re PR middle-end/37731 (long long may not work correctly on 32bit host)
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
41
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
66
67 static bool sdiv_pow2_cheap[2][NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[2][NUM_MACHINE_MODES];
69
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
73
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
77
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
81
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
98
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost[2];
102 static int add_cost[2][NUM_MACHINE_MODES];
103 static int neg_cost[2][NUM_MACHINE_MODES];
104 static int shift_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[2][NUM_MACHINE_MODES];
108 static int sdiv_cost[2][NUM_MACHINE_MODES];
109 static int udiv_cost[2][NUM_MACHINE_MODES];
110 static int mul_widen_cost[2][NUM_MACHINE_MODES];
111 static int mul_highpart_cost[2][NUM_MACHINE_MODES];
112
113 void
114 init_expmed (void)
115 {
116 struct
117 {
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub; rtunion shift_sub_fld1;
134 } all;
135
136 rtx pow2[MAX_BITS_PER_WORD];
137 rtx cint[MAX_BITS_PER_WORD];
138 int m, n;
139 enum machine_mode mode, wider_mode;
140 int speed;
141
142
143 for (m = 1; m < MAX_BITS_PER_WORD; m++)
144 {
145 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 cint[m] = GEN_INT (m);
147 }
148 memset (&all, 0, sizeof all);
149
150 PUT_CODE (&all.reg, REG);
151 /* Avoid using hard regs in ways which may be unsupported. */
152 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
153
154 PUT_CODE (&all.plus, PLUS);
155 XEXP (&all.plus, 0) = &all.reg;
156 XEXP (&all.plus, 1) = &all.reg;
157
158 PUT_CODE (&all.neg, NEG);
159 XEXP (&all.neg, 0) = &all.reg;
160
161 PUT_CODE (&all.mult, MULT);
162 XEXP (&all.mult, 0) = &all.reg;
163 XEXP (&all.mult, 1) = &all.reg;
164
165 PUT_CODE (&all.sdiv, DIV);
166 XEXP (&all.sdiv, 0) = &all.reg;
167 XEXP (&all.sdiv, 1) = &all.reg;
168
169 PUT_CODE (&all.udiv, UDIV);
170 XEXP (&all.udiv, 0) = &all.reg;
171 XEXP (&all.udiv, 1) = &all.reg;
172
173 PUT_CODE (&all.sdiv_32, DIV);
174 XEXP (&all.sdiv_32, 0) = &all.reg;
175 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
176
177 PUT_CODE (&all.smod_32, MOD);
178 XEXP (&all.smod_32, 0) = &all.reg;
179 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
180
181 PUT_CODE (&all.zext, ZERO_EXTEND);
182 XEXP (&all.zext, 0) = &all.reg;
183
184 PUT_CODE (&all.wide_mult, MULT);
185 XEXP (&all.wide_mult, 0) = &all.zext;
186 XEXP (&all.wide_mult, 1) = &all.zext;
187
188 PUT_CODE (&all.wide_lshr, LSHIFTRT);
189 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
190
191 PUT_CODE (&all.wide_trunc, TRUNCATE);
192 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
193
194 PUT_CODE (&all.shift, ASHIFT);
195 XEXP (&all.shift, 0) = &all.reg;
196
197 PUT_CODE (&all.shift_mult, MULT);
198 XEXP (&all.shift_mult, 0) = &all.reg;
199
200 PUT_CODE (&all.shift_add, PLUS);
201 XEXP (&all.shift_add, 0) = &all.shift_mult;
202 XEXP (&all.shift_add, 1) = &all.reg;
203
204 PUT_CODE (&all.shift_sub, MINUS);
205 XEXP (&all.shift_sub, 0) = &all.shift_mult;
206 XEXP (&all.shift_sub, 1) = &all.reg;
207
208 for (speed = 0; speed < 2; speed++)
209 {
210 crtl->maybe_hot_insn_p = speed;
211 zero_cost[speed] = rtx_cost (const0_rtx, 0, speed);
212
213 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
214 mode != VOIDmode;
215 mode = GET_MODE_WIDER_MODE (mode))
216 {
217 PUT_MODE (&all.reg, mode);
218 PUT_MODE (&all.plus, mode);
219 PUT_MODE (&all.neg, mode);
220 PUT_MODE (&all.mult, mode);
221 PUT_MODE (&all.sdiv, mode);
222 PUT_MODE (&all.udiv, mode);
223 PUT_MODE (&all.sdiv_32, mode);
224 PUT_MODE (&all.smod_32, mode);
225 PUT_MODE (&all.wide_trunc, mode);
226 PUT_MODE (&all.shift, mode);
227 PUT_MODE (&all.shift_mult, mode);
228 PUT_MODE (&all.shift_add, mode);
229 PUT_MODE (&all.shift_sub, mode);
230
231 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
232 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
233 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
234 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
235 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
236
237 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
238 <= 2 * add_cost[speed][mode]);
239 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
240 <= 4 * add_cost[speed][mode]);
241
242 wider_mode = GET_MODE_WIDER_MODE (mode);
243 if (wider_mode != VOIDmode)
244 {
245 PUT_MODE (&all.zext, wider_mode);
246 PUT_MODE (&all.wide_mult, wider_mode);
247 PUT_MODE (&all.wide_lshr, wider_mode);
248 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
249
250 mul_widen_cost[speed][wider_mode]
251 = rtx_cost (&all.wide_mult, SET, speed);
252 mul_highpart_cost[speed][mode]
253 = rtx_cost (&all.wide_trunc, SET, speed);
254 }
255
256 shift_cost[speed][mode][0] = 0;
257 shiftadd_cost[speed][mode][0] = shiftsub_cost[speed][mode][0]
258 = add_cost[speed][mode];
259
260 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
261 for (m = 1; m < n; m++)
262 {
263 XEXP (&all.shift, 1) = cint[m];
264 XEXP (&all.shift_mult, 1) = pow2[m];
265
266 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
267 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
268 shiftsub_cost[speed][mode][m] = rtx_cost (&all.shift_sub, SET, speed);
269 }
270 }
271 }
272 default_rtl_profile ();
273 }
274
275 /* Return an rtx representing minus the value of X.
276 MODE is the intended mode of the result,
277 useful if X is a CONST_INT. */
278
279 rtx
280 negate_rtx (enum machine_mode mode, rtx x)
281 {
282 rtx result = simplify_unary_operation (NEG, mode, x, mode);
283
284 if (result == 0)
285 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
286
287 return result;
288 }
289
290 /* Report on the availability of insv/extv/extzv and the desired mode
291 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
292 is false; else the mode of the specified operand. If OPNO is -1,
293 all the caller cares about is whether the insn is available. */
294 enum machine_mode
295 mode_for_extraction (enum extraction_pattern pattern, int opno)
296 {
297 const struct insn_data *data;
298
299 switch (pattern)
300 {
301 case EP_insv:
302 if (HAVE_insv)
303 {
304 data = &insn_data[CODE_FOR_insv];
305 break;
306 }
307 return MAX_MACHINE_MODE;
308
309 case EP_extv:
310 if (HAVE_extv)
311 {
312 data = &insn_data[CODE_FOR_extv];
313 break;
314 }
315 return MAX_MACHINE_MODE;
316
317 case EP_extzv:
318 if (HAVE_extzv)
319 {
320 data = &insn_data[CODE_FOR_extzv];
321 break;
322 }
323 return MAX_MACHINE_MODE;
324
325 default:
326 gcc_unreachable ();
327 }
328
329 if (opno == -1)
330 return VOIDmode;
331
332 /* Everyone who uses this function used to follow it with
333 if (result == VOIDmode) result = word_mode; */
334 if (data->operand[opno].mode == VOIDmode)
335 return word_mode;
336 return data->operand[opno].mode;
337 }
338
339 /* Return true if X, of mode MODE, matches the predicate for operand
340 OPNO of instruction ICODE. Allow volatile memories, regardless of
341 the ambient volatile_ok setting. */
342
343 static bool
344 check_predicate_volatile_ok (enum insn_code icode, int opno,
345 rtx x, enum machine_mode mode)
346 {
347 bool save_volatile_ok, result;
348
349 save_volatile_ok = volatile_ok;
350 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
351 volatile_ok = save_volatile_ok;
352 return result;
353 }
354 \f
355 /* A subroutine of store_bit_field, with the same arguments. Return true
356 if the operation could be implemented.
357
358 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
359 no other way of implementing the operation. If FALLBACK_P is false,
360 return false instead. */
361
362 static bool
363 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
364 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
365 rtx value, bool fallback_p)
366 {
367 unsigned int unit
368 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
369 unsigned HOST_WIDE_INT offset, bitpos;
370 rtx op0 = str_rtx;
371 int byte_offset;
372 rtx orig_value;
373
374 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
375
376 while (GET_CODE (op0) == SUBREG)
377 {
378 /* The following line once was done only if WORDS_BIG_ENDIAN,
379 but I think that is a mistake. WORDS_BIG_ENDIAN is
380 meaningful at a much higher level; when structures are copied
381 between memory and regs, the higher-numbered regs
382 always get higher addresses. */
383 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
384 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
385
386 byte_offset = 0;
387
388 /* Paradoxical subregs need special handling on big endian machines. */
389 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
390 {
391 int difference = inner_mode_size - outer_mode_size;
392
393 if (WORDS_BIG_ENDIAN)
394 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
395 if (BYTES_BIG_ENDIAN)
396 byte_offset += difference % UNITS_PER_WORD;
397 }
398 else
399 byte_offset = SUBREG_BYTE (op0);
400
401 bitnum += byte_offset * BITS_PER_UNIT;
402 op0 = SUBREG_REG (op0);
403 }
404
405 /* No action is needed if the target is a register and if the field
406 lies completely outside that register. This can occur if the source
407 code contains an out-of-bounds access to a small array. */
408 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
409 return true;
410
411 /* Use vec_set patterns for inserting parts of vectors whenever
412 available. */
413 if (VECTOR_MODE_P (GET_MODE (op0))
414 && !MEM_P (op0)
415 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
416 != CODE_FOR_nothing)
417 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
418 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
419 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
420 {
421 enum machine_mode outermode = GET_MODE (op0);
422 enum machine_mode innermode = GET_MODE_INNER (outermode);
423 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
424 int pos = bitnum / GET_MODE_BITSIZE (innermode);
425 rtx rtxpos = GEN_INT (pos);
426 rtx src = value;
427 rtx dest = op0;
428 rtx pat, seq;
429 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
430 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
431 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
432
433 start_sequence ();
434
435 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
436 src = copy_to_mode_reg (mode1, src);
437
438 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
439 rtxpos = copy_to_mode_reg (mode1, rtxpos);
440
441 /* We could handle this, but we should always be called with a pseudo
442 for our targets and all insns should take them as outputs. */
443 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
444 && (*insn_data[icode].operand[1].predicate) (src, mode1)
445 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
446 pat = GEN_FCN (icode) (dest, src, rtxpos);
447 seq = get_insns ();
448 end_sequence ();
449 if (pat)
450 {
451 emit_insn (seq);
452 emit_insn (pat);
453 return true;
454 }
455 }
456
457 /* If the target is a register, overwriting the entire object, or storing
458 a full-word or multi-word field can be done with just a SUBREG.
459
460 If the target is memory, storing any naturally aligned field can be
461 done with a simple store. For targets that support fast unaligned
462 memory, any naturally sized, unit aligned field can be done directly. */
463
464 offset = bitnum / unit;
465 bitpos = bitnum % unit;
466 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
467 + (offset * UNITS_PER_WORD);
468
469 if (bitpos == 0
470 && bitsize == GET_MODE_BITSIZE (fieldmode)
471 && (!MEM_P (op0)
472 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
473 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
474 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
475 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
476 || (offset * BITS_PER_UNIT % bitsize == 0
477 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
478 {
479 if (MEM_P (op0))
480 op0 = adjust_address (op0, fieldmode, offset);
481 else if (GET_MODE (op0) != fieldmode)
482 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
483 byte_offset);
484 emit_move_insn (op0, value);
485 return true;
486 }
487
488 /* Make sure we are playing with integral modes. Pun with subregs
489 if we aren't. This must come after the entire register case above,
490 since that case is valid for any mode. The following cases are only
491 valid for integral modes. */
492 {
493 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
494 if (imode != GET_MODE (op0))
495 {
496 if (MEM_P (op0))
497 op0 = adjust_address (op0, imode, 0);
498 else
499 {
500 gcc_assert (imode != BLKmode);
501 op0 = gen_lowpart (imode, op0);
502 }
503 }
504 }
505
506 /* We may be accessing data outside the field, which means
507 we can alias adjacent data. */
508 if (MEM_P (op0))
509 {
510 op0 = shallow_copy_rtx (op0);
511 set_mem_alias_set (op0, 0);
512 set_mem_expr (op0, 0);
513 }
514
515 /* If OP0 is a register, BITPOS must count within a word.
516 But as we have it, it counts within whatever size OP0 now has.
517 On a bigendian machine, these are not the same, so convert. */
518 if (BYTES_BIG_ENDIAN
519 && !MEM_P (op0)
520 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
521 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
522
523 /* Storing an lsb-aligned field in a register
524 can be done with a movestrict instruction. */
525
526 if (!MEM_P (op0)
527 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
528 && bitsize == GET_MODE_BITSIZE (fieldmode)
529 && (optab_handler (movstrict_optab, fieldmode)->insn_code
530 != CODE_FOR_nothing))
531 {
532 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
533 rtx insn;
534 rtx start = get_last_insn ();
535
536 /* Get appropriate low part of the value being stored. */
537 if (GET_CODE (value) == CONST_INT || REG_P (value))
538 value = gen_lowpart (fieldmode, value);
539 else if (!(GET_CODE (value) == SYMBOL_REF
540 || GET_CODE (value) == LABEL_REF
541 || GET_CODE (value) == CONST))
542 value = convert_to_mode (fieldmode, value, 0);
543
544 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
545 value = copy_to_mode_reg (fieldmode, value);
546
547 if (GET_CODE (op0) == SUBREG)
548 {
549 /* Else we've got some float mode source being extracted into
550 a different float mode destination -- this combination of
551 subregs results in Severe Tire Damage. */
552 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
553 || GET_MODE_CLASS (fieldmode) == MODE_INT
554 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
555 op0 = SUBREG_REG (op0);
556 }
557
558 insn = (GEN_FCN (icode)
559 (gen_rtx_SUBREG (fieldmode, op0,
560 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
561 + (offset * UNITS_PER_WORD)),
562 value));
563 if (insn)
564 {
565 emit_insn (insn);
566 return true;
567 }
568 delete_insns_since (start);
569 }
570
571 /* Handle fields bigger than a word. */
572
573 if (bitsize > BITS_PER_WORD)
574 {
575 /* Here we transfer the words of the field
576 in the order least significant first.
577 This is because the most significant word is the one which may
578 be less than full.
579 However, only do that if the value is not BLKmode. */
580
581 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
582 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
583 unsigned int i;
584 rtx last;
585
586 /* This is the mode we must force value to, so that there will be enough
587 subwords to extract. Note that fieldmode will often (always?) be
588 VOIDmode, because that is what store_field uses to indicate that this
589 is a bit field, but passing VOIDmode to operand_subword_force
590 is not allowed. */
591 fieldmode = GET_MODE (value);
592 if (fieldmode == VOIDmode)
593 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
594
595 last = get_last_insn ();
596 for (i = 0; i < nwords; i++)
597 {
598 /* If I is 0, use the low-order word in both field and target;
599 if I is 1, use the next to lowest word; and so on. */
600 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
601 unsigned int bit_offset = (backwards
602 ? MAX ((int) bitsize - ((int) i + 1)
603 * BITS_PER_WORD,
604 0)
605 : (int) i * BITS_PER_WORD);
606 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
607
608 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
609 bitsize - i * BITS_PER_WORD),
610 bitnum + bit_offset, word_mode,
611 value_word, fallback_p))
612 {
613 delete_insns_since (last);
614 return false;
615 }
616 }
617 return true;
618 }
619
620 /* From here on we can assume that the field to be stored in is
621 a full-word (whatever type that is), since it is shorter than a word. */
622
623 /* OFFSET is the number of words or bytes (UNIT says which)
624 from STR_RTX to the first word or byte containing part of the field. */
625
626 if (!MEM_P (op0))
627 {
628 if (offset != 0
629 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
630 {
631 if (!REG_P (op0))
632 {
633 /* Since this is a destination (lvalue), we can't copy
634 it to a pseudo. We can remove a SUBREG that does not
635 change the size of the operand. Such a SUBREG may
636 have been added above. */
637 gcc_assert (GET_CODE (op0) == SUBREG
638 && (GET_MODE_SIZE (GET_MODE (op0))
639 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
640 op0 = SUBREG_REG (op0);
641 }
642 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
643 op0, (offset * UNITS_PER_WORD));
644 }
645 offset = 0;
646 }
647
648 /* If VALUE has a floating-point or complex mode, access it as an
649 integer of the corresponding size. This can occur on a machine
650 with 64 bit registers that uses SFmode for float. It can also
651 occur for unaligned float or complex fields. */
652 orig_value = value;
653 if (GET_MODE (value) != VOIDmode
654 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
655 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
656 {
657 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
658 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
659 }
660
661 /* Now OFFSET is nonzero only if OP0 is memory
662 and is therefore always measured in bytes. */
663
664 if (HAVE_insv
665 && GET_MODE (value) != BLKmode
666 && bitsize > 0
667 && GET_MODE_BITSIZE (op_mode) >= bitsize
668 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
669 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
670 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
671 VOIDmode)
672 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
673 {
674 int xbitpos = bitpos;
675 rtx value1;
676 rtx xop0 = op0;
677 rtx last = get_last_insn ();
678 rtx pat;
679
680 /* Add OFFSET into OP0's address. */
681 if (MEM_P (xop0))
682 xop0 = adjust_address (xop0, byte_mode, offset);
683
684 /* If xop0 is a register, we need it in OP_MODE
685 to make it acceptable to the format of insv. */
686 if (GET_CODE (xop0) == SUBREG)
687 /* We can't just change the mode, because this might clobber op0,
688 and we will need the original value of op0 if insv fails. */
689 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
690 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
691 xop0 = gen_rtx_SUBREG (op_mode, xop0, 0);
692
693 /* On big-endian machines, we count bits from the most significant.
694 If the bit field insn does not, we must invert. */
695
696 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
697 xbitpos = unit - bitsize - xbitpos;
698
699 /* We have been counting XBITPOS within UNIT.
700 Count instead within the size of the register. */
701 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
702 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
703
704 unit = GET_MODE_BITSIZE (op_mode);
705
706 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
707 value1 = value;
708 if (GET_MODE (value) != op_mode)
709 {
710 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
711 {
712 /* Optimization: Don't bother really extending VALUE
713 if it has all the bits we will actually use. However,
714 if we must narrow it, be sure we do it correctly. */
715
716 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
717 {
718 rtx tmp;
719
720 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
721 if (! tmp)
722 tmp = simplify_gen_subreg (op_mode,
723 force_reg (GET_MODE (value),
724 value1),
725 GET_MODE (value), 0);
726 value1 = tmp;
727 }
728 else
729 value1 = gen_lowpart (op_mode, value1);
730 }
731 else if (GET_CODE (value) == CONST_INT)
732 value1 = gen_int_mode (INTVAL (value), op_mode);
733 else
734 /* Parse phase is supposed to make VALUE's data type
735 match that of the component reference, which is a type
736 at least as wide as the field; so VALUE should have
737 a mode that corresponds to that type. */
738 gcc_assert (CONSTANT_P (value));
739 }
740
741 /* If this machine's insv insists on a register,
742 get VALUE1 into a register. */
743 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
744 (value1, op_mode)))
745 value1 = force_reg (op_mode, value1);
746
747 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
748 if (pat)
749 {
750 emit_insn (pat);
751 return true;
752 }
753 delete_insns_since (last);
754 }
755
756 /* If OP0 is a memory, try copying it to a register and seeing if a
757 cheap register alternative is available. */
758 if (HAVE_insv && MEM_P (op0))
759 {
760 enum machine_mode bestmode;
761
762 /* Get the mode to use for inserting into this field. If OP0 is
763 BLKmode, get the smallest mode consistent with the alignment. If
764 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
765 mode. Otherwise, use the smallest mode containing the field. */
766
767 if (GET_MODE (op0) == BLKmode
768 || (op_mode != MAX_MACHINE_MODE
769 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
770 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
771 (op_mode == MAX_MACHINE_MODE
772 ? VOIDmode : op_mode),
773 MEM_VOLATILE_P (op0));
774 else
775 bestmode = GET_MODE (op0);
776
777 if (bestmode != VOIDmode
778 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
779 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
780 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
781 {
782 rtx last, tempreg, xop0;
783 unsigned HOST_WIDE_INT xoffset, xbitpos;
784
785 last = get_last_insn ();
786
787 /* Adjust address to point to the containing unit of
788 that mode. Compute the offset as a multiple of this unit,
789 counting in bytes. */
790 unit = GET_MODE_BITSIZE (bestmode);
791 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
792 xbitpos = bitnum % unit;
793 xop0 = adjust_address (op0, bestmode, xoffset);
794
795 /* Fetch that unit, store the bitfield in it, then store
796 the unit. */
797 tempreg = copy_to_reg (xop0);
798 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
799 fieldmode, orig_value, false))
800 {
801 emit_move_insn (xop0, tempreg);
802 return true;
803 }
804 delete_insns_since (last);
805 }
806 }
807
808 if (!fallback_p)
809 return false;
810
811 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
812 return true;
813 }
814
815 /* Generate code to store value from rtx VALUE
816 into a bit-field within structure STR_RTX
817 containing BITSIZE bits starting at bit BITNUM.
818 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
819
820 void
821 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
822 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
823 rtx value)
824 {
825 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
826 gcc_unreachable ();
827 }
828 \f
829 /* Use shifts and boolean operations to store VALUE
830 into a bit field of width BITSIZE
831 in a memory location specified by OP0 except offset by OFFSET bytes.
832 (OFFSET must be 0 if OP0 is a register.)
833 The field starts at position BITPOS within the byte.
834 (If OP0 is a register, it may be a full word or a narrower mode,
835 but BITPOS still counts within a full word,
836 which is significant on bigendian machines.) */
837
838 static void
839 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
840 unsigned HOST_WIDE_INT bitsize,
841 unsigned HOST_WIDE_INT bitpos, rtx value)
842 {
843 enum machine_mode mode;
844 unsigned int total_bits = BITS_PER_WORD;
845 rtx temp;
846 int all_zero = 0;
847 int all_one = 0;
848
849 /* There is a case not handled here:
850 a structure with a known alignment of just a halfword
851 and a field split across two aligned halfwords within the structure.
852 Or likewise a structure with a known alignment of just a byte
853 and a field split across two bytes.
854 Such cases are not supposed to be able to occur. */
855
856 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
857 {
858 gcc_assert (!offset);
859 /* Special treatment for a bit field split across two registers. */
860 if (bitsize + bitpos > BITS_PER_WORD)
861 {
862 store_split_bit_field (op0, bitsize, bitpos, value);
863 return;
864 }
865 }
866 else
867 {
868 /* Get the proper mode to use for this field. We want a mode that
869 includes the entire field. If such a mode would be larger than
870 a word, we won't be doing the extraction the normal way.
871 We don't want a mode bigger than the destination. */
872
873 mode = GET_MODE (op0);
874 if (GET_MODE_BITSIZE (mode) == 0
875 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
876 mode = word_mode;
877 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
878 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
879
880 if (mode == VOIDmode)
881 {
882 /* The only way this should occur is if the field spans word
883 boundaries. */
884 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
885 value);
886 return;
887 }
888
889 total_bits = GET_MODE_BITSIZE (mode);
890
891 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
892 be in the range 0 to total_bits-1, and put any excess bytes in
893 OFFSET. */
894 if (bitpos >= total_bits)
895 {
896 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
897 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
898 * BITS_PER_UNIT);
899 }
900
901 /* Get ref to an aligned byte, halfword, or word containing the field.
902 Adjust BITPOS to be position within a word,
903 and OFFSET to be the offset of that word.
904 Then alter OP0 to refer to that word. */
905 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
906 offset -= (offset % (total_bits / BITS_PER_UNIT));
907 op0 = adjust_address (op0, mode, offset);
908 }
909
910 mode = GET_MODE (op0);
911
912 /* Now MODE is either some integral mode for a MEM as OP0,
913 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
914 The bit field is contained entirely within OP0.
915 BITPOS is the starting bit number within OP0.
916 (OP0's mode may actually be narrower than MODE.) */
917
918 if (BYTES_BIG_ENDIAN)
919 /* BITPOS is the distance between our msb
920 and that of the containing datum.
921 Convert it to the distance from the lsb. */
922 bitpos = total_bits - bitsize - bitpos;
923
924 /* Now BITPOS is always the distance between our lsb
925 and that of OP0. */
926
927 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
928 we must first convert its mode to MODE. */
929
930 if (GET_CODE (value) == CONST_INT)
931 {
932 HOST_WIDE_INT v = INTVAL (value);
933
934 if (bitsize < HOST_BITS_PER_WIDE_INT)
935 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
936
937 if (v == 0)
938 all_zero = 1;
939 else if ((bitsize < HOST_BITS_PER_WIDE_INT
940 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
941 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
942 all_one = 1;
943
944 value = lshift_value (mode, value, bitpos, bitsize);
945 }
946 else
947 {
948 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
949 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
950
951 if (GET_MODE (value) != mode)
952 value = convert_to_mode (mode, value, 1);
953
954 if (must_and)
955 value = expand_binop (mode, and_optab, value,
956 mask_rtx (mode, 0, bitsize, 0),
957 NULL_RTX, 1, OPTAB_LIB_WIDEN);
958 if (bitpos > 0)
959 value = expand_shift (LSHIFT_EXPR, mode, value,
960 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
961 }
962
963 /* Now clear the chosen bits in OP0,
964 except that if VALUE is -1 we need not bother. */
965 /* We keep the intermediates in registers to allow CSE to combine
966 consecutive bitfield assignments. */
967
968 temp = force_reg (mode, op0);
969
970 if (! all_one)
971 {
972 temp = expand_binop (mode, and_optab, temp,
973 mask_rtx (mode, bitpos, bitsize, 1),
974 NULL_RTX, 1, OPTAB_LIB_WIDEN);
975 temp = force_reg (mode, temp);
976 }
977
978 /* Now logical-or VALUE into OP0, unless it is zero. */
979
980 if (! all_zero)
981 {
982 temp = expand_binop (mode, ior_optab, temp, value,
983 NULL_RTX, 1, OPTAB_LIB_WIDEN);
984 temp = force_reg (mode, temp);
985 }
986
987 if (op0 != temp)
988 {
989 op0 = copy_rtx (op0);
990 emit_move_insn (op0, temp);
991 }
992 }
993 \f
994 /* Store a bit field that is split across multiple accessible memory objects.
995
996 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
997 BITSIZE is the field width; BITPOS the position of its first bit
998 (within the word).
999 VALUE is the value to store.
1000
1001 This does not yet handle fields wider than BITS_PER_WORD. */
1002
1003 static void
1004 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1005 unsigned HOST_WIDE_INT bitpos, rtx value)
1006 {
1007 unsigned int unit;
1008 unsigned int bitsdone = 0;
1009
1010 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1011 much at a time. */
1012 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1013 unit = BITS_PER_WORD;
1014 else
1015 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1016
1017 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1018 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1019 that VALUE might be a floating-point constant. */
1020 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
1021 {
1022 rtx word = gen_lowpart_common (word_mode, value);
1023
1024 if (word && (value != word))
1025 value = word;
1026 else
1027 value = gen_lowpart_common (word_mode,
1028 force_reg (GET_MODE (value) != VOIDmode
1029 ? GET_MODE (value)
1030 : word_mode, value));
1031 }
1032
1033 while (bitsdone < bitsize)
1034 {
1035 unsigned HOST_WIDE_INT thissize;
1036 rtx part, word;
1037 unsigned HOST_WIDE_INT thispos;
1038 unsigned HOST_WIDE_INT offset;
1039
1040 offset = (bitpos + bitsdone) / unit;
1041 thispos = (bitpos + bitsdone) % unit;
1042
1043 /* THISSIZE must not overrun a word boundary. Otherwise,
1044 store_fixed_bit_field will call us again, and we will mutually
1045 recurse forever. */
1046 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1047 thissize = MIN (thissize, unit - thispos);
1048
1049 if (BYTES_BIG_ENDIAN)
1050 {
1051 int total_bits;
1052
1053 /* We must do an endian conversion exactly the same way as it is
1054 done in extract_bit_field, so that the two calls to
1055 extract_fixed_bit_field will have comparable arguments. */
1056 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1057 total_bits = BITS_PER_WORD;
1058 else
1059 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1060
1061 /* Fetch successively less significant portions. */
1062 if (GET_CODE (value) == CONST_INT)
1063 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1064 >> (bitsize - bitsdone - thissize))
1065 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1066 else
1067 /* The args are chosen so that the last part includes the
1068 lsb. Give extract_bit_field the value it needs (with
1069 endianness compensation) to fetch the piece we want. */
1070 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1071 total_bits - bitsize + bitsdone,
1072 NULL_RTX, 1);
1073 }
1074 else
1075 {
1076 /* Fetch successively more significant portions. */
1077 if (GET_CODE (value) == CONST_INT)
1078 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1079 >> bitsdone)
1080 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1081 else
1082 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1083 bitsdone, NULL_RTX, 1);
1084 }
1085
1086 /* If OP0 is a register, then handle OFFSET here.
1087
1088 When handling multiword bitfields, extract_bit_field may pass
1089 down a word_mode SUBREG of a larger REG for a bitfield that actually
1090 crosses a word boundary. Thus, for a SUBREG, we must find
1091 the current word starting from the base register. */
1092 if (GET_CODE (op0) == SUBREG)
1093 {
1094 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1095 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1096 GET_MODE (SUBREG_REG (op0)));
1097 offset = 0;
1098 }
1099 else if (REG_P (op0))
1100 {
1101 word = operand_subword_force (op0, offset, GET_MODE (op0));
1102 offset = 0;
1103 }
1104 else
1105 word = op0;
1106
1107 /* OFFSET is in UNITs, and UNIT is in bits.
1108 store_fixed_bit_field wants offset in bytes. */
1109 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1110 thispos, part);
1111 bitsdone += thissize;
1112 }
1113 }
1114 \f
1115 /* A subroutine of extract_bit_field_1 that converts return value X
1116 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1117 to extract_bit_field. */
1118
1119 static rtx
1120 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1121 enum machine_mode tmode, bool unsignedp)
1122 {
1123 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1124 return x;
1125
1126 /* If the x mode is not a scalar integral, first convert to the
1127 integer mode of that size and then access it as a floating-point
1128 value via a SUBREG. */
1129 if (!SCALAR_INT_MODE_P (tmode))
1130 {
1131 enum machine_mode smode;
1132
1133 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1134 x = convert_to_mode (smode, x, unsignedp);
1135 x = force_reg (smode, x);
1136 return gen_lowpart (tmode, x);
1137 }
1138
1139 return convert_to_mode (tmode, x, unsignedp);
1140 }
1141
1142 /* A subroutine of extract_bit_field, with the same arguments.
1143 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1144 if we can find no other means of implementing the operation.
1145 if FALLBACK_P is false, return NULL instead. */
1146
1147 static rtx
1148 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1149 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1150 enum machine_mode mode, enum machine_mode tmode,
1151 bool fallback_p)
1152 {
1153 unsigned int unit
1154 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1155 unsigned HOST_WIDE_INT offset, bitpos;
1156 rtx op0 = str_rtx;
1157 enum machine_mode int_mode;
1158 enum machine_mode ext_mode;
1159 enum machine_mode mode1;
1160 enum insn_code icode;
1161 int byte_offset;
1162
1163 if (tmode == VOIDmode)
1164 tmode = mode;
1165
1166 while (GET_CODE (op0) == SUBREG)
1167 {
1168 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1169 op0 = SUBREG_REG (op0);
1170 }
1171
1172 /* If we have an out-of-bounds access to a register, just return an
1173 uninitialized register of the required mode. This can occur if the
1174 source code contains an out-of-bounds access to a small array. */
1175 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1176 return gen_reg_rtx (tmode);
1177
1178 if (REG_P (op0)
1179 && mode == GET_MODE (op0)
1180 && bitnum == 0
1181 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1182 {
1183 /* We're trying to extract a full register from itself. */
1184 return op0;
1185 }
1186
1187 /* See if we can get a better vector mode before extracting. */
1188 if (VECTOR_MODE_P (GET_MODE (op0))
1189 && !MEM_P (op0)
1190 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1191 {
1192 enum machine_mode new_mode;
1193 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1194
1195 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1196 new_mode = MIN_MODE_VECTOR_FLOAT;
1197 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1198 new_mode = MIN_MODE_VECTOR_FRACT;
1199 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1200 new_mode = MIN_MODE_VECTOR_UFRACT;
1201 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1202 new_mode = MIN_MODE_VECTOR_ACCUM;
1203 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1204 new_mode = MIN_MODE_VECTOR_UACCUM;
1205 else
1206 new_mode = MIN_MODE_VECTOR_INT;
1207
1208 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1209 if (GET_MODE_NUNITS (new_mode) == nunits
1210 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1211 && targetm.vector_mode_supported_p (new_mode))
1212 break;
1213 if (new_mode != VOIDmode)
1214 op0 = gen_lowpart (new_mode, op0);
1215 }
1216
1217 /* Use vec_extract patterns for extracting parts of vectors whenever
1218 available. */
1219 if (VECTOR_MODE_P (GET_MODE (op0))
1220 && !MEM_P (op0)
1221 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1222 != CODE_FOR_nothing)
1223 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1224 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1225 {
1226 enum machine_mode outermode = GET_MODE (op0);
1227 enum machine_mode innermode = GET_MODE_INNER (outermode);
1228 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1229 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1230 rtx rtxpos = GEN_INT (pos);
1231 rtx src = op0;
1232 rtx dest = NULL, pat, seq;
1233 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1234 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1235 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1236
1237 if (innermode == tmode || innermode == mode)
1238 dest = target;
1239
1240 if (!dest)
1241 dest = gen_reg_rtx (innermode);
1242
1243 start_sequence ();
1244
1245 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1246 dest = copy_to_mode_reg (mode0, dest);
1247
1248 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1249 src = copy_to_mode_reg (mode1, src);
1250
1251 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1252 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1253
1254 /* We could handle this, but we should always be called with a pseudo
1255 for our targets and all insns should take them as outputs. */
1256 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1257 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1258 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1259
1260 pat = GEN_FCN (icode) (dest, src, rtxpos);
1261 seq = get_insns ();
1262 end_sequence ();
1263 if (pat)
1264 {
1265 emit_insn (seq);
1266 emit_insn (pat);
1267 if (mode0 != mode)
1268 return gen_lowpart (tmode, dest);
1269 return dest;
1270 }
1271 }
1272
1273 /* Make sure we are playing with integral modes. Pun with subregs
1274 if we aren't. */
1275 {
1276 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1277 if (imode != GET_MODE (op0))
1278 {
1279 if (MEM_P (op0))
1280 op0 = adjust_address (op0, imode, 0);
1281 else
1282 {
1283 gcc_assert (imode != BLKmode);
1284 op0 = gen_lowpart (imode, op0);
1285
1286 /* If we got a SUBREG, force it into a register since we
1287 aren't going to be able to do another SUBREG on it. */
1288 if (GET_CODE (op0) == SUBREG)
1289 op0 = force_reg (imode, op0);
1290 }
1291 }
1292 }
1293
1294 /* We may be accessing data outside the field, which means
1295 we can alias adjacent data. */
1296 if (MEM_P (op0))
1297 {
1298 op0 = shallow_copy_rtx (op0);
1299 set_mem_alias_set (op0, 0);
1300 set_mem_expr (op0, 0);
1301 }
1302
1303 /* Extraction of a full-word or multi-word value from a structure
1304 in a register or aligned memory can be done with just a SUBREG.
1305 A subword value in the least significant part of a register
1306 can also be extracted with a SUBREG. For this, we need the
1307 byte offset of the value in op0. */
1308
1309 bitpos = bitnum % unit;
1310 offset = bitnum / unit;
1311 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1312
1313 /* If OP0 is a register, BITPOS must count within a word.
1314 But as we have it, it counts within whatever size OP0 now has.
1315 On a bigendian machine, these are not the same, so convert. */
1316 if (BYTES_BIG_ENDIAN
1317 && !MEM_P (op0)
1318 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1319 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1320
1321 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1322 If that's wrong, the solution is to test for it and set TARGET to 0
1323 if needed. */
1324
1325 /* Only scalar integer modes can be converted via subregs. There is an
1326 additional problem for FP modes here in that they can have a precision
1327 which is different from the size. mode_for_size uses precision, but
1328 we want a mode based on the size, so we must avoid calling it for FP
1329 modes. */
1330 mode1 = (SCALAR_INT_MODE_P (tmode)
1331 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1332 : mode);
1333
1334 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1335 && bitpos % BITS_PER_WORD == 0)
1336 || (mode1 != BLKmode
1337 /* ??? The big endian test here is wrong. This is correct
1338 if the value is in a register, and if mode_for_size is not
1339 the same mode as op0. This causes us to get unnecessarily
1340 inefficient code from the Thumb port when -mbig-endian. */
1341 && (BYTES_BIG_ENDIAN
1342 ? bitpos + bitsize == BITS_PER_WORD
1343 : bitpos == 0)))
1344 && ((!MEM_P (op0)
1345 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1346 GET_MODE_BITSIZE (GET_MODE (op0)))
1347 && GET_MODE_SIZE (mode1) != 0
1348 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1349 || (MEM_P (op0)
1350 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1351 || (offset * BITS_PER_UNIT % bitsize == 0
1352 && MEM_ALIGN (op0) % bitsize == 0)))))
1353 {
1354 if (MEM_P (op0))
1355 op0 = adjust_address (op0, mode1, offset);
1356 else if (mode1 != GET_MODE (op0))
1357 {
1358 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1359 byte_offset);
1360 if (sub == NULL)
1361 goto no_subreg_mode_swap;
1362 op0 = sub;
1363 }
1364 if (mode1 != mode)
1365 return convert_to_mode (tmode, op0, unsignedp);
1366 return op0;
1367 }
1368 no_subreg_mode_swap:
1369
1370 /* Handle fields bigger than a word. */
1371
1372 if (bitsize > BITS_PER_WORD)
1373 {
1374 /* Here we transfer the words of the field
1375 in the order least significant first.
1376 This is because the most significant word is the one which may
1377 be less than full. */
1378
1379 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1380 unsigned int i;
1381
1382 if (target == 0 || !REG_P (target))
1383 target = gen_reg_rtx (mode);
1384
1385 /* Indicate for flow that the entire target reg is being set. */
1386 emit_clobber (target);
1387
1388 for (i = 0; i < nwords; i++)
1389 {
1390 /* If I is 0, use the low-order word in both field and target;
1391 if I is 1, use the next to lowest word; and so on. */
1392 /* Word number in TARGET to use. */
1393 unsigned int wordnum
1394 = (WORDS_BIG_ENDIAN
1395 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1396 : i);
1397 /* Offset from start of field in OP0. */
1398 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1399 ? MAX (0, ((int) bitsize - ((int) i + 1)
1400 * (int) BITS_PER_WORD))
1401 : (int) i * BITS_PER_WORD);
1402 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1403 rtx result_part
1404 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1405 bitsize - i * BITS_PER_WORD),
1406 bitnum + bit_offset, 1, target_part, mode,
1407 word_mode);
1408
1409 gcc_assert (target_part);
1410
1411 if (result_part != target_part)
1412 emit_move_insn (target_part, result_part);
1413 }
1414
1415 if (unsignedp)
1416 {
1417 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1418 need to be zero'd out. */
1419 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1420 {
1421 unsigned int i, total_words;
1422
1423 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1424 for (i = nwords; i < total_words; i++)
1425 emit_move_insn
1426 (operand_subword (target,
1427 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1428 1, VOIDmode),
1429 const0_rtx);
1430 }
1431 return target;
1432 }
1433
1434 /* Signed bit field: sign-extend with two arithmetic shifts. */
1435 target = expand_shift (LSHIFT_EXPR, mode, target,
1436 build_int_cst (NULL_TREE,
1437 GET_MODE_BITSIZE (mode) - bitsize),
1438 NULL_RTX, 0);
1439 return expand_shift (RSHIFT_EXPR, mode, target,
1440 build_int_cst (NULL_TREE,
1441 GET_MODE_BITSIZE (mode) - bitsize),
1442 NULL_RTX, 0);
1443 }
1444
1445 /* From here on we know the desired field is smaller than a word. */
1446
1447 /* Check if there is a correspondingly-sized integer field, so we can
1448 safely extract it as one size of integer, if necessary; then
1449 truncate or extend to the size that is wanted; then use SUBREGs or
1450 convert_to_mode to get one of the modes we really wanted. */
1451
1452 int_mode = int_mode_for_mode (tmode);
1453 if (int_mode == BLKmode)
1454 int_mode = int_mode_for_mode (mode);
1455 /* Should probably push op0 out to memory and then do a load. */
1456 gcc_assert (int_mode != BLKmode);
1457
1458 /* OFFSET is the number of words or bytes (UNIT says which)
1459 from STR_RTX to the first word or byte containing part of the field. */
1460 if (!MEM_P (op0))
1461 {
1462 if (offset != 0
1463 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1464 {
1465 if (!REG_P (op0))
1466 op0 = copy_to_reg (op0);
1467 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1468 op0, (offset * UNITS_PER_WORD));
1469 }
1470 offset = 0;
1471 }
1472
1473 /* Now OFFSET is nonzero only for memory operands. */
1474 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1475 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1476 if (ext_mode != MAX_MACHINE_MODE
1477 && bitsize > 0
1478 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1479 /* If op0 is a register, we need it in EXT_MODE to make it
1480 acceptable to the format of ext(z)v. */
1481 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1482 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1483 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1484 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1485 {
1486 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1487 rtx bitsize_rtx, bitpos_rtx;
1488 rtx last = get_last_insn ();
1489 rtx xop0 = op0;
1490 rtx xtarget = target;
1491 rtx xspec_target = target;
1492 rtx xspec_target_subreg = 0;
1493 rtx pat;
1494
1495 /* If op0 is a register, we need it in EXT_MODE to make it
1496 acceptable to the format of ext(z)v. */
1497 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1498 xop0 = gen_rtx_SUBREG (ext_mode, xop0, 0);
1499 if (MEM_P (xop0))
1500 /* Get ref to first byte containing part of the field. */
1501 xop0 = adjust_address (xop0, byte_mode, xoffset);
1502
1503 /* On big-endian machines, we count bits from the most significant.
1504 If the bit field insn does not, we must invert. */
1505 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1506 xbitpos = unit - bitsize - xbitpos;
1507
1508 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1509 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1510 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1511
1512 unit = GET_MODE_BITSIZE (ext_mode);
1513
1514 if (xtarget == 0)
1515 xtarget = xspec_target = gen_reg_rtx (tmode);
1516
1517 if (GET_MODE (xtarget) != ext_mode)
1518 {
1519 if (REG_P (xtarget))
1520 {
1521 xtarget = gen_lowpart (ext_mode, xtarget);
1522 if (GET_MODE_SIZE (ext_mode)
1523 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1524 xspec_target_subreg = xtarget;
1525 }
1526 else
1527 xtarget = gen_reg_rtx (ext_mode);
1528 }
1529
1530 /* If this machine's ext(z)v insists on a register target,
1531 make sure we have one. */
1532 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1533 xtarget = gen_reg_rtx (ext_mode);
1534
1535 bitsize_rtx = GEN_INT (bitsize);
1536 bitpos_rtx = GEN_INT (xbitpos);
1537
1538 pat = (unsignedp
1539 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1540 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1541 if (pat)
1542 {
1543 emit_insn (pat);
1544 if (xtarget == xspec_target)
1545 return xtarget;
1546 if (xtarget == xspec_target_subreg)
1547 return xspec_target;
1548 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1549 }
1550 delete_insns_since (last);
1551 }
1552
1553 /* If OP0 is a memory, try copying it to a register and seeing if a
1554 cheap register alternative is available. */
1555 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1556 {
1557 enum machine_mode bestmode;
1558
1559 /* Get the mode to use for inserting into this field. If
1560 OP0 is BLKmode, get the smallest mode consistent with the
1561 alignment. If OP0 is a non-BLKmode object that is no
1562 wider than EXT_MODE, use its mode. Otherwise, use the
1563 smallest mode containing the field. */
1564
1565 if (GET_MODE (op0) == BLKmode
1566 || (ext_mode != MAX_MACHINE_MODE
1567 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1568 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1569 (ext_mode == MAX_MACHINE_MODE
1570 ? VOIDmode : ext_mode),
1571 MEM_VOLATILE_P (op0));
1572 else
1573 bestmode = GET_MODE (op0);
1574
1575 if (bestmode != VOIDmode
1576 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1577 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1578 {
1579 unsigned HOST_WIDE_INT xoffset, xbitpos;
1580
1581 /* Compute the offset as a multiple of this unit,
1582 counting in bytes. */
1583 unit = GET_MODE_BITSIZE (bestmode);
1584 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1585 xbitpos = bitnum % unit;
1586
1587 /* Make sure the register is big enough for the whole field. */
1588 if (xoffset * BITS_PER_UNIT + unit
1589 >= offset * BITS_PER_UNIT + bitsize)
1590 {
1591 rtx last, result, xop0;
1592
1593 last = get_last_insn ();
1594
1595 /* Fetch it to a register in that size. */
1596 xop0 = adjust_address (op0, bestmode, xoffset);
1597 xop0 = force_reg (bestmode, xop0);
1598 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1599 unsignedp, target,
1600 mode, tmode, false);
1601 if (result)
1602 return result;
1603
1604 delete_insns_since (last);
1605 }
1606 }
1607 }
1608
1609 if (!fallback_p)
1610 return NULL;
1611
1612 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1613 bitpos, target, unsignedp);
1614 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1615 }
1616
1617 /* Generate code to extract a byte-field from STR_RTX
1618 containing BITSIZE bits, starting at BITNUM,
1619 and put it in TARGET if possible (if TARGET is nonzero).
1620 Regardless of TARGET, we return the rtx for where the value is placed.
1621
1622 STR_RTX is the structure containing the byte (a REG or MEM).
1623 UNSIGNEDP is nonzero if this is an unsigned bit field.
1624 MODE is the natural mode of the field value once extracted.
1625 TMODE is the mode the caller would like the value to have;
1626 but the value may be returned with type MODE instead.
1627
1628 If a TARGET is specified and we can store in it at no extra cost,
1629 we do so, and return TARGET.
1630 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1631 if they are equally easy. */
1632
1633 rtx
1634 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1635 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1636 enum machine_mode mode, enum machine_mode tmode)
1637 {
1638 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1639 target, mode, tmode, true);
1640 }
1641 \f
1642 /* Extract a bit field using shifts and boolean operations
1643 Returns an rtx to represent the value.
1644 OP0 addresses a register (word) or memory (byte).
1645 BITPOS says which bit within the word or byte the bit field starts in.
1646 OFFSET says how many bytes farther the bit field starts;
1647 it is 0 if OP0 is a register.
1648 BITSIZE says how many bits long the bit field is.
1649 (If OP0 is a register, it may be narrower than a full word,
1650 but BITPOS still counts within a full word,
1651 which is significant on bigendian machines.)
1652
1653 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1654 If TARGET is nonzero, attempts to store the value there
1655 and return TARGET, but this is not guaranteed.
1656 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1657
1658 static rtx
1659 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1660 unsigned HOST_WIDE_INT offset,
1661 unsigned HOST_WIDE_INT bitsize,
1662 unsigned HOST_WIDE_INT bitpos, rtx target,
1663 int unsignedp)
1664 {
1665 unsigned int total_bits = BITS_PER_WORD;
1666 enum machine_mode mode;
1667
1668 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1669 {
1670 /* Special treatment for a bit field split across two registers. */
1671 if (bitsize + bitpos > BITS_PER_WORD)
1672 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1673 }
1674 else
1675 {
1676 /* Get the proper mode to use for this field. We want a mode that
1677 includes the entire field. If such a mode would be larger than
1678 a word, we won't be doing the extraction the normal way. */
1679
1680 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1681 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1682
1683 if (mode == VOIDmode)
1684 /* The only way this should occur is if the field spans word
1685 boundaries. */
1686 return extract_split_bit_field (op0, bitsize,
1687 bitpos + offset * BITS_PER_UNIT,
1688 unsignedp);
1689
1690 total_bits = GET_MODE_BITSIZE (mode);
1691
1692 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1693 be in the range 0 to total_bits-1, and put any excess bytes in
1694 OFFSET. */
1695 if (bitpos >= total_bits)
1696 {
1697 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1698 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1699 * BITS_PER_UNIT);
1700 }
1701
1702 /* Get ref to an aligned byte, halfword, or word containing the field.
1703 Adjust BITPOS to be position within a word,
1704 and OFFSET to be the offset of that word.
1705 Then alter OP0 to refer to that word. */
1706 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1707 offset -= (offset % (total_bits / BITS_PER_UNIT));
1708 op0 = adjust_address (op0, mode, offset);
1709 }
1710
1711 mode = GET_MODE (op0);
1712
1713 if (BYTES_BIG_ENDIAN)
1714 /* BITPOS is the distance between our msb and that of OP0.
1715 Convert it to the distance from the lsb. */
1716 bitpos = total_bits - bitsize - bitpos;
1717
1718 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1719 We have reduced the big-endian case to the little-endian case. */
1720
1721 if (unsignedp)
1722 {
1723 if (bitpos)
1724 {
1725 /* If the field does not already start at the lsb,
1726 shift it so it does. */
1727 tree amount = build_int_cst (NULL_TREE, bitpos);
1728 /* Maybe propagate the target for the shift. */
1729 /* But not if we will return it--could confuse integrate.c. */
1730 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1731 if (tmode != mode) subtarget = 0;
1732 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1733 }
1734 /* Convert the value to the desired mode. */
1735 if (mode != tmode)
1736 op0 = convert_to_mode (tmode, op0, 1);
1737
1738 /* Unless the msb of the field used to be the msb when we shifted,
1739 mask out the upper bits. */
1740
1741 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1742 return expand_binop (GET_MODE (op0), and_optab, op0,
1743 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1744 target, 1, OPTAB_LIB_WIDEN);
1745 return op0;
1746 }
1747
1748 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1749 then arithmetic-shift its lsb to the lsb of the word. */
1750 op0 = force_reg (mode, op0);
1751 if (mode != tmode)
1752 target = 0;
1753
1754 /* Find the narrowest integer mode that contains the field. */
1755
1756 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1757 mode = GET_MODE_WIDER_MODE (mode))
1758 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1759 {
1760 op0 = convert_to_mode (mode, op0, 0);
1761 break;
1762 }
1763
1764 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1765 {
1766 tree amount
1767 = build_int_cst (NULL_TREE,
1768 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1769 /* Maybe propagate the target for the shift. */
1770 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1771 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1772 }
1773
1774 return expand_shift (RSHIFT_EXPR, mode, op0,
1775 build_int_cst (NULL_TREE,
1776 GET_MODE_BITSIZE (mode) - bitsize),
1777 target, 0);
1778 }
1779 \f
1780 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1781 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1782 complement of that if COMPLEMENT. The mask is truncated if
1783 necessary to the width of mode MODE. The mask is zero-extended if
1784 BITSIZE+BITPOS is too small for MODE. */
1785
1786 static rtx
1787 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1788 {
1789 HOST_WIDE_INT masklow, maskhigh;
1790
1791 if (bitsize == 0)
1792 masklow = 0;
1793 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1794 masklow = (HOST_WIDE_INT) -1 << bitpos;
1795 else
1796 masklow = 0;
1797
1798 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1799 masklow &= ((unsigned HOST_WIDE_INT) -1
1800 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1801
1802 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1803 maskhigh = -1;
1804 else
1805 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1806
1807 if (bitsize == 0)
1808 maskhigh = 0;
1809 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1810 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1811 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1812 else
1813 maskhigh = 0;
1814
1815 if (complement)
1816 {
1817 maskhigh = ~maskhigh;
1818 masklow = ~masklow;
1819 }
1820
1821 return immed_double_const (masklow, maskhigh, mode);
1822 }
1823
1824 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1825 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1826
1827 static rtx
1828 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1829 {
1830 unsigned HOST_WIDE_INT v = INTVAL (value);
1831 HOST_WIDE_INT low, high;
1832
1833 if (bitsize < HOST_BITS_PER_WIDE_INT)
1834 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1835
1836 if (bitpos < HOST_BITS_PER_WIDE_INT)
1837 {
1838 low = v << bitpos;
1839 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1840 }
1841 else
1842 {
1843 low = 0;
1844 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1845 }
1846
1847 return immed_double_const (low, high, mode);
1848 }
1849 \f
1850 /* Extract a bit field that is split across two words
1851 and return an RTX for the result.
1852
1853 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1854 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1855 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1856
1857 static rtx
1858 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1859 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1860 {
1861 unsigned int unit;
1862 unsigned int bitsdone = 0;
1863 rtx result = NULL_RTX;
1864 int first = 1;
1865
1866 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1867 much at a time. */
1868 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1869 unit = BITS_PER_WORD;
1870 else
1871 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1872
1873 while (bitsdone < bitsize)
1874 {
1875 unsigned HOST_WIDE_INT thissize;
1876 rtx part, word;
1877 unsigned HOST_WIDE_INT thispos;
1878 unsigned HOST_WIDE_INT offset;
1879
1880 offset = (bitpos + bitsdone) / unit;
1881 thispos = (bitpos + bitsdone) % unit;
1882
1883 /* THISSIZE must not overrun a word boundary. Otherwise,
1884 extract_fixed_bit_field will call us again, and we will mutually
1885 recurse forever. */
1886 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1887 thissize = MIN (thissize, unit - thispos);
1888
1889 /* If OP0 is a register, then handle OFFSET here.
1890
1891 When handling multiword bitfields, extract_bit_field may pass
1892 down a word_mode SUBREG of a larger REG for a bitfield that actually
1893 crosses a word boundary. Thus, for a SUBREG, we must find
1894 the current word starting from the base register. */
1895 if (GET_CODE (op0) == SUBREG)
1896 {
1897 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1898 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1899 GET_MODE (SUBREG_REG (op0)));
1900 offset = 0;
1901 }
1902 else if (REG_P (op0))
1903 {
1904 word = operand_subword_force (op0, offset, GET_MODE (op0));
1905 offset = 0;
1906 }
1907 else
1908 word = op0;
1909
1910 /* Extract the parts in bit-counting order,
1911 whose meaning is determined by BYTES_PER_UNIT.
1912 OFFSET is in UNITs, and UNIT is in bits.
1913 extract_fixed_bit_field wants offset in bytes. */
1914 part = extract_fixed_bit_field (word_mode, word,
1915 offset * unit / BITS_PER_UNIT,
1916 thissize, thispos, 0, 1);
1917 bitsdone += thissize;
1918
1919 /* Shift this part into place for the result. */
1920 if (BYTES_BIG_ENDIAN)
1921 {
1922 if (bitsize != bitsdone)
1923 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1924 build_int_cst (NULL_TREE, bitsize - bitsdone),
1925 0, 1);
1926 }
1927 else
1928 {
1929 if (bitsdone != thissize)
1930 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1931 build_int_cst (NULL_TREE,
1932 bitsdone - thissize), 0, 1);
1933 }
1934
1935 if (first)
1936 result = part;
1937 else
1938 /* Combine the parts with bitwise or. This works
1939 because we extracted each part as an unsigned bit field. */
1940 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1941 OPTAB_LIB_WIDEN);
1942
1943 first = 0;
1944 }
1945
1946 /* Unsigned bit field: we are done. */
1947 if (unsignedp)
1948 return result;
1949 /* Signed bit field: sign-extend with two arithmetic shifts. */
1950 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1951 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1952 NULL_RTX, 0);
1953 return expand_shift (RSHIFT_EXPR, word_mode, result,
1954 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1955 NULL_RTX, 0);
1956 }
1957 \f
1958 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1959 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1960 MODE, fill the upper bits with zeros. Fail if the layout of either
1961 mode is unknown (as for CC modes) or if the extraction would involve
1962 unprofitable mode punning. Return the value on success, otherwise
1963 return null.
1964
1965 This is different from gen_lowpart* in these respects:
1966
1967 - the returned value must always be considered an rvalue
1968
1969 - when MODE is wider than SRC_MODE, the extraction involves
1970 a zero extension
1971
1972 - when MODE is smaller than SRC_MODE, the extraction involves
1973 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1974
1975 In other words, this routine performs a computation, whereas the
1976 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1977 operations. */
1978
1979 rtx
1980 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1981 {
1982 enum machine_mode int_mode, src_int_mode;
1983
1984 if (mode == src_mode)
1985 return src;
1986
1987 if (CONSTANT_P (src))
1988 {
1989 /* simplify_gen_subreg can't be used here, as if simplify_subreg
1990 fails, it will happily create (subreg (symbol_ref)) or similar
1991 invalid SUBREGs. */
1992 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
1993 rtx ret = simplify_subreg (mode, src, src_mode, byte);
1994 if (ret)
1995 return ret;
1996
1997 if (GET_MODE (src) == VOIDmode
1998 || !validate_subreg (mode, src_mode, src, byte))
1999 return NULL_RTX;
2000
2001 src = force_reg (GET_MODE (src), src);
2002 return gen_rtx_SUBREG (mode, src, byte);
2003 }
2004
2005 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2006 return NULL_RTX;
2007
2008 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2009 && MODES_TIEABLE_P (mode, src_mode))
2010 {
2011 rtx x = gen_lowpart_common (mode, src);
2012 if (x)
2013 return x;
2014 }
2015
2016 src_int_mode = int_mode_for_mode (src_mode);
2017 int_mode = int_mode_for_mode (mode);
2018 if (src_int_mode == BLKmode || int_mode == BLKmode)
2019 return NULL_RTX;
2020
2021 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2022 return NULL_RTX;
2023 if (!MODES_TIEABLE_P (int_mode, mode))
2024 return NULL_RTX;
2025
2026 src = gen_lowpart (src_int_mode, src);
2027 src = convert_modes (int_mode, src_int_mode, src, true);
2028 src = gen_lowpart (mode, src);
2029 return src;
2030 }
2031 \f
2032 /* Add INC into TARGET. */
2033
2034 void
2035 expand_inc (rtx target, rtx inc)
2036 {
2037 rtx value = expand_binop (GET_MODE (target), add_optab,
2038 target, inc,
2039 target, 0, OPTAB_LIB_WIDEN);
2040 if (value != target)
2041 emit_move_insn (target, value);
2042 }
2043
2044 /* Subtract DEC from TARGET. */
2045
2046 void
2047 expand_dec (rtx target, rtx dec)
2048 {
2049 rtx value = expand_binop (GET_MODE (target), sub_optab,
2050 target, dec,
2051 target, 0, OPTAB_LIB_WIDEN);
2052 if (value != target)
2053 emit_move_insn (target, value);
2054 }
2055 \f
2056 /* Output a shift instruction for expression code CODE,
2057 with SHIFTED being the rtx for the value to shift,
2058 and AMOUNT the tree for the amount to shift by.
2059 Store the result in the rtx TARGET, if that is convenient.
2060 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2061 Return the rtx for where the value is. */
2062
2063 rtx
2064 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2065 tree amount, rtx target, int unsignedp)
2066 {
2067 rtx op1, temp = 0;
2068 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2069 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2070 optab lshift_optab = ashl_optab;
2071 optab rshift_arith_optab = ashr_optab;
2072 optab rshift_uns_optab = lshr_optab;
2073 optab lrotate_optab = rotl_optab;
2074 optab rrotate_optab = rotr_optab;
2075 enum machine_mode op1_mode;
2076 int attempt;
2077 bool speed = optimize_insn_for_speed_p ();
2078
2079 op1 = expand_normal (amount);
2080 op1_mode = GET_MODE (op1);
2081
2082 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2083 shift amount is a vector, use the vector/vector shift patterns. */
2084 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2085 {
2086 lshift_optab = vashl_optab;
2087 rshift_arith_optab = vashr_optab;
2088 rshift_uns_optab = vlshr_optab;
2089 lrotate_optab = vrotl_optab;
2090 rrotate_optab = vrotr_optab;
2091 }
2092
2093 /* Previously detected shift-counts computed by NEGATE_EXPR
2094 and shifted in the other direction; but that does not work
2095 on all machines. */
2096
2097 if (SHIFT_COUNT_TRUNCATED)
2098 {
2099 if (GET_CODE (op1) == CONST_INT
2100 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2101 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2102 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2103 % GET_MODE_BITSIZE (mode));
2104 else if (GET_CODE (op1) == SUBREG
2105 && subreg_lowpart_p (op1))
2106 op1 = SUBREG_REG (op1);
2107 }
2108
2109 if (op1 == const0_rtx)
2110 return shifted;
2111
2112 /* Check whether its cheaper to implement a left shift by a constant
2113 bit count by a sequence of additions. */
2114 if (code == LSHIFT_EXPR
2115 && GET_CODE (op1) == CONST_INT
2116 && INTVAL (op1) > 0
2117 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2118 && INTVAL (op1) < MAX_BITS_PER_WORD
2119 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2120 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2121 {
2122 int i;
2123 for (i = 0; i < INTVAL (op1); i++)
2124 {
2125 temp = force_reg (mode, shifted);
2126 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2127 unsignedp, OPTAB_LIB_WIDEN);
2128 }
2129 return shifted;
2130 }
2131
2132 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2133 {
2134 enum optab_methods methods;
2135
2136 if (attempt == 0)
2137 methods = OPTAB_DIRECT;
2138 else if (attempt == 1)
2139 methods = OPTAB_WIDEN;
2140 else
2141 methods = OPTAB_LIB_WIDEN;
2142
2143 if (rotate)
2144 {
2145 /* Widening does not work for rotation. */
2146 if (methods == OPTAB_WIDEN)
2147 continue;
2148 else if (methods == OPTAB_LIB_WIDEN)
2149 {
2150 /* If we have been unable to open-code this by a rotation,
2151 do it as the IOR of two shifts. I.e., to rotate A
2152 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2153 where C is the bitsize of A.
2154
2155 It is theoretically possible that the target machine might
2156 not be able to perform either shift and hence we would
2157 be making two libcalls rather than just the one for the
2158 shift (similarly if IOR could not be done). We will allow
2159 this extremely unlikely lossage to avoid complicating the
2160 code below. */
2161
2162 rtx subtarget = target == shifted ? 0 : target;
2163 tree new_amount, other_amount;
2164 rtx temp1;
2165 tree type = TREE_TYPE (amount);
2166 if (GET_MODE (op1) != TYPE_MODE (type)
2167 && GET_MODE (op1) != VOIDmode)
2168 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2169 new_amount = make_tree (type, op1);
2170 other_amount
2171 = fold_build2 (MINUS_EXPR, type,
2172 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2173 new_amount);
2174
2175 shifted = force_reg (mode, shifted);
2176
2177 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2178 mode, shifted, new_amount, 0, 1);
2179 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2180 mode, shifted, other_amount, subtarget, 1);
2181 return expand_binop (mode, ior_optab, temp, temp1, target,
2182 unsignedp, methods);
2183 }
2184
2185 temp = expand_binop (mode,
2186 left ? lrotate_optab : rrotate_optab,
2187 shifted, op1, target, unsignedp, methods);
2188 }
2189 else if (unsignedp)
2190 temp = expand_binop (mode,
2191 left ? lshift_optab : rshift_uns_optab,
2192 shifted, op1, target, unsignedp, methods);
2193
2194 /* Do arithmetic shifts.
2195 Also, if we are going to widen the operand, we can just as well
2196 use an arithmetic right-shift instead of a logical one. */
2197 if (temp == 0 && ! rotate
2198 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2199 {
2200 enum optab_methods methods1 = methods;
2201
2202 /* If trying to widen a log shift to an arithmetic shift,
2203 don't accept an arithmetic shift of the same size. */
2204 if (unsignedp)
2205 methods1 = OPTAB_MUST_WIDEN;
2206
2207 /* Arithmetic shift */
2208
2209 temp = expand_binop (mode,
2210 left ? lshift_optab : rshift_arith_optab,
2211 shifted, op1, target, unsignedp, methods1);
2212 }
2213
2214 /* We used to try extzv here for logical right shifts, but that was
2215 only useful for one machine, the VAX, and caused poor code
2216 generation there for lshrdi3, so the code was deleted and a
2217 define_expand for lshrsi3 was added to vax.md. */
2218 }
2219
2220 gcc_assert (temp);
2221 return temp;
2222 }
2223 \f
2224 enum alg_code {
2225 alg_unknown,
2226 alg_zero,
2227 alg_m, alg_shift,
2228 alg_add_t_m2,
2229 alg_sub_t_m2,
2230 alg_add_factor,
2231 alg_sub_factor,
2232 alg_add_t2_m,
2233 alg_sub_t2_m,
2234 alg_impossible
2235 };
2236
2237 /* This structure holds the "cost" of a multiply sequence. The
2238 "cost" field holds the total rtx_cost of every operator in the
2239 synthetic multiplication sequence, hence cost(a op b) is defined
2240 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2241 The "latency" field holds the minimum possible latency of the
2242 synthetic multiply, on a hypothetical infinitely parallel CPU.
2243 This is the critical path, or the maximum height, of the expression
2244 tree which is the sum of rtx_costs on the most expensive path from
2245 any leaf to the root. Hence latency(a op b) is defined as zero for
2246 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2247
2248 struct mult_cost {
2249 short cost; /* Total rtx_cost of the multiplication sequence. */
2250 short latency; /* The latency of the multiplication sequence. */
2251 };
2252
2253 /* This macro is used to compare a pointer to a mult_cost against an
2254 single integer "rtx_cost" value. This is equivalent to the macro
2255 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2256 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2257 || ((X)->cost == (Y) && (X)->latency < (Y)))
2258
2259 /* This macro is used to compare two pointers to mult_costs against
2260 each other. The macro returns true if X is cheaper than Y.
2261 Currently, the cheaper of two mult_costs is the one with the
2262 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2263 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2264 || ((X)->cost == (Y)->cost \
2265 && (X)->latency < (Y)->latency))
2266
2267 /* This structure records a sequence of operations.
2268 `ops' is the number of operations recorded.
2269 `cost' is their total cost.
2270 The operations are stored in `op' and the corresponding
2271 logarithms of the integer coefficients in `log'.
2272
2273 These are the operations:
2274 alg_zero total := 0;
2275 alg_m total := multiplicand;
2276 alg_shift total := total * coeff
2277 alg_add_t_m2 total := total + multiplicand * coeff;
2278 alg_sub_t_m2 total := total - multiplicand * coeff;
2279 alg_add_factor total := total * coeff + total;
2280 alg_sub_factor total := total * coeff - total;
2281 alg_add_t2_m total := total * coeff + multiplicand;
2282 alg_sub_t2_m total := total * coeff - multiplicand;
2283
2284 The first operand must be either alg_zero or alg_m. */
2285
2286 struct algorithm
2287 {
2288 struct mult_cost cost;
2289 short ops;
2290 /* The size of the OP and LOG fields are not directly related to the
2291 word size, but the worst-case algorithms will be if we have few
2292 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2293 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2294 in total wordsize operations. */
2295 enum alg_code op[MAX_BITS_PER_WORD];
2296 char log[MAX_BITS_PER_WORD];
2297 };
2298
2299 /* The entry for our multiplication cache/hash table. */
2300 struct alg_hash_entry {
2301 /* The number we are multiplying by. */
2302 unsigned HOST_WIDE_INT t;
2303
2304 /* The mode in which we are multiplying something by T. */
2305 enum machine_mode mode;
2306
2307 /* The best multiplication algorithm for t. */
2308 enum alg_code alg;
2309
2310 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2311 Otherwise, the cost within which multiplication by T is
2312 impossible. */
2313 struct mult_cost cost;
2314
2315 /* OPtimized for speed? */
2316 bool speed;
2317 };
2318
2319 /* The number of cache/hash entries. */
2320 #if HOST_BITS_PER_WIDE_INT == 64
2321 #define NUM_ALG_HASH_ENTRIES 1031
2322 #else
2323 #define NUM_ALG_HASH_ENTRIES 307
2324 #endif
2325
2326 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2327 actually a hash table. If we have a collision, that the older
2328 entry is kicked out. */
2329 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2330
2331 /* Indicates the type of fixup needed after a constant multiplication.
2332 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2333 the result should be negated, and ADD_VARIANT means that the
2334 multiplicand should be added to the result. */
2335 enum mult_variant {basic_variant, negate_variant, add_variant};
2336
2337 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2338 const struct mult_cost *, enum machine_mode mode);
2339 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2340 struct algorithm *, enum mult_variant *, int);
2341 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2342 const struct algorithm *, enum mult_variant);
2343 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2344 int, rtx *, int *, int *);
2345 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2346 static rtx extract_high_half (enum machine_mode, rtx);
2347 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2348 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2349 int, int);
2350 /* Compute and return the best algorithm for multiplying by T.
2351 The algorithm must cost less than cost_limit
2352 If retval.cost >= COST_LIMIT, no algorithm was found and all
2353 other field of the returned struct are undefined.
2354 MODE is the machine mode of the multiplication. */
2355
2356 static void
2357 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2358 const struct mult_cost *cost_limit, enum machine_mode mode)
2359 {
2360 int m;
2361 struct algorithm *alg_in, *best_alg;
2362 struct mult_cost best_cost;
2363 struct mult_cost new_limit;
2364 int op_cost, op_latency;
2365 unsigned HOST_WIDE_INT q;
2366 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2367 int hash_index;
2368 bool cache_hit = false;
2369 enum alg_code cache_alg = alg_zero;
2370 bool speed = optimize_insn_for_speed_p ();
2371
2372 /* Indicate that no algorithm is yet found. If no algorithm
2373 is found, this value will be returned and indicate failure. */
2374 alg_out->cost.cost = cost_limit->cost + 1;
2375 alg_out->cost.latency = cost_limit->latency + 1;
2376
2377 if (cost_limit->cost < 0
2378 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2379 return;
2380
2381 /* Restrict the bits of "t" to the multiplication's mode. */
2382 t &= GET_MODE_MASK (mode);
2383
2384 /* t == 1 can be done in zero cost. */
2385 if (t == 1)
2386 {
2387 alg_out->ops = 1;
2388 alg_out->cost.cost = 0;
2389 alg_out->cost.latency = 0;
2390 alg_out->op[0] = alg_m;
2391 return;
2392 }
2393
2394 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2395 fail now. */
2396 if (t == 0)
2397 {
2398 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2399 return;
2400 else
2401 {
2402 alg_out->ops = 1;
2403 alg_out->cost.cost = zero_cost[speed];
2404 alg_out->cost.latency = zero_cost[speed];
2405 alg_out->op[0] = alg_zero;
2406 return;
2407 }
2408 }
2409
2410 /* We'll be needing a couple extra algorithm structures now. */
2411
2412 alg_in = XALLOCA (struct algorithm);
2413 best_alg = XALLOCA (struct algorithm);
2414 best_cost = *cost_limit;
2415
2416 /* Compute the hash index. */
2417 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2418
2419 /* See if we already know what to do for T. */
2420 if (alg_hash[hash_index].t == t
2421 && alg_hash[hash_index].mode == mode
2422 && alg_hash[hash_index].mode == mode
2423 && alg_hash[hash_index].speed == speed
2424 && alg_hash[hash_index].alg != alg_unknown)
2425 {
2426 cache_alg = alg_hash[hash_index].alg;
2427
2428 if (cache_alg == alg_impossible)
2429 {
2430 /* The cache tells us that it's impossible to synthesize
2431 multiplication by T within alg_hash[hash_index].cost. */
2432 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2433 /* COST_LIMIT is at least as restrictive as the one
2434 recorded in the hash table, in which case we have no
2435 hope of synthesizing a multiplication. Just
2436 return. */
2437 return;
2438
2439 /* If we get here, COST_LIMIT is less restrictive than the
2440 one recorded in the hash table, so we may be able to
2441 synthesize a multiplication. Proceed as if we didn't
2442 have the cache entry. */
2443 }
2444 else
2445 {
2446 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2447 /* The cached algorithm shows that this multiplication
2448 requires more cost than COST_LIMIT. Just return. This
2449 way, we don't clobber this cache entry with
2450 alg_impossible but retain useful information. */
2451 return;
2452
2453 cache_hit = true;
2454
2455 switch (cache_alg)
2456 {
2457 case alg_shift:
2458 goto do_alg_shift;
2459
2460 case alg_add_t_m2:
2461 case alg_sub_t_m2:
2462 goto do_alg_addsub_t_m2;
2463
2464 case alg_add_factor:
2465 case alg_sub_factor:
2466 goto do_alg_addsub_factor;
2467
2468 case alg_add_t2_m:
2469 goto do_alg_add_t2_m;
2470
2471 case alg_sub_t2_m:
2472 goto do_alg_sub_t2_m;
2473
2474 default:
2475 gcc_unreachable ();
2476 }
2477 }
2478 }
2479
2480 /* If we have a group of zero bits at the low-order part of T, try
2481 multiplying by the remaining bits and then doing a shift. */
2482
2483 if ((t & 1) == 0)
2484 {
2485 do_alg_shift:
2486 m = floor_log2 (t & -t); /* m = number of low zero bits */
2487 if (m < maxm)
2488 {
2489 q = t >> m;
2490 /* The function expand_shift will choose between a shift and
2491 a sequence of additions, so the observed cost is given as
2492 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2493 op_cost = m * add_cost[speed][mode];
2494 if (shift_cost[speed][mode][m] < op_cost)
2495 op_cost = shift_cost[speed][mode][m];
2496 new_limit.cost = best_cost.cost - op_cost;
2497 new_limit.latency = best_cost.latency - op_cost;
2498 synth_mult (alg_in, q, &new_limit, mode);
2499
2500 alg_in->cost.cost += op_cost;
2501 alg_in->cost.latency += op_cost;
2502 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2503 {
2504 struct algorithm *x;
2505 best_cost = alg_in->cost;
2506 x = alg_in, alg_in = best_alg, best_alg = x;
2507 best_alg->log[best_alg->ops] = m;
2508 best_alg->op[best_alg->ops] = alg_shift;
2509 }
2510 }
2511 if (cache_hit)
2512 goto done;
2513 }
2514
2515 /* If we have an odd number, add or subtract one. */
2516 if ((t & 1) != 0)
2517 {
2518 unsigned HOST_WIDE_INT w;
2519
2520 do_alg_addsub_t_m2:
2521 for (w = 1; (w & t) != 0; w <<= 1)
2522 ;
2523 /* If T was -1, then W will be zero after the loop. This is another
2524 case where T ends with ...111. Handling this with (T + 1) and
2525 subtract 1 produces slightly better code and results in algorithm
2526 selection much faster than treating it like the ...0111 case
2527 below. */
2528 if (w == 0
2529 || (w > 2
2530 /* Reject the case where t is 3.
2531 Thus we prefer addition in that case. */
2532 && t != 3))
2533 {
2534 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2535
2536 op_cost = add_cost[speed][mode];
2537 new_limit.cost = best_cost.cost - op_cost;
2538 new_limit.latency = best_cost.latency - op_cost;
2539 synth_mult (alg_in, t + 1, &new_limit, mode);
2540
2541 alg_in->cost.cost += op_cost;
2542 alg_in->cost.latency += op_cost;
2543 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2544 {
2545 struct algorithm *x;
2546 best_cost = alg_in->cost;
2547 x = alg_in, alg_in = best_alg, best_alg = x;
2548 best_alg->log[best_alg->ops] = 0;
2549 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2550 }
2551 }
2552 else
2553 {
2554 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2555
2556 op_cost = add_cost[speed][mode];
2557 new_limit.cost = best_cost.cost - op_cost;
2558 new_limit.latency = best_cost.latency - op_cost;
2559 synth_mult (alg_in, t - 1, &new_limit, mode);
2560
2561 alg_in->cost.cost += op_cost;
2562 alg_in->cost.latency += op_cost;
2563 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2564 {
2565 struct algorithm *x;
2566 best_cost = alg_in->cost;
2567 x = alg_in, alg_in = best_alg, best_alg = x;
2568 best_alg->log[best_alg->ops] = 0;
2569 best_alg->op[best_alg->ops] = alg_add_t_m2;
2570 }
2571 }
2572 if (cache_hit)
2573 goto done;
2574 }
2575
2576 /* Look for factors of t of the form
2577 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2578 If we find such a factor, we can multiply by t using an algorithm that
2579 multiplies by q, shift the result by m and add/subtract it to itself.
2580
2581 We search for large factors first and loop down, even if large factors
2582 are less probable than small; if we find a large factor we will find a
2583 good sequence quickly, and therefore be able to prune (by decreasing
2584 COST_LIMIT) the search. */
2585
2586 do_alg_addsub_factor:
2587 for (m = floor_log2 (t - 1); m >= 2; m--)
2588 {
2589 unsigned HOST_WIDE_INT d;
2590
2591 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2592 if (t % d == 0 && t > d && m < maxm
2593 && (!cache_hit || cache_alg == alg_add_factor))
2594 {
2595 /* If the target has a cheap shift-and-add instruction use
2596 that in preference to a shift insn followed by an add insn.
2597 Assume that the shift-and-add is "atomic" with a latency
2598 equal to its cost, otherwise assume that on superscalar
2599 hardware the shift may be executed concurrently with the
2600 earlier steps in the algorithm. */
2601 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2602 if (shiftadd_cost[speed][mode][m] < op_cost)
2603 {
2604 op_cost = shiftadd_cost[speed][mode][m];
2605 op_latency = op_cost;
2606 }
2607 else
2608 op_latency = add_cost[speed][mode];
2609
2610 new_limit.cost = best_cost.cost - op_cost;
2611 new_limit.latency = best_cost.latency - op_latency;
2612 synth_mult (alg_in, t / d, &new_limit, mode);
2613
2614 alg_in->cost.cost += op_cost;
2615 alg_in->cost.latency += op_latency;
2616 if (alg_in->cost.latency < op_cost)
2617 alg_in->cost.latency = op_cost;
2618 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2619 {
2620 struct algorithm *x;
2621 best_cost = alg_in->cost;
2622 x = alg_in, alg_in = best_alg, best_alg = x;
2623 best_alg->log[best_alg->ops] = m;
2624 best_alg->op[best_alg->ops] = alg_add_factor;
2625 }
2626 /* Other factors will have been taken care of in the recursion. */
2627 break;
2628 }
2629
2630 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2631 if (t % d == 0 && t > d && m < maxm
2632 && (!cache_hit || cache_alg == alg_sub_factor))
2633 {
2634 /* If the target has a cheap shift-and-subtract insn use
2635 that in preference to a shift insn followed by a sub insn.
2636 Assume that the shift-and-sub is "atomic" with a latency
2637 equal to it's cost, otherwise assume that on superscalar
2638 hardware the shift may be executed concurrently with the
2639 earlier steps in the algorithm. */
2640 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2641 if (shiftsub_cost[speed][mode][m] < op_cost)
2642 {
2643 op_cost = shiftsub_cost[speed][mode][m];
2644 op_latency = op_cost;
2645 }
2646 else
2647 op_latency = add_cost[speed][mode];
2648
2649 new_limit.cost = best_cost.cost - op_cost;
2650 new_limit.latency = best_cost.latency - op_latency;
2651 synth_mult (alg_in, t / d, &new_limit, mode);
2652
2653 alg_in->cost.cost += op_cost;
2654 alg_in->cost.latency += op_latency;
2655 if (alg_in->cost.latency < op_cost)
2656 alg_in->cost.latency = op_cost;
2657 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2658 {
2659 struct algorithm *x;
2660 best_cost = alg_in->cost;
2661 x = alg_in, alg_in = best_alg, best_alg = x;
2662 best_alg->log[best_alg->ops] = m;
2663 best_alg->op[best_alg->ops] = alg_sub_factor;
2664 }
2665 break;
2666 }
2667 }
2668 if (cache_hit)
2669 goto done;
2670
2671 /* Try shift-and-add (load effective address) instructions,
2672 i.e. do a*3, a*5, a*9. */
2673 if ((t & 1) != 0)
2674 {
2675 do_alg_add_t2_m:
2676 q = t - 1;
2677 q = q & -q;
2678 m = exact_log2 (q);
2679 if (m >= 0 && m < maxm)
2680 {
2681 op_cost = shiftadd_cost[speed][mode][m];
2682 new_limit.cost = best_cost.cost - op_cost;
2683 new_limit.latency = best_cost.latency - op_cost;
2684 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2685
2686 alg_in->cost.cost += op_cost;
2687 alg_in->cost.latency += op_cost;
2688 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2689 {
2690 struct algorithm *x;
2691 best_cost = alg_in->cost;
2692 x = alg_in, alg_in = best_alg, best_alg = x;
2693 best_alg->log[best_alg->ops] = m;
2694 best_alg->op[best_alg->ops] = alg_add_t2_m;
2695 }
2696 }
2697 if (cache_hit)
2698 goto done;
2699
2700 do_alg_sub_t2_m:
2701 q = t + 1;
2702 q = q & -q;
2703 m = exact_log2 (q);
2704 if (m >= 0 && m < maxm)
2705 {
2706 op_cost = shiftsub_cost[speed][mode][m];
2707 new_limit.cost = best_cost.cost - op_cost;
2708 new_limit.latency = best_cost.latency - op_cost;
2709 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2710
2711 alg_in->cost.cost += op_cost;
2712 alg_in->cost.latency += op_cost;
2713 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2714 {
2715 struct algorithm *x;
2716 best_cost = alg_in->cost;
2717 x = alg_in, alg_in = best_alg, best_alg = x;
2718 best_alg->log[best_alg->ops] = m;
2719 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2720 }
2721 }
2722 if (cache_hit)
2723 goto done;
2724 }
2725
2726 done:
2727 /* If best_cost has not decreased, we have not found any algorithm. */
2728 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2729 {
2730 /* We failed to find an algorithm. Record alg_impossible for
2731 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2732 we are asked to find an algorithm for T within the same or
2733 lower COST_LIMIT, we can immediately return to the
2734 caller. */
2735 alg_hash[hash_index].t = t;
2736 alg_hash[hash_index].mode = mode;
2737 alg_hash[hash_index].speed = speed;
2738 alg_hash[hash_index].alg = alg_impossible;
2739 alg_hash[hash_index].cost = *cost_limit;
2740 return;
2741 }
2742
2743 /* Cache the result. */
2744 if (!cache_hit)
2745 {
2746 alg_hash[hash_index].t = t;
2747 alg_hash[hash_index].mode = mode;
2748 alg_hash[hash_index].speed = speed;
2749 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2750 alg_hash[hash_index].cost.cost = best_cost.cost;
2751 alg_hash[hash_index].cost.latency = best_cost.latency;
2752 }
2753
2754 /* If we are getting a too long sequence for `struct algorithm'
2755 to record, make this search fail. */
2756 if (best_alg->ops == MAX_BITS_PER_WORD)
2757 return;
2758
2759 /* Copy the algorithm from temporary space to the space at alg_out.
2760 We avoid using structure assignment because the majority of
2761 best_alg is normally undefined, and this is a critical function. */
2762 alg_out->ops = best_alg->ops + 1;
2763 alg_out->cost = best_cost;
2764 memcpy (alg_out->op, best_alg->op,
2765 alg_out->ops * sizeof *alg_out->op);
2766 memcpy (alg_out->log, best_alg->log,
2767 alg_out->ops * sizeof *alg_out->log);
2768 }
2769 \f
2770 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2771 Try three variations:
2772
2773 - a shift/add sequence based on VAL itself
2774 - a shift/add sequence based on -VAL, followed by a negation
2775 - a shift/add sequence based on VAL - 1, followed by an addition.
2776
2777 Return true if the cheapest of these cost less than MULT_COST,
2778 describing the algorithm in *ALG and final fixup in *VARIANT. */
2779
2780 static bool
2781 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2782 struct algorithm *alg, enum mult_variant *variant,
2783 int mult_cost)
2784 {
2785 struct algorithm alg2;
2786 struct mult_cost limit;
2787 int op_cost;
2788 bool speed = optimize_insn_for_speed_p ();
2789
2790 /* Fail quickly for impossible bounds. */
2791 if (mult_cost < 0)
2792 return false;
2793
2794 /* Ensure that mult_cost provides a reasonable upper bound.
2795 Any constant multiplication can be performed with less
2796 than 2 * bits additions. */
2797 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2798 if (mult_cost > op_cost)
2799 mult_cost = op_cost;
2800
2801 *variant = basic_variant;
2802 limit.cost = mult_cost;
2803 limit.latency = mult_cost;
2804 synth_mult (alg, val, &limit, mode);
2805
2806 /* This works only if the inverted value actually fits in an
2807 `unsigned int' */
2808 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2809 {
2810 op_cost = neg_cost[speed][mode];
2811 if (MULT_COST_LESS (&alg->cost, mult_cost))
2812 {
2813 limit.cost = alg->cost.cost - op_cost;
2814 limit.latency = alg->cost.latency - op_cost;
2815 }
2816 else
2817 {
2818 limit.cost = mult_cost - op_cost;
2819 limit.latency = mult_cost - op_cost;
2820 }
2821
2822 synth_mult (&alg2, -val, &limit, mode);
2823 alg2.cost.cost += op_cost;
2824 alg2.cost.latency += op_cost;
2825 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2826 *alg = alg2, *variant = negate_variant;
2827 }
2828
2829 /* This proves very useful for division-by-constant. */
2830 op_cost = add_cost[speed][mode];
2831 if (MULT_COST_LESS (&alg->cost, mult_cost))
2832 {
2833 limit.cost = alg->cost.cost - op_cost;
2834 limit.latency = alg->cost.latency - op_cost;
2835 }
2836 else
2837 {
2838 limit.cost = mult_cost - op_cost;
2839 limit.latency = mult_cost - op_cost;
2840 }
2841
2842 synth_mult (&alg2, val - 1, &limit, mode);
2843 alg2.cost.cost += op_cost;
2844 alg2.cost.latency += op_cost;
2845 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2846 *alg = alg2, *variant = add_variant;
2847
2848 return MULT_COST_LESS (&alg->cost, mult_cost);
2849 }
2850
2851 /* A subroutine of expand_mult, used for constant multiplications.
2852 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2853 convenient. Use the shift/add sequence described by ALG and apply
2854 the final fixup specified by VARIANT. */
2855
2856 static rtx
2857 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2858 rtx target, const struct algorithm *alg,
2859 enum mult_variant variant)
2860 {
2861 HOST_WIDE_INT val_so_far;
2862 rtx insn, accum, tem;
2863 int opno;
2864 enum machine_mode nmode;
2865
2866 /* Avoid referencing memory over and over and invalid sharing
2867 on SUBREGs. */
2868 op0 = force_reg (mode, op0);
2869
2870 /* ACCUM starts out either as OP0 or as a zero, depending on
2871 the first operation. */
2872
2873 if (alg->op[0] == alg_zero)
2874 {
2875 accum = copy_to_mode_reg (mode, const0_rtx);
2876 val_so_far = 0;
2877 }
2878 else if (alg->op[0] == alg_m)
2879 {
2880 accum = copy_to_mode_reg (mode, op0);
2881 val_so_far = 1;
2882 }
2883 else
2884 gcc_unreachable ();
2885
2886 for (opno = 1; opno < alg->ops; opno++)
2887 {
2888 int log = alg->log[opno];
2889 rtx shift_subtarget = optimize ? 0 : accum;
2890 rtx add_target
2891 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2892 && !optimize)
2893 ? target : 0;
2894 rtx accum_target = optimize ? 0 : accum;
2895
2896 switch (alg->op[opno])
2897 {
2898 case alg_shift:
2899 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2900 build_int_cst (NULL_TREE, log),
2901 NULL_RTX, 0);
2902 val_so_far <<= log;
2903 break;
2904
2905 case alg_add_t_m2:
2906 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2907 build_int_cst (NULL_TREE, log),
2908 NULL_RTX, 0);
2909 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2910 add_target ? add_target : accum_target);
2911 val_so_far += (HOST_WIDE_INT) 1 << log;
2912 break;
2913
2914 case alg_sub_t_m2:
2915 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2916 build_int_cst (NULL_TREE, log),
2917 NULL_RTX, 0);
2918 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2919 add_target ? add_target : accum_target);
2920 val_so_far -= (HOST_WIDE_INT) 1 << log;
2921 break;
2922
2923 case alg_add_t2_m:
2924 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2925 build_int_cst (NULL_TREE, log),
2926 shift_subtarget,
2927 0);
2928 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2929 add_target ? add_target : accum_target);
2930 val_so_far = (val_so_far << log) + 1;
2931 break;
2932
2933 case alg_sub_t2_m:
2934 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2935 build_int_cst (NULL_TREE, log),
2936 shift_subtarget, 0);
2937 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2938 add_target ? add_target : accum_target);
2939 val_so_far = (val_so_far << log) - 1;
2940 break;
2941
2942 case alg_add_factor:
2943 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2944 build_int_cst (NULL_TREE, log),
2945 NULL_RTX, 0);
2946 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2947 add_target ? add_target : accum_target);
2948 val_so_far += val_so_far << log;
2949 break;
2950
2951 case alg_sub_factor:
2952 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2953 build_int_cst (NULL_TREE, log),
2954 NULL_RTX, 0);
2955 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2956 (add_target
2957 ? add_target : (optimize ? 0 : tem)));
2958 val_so_far = (val_so_far << log) - val_so_far;
2959 break;
2960
2961 default:
2962 gcc_unreachable ();
2963 }
2964
2965 /* Write a REG_EQUAL note on the last insn so that we can cse
2966 multiplication sequences. Note that if ACCUM is a SUBREG,
2967 we've set the inner register and must properly indicate
2968 that. */
2969
2970 tem = op0, nmode = mode;
2971 if (GET_CODE (accum) == SUBREG)
2972 {
2973 nmode = GET_MODE (SUBREG_REG (accum));
2974 tem = gen_lowpart (nmode, op0);
2975 }
2976
2977 insn = get_last_insn ();
2978 set_unique_reg_note (insn, REG_EQUAL,
2979 gen_rtx_MULT (nmode, tem,
2980 GEN_INT (val_so_far)));
2981 }
2982
2983 if (variant == negate_variant)
2984 {
2985 val_so_far = -val_so_far;
2986 accum = expand_unop (mode, neg_optab, accum, target, 0);
2987 }
2988 else if (variant == add_variant)
2989 {
2990 val_so_far = val_so_far + 1;
2991 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2992 }
2993
2994 /* Compare only the bits of val and val_so_far that are significant
2995 in the result mode, to avoid sign-/zero-extension confusion. */
2996 val &= GET_MODE_MASK (mode);
2997 val_so_far &= GET_MODE_MASK (mode);
2998 gcc_assert (val == val_so_far);
2999
3000 return accum;
3001 }
3002
3003 /* Perform a multiplication and return an rtx for the result.
3004 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3005 TARGET is a suggestion for where to store the result (an rtx).
3006
3007 We check specially for a constant integer as OP1.
3008 If you want this check for OP0 as well, then before calling
3009 you should swap the two operands if OP0 would be constant. */
3010
3011 rtx
3012 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3013 int unsignedp)
3014 {
3015 enum mult_variant variant;
3016 struct algorithm algorithm;
3017 int max_cost;
3018 bool speed = optimize_insn_for_speed_p ();
3019
3020 /* Handling const0_rtx here allows us to use zero as a rogue value for
3021 coeff below. */
3022 if (op1 == const0_rtx)
3023 return const0_rtx;
3024 if (op1 == const1_rtx)
3025 return op0;
3026 if (op1 == constm1_rtx)
3027 return expand_unop (mode,
3028 GET_MODE_CLASS (mode) == MODE_INT
3029 && !unsignedp && flag_trapv
3030 ? negv_optab : neg_optab,
3031 op0, target, 0);
3032
3033 /* These are the operations that are potentially turned into a sequence
3034 of shifts and additions. */
3035 if (SCALAR_INT_MODE_P (mode)
3036 && (unsignedp || !flag_trapv))
3037 {
3038 HOST_WIDE_INT coeff = 0;
3039 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3040
3041 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3042 less than or equal in size to `unsigned int' this doesn't matter.
3043 If the mode is larger than `unsigned int', then synth_mult works
3044 only if the constant value exactly fits in an `unsigned int' without
3045 any truncation. This means that multiplying by negative values does
3046 not work; results are off by 2^32 on a 32 bit machine. */
3047
3048 if (GET_CODE (op1) == CONST_INT)
3049 {
3050 /* Attempt to handle multiplication of DImode values by negative
3051 coefficients, by performing the multiplication by a positive
3052 multiplier and then inverting the result. */
3053 if (INTVAL (op1) < 0
3054 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3055 {
3056 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3057 result is interpreted as an unsigned coefficient.
3058 Exclude cost of op0 from max_cost to match the cost
3059 calculation of the synth_mult. */
3060 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3061 - neg_cost[speed][mode];
3062 if (max_cost > 0
3063 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3064 &variant, max_cost))
3065 {
3066 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3067 NULL_RTX, &algorithm,
3068 variant);
3069 return expand_unop (mode, neg_optab, temp, target, 0);
3070 }
3071 }
3072 else coeff = INTVAL (op1);
3073 }
3074 else if (GET_CODE (op1) == CONST_DOUBLE)
3075 {
3076 /* If we are multiplying in DImode, it may still be a win
3077 to try to work with shifts and adds. */
3078 if (CONST_DOUBLE_HIGH (op1) == 0
3079 && CONST_DOUBLE_LOW (op1) > 0)
3080 coeff = CONST_DOUBLE_LOW (op1);
3081 else if (CONST_DOUBLE_LOW (op1) == 0
3082 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3083 {
3084 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3085 + HOST_BITS_PER_WIDE_INT;
3086 return expand_shift (LSHIFT_EXPR, mode, op0,
3087 build_int_cst (NULL_TREE, shift),
3088 target, unsignedp);
3089 }
3090 }
3091
3092 /* We used to test optimize here, on the grounds that it's better to
3093 produce a smaller program when -O is not used. But this causes
3094 such a terrible slowdown sometimes that it seems better to always
3095 use synth_mult. */
3096 if (coeff != 0)
3097 {
3098 /* Special case powers of two. */
3099 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3100 return expand_shift (LSHIFT_EXPR, mode, op0,
3101 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3102 target, unsignedp);
3103
3104 /* Exclude cost of op0 from max_cost to match the cost
3105 calculation of the synth_mult. */
3106 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3107 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3108 max_cost))
3109 return expand_mult_const (mode, op0, coeff, target,
3110 &algorithm, variant);
3111 }
3112 }
3113
3114 if (GET_CODE (op0) == CONST_DOUBLE)
3115 {
3116 rtx temp = op0;
3117 op0 = op1;
3118 op1 = temp;
3119 }
3120
3121 /* Expand x*2.0 as x+x. */
3122 if (GET_CODE (op1) == CONST_DOUBLE
3123 && SCALAR_FLOAT_MODE_P (mode))
3124 {
3125 REAL_VALUE_TYPE d;
3126 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3127
3128 if (REAL_VALUES_EQUAL (d, dconst2))
3129 {
3130 op0 = force_reg (GET_MODE (op0), op0);
3131 return expand_binop (mode, add_optab, op0, op0,
3132 target, unsignedp, OPTAB_LIB_WIDEN);
3133 }
3134 }
3135
3136 /* This used to use umul_optab if unsigned, but for non-widening multiply
3137 there is no difference between signed and unsigned. */
3138 op0 = expand_binop (mode,
3139 ! unsignedp
3140 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3141 ? smulv_optab : smul_optab,
3142 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3143 gcc_assert (op0);
3144 return op0;
3145 }
3146 \f
3147 /* Return the smallest n such that 2**n >= X. */
3148
3149 int
3150 ceil_log2 (unsigned HOST_WIDE_INT x)
3151 {
3152 return floor_log2 (x - 1) + 1;
3153 }
3154
3155 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3156 replace division by D, and put the least significant N bits of the result
3157 in *MULTIPLIER_PTR and return the most significant bit.
3158
3159 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3160 needed precision is in PRECISION (should be <= N).
3161
3162 PRECISION should be as small as possible so this function can choose
3163 multiplier more freely.
3164
3165 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3166 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3167
3168 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3169 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3170
3171 static
3172 unsigned HOST_WIDE_INT
3173 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3174 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3175 {
3176 HOST_WIDE_INT mhigh_hi, mlow_hi;
3177 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3178 int lgup, post_shift;
3179 int pow, pow2;
3180 unsigned HOST_WIDE_INT nl, dummy1;
3181 HOST_WIDE_INT nh, dummy2;
3182
3183 /* lgup = ceil(log2(divisor)); */
3184 lgup = ceil_log2 (d);
3185
3186 gcc_assert (lgup <= n);
3187
3188 pow = n + lgup;
3189 pow2 = n + lgup - precision;
3190
3191 /* We could handle this with some effort, but this case is much
3192 better handled directly with a scc insn, so rely on caller using
3193 that. */
3194 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3195
3196 /* mlow = 2^(N + lgup)/d */
3197 if (pow >= HOST_BITS_PER_WIDE_INT)
3198 {
3199 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3200 nl = 0;
3201 }
3202 else
3203 {
3204 nh = 0;
3205 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3206 }
3207 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3208 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3209
3210 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3211 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3212 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3213 else
3214 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3215 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3216 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3217
3218 gcc_assert (!mhigh_hi || nh - d < d);
3219 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3220 /* Assert that mlow < mhigh. */
3221 gcc_assert (mlow_hi < mhigh_hi
3222 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3223
3224 /* If precision == N, then mlow, mhigh exceed 2^N
3225 (but they do not exceed 2^(N+1)). */
3226
3227 /* Reduce to lowest terms. */
3228 for (post_shift = lgup; post_shift > 0; post_shift--)
3229 {
3230 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3231 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3232 if (ml_lo >= mh_lo)
3233 break;
3234
3235 mlow_hi = 0;
3236 mlow_lo = ml_lo;
3237 mhigh_hi = 0;
3238 mhigh_lo = mh_lo;
3239 }
3240
3241 *post_shift_ptr = post_shift;
3242 *lgup_ptr = lgup;
3243 if (n < HOST_BITS_PER_WIDE_INT)
3244 {
3245 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3246 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3247 return mhigh_lo >= mask;
3248 }
3249 else
3250 {
3251 *multiplier_ptr = GEN_INT (mhigh_lo);
3252 return mhigh_hi;
3253 }
3254 }
3255
3256 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3257 congruent to 1 (mod 2**N). */
3258
3259 static unsigned HOST_WIDE_INT
3260 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3261 {
3262 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3263
3264 /* The algorithm notes that the choice y = x satisfies
3265 x*y == 1 mod 2^3, since x is assumed odd.
3266 Each iteration doubles the number of bits of significance in y. */
3267
3268 unsigned HOST_WIDE_INT mask;
3269 unsigned HOST_WIDE_INT y = x;
3270 int nbit = 3;
3271
3272 mask = (n == HOST_BITS_PER_WIDE_INT
3273 ? ~(unsigned HOST_WIDE_INT) 0
3274 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3275
3276 while (nbit < n)
3277 {
3278 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3279 nbit *= 2;
3280 }
3281 return y;
3282 }
3283
3284 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3285 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3286 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3287 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3288 become signed.
3289
3290 The result is put in TARGET if that is convenient.
3291
3292 MODE is the mode of operation. */
3293
3294 rtx
3295 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3296 rtx op1, rtx target, int unsignedp)
3297 {
3298 rtx tem;
3299 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3300
3301 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3302 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3303 NULL_RTX, 0);
3304 tem = expand_and (mode, tem, op1, NULL_RTX);
3305 adj_operand
3306 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3307 adj_operand);
3308
3309 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3310 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3311 NULL_RTX, 0);
3312 tem = expand_and (mode, tem, op0, NULL_RTX);
3313 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3314 target);
3315
3316 return target;
3317 }
3318
3319 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3320
3321 static rtx
3322 extract_high_half (enum machine_mode mode, rtx op)
3323 {
3324 enum machine_mode wider_mode;
3325
3326 if (mode == word_mode)
3327 return gen_highpart (mode, op);
3328
3329 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3330
3331 wider_mode = GET_MODE_WIDER_MODE (mode);
3332 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3333 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3334 return convert_modes (mode, wider_mode, op, 0);
3335 }
3336
3337 /* Like expand_mult_highpart, but only consider using a multiplication
3338 optab. OP1 is an rtx for the constant operand. */
3339
3340 static rtx
3341 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3342 rtx target, int unsignedp, int max_cost)
3343 {
3344 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3345 enum machine_mode wider_mode;
3346 optab moptab;
3347 rtx tem;
3348 int size;
3349 bool speed = optimize_insn_for_speed_p ();
3350
3351 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3352
3353 wider_mode = GET_MODE_WIDER_MODE (mode);
3354 size = GET_MODE_BITSIZE (mode);
3355
3356 /* Firstly, try using a multiplication insn that only generates the needed
3357 high part of the product, and in the sign flavor of unsignedp. */
3358 if (mul_highpart_cost[speed][mode] < max_cost)
3359 {
3360 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3361 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3362 unsignedp, OPTAB_DIRECT);
3363 if (tem)
3364 return tem;
3365 }
3366
3367 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3368 Need to adjust the result after the multiplication. */
3369 if (size - 1 < BITS_PER_WORD
3370 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3371 + 4 * add_cost[speed][mode] < max_cost))
3372 {
3373 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3374 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3375 unsignedp, OPTAB_DIRECT);
3376 if (tem)
3377 /* We used the wrong signedness. Adjust the result. */
3378 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3379 tem, unsignedp);
3380 }
3381
3382 /* Try widening multiplication. */
3383 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3384 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3385 && mul_widen_cost[speed][wider_mode] < max_cost)
3386 {
3387 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3388 unsignedp, OPTAB_WIDEN);
3389 if (tem)
3390 return extract_high_half (mode, tem);
3391 }
3392
3393 /* Try widening the mode and perform a non-widening multiplication. */
3394 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3395 && size - 1 < BITS_PER_WORD
3396 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3397 {
3398 rtx insns, wop0, wop1;
3399
3400 /* We need to widen the operands, for example to ensure the
3401 constant multiplier is correctly sign or zero extended.
3402 Use a sequence to clean-up any instructions emitted by
3403 the conversions if things don't work out. */
3404 start_sequence ();
3405 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3406 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3407 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3408 unsignedp, OPTAB_WIDEN);
3409 insns = get_insns ();
3410 end_sequence ();
3411
3412 if (tem)
3413 {
3414 emit_insn (insns);
3415 return extract_high_half (mode, tem);
3416 }
3417 }
3418
3419 /* Try widening multiplication of opposite signedness, and adjust. */
3420 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3421 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3422 && size - 1 < BITS_PER_WORD
3423 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3424 + 4 * add_cost[speed][mode] < max_cost))
3425 {
3426 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3427 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3428 if (tem != 0)
3429 {
3430 tem = extract_high_half (mode, tem);
3431 /* We used the wrong signedness. Adjust the result. */
3432 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3433 target, unsignedp);
3434 }
3435 }
3436
3437 return 0;
3438 }
3439
3440 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3441 putting the high half of the result in TARGET if that is convenient,
3442 and return where the result is. If the operation can not be performed,
3443 0 is returned.
3444
3445 MODE is the mode of operation and result.
3446
3447 UNSIGNEDP nonzero means unsigned multiply.
3448
3449 MAX_COST is the total allowed cost for the expanded RTL. */
3450
3451 static rtx
3452 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3453 rtx target, int unsignedp, int max_cost)
3454 {
3455 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3456 unsigned HOST_WIDE_INT cnst1;
3457 int extra_cost;
3458 bool sign_adjust = false;
3459 enum mult_variant variant;
3460 struct algorithm alg;
3461 rtx tem;
3462 bool speed = optimize_insn_for_speed_p ();
3463
3464 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3465 /* We can't support modes wider than HOST_BITS_PER_INT. */
3466 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3467
3468 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3469
3470 /* We can't optimize modes wider than BITS_PER_WORD.
3471 ??? We might be able to perform double-word arithmetic if
3472 mode == word_mode, however all the cost calculations in
3473 synth_mult etc. assume single-word operations. */
3474 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3475 return expand_mult_highpart_optab (mode, op0, op1, target,
3476 unsignedp, max_cost);
3477
3478 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3479
3480 /* Check whether we try to multiply by a negative constant. */
3481 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3482 {
3483 sign_adjust = true;
3484 extra_cost += add_cost[speed][mode];
3485 }
3486
3487 /* See whether shift/add multiplication is cheap enough. */
3488 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3489 max_cost - extra_cost))
3490 {
3491 /* See whether the specialized multiplication optabs are
3492 cheaper than the shift/add version. */
3493 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3494 alg.cost.cost + extra_cost);
3495 if (tem)
3496 return tem;
3497
3498 tem = convert_to_mode (wider_mode, op0, unsignedp);
3499 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3500 tem = extract_high_half (mode, tem);
3501
3502 /* Adjust result for signedness. */
3503 if (sign_adjust)
3504 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3505
3506 return tem;
3507 }
3508 return expand_mult_highpart_optab (mode, op0, op1, target,
3509 unsignedp, max_cost);
3510 }
3511
3512
3513 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3514
3515 static rtx
3516 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3517 {
3518 unsigned HOST_WIDE_INT masklow, maskhigh;
3519 rtx result, temp, shift, label;
3520 int logd;
3521
3522 logd = floor_log2 (d);
3523 result = gen_reg_rtx (mode);
3524
3525 /* Avoid conditional branches when they're expensive. */
3526 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3527 && optimize_insn_for_speed_p ())
3528 {
3529 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3530 mode, 0, -1);
3531 if (signmask)
3532 {
3533 signmask = force_reg (mode, signmask);
3534 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3535 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3536
3537 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3538 which instruction sequence to use. If logical right shifts
3539 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3540 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3541
3542 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3543 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3544 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3545 {
3546 temp = expand_binop (mode, xor_optab, op0, signmask,
3547 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3548 temp = expand_binop (mode, sub_optab, temp, signmask,
3549 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3550 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3551 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3552 temp = expand_binop (mode, xor_optab, temp, signmask,
3553 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3554 temp = expand_binop (mode, sub_optab, temp, signmask,
3555 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3556 }
3557 else
3558 {
3559 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3560 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3561 signmask = force_reg (mode, signmask);
3562
3563 temp = expand_binop (mode, add_optab, op0, signmask,
3564 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3565 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3566 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3567 temp = expand_binop (mode, sub_optab, temp, signmask,
3568 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3569 }
3570 return temp;
3571 }
3572 }
3573
3574 /* Mask contains the mode's signbit and the significant bits of the
3575 modulus. By including the signbit in the operation, many targets
3576 can avoid an explicit compare operation in the following comparison
3577 against zero. */
3578
3579 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3580 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3581 {
3582 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3583 maskhigh = -1;
3584 }
3585 else
3586 maskhigh = (HOST_WIDE_INT) -1
3587 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3588
3589 temp = expand_binop (mode, and_optab, op0,
3590 immed_double_const (masklow, maskhigh, mode),
3591 result, 1, OPTAB_LIB_WIDEN);
3592 if (temp != result)
3593 emit_move_insn (result, temp);
3594
3595 label = gen_label_rtx ();
3596 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3597
3598 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3599 0, OPTAB_LIB_WIDEN);
3600 masklow = (HOST_WIDE_INT) -1 << logd;
3601 maskhigh = -1;
3602 temp = expand_binop (mode, ior_optab, temp,
3603 immed_double_const (masklow, maskhigh, mode),
3604 result, 1, OPTAB_LIB_WIDEN);
3605 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3606 0, OPTAB_LIB_WIDEN);
3607 if (temp != result)
3608 emit_move_insn (result, temp);
3609 emit_label (label);
3610 return result;
3611 }
3612
3613 /* Expand signed division of OP0 by a power of two D in mode MODE.
3614 This routine is only called for positive values of D. */
3615
3616 static rtx
3617 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3618 {
3619 rtx temp, label;
3620 tree shift;
3621 int logd;
3622
3623 logd = floor_log2 (d);
3624 shift = build_int_cst (NULL_TREE, logd);
3625
3626 if (d == 2
3627 && BRANCH_COST (optimize_insn_for_speed_p (),
3628 false) >= 1)
3629 {
3630 temp = gen_reg_rtx (mode);
3631 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3632 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3633 0, OPTAB_LIB_WIDEN);
3634 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3635 }
3636
3637 #ifdef HAVE_conditional_move
3638 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3639 >= 2)
3640 {
3641 rtx temp2;
3642
3643 /* ??? emit_conditional_move forces a stack adjustment via
3644 compare_from_rtx so, if the sequence is discarded, it will
3645 be lost. Do it now instead. */
3646 do_pending_stack_adjust ();
3647
3648 start_sequence ();
3649 temp2 = copy_to_mode_reg (mode, op0);
3650 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3651 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3652 temp = force_reg (mode, temp);
3653
3654 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3655 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3656 mode, temp, temp2, mode, 0);
3657 if (temp2)
3658 {
3659 rtx seq = get_insns ();
3660 end_sequence ();
3661 emit_insn (seq);
3662 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3663 }
3664 end_sequence ();
3665 }
3666 #endif
3667
3668 if (BRANCH_COST (optimize_insn_for_speed_p (),
3669 false) >= 2)
3670 {
3671 int ushift = GET_MODE_BITSIZE (mode) - logd;
3672
3673 temp = gen_reg_rtx (mode);
3674 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3675 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3676 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3677 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3678 else
3679 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3680 build_int_cst (NULL_TREE, ushift),
3681 NULL_RTX, 1);
3682 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3683 0, OPTAB_LIB_WIDEN);
3684 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3685 }
3686
3687 label = gen_label_rtx ();
3688 temp = copy_to_mode_reg (mode, op0);
3689 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3690 expand_inc (temp, GEN_INT (d - 1));
3691 emit_label (label);
3692 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3693 }
3694 \f
3695 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3696 if that is convenient, and returning where the result is.
3697 You may request either the quotient or the remainder as the result;
3698 specify REM_FLAG nonzero to get the remainder.
3699
3700 CODE is the expression code for which kind of division this is;
3701 it controls how rounding is done. MODE is the machine mode to use.
3702 UNSIGNEDP nonzero means do unsigned division. */
3703
3704 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3705 and then correct it by or'ing in missing high bits
3706 if result of ANDI is nonzero.
3707 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3708 This could optimize to a bfexts instruction.
3709 But C doesn't use these operations, so their optimizations are
3710 left for later. */
3711 /* ??? For modulo, we don't actually need the highpart of the first product,
3712 the low part will do nicely. And for small divisors, the second multiply
3713 can also be a low-part only multiply or even be completely left out.
3714 E.g. to calculate the remainder of a division by 3 with a 32 bit
3715 multiply, multiply with 0x55555556 and extract the upper two bits;
3716 the result is exact for inputs up to 0x1fffffff.
3717 The input range can be reduced by using cross-sum rules.
3718 For odd divisors >= 3, the following table gives right shift counts
3719 so that if a number is shifted by an integer multiple of the given
3720 amount, the remainder stays the same:
3721 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3722 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3723 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3724 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3725 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3726
3727 Cross-sum rules for even numbers can be derived by leaving as many bits
3728 to the right alone as the divisor has zeros to the right.
3729 E.g. if x is an unsigned 32 bit number:
3730 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3731 */
3732
3733 rtx
3734 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3735 rtx op0, rtx op1, rtx target, int unsignedp)
3736 {
3737 enum machine_mode compute_mode;
3738 rtx tquotient;
3739 rtx quotient = 0, remainder = 0;
3740 rtx last;
3741 int size;
3742 rtx insn, set;
3743 optab optab1, optab2;
3744 int op1_is_constant, op1_is_pow2 = 0;
3745 int max_cost, extra_cost;
3746 static HOST_WIDE_INT last_div_const = 0;
3747 static HOST_WIDE_INT ext_op1;
3748 bool speed = optimize_insn_for_speed_p ();
3749
3750 op1_is_constant = GET_CODE (op1) == CONST_INT;
3751 if (op1_is_constant)
3752 {
3753 ext_op1 = INTVAL (op1);
3754 if (unsignedp)
3755 ext_op1 &= GET_MODE_MASK (mode);
3756 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3757 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3758 }
3759
3760 /*
3761 This is the structure of expand_divmod:
3762
3763 First comes code to fix up the operands so we can perform the operations
3764 correctly and efficiently.
3765
3766 Second comes a switch statement with code specific for each rounding mode.
3767 For some special operands this code emits all RTL for the desired
3768 operation, for other cases, it generates only a quotient and stores it in
3769 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3770 to indicate that it has not done anything.
3771
3772 Last comes code that finishes the operation. If QUOTIENT is set and
3773 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3774 QUOTIENT is not set, it is computed using trunc rounding.
3775
3776 We try to generate special code for division and remainder when OP1 is a
3777 constant. If |OP1| = 2**n we can use shifts and some other fast
3778 operations. For other values of OP1, we compute a carefully selected
3779 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3780 by m.
3781
3782 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3783 half of the product. Different strategies for generating the product are
3784 implemented in expand_mult_highpart.
3785
3786 If what we actually want is the remainder, we generate that by another
3787 by-constant multiplication and a subtraction. */
3788
3789 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3790 code below will malfunction if we are, so check here and handle
3791 the special case if so. */
3792 if (op1 == const1_rtx)
3793 return rem_flag ? const0_rtx : op0;
3794
3795 /* When dividing by -1, we could get an overflow.
3796 negv_optab can handle overflows. */
3797 if (! unsignedp && op1 == constm1_rtx)
3798 {
3799 if (rem_flag)
3800 return const0_rtx;
3801 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3802 ? negv_optab : neg_optab, op0, target, 0);
3803 }
3804
3805 if (target
3806 /* Don't use the function value register as a target
3807 since we have to read it as well as write it,
3808 and function-inlining gets confused by this. */
3809 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3810 /* Don't clobber an operand while doing a multi-step calculation. */
3811 || ((rem_flag || op1_is_constant)
3812 && (reg_mentioned_p (target, op0)
3813 || (MEM_P (op0) && MEM_P (target))))
3814 || reg_mentioned_p (target, op1)
3815 || (MEM_P (op1) && MEM_P (target))))
3816 target = 0;
3817
3818 /* Get the mode in which to perform this computation. Normally it will
3819 be MODE, but sometimes we can't do the desired operation in MODE.
3820 If so, pick a wider mode in which we can do the operation. Convert
3821 to that mode at the start to avoid repeated conversions.
3822
3823 First see what operations we need. These depend on the expression
3824 we are evaluating. (We assume that divxx3 insns exist under the
3825 same conditions that modxx3 insns and that these insns don't normally
3826 fail. If these assumptions are not correct, we may generate less
3827 efficient code in some cases.)
3828
3829 Then see if we find a mode in which we can open-code that operation
3830 (either a division, modulus, or shift). Finally, check for the smallest
3831 mode for which we can do the operation with a library call. */
3832
3833 /* We might want to refine this now that we have division-by-constant
3834 optimization. Since expand_mult_highpart tries so many variants, it is
3835 not straightforward to generalize this. Maybe we should make an array
3836 of possible modes in init_expmed? Save this for GCC 2.7. */
3837
3838 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3839 ? (unsignedp ? lshr_optab : ashr_optab)
3840 : (unsignedp ? udiv_optab : sdiv_optab));
3841 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3842 ? optab1
3843 : (unsignedp ? udivmod_optab : sdivmod_optab));
3844
3845 for (compute_mode = mode; compute_mode != VOIDmode;
3846 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3847 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3848 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3849 break;
3850
3851 if (compute_mode == VOIDmode)
3852 for (compute_mode = mode; compute_mode != VOIDmode;
3853 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3854 if (optab_libfunc (optab1, compute_mode)
3855 || optab_libfunc (optab2, compute_mode))
3856 break;
3857
3858 /* If we still couldn't find a mode, use MODE, but expand_binop will
3859 probably die. */
3860 if (compute_mode == VOIDmode)
3861 compute_mode = mode;
3862
3863 if (target && GET_MODE (target) == compute_mode)
3864 tquotient = target;
3865 else
3866 tquotient = gen_reg_rtx (compute_mode);
3867
3868 size = GET_MODE_BITSIZE (compute_mode);
3869 #if 0
3870 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3871 (mode), and thereby get better code when OP1 is a constant. Do that
3872 later. It will require going over all usages of SIZE below. */
3873 size = GET_MODE_BITSIZE (mode);
3874 #endif
3875
3876 /* Only deduct something for a REM if the last divide done was
3877 for a different constant. Then set the constant of the last
3878 divide. */
3879 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3880 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3881 && INTVAL (op1) == last_div_const))
3882 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3883
3884 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3885
3886 /* Now convert to the best mode to use. */
3887 if (compute_mode != mode)
3888 {
3889 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3890 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3891
3892 /* convert_modes may have placed op1 into a register, so we
3893 must recompute the following. */
3894 op1_is_constant = GET_CODE (op1) == CONST_INT;
3895 op1_is_pow2 = (op1_is_constant
3896 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3897 || (! unsignedp
3898 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3899 }
3900
3901 /* If one of the operands is a volatile MEM, copy it into a register. */
3902
3903 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3904 op0 = force_reg (compute_mode, op0);
3905 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3906 op1 = force_reg (compute_mode, op1);
3907
3908 /* If we need the remainder or if OP1 is constant, we need to
3909 put OP0 in a register in case it has any queued subexpressions. */
3910 if (rem_flag || op1_is_constant)
3911 op0 = force_reg (compute_mode, op0);
3912
3913 last = get_last_insn ();
3914
3915 /* Promote floor rounding to trunc rounding for unsigned operations. */
3916 if (unsignedp)
3917 {
3918 if (code == FLOOR_DIV_EXPR)
3919 code = TRUNC_DIV_EXPR;
3920 if (code == FLOOR_MOD_EXPR)
3921 code = TRUNC_MOD_EXPR;
3922 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3923 code = TRUNC_DIV_EXPR;
3924 }
3925
3926 if (op1 != const0_rtx)
3927 switch (code)
3928 {
3929 case TRUNC_MOD_EXPR:
3930 case TRUNC_DIV_EXPR:
3931 if (op1_is_constant)
3932 {
3933 if (unsignedp)
3934 {
3935 unsigned HOST_WIDE_INT mh;
3936 int pre_shift, post_shift;
3937 int dummy;
3938 rtx ml;
3939 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3940 & GET_MODE_MASK (compute_mode));
3941
3942 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3943 {
3944 pre_shift = floor_log2 (d);
3945 if (rem_flag)
3946 {
3947 remainder
3948 = expand_binop (compute_mode, and_optab, op0,
3949 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3950 remainder, 1,
3951 OPTAB_LIB_WIDEN);
3952 if (remainder)
3953 return gen_lowpart (mode, remainder);
3954 }
3955 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3956 build_int_cst (NULL_TREE,
3957 pre_shift),
3958 tquotient, 1);
3959 }
3960 else if (size <= HOST_BITS_PER_WIDE_INT)
3961 {
3962 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3963 {
3964 /* Most significant bit of divisor is set; emit an scc
3965 insn. */
3966 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3967 compute_mode, 1, 1);
3968 if (quotient == 0)
3969 goto fail1;
3970 }
3971 else
3972 {
3973 /* Find a suitable multiplier and right shift count
3974 instead of multiplying with D. */
3975
3976 mh = choose_multiplier (d, size, size,
3977 &ml, &post_shift, &dummy);
3978
3979 /* If the suggested multiplier is more than SIZE bits,
3980 we can do better for even divisors, using an
3981 initial right shift. */
3982 if (mh != 0 && (d & 1) == 0)
3983 {
3984 pre_shift = floor_log2 (d & -d);
3985 mh = choose_multiplier (d >> pre_shift, size,
3986 size - pre_shift,
3987 &ml, &post_shift, &dummy);
3988 gcc_assert (!mh);
3989 }
3990 else
3991 pre_shift = 0;
3992
3993 if (mh != 0)
3994 {
3995 rtx t1, t2, t3, t4;
3996
3997 if (post_shift - 1 >= BITS_PER_WORD)
3998 goto fail1;
3999
4000 extra_cost
4001 = (shift_cost[speed][compute_mode][post_shift - 1]
4002 + shift_cost[speed][compute_mode][1]
4003 + 2 * add_cost[speed][compute_mode]);
4004 t1 = expand_mult_highpart (compute_mode, op0, ml,
4005 NULL_RTX, 1,
4006 max_cost - extra_cost);
4007 if (t1 == 0)
4008 goto fail1;
4009 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4010 op0, t1),
4011 NULL_RTX);
4012 t3 = expand_shift
4013 (RSHIFT_EXPR, compute_mode, t2,
4014 build_int_cst (NULL_TREE, 1),
4015 NULL_RTX,1);
4016 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4017 t1, t3),
4018 NULL_RTX);
4019 quotient = expand_shift
4020 (RSHIFT_EXPR, compute_mode, t4,
4021 build_int_cst (NULL_TREE, post_shift - 1),
4022 tquotient, 1);
4023 }
4024 else
4025 {
4026 rtx t1, t2;
4027
4028 if (pre_shift >= BITS_PER_WORD
4029 || post_shift >= BITS_PER_WORD)
4030 goto fail1;
4031
4032 t1 = expand_shift
4033 (RSHIFT_EXPR, compute_mode, op0,
4034 build_int_cst (NULL_TREE, pre_shift),
4035 NULL_RTX, 1);
4036 extra_cost
4037 = (shift_cost[speed][compute_mode][pre_shift]
4038 + shift_cost[speed][compute_mode][post_shift]);
4039 t2 = expand_mult_highpart (compute_mode, t1, ml,
4040 NULL_RTX, 1,
4041 max_cost - extra_cost);
4042 if (t2 == 0)
4043 goto fail1;
4044 quotient = expand_shift
4045 (RSHIFT_EXPR, compute_mode, t2,
4046 build_int_cst (NULL_TREE, post_shift),
4047 tquotient, 1);
4048 }
4049 }
4050 }
4051 else /* Too wide mode to use tricky code */
4052 break;
4053
4054 insn = get_last_insn ();
4055 if (insn != last
4056 && (set = single_set (insn)) != 0
4057 && SET_DEST (set) == quotient)
4058 set_unique_reg_note (insn,
4059 REG_EQUAL,
4060 gen_rtx_UDIV (compute_mode, op0, op1));
4061 }
4062 else /* TRUNC_DIV, signed */
4063 {
4064 unsigned HOST_WIDE_INT ml;
4065 int lgup, post_shift;
4066 rtx mlr;
4067 HOST_WIDE_INT d = INTVAL (op1);
4068 unsigned HOST_WIDE_INT abs_d;
4069
4070 /* Since d might be INT_MIN, we have to cast to
4071 unsigned HOST_WIDE_INT before negating to avoid
4072 undefined signed overflow. */
4073 abs_d = (d >= 0
4074 ? (unsigned HOST_WIDE_INT) d
4075 : - (unsigned HOST_WIDE_INT) d);
4076
4077 /* n rem d = n rem -d */
4078 if (rem_flag && d < 0)
4079 {
4080 d = abs_d;
4081 op1 = gen_int_mode (abs_d, compute_mode);
4082 }
4083
4084 if (d == 1)
4085 quotient = op0;
4086 else if (d == -1)
4087 quotient = expand_unop (compute_mode, neg_optab, op0,
4088 tquotient, 0);
4089 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4090 {
4091 /* This case is not handled correctly below. */
4092 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4093 compute_mode, 1, 1);
4094 if (quotient == 0)
4095 goto fail1;
4096 }
4097 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4098 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4099 : sdiv_pow2_cheap[speed][compute_mode])
4100 /* We assume that cheap metric is true if the
4101 optab has an expander for this mode. */
4102 && ((optab_handler ((rem_flag ? smod_optab
4103 : sdiv_optab),
4104 compute_mode)->insn_code
4105 != CODE_FOR_nothing)
4106 || (optab_handler(sdivmod_optab,
4107 compute_mode)
4108 ->insn_code != CODE_FOR_nothing)))
4109 ;
4110 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4111 {
4112 if (rem_flag)
4113 {
4114 remainder = expand_smod_pow2 (compute_mode, op0, d);
4115 if (remainder)
4116 return gen_lowpart (mode, remainder);
4117 }
4118
4119 if (sdiv_pow2_cheap[speed][compute_mode]
4120 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4121 != CODE_FOR_nothing)
4122 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4123 != CODE_FOR_nothing)))
4124 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4125 compute_mode, op0,
4126 gen_int_mode (abs_d,
4127 compute_mode),
4128 NULL_RTX, 0);
4129 else
4130 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4131
4132 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4133 negate the quotient. */
4134 if (d < 0)
4135 {
4136 insn = get_last_insn ();
4137 if (insn != last
4138 && (set = single_set (insn)) != 0
4139 && SET_DEST (set) == quotient
4140 && abs_d < ((unsigned HOST_WIDE_INT) 1
4141 << (HOST_BITS_PER_WIDE_INT - 1)))
4142 set_unique_reg_note (insn,
4143 REG_EQUAL,
4144 gen_rtx_DIV (compute_mode,
4145 op0,
4146 GEN_INT
4147 (trunc_int_for_mode
4148 (abs_d,
4149 compute_mode))));
4150
4151 quotient = expand_unop (compute_mode, neg_optab,
4152 quotient, quotient, 0);
4153 }
4154 }
4155 else if (size <= HOST_BITS_PER_WIDE_INT)
4156 {
4157 choose_multiplier (abs_d, size, size - 1,
4158 &mlr, &post_shift, &lgup);
4159 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4160 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4161 {
4162 rtx t1, t2, t3;
4163
4164 if (post_shift >= BITS_PER_WORD
4165 || size - 1 >= BITS_PER_WORD)
4166 goto fail1;
4167
4168 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4169 + shift_cost[speed][compute_mode][size - 1]
4170 + add_cost[speed][compute_mode]);
4171 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4172 NULL_RTX, 0,
4173 max_cost - extra_cost);
4174 if (t1 == 0)
4175 goto fail1;
4176 t2 = expand_shift
4177 (RSHIFT_EXPR, compute_mode, t1,
4178 build_int_cst (NULL_TREE, post_shift),
4179 NULL_RTX, 0);
4180 t3 = expand_shift
4181 (RSHIFT_EXPR, compute_mode, op0,
4182 build_int_cst (NULL_TREE, size - 1),
4183 NULL_RTX, 0);
4184 if (d < 0)
4185 quotient
4186 = force_operand (gen_rtx_MINUS (compute_mode,
4187 t3, t2),
4188 tquotient);
4189 else
4190 quotient
4191 = force_operand (gen_rtx_MINUS (compute_mode,
4192 t2, t3),
4193 tquotient);
4194 }
4195 else
4196 {
4197 rtx t1, t2, t3, t4;
4198
4199 if (post_shift >= BITS_PER_WORD
4200 || size - 1 >= BITS_PER_WORD)
4201 goto fail1;
4202
4203 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4204 mlr = gen_int_mode (ml, compute_mode);
4205 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4206 + shift_cost[speed][compute_mode][size - 1]
4207 + 2 * add_cost[speed][compute_mode]);
4208 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4209 NULL_RTX, 0,
4210 max_cost - extra_cost);
4211 if (t1 == 0)
4212 goto fail1;
4213 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4214 t1, op0),
4215 NULL_RTX);
4216 t3 = expand_shift
4217 (RSHIFT_EXPR, compute_mode, t2,
4218 build_int_cst (NULL_TREE, post_shift),
4219 NULL_RTX, 0);
4220 t4 = expand_shift
4221 (RSHIFT_EXPR, compute_mode, op0,
4222 build_int_cst (NULL_TREE, size - 1),
4223 NULL_RTX, 0);
4224 if (d < 0)
4225 quotient
4226 = force_operand (gen_rtx_MINUS (compute_mode,
4227 t4, t3),
4228 tquotient);
4229 else
4230 quotient
4231 = force_operand (gen_rtx_MINUS (compute_mode,
4232 t3, t4),
4233 tquotient);
4234 }
4235 }
4236 else /* Too wide mode to use tricky code */
4237 break;
4238
4239 insn = get_last_insn ();
4240 if (insn != last
4241 && (set = single_set (insn)) != 0
4242 && SET_DEST (set) == quotient)
4243 set_unique_reg_note (insn,
4244 REG_EQUAL,
4245 gen_rtx_DIV (compute_mode, op0, op1));
4246 }
4247 break;
4248 }
4249 fail1:
4250 delete_insns_since (last);
4251 break;
4252
4253 case FLOOR_DIV_EXPR:
4254 case FLOOR_MOD_EXPR:
4255 /* We will come here only for signed operations. */
4256 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4257 {
4258 unsigned HOST_WIDE_INT mh;
4259 int pre_shift, lgup, post_shift;
4260 HOST_WIDE_INT d = INTVAL (op1);
4261 rtx ml;
4262
4263 if (d > 0)
4264 {
4265 /* We could just as easily deal with negative constants here,
4266 but it does not seem worth the trouble for GCC 2.6. */
4267 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4268 {
4269 pre_shift = floor_log2 (d);
4270 if (rem_flag)
4271 {
4272 remainder = expand_binop (compute_mode, and_optab, op0,
4273 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4274 remainder, 0, OPTAB_LIB_WIDEN);
4275 if (remainder)
4276 return gen_lowpart (mode, remainder);
4277 }
4278 quotient = expand_shift
4279 (RSHIFT_EXPR, compute_mode, op0,
4280 build_int_cst (NULL_TREE, pre_shift),
4281 tquotient, 0);
4282 }
4283 else
4284 {
4285 rtx t1, t2, t3, t4;
4286
4287 mh = choose_multiplier (d, size, size - 1,
4288 &ml, &post_shift, &lgup);
4289 gcc_assert (!mh);
4290
4291 if (post_shift < BITS_PER_WORD
4292 && size - 1 < BITS_PER_WORD)
4293 {
4294 t1 = expand_shift
4295 (RSHIFT_EXPR, compute_mode, op0,
4296 build_int_cst (NULL_TREE, size - 1),
4297 NULL_RTX, 0);
4298 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4299 NULL_RTX, 0, OPTAB_WIDEN);
4300 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4301 + shift_cost[speed][compute_mode][size - 1]
4302 + 2 * add_cost[speed][compute_mode]);
4303 t3 = expand_mult_highpart (compute_mode, t2, ml,
4304 NULL_RTX, 1,
4305 max_cost - extra_cost);
4306 if (t3 != 0)
4307 {
4308 t4 = expand_shift
4309 (RSHIFT_EXPR, compute_mode, t3,
4310 build_int_cst (NULL_TREE, post_shift),
4311 NULL_RTX, 1);
4312 quotient = expand_binop (compute_mode, xor_optab,
4313 t4, t1, tquotient, 0,
4314 OPTAB_WIDEN);
4315 }
4316 }
4317 }
4318 }
4319 else
4320 {
4321 rtx nsign, t1, t2, t3, t4;
4322 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4323 op0, constm1_rtx), NULL_RTX);
4324 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4325 0, OPTAB_WIDEN);
4326 nsign = expand_shift
4327 (RSHIFT_EXPR, compute_mode, t2,
4328 build_int_cst (NULL_TREE, size - 1),
4329 NULL_RTX, 0);
4330 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4331 NULL_RTX);
4332 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4333 NULL_RTX, 0);
4334 if (t4)
4335 {
4336 rtx t5;
4337 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4338 NULL_RTX, 0);
4339 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4340 t4, t5),
4341 tquotient);
4342 }
4343 }
4344 }
4345
4346 if (quotient != 0)
4347 break;
4348 delete_insns_since (last);
4349
4350 /* Try using an instruction that produces both the quotient and
4351 remainder, using truncation. We can easily compensate the quotient
4352 or remainder to get floor rounding, once we have the remainder.
4353 Notice that we compute also the final remainder value here,
4354 and return the result right away. */
4355 if (target == 0 || GET_MODE (target) != compute_mode)
4356 target = gen_reg_rtx (compute_mode);
4357
4358 if (rem_flag)
4359 {
4360 remainder
4361 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4362 quotient = gen_reg_rtx (compute_mode);
4363 }
4364 else
4365 {
4366 quotient
4367 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4368 remainder = gen_reg_rtx (compute_mode);
4369 }
4370
4371 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4372 quotient, remainder, 0))
4373 {
4374 /* This could be computed with a branch-less sequence.
4375 Save that for later. */
4376 rtx tem;
4377 rtx label = gen_label_rtx ();
4378 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4379 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4380 NULL_RTX, 0, OPTAB_WIDEN);
4381 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4382 expand_dec (quotient, const1_rtx);
4383 expand_inc (remainder, op1);
4384 emit_label (label);
4385 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4386 }
4387
4388 /* No luck with division elimination or divmod. Have to do it
4389 by conditionally adjusting op0 *and* the result. */
4390 {
4391 rtx label1, label2, label3, label4, label5;
4392 rtx adjusted_op0;
4393 rtx tem;
4394
4395 quotient = gen_reg_rtx (compute_mode);
4396 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4397 label1 = gen_label_rtx ();
4398 label2 = gen_label_rtx ();
4399 label3 = gen_label_rtx ();
4400 label4 = gen_label_rtx ();
4401 label5 = gen_label_rtx ();
4402 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4403 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4404 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4405 quotient, 0, OPTAB_LIB_WIDEN);
4406 if (tem != quotient)
4407 emit_move_insn (quotient, tem);
4408 emit_jump_insn (gen_jump (label5));
4409 emit_barrier ();
4410 emit_label (label1);
4411 expand_inc (adjusted_op0, const1_rtx);
4412 emit_jump_insn (gen_jump (label4));
4413 emit_barrier ();
4414 emit_label (label2);
4415 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4416 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4417 quotient, 0, OPTAB_LIB_WIDEN);
4418 if (tem != quotient)
4419 emit_move_insn (quotient, tem);
4420 emit_jump_insn (gen_jump (label5));
4421 emit_barrier ();
4422 emit_label (label3);
4423 expand_dec (adjusted_op0, const1_rtx);
4424 emit_label (label4);
4425 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4426 quotient, 0, OPTAB_LIB_WIDEN);
4427 if (tem != quotient)
4428 emit_move_insn (quotient, tem);
4429 expand_dec (quotient, const1_rtx);
4430 emit_label (label5);
4431 }
4432 break;
4433
4434 case CEIL_DIV_EXPR:
4435 case CEIL_MOD_EXPR:
4436 if (unsignedp)
4437 {
4438 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4439 {
4440 rtx t1, t2, t3;
4441 unsigned HOST_WIDE_INT d = INTVAL (op1);
4442 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4443 build_int_cst (NULL_TREE, floor_log2 (d)),
4444 tquotient, 1);
4445 t2 = expand_binop (compute_mode, and_optab, op0,
4446 GEN_INT (d - 1),
4447 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4448 t3 = gen_reg_rtx (compute_mode);
4449 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4450 compute_mode, 1, 1);
4451 if (t3 == 0)
4452 {
4453 rtx lab;
4454 lab = gen_label_rtx ();
4455 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4456 expand_inc (t1, const1_rtx);
4457 emit_label (lab);
4458 quotient = t1;
4459 }
4460 else
4461 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4462 t1, t3),
4463 tquotient);
4464 break;
4465 }
4466
4467 /* Try using an instruction that produces both the quotient and
4468 remainder, using truncation. We can easily compensate the
4469 quotient or remainder to get ceiling rounding, once we have the
4470 remainder. Notice that we compute also the final remainder
4471 value here, and return the result right away. */
4472 if (target == 0 || GET_MODE (target) != compute_mode)
4473 target = gen_reg_rtx (compute_mode);
4474
4475 if (rem_flag)
4476 {
4477 remainder = (REG_P (target)
4478 ? target : gen_reg_rtx (compute_mode));
4479 quotient = gen_reg_rtx (compute_mode);
4480 }
4481 else
4482 {
4483 quotient = (REG_P (target)
4484 ? target : gen_reg_rtx (compute_mode));
4485 remainder = gen_reg_rtx (compute_mode);
4486 }
4487
4488 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4489 remainder, 1))
4490 {
4491 /* This could be computed with a branch-less sequence.
4492 Save that for later. */
4493 rtx label = gen_label_rtx ();
4494 do_cmp_and_jump (remainder, const0_rtx, EQ,
4495 compute_mode, label);
4496 expand_inc (quotient, const1_rtx);
4497 expand_dec (remainder, op1);
4498 emit_label (label);
4499 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4500 }
4501
4502 /* No luck with division elimination or divmod. Have to do it
4503 by conditionally adjusting op0 *and* the result. */
4504 {
4505 rtx label1, label2;
4506 rtx adjusted_op0, tem;
4507
4508 quotient = gen_reg_rtx (compute_mode);
4509 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4510 label1 = gen_label_rtx ();
4511 label2 = gen_label_rtx ();
4512 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4513 compute_mode, label1);
4514 emit_move_insn (quotient, const0_rtx);
4515 emit_jump_insn (gen_jump (label2));
4516 emit_barrier ();
4517 emit_label (label1);
4518 expand_dec (adjusted_op0, const1_rtx);
4519 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4520 quotient, 1, OPTAB_LIB_WIDEN);
4521 if (tem != quotient)
4522 emit_move_insn (quotient, tem);
4523 expand_inc (quotient, const1_rtx);
4524 emit_label (label2);
4525 }
4526 }
4527 else /* signed */
4528 {
4529 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4530 && INTVAL (op1) >= 0)
4531 {
4532 /* This is extremely similar to the code for the unsigned case
4533 above. For 2.7 we should merge these variants, but for
4534 2.6.1 I don't want to touch the code for unsigned since that
4535 get used in C. The signed case will only be used by other
4536 languages (Ada). */
4537
4538 rtx t1, t2, t3;
4539 unsigned HOST_WIDE_INT d = INTVAL (op1);
4540 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4541 build_int_cst (NULL_TREE, floor_log2 (d)),
4542 tquotient, 0);
4543 t2 = expand_binop (compute_mode, and_optab, op0,
4544 GEN_INT (d - 1),
4545 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4546 t3 = gen_reg_rtx (compute_mode);
4547 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4548 compute_mode, 1, 1);
4549 if (t3 == 0)
4550 {
4551 rtx lab;
4552 lab = gen_label_rtx ();
4553 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4554 expand_inc (t1, const1_rtx);
4555 emit_label (lab);
4556 quotient = t1;
4557 }
4558 else
4559 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4560 t1, t3),
4561 tquotient);
4562 break;
4563 }
4564
4565 /* Try using an instruction that produces both the quotient and
4566 remainder, using truncation. We can easily compensate the
4567 quotient or remainder to get ceiling rounding, once we have the
4568 remainder. Notice that we compute also the final remainder
4569 value here, and return the result right away. */
4570 if (target == 0 || GET_MODE (target) != compute_mode)
4571 target = gen_reg_rtx (compute_mode);
4572 if (rem_flag)
4573 {
4574 remainder= (REG_P (target)
4575 ? target : gen_reg_rtx (compute_mode));
4576 quotient = gen_reg_rtx (compute_mode);
4577 }
4578 else
4579 {
4580 quotient = (REG_P (target)
4581 ? target : gen_reg_rtx (compute_mode));
4582 remainder = gen_reg_rtx (compute_mode);
4583 }
4584
4585 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4586 remainder, 0))
4587 {
4588 /* This could be computed with a branch-less sequence.
4589 Save that for later. */
4590 rtx tem;
4591 rtx label = gen_label_rtx ();
4592 do_cmp_and_jump (remainder, const0_rtx, EQ,
4593 compute_mode, label);
4594 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4595 NULL_RTX, 0, OPTAB_WIDEN);
4596 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4597 expand_inc (quotient, const1_rtx);
4598 expand_dec (remainder, op1);
4599 emit_label (label);
4600 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4601 }
4602
4603 /* No luck with division elimination or divmod. Have to do it
4604 by conditionally adjusting op0 *and* the result. */
4605 {
4606 rtx label1, label2, label3, label4, label5;
4607 rtx adjusted_op0;
4608 rtx tem;
4609
4610 quotient = gen_reg_rtx (compute_mode);
4611 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4612 label1 = gen_label_rtx ();
4613 label2 = gen_label_rtx ();
4614 label3 = gen_label_rtx ();
4615 label4 = gen_label_rtx ();
4616 label5 = gen_label_rtx ();
4617 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4618 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4619 compute_mode, label1);
4620 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4621 quotient, 0, OPTAB_LIB_WIDEN);
4622 if (tem != quotient)
4623 emit_move_insn (quotient, tem);
4624 emit_jump_insn (gen_jump (label5));
4625 emit_barrier ();
4626 emit_label (label1);
4627 expand_dec (adjusted_op0, const1_rtx);
4628 emit_jump_insn (gen_jump (label4));
4629 emit_barrier ();
4630 emit_label (label2);
4631 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4632 compute_mode, label3);
4633 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4634 quotient, 0, OPTAB_LIB_WIDEN);
4635 if (tem != quotient)
4636 emit_move_insn (quotient, tem);
4637 emit_jump_insn (gen_jump (label5));
4638 emit_barrier ();
4639 emit_label (label3);
4640 expand_inc (adjusted_op0, const1_rtx);
4641 emit_label (label4);
4642 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4643 quotient, 0, OPTAB_LIB_WIDEN);
4644 if (tem != quotient)
4645 emit_move_insn (quotient, tem);
4646 expand_inc (quotient, const1_rtx);
4647 emit_label (label5);
4648 }
4649 }
4650 break;
4651
4652 case EXACT_DIV_EXPR:
4653 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4654 {
4655 HOST_WIDE_INT d = INTVAL (op1);
4656 unsigned HOST_WIDE_INT ml;
4657 int pre_shift;
4658 rtx t1;
4659
4660 pre_shift = floor_log2 (d & -d);
4661 ml = invert_mod2n (d >> pre_shift, size);
4662 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4663 build_int_cst (NULL_TREE, pre_shift),
4664 NULL_RTX, unsignedp);
4665 quotient = expand_mult (compute_mode, t1,
4666 gen_int_mode (ml, compute_mode),
4667 NULL_RTX, 1);
4668
4669 insn = get_last_insn ();
4670 set_unique_reg_note (insn,
4671 REG_EQUAL,
4672 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4673 compute_mode,
4674 op0, op1));
4675 }
4676 break;
4677
4678 case ROUND_DIV_EXPR:
4679 case ROUND_MOD_EXPR:
4680 if (unsignedp)
4681 {
4682 rtx tem;
4683 rtx label;
4684 label = gen_label_rtx ();
4685 quotient = gen_reg_rtx (compute_mode);
4686 remainder = gen_reg_rtx (compute_mode);
4687 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4688 {
4689 rtx tem;
4690 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4691 quotient, 1, OPTAB_LIB_WIDEN);
4692 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4693 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4694 remainder, 1, OPTAB_LIB_WIDEN);
4695 }
4696 tem = plus_constant (op1, -1);
4697 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4698 build_int_cst (NULL_TREE, 1),
4699 NULL_RTX, 1);
4700 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4701 expand_inc (quotient, const1_rtx);
4702 expand_dec (remainder, op1);
4703 emit_label (label);
4704 }
4705 else
4706 {
4707 rtx abs_rem, abs_op1, tem, mask;
4708 rtx label;
4709 label = gen_label_rtx ();
4710 quotient = gen_reg_rtx (compute_mode);
4711 remainder = gen_reg_rtx (compute_mode);
4712 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4713 {
4714 rtx tem;
4715 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4716 quotient, 0, OPTAB_LIB_WIDEN);
4717 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4718 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4719 remainder, 0, OPTAB_LIB_WIDEN);
4720 }
4721 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4722 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4723 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4724 build_int_cst (NULL_TREE, 1),
4725 NULL_RTX, 1);
4726 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4727 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4728 NULL_RTX, 0, OPTAB_WIDEN);
4729 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4730 build_int_cst (NULL_TREE, size - 1),
4731 NULL_RTX, 0);
4732 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4733 NULL_RTX, 0, OPTAB_WIDEN);
4734 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4735 NULL_RTX, 0, OPTAB_WIDEN);
4736 expand_inc (quotient, tem);
4737 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4738 NULL_RTX, 0, OPTAB_WIDEN);
4739 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4740 NULL_RTX, 0, OPTAB_WIDEN);
4741 expand_dec (remainder, tem);
4742 emit_label (label);
4743 }
4744 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4745
4746 default:
4747 gcc_unreachable ();
4748 }
4749
4750 if (quotient == 0)
4751 {
4752 if (target && GET_MODE (target) != compute_mode)
4753 target = 0;
4754
4755 if (rem_flag)
4756 {
4757 /* Try to produce the remainder without producing the quotient.
4758 If we seem to have a divmod pattern that does not require widening,
4759 don't try widening here. We should really have a WIDEN argument
4760 to expand_twoval_binop, since what we'd really like to do here is
4761 1) try a mod insn in compute_mode
4762 2) try a divmod insn in compute_mode
4763 3) try a div insn in compute_mode and multiply-subtract to get
4764 remainder
4765 4) try the same things with widening allowed. */
4766 remainder
4767 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4768 op0, op1, target,
4769 unsignedp,
4770 ((optab_handler (optab2, compute_mode)->insn_code
4771 != CODE_FOR_nothing)
4772 ? OPTAB_DIRECT : OPTAB_WIDEN));
4773 if (remainder == 0)
4774 {
4775 /* No luck there. Can we do remainder and divide at once
4776 without a library call? */
4777 remainder = gen_reg_rtx (compute_mode);
4778 if (! expand_twoval_binop ((unsignedp
4779 ? udivmod_optab
4780 : sdivmod_optab),
4781 op0, op1,
4782 NULL_RTX, remainder, unsignedp))
4783 remainder = 0;
4784 }
4785
4786 if (remainder)
4787 return gen_lowpart (mode, remainder);
4788 }
4789
4790 /* Produce the quotient. Try a quotient insn, but not a library call.
4791 If we have a divmod in this mode, use it in preference to widening
4792 the div (for this test we assume it will not fail). Note that optab2
4793 is set to the one of the two optabs that the call below will use. */
4794 quotient
4795 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4796 op0, op1, rem_flag ? NULL_RTX : target,
4797 unsignedp,
4798 ((optab_handler (optab2, compute_mode)->insn_code
4799 != CODE_FOR_nothing)
4800 ? OPTAB_DIRECT : OPTAB_WIDEN));
4801
4802 if (quotient == 0)
4803 {
4804 /* No luck there. Try a quotient-and-remainder insn,
4805 keeping the quotient alone. */
4806 quotient = gen_reg_rtx (compute_mode);
4807 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4808 op0, op1,
4809 quotient, NULL_RTX, unsignedp))
4810 {
4811 quotient = 0;
4812 if (! rem_flag)
4813 /* Still no luck. If we are not computing the remainder,
4814 use a library call for the quotient. */
4815 quotient = sign_expand_binop (compute_mode,
4816 udiv_optab, sdiv_optab,
4817 op0, op1, target,
4818 unsignedp, OPTAB_LIB_WIDEN);
4819 }
4820 }
4821 }
4822
4823 if (rem_flag)
4824 {
4825 if (target && GET_MODE (target) != compute_mode)
4826 target = 0;
4827
4828 if (quotient == 0)
4829 {
4830 /* No divide instruction either. Use library for remainder. */
4831 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4832 op0, op1, target,
4833 unsignedp, OPTAB_LIB_WIDEN);
4834 /* No remainder function. Try a quotient-and-remainder
4835 function, keeping the remainder. */
4836 if (!remainder)
4837 {
4838 remainder = gen_reg_rtx (compute_mode);
4839 if (!expand_twoval_binop_libfunc
4840 (unsignedp ? udivmod_optab : sdivmod_optab,
4841 op0, op1,
4842 NULL_RTX, remainder,
4843 unsignedp ? UMOD : MOD))
4844 remainder = NULL_RTX;
4845 }
4846 }
4847 else
4848 {
4849 /* We divided. Now finish doing X - Y * (X / Y). */
4850 remainder = expand_mult (compute_mode, quotient, op1,
4851 NULL_RTX, unsignedp);
4852 remainder = expand_binop (compute_mode, sub_optab, op0,
4853 remainder, target, unsignedp,
4854 OPTAB_LIB_WIDEN);
4855 }
4856 }
4857
4858 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4859 }
4860 \f
4861 /* Return a tree node with data type TYPE, describing the value of X.
4862 Usually this is an VAR_DECL, if there is no obvious better choice.
4863 X may be an expression, however we only support those expressions
4864 generated by loop.c. */
4865
4866 tree
4867 make_tree (tree type, rtx x)
4868 {
4869 tree t;
4870
4871 switch (GET_CODE (x))
4872 {
4873 case CONST_INT:
4874 {
4875 HOST_WIDE_INT hi = 0;
4876
4877 if (INTVAL (x) < 0
4878 && !(TYPE_UNSIGNED (type)
4879 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4880 < HOST_BITS_PER_WIDE_INT)))
4881 hi = -1;
4882
4883 t = build_int_cst_wide (type, INTVAL (x), hi);
4884
4885 return t;
4886 }
4887
4888 case CONST_DOUBLE:
4889 if (GET_MODE (x) == VOIDmode)
4890 t = build_int_cst_wide (type,
4891 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4892 else
4893 {
4894 REAL_VALUE_TYPE d;
4895
4896 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4897 t = build_real (type, d);
4898 }
4899
4900 return t;
4901
4902 case CONST_VECTOR:
4903 {
4904 int units = CONST_VECTOR_NUNITS (x);
4905 tree itype = TREE_TYPE (type);
4906 tree t = NULL_TREE;
4907 int i;
4908
4909
4910 /* Build a tree with vector elements. */
4911 for (i = units - 1; i >= 0; --i)
4912 {
4913 rtx elt = CONST_VECTOR_ELT (x, i);
4914 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4915 }
4916
4917 return build_vector (type, t);
4918 }
4919
4920 case PLUS:
4921 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4922 make_tree (type, XEXP (x, 1)));
4923
4924 case MINUS:
4925 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4926 make_tree (type, XEXP (x, 1)));
4927
4928 case NEG:
4929 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4930
4931 case MULT:
4932 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4933 make_tree (type, XEXP (x, 1)));
4934
4935 case ASHIFT:
4936 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4937 make_tree (type, XEXP (x, 1)));
4938
4939 case LSHIFTRT:
4940 t = unsigned_type_for (type);
4941 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4942 make_tree (t, XEXP (x, 0)),
4943 make_tree (type, XEXP (x, 1))));
4944
4945 case ASHIFTRT:
4946 t = signed_type_for (type);
4947 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4948 make_tree (t, XEXP (x, 0)),
4949 make_tree (type, XEXP (x, 1))));
4950
4951 case DIV:
4952 if (TREE_CODE (type) != REAL_TYPE)
4953 t = signed_type_for (type);
4954 else
4955 t = type;
4956
4957 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4958 make_tree (t, XEXP (x, 0)),
4959 make_tree (t, XEXP (x, 1))));
4960 case UDIV:
4961 t = unsigned_type_for (type);
4962 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4963 make_tree (t, XEXP (x, 0)),
4964 make_tree (t, XEXP (x, 1))));
4965
4966 case SIGN_EXTEND:
4967 case ZERO_EXTEND:
4968 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4969 GET_CODE (x) == ZERO_EXTEND);
4970 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4971
4972 case CONST:
4973 return make_tree (type, XEXP (x, 0));
4974
4975 case SYMBOL_REF:
4976 t = SYMBOL_REF_DECL (x);
4977 if (t)
4978 return fold_convert (type, build_fold_addr_expr (t));
4979 /* else fall through. */
4980
4981 default:
4982 t = build_decl (VAR_DECL, NULL_TREE, type);
4983
4984 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4985 ptr_mode. So convert. */
4986 if (POINTER_TYPE_P (type))
4987 x = convert_memory_address (TYPE_MODE (type), x);
4988
4989 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4990 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4991 t->decl_with_rtl.rtl = x;
4992
4993 return t;
4994 }
4995 }
4996 \f
4997 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4998 and returning TARGET.
4999
5000 If TARGET is 0, a pseudo-register or constant is returned. */
5001
5002 rtx
5003 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5004 {
5005 rtx tem = 0;
5006
5007 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5008 tem = simplify_binary_operation (AND, mode, op0, op1);
5009 if (tem == 0)
5010 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5011
5012 if (target == 0)
5013 target = tem;
5014 else if (tem != target)
5015 emit_move_insn (target, tem);
5016 return target;
5017 }
5018 \f
5019 /* Helper function for emit_store_flag. */
5020 static rtx
5021 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
5022 int normalizep)
5023 {
5024 rtx op0;
5025 enum machine_mode target_mode = GET_MODE (target);
5026
5027 /* If we are converting to a wider mode, first convert to
5028 TARGET_MODE, then normalize. This produces better combining
5029 opportunities on machines that have a SIGN_EXTRACT when we are
5030 testing a single bit. This mostly benefits the 68k.
5031
5032 If STORE_FLAG_VALUE does not have the sign bit set when
5033 interpreted in MODE, we can do this conversion as unsigned, which
5034 is usually more efficient. */
5035 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5036 {
5037 convert_move (target, subtarget,
5038 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5039 && 0 == (STORE_FLAG_VALUE
5040 & ((HOST_WIDE_INT) 1
5041 << (GET_MODE_BITSIZE (mode) -1))));
5042 op0 = target;
5043 mode = target_mode;
5044 }
5045 else
5046 op0 = subtarget;
5047
5048 /* If we want to keep subexpressions around, don't reuse our last
5049 target. */
5050 if (optimize)
5051 subtarget = 0;
5052
5053 /* Now normalize to the proper value in MODE. Sometimes we don't
5054 have to do anything. */
5055 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5056 ;
5057 /* STORE_FLAG_VALUE might be the most negative number, so write
5058 the comparison this way to avoid a compiler-time warning. */
5059 else if (- normalizep == STORE_FLAG_VALUE)
5060 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
5061
5062 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5063 it hard to use a value of just the sign bit due to ANSI integer
5064 constant typing rules. */
5065 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5066 && (STORE_FLAG_VALUE
5067 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5068 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5069 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5070 normalizep == 1);
5071 else
5072 {
5073 gcc_assert (STORE_FLAG_VALUE & 1);
5074
5075 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5076 if (normalizep == -1)
5077 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5078 }
5079
5080 /* If we were converting to a smaller mode, do the conversion now. */
5081 if (target_mode != mode)
5082 {
5083 convert_move (target, op0, 0);
5084 return target;
5085 }
5086 else
5087 return op0;
5088 }
5089
5090 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5091 and storing in TARGET. Normally return TARGET.
5092 Return 0 if that cannot be done.
5093
5094 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5095 it is VOIDmode, they cannot both be CONST_INT.
5096
5097 UNSIGNEDP is for the case where we have to widen the operands
5098 to perform the operation. It says to use zero-extension.
5099
5100 NORMALIZEP is 1 if we should convert the result to be either zero
5101 or one. Normalize is -1 if we should convert the result to be
5102 either zero or -1. If NORMALIZEP is zero, the result will be left
5103 "raw" out of the scc insn. */
5104
5105 rtx
5106 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5107 enum machine_mode mode, int unsignedp, int normalizep)
5108 {
5109 rtx subtarget;
5110 enum insn_code icode;
5111 enum machine_mode compare_mode;
5112 enum machine_mode target_mode = GET_MODE (target);
5113 rtx tem;
5114 rtx last = get_last_insn ();
5115 rtx pattern, comparison;
5116
5117 if (unsignedp)
5118 code = unsigned_condition (code);
5119
5120 /* If one operand is constant, make it the second one. Only do this
5121 if the other operand is not constant as well. */
5122
5123 if (swap_commutative_operands_p (op0, op1))
5124 {
5125 tem = op0;
5126 op0 = op1;
5127 op1 = tem;
5128 code = swap_condition (code);
5129 }
5130
5131 if (mode == VOIDmode)
5132 mode = GET_MODE (op0);
5133
5134 /* For some comparisons with 1 and -1, we can convert this to
5135 comparisons with zero. This will often produce more opportunities for
5136 store-flag insns. */
5137
5138 switch (code)
5139 {
5140 case LT:
5141 if (op1 == const1_rtx)
5142 op1 = const0_rtx, code = LE;
5143 break;
5144 case LE:
5145 if (op1 == constm1_rtx)
5146 op1 = const0_rtx, code = LT;
5147 break;
5148 case GE:
5149 if (op1 == const1_rtx)
5150 op1 = const0_rtx, code = GT;
5151 break;
5152 case GT:
5153 if (op1 == constm1_rtx)
5154 op1 = const0_rtx, code = GE;
5155 break;
5156 case GEU:
5157 if (op1 == const1_rtx)
5158 op1 = const0_rtx, code = NE;
5159 break;
5160 case LTU:
5161 if (op1 == const1_rtx)
5162 op1 = const0_rtx, code = EQ;
5163 break;
5164 default:
5165 break;
5166 }
5167
5168 /* If we are comparing a double-word integer with zero or -1, we can
5169 convert the comparison into one involving a single word. */
5170 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5171 && GET_MODE_CLASS (mode) == MODE_INT
5172 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5173 {
5174 if ((code == EQ || code == NE)
5175 && (op1 == const0_rtx || op1 == constm1_rtx))
5176 {
5177 rtx op00, op01, op0both;
5178
5179 /* Do a logical OR or AND of the two words and compare the
5180 result. */
5181 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5182 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5183 op0both = expand_binop (word_mode,
5184 op1 == const0_rtx ? ior_optab : and_optab,
5185 op00, op01, NULL_RTX, unsignedp,
5186 OPTAB_DIRECT);
5187
5188 if (op0both != 0)
5189 return emit_store_flag (target, code, op0both, op1, word_mode,
5190 unsignedp, normalizep);
5191 }
5192 else if ((code == LT || code == GE) && op1 == const0_rtx)
5193 {
5194 rtx op0h;
5195
5196 /* If testing the sign bit, can just test on high word. */
5197 op0h = simplify_gen_subreg (word_mode, op0, mode,
5198 subreg_highpart_offset (word_mode,
5199 mode));
5200 return emit_store_flag (target, code, op0h, op1, word_mode,
5201 unsignedp, normalizep);
5202 }
5203 }
5204
5205 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5206 complement of A (for GE) and shifting the sign bit to the low bit. */
5207 if (op1 == const0_rtx && (code == LT || code == GE)
5208 && GET_MODE_CLASS (mode) == MODE_INT
5209 && (normalizep || STORE_FLAG_VALUE == 1
5210 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5211 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5212 == ((unsigned HOST_WIDE_INT) 1
5213 << (GET_MODE_BITSIZE (mode) - 1))))))
5214 {
5215 subtarget = target;
5216
5217 /* If the result is to be wider than OP0, it is best to convert it
5218 first. If it is to be narrower, it is *incorrect* to convert it
5219 first. */
5220 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5221 {
5222 op0 = convert_modes (target_mode, mode, op0, 0);
5223 mode = target_mode;
5224 }
5225
5226 if (target_mode != mode)
5227 subtarget = 0;
5228
5229 if (code == GE)
5230 op0 = expand_unop (mode, one_cmpl_optab, op0,
5231 ((STORE_FLAG_VALUE == 1 || normalizep)
5232 ? 0 : subtarget), 0);
5233
5234 if (STORE_FLAG_VALUE == 1 || normalizep)
5235 /* If we are supposed to produce a 0/1 value, we want to do
5236 a logical shift from the sign bit to the low-order bit; for
5237 a -1/0 value, we do an arithmetic shift. */
5238 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5239 size_int (GET_MODE_BITSIZE (mode) - 1),
5240 subtarget, normalizep != -1);
5241
5242 if (mode != target_mode)
5243 op0 = convert_modes (target_mode, mode, op0, 0);
5244
5245 return op0;
5246 }
5247
5248 icode = setcc_gen_code[(int) code];
5249
5250 if (icode != CODE_FOR_nothing)
5251 {
5252 insn_operand_predicate_fn pred;
5253
5254 /* We think we may be able to do this with a scc insn. Emit the
5255 comparison and then the scc insn. */
5256
5257 do_pending_stack_adjust ();
5258 last = get_last_insn ();
5259
5260 comparison
5261 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5262 if (CONSTANT_P (comparison))
5263 {
5264 switch (GET_CODE (comparison))
5265 {
5266 case CONST_INT:
5267 if (comparison == const0_rtx)
5268 return const0_rtx;
5269 break;
5270
5271 #ifdef FLOAT_STORE_FLAG_VALUE
5272 case CONST_DOUBLE:
5273 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5274 return const0_rtx;
5275 break;
5276 #endif
5277 default:
5278 gcc_unreachable ();
5279 }
5280
5281 if (normalizep == 1)
5282 return const1_rtx;
5283 if (normalizep == -1)
5284 return constm1_rtx;
5285 return const_true_rtx;
5286 }
5287
5288 /* The code of COMPARISON may not match CODE if compare_from_rtx
5289 decided to swap its operands and reverse the original code.
5290
5291 We know that compare_from_rtx returns either a CONST_INT or
5292 a new comparison code, so it is safe to just extract the
5293 code from COMPARISON. */
5294 code = GET_CODE (comparison);
5295
5296 /* Get a reference to the target in the proper mode for this insn. */
5297 compare_mode = insn_data[(int) icode].operand[0].mode;
5298 subtarget = target;
5299 pred = insn_data[(int) icode].operand[0].predicate;
5300 if (optimize || ! (*pred) (subtarget, compare_mode))
5301 subtarget = gen_reg_rtx (compare_mode);
5302
5303 pattern = GEN_FCN (icode) (subtarget);
5304 if (pattern)
5305 {
5306 emit_insn (pattern);
5307 return emit_store_flag_1 (target, subtarget, compare_mode,
5308 normalizep);
5309 }
5310 }
5311 else
5312 {
5313 /* We don't have an scc insn, so try a cstore insn. */
5314
5315 for (compare_mode = mode; compare_mode != VOIDmode;
5316 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5317 {
5318 icode = optab_handler (cstore_optab, compare_mode)->insn_code;
5319 if (icode != CODE_FOR_nothing)
5320 break;
5321 }
5322
5323 if (icode != CODE_FOR_nothing)
5324 {
5325 enum machine_mode result_mode
5326 = insn_data[(int) icode].operand[0].mode;
5327 rtx cstore_op0 = op0;
5328 rtx cstore_op1 = op1;
5329
5330 do_pending_stack_adjust ();
5331 last = get_last_insn ();
5332
5333 if (compare_mode != mode)
5334 {
5335 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5336 unsignedp);
5337 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5338 unsignedp);
5339 }
5340
5341 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5342 compare_mode))
5343 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5344
5345 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5346 compare_mode))
5347 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5348
5349 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5350 cstore_op1);
5351 subtarget = target;
5352
5353 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5354 (subtarget, result_mode)))
5355 subtarget = gen_reg_rtx (result_mode);
5356
5357 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5358 cstore_op1);
5359
5360 if (pattern)
5361 {
5362 emit_insn (pattern);
5363 return emit_store_flag_1 (target, subtarget, result_mode,
5364 normalizep);
5365 }
5366 }
5367 }
5368
5369 delete_insns_since (last);
5370
5371 /* If optimizing, use different pseudo registers for each insn, instead
5372 of reusing the same pseudo. This leads to better CSE, but slows
5373 down the compiler, since there are more pseudos */
5374 subtarget = (!optimize
5375 && (target_mode == mode)) ? target : NULL_RTX;
5376
5377 /* If we reached here, we can't do this with a scc insn. However, there
5378 are some comparisons that can be done directly. For example, if
5379 this is an equality comparison of integers, we can try to exclusive-or
5380 (or subtract) the two operands and use a recursive call to try the
5381 comparison with zero. Don't do any of these cases if branches are
5382 very cheap. */
5383
5384 if (BRANCH_COST (optimize_insn_for_speed_p (),
5385 false) > 0
5386 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5387 && op1 != const0_rtx)
5388 {
5389 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5390 OPTAB_WIDEN);
5391
5392 if (tem == 0)
5393 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5394 OPTAB_WIDEN);
5395 if (tem != 0)
5396 tem = emit_store_flag (target, code, tem, const0_rtx,
5397 mode, unsignedp, normalizep);
5398 if (tem == 0)
5399 delete_insns_since (last);
5400 return tem;
5401 }
5402
5403 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5404 the constant zero. Reject all other comparisons at this point. Only
5405 do LE and GT if branches are expensive since they are expensive on
5406 2-operand machines. */
5407
5408 if (BRANCH_COST (optimize_insn_for_speed_p (),
5409 false) == 0
5410 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5411 || (code != EQ && code != NE
5412 && (BRANCH_COST (optimize_insn_for_speed_p (),
5413 false) <= 1 || (code != LE && code != GT))))
5414 return 0;
5415
5416 /* See what we need to return. We can only return a 1, -1, or the
5417 sign bit. */
5418
5419 if (normalizep == 0)
5420 {
5421 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5422 normalizep = STORE_FLAG_VALUE;
5423
5424 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5425 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5426 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5427 ;
5428 else
5429 return 0;
5430 }
5431
5432 /* Try to put the result of the comparison in the sign bit. Assume we can't
5433 do the necessary operation below. */
5434
5435 tem = 0;
5436
5437 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5438 the sign bit set. */
5439
5440 if (code == LE)
5441 {
5442 /* This is destructive, so SUBTARGET can't be OP0. */
5443 if (rtx_equal_p (subtarget, op0))
5444 subtarget = 0;
5445
5446 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5447 OPTAB_WIDEN);
5448 if (tem)
5449 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5450 OPTAB_WIDEN);
5451 }
5452
5453 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5454 number of bits in the mode of OP0, minus one. */
5455
5456 if (code == GT)
5457 {
5458 if (rtx_equal_p (subtarget, op0))
5459 subtarget = 0;
5460
5461 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5462 size_int (GET_MODE_BITSIZE (mode) - 1),
5463 subtarget, 0);
5464 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5465 OPTAB_WIDEN);
5466 }
5467
5468 if (code == EQ || code == NE)
5469 {
5470 /* For EQ or NE, one way to do the comparison is to apply an operation
5471 that converts the operand into a positive number if it is nonzero
5472 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5473 for NE we negate. This puts the result in the sign bit. Then we
5474 normalize with a shift, if needed.
5475
5476 Two operations that can do the above actions are ABS and FFS, so try
5477 them. If that doesn't work, and MODE is smaller than a full word,
5478 we can use zero-extension to the wider mode (an unsigned conversion)
5479 as the operation. */
5480
5481 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5482 that is compensated by the subsequent overflow when subtracting
5483 one / negating. */
5484
5485 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5486 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5487 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5488 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5489 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5490 {
5491 tem = convert_modes (word_mode, mode, op0, 1);
5492 mode = word_mode;
5493 }
5494
5495 if (tem != 0)
5496 {
5497 if (code == EQ)
5498 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5499 0, OPTAB_WIDEN);
5500 else
5501 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5502 }
5503
5504 /* If we couldn't do it that way, for NE we can "or" the two's complement
5505 of the value with itself. For EQ, we take the one's complement of
5506 that "or", which is an extra insn, so we only handle EQ if branches
5507 are expensive. */
5508
5509 if (tem == 0
5510 && (code == NE
5511 || BRANCH_COST (optimize_insn_for_speed_p (),
5512 false) > 1))
5513 {
5514 if (rtx_equal_p (subtarget, op0))
5515 subtarget = 0;
5516
5517 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5518 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5519 OPTAB_WIDEN);
5520
5521 if (tem && code == EQ)
5522 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5523 }
5524 }
5525
5526 if (tem && normalizep)
5527 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5528 size_int (GET_MODE_BITSIZE (mode) - 1),
5529 subtarget, normalizep == 1);
5530
5531 if (tem)
5532 {
5533 if (GET_MODE (tem) != target_mode)
5534 {
5535 convert_move (target, tem, 0);
5536 tem = target;
5537 }
5538 else if (!subtarget)
5539 {
5540 emit_move_insn (target, tem);
5541 tem = target;
5542 }
5543 }
5544 else
5545 delete_insns_since (last);
5546
5547 return tem;
5548 }
5549
5550 /* Like emit_store_flag, but always succeeds. */
5551
5552 rtx
5553 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5554 enum machine_mode mode, int unsignedp, int normalizep)
5555 {
5556 rtx tem, label;
5557
5558 /* First see if emit_store_flag can do the job. */
5559 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5560 if (tem != 0)
5561 return tem;
5562
5563 if (normalizep == 0)
5564 normalizep = 1;
5565
5566 /* If this failed, we have to do this with set/compare/jump/set code. */
5567
5568 if (!REG_P (target)
5569 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5570 target = gen_reg_rtx (GET_MODE (target));
5571
5572 emit_move_insn (target, const1_rtx);
5573 label = gen_label_rtx ();
5574 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5575 NULL_RTX, label);
5576
5577 emit_move_insn (target, const0_rtx);
5578 emit_label (label);
5579
5580 return target;
5581 }
5582 \f
5583 /* Perform possibly multi-word comparison and conditional jump to LABEL
5584 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5585 now a thin wrapper around do_compare_rtx_and_jump. */
5586
5587 static void
5588 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5589 rtx label)
5590 {
5591 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5592 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5593 NULL_RTX, NULL_RTX, label);
5594 }