EQUAL (d, dconst2))
3246 {
3247 op0 = force_reg (GET_MODE (op0), op0);
3248 return expand_binop (mode, add_optab, op0, op0,
3249 target, unsignedp, OPTAB_LIB_WIDEN);
3250 }
3251 }
3252
3253 /* This used to use umul_optab if unsigned, but for non-widening multiply
3254 there is no difference between signed and unsigned. */
3255 op0 = expand_binop (mode,
3256 ! unsignedp
3257 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3258 ? smulv_optab : smul_optab,
3259 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3260 gcc_assert (op0);
3261 return op0;
3262 }
3263 \f
3264 /* Return the smallest n such that 2**n >= X. */
3265
3266 int
3267 ceil_log2 (unsigned HOST_WIDE_INT x)
3268 {
3269 return floor_log2 (x - 1) + 1;
3270 }
3271
3272 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3273 replace division by D, and put the least significant N bits of the result
3274 in *MULTIPLIER_PTR and return the most significant bit.
3275
3276 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3277 needed precision is in PRECISION (should be <= N).
3278
3279 PRECISION should be as small as possible so this function can choose
3280 multiplier more freely.
3281
3282 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3283 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3284
3285 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3286 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3287
3288 static
3289 unsigned HOST_WIDE_INT
3290 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3291 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3292 {
3293 HOST_WIDE_INT mhigh_hi, mlow_hi;
3294 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3295 int lgup, post_shift;
3296 int pow, pow2;
3297 unsigned HOST_WIDE_INT nl, dummy1;
3298 HOST_WIDE_INT nh, dummy2;
3299
3300 /* lgup = ceil(log2(divisor)); */
3301 lgup = ceil_log2 (d);
3302
3303 gcc_assert (lgup <= n);
3304
3305 pow = n + lgup;
3306 pow2 = n + lgup - precision;
3307
3308 /* We could handle this with some effort, but this case is much
3309 better handled directly with a scc insn, so rely on caller using
3310 that. */
3311 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3312
3313 /* mlow = 2^(N + lgup)/d */
3314 if (pow >= HOST_BITS_PER_WIDE_INT)
3315 {
3316 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3317 nl = 0;
3318 }
3319 else
3320 {
3321 nh = 0;
3322 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3323 }
3324 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3325 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3326
3327 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3328 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3329 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3330 else
3331 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3332 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3333 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3334
3335 gcc_assert (!mhigh_hi || nh - d < d);
3336 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3337 /* Assert that mlow < mhigh. */
3338 gcc_assert (mlow_hi < mhigh_hi
3339 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3340
3341 /* If precision == N, then mlow, mhigh exceed 2^N
3342 (but they do not exceed 2^(N+1)). */
3343
3344 /* Reduce to lowest terms. */
3345 for (post_shift = lgup; post_shift > 0; post_shift--)
3346 {
3347 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3348 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3349 if (ml_lo >= mh_lo)
3350 break;
3351
3352 mlow_hi = 0;
3353 mlow_lo = ml_lo;
3354 mhigh_hi = 0;
3355 mhigh_lo = mh_lo;
3356 }
3357
3358 *post_shift_ptr = post_shift;
3359 *lgup_ptr = lgup;
3360 if (n < HOST_BITS_PER_WIDE_INT)
3361 {
3362 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3363 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3364 return mhigh_lo >= mask;
3365 }
3366 else
3367 {
3368 *multiplier_ptr = GEN_INT (mhigh_lo);
3369 return mhigh_hi;
3370 }
3371 }
3372
3373 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3374 congruent to 1 (mod 2**N). */
3375
3376 static unsigned HOST_WIDE_INT
3377 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3378 {
3379 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3380
3381 /* The algorithm notes that the choice y = x satisfies
3382 x*y == 1 mod 2^3, since x is assumed odd.
3383 Each iteration doubles the number of bits of significance in y. */
3384
3385 unsigned HOST_WIDE_INT mask;
3386 unsigned HOST_WIDE_INT y = x;
3387 int nbit = 3;
3388
3389 mask = (n == HOST_BITS_PER_WIDE_INT
3390 ? ~(unsigned HOST_WIDE_INT) 0
3391 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3392
3393 while (nbit < n)
3394 {
3395 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3396 nbit *= 2;
3397 }
3398 return y;
3399 }
3400
3401 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3402 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3403 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3404 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3405 become signed.
3406
3407 The result is put in TARGET if that is convenient.
3408
3409 MODE is the mode of operation. */
3410
3411 rtx
3412 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3413 rtx op1, rtx target, int unsignedp)
3414 {
3415 rtx tem;
3416 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3417
3418 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3419 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3420 NULL_RTX, 0);
3421 tem = expand_and (mode, tem, op1, NULL_RTX);
3422 adj_operand
3423 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3424 adj_operand);
3425
3426 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3427 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3428 NULL_RTX, 0);
3429 tem = expand_and (mode, tem, op0, NULL_RTX);
3430 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3431 target);
3432
3433 return target;
3434 }
3435
3436 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3437
3438 static rtx
3439 extract_high_half (enum machine_mode mode, rtx op)
3440 {
3441 enum machine_mode wider_mode;
3442
3443 if (mode == word_mode)
3444 return gen_highpart (mode, op);
3445
3446 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3447
3448 wider_mode = GET_MODE_WIDER_MODE (mode);
3449 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3450 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3451 return convert_modes (mode, wider_mode, op, 0);
3452 }
3453
3454 /* Like expand_mult_highpart, but only consider using a multiplication
3455 optab. OP1 is an rtx for the constant operand. */
3456
3457 static rtx
3458 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3459 rtx target, int unsignedp, int max_cost)
3460 {
3461 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3462 enum machine_mode wider_mode;
3463 optab moptab;
3464 rtx tem;
3465 int size;
3466
3467 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3468
3469 wider_mode = GET_MODE_WIDER_MODE (mode);
3470 size = GET_MODE_BITSIZE (mode);
3471
3472 /* Firstly, try using a multiplication insn that only generates the needed
3473 high part of the product, and in the sign flavor of unsignedp. */
3474 if (mul_highpart_cost[mode] < max_cost)
3475 {
3476 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3477 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3478 unsignedp, OPTAB_DIRECT);
3479 if (tem)
3480 return tem;
3481 }
3482
3483 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3484 Need to adjust the result after the multiplication. */
3485 if (size - 1 < BITS_PER_WORD
3486 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3487 + 4 * add_cost[mode] < max_cost))
3488 {
3489 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3490 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3491 unsignedp, OPTAB_DIRECT);
3492 if (tem)
3493 /* We used the wrong signedness. Adjust the result. */
3494 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3495 tem, unsignedp);
3496 }
3497
3498 /* Try widening multiplication. */
3499 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3500 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3501 && mul_widen_cost[wider_mode] < max_cost)
3502 {
3503 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3504 unsignedp, OPTAB_WIDEN);
3505 if (tem)
3506 return extract_high_half (mode, tem);
3507 }
3508
3509 /* Try widening the mode and perform a non-widening multiplication. */
3510 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3511 && size - 1 < BITS_PER_WORD
3512 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3513 {
3514 rtx insns, wop0, wop1;
3515
3516 /* We need to widen the operands, for example to ensure the
3517 constant multiplier is correctly sign or zero extended.
3518 Use a sequence to clean-up any instructions emitted by
3519 the conversions if things don't work out. */
3520 start_sequence ();
3521 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3522 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3523 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3524 unsignedp, OPTAB_WIDEN);
3525 insns = get_insns ();
3526 end_sequence ();
3527
3528 if (tem)
3529 {
3530 emit_insn (insns);
3531 return extract_high_half (mode, tem);
3532 }
3533 }
3534
3535 /* Try widening multiplication of opposite signedness, and adjust. */
3536 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3537 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3538 && size - 1 < BITS_PER_WORD
3539 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3540 + 4 * add_cost[mode] < max_cost))
3541 {
3542 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3543 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3544 if (tem != 0)
3545 {
3546 tem = extract_high_half (mode, tem);
3547 /* We used the wrong signedness. Adjust the result. */
3548 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3549 target, unsignedp);
3550 }
3551 }
3552
3553 return 0;
3554 }
3555
3556 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3557 putting the high half of the result in TARGET if that is convenient,
3558 and return where the result is. If the operation can not be performed,
3559 0 is returned.
3560
3561 MODE is the mode of operation and result.
3562
3563 UNSIGNEDP nonzero means unsigned multiply.
3564
3565 MAX_COST is the total allowed cost for the expanded RTL. */
3566
3567 static rtx
3568 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3569 rtx target, int unsignedp, int max_cost)
3570 {
3571 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3572 unsigned HOST_WIDE_INT cnst1;
3573 int extra_cost;
3574 bool sign_adjust = false;
3575 enum mult_variant variant;
3576 struct algorithm alg;
3577 rtx tem;
3578
3579 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3580 /* We can't support modes wider than HOST_BITS_PER_INT. */
3581 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3582
3583 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3584
3585 /* We can't optimize modes wider than BITS_PER_WORD.
3586 ??? We might be able to perform double-word arithmetic if
3587 mode == word_mode, however all the cost calculations in
3588 synth_mult etc. assume single-word operations. */
3589 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3590 return expand_mult_highpart_optab (mode, op0, op1, target,
3591 unsignedp, max_cost);
3592
3593 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3594
3595 /* Check whether we try to multiply by a negative constant. */
3596 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3597 {
3598 sign_adjust = true;
3599 extra_cost += add_cost[mode];
3600 }
3601
3602 /* See whether shift/add multiplication is cheap enough. */
3603 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3604 max_cost - extra_cost))
3605 {
3606 /* See whether the specialized multiplication optabs are
3607 cheaper than the shift/add version. */
3608 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3609 alg.cost.cost + extra_cost);
3610 if (tem)
3611 return tem;
3612
3613 tem = convert_to_mode (wider_mode, op0, unsignedp);
3614 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3615 tem = extract_high_half (mode, tem);
3616
3617 /* Adjust result for signedness. */
3618 if (sign_adjust)
3619 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3620
3621 return tem;
3622 }
3623 return expand_mult_highpart_optab (mode, op0, op1, target,
3624 unsignedp, max_cost);
3625 }
3626
3627
3628 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3629
3630 static rtx
3631 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3632 {
3633 unsigned HOST_WIDE_INT masklow, maskhigh;
3634 rtx result, temp, shift, label;
3635 int logd;
3636
3637 logd = floor_log2 (d);
3638 result = gen_reg_rtx (mode);
3639
3640 /* Avoid conditional branches when they're expensive. */
3641 if (BRANCH_COST >= 2
3642 && !optimize_size)
3643 {
3644 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3645 mode, 0, -1);
3646 if (signmask)
3647 {
3648 signmask = force_reg (mode, signmask);
3649 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3650 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3651
3652 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3653 which instruction sequence to use. If logical right shifts
3654 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3655 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3656
3657 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3658 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3659 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3660 {
3661 temp = expand_binop (mode, xor_optab, op0, signmask,
3662 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3663 temp = expand_binop (mode, sub_optab, temp, signmask,
3664 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3665 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3666 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3667 temp = expand_binop (mode, xor_optab, temp, signmask,
3668 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3669 temp = expand_binop (mode, sub_optab, temp, signmask,
3670 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3671 }
3672 else
3673 {
3674 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3675 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3676 signmask = force_reg (mode, signmask);
3677
3678 temp = expand_binop (mode, add_optab, op0, signmask,
3679 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3680 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3681 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3682 temp = expand_binop (mode, sub_optab, temp, signmask,
3683 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3684 }
3685 return temp;
3686 }
3687 }
3688
3689 /* Mask contains the mode's signbit and the significant bits of the
3690 modulus. By including the signbit in the operation, many targets
3691 can avoid an explicit compare operation in the following comparison
3692 against zero. */
3693
3694 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3695 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3696 {
3697 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3698 maskhigh = -1;
3699 }
3700 else
3701 maskhigh = (HOST_WIDE_INT) -1
3702 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3703
3704 temp = expand_binop (mode, and_optab, op0,
3705 immed_double_const (masklow, maskhigh, mode),
3706 result, 1, OPTAB_LIB_WIDEN);
3707 if (temp != result)
3708 emit_move_insn (result, temp);
3709
3710 label = gen_label_rtx ();
3711 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3712
3713 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3714 0, OPTAB_LIB_WIDEN);
3715 masklow = (HOST_WIDE_INT) -1 << logd;
3716 maskhigh = -1;
3717 temp = expand_binop (mode, ior_optab, temp,
3718 immed_double_const (masklow, maskhigh, mode),
3719 result, 1, OPTAB_LIB_WIDEN);
3720 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3721 0, OPTAB_LIB_WIDEN);
3722 if (temp != result)
3723 emit_move_insn (result, temp);
3724 emit_label (label);
3725 return result;
3726 }
3727
3728 /* Expand signed division of OP0 by a power of two D in mode MODE.
3729 This routine is only called for positive values of D. */
3730
3731 static rtx
3732 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3733 {
3734 rtx temp, label;
3735 tree shift;
3736 int logd;
3737
3738 logd = floor_log2 (d);
3739 shift = build_int_cst (NULL_TREE, logd);
3740
3741 if (d == 2 && BRANCH_COST >= 1)
3742 {
3743 temp = gen_reg_rtx (mode);
3744 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3745 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3746 0, OPTAB_LIB_WIDEN);
3747 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3748 }
3749
3750 #ifdef HAVE_conditional_move
3751 if (BRANCH_COST >= 2)
3752 {
3753 rtx temp2;
3754
3755 /* ??? emit_conditional_move forces a stack adjustment via
3756 compare_from_rtx so, if the sequence is discarded, it will
3757 be lost. Do it now instead. */
3758 do_pending_stack_adjust ();
3759
3760 start_sequence ();
3761 temp2 = copy_to_mode_reg (mode, op0);
3762 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3763 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3764 temp = force_reg (mode, temp);
3765
3766 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3767 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3768 mode, temp, temp2, mode, 0);
3769 if (temp2)
3770 {
3771 rtx seq = get_insns ();
3772 end_sequence ();
3773 emit_insn (seq);
3774 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3775 }
3776 end_sequence ();
3777 }
3778 #endif
3779
3780 if (BRANCH_COST >= 2)
3781 {
3782 int ushift = GET_MODE_BITSIZE (mode) - logd;
3783
3784 temp = gen_reg_rtx (mode);
3785 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3786 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3787 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3788 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3789 else
3790 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3791 build_int_cst (NULL_TREE, ushift),
3792 NULL_RTX, 1);
3793 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3794 0, OPTAB_LIB_WIDEN);
3795 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3796 }
3797
3798 label = gen_label_rtx ();
3799 temp = copy_to_mode_reg (mode, op0);
3800 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3801 expand_inc (temp, GEN_INT (d - 1));
3802 emit_label (label);
3803 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3804 }
3805 \f
3806 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3807 if that is convenient, and returning where the result is.
3808 You may request either the quotient or the remainder as the result;
3809 specify REM_FLAG nonzero to get the remainder.
3810
3811 CODE is the expression code for which kind of division this is;
3812 it controls how rounding is done. MODE is the machine mode to use.
3813 UNSIGNEDP nonzero means do unsigned division. */
3814
3815 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3816 and then correct it by or'ing in missing high bits
3817 if result of ANDI is nonzero.
3818 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3819 This could optimize to a bfexts instruction.
3820 But C doesn't use these operations, so their optimizations are
3821 left for later. */
3822 /* ??? For modulo, we don't actually need the highpart of the first product,
3823 the low part will do nicely. And for small divisors, the second multiply
3824 can also be a low-part only multiply or even be completely left out.
3825 E.g. to calculate the remainder of a division by 3 with a 32 bit
3826 multiply, multiply with 0x55555556 and extract the upper two bits;
3827 the result is exact for inputs up to 0x1fffffff.
3828 The input range can be reduced by using cross-sum rules.
3829 For odd divisors >= 3, the following table gives right shift counts
3830 so that if a number is shifted by an integer multiple of the given
3831 amount, the remainder stays the same:
3832 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3833 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3834 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3835 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3836 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3837
3838 Cross-sum rules for even numbers can be derived by leaving as many bits
3839 to the right alone as the divisor has zeros to the right.
3840 E.g. if x is an unsigned 32 bit number:
3841 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3842 */
3843
3844 rtx
3845 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3846 rtx op0, rtx op1, rtx target, int unsignedp)
3847 {
3848 enum machine_mode compute_mode;
3849 rtx tquotient;
3850 rtx quotient = 0, remainder = 0;
3851 rtx last;
3852 int size;
3853 rtx insn, set;
3854 optab optab1, optab2;
3855 int op1_is_constant, op1_is_pow2 = 0;
3856 int max_cost, extra_cost;
3857 static HOST_WIDE_INT last_div_const = 0;
3858 static HOST_WIDE_INT ext_op1;
3859
3860 op1_is_constant = GET_CODE (op1) == CONST_INT;
3861 if (op1_is_constant)
3862 {
3863 ext_op1 = INTVAL (op1);
3864 if (unsignedp)
3865 ext_op1 &= GET_MODE_MASK (mode);
3866 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3867 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3868 }
3869
3870 /*
3871 This is the structure of expand_divmod:
3872
3873 First comes code to fix up the operands so we can perform the operations
3874 correctly and efficiently.
3875
3876 Second comes a switch statement with code specific for each rounding mode.
3877 For some special operands this code emits all RTL for the desired
3878 operation, for other cases, it generates only a quotient and stores it in
3879 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3880 to indicate that it has not done anything.
3881
3882 Last comes code that finishes the operation. If QUOTIENT is set and
3883 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3884 QUOTIENT is not set, it is computed using trunc rounding.
3885
3886 We try to generate special code for division and remainder when OP1 is a
3887 constant. If |OP1| = 2**n we can use shifts and some other fast
3888 operations. For other values of OP1, we compute a carefully selected
3889 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3890 by m.
3891
3892 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3893 half of the product. Different strategies for generating the product are
3894 implemented in expand_mult_highpart.
3895
3896 If what we actually want is the remainder, we generate that by another
3897 by-constant multiplication and a subtraction. */
3898
3899 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3900 code below will malfunction if we are, so check here and handle
3901 the special case if so. */
3902 if (op1 == const1_rtx)
3903 return rem_flag ? const0_rtx : op0;
3904
3905 /* When dividing by -1, we could get an overflow.
3906 negv_optab can handle overflows. */
3907 if (! unsignedp && op1 == constm1_rtx)
3908 {
3909 if (rem_flag)
3910 return const0_rtx;
3911 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3912 ? negv_optab : neg_optab, op0, target, 0);
3913 }
3914
3915 if (target
3916 /* Don't use the function value register as a target
3917 since we have to read it as well as write it,
3918 and function-inlining gets confused by this. */
3919 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3920 /* Don't clobber an operand while doing a multi-step calculation. */
3921 || ((rem_flag || op1_is_constant)
3922 && (reg_mentioned_p (target, op0)
3923 || (MEM_P (op0) && MEM_P (target))))
3924 || reg_mentioned_p (target, op1)
3925 || (MEM_P (op1) && MEM_P (target))))
3926 target = 0;
3927
3928 /* Get the mode in which to perform this computation. Normally it will
3929 be MODE, but sometimes we can't do the desired operation in MODE.
3930 If so, pick a wider mode in which we can do the operation. Convert
3931 to that mode at the start to avoid repeated conversions.
3932
3933 First see what operations we need. These depend on the expression
3934 we are evaluating. (We assume that divxx3 insns exist under the
3935 same conditions that modxx3 insns and that these insns don't normally
3936 fail. If these assumptions are not correct, we may generate less
3937 efficient code in some cases.)
3938
3939 Then see if we find a mode in which we can open-code that operation
3940 (either a division, modulus, or shift). Finally, check for the smallest
3941 mode for which we can do the operation with a library call. */
3942
3943 /* We might want to refine this now that we have division-by-constant
3944 optimization. Since expand_mult_highpart tries so many variants, it is
3945 not straightforward to generalize this. Maybe we should make an array
3946 of possible modes in init_expmed? Save this for GCC 2.7. */
3947
3948 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3949 ? (unsignedp ? lshr_optab : ashr_optab)
3950 : (unsignedp ? udiv_optab : sdiv_optab));
3951 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3952 ? optab1
3953 : (unsignedp ? udivmod_optab : sdivmod_optab));
3954
3955 for (compute_mode = mode; compute_mode != VOIDmode;
3956 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3957 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3958 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3959 break;
3960
3961 if (compute_mode == VOIDmode)
3962 for (compute_mode = mode; compute_mode != VOIDmode;
3963 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3964 if (optab1->handlers[compute_mode].libfunc
3965 || optab2->handlers[compute_mode].libfunc)
3966 break;
3967
3968 /* If we still couldn't find a mode, use MODE, but expand_binop will
3969 probably die. */
3970 if (compute_mode == VOIDmode)
3971 compute_mode = mode;
3972
3973 if (target && GET_MODE (target) == compute_mode)
3974 tquotient = target;
3975 else
3976 tquotient = gen_reg_rtx (compute_mode);
3977
3978 size = GET_MODE_BITSIZE (compute_mode);
3979 #if 0
3980 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3981 (mode), and thereby get better code when OP1 is a constant. Do that
3982 later. It will require going over all usages of SIZE below. */
3983 size = GET_MODE_BITSIZE (mode);
3984 #endif
3985
3986 /* Only deduct something for a REM if the last divide done was
3987 for a different constant. Then set the constant of the last
3988 divide. */
3989 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3990 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3991 && INTVAL (op1) == last_div_const))
3992 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3993
3994 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3995
3996 /* Now convert to the best mode to use. */
3997 if (compute_mode != mode)
3998 {
3999 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4000 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4001
4002 /* convert_modes may have placed op1 into a register, so we
4003 must recompute the following. */
4004 op1_is_constant = GET_CODE (op1) == CONST_INT;
4005 op1_is_pow2 = (op1_is_constant
4006 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4007 || (! unsignedp
4008 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
4009 }
4010
4011 /* If one of the operands is a volatile MEM, copy it into a register. */
4012
4013 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4014 op0 = force_reg (compute_mode, op0);
4015 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4016 op1 = force_reg (compute_mode, op1);
4017
4018 /* If we need the remainder or if OP1 is constant, we need to
4019 put OP0 in a register in case it has any queued subexpressions. */
4020 if (rem_flag || op1_is_constant)
4021 op0 = force_reg (compute_mode, op0);
4022
4023 last = get_last_insn ();
4024
4025 /* Promote floor rounding to trunc rounding for unsigned operations. */
4026 if (unsignedp)
4027 {
4028 if (code == FLOOR_DIV_EXPR)
4029 code = TRUNC_DIV_EXPR;
4030 if (code == FLOOR_MOD_EXPR)
4031 code = TRUNC_MOD_EXPR;
4032 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4033 code = TRUNC_DIV_EXPR;
4034 }
4035
4036 if (op1 != const0_rtx)
4037 switch (code)
4038 {
4039 case TRUNC_MOD_EXPR:
4040 case TRUNC_DIV_EXPR:
4041 if (op1_is_constant)
4042 {
4043 if (unsignedp)
4044 {
4045 unsigned HOST_WIDE_INT mh;
4046 int pre_shift, post_shift;
4047 int dummy;
4048 rtx ml;
4049 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4050 & GET_MODE_MASK (compute_mode));
4051
4052 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4053 {
4054 pre_shift = floor_log2 (d);
4055 if (rem_flag)
4056 {
4057 remainder
4058 = expand_binop (compute_mode, and_optab, op0,
4059 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4060 remainder, 1,
4061 OPTAB_LIB_WIDEN);
4062 if (remainder)
4063 return gen_lowpart (mode, remainder);
4064 }
4065 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4066 build_int_cst (NULL_TREE,
4067 pre_shift),
4068 tquotient, 1);
4069 }
4070 else if (size <= HOST_BITS_PER_WIDE_INT)
4071 {
4072 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4073 {
4074 /* Most significant bit of divisor is set; emit an scc
4075 insn. */
4076 quotient = emit_store_flag (tquotient, GEU, op0, op1,
4077 compute_mode, 1, 1);
4078 if (quotient == 0)
4079 goto fail1;
4080 }
4081 else
4082 {
4083 /* Find a suitable multiplier and right shift count
4084 instead of multiplying with D. */
4085
4086 mh = choose_multiplier (d, size, size,
4087 &ml, &post_shift, &dummy);
4088
4089 /* If the suggested multiplier is more than SIZE bits,
4090 we can do better for even divisors, using an
4091 initial right shift. */
4092 if (mh != 0 && (d & 1) == 0)
4093 {
4094 pre_shift = floor_log2 (d & -d);
4095 mh = choose_multiplier (d >> pre_shift, size,
4096 size - pre_shift,
4097 &ml, &post_shift, &dummy);
4098 gcc_assert (!mh);
4099 }
4100 else
4101 pre_shift = 0;
4102
4103 if (mh != 0)
4104 {
4105 rtx t1, t2, t3, t4;
4106
4107 if (post_shift - 1 >= BITS_PER_WORD)
4108 goto fail1;
4109
4110 extra_cost
4111 = (shift_cost[compute_mode][post_shift - 1]
4112 + shift_cost[compute_mode][1]
4113 + 2 * add_cost[compute_mode]);
4114 t1 = expand_mult_highpart (compute_mode, op0, ml,
4115 NULL_RTX, 1,
4116 max_cost - extra_cost);
4117 if (t1 == 0)
4118 goto fail1;
4119 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4120 op0, t1),
4121 NULL_RTX);
4122 t3 = expand_shift
4123 (RSHIFT_EXPR, compute_mode, t2,
4124 build_int_cst (NULL_TREE, 1),
4125 NULL_RTX,1);
4126 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4127 t1, t3),
4128 NULL_RTX);
4129 quotient = expand_shift
4130 (RSHIFT_EXPR, compute_mode, t4,
4131 build_int_cst (NULL_TREE, post_shift - 1),
4132 tquotient, 1);
4133 }
4134 else
4135 {
4136 rtx t1, t2;
4137
4138 if (pre_shift >= BITS_PER_WORD
4139 || post_shift >= BITS_PER_WORD)
4140 goto fail1;
4141
4142 t1 = expand_shift
4143 (RSHIFT_EXPR, compute_mode, op0,
4144 build_int_cst (NULL_TREE, pre_shift),
4145 NULL_RTX, 1);
4146 extra_cost
4147 = (shift_cost[compute_mode][pre_shift]
4148 + shift_cost[compute_mode][post_shift]);
4149 t2 = expand_mult_highpart (compute_mode, t1, ml,
4150 NULL_RTX, 1,
4151 max_cost - extra_cost);
4152 if (t2 == 0)
4153 goto fail1;
4154 quotient = expand_shift
4155 (RSHIFT_EXPR, compute_mode, t2,
4156 build_int_cst (NULL_TREE, post_shift),
4157 tquotient, 1);
4158 }
4159 }
4160 }
4161 else /* Too wide mode to use tricky code */
4162 break;
4163
4164 insn = get_last_insn ();
4165 if (insn != last
4166 && (set = single_set (insn)) != 0
4167 && SET_DEST (set) == quotient)
4168 set_unique_reg_note (insn,
4169 REG_EQUAL,
4170 gen_rtx_UDIV (compute_mode, op0, op1));
4171 }
4172 else /* TRUNC_DIV, signed */
4173 {
4174 unsigned HOST_WIDE_INT ml;
4175 int lgup, post_shift;
4176 rtx mlr;
4177 HOST_WIDE_INT d = INTVAL (op1);
4178 unsigned HOST_WIDE_INT abs_d;
4179
4180 /* Since d might be INT_MIN, we have to cast to
4181 unsigned HOST_WIDE_INT before negating to avoid
4182 undefined signed overflow. */
4183 abs_d = (d >= 0
4184 ? (unsigned HOST_WIDE_INT) d
4185 : - (unsigned HOST_WIDE_INT) d);
4186
4187 /* n rem d = n rem -d */
4188 if (rem_flag && d < 0)
4189 {
4190 d = abs_d;
4191 op1 = gen_int_mode (abs_d, compute_mode);
4192 }
4193
4194 if (d == 1)
4195 quotient = op0;
4196 else if (d == -1)
4197 quotient = expand_unop (compute_mode, neg_optab, op0,
4198 tquotient, 0);
4199 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4200 {
4201 /* This case is not handled correctly below. */
4202 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4203 compute_mode, 1, 1);
4204 if (quotient == 0)
4205 goto fail1;
4206 }
4207 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4208 && (rem_flag ? smod_pow2_cheap[compute_mode]
4209 : sdiv_pow2_cheap[compute_mode])
4210 /* We assume that cheap metric is true if the
4211 optab has an expander for this mode. */
4212 && (((rem_flag ? smod_optab : sdiv_optab)
4213 ->handlers[compute_mode].insn_code
4214 != CODE_FOR_nothing)
4215 || (sdivmod_optab->handlers[compute_mode]
4216 .insn_code != CODE_FOR_nothing)))
4217 ;
4218 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4219 {
4220 if (rem_flag)
4221 {
4222 remainder = expand_smod_pow2 (compute_mode, op0, d);
4223 if (remainder)
4224 return gen_lowpart (mode, remainder);
4225 }
4226
4227 if (sdiv_pow2_cheap[compute_mode]
4228 && ((sdiv_optab->handlers[compute_mode].insn_code
4229 != CODE_FOR_nothing)
4230 || (sdivmod_optab->handlers[compute_mode].insn_code
4231 != CODE_FOR_nothing)))
4232 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4233 compute_mode, op0,
4234 gen_int_mode (abs_d,
4235 compute_mode),
4236 NULL_RTX, 0);
4237 else
4238 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4239
4240 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4241 negate the quotient. */
4242 if (d < 0)
4243 {
4244 insn = get_last_insn ();
4245 if (insn != last
4246 && (set = single_set (insn)) != 0
4247 && SET_DEST (set) == quotient
4248 && abs_d < ((unsigned HOST_WIDE_INT) 1
4249 << (HOST_BITS_PER_WIDE_INT - 1)))
4250 set_unique_reg_note (insn,
4251 REG_EQUAL,
4252 gen_rtx_DIV (compute_mode,
4253 op0,
4254 GEN_INT
4255 (trunc_int_for_mode
4256 (abs_d,
4257 compute_mode))));
4258
4259 quotient = expand_unop (compute_mode, neg_optab,
4260 quotient, quotient, 0);
4261 }
4262 }
4263 else if (size <= HOST_BITS_PER_WIDE_INT)
4264 {
4265 choose_multiplier (abs_d, size, size - 1,
4266 &mlr, &post_shift, &lgup);
4267 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4268 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4269 {
4270 rtx t1, t2, t3;
4271
4272 if (post_shift >= BITS_PER_WORD
4273 || size - 1 >= BITS_PER_WORD)
4274 goto fail1;
4275
4276 extra_cost = (shift_cost[compute_mode][post_shift]
4277 + shift_cost[compute_mode][size - 1]
4278 + add_cost[compute_mode]);
4279 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4280 NULL_RTX, 0,
4281 max_cost - extra_cost);
4282 if (t1 == 0)
4283 goto fail1;
4284 t2 = expand_shift
4285 (RSHIFT_EXPR, compute_mode, t1,
4286 build_int_cst (NULL_TREE, post_shift),
4287 NULL_RTX, 0);
4288 t3 = expand_shift
4289 (RSHIFT_EXPR, compute_mode, op0,
4290 build_int_cst (NULL_TREE, size - 1),
4291 NULL_RTX, 0);
4292 if (d < 0)
4293 quotient
4294 = force_operand (gen_rtx_MINUS (compute_mode,
4295 t3, t2),
4296 tquotient);
4297 else
4298 quotient
4299 = force_operand (gen_rtx_MINUS (compute_mode,
4300 t2, t3),
4301 tquotient);
4302 }
4303 else
4304 {
4305 rtx t1, t2, t3, t4;
4306
4307 if (post_shift >= BITS_PER_WORD
4308 || size - 1 >= BITS_PER_WORD)
4309 goto fail1;
4310
4311 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4312 mlr = gen_int_mode (ml, compute_mode);
4313 extra_cost = (shift_cost[compute_mode][post_shift]
4314 + shift_cost[compute_mode][size - 1]
4315 + 2 * add_cost[compute_mode]);
4316 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4317 NULL_RTX, 0,
4318 max_cost - extra_cost);
4319 if (t1 == 0)
4320 goto fail1;
4321 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4322 t1, op0),
4323 NULL_RTX);
4324 t3 = expand_shift
4325 (RSHIFT_EXPR, compute_mode, t2,
4326 build_int_cst (NULL_TREE, post_shift),
4327 NULL_RTX, 0);
4328 t4 = expand_shift
4329 (RSHIFT_EXPR, compute_mode, op0,
4330 build_int_cst (NULL_TREE, size - 1),
4331 NULL_RTX, 0);
4332 if (d < 0)
4333 quotient
4334 = force_operand (gen_rtx_MINUS (compute_mode,
4335 t4, t3),
4336 tquotient);
4337 else
4338 quotient
4339 = force_operand (gen_rtx_MINUS (compute_mode,
4340 t3, t4),
4341 tquotient);
4342 }
4343 }
4344 else /* Too wide mode to use tricky code */
4345 break;
4346
4347 insn = get_last_insn ();
4348 if (insn != last
4349 && (set = single_set (insn)) != 0
4350 && SET_DEST (set) == quotient)
4351 set_unique_reg_note (insn,
4352 REG_EQUAL,
4353 gen_rtx_DIV (compute_mode, op0, op1));
4354 }
4355 break;
4356 }
4357 fail1:
4358 delete_insns_since (last);
4359 break;
4360
4361 case FLOOR_DIV_EXPR:
4362 case FLOOR_MOD_EXPR:
4363 /* We will come here only for signed operations. */
4364 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4365 {
4366 unsigned HOST_WIDE_INT mh;
4367 int pre_shift, lgup, post_shift;
4368 HOST_WIDE_INT d = INTVAL (op1);
4369 rtx ml;
4370
4371 if (d > 0)
4372 {
4373 /* We could just as easily deal with negative constants here,
4374 but it does not seem worth the trouble for GCC 2.6. */
4375 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4376 {
4377 pre_shift = floor_log2 (d);
4378 if (rem_flag)
4379 {
4380 remainder = expand_binop (compute_mode, and_optab, op0,
4381 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4382 remainder, 0, OPTAB_LIB_WIDEN);
4383 if (remainder)
4384 return gen_lowpart (mode, remainder);
4385 }
4386 quotient = expand_shift
4387 (RSHIFT_EXPR, compute_mode, op0,
4388 build_int_cst (NULL_TREE, pre_shift),
4389 tquotient, 0);
4390 }
4391 else
4392 {
4393 rtx t1, t2, t3, t4;
4394
4395 mh = choose_multiplier (d, size, size - 1,
4396 &ml, &post_shift, &lgup);
4397 gcc_assert (!mh);
4398
4399 if (post_shift < BITS_PER_WORD
4400 && size - 1 < BITS_PER_WORD)
4401 {
4402 t1 = expand_shift
4403 (RSHIFT_EXPR, compute_mode, op0,
4404 build_int_cst (NULL_TREE, size - 1),
4405 NULL_RTX, 0);
4406 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4407 NULL_RTX, 0, OPTAB_WIDEN);
4408 extra_cost = (shift_cost[compute_mode][post_shift]
4409 + shift_cost[compute_mode][size - 1]
4410 + 2 * add_cost[compute_mode]);
4411 t3 = expand_mult_highpart (compute_mode, t2, ml,
4412 NULL_RTX, 1,
4413 max_cost - extra_cost);
4414 if (t3 != 0)
4415 {
4416 t4 = expand_shift
4417 (RSHIFT_EXPR, compute_mode, t3,
4418 build_int_cst (NULL_TREE, post_shift),
4419 NULL_RTX, 1);
4420 quotient = expand_binop (compute_mode, xor_optab,
4421 t4, t1, tquotient, 0,
4422 OPTAB_WIDEN);
4423 }
4424 }
4425 }
4426 }
4427 else
4428 {
4429 rtx nsign, t1, t2, t3, t4;
4430 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4431 op0, constm1_rtx), NULL_RTX);
4432 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4433 0, OPTAB_WIDEN);
4434 nsign = expand_shift
4435 (RSHIFT_EXPR, compute_mode, t2,
4436 build_int_cst (NULL_TREE, size - 1),
4437 NULL_RTX, 0);
4438 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4439 NULL_RTX);
4440 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4441 NULL_RTX, 0);
4442 if (t4)
4443 {
4444 rtx t5;
4445 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4446 NULL_RTX, 0);
4447 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4448 t4, t5),
4449 tquotient);
4450 }
4451 }
4452 }
4453
4454 if (quotient != 0)
4455 break;
4456 delete_insns_since (last);
4457
4458 /* Try using an instruction that produces both the quotient and
4459 remainder, using truncation. We can easily compensate the quotient
4460 or remainder to get floor rounding, once we have the remainder.
4461 Notice that we compute also the final remainder value here,
4462 and return the result right away. */
4463 if (target == 0 || GET_MODE (target) != compute_mode)
4464 target = gen_reg_rtx (compute_mode);
4465
4466 if (rem_flag)
4467 {
4468 remainder
4469 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4470 quotient = gen_reg_rtx (compute_mode);
4471 }
4472 else
4473 {
4474 quotient
4475 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4476 remainder = gen_reg_rtx (compute_mode);
4477 }
4478
4479 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4480 quotient, remainder, 0))
4481 {
4482 /* This could be computed with a branch-less sequence.
4483 Save that for later. */
4484 rtx tem;
4485 rtx label = gen_label_rtx ();
4486 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4487 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4488 NULL_RTX, 0, OPTAB_WIDEN);
4489 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4490 expand_dec (quotient, const1_rtx);
4491 expand_inc (remainder, op1);
4492 emit_label (label);
4493 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4494 }
4495
4496 /* No luck with division elimination or divmod. Have to do it
4497 by conditionally adjusting op0 *and* the result. */
4498 {
4499 rtx label1, label2, label3, label4, label5;
4500 rtx adjusted_op0;
4501 rtx tem;
4502
4503 quotient = gen_reg_rtx (compute_mode);
4504 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4505 label1 = gen_label_rtx ();
4506 label2 = gen_label_rtx ();
4507 label3 = gen_label_rtx ();
4508 label4 = gen_label_rtx ();
4509 label5 = gen_label_rtx ();
4510 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4511 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4512 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4513 quotient, 0, OPTAB_LIB_WIDEN);
4514 if (tem != quotient)
4515 emit_move_insn (quotient, tem);
4516 emit_jump_insn (gen_jump (label5));
4517 emit_barrier ();
4518 emit_label (label1);
4519 expand_inc (adjusted_op0, const1_rtx);
4520 emit_jump_insn (gen_jump (label4));
4521 emit_barrier ();
4522 emit_label (label2);
4523 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4524 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4525 quotient, 0, OPTAB_LIB_WIDEN);
4526 if (tem != quotient)
4527 emit_move_insn (quotient, tem);
4528 emit_jump_insn (gen_jump (label5));
4529 emit_barrier ();
4530 emit_label (label3);
4531 expand_dec (adjusted_op0, const1_rtx);
4532 emit_label (label4);
4533 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4534 quotient, 0, OPTAB_LIB_WIDEN);
4535 if (tem != quotient)
4536 emit_move_insn (quotient, tem);
4537 expand_dec (quotient, const1_rtx);
4538 emit_label (label5);
4539 }
4540 break;
4541
4542 case CEIL_DIV_EXPR:
4543 case CEIL_MOD_EXPR:
4544 if (unsignedp)
4545 {
4546 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4547 {
4548 rtx t1, t2, t3;
4549 unsigned HOST_WIDE_INT d = INTVAL (op1);
4550 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4551 build_int_cst (NULL_TREE, floor_log2 (d)),
4552 tquotient, 1);
4553 t2 = expand_binop (compute_mode, and_optab, op0,
4554 GEN_INT (d - 1),
4555 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4556 t3 = gen_reg_rtx (compute_mode);
4557 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4558 compute_mode, 1, 1);
4559 if (t3 == 0)
4560 {
4561 rtx lab;
4562 lab = gen_label_rtx ();
4563 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4564 expand_inc (t1, const1_rtx);
4565 emit_label (lab);
4566 quotient = t1;
4567 }
4568 else
4569 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4570 t1, t3),
4571 tquotient);
4572 break;
4573 }
4574
4575 /* Try using an instruction that produces both the quotient and
4576 remainder, using truncation. We can easily compensate the
4577 quotient or remainder to get ceiling rounding, once we have the
4578 remainder. Notice that we compute also the final remainder
4579 value here, and return the result right away. */
4580 if (target == 0 || GET_MODE (target) != compute_mode)
4581 target = gen_reg_rtx (compute_mode);
4582
4583 if (rem_flag)
4584 {
4585 remainder = (REG_P (target)
4586 ? target : gen_reg_rtx (compute_mode));
4587 quotient = gen_reg_rtx (compute_mode);
4588 }
4589 else
4590 {
4591 quotient = (REG_P (target)
4592 ? target : gen_reg_rtx (compute_mode));
4593 remainder = gen_reg_rtx (compute_mode);
4594 }
4595
4596 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4597 remainder, 1))
4598 {
4599 /* This could be computed with a branch-less sequence.
4600 Save that for later. */
4601 rtx label = gen_label_rtx ();
4602 do_cmp_and_jump (remainder, const0_rtx, EQ,
4603 compute_mode, label);
4604 expand_inc (quotient, const1_rtx);
4605 expand_dec (remainder, op1);
4606 emit_label (label);
4607 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4608 }
4609
4610 /* No luck with division elimination or divmod. Have to do it
4611 by conditionally adjusting op0 *and* the result. */
4612 {
4613 rtx label1, label2;
4614 rtx adjusted_op0, tem;
4615
4616 quotient = gen_reg_rtx (compute_mode);
4617 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4618 label1 = gen_label_rtx ();
4619 label2 = gen_label_rtx ();
4620 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4621 compute_mode, label1);
4622 emit_move_insn (quotient, const0_rtx);
4623 emit_jump_insn (gen_jump (label2));
4624 emit_barrier ();
4625 emit_label (label1);
4626 expand_dec (adjusted_op0, const1_rtx);
4627 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4628 quotient, 1, OPTAB_LIB_WIDEN);
4629 if (tem != quotient)
4630 emit_move_insn (quotient, tem);
4631 expand_inc (quotient, const1_rtx);
4632 emit_label (label2);
4633 }
4634 }
4635 else /* signed */
4636 {
4637 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4638 && INTVAL (op1) >= 0)
4639 {
4640 /* This is extremely similar to the code for the unsigned case
4641 above. For 2.7 we should merge these variants, but for
4642 2.6.1 I don't want to touch the code for unsigned since that
4643 get used in C. The signed case will only be used by other
4644 languages (Ada). */
4645
4646 rtx t1, t2, t3;
4647 unsigned HOST_WIDE_INT d = INTVAL (op1);
4648 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4649 build_int_cst (NULL_TREE, floor_log2 (d)),
4650 tquotient, 0);
4651 t2 = expand_binop (compute_mode, and_optab, op0,
4652 GEN_INT (d - 1),
4653 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4654 t3 = gen_reg_rtx (compute_mode);
4655 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4656 compute_mode, 1, 1);
4657 if (t3 == 0)
4658 {
4659 rtx lab;
4660 lab = gen_label_rtx ();
4661 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4662 expand_inc (t1, const1_rtx);
4663 emit_label (lab);
4664 quotient = t1;
4665 }
4666 else
4667 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4668 t1, t3),
4669 tquotient);
4670 break;
4671 }
4672
4673 /* Try using an instruction that produces both the quotient and
4674 remainder, using truncation. We can easily compensate the
4675 quotient or remainder to get ceiling rounding, once we have the
4676 remainder. Notice that we compute also the final remainder
4677 value here, and return the result right away. */
4678 if (target == 0 || GET_MODE (target) != compute_mode)
4679 target = gen_reg_rtx (compute_mode);
4680 if (rem_flag)
4681 {
4682 remainder= (REG_P (target)
4683 ? target : gen_reg_rtx (compute_mode));
4684 quotient = gen_reg_rtx (compute_mode);
4685 }
4686 else
4687 {
4688 quotient = (REG_P (target)
4689 ? target : gen_reg_rtx (compute_mode));
4690 remainder = gen_reg_rtx (compute_mode);
4691 }
4692
4693 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4694 remainder, 0))
4695 {
4696 /* This could be computed with a branch-less sequence.
4697 Save that for later. */
4698 rtx tem;
4699 rtx label = gen_label_rtx ();
4700 do_cmp_and_jump (remainder, const0_rtx, EQ,
4701 compute_mode, label);
4702 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4703 NULL_RTX, 0, OPTAB_WIDEN);
4704 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4705 expand_inc (quotient, const1_rtx);
4706 expand_dec (remainder, op1);
4707 emit_label (label);
4708 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4709 }
4710
4711 /* No luck with division elimination or divmod. Have to do it
4712 by conditionally adjusting op0 *and* the result. */
4713 {
4714 rtx label1, label2, label3, label4, label5;
4715 rtx adjusted_op0;
4716 rtx tem;
4717
4718 quotient = gen_reg_rtx (compute_mode);
4719 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4720 label1 = gen_label_rtx ();
4721 label2 = gen_label_rtx ();
4722 label3 = gen_label_rtx ();
4723 label4 = gen_label_rtx ();
4724 label5 = gen_label_rtx ();
4725 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4726 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4727 compute_mode, label1);
4728 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4729 quotient, 0, OPTAB_LIB_WIDEN);
4730 if (tem != quotient)
4731 emit_move_insn (quotient, tem);
4732 emit_jump_insn (gen_jump (label5));
4733 emit_barrier ();
4734 emit_label (label1);
4735 expand_dec (adjusted_op0, const1_rtx);
4736 emit_jump_insn (gen_jump (label4));
4737 emit_barrier ();
4738 emit_label (label2);
4739 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4740 compute_mode, label3);
4741 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4742 quotient, 0, OPTAB_LIB_WIDEN);
4743 if (tem != quotient)
4744 emit_move_insn (quotient, tem);
4745 emit_jump_insn (gen_jump (label5));
4746 emit_barrier ();
4747 emit_label (label3);
4748 expand_inc (adjusted_op0, const1_rtx);
4749 emit_label (label4);
4750 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4751 quotient, 0, OPTAB_LIB_WIDEN);
4752 if (tem != quotient)
4753 emit_move_insn (quotient, tem);
4754 expand_inc (quotient, const1_rtx);
4755 emit_label (label5);
4756 }
4757 }
4758 break;
4759
4760 case EXACT_DIV_EXPR:
4761 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4762 {
4763 HOST_WIDE_INT d = INTVAL (op1);
4764 unsigned HOST_WIDE_INT ml;
4765 int pre_shift;
4766 rtx t1;
4767
4768 pre_shift = floor_log2 (d & -d);
4769 ml = invert_mod2n (d >> pre_shift, size);
4770 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4771 build_int_cst (NULL_TREE, pre_shift),
4772 NULL_RTX, unsignedp);
4773 quotient = expand_mult (compute_mode, t1,
4774 gen_int_mode (ml, compute_mode),
4775 NULL_RTX, 1);
4776
4777 insn = get_last_insn ();
4778 set_unique_reg_note (insn,
4779 REG_EQUAL,
4780 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4781 compute_mode,
4782 op0, op1));
4783 }
4784 break;
4785
4786 case ROUND_DIV_EXPR:
4787 case ROUND_MOD_EXPR:
4788 if (unsignedp)
4789 {
4790 rtx tem;
4791 rtx label;
4792 label = gen_label_rtx ();
4793 quotient = gen_reg_rtx (compute_mode);
4794 remainder = gen_reg_rtx (compute_mode);
4795 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4796 {
4797 rtx tem;
4798 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4799 quotient, 1, OPTAB_LIB_WIDEN);
4800 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4801 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4802 remainder, 1, OPTAB_LIB_WIDEN);
4803 }
4804 tem = plus_constant (op1, -1);
4805 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4806 build_int_cst (NULL_TREE, 1),
4807 NULL_RTX, 1);
4808 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4809 expand_inc (quotient, const1_rtx);
4810 expand_dec (remainder, op1);
4811 emit_label (label);
4812 }
4813 else
4814 {
4815 rtx abs_rem, abs_op1, tem, mask;
4816 rtx label;
4817 label = gen_label_rtx ();
4818 quotient = gen_reg_rtx (compute_mode);
4819 remainder = gen_reg_rtx (compute_mode);
4820 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4821 {
4822 rtx tem;
4823 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4824 quotient, 0, OPTAB_LIB_WIDEN);
4825 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4826 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4827 remainder, 0, OPTAB_LIB_WIDEN);
4828 }
4829 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4830 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4831 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4832 build_int_cst (NULL_TREE, 1),
4833 NULL_RTX, 1);
4834 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4835 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4836 NULL_RTX, 0, OPTAB_WIDEN);
4837 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4838 build_int_cst (NULL_TREE, size - 1),
4839 NULL_RTX, 0);
4840 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4841 NULL_RTX, 0, OPTAB_WIDEN);
4842 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4843 NULL_RTX, 0, OPTAB_WIDEN);
4844 expand_inc (quotient, tem);
4845 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4846 NULL_RTX, 0, OPTAB_WIDEN);
4847 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4848 NULL_RTX, 0, OPTAB_WIDEN);
4849 expand_dec (remainder, tem);
4850 emit_label (label);
4851 }
4852 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4853
4854 default:
4855 gcc_unreachable ();
4856 }
4857
4858 if (quotient == 0)
4859 {
4860 if (target && GET_MODE (target) != compute_mode)
4861 target = 0;
4862
4863 if (rem_flag)
4864 {
4865 /* Try to produce the remainder without producing the quotient.
4866 If we seem to have a divmod pattern that does not require widening,
4867 don't try widening here. We should really have a WIDEN argument
4868 to expand_twoval_binop, since what we'd really like to do here is
4869 1) try a mod insn in compute_mode
4870 2) try a divmod insn in compute_mode
4871 3) try a div insn in compute_mode and multiply-subtract to get
4872 remainder
4873 4) try the same things with widening allowed. */
4874 remainder
4875 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4876 op0, op1, target,
4877 unsignedp,
4878 ((optab2->handlers[compute_mode].insn_code
4879 != CODE_FOR_nothing)
4880 ? OPTAB_DIRECT : OPTAB_WIDEN));
4881 if (remainder == 0)
4882 {
4883 /* No luck there. Can we do remainder and divide at once
4884 without a library call? */
4885 remainder = gen_reg_rtx (compute_mode);
4886 if (! expand_twoval_binop ((unsignedp
4887 ? udivmod_optab
4888 : sdivmod_optab),
4889 op0, op1,
4890 NULL_RTX, remainder, unsignedp))
4891 remainder = 0;
4892 }
4893
4894 if (remainder)
4895 return gen_lowpart (mode, remainder);
4896 }
4897
4898 /* Produce the quotient. Try a quotient insn, but not a library call.
4899 If we have a divmod in this mode, use it in preference to widening
4900 the div (for this test we assume it will not fail). Note that optab2
4901 is set to the one of the two optabs that the call below will use. */
4902 quotient
4903 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4904 op0, op1, rem_flag ? NULL_RTX : target,
4905 unsignedp,
4906 ((optab2->handlers[compute_mode].insn_code
4907 != CODE_FOR_nothing)
4908 ? OPTAB_DIRECT : OPTAB_WIDEN));
4909
4910 if (quotient == 0)
4911 {
4912 /* No luck there. Try a quotient-and-remainder insn,
4913 keeping the quotient alone. */
4914 quotient = gen_reg_rtx (compute_mode);
4915 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4916 op0, op1,
4917 quotient, NULL_RTX, unsignedp))
4918 {
4919 quotient = 0;
4920 if (! rem_flag)
4921 /* Still no luck. If we are not computing the remainder,
4922 use a library call for the quotient. */
4923 quotient = sign_expand_binop (compute_mode,
4924 udiv_optab, sdiv_optab,
4925 op0, op1, target,
4926 unsignedp, OPTAB_LIB_WIDEN);
4927 }
4928 }
4929 }
4930
4931 if (rem_flag)
4932 {
4933 if (target && GET_MODE (target) != compute_mode)
4934 target = 0;
4935
4936 if (quotient == 0)
4937 {
4938 /* No divide instruction either. Use library for remainder. */
4939 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4940 op0, op1, target,
4941 unsignedp, OPTAB_LIB_WIDEN);
4942 /* No remainder function. Try a quotient-and-remainder
4943 function, keeping the remainder. */
4944 if (!remainder)
4945 {
4946 remainder = gen_reg_rtx (compute_mode);
4947 if (!expand_twoval_binop_libfunc
4948 (unsignedp ? udivmod_optab : sdivmod_optab,
4949 op0, op1,
4950 NULL_RTX, remainder,
4951 unsignedp ? UMOD : MOD))
4952 remainder = NULL_RTX;
4953 }
4954 }
4955 else
4956 {
4957 /* We divided. Now finish doing X - Y * (X / Y). */
4958 remainder = expand_mult (compute_mode, quotient, op1,
4959 NULL_RTX, unsignedp);
4960 remainder = expand_binop (compute_mode, sub_optab, op0,
4961 remainder, target, unsignedp,
4962 OPTAB_LIB_WIDEN);
4963 }
4964 }
4965
4966 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4967 }
4968 \f
4969 /* Return a tree node with data type TYPE, describing the value of X.
4970 Usually this is an VAR_DECL, if there is no obvious better choice.
4971 X may be an expression, however we only support those expressions
4972 generated by loop.c. */
4973
4974 tree
4975 make_tree (tree type, rtx x)
4976 {
4977 tree t;
4978
4979 switch (GET_CODE (x))
4980 {
4981 case CONST_INT:
4982 {
4983 HOST_WIDE_INT hi = 0;
4984
4985 if (INTVAL (x) < 0
4986 && !(TYPE_UNSIGNED (type)
4987 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4988 < HOST_BITS_PER_WIDE_INT)))
4989 hi = -1;
4990
4991 t = build_int_cst_wide (type, INTVAL (x), hi);
4992
4993 return t;
4994 }
4995
4996 case CONST_DOUBLE:
4997 if (GET_MODE (x) == VOIDmode)
4998 t = build_int_cst_wide (type,
4999 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
5000 else
5001 {
5002 REAL_VALUE_TYPE d;
5003
5004 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5005 t = build_real (type, d);
5006 }
5007
5008 return t;
5009
5010 case CONST_VECTOR:
5011 {
5012 int units = CONST_VECTOR_NUNITS (x);
5013 tree itype = TREE_TYPE (type);
5014 tree t = NULL_TREE;
5015 int i;
5016
5017
5018 /* Build a tree with vector elements. */
5019 for (i = units - 1; i >= 0; --i)
5020 {
5021 rtx elt = CONST_VECTOR_ELT (x, i);
5022 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
5023 }
5024
5025 return build_vector (type, t);
5026 }
5027
5028 case PLUS:
5029 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5030 make_tree (type, XEXP (x, 1)));
5031
5032 case MINUS:
5033 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5034 make_tree (type, XEXP (x, 1)));
5035
5036 case NEG:
5037 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5038
5039 case MULT:
5040 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5041 make_tree (type, XEXP (x, 1)));
5042
5043 case ASHIFT:
5044 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5045 make_tree (type, XEXP (x, 1)));
5046
5047 case LSHIFTRT:
5048 t = unsigned_type_for (type);
5049 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5050 make_tree (t, XEXP (x, 0)),
5051 make_tree (type, XEXP (x, 1))));
5052
5053 case ASHIFTRT:
5054 t = signed_type_for (type);
5055 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5056 make_tree (t, XEXP (x, 0)),
5057 make_tree (type, XEXP (x, 1))));
5058
5059 case DIV:
5060 if (TREE_CODE (type) != REAL_TYPE)
5061 t = signed_type_for (type);
5062 else
5063 t = type;
5064
5065 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5066 make_tree (t, XEXP (x, 0)),
5067 make_tree (t, XEXP (x, 1))));
5068 case UDIV:
5069 t = unsigned_type_for (type);
5070 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5071 make_tree (t, XEXP (x, 0)),
5072 make_tree (t, XEXP (x, 1))));
5073
5074 case SIGN_EXTEND:
5075 case ZERO_EXTEND:
5076 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5077 GET_CODE (x) == ZERO_EXTEND);
5078 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5079
5080 case CONST:
5081 return make_tree (type, XEXP (x, 0));
5082
5083 case SYMBOL_REF:
5084 t = SYMBOL_REF_DECL (x);
5085 if (t)
5086 return fold_convert (type, build_fold_addr_expr (t));
5087 /* else fall through. */
5088
5089 default:
5090 t = build_decl (VAR_DECL, NULL_TREE, type);
5091
5092 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5093 ptr_mode. So convert. */
5094 if (POINTER_TYPE_P (type))
5095 x = convert_memory_address (TYPE_MODE (type), x);
5096
5097 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5098 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5099 t->decl_with_rtl.rtl = x;
5100
5101 return t;
5102 }
5103 }
5104 \f
5105 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5106 and returning TARGET.
5107
5108 If TARGET is 0, a pseudo-register or constant is returned. */
5109
5110 rtx
5111 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5112 {
5113 rtx tem = 0;
5114
5115 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5116 tem = simplify_binary_operation (AND, mode, op0, op1);
5117 if (tem == 0)
5118 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5119
5120 if (target == 0)
5121 target = tem;
5122 else if (tem != target)
5123 emit_move_insn (target, tem);
5124 return target;
5125 }
5126 \f
5127 /* Helper function for emit_store_flag. */
5128 static rtx
5129 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
5130 int normalizep)
5131 {
5132 rtx op0;
5133 enum machine_mode target_mode = GET_MODE (target);
5134
5135 /* If we are converting to a wider mode, first convert to
5136 TARGET_MODE, then normalize. This produces better combining
5137 opportunities on machines that have a SIGN_EXTRACT when we are
5138 testing a single bit. This mostly benefits the 68k.
5139
5140 If STORE_FLAG_VALUE does not have the sign bit set when
5141 interpreted in MODE, we can do this conversion as unsigned, which
5142 is usually more efficient. */
5143 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5144 {
5145 convert_move (target, subtarget,
5146 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5147 && 0 == (STORE_FLAG_VALUE
5148 & ((HOST_WIDE_INT) 1
5149 << (GET_MODE_BITSIZE (mode) -1))));
5150 op0 = target;
5151 mode = target_mode;
5152 }
5153 else
5154 op0 = subtarget;
5155
5156 /* If we want to keep subexpressions around, don't reuse our last
5157 target. */
5158 if (optimize)
5159 subtarget = 0;
5160
5161 /* Now normalize to the proper value in MODE. Sometimes we don't
5162 have to do anything. */
5163 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5164 ;
5165 /* STORE_FLAG_VALUE might be the most negative number, so write
5166 the comparison this way to avoid a compiler-time warning. */
5167 else if (- normalizep == STORE_FLAG_VALUE)
5168 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
5169
5170 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5171 it hard to use a value of just the sign bit due to ANSI integer
5172 constant typing rules. */
5173 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5174 && (STORE_FLAG_VALUE
5175 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5176 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5177 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5178 normalizep == 1);
5179 else
5180 {
5181 gcc_assert (STORE_FLAG_VALUE & 1);
5182
5183 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5184 if (normalizep == -1)
5185 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5186 }
5187
5188 /* If we were converting to a smaller mode, do the conversion now. */
5189 if (target_mode != mode)
5190 {
5191 convert_move (target, op0, 0);
5192 return target;
5193 }
5194 else
5195 return op0;
5196 }
5197
5198 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5199 and storing in TARGET. Normally return TARGET.
5200 Return 0 if that cannot be done.
5201
5202 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5203 it is VOIDmode, they cannot both be CONST_INT.
5204
5205 UNSIGNEDP is for the case where we have to widen the operands
5206 to perform the operation. It says to use zero-extension.
5207
5208 NORMALIZEP is 1 if we should convert the result to be either zero
5209 or one. Normalize is -1 if we should convert the result to be
5210 either zero or -1. If NORMALIZEP is zero, the result will be left
5211 "raw" out of the scc insn. */
5212
5213 rtx
5214 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5215 enum machine_mode mode, int unsignedp, int normalizep)
5216 {
5217 rtx subtarget;
5218 enum insn_code icode;
5219 enum machine_mode compare_mode;
5220 enum machine_mode target_mode = GET_MODE (target);
5221 rtx tem;
5222 rtx last = get_last_insn ();
5223 rtx pattern, comparison;
5224
5225 if (unsignedp)
5226 code = unsigned_condition (code);
5227
5228 /* If one operand is constant, make it the second one. Only do this
5229 if the other operand is not constant as well. */
5230
5231 if (swap_commutative_operands_p (op0, op1))
5232 {
5233 tem = op0;
5234 op0 = op1;
5235 op1 = tem;
5236 code = swap_condition (code);
5237 }
5238
5239 if (mode == VOIDmode)
5240 mode = GET_MODE (op0);
5241
5242 /* For some comparisons with 1 and -1, we can convert this to
5243 comparisons with zero. This will often produce more opportunities for
5244 store-flag insns. */
5245
5246 switch (code)
5247 {
5248 case LT:
5249 if (op1 == const1_rtx)
5250 op1 = const0_rtx, code = LE;
5251 break;
5252 case LE:
5253 if (op1 == constm1_rtx)
5254 op1 = const0_rtx, code = LT;
5255 break;
5256 case GE:
5257 if (op1 == const1_rtx)
5258 op1 = const0_rtx, code = GT;
5259 break;
5260 case GT:
5261 if (op1 == constm1_rtx)
5262 op1 = const0_rtx, code = GE;
5263 break;
5264 case GEU:
5265 if (op1 == const1_rtx)
5266 op1 = const0_rtx, code = NE;
5267 break;
5268 case LTU:
5269 if (op1 == const1_rtx)
5270 op1 = const0_rtx, code = EQ;
5271 break;
5272 default:
5273 break;
5274 }
5275
5276 /* If we are comparing a double-word integer with zero or -1, we can
5277 convert the comparison into one involving a single word. */
5278 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5279 && GET_MODE_CLASS (mode) == MODE_INT
5280 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5281 {
5282 if ((code == EQ || code == NE)
5283 && (op1 == const0_rtx || op1 == constm1_rtx))
5284 {
5285 rtx op00, op01, op0both;
5286
5287 /* Do a logical OR or AND of the two words and compare the
5288 result. */
5289 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5290 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5291 op0both = expand_binop (word_mode,
5292 op1 == const0_rtx ? ior_optab : and_optab,
5293 op00, op01, NULL_RTX, unsignedp,
5294 OPTAB_DIRECT);
5295
5296 if (op0both != 0)
5297 return emit_store_flag (target, code, op0both, op1, word_mode,
5298 unsignedp, normalizep);
5299 }
5300 else if ((code == LT || code == GE) && op1 == const0_rtx)
5301 {
5302 rtx op0h;
5303
5304 /* If testing the sign bit, can just test on high word. */
5305 op0h = simplify_gen_subreg (word_mode, op0, mode,
5306 subreg_highpart_offset (word_mode,
5307 mode));
5308 return emit_store_flag (target, code, op0h, op1, word_mode,
5309 unsignedp, normalizep);
5310 }
5311 }
5312
5313 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5314 complement of A (for GE) and shifting the sign bit to the low bit. */
5315 if (op1 == const0_rtx && (code == LT || code == GE)
5316 && GET_MODE_CLASS (mode) == MODE_INT
5317 && (normalizep || STORE_FLAG_VALUE == 1
5318 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5319 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5320 == ((unsigned HOST_WIDE_INT) 1
5321 << (GET_MODE_BITSIZE (mode) - 1))))))
5322 {
5323 subtarget = target;
5324
5325 /* If the result is to be wider than OP0, it is best to convert it
5326 first. If it is to be narrower, it is *incorrect* to convert it
5327 first. */
5328 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5329 {
5330 op0 = convert_modes (target_mode, mode, op0, 0);
5331 mode = target_mode;
5332 }
5333
5334 if (target_mode != mode)
5335 subtarget = 0;
5336
5337 if (code == GE)
5338 op0 = expand_unop (mode, one_cmpl_optab, op0,
5339 ((STORE_FLAG_VALUE == 1 || normalizep)
5340 ? 0 : subtarget), 0);
5341
5342 if (STORE_FLAG_VALUE == 1 || normalizep)
5343 /* If we are supposed to produce a 0/1 value, we want to do
5344 a logical shift from the sign bit to the low-order bit; for
5345 a -1/0 value, we do an arithmetic shift. */
5346 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5347 size_int (GET_MODE_BITSIZE (mode) - 1),
5348 subtarget, normalizep != -1);
5349
5350 if (mode != target_mode)
5351 op0 = convert_modes (target_mode, mode, op0, 0);
5352
5353 return op0;
5354 }
5355
5356 icode = setcc_gen_code[(int) code];
5357
5358 if (icode != CODE_FOR_nothing)
5359 {
5360 insn_operand_predicate_fn pred;
5361
5362 /* We think we may be able to do this with a scc insn. Emit the
5363 comparison and then the scc insn. */
5364
5365 do_pending_stack_adjust ();
5366 last = get_last_insn ();
5367
5368 comparison
5369 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5370 if (CONSTANT_P (comparison))
5371 {
5372 switch (GET_CODE (comparison))
5373 {
5374 case CONST_INT:
5375 if (comparison == const0_rtx)
5376 return const0_rtx;
5377 break;
5378
5379 #ifdef FLOAT_STORE_FLAG_VALUE
5380 case CONST_DOUBLE:
5381 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5382 return const0_rtx;
5383 break;
5384 #endif
5385 default:
5386 gcc_unreachable ();
5387 }
5388
5389 if (normalizep == 1)
5390 return const1_rtx;
5391 if (normalizep == -1)
5392 return constm1_rtx;
5393 return const_true_rtx;
5394 }
5395
5396 /* The code of COMPARISON may not match CODE if compare_from_rtx
5397 decided to swap its operands and reverse the original code.
5398
5399 We know that compare_from_rtx returns either a CONST_INT or
5400 a new comparison code, so it is safe to just extract the
5401 code from COMPARISON. */
5402 code = GET_CODE (comparison);
5403
5404 /* Get a reference to the target in the proper mode for this insn. */
5405 compare_mode = insn_data[(int) icode].operand[0].mode;
5406 subtarget = target;
5407 pred = insn_data[(int) icode].operand[0].predicate;
5408 if (optimize || ! (*pred) (subtarget, compare_mode))
5409 subtarget = gen_reg_rtx (compare_mode);
5410
5411 pattern = GEN_FCN (icode) (subtarget);
5412 if (pattern)
5413 {
5414 emit_insn (pattern);
5415 return emit_store_flag_1 (target, subtarget, compare_mode,
5416 normalizep);
5417 }
5418 }
5419 else
5420 {
5421 /* We don't have an scc insn, so try a cstore insn. */
5422
5423 for (compare_mode = mode; compare_mode != VOIDmode;
5424 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5425 {
5426 icode = cstore_optab->handlers[(int) compare_mode].insn_code;
5427 if (icode != CODE_FOR_nothing)
5428 break;
5429 }
5430
5431 if (icode != CODE_FOR_nothing)
5432 {
5433 enum machine_mode result_mode
5434 = insn_data[(int) icode].operand[0].mode;
5435 rtx cstore_op0 = op0;
5436 rtx cstore_op1 = op1;
5437
5438 do_pending_stack_adjust ();
5439 last = get_last_insn ();
5440
5441 if (compare_mode != mode)
5442 {
5443 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5444 unsignedp);
5445 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5446 unsignedp);
5447 }
5448
5449 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5450 compare_mode))
5451 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5452
5453 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5454 compare_mode))
5455 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5456
5457 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5458 cstore_op1);
5459 subtarget = target;
5460
5461 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5462 (subtarget, result_mode)))
5463 subtarget = gen_reg_rtx (result_mode);
5464
5465 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5466 cstore_op1);
5467
5468 if (pattern)
5469 {
5470 emit_insn (pattern);
5471 return emit_store_flag_1 (target, subtarget, result_mode,
5472 normalizep);
5473 }
5474 }
5475 }
5476
5477 delete_insns_since (last);
5478
5479 /* If optimizing, use different pseudo registers for each insn, instead
5480 of reusing the same pseudo. This leads to better CSE, but slows
5481 down the compiler, since there are more pseudos */
5482 subtarget = (!optimize
5483 && (target_mode == mode)) ? target : NULL_RTX;
5484
5485 /* If we reached here, we can't do this with a scc insn. However, there
5486 are some comparisons that can be done directly. For example, if
5487 this is an equality comparison of integers, we can try to exclusive-or
5488 (or subtract) the two operands and use a recursive call to try the
5489 comparison with zero. Don't do any of these cases if branches are
5490 very cheap. */
5491
5492 if (BRANCH_COST > 0
5493 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5494 && op1 != const0_rtx)
5495 {
5496 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5497 OPTAB_WIDEN);
5498
5499 if (tem == 0)
5500 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5501 OPTAB_WIDEN);
5502 if (tem != 0)
5503 tem = emit_store_flag (target, code, tem, const0_rtx,
5504 mode, unsignedp, normalizep);
5505 if (tem == 0)
5506 delete_insns_since (last);
5507 return tem;
5508 }
5509
5510 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5511 the constant zero. Reject all other comparisons at this point. Only
5512 do LE and GT if branches are expensive since they are expensive on
5513 2-operand machines. */
5514
5515 if (BRANCH_COST == 0
5516 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5517 || (code != EQ && code != NE
5518 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5519 return 0;
5520
5521 /* See what we need to return. We can only return a 1, -1, or the
5522 sign bit. */
5523
5524 if (normalizep == 0)
5525 {
5526 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5527 normalizep = STORE_FLAG_VALUE;
5528
5529 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5530 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5531 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5532 ;
5533 else
5534 return 0;
5535 }
5536
5537 /* Try to put the result of the comparison in the sign bit. Assume we can't
5538 do the necessary operation below. */
5539
5540 tem = 0;
5541
5542 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5543 the sign bit set. */
5544
5545 if (code == LE)
5546 {
5547 /* This is destructive, so SUBTARGET can't be OP0. */
5548 if (rtx_equal_p (subtarget, op0))
5549 subtarget = 0;
5550
5551 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5552 OPTAB_WIDEN);
5553 if (tem)
5554 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5555 OPTAB_WIDEN);
5556 }
5557
5558 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5559 number of bits in the mode of OP0, minus one. */
5560
5561 if (code == GT)
5562 {
5563 if (rtx_equal_p (subtarget, op0))
5564 subtarget = 0;
5565
5566 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5567 size_int (GET_MODE_BITSIZE (mode) - 1),
5568 subtarget, 0);
5569 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5570 OPTAB_WIDEN);
5571 }
5572
5573 if (code == EQ || code == NE)
5574 {
5575 /* For EQ or NE, one way to do the comparison is to apply an operation
5576 that converts the operand into a positive number if it is nonzero
5577 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5578 for NE we negate. This puts the result in the sign bit. Then we
5579 normalize with a shift, if needed.
5580
5581 Two operations that can do the above actions are ABS and FFS, so try
5582 them. If that doesn't work, and MODE is smaller than a full word,
5583 we can use zero-extension to the wider mode (an unsigned conversion)
5584 as the operation. */
5585
5586 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5587 that is compensated by the subsequent overflow when subtracting
5588 one / negating. */
5589
5590 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5591 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5592 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5593 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5594 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5595 {
5596 tem = convert_modes (word_mode, mode, op0, 1);
5597 mode = word_mode;
5598 }
5599
5600 if (tem != 0)
5601 {
5602 if (code == EQ)
5603 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5604 0, OPTAB_WIDEN);
5605 else
5606 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5607 }
5608
5609 /* If we couldn't do it that way, for NE we can "or" the two's complement
5610 of the value with itself. For EQ, we take the one's complement of
5611 that "or", which is an extra insn, so we only handle EQ if branches
5612 are expensive. */
5613
5614 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5615 {
5616 if (rtx_equal_p (subtarget, op0))
5617 subtarget = 0;
5618
5619 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5620 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5621 OPTAB_WIDEN);
5622
5623 if (tem && code == EQ)
5624 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5625 }
5626 }
5627
5628 if (tem && normalizep)
5629 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5630 size_int (GET_MODE_BITSIZE (mode) - 1),
5631 subtarget, normalizep == 1);
5632
5633 if (tem)
5634 {
5635 if (GET_MODE (tem) != target_mode)
5636 {
5637 convert_move (target, tem, 0);
5638 tem = target;
5639 }
5640 else if (!subtarget)
5641 {
5642 emit_move_insn (target, tem);
5643 tem = target;
5644 }
5645 }
5646 else
5647 delete_insns_since (last);
5648
5649 return tem;
5650 }
5651
5652 /* Like emit_store_flag, but always succeeds. */
5653
5654 rtx
5655 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5656 enum machine_mode mode, int unsignedp, int normalizep)
5657 {
5658 rtx tem, label;
5659
5660 /* First see if emit_store_flag can do the job. */
5661 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5662 if (tem != 0)
5663 return tem;
5664
5665 if (normalizep == 0)
5666 normalizep = 1;
5667
5668 /* If this failed, we have to do this with set/compare/jump/set code. */
5669
5670 if (!REG_P (target)
5671 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5672 target = gen_reg_rtx (GET_MODE (target));
5673
5674 emit_move_insn (target, const1_rtx);
5675 label = gen_label_rtx ();
5676 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5677 NULL_RTX, label);
5678
5679 emit_move_insn (target, const0_rtx);
5680 emit_label (label);
5681
5682 return target;
5683 }
5684 \f
5685 /* Perform possibly multi-word comparison and conditional jump to LABEL
5686 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5687 now a thin wrapper around do_compare_rtx_and_jump. */
5688
5689 static void
5690 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5691 rtx label)
5692 {
5693 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5694 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5695 NULL_RTX, NULL_RTX, label);
5696 }