expmed.c (expand_divmod): Always use a comparison for a division by a large unsigned...
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
41
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
66
67 static bool sdiv_pow2_cheap[2][NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[2][NUM_MACHINE_MODES];
69
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
73
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
77
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
81
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
98
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost[2];
102 static int add_cost[2][NUM_MACHINE_MODES];
103 static int neg_cost[2][NUM_MACHINE_MODES];
104 static int shift_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[2][NUM_MACHINE_MODES];
108 static int sdiv_cost[2][NUM_MACHINE_MODES];
109 static int udiv_cost[2][NUM_MACHINE_MODES];
110 static int mul_widen_cost[2][NUM_MACHINE_MODES];
111 static int mul_highpart_cost[2][NUM_MACHINE_MODES];
112
113 void
114 init_expmed (void)
115 {
116 struct
117 {
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub; rtunion shift_sub_fld1;
134 } all;
135
136 rtx pow2[MAX_BITS_PER_WORD];
137 rtx cint[MAX_BITS_PER_WORD];
138 int m, n;
139 enum machine_mode mode, wider_mode;
140 int speed;
141
142
143 for (m = 1; m < MAX_BITS_PER_WORD; m++)
144 {
145 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 cint[m] = GEN_INT (m);
147 }
148 memset (&all, 0, sizeof all);
149
150 PUT_CODE (&all.reg, REG);
151 /* Avoid using hard regs in ways which may be unsupported. */
152 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
153
154 PUT_CODE (&all.plus, PLUS);
155 XEXP (&all.plus, 0) = &all.reg;
156 XEXP (&all.plus, 1) = &all.reg;
157
158 PUT_CODE (&all.neg, NEG);
159 XEXP (&all.neg, 0) = &all.reg;
160
161 PUT_CODE (&all.mult, MULT);
162 XEXP (&all.mult, 0) = &all.reg;
163 XEXP (&all.mult, 1) = &all.reg;
164
165 PUT_CODE (&all.sdiv, DIV);
166 XEXP (&all.sdiv, 0) = &all.reg;
167 XEXP (&all.sdiv, 1) = &all.reg;
168
169 PUT_CODE (&all.udiv, UDIV);
170 XEXP (&all.udiv, 0) = &all.reg;
171 XEXP (&all.udiv, 1) = &all.reg;
172
173 PUT_CODE (&all.sdiv_32, DIV);
174 XEXP (&all.sdiv_32, 0) = &all.reg;
175 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
176
177 PUT_CODE (&all.smod_32, MOD);
178 XEXP (&all.smod_32, 0) = &all.reg;
179 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
180
181 PUT_CODE (&all.zext, ZERO_EXTEND);
182 XEXP (&all.zext, 0) = &all.reg;
183
184 PUT_CODE (&all.wide_mult, MULT);
185 XEXP (&all.wide_mult, 0) = &all.zext;
186 XEXP (&all.wide_mult, 1) = &all.zext;
187
188 PUT_CODE (&all.wide_lshr, LSHIFTRT);
189 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
190
191 PUT_CODE (&all.wide_trunc, TRUNCATE);
192 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
193
194 PUT_CODE (&all.shift, ASHIFT);
195 XEXP (&all.shift, 0) = &all.reg;
196
197 PUT_CODE (&all.shift_mult, MULT);
198 XEXP (&all.shift_mult, 0) = &all.reg;
199
200 PUT_CODE (&all.shift_add, PLUS);
201 XEXP (&all.shift_add, 0) = &all.shift_mult;
202 XEXP (&all.shift_add, 1) = &all.reg;
203
204 PUT_CODE (&all.shift_sub, MINUS);
205 XEXP (&all.shift_sub, 0) = &all.shift_mult;
206 XEXP (&all.shift_sub, 1) = &all.reg;
207
208 for (speed = 0; speed < 2; speed++)
209 {
210 crtl->maybe_hot_insn_p = speed;
211 zero_cost[speed] = rtx_cost (const0_rtx, 0, speed);
212
213 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
214 mode != VOIDmode;
215 mode = GET_MODE_WIDER_MODE (mode))
216 {
217 PUT_MODE (&all.reg, mode);
218 PUT_MODE (&all.plus, mode);
219 PUT_MODE (&all.neg, mode);
220 PUT_MODE (&all.mult, mode);
221 PUT_MODE (&all.sdiv, mode);
222 PUT_MODE (&all.udiv, mode);
223 PUT_MODE (&all.sdiv_32, mode);
224 PUT_MODE (&all.smod_32, mode);
225 PUT_MODE (&all.wide_trunc, mode);
226 PUT_MODE (&all.shift, mode);
227 PUT_MODE (&all.shift_mult, mode);
228 PUT_MODE (&all.shift_add, mode);
229 PUT_MODE (&all.shift_sub, mode);
230
231 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
232 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
233 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
234 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
235 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
236
237 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
238 <= 2 * add_cost[speed][mode]);
239 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
240 <= 4 * add_cost[speed][mode]);
241
242 wider_mode = GET_MODE_WIDER_MODE (mode);
243 if (wider_mode != VOIDmode)
244 {
245 PUT_MODE (&all.zext, wider_mode);
246 PUT_MODE (&all.wide_mult, wider_mode);
247 PUT_MODE (&all.wide_lshr, wider_mode);
248 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
249
250 mul_widen_cost[speed][wider_mode]
251 = rtx_cost (&all.wide_mult, SET, speed);
252 mul_highpart_cost[speed][mode]
253 = rtx_cost (&all.wide_trunc, SET, speed);
254 }
255
256 shift_cost[speed][mode][0] = 0;
257 shiftadd_cost[speed][mode][0] = shiftsub_cost[speed][mode][0]
258 = add_cost[speed][mode];
259
260 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
261 for (m = 1; m < n; m++)
262 {
263 XEXP (&all.shift, 1) = cint[m];
264 XEXP (&all.shift_mult, 1) = pow2[m];
265
266 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
267 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
268 shiftsub_cost[speed][mode][m] = rtx_cost (&all.shift_sub, SET, speed);
269 }
270 }
271 }
272 default_rtl_profile ();
273 }
274
275 /* Return an rtx representing minus the value of X.
276 MODE is the intended mode of the result,
277 useful if X is a CONST_INT. */
278
279 rtx
280 negate_rtx (enum machine_mode mode, rtx x)
281 {
282 rtx result = simplify_unary_operation (NEG, mode, x, mode);
283
284 if (result == 0)
285 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
286
287 return result;
288 }
289
290 /* Report on the availability of insv/extv/extzv and the desired mode
291 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
292 is false; else the mode of the specified operand. If OPNO is -1,
293 all the caller cares about is whether the insn is available. */
294 enum machine_mode
295 mode_for_extraction (enum extraction_pattern pattern, int opno)
296 {
297 const struct insn_data *data;
298
299 switch (pattern)
300 {
301 case EP_insv:
302 if (HAVE_insv)
303 {
304 data = &insn_data[CODE_FOR_insv];
305 break;
306 }
307 return MAX_MACHINE_MODE;
308
309 case EP_extv:
310 if (HAVE_extv)
311 {
312 data = &insn_data[CODE_FOR_extv];
313 break;
314 }
315 return MAX_MACHINE_MODE;
316
317 case EP_extzv:
318 if (HAVE_extzv)
319 {
320 data = &insn_data[CODE_FOR_extzv];
321 break;
322 }
323 return MAX_MACHINE_MODE;
324
325 default:
326 gcc_unreachable ();
327 }
328
329 if (opno == -1)
330 return VOIDmode;
331
332 /* Everyone who uses this function used to follow it with
333 if (result == VOIDmode) result = word_mode; */
334 if (data->operand[opno].mode == VOIDmode)
335 return word_mode;
336 return data->operand[opno].mode;
337 }
338
339 /* Return true if X, of mode MODE, matches the predicate for operand
340 OPNO of instruction ICODE. Allow volatile memories, regardless of
341 the ambient volatile_ok setting. */
342
343 static bool
344 check_predicate_volatile_ok (enum insn_code icode, int opno,
345 rtx x, enum machine_mode mode)
346 {
347 bool save_volatile_ok, result;
348
349 save_volatile_ok = volatile_ok;
350 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
351 volatile_ok = save_volatile_ok;
352 return result;
353 }
354 \f
355 /* A subroutine of store_bit_field, with the same arguments. Return true
356 if the operation could be implemented.
357
358 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
359 no other way of implementing the operation. If FALLBACK_P is false,
360 return false instead. */
361
362 static bool
363 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
364 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
365 rtx value, bool fallback_p)
366 {
367 unsigned int unit
368 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
369 unsigned HOST_WIDE_INT offset, bitpos;
370 rtx op0 = str_rtx;
371 int byte_offset;
372 rtx orig_value;
373
374 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
375
376 while (GET_CODE (op0) == SUBREG)
377 {
378 /* The following line once was done only if WORDS_BIG_ENDIAN,
379 but I think that is a mistake. WORDS_BIG_ENDIAN is
380 meaningful at a much higher level; when structures are copied
381 between memory and regs, the higher-numbered regs
382 always get higher addresses. */
383 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
384 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
385
386 byte_offset = 0;
387
388 /* Paradoxical subregs need special handling on big endian machines. */
389 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
390 {
391 int difference = inner_mode_size - outer_mode_size;
392
393 if (WORDS_BIG_ENDIAN)
394 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
395 if (BYTES_BIG_ENDIAN)
396 byte_offset += difference % UNITS_PER_WORD;
397 }
398 else
399 byte_offset = SUBREG_BYTE (op0);
400
401 bitnum += byte_offset * BITS_PER_UNIT;
402 op0 = SUBREG_REG (op0);
403 }
404
405 /* No action is needed if the target is a register and if the field
406 lies completely outside that register. This can occur if the source
407 code contains an out-of-bounds access to a small array. */
408 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
409 return true;
410
411 /* Use vec_set patterns for inserting parts of vectors whenever
412 available. */
413 if (VECTOR_MODE_P (GET_MODE (op0))
414 && !MEM_P (op0)
415 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
416 != CODE_FOR_nothing)
417 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
418 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
419 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
420 {
421 enum machine_mode outermode = GET_MODE (op0);
422 enum machine_mode innermode = GET_MODE_INNER (outermode);
423 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
424 int pos = bitnum / GET_MODE_BITSIZE (innermode);
425 rtx rtxpos = GEN_INT (pos);
426 rtx src = value;
427 rtx dest = op0;
428 rtx pat, seq;
429 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
430 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
431 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
432
433 start_sequence ();
434
435 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
436 src = copy_to_mode_reg (mode1, src);
437
438 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
439 rtxpos = copy_to_mode_reg (mode1, rtxpos);
440
441 /* We could handle this, but we should always be called with a pseudo
442 for our targets and all insns should take them as outputs. */
443 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
444 && (*insn_data[icode].operand[1].predicate) (src, mode1)
445 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
446 pat = GEN_FCN (icode) (dest, src, rtxpos);
447 seq = get_insns ();
448 end_sequence ();
449 if (pat)
450 {
451 emit_insn (seq);
452 emit_insn (pat);
453 return true;
454 }
455 }
456
457 /* If the target is a register, overwriting the entire object, or storing
458 a full-word or multi-word field can be done with just a SUBREG.
459
460 If the target is memory, storing any naturally aligned field can be
461 done with a simple store. For targets that support fast unaligned
462 memory, any naturally sized, unit aligned field can be done directly. */
463
464 offset = bitnum / unit;
465 bitpos = bitnum % unit;
466 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
467 + (offset * UNITS_PER_WORD);
468
469 if (bitpos == 0
470 && bitsize == GET_MODE_BITSIZE (fieldmode)
471 && (!MEM_P (op0)
472 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
473 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
474 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
475 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
476 || (offset * BITS_PER_UNIT % bitsize == 0
477 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
478 {
479 if (MEM_P (op0))
480 op0 = adjust_address (op0, fieldmode, offset);
481 else if (GET_MODE (op0) != fieldmode)
482 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
483 byte_offset);
484 emit_move_insn (op0, value);
485 return true;
486 }
487
488 /* Make sure we are playing with integral modes. Pun with subregs
489 if we aren't. This must come after the entire register case above,
490 since that case is valid for any mode. The following cases are only
491 valid for integral modes. */
492 {
493 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
494 if (imode != GET_MODE (op0))
495 {
496 if (MEM_P (op0))
497 op0 = adjust_address (op0, imode, 0);
498 else
499 {
500 gcc_assert (imode != BLKmode);
501 op0 = gen_lowpart (imode, op0);
502 }
503 }
504 }
505
506 /* We may be accessing data outside the field, which means
507 we can alias adjacent data. */
508 if (MEM_P (op0))
509 {
510 op0 = shallow_copy_rtx (op0);
511 set_mem_alias_set (op0, 0);
512 set_mem_expr (op0, 0);
513 }
514
515 /* If OP0 is a register, BITPOS must count within a word.
516 But as we have it, it counts within whatever size OP0 now has.
517 On a bigendian machine, these are not the same, so convert. */
518 if (BYTES_BIG_ENDIAN
519 && !MEM_P (op0)
520 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
521 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
522
523 /* Storing an lsb-aligned field in a register
524 can be done with a movestrict instruction. */
525
526 if (!MEM_P (op0)
527 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
528 && bitsize == GET_MODE_BITSIZE (fieldmode)
529 && (optab_handler (movstrict_optab, fieldmode)->insn_code
530 != CODE_FOR_nothing))
531 {
532 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
533 rtx insn;
534 rtx start = get_last_insn ();
535 rtx arg0 = op0;
536
537 /* Get appropriate low part of the value being stored. */
538 if (GET_CODE (value) == CONST_INT || REG_P (value))
539 value = gen_lowpart (fieldmode, value);
540 else if (!(GET_CODE (value) == SYMBOL_REF
541 || GET_CODE (value) == LABEL_REF
542 || GET_CODE (value) == CONST))
543 value = convert_to_mode (fieldmode, value, 0);
544
545 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
546 value = copy_to_mode_reg (fieldmode, value);
547
548 if (GET_CODE (op0) == SUBREG)
549 {
550 /* Else we've got some float mode source being extracted into
551 a different float mode destination -- this combination of
552 subregs results in Severe Tire Damage. */
553 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
554 || GET_MODE_CLASS (fieldmode) == MODE_INT
555 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
556 arg0 = SUBREG_REG (op0);
557 }
558
559 insn = (GEN_FCN (icode)
560 (gen_rtx_SUBREG (fieldmode, arg0,
561 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
562 + (offset * UNITS_PER_WORD)),
563 value));
564 if (insn)
565 {
566 emit_insn (insn);
567 return true;
568 }
569 delete_insns_since (start);
570 }
571
572 /* Handle fields bigger than a word. */
573
574 if (bitsize > BITS_PER_WORD)
575 {
576 /* Here we transfer the words of the field
577 in the order least significant first.
578 This is because the most significant word is the one which may
579 be less than full.
580 However, only do that if the value is not BLKmode. */
581
582 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
583 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
584 unsigned int i;
585 rtx last;
586
587 /* This is the mode we must force value to, so that there will be enough
588 subwords to extract. Note that fieldmode will often (always?) be
589 VOIDmode, because that is what store_field uses to indicate that this
590 is a bit field, but passing VOIDmode to operand_subword_force
591 is not allowed. */
592 fieldmode = GET_MODE (value);
593 if (fieldmode == VOIDmode)
594 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
595
596 last = get_last_insn ();
597 for (i = 0; i < nwords; i++)
598 {
599 /* If I is 0, use the low-order word in both field and target;
600 if I is 1, use the next to lowest word; and so on. */
601 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
602 unsigned int bit_offset = (backwards
603 ? MAX ((int) bitsize - ((int) i + 1)
604 * BITS_PER_WORD,
605 0)
606 : (int) i * BITS_PER_WORD);
607 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
608
609 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
610 bitsize - i * BITS_PER_WORD),
611 bitnum + bit_offset, word_mode,
612 value_word, fallback_p))
613 {
614 delete_insns_since (last);
615 return false;
616 }
617 }
618 return true;
619 }
620
621 /* From here on we can assume that the field to be stored in is
622 a full-word (whatever type that is), since it is shorter than a word. */
623
624 /* OFFSET is the number of words or bytes (UNIT says which)
625 from STR_RTX to the first word or byte containing part of the field. */
626
627 if (!MEM_P (op0))
628 {
629 if (offset != 0
630 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
631 {
632 if (!REG_P (op0))
633 {
634 /* Since this is a destination (lvalue), we can't copy
635 it to a pseudo. We can remove a SUBREG that does not
636 change the size of the operand. Such a SUBREG may
637 have been added above. */
638 gcc_assert (GET_CODE (op0) == SUBREG
639 && (GET_MODE_SIZE (GET_MODE (op0))
640 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
641 op0 = SUBREG_REG (op0);
642 }
643 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
644 op0, (offset * UNITS_PER_WORD));
645 }
646 offset = 0;
647 }
648
649 /* If VALUE has a floating-point or complex mode, access it as an
650 integer of the corresponding size. This can occur on a machine
651 with 64 bit registers that uses SFmode for float. It can also
652 occur for unaligned float or complex fields. */
653 orig_value = value;
654 if (GET_MODE (value) != VOIDmode
655 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
656 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
657 {
658 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
659 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
660 }
661
662 /* Now OFFSET is nonzero only if OP0 is memory
663 and is therefore always measured in bytes. */
664
665 if (HAVE_insv
666 && GET_MODE (value) != BLKmode
667 && bitsize > 0
668 && GET_MODE_BITSIZE (op_mode) >= bitsize
669 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
670 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
671 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
672 VOIDmode)
673 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
674 {
675 int xbitpos = bitpos;
676 rtx value1;
677 rtx xop0 = op0;
678 rtx last = get_last_insn ();
679 rtx pat;
680
681 /* Add OFFSET into OP0's address. */
682 if (MEM_P (xop0))
683 xop0 = adjust_address (xop0, byte_mode, offset);
684
685 /* If xop0 is a register, we need it in OP_MODE
686 to make it acceptable to the format of insv. */
687 if (GET_CODE (xop0) == SUBREG)
688 /* We can't just change the mode, because this might clobber op0,
689 and we will need the original value of op0 if insv fails. */
690 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
691 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
692 xop0 = gen_rtx_SUBREG (op_mode, xop0, 0);
693
694 /* On big-endian machines, we count bits from the most significant.
695 If the bit field insn does not, we must invert. */
696
697 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
698 xbitpos = unit - bitsize - xbitpos;
699
700 /* We have been counting XBITPOS within UNIT.
701 Count instead within the size of the register. */
702 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
703 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
704
705 unit = GET_MODE_BITSIZE (op_mode);
706
707 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
708 value1 = value;
709 if (GET_MODE (value) != op_mode)
710 {
711 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
712 {
713 /* Optimization: Don't bother really extending VALUE
714 if it has all the bits we will actually use. However,
715 if we must narrow it, be sure we do it correctly. */
716
717 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
718 {
719 rtx tmp;
720
721 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
722 if (! tmp)
723 tmp = simplify_gen_subreg (op_mode,
724 force_reg (GET_MODE (value),
725 value1),
726 GET_MODE (value), 0);
727 value1 = tmp;
728 }
729 else
730 value1 = gen_lowpart (op_mode, value1);
731 }
732 else if (GET_CODE (value) == CONST_INT)
733 value1 = gen_int_mode (INTVAL (value), op_mode);
734 else
735 /* Parse phase is supposed to make VALUE's data type
736 match that of the component reference, which is a type
737 at least as wide as the field; so VALUE should have
738 a mode that corresponds to that type. */
739 gcc_assert (CONSTANT_P (value));
740 }
741
742 /* If this machine's insv insists on a register,
743 get VALUE1 into a register. */
744 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
745 (value1, op_mode)))
746 value1 = force_reg (op_mode, value1);
747
748 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
749 if (pat)
750 {
751 emit_insn (pat);
752
753 /* If the mode of the insertion is wider than the mode of the
754 target register we created a paradoxical subreg for the
755 target. Truncate the paradoxical subreg of the target to
756 itself properly. */
757 if (!TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (op0)),
758 GET_MODE_BITSIZE (op_mode))
759 && (REG_P (xop0)
760 || GET_CODE (xop0) == SUBREG))
761 convert_move (op0, xop0, true);
762 return true;
763 }
764 delete_insns_since (last);
765 }
766
767 /* If OP0 is a memory, try copying it to a register and seeing if a
768 cheap register alternative is available. */
769 if (HAVE_insv && MEM_P (op0))
770 {
771 enum machine_mode bestmode;
772
773 /* Get the mode to use for inserting into this field. If OP0 is
774 BLKmode, get the smallest mode consistent with the alignment. If
775 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
776 mode. Otherwise, use the smallest mode containing the field. */
777
778 if (GET_MODE (op0) == BLKmode
779 || (op_mode != MAX_MACHINE_MODE
780 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
781 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
782 (op_mode == MAX_MACHINE_MODE
783 ? VOIDmode : op_mode),
784 MEM_VOLATILE_P (op0));
785 else
786 bestmode = GET_MODE (op0);
787
788 if (bestmode != VOIDmode
789 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
790 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
791 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
792 {
793 rtx last, tempreg, xop0;
794 unsigned HOST_WIDE_INT xoffset, xbitpos;
795
796 last = get_last_insn ();
797
798 /* Adjust address to point to the containing unit of
799 that mode. Compute the offset as a multiple of this unit,
800 counting in bytes. */
801 unit = GET_MODE_BITSIZE (bestmode);
802 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
803 xbitpos = bitnum % unit;
804 xop0 = adjust_address (op0, bestmode, xoffset);
805
806 /* Fetch that unit, store the bitfield in it, then store
807 the unit. */
808 tempreg = copy_to_reg (xop0);
809 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
810 fieldmode, orig_value, false))
811 {
812 emit_move_insn (xop0, tempreg);
813 return true;
814 }
815 delete_insns_since (last);
816 }
817 }
818
819 if (!fallback_p)
820 return false;
821
822 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
823 return true;
824 }
825
826 /* Generate code to store value from rtx VALUE
827 into a bit-field within structure STR_RTX
828 containing BITSIZE bits starting at bit BITNUM.
829 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
830
831 void
832 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
833 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
834 rtx value)
835 {
836 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
837 gcc_unreachable ();
838 }
839 \f
840 /* Use shifts and boolean operations to store VALUE
841 into a bit field of width BITSIZE
842 in a memory location specified by OP0 except offset by OFFSET bytes.
843 (OFFSET must be 0 if OP0 is a register.)
844 The field starts at position BITPOS within the byte.
845 (If OP0 is a register, it may be a full word or a narrower mode,
846 but BITPOS still counts within a full word,
847 which is significant on bigendian machines.) */
848
849 static void
850 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
851 unsigned HOST_WIDE_INT bitsize,
852 unsigned HOST_WIDE_INT bitpos, rtx value)
853 {
854 enum machine_mode mode;
855 unsigned int total_bits = BITS_PER_WORD;
856 rtx temp;
857 int all_zero = 0;
858 int all_one = 0;
859
860 /* There is a case not handled here:
861 a structure with a known alignment of just a halfword
862 and a field split across two aligned halfwords within the structure.
863 Or likewise a structure with a known alignment of just a byte
864 and a field split across two bytes.
865 Such cases are not supposed to be able to occur. */
866
867 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
868 {
869 gcc_assert (!offset);
870 /* Special treatment for a bit field split across two registers. */
871 if (bitsize + bitpos > BITS_PER_WORD)
872 {
873 store_split_bit_field (op0, bitsize, bitpos, value);
874 return;
875 }
876 }
877 else
878 {
879 /* Get the proper mode to use for this field. We want a mode that
880 includes the entire field. If such a mode would be larger than
881 a word, we won't be doing the extraction the normal way.
882 We don't want a mode bigger than the destination. */
883
884 mode = GET_MODE (op0);
885 if (GET_MODE_BITSIZE (mode) == 0
886 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
887 mode = word_mode;
888 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
889 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
890
891 if (mode == VOIDmode)
892 {
893 /* The only way this should occur is if the field spans word
894 boundaries. */
895 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
896 value);
897 return;
898 }
899
900 total_bits = GET_MODE_BITSIZE (mode);
901
902 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
903 be in the range 0 to total_bits-1, and put any excess bytes in
904 OFFSET. */
905 if (bitpos >= total_bits)
906 {
907 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
908 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
909 * BITS_PER_UNIT);
910 }
911
912 /* Get ref to an aligned byte, halfword, or word containing the field.
913 Adjust BITPOS to be position within a word,
914 and OFFSET to be the offset of that word.
915 Then alter OP0 to refer to that word. */
916 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
917 offset -= (offset % (total_bits / BITS_PER_UNIT));
918 op0 = adjust_address (op0, mode, offset);
919 }
920
921 mode = GET_MODE (op0);
922
923 /* Now MODE is either some integral mode for a MEM as OP0,
924 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
925 The bit field is contained entirely within OP0.
926 BITPOS is the starting bit number within OP0.
927 (OP0's mode may actually be narrower than MODE.) */
928
929 if (BYTES_BIG_ENDIAN)
930 /* BITPOS is the distance between our msb
931 and that of the containing datum.
932 Convert it to the distance from the lsb. */
933 bitpos = total_bits - bitsize - bitpos;
934
935 /* Now BITPOS is always the distance between our lsb
936 and that of OP0. */
937
938 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
939 we must first convert its mode to MODE. */
940
941 if (GET_CODE (value) == CONST_INT)
942 {
943 HOST_WIDE_INT v = INTVAL (value);
944
945 if (bitsize < HOST_BITS_PER_WIDE_INT)
946 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
947
948 if (v == 0)
949 all_zero = 1;
950 else if ((bitsize < HOST_BITS_PER_WIDE_INT
951 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
952 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
953 all_one = 1;
954
955 value = lshift_value (mode, value, bitpos, bitsize);
956 }
957 else
958 {
959 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
960 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
961
962 if (GET_MODE (value) != mode)
963 value = convert_to_mode (mode, value, 1);
964
965 if (must_and)
966 value = expand_binop (mode, and_optab, value,
967 mask_rtx (mode, 0, bitsize, 0),
968 NULL_RTX, 1, OPTAB_LIB_WIDEN);
969 if (bitpos > 0)
970 value = expand_shift (LSHIFT_EXPR, mode, value,
971 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
972 }
973
974 /* Now clear the chosen bits in OP0,
975 except that if VALUE is -1 we need not bother. */
976 /* We keep the intermediates in registers to allow CSE to combine
977 consecutive bitfield assignments. */
978
979 temp = force_reg (mode, op0);
980
981 if (! all_one)
982 {
983 temp = expand_binop (mode, and_optab, temp,
984 mask_rtx (mode, bitpos, bitsize, 1),
985 NULL_RTX, 1, OPTAB_LIB_WIDEN);
986 temp = force_reg (mode, temp);
987 }
988
989 /* Now logical-or VALUE into OP0, unless it is zero. */
990
991 if (! all_zero)
992 {
993 temp = expand_binop (mode, ior_optab, temp, value,
994 NULL_RTX, 1, OPTAB_LIB_WIDEN);
995 temp = force_reg (mode, temp);
996 }
997
998 if (op0 != temp)
999 {
1000 op0 = copy_rtx (op0);
1001 emit_move_insn (op0, temp);
1002 }
1003 }
1004 \f
1005 /* Store a bit field that is split across multiple accessible memory objects.
1006
1007 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1008 BITSIZE is the field width; BITPOS the position of its first bit
1009 (within the word).
1010 VALUE is the value to store.
1011
1012 This does not yet handle fields wider than BITS_PER_WORD. */
1013
1014 static void
1015 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1016 unsigned HOST_WIDE_INT bitpos, rtx value)
1017 {
1018 unsigned int unit;
1019 unsigned int bitsdone = 0;
1020
1021 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1022 much at a time. */
1023 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1024 unit = BITS_PER_WORD;
1025 else
1026 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1027
1028 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1029 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1030 that VALUE might be a floating-point constant. */
1031 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
1032 {
1033 rtx word = gen_lowpart_common (word_mode, value);
1034
1035 if (word && (value != word))
1036 value = word;
1037 else
1038 value = gen_lowpart_common (word_mode,
1039 force_reg (GET_MODE (value) != VOIDmode
1040 ? GET_MODE (value)
1041 : word_mode, value));
1042 }
1043
1044 while (bitsdone < bitsize)
1045 {
1046 unsigned HOST_WIDE_INT thissize;
1047 rtx part, word;
1048 unsigned HOST_WIDE_INT thispos;
1049 unsigned HOST_WIDE_INT offset;
1050
1051 offset = (bitpos + bitsdone) / unit;
1052 thispos = (bitpos + bitsdone) % unit;
1053
1054 /* THISSIZE must not overrun a word boundary. Otherwise,
1055 store_fixed_bit_field will call us again, and we will mutually
1056 recurse forever. */
1057 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1058 thissize = MIN (thissize, unit - thispos);
1059
1060 if (BYTES_BIG_ENDIAN)
1061 {
1062 int total_bits;
1063
1064 /* We must do an endian conversion exactly the same way as it is
1065 done in extract_bit_field, so that the two calls to
1066 extract_fixed_bit_field will have comparable arguments. */
1067 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1068 total_bits = BITS_PER_WORD;
1069 else
1070 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1071
1072 /* Fetch successively less significant portions. */
1073 if (GET_CODE (value) == CONST_INT)
1074 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1075 >> (bitsize - bitsdone - thissize))
1076 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1077 else
1078 /* The args are chosen so that the last part includes the
1079 lsb. Give extract_bit_field the value it needs (with
1080 endianness compensation) to fetch the piece we want. */
1081 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1082 total_bits - bitsize + bitsdone,
1083 NULL_RTX, 1);
1084 }
1085 else
1086 {
1087 /* Fetch successively more significant portions. */
1088 if (GET_CODE (value) == CONST_INT)
1089 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1090 >> bitsdone)
1091 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1092 else
1093 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1094 bitsdone, NULL_RTX, 1);
1095 }
1096
1097 /* If OP0 is a register, then handle OFFSET here.
1098
1099 When handling multiword bitfields, extract_bit_field may pass
1100 down a word_mode SUBREG of a larger REG for a bitfield that actually
1101 crosses a word boundary. Thus, for a SUBREG, we must find
1102 the current word starting from the base register. */
1103 if (GET_CODE (op0) == SUBREG)
1104 {
1105 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1106 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1107 GET_MODE (SUBREG_REG (op0)));
1108 offset = 0;
1109 }
1110 else if (REG_P (op0))
1111 {
1112 word = operand_subword_force (op0, offset, GET_MODE (op0));
1113 offset = 0;
1114 }
1115 else
1116 word = op0;
1117
1118 /* OFFSET is in UNITs, and UNIT is in bits.
1119 store_fixed_bit_field wants offset in bytes. */
1120 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1121 thispos, part);
1122 bitsdone += thissize;
1123 }
1124 }
1125 \f
1126 /* A subroutine of extract_bit_field_1 that converts return value X
1127 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1128 to extract_bit_field. */
1129
1130 static rtx
1131 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1132 enum machine_mode tmode, bool unsignedp)
1133 {
1134 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1135 return x;
1136
1137 /* If the x mode is not a scalar integral, first convert to the
1138 integer mode of that size and then access it as a floating-point
1139 value via a SUBREG. */
1140 if (!SCALAR_INT_MODE_P (tmode))
1141 {
1142 enum machine_mode smode;
1143
1144 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1145 x = convert_to_mode (smode, x, unsignedp);
1146 x = force_reg (smode, x);
1147 return gen_lowpart (tmode, x);
1148 }
1149
1150 return convert_to_mode (tmode, x, unsignedp);
1151 }
1152
1153 /* A subroutine of extract_bit_field, with the same arguments.
1154 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1155 if we can find no other means of implementing the operation.
1156 if FALLBACK_P is false, return NULL instead. */
1157
1158 static rtx
1159 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1160 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1161 enum machine_mode mode, enum machine_mode tmode,
1162 bool fallback_p)
1163 {
1164 unsigned int unit
1165 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1166 unsigned HOST_WIDE_INT offset, bitpos;
1167 rtx op0 = str_rtx;
1168 enum machine_mode int_mode;
1169 enum machine_mode ext_mode;
1170 enum machine_mode mode1;
1171 enum insn_code icode;
1172 int byte_offset;
1173
1174 if (tmode == VOIDmode)
1175 tmode = mode;
1176
1177 while (GET_CODE (op0) == SUBREG)
1178 {
1179 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1180 op0 = SUBREG_REG (op0);
1181 }
1182
1183 /* If we have an out-of-bounds access to a register, just return an
1184 uninitialized register of the required mode. This can occur if the
1185 source code contains an out-of-bounds access to a small array. */
1186 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1187 return gen_reg_rtx (tmode);
1188
1189 if (REG_P (op0)
1190 && mode == GET_MODE (op0)
1191 && bitnum == 0
1192 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1193 {
1194 /* We're trying to extract a full register from itself. */
1195 return op0;
1196 }
1197
1198 /* See if we can get a better vector mode before extracting. */
1199 if (VECTOR_MODE_P (GET_MODE (op0))
1200 && !MEM_P (op0)
1201 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1202 {
1203 enum machine_mode new_mode;
1204 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1205
1206 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1207 new_mode = MIN_MODE_VECTOR_FLOAT;
1208 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1209 new_mode = MIN_MODE_VECTOR_FRACT;
1210 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1211 new_mode = MIN_MODE_VECTOR_UFRACT;
1212 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1213 new_mode = MIN_MODE_VECTOR_ACCUM;
1214 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1215 new_mode = MIN_MODE_VECTOR_UACCUM;
1216 else
1217 new_mode = MIN_MODE_VECTOR_INT;
1218
1219 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1220 if (GET_MODE_NUNITS (new_mode) == nunits
1221 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1222 && targetm.vector_mode_supported_p (new_mode))
1223 break;
1224 if (new_mode != VOIDmode)
1225 op0 = gen_lowpart (new_mode, op0);
1226 }
1227
1228 /* Use vec_extract patterns for extracting parts of vectors whenever
1229 available. */
1230 if (VECTOR_MODE_P (GET_MODE (op0))
1231 && !MEM_P (op0)
1232 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1233 != CODE_FOR_nothing)
1234 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1235 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1236 {
1237 enum machine_mode outermode = GET_MODE (op0);
1238 enum machine_mode innermode = GET_MODE_INNER (outermode);
1239 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1240 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1241 rtx rtxpos = GEN_INT (pos);
1242 rtx src = op0;
1243 rtx dest = NULL, pat, seq;
1244 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1245 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1246 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1247
1248 if (innermode == tmode || innermode == mode)
1249 dest = target;
1250
1251 if (!dest)
1252 dest = gen_reg_rtx (innermode);
1253
1254 start_sequence ();
1255
1256 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1257 dest = copy_to_mode_reg (mode0, dest);
1258
1259 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1260 src = copy_to_mode_reg (mode1, src);
1261
1262 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1263 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1264
1265 /* We could handle this, but we should always be called with a pseudo
1266 for our targets and all insns should take them as outputs. */
1267 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1268 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1269 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1270
1271 pat = GEN_FCN (icode) (dest, src, rtxpos);
1272 seq = get_insns ();
1273 end_sequence ();
1274 if (pat)
1275 {
1276 emit_insn (seq);
1277 emit_insn (pat);
1278 if (mode0 != mode)
1279 return gen_lowpart (tmode, dest);
1280 return dest;
1281 }
1282 }
1283
1284 /* Make sure we are playing with integral modes. Pun with subregs
1285 if we aren't. */
1286 {
1287 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1288 if (imode != GET_MODE (op0))
1289 {
1290 if (MEM_P (op0))
1291 op0 = adjust_address (op0, imode, 0);
1292 else if (imode != BLKmode)
1293 {
1294 op0 = gen_lowpart (imode, op0);
1295
1296 /* If we got a SUBREG, force it into a register since we
1297 aren't going to be able to do another SUBREG on it. */
1298 if (GET_CODE (op0) == SUBREG)
1299 op0 = force_reg (imode, op0);
1300 }
1301 else if (REG_P (op0))
1302 {
1303 rtx reg, subreg;
1304 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1305 MODE_INT);
1306 reg = gen_reg_rtx (imode);
1307 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1308 emit_move_insn (subreg, op0);
1309 op0 = reg;
1310 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1311 }
1312 else
1313 {
1314 rtx mem = assign_stack_temp (GET_MODE (op0),
1315 GET_MODE_SIZE (GET_MODE (op0)), 0);
1316 emit_move_insn (mem, op0);
1317 op0 = adjust_address (mem, BLKmode, 0);
1318 }
1319 }
1320 }
1321
1322 /* We may be accessing data outside the field, which means
1323 we can alias adjacent data. */
1324 if (MEM_P (op0))
1325 {
1326 op0 = shallow_copy_rtx (op0);
1327 set_mem_alias_set (op0, 0);
1328 set_mem_expr (op0, 0);
1329 }
1330
1331 /* Extraction of a full-word or multi-word value from a structure
1332 in a register or aligned memory can be done with just a SUBREG.
1333 A subword value in the least significant part of a register
1334 can also be extracted with a SUBREG. For this, we need the
1335 byte offset of the value in op0. */
1336
1337 bitpos = bitnum % unit;
1338 offset = bitnum / unit;
1339 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1340
1341 /* If OP0 is a register, BITPOS must count within a word.
1342 But as we have it, it counts within whatever size OP0 now has.
1343 On a bigendian machine, these are not the same, so convert. */
1344 if (BYTES_BIG_ENDIAN
1345 && !MEM_P (op0)
1346 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1347 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1348
1349 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1350 If that's wrong, the solution is to test for it and set TARGET to 0
1351 if needed. */
1352
1353 /* Only scalar integer modes can be converted via subregs. There is an
1354 additional problem for FP modes here in that they can have a precision
1355 which is different from the size. mode_for_size uses precision, but
1356 we want a mode based on the size, so we must avoid calling it for FP
1357 modes. */
1358 mode1 = (SCALAR_INT_MODE_P (tmode)
1359 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1360 : mode);
1361
1362 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1363 && bitpos % BITS_PER_WORD == 0)
1364 || (mode1 != BLKmode
1365 /* ??? The big endian test here is wrong. This is correct
1366 if the value is in a register, and if mode_for_size is not
1367 the same mode as op0. This causes us to get unnecessarily
1368 inefficient code from the Thumb port when -mbig-endian. */
1369 && (BYTES_BIG_ENDIAN
1370 ? bitpos + bitsize == BITS_PER_WORD
1371 : bitpos == 0)))
1372 && ((!MEM_P (op0)
1373 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1374 GET_MODE_BITSIZE (GET_MODE (op0)))
1375 && GET_MODE_SIZE (mode1) != 0
1376 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1377 || (MEM_P (op0)
1378 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1379 || (offset * BITS_PER_UNIT % bitsize == 0
1380 && MEM_ALIGN (op0) % bitsize == 0)))))
1381 {
1382 if (MEM_P (op0))
1383 op0 = adjust_address (op0, mode1, offset);
1384 else if (mode1 != GET_MODE (op0))
1385 {
1386 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1387 byte_offset);
1388 if (sub == NULL)
1389 goto no_subreg_mode_swap;
1390 op0 = sub;
1391 }
1392 if (mode1 != mode)
1393 return convert_to_mode (tmode, op0, unsignedp);
1394 return op0;
1395 }
1396 no_subreg_mode_swap:
1397
1398 /* Handle fields bigger than a word. */
1399
1400 if (bitsize > BITS_PER_WORD)
1401 {
1402 /* Here we transfer the words of the field
1403 in the order least significant first.
1404 This is because the most significant word is the one which may
1405 be less than full. */
1406
1407 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1408 unsigned int i;
1409
1410 if (target == 0 || !REG_P (target))
1411 target = gen_reg_rtx (mode);
1412
1413 /* Indicate for flow that the entire target reg is being set. */
1414 emit_clobber (target);
1415
1416 for (i = 0; i < nwords; i++)
1417 {
1418 /* If I is 0, use the low-order word in both field and target;
1419 if I is 1, use the next to lowest word; and so on. */
1420 /* Word number in TARGET to use. */
1421 unsigned int wordnum
1422 = (WORDS_BIG_ENDIAN
1423 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1424 : i);
1425 /* Offset from start of field in OP0. */
1426 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1427 ? MAX (0, ((int) bitsize - ((int) i + 1)
1428 * (int) BITS_PER_WORD))
1429 : (int) i * BITS_PER_WORD);
1430 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1431 rtx result_part
1432 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1433 bitsize - i * BITS_PER_WORD),
1434 bitnum + bit_offset, 1, target_part, mode,
1435 word_mode);
1436
1437 gcc_assert (target_part);
1438
1439 if (result_part != target_part)
1440 emit_move_insn (target_part, result_part);
1441 }
1442
1443 if (unsignedp)
1444 {
1445 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1446 need to be zero'd out. */
1447 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1448 {
1449 unsigned int i, total_words;
1450
1451 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1452 for (i = nwords; i < total_words; i++)
1453 emit_move_insn
1454 (operand_subword (target,
1455 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1456 1, VOIDmode),
1457 const0_rtx);
1458 }
1459 return target;
1460 }
1461
1462 /* Signed bit field: sign-extend with two arithmetic shifts. */
1463 target = expand_shift (LSHIFT_EXPR, mode, target,
1464 build_int_cst (NULL_TREE,
1465 GET_MODE_BITSIZE (mode) - bitsize),
1466 NULL_RTX, 0);
1467 return expand_shift (RSHIFT_EXPR, mode, target,
1468 build_int_cst (NULL_TREE,
1469 GET_MODE_BITSIZE (mode) - bitsize),
1470 NULL_RTX, 0);
1471 }
1472
1473 /* From here on we know the desired field is smaller than a word. */
1474
1475 /* Check if there is a correspondingly-sized integer field, so we can
1476 safely extract it as one size of integer, if necessary; then
1477 truncate or extend to the size that is wanted; then use SUBREGs or
1478 convert_to_mode to get one of the modes we really wanted. */
1479
1480 int_mode = int_mode_for_mode (tmode);
1481 if (int_mode == BLKmode)
1482 int_mode = int_mode_for_mode (mode);
1483 /* Should probably push op0 out to memory and then do a load. */
1484 gcc_assert (int_mode != BLKmode);
1485
1486 /* OFFSET is the number of words or bytes (UNIT says which)
1487 from STR_RTX to the first word or byte containing part of the field. */
1488 if (!MEM_P (op0))
1489 {
1490 if (offset != 0
1491 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1492 {
1493 if (!REG_P (op0))
1494 op0 = copy_to_reg (op0);
1495 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1496 op0, (offset * UNITS_PER_WORD));
1497 }
1498 offset = 0;
1499 }
1500
1501 /* Now OFFSET is nonzero only for memory operands. */
1502 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1503 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1504 if (ext_mode != MAX_MACHINE_MODE
1505 && bitsize > 0
1506 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1507 /* If op0 is a register, we need it in EXT_MODE to make it
1508 acceptable to the format of ext(z)v. */
1509 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1510 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1511 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1512 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1513 {
1514 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1515 rtx bitsize_rtx, bitpos_rtx;
1516 rtx last = get_last_insn ();
1517 rtx xop0 = op0;
1518 rtx xtarget = target;
1519 rtx xspec_target = target;
1520 rtx xspec_target_subreg = 0;
1521 rtx pat;
1522
1523 /* If op0 is a register, we need it in EXT_MODE to make it
1524 acceptable to the format of ext(z)v. */
1525 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1526 xop0 = gen_rtx_SUBREG (ext_mode, xop0, 0);
1527 if (MEM_P (xop0))
1528 /* Get ref to first byte containing part of the field. */
1529 xop0 = adjust_address (xop0, byte_mode, xoffset);
1530
1531 /* On big-endian machines, we count bits from the most significant.
1532 If the bit field insn does not, we must invert. */
1533 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1534 xbitpos = unit - bitsize - xbitpos;
1535
1536 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1537 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1538 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1539
1540 unit = GET_MODE_BITSIZE (ext_mode);
1541
1542 if (xtarget == 0)
1543 xtarget = xspec_target = gen_reg_rtx (tmode);
1544
1545 if (GET_MODE (xtarget) != ext_mode)
1546 {
1547 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1548 between the mode of the extraction (word_mode) and the target
1549 mode. Instead, create a temporary and use convert_move to set
1550 the target. */
1551 if (REG_P (xtarget)
1552 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1553 GET_MODE_BITSIZE (ext_mode)))
1554 {
1555 xtarget = gen_lowpart (ext_mode, xtarget);
1556 if (GET_MODE_SIZE (ext_mode)
1557 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1558 xspec_target_subreg = xtarget;
1559 }
1560 else
1561 xtarget = gen_reg_rtx (ext_mode);
1562 }
1563
1564 /* If this machine's ext(z)v insists on a register target,
1565 make sure we have one. */
1566 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1567 xtarget = gen_reg_rtx (ext_mode);
1568
1569 bitsize_rtx = GEN_INT (bitsize);
1570 bitpos_rtx = GEN_INT (xbitpos);
1571
1572 pat = (unsignedp
1573 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1574 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1575 if (pat)
1576 {
1577 emit_insn (pat);
1578 if (xtarget == xspec_target)
1579 return xtarget;
1580 if (xtarget == xspec_target_subreg)
1581 return xspec_target;
1582 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1583 }
1584 delete_insns_since (last);
1585 }
1586
1587 /* If OP0 is a memory, try copying it to a register and seeing if a
1588 cheap register alternative is available. */
1589 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1590 {
1591 enum machine_mode bestmode;
1592
1593 /* Get the mode to use for inserting into this field. If
1594 OP0 is BLKmode, get the smallest mode consistent with the
1595 alignment. If OP0 is a non-BLKmode object that is no
1596 wider than EXT_MODE, use its mode. Otherwise, use the
1597 smallest mode containing the field. */
1598
1599 if (GET_MODE (op0) == BLKmode
1600 || (ext_mode != MAX_MACHINE_MODE
1601 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1602 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1603 (ext_mode == MAX_MACHINE_MODE
1604 ? VOIDmode : ext_mode),
1605 MEM_VOLATILE_P (op0));
1606 else
1607 bestmode = GET_MODE (op0);
1608
1609 if (bestmode != VOIDmode
1610 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1611 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1612 {
1613 unsigned HOST_WIDE_INT xoffset, xbitpos;
1614
1615 /* Compute the offset as a multiple of this unit,
1616 counting in bytes. */
1617 unit = GET_MODE_BITSIZE (bestmode);
1618 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1619 xbitpos = bitnum % unit;
1620
1621 /* Make sure the register is big enough for the whole field. */
1622 if (xoffset * BITS_PER_UNIT + unit
1623 >= offset * BITS_PER_UNIT + bitsize)
1624 {
1625 rtx last, result, xop0;
1626
1627 last = get_last_insn ();
1628
1629 /* Fetch it to a register in that size. */
1630 xop0 = adjust_address (op0, bestmode, xoffset);
1631 xop0 = force_reg (bestmode, xop0);
1632 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1633 unsignedp, target,
1634 mode, tmode, false);
1635 if (result)
1636 return result;
1637
1638 delete_insns_since (last);
1639 }
1640 }
1641 }
1642
1643 if (!fallback_p)
1644 return NULL;
1645
1646 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1647 bitpos, target, unsignedp);
1648 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1649 }
1650
1651 /* Generate code to extract a byte-field from STR_RTX
1652 containing BITSIZE bits, starting at BITNUM,
1653 and put it in TARGET if possible (if TARGET is nonzero).
1654 Regardless of TARGET, we return the rtx for where the value is placed.
1655
1656 STR_RTX is the structure containing the byte (a REG or MEM).
1657 UNSIGNEDP is nonzero if this is an unsigned bit field.
1658 MODE is the natural mode of the field value once extracted.
1659 TMODE is the mode the caller would like the value to have;
1660 but the value may be returned with type MODE instead.
1661
1662 If a TARGET is specified and we can store in it at no extra cost,
1663 we do so, and return TARGET.
1664 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1665 if they are equally easy. */
1666
1667 rtx
1668 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1669 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1670 enum machine_mode mode, enum machine_mode tmode)
1671 {
1672 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1673 target, mode, tmode, true);
1674 }
1675 \f
1676 /* Extract a bit field using shifts and boolean operations
1677 Returns an rtx to represent the value.
1678 OP0 addresses a register (word) or memory (byte).
1679 BITPOS says which bit within the word or byte the bit field starts in.
1680 OFFSET says how many bytes farther the bit field starts;
1681 it is 0 if OP0 is a register.
1682 BITSIZE says how many bits long the bit field is.
1683 (If OP0 is a register, it may be narrower than a full word,
1684 but BITPOS still counts within a full word,
1685 which is significant on bigendian machines.)
1686
1687 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1688 If TARGET is nonzero, attempts to store the value there
1689 and return TARGET, but this is not guaranteed.
1690 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1691
1692 static rtx
1693 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1694 unsigned HOST_WIDE_INT offset,
1695 unsigned HOST_WIDE_INT bitsize,
1696 unsigned HOST_WIDE_INT bitpos, rtx target,
1697 int unsignedp)
1698 {
1699 unsigned int total_bits = BITS_PER_WORD;
1700 enum machine_mode mode;
1701
1702 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1703 {
1704 /* Special treatment for a bit field split across two registers. */
1705 if (bitsize + bitpos > BITS_PER_WORD)
1706 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1707 }
1708 else
1709 {
1710 /* Get the proper mode to use for this field. We want a mode that
1711 includes the entire field. If such a mode would be larger than
1712 a word, we won't be doing the extraction the normal way. */
1713
1714 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1715 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1716
1717 if (mode == VOIDmode)
1718 /* The only way this should occur is if the field spans word
1719 boundaries. */
1720 return extract_split_bit_field (op0, bitsize,
1721 bitpos + offset * BITS_PER_UNIT,
1722 unsignedp);
1723
1724 total_bits = GET_MODE_BITSIZE (mode);
1725
1726 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1727 be in the range 0 to total_bits-1, and put any excess bytes in
1728 OFFSET. */
1729 if (bitpos >= total_bits)
1730 {
1731 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1732 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1733 * BITS_PER_UNIT);
1734 }
1735
1736 /* Get ref to an aligned byte, halfword, or word containing the field.
1737 Adjust BITPOS to be position within a word,
1738 and OFFSET to be the offset of that word.
1739 Then alter OP0 to refer to that word. */
1740 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1741 offset -= (offset % (total_bits / BITS_PER_UNIT));
1742 op0 = adjust_address (op0, mode, offset);
1743 }
1744
1745 mode = GET_MODE (op0);
1746
1747 if (BYTES_BIG_ENDIAN)
1748 /* BITPOS is the distance between our msb and that of OP0.
1749 Convert it to the distance from the lsb. */
1750 bitpos = total_bits - bitsize - bitpos;
1751
1752 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1753 We have reduced the big-endian case to the little-endian case. */
1754
1755 if (unsignedp)
1756 {
1757 if (bitpos)
1758 {
1759 /* If the field does not already start at the lsb,
1760 shift it so it does. */
1761 tree amount = build_int_cst (NULL_TREE, bitpos);
1762 /* Maybe propagate the target for the shift. */
1763 /* But not if we will return it--could confuse integrate.c. */
1764 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1765 if (tmode != mode) subtarget = 0;
1766 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1767 }
1768 /* Convert the value to the desired mode. */
1769 if (mode != tmode)
1770 op0 = convert_to_mode (tmode, op0, 1);
1771
1772 /* Unless the msb of the field used to be the msb when we shifted,
1773 mask out the upper bits. */
1774
1775 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1776 return expand_binop (GET_MODE (op0), and_optab, op0,
1777 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1778 target, 1, OPTAB_LIB_WIDEN);
1779 return op0;
1780 }
1781
1782 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1783 then arithmetic-shift its lsb to the lsb of the word. */
1784 op0 = force_reg (mode, op0);
1785 if (mode != tmode)
1786 target = 0;
1787
1788 /* Find the narrowest integer mode that contains the field. */
1789
1790 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1791 mode = GET_MODE_WIDER_MODE (mode))
1792 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1793 {
1794 op0 = convert_to_mode (mode, op0, 0);
1795 break;
1796 }
1797
1798 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1799 {
1800 tree amount
1801 = build_int_cst (NULL_TREE,
1802 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1803 /* Maybe propagate the target for the shift. */
1804 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1805 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1806 }
1807
1808 return expand_shift (RSHIFT_EXPR, mode, op0,
1809 build_int_cst (NULL_TREE,
1810 GET_MODE_BITSIZE (mode) - bitsize),
1811 target, 0);
1812 }
1813 \f
1814 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1815 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1816 complement of that if COMPLEMENT. The mask is truncated if
1817 necessary to the width of mode MODE. The mask is zero-extended if
1818 BITSIZE+BITPOS is too small for MODE. */
1819
1820 static rtx
1821 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1822 {
1823 HOST_WIDE_INT masklow, maskhigh;
1824
1825 if (bitsize == 0)
1826 masklow = 0;
1827 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1828 masklow = (HOST_WIDE_INT) -1 << bitpos;
1829 else
1830 masklow = 0;
1831
1832 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1833 masklow &= ((unsigned HOST_WIDE_INT) -1
1834 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1835
1836 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1837 maskhigh = -1;
1838 else
1839 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1840
1841 if (bitsize == 0)
1842 maskhigh = 0;
1843 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1844 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1845 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1846 else
1847 maskhigh = 0;
1848
1849 if (complement)
1850 {
1851 maskhigh = ~maskhigh;
1852 masklow = ~masklow;
1853 }
1854
1855 return immed_double_const (masklow, maskhigh, mode);
1856 }
1857
1858 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1859 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1860
1861 static rtx
1862 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1863 {
1864 unsigned HOST_WIDE_INT v = INTVAL (value);
1865 HOST_WIDE_INT low, high;
1866
1867 if (bitsize < HOST_BITS_PER_WIDE_INT)
1868 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1869
1870 if (bitpos < HOST_BITS_PER_WIDE_INT)
1871 {
1872 low = v << bitpos;
1873 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1874 }
1875 else
1876 {
1877 low = 0;
1878 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1879 }
1880
1881 return immed_double_const (low, high, mode);
1882 }
1883 \f
1884 /* Extract a bit field that is split across two words
1885 and return an RTX for the result.
1886
1887 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1888 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1889 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1890
1891 static rtx
1892 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1893 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1894 {
1895 unsigned int unit;
1896 unsigned int bitsdone = 0;
1897 rtx result = NULL_RTX;
1898 int first = 1;
1899
1900 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1901 much at a time. */
1902 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1903 unit = BITS_PER_WORD;
1904 else
1905 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1906
1907 while (bitsdone < bitsize)
1908 {
1909 unsigned HOST_WIDE_INT thissize;
1910 rtx part, word;
1911 unsigned HOST_WIDE_INT thispos;
1912 unsigned HOST_WIDE_INT offset;
1913
1914 offset = (bitpos + bitsdone) / unit;
1915 thispos = (bitpos + bitsdone) % unit;
1916
1917 /* THISSIZE must not overrun a word boundary. Otherwise,
1918 extract_fixed_bit_field will call us again, and we will mutually
1919 recurse forever. */
1920 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1921 thissize = MIN (thissize, unit - thispos);
1922
1923 /* If OP0 is a register, then handle OFFSET here.
1924
1925 When handling multiword bitfields, extract_bit_field may pass
1926 down a word_mode SUBREG of a larger REG for a bitfield that actually
1927 crosses a word boundary. Thus, for a SUBREG, we must find
1928 the current word starting from the base register. */
1929 if (GET_CODE (op0) == SUBREG)
1930 {
1931 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1932 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1933 GET_MODE (SUBREG_REG (op0)));
1934 offset = 0;
1935 }
1936 else if (REG_P (op0))
1937 {
1938 word = operand_subword_force (op0, offset, GET_MODE (op0));
1939 offset = 0;
1940 }
1941 else
1942 word = op0;
1943
1944 /* Extract the parts in bit-counting order,
1945 whose meaning is determined by BYTES_PER_UNIT.
1946 OFFSET is in UNITs, and UNIT is in bits.
1947 extract_fixed_bit_field wants offset in bytes. */
1948 part = extract_fixed_bit_field (word_mode, word,
1949 offset * unit / BITS_PER_UNIT,
1950 thissize, thispos, 0, 1);
1951 bitsdone += thissize;
1952
1953 /* Shift this part into place for the result. */
1954 if (BYTES_BIG_ENDIAN)
1955 {
1956 if (bitsize != bitsdone)
1957 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1958 build_int_cst (NULL_TREE, bitsize - bitsdone),
1959 0, 1);
1960 }
1961 else
1962 {
1963 if (bitsdone != thissize)
1964 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1965 build_int_cst (NULL_TREE,
1966 bitsdone - thissize), 0, 1);
1967 }
1968
1969 if (first)
1970 result = part;
1971 else
1972 /* Combine the parts with bitwise or. This works
1973 because we extracted each part as an unsigned bit field. */
1974 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1975 OPTAB_LIB_WIDEN);
1976
1977 first = 0;
1978 }
1979
1980 /* Unsigned bit field: we are done. */
1981 if (unsignedp)
1982 return result;
1983 /* Signed bit field: sign-extend with two arithmetic shifts. */
1984 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1985 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1986 NULL_RTX, 0);
1987 return expand_shift (RSHIFT_EXPR, word_mode, result,
1988 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1989 NULL_RTX, 0);
1990 }
1991 \f
1992 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1993 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1994 MODE, fill the upper bits with zeros. Fail if the layout of either
1995 mode is unknown (as for CC modes) or if the extraction would involve
1996 unprofitable mode punning. Return the value on success, otherwise
1997 return null.
1998
1999 This is different from gen_lowpart* in these respects:
2000
2001 - the returned value must always be considered an rvalue
2002
2003 - when MODE is wider than SRC_MODE, the extraction involves
2004 a zero extension
2005
2006 - when MODE is smaller than SRC_MODE, the extraction involves
2007 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2008
2009 In other words, this routine performs a computation, whereas the
2010 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2011 operations. */
2012
2013 rtx
2014 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2015 {
2016 enum machine_mode int_mode, src_int_mode;
2017
2018 if (mode == src_mode)
2019 return src;
2020
2021 if (CONSTANT_P (src))
2022 {
2023 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2024 fails, it will happily create (subreg (symbol_ref)) or similar
2025 invalid SUBREGs. */
2026 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2027 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2028 if (ret)
2029 return ret;
2030
2031 if (GET_MODE (src) == VOIDmode
2032 || !validate_subreg (mode, src_mode, src, byte))
2033 return NULL_RTX;
2034
2035 src = force_reg (GET_MODE (src), src);
2036 return gen_rtx_SUBREG (mode, src, byte);
2037 }
2038
2039 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2040 return NULL_RTX;
2041
2042 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2043 && MODES_TIEABLE_P (mode, src_mode))
2044 {
2045 rtx x = gen_lowpart_common (mode, src);
2046 if (x)
2047 return x;
2048 }
2049
2050 src_int_mode = int_mode_for_mode (src_mode);
2051 int_mode = int_mode_for_mode (mode);
2052 if (src_int_mode == BLKmode || int_mode == BLKmode)
2053 return NULL_RTX;
2054
2055 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2056 return NULL_RTX;
2057 if (!MODES_TIEABLE_P (int_mode, mode))
2058 return NULL_RTX;
2059
2060 src = gen_lowpart (src_int_mode, src);
2061 src = convert_modes (int_mode, src_int_mode, src, true);
2062 src = gen_lowpart (mode, src);
2063 return src;
2064 }
2065 \f
2066 /* Add INC into TARGET. */
2067
2068 void
2069 expand_inc (rtx target, rtx inc)
2070 {
2071 rtx value = expand_binop (GET_MODE (target), add_optab,
2072 target, inc,
2073 target, 0, OPTAB_LIB_WIDEN);
2074 if (value != target)
2075 emit_move_insn (target, value);
2076 }
2077
2078 /* Subtract DEC from TARGET. */
2079
2080 void
2081 expand_dec (rtx target, rtx dec)
2082 {
2083 rtx value = expand_binop (GET_MODE (target), sub_optab,
2084 target, dec,
2085 target, 0, OPTAB_LIB_WIDEN);
2086 if (value != target)
2087 emit_move_insn (target, value);
2088 }
2089 \f
2090 /* Output a shift instruction for expression code CODE,
2091 with SHIFTED being the rtx for the value to shift,
2092 and AMOUNT the tree for the amount to shift by.
2093 Store the result in the rtx TARGET, if that is convenient.
2094 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2095 Return the rtx for where the value is. */
2096
2097 rtx
2098 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2099 tree amount, rtx target, int unsignedp)
2100 {
2101 rtx op1, temp = 0;
2102 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2103 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2104 optab lshift_optab = ashl_optab;
2105 optab rshift_arith_optab = ashr_optab;
2106 optab rshift_uns_optab = lshr_optab;
2107 optab lrotate_optab = rotl_optab;
2108 optab rrotate_optab = rotr_optab;
2109 enum machine_mode op1_mode;
2110 int attempt;
2111 bool speed = optimize_insn_for_speed_p ();
2112
2113 op1 = expand_normal (amount);
2114 op1_mode = GET_MODE (op1);
2115
2116 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2117 shift amount is a vector, use the vector/vector shift patterns. */
2118 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2119 {
2120 lshift_optab = vashl_optab;
2121 rshift_arith_optab = vashr_optab;
2122 rshift_uns_optab = vlshr_optab;
2123 lrotate_optab = vrotl_optab;
2124 rrotate_optab = vrotr_optab;
2125 }
2126
2127 /* Previously detected shift-counts computed by NEGATE_EXPR
2128 and shifted in the other direction; but that does not work
2129 on all machines. */
2130
2131 if (SHIFT_COUNT_TRUNCATED)
2132 {
2133 if (GET_CODE (op1) == CONST_INT
2134 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2135 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2136 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2137 % GET_MODE_BITSIZE (mode));
2138 else if (GET_CODE (op1) == SUBREG
2139 && subreg_lowpart_p (op1)
2140 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2141 op1 = SUBREG_REG (op1);
2142 }
2143
2144 if (op1 == const0_rtx)
2145 return shifted;
2146
2147 /* Check whether its cheaper to implement a left shift by a constant
2148 bit count by a sequence of additions. */
2149 if (code == LSHIFT_EXPR
2150 && GET_CODE (op1) == CONST_INT
2151 && INTVAL (op1) > 0
2152 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2153 && INTVAL (op1) < MAX_BITS_PER_WORD
2154 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2155 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2156 {
2157 int i;
2158 for (i = 0; i < INTVAL (op1); i++)
2159 {
2160 temp = force_reg (mode, shifted);
2161 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2162 unsignedp, OPTAB_LIB_WIDEN);
2163 }
2164 return shifted;
2165 }
2166
2167 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2168 {
2169 enum optab_methods methods;
2170
2171 if (attempt == 0)
2172 methods = OPTAB_DIRECT;
2173 else if (attempt == 1)
2174 methods = OPTAB_WIDEN;
2175 else
2176 methods = OPTAB_LIB_WIDEN;
2177
2178 if (rotate)
2179 {
2180 /* Widening does not work for rotation. */
2181 if (methods == OPTAB_WIDEN)
2182 continue;
2183 else if (methods == OPTAB_LIB_WIDEN)
2184 {
2185 /* If we have been unable to open-code this by a rotation,
2186 do it as the IOR of two shifts. I.e., to rotate A
2187 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2188 where C is the bitsize of A.
2189
2190 It is theoretically possible that the target machine might
2191 not be able to perform either shift and hence we would
2192 be making two libcalls rather than just the one for the
2193 shift (similarly if IOR could not be done). We will allow
2194 this extremely unlikely lossage to avoid complicating the
2195 code below. */
2196
2197 rtx subtarget = target == shifted ? 0 : target;
2198 tree new_amount, other_amount;
2199 rtx temp1;
2200 tree type = TREE_TYPE (amount);
2201 if (GET_MODE (op1) != TYPE_MODE (type)
2202 && GET_MODE (op1) != VOIDmode)
2203 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2204 new_amount = make_tree (type, op1);
2205 other_amount
2206 = fold_build2 (MINUS_EXPR, type,
2207 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2208 new_amount);
2209
2210 shifted = force_reg (mode, shifted);
2211
2212 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2213 mode, shifted, new_amount, 0, 1);
2214 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2215 mode, shifted, other_amount, subtarget, 1);
2216 return expand_binop (mode, ior_optab, temp, temp1, target,
2217 unsignedp, methods);
2218 }
2219
2220 temp = expand_binop (mode,
2221 left ? lrotate_optab : rrotate_optab,
2222 shifted, op1, target, unsignedp, methods);
2223 }
2224 else if (unsignedp)
2225 temp = expand_binop (mode,
2226 left ? lshift_optab : rshift_uns_optab,
2227 shifted, op1, target, unsignedp, methods);
2228
2229 /* Do arithmetic shifts.
2230 Also, if we are going to widen the operand, we can just as well
2231 use an arithmetic right-shift instead of a logical one. */
2232 if (temp == 0 && ! rotate
2233 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2234 {
2235 enum optab_methods methods1 = methods;
2236
2237 /* If trying to widen a log shift to an arithmetic shift,
2238 don't accept an arithmetic shift of the same size. */
2239 if (unsignedp)
2240 methods1 = OPTAB_MUST_WIDEN;
2241
2242 /* Arithmetic shift */
2243
2244 temp = expand_binop (mode,
2245 left ? lshift_optab : rshift_arith_optab,
2246 shifted, op1, target, unsignedp, methods1);
2247 }
2248
2249 /* We used to try extzv here for logical right shifts, but that was
2250 only useful for one machine, the VAX, and caused poor code
2251 generation there for lshrdi3, so the code was deleted and a
2252 define_expand for lshrsi3 was added to vax.md. */
2253 }
2254
2255 gcc_assert (temp);
2256 return temp;
2257 }
2258 \f
2259 enum alg_code {
2260 alg_unknown,
2261 alg_zero,
2262 alg_m, alg_shift,
2263 alg_add_t_m2,
2264 alg_sub_t_m2,
2265 alg_add_factor,
2266 alg_sub_factor,
2267 alg_add_t2_m,
2268 alg_sub_t2_m,
2269 alg_impossible
2270 };
2271
2272 /* This structure holds the "cost" of a multiply sequence. The
2273 "cost" field holds the total rtx_cost of every operator in the
2274 synthetic multiplication sequence, hence cost(a op b) is defined
2275 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2276 The "latency" field holds the minimum possible latency of the
2277 synthetic multiply, on a hypothetical infinitely parallel CPU.
2278 This is the critical path, or the maximum height, of the expression
2279 tree which is the sum of rtx_costs on the most expensive path from
2280 any leaf to the root. Hence latency(a op b) is defined as zero for
2281 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2282
2283 struct mult_cost {
2284 short cost; /* Total rtx_cost of the multiplication sequence. */
2285 short latency; /* The latency of the multiplication sequence. */
2286 };
2287
2288 /* This macro is used to compare a pointer to a mult_cost against an
2289 single integer "rtx_cost" value. This is equivalent to the macro
2290 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2291 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2292 || ((X)->cost == (Y) && (X)->latency < (Y)))
2293
2294 /* This macro is used to compare two pointers to mult_costs against
2295 each other. The macro returns true if X is cheaper than Y.
2296 Currently, the cheaper of two mult_costs is the one with the
2297 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2298 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2299 || ((X)->cost == (Y)->cost \
2300 && (X)->latency < (Y)->latency))
2301
2302 /* This structure records a sequence of operations.
2303 `ops' is the number of operations recorded.
2304 `cost' is their total cost.
2305 The operations are stored in `op' and the corresponding
2306 logarithms of the integer coefficients in `log'.
2307
2308 These are the operations:
2309 alg_zero total := 0;
2310 alg_m total := multiplicand;
2311 alg_shift total := total * coeff
2312 alg_add_t_m2 total := total + multiplicand * coeff;
2313 alg_sub_t_m2 total := total - multiplicand * coeff;
2314 alg_add_factor total := total * coeff + total;
2315 alg_sub_factor total := total * coeff - total;
2316 alg_add_t2_m total := total * coeff + multiplicand;
2317 alg_sub_t2_m total := total * coeff - multiplicand;
2318
2319 The first operand must be either alg_zero or alg_m. */
2320
2321 struct algorithm
2322 {
2323 struct mult_cost cost;
2324 short ops;
2325 /* The size of the OP and LOG fields are not directly related to the
2326 word size, but the worst-case algorithms will be if we have few
2327 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2328 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2329 in total wordsize operations. */
2330 enum alg_code op[MAX_BITS_PER_WORD];
2331 char log[MAX_BITS_PER_WORD];
2332 };
2333
2334 /* The entry for our multiplication cache/hash table. */
2335 struct alg_hash_entry {
2336 /* The number we are multiplying by. */
2337 unsigned HOST_WIDE_INT t;
2338
2339 /* The mode in which we are multiplying something by T. */
2340 enum machine_mode mode;
2341
2342 /* The best multiplication algorithm for t. */
2343 enum alg_code alg;
2344
2345 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2346 Otherwise, the cost within which multiplication by T is
2347 impossible. */
2348 struct mult_cost cost;
2349
2350 /* OPtimized for speed? */
2351 bool speed;
2352 };
2353
2354 /* The number of cache/hash entries. */
2355 #if HOST_BITS_PER_WIDE_INT == 64
2356 #define NUM_ALG_HASH_ENTRIES 1031
2357 #else
2358 #define NUM_ALG_HASH_ENTRIES 307
2359 #endif
2360
2361 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2362 actually a hash table. If we have a collision, that the older
2363 entry is kicked out. */
2364 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2365
2366 /* Indicates the type of fixup needed after a constant multiplication.
2367 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2368 the result should be negated, and ADD_VARIANT means that the
2369 multiplicand should be added to the result. */
2370 enum mult_variant {basic_variant, negate_variant, add_variant};
2371
2372 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2373 const struct mult_cost *, enum machine_mode mode);
2374 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2375 struct algorithm *, enum mult_variant *, int);
2376 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2377 const struct algorithm *, enum mult_variant);
2378 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2379 int, rtx *, int *, int *);
2380 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2381 static rtx extract_high_half (enum machine_mode, rtx);
2382 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2383 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2384 int, int);
2385 /* Compute and return the best algorithm for multiplying by T.
2386 The algorithm must cost less than cost_limit
2387 If retval.cost >= COST_LIMIT, no algorithm was found and all
2388 other field of the returned struct are undefined.
2389 MODE is the machine mode of the multiplication. */
2390
2391 static void
2392 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2393 const struct mult_cost *cost_limit, enum machine_mode mode)
2394 {
2395 int m;
2396 struct algorithm *alg_in, *best_alg;
2397 struct mult_cost best_cost;
2398 struct mult_cost new_limit;
2399 int op_cost, op_latency;
2400 unsigned HOST_WIDE_INT q;
2401 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2402 int hash_index;
2403 bool cache_hit = false;
2404 enum alg_code cache_alg = alg_zero;
2405 bool speed = optimize_insn_for_speed_p ();
2406
2407 /* Indicate that no algorithm is yet found. If no algorithm
2408 is found, this value will be returned and indicate failure. */
2409 alg_out->cost.cost = cost_limit->cost + 1;
2410 alg_out->cost.latency = cost_limit->latency + 1;
2411
2412 if (cost_limit->cost < 0
2413 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2414 return;
2415
2416 /* Restrict the bits of "t" to the multiplication's mode. */
2417 t &= GET_MODE_MASK (mode);
2418
2419 /* t == 1 can be done in zero cost. */
2420 if (t == 1)
2421 {
2422 alg_out->ops = 1;
2423 alg_out->cost.cost = 0;
2424 alg_out->cost.latency = 0;
2425 alg_out->op[0] = alg_m;
2426 return;
2427 }
2428
2429 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2430 fail now. */
2431 if (t == 0)
2432 {
2433 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2434 return;
2435 else
2436 {
2437 alg_out->ops = 1;
2438 alg_out->cost.cost = zero_cost[speed];
2439 alg_out->cost.latency = zero_cost[speed];
2440 alg_out->op[0] = alg_zero;
2441 return;
2442 }
2443 }
2444
2445 /* We'll be needing a couple extra algorithm structures now. */
2446
2447 alg_in = XALLOCA (struct algorithm);
2448 best_alg = XALLOCA (struct algorithm);
2449 best_cost = *cost_limit;
2450
2451 /* Compute the hash index. */
2452 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2453
2454 /* See if we already know what to do for T. */
2455 if (alg_hash[hash_index].t == t
2456 && alg_hash[hash_index].mode == mode
2457 && alg_hash[hash_index].mode == mode
2458 && alg_hash[hash_index].speed == speed
2459 && alg_hash[hash_index].alg != alg_unknown)
2460 {
2461 cache_alg = alg_hash[hash_index].alg;
2462
2463 if (cache_alg == alg_impossible)
2464 {
2465 /* The cache tells us that it's impossible to synthesize
2466 multiplication by T within alg_hash[hash_index].cost. */
2467 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2468 /* COST_LIMIT is at least as restrictive as the one
2469 recorded in the hash table, in which case we have no
2470 hope of synthesizing a multiplication. Just
2471 return. */
2472 return;
2473
2474 /* If we get here, COST_LIMIT is less restrictive than the
2475 one recorded in the hash table, so we may be able to
2476 synthesize a multiplication. Proceed as if we didn't
2477 have the cache entry. */
2478 }
2479 else
2480 {
2481 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2482 /* The cached algorithm shows that this multiplication
2483 requires more cost than COST_LIMIT. Just return. This
2484 way, we don't clobber this cache entry with
2485 alg_impossible but retain useful information. */
2486 return;
2487
2488 cache_hit = true;
2489
2490 switch (cache_alg)
2491 {
2492 case alg_shift:
2493 goto do_alg_shift;
2494
2495 case alg_add_t_m2:
2496 case alg_sub_t_m2:
2497 goto do_alg_addsub_t_m2;
2498
2499 case alg_add_factor:
2500 case alg_sub_factor:
2501 goto do_alg_addsub_factor;
2502
2503 case alg_add_t2_m:
2504 goto do_alg_add_t2_m;
2505
2506 case alg_sub_t2_m:
2507 goto do_alg_sub_t2_m;
2508
2509 default:
2510 gcc_unreachable ();
2511 }
2512 }
2513 }
2514
2515 /* If we have a group of zero bits at the low-order part of T, try
2516 multiplying by the remaining bits and then doing a shift. */
2517
2518 if ((t & 1) == 0)
2519 {
2520 do_alg_shift:
2521 m = floor_log2 (t & -t); /* m = number of low zero bits */
2522 if (m < maxm)
2523 {
2524 q = t >> m;
2525 /* The function expand_shift will choose between a shift and
2526 a sequence of additions, so the observed cost is given as
2527 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2528 op_cost = m * add_cost[speed][mode];
2529 if (shift_cost[speed][mode][m] < op_cost)
2530 op_cost = shift_cost[speed][mode][m];
2531 new_limit.cost = best_cost.cost - op_cost;
2532 new_limit.latency = best_cost.latency - op_cost;
2533 synth_mult (alg_in, q, &new_limit, mode);
2534
2535 alg_in->cost.cost += op_cost;
2536 alg_in->cost.latency += op_cost;
2537 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2538 {
2539 struct algorithm *x;
2540 best_cost = alg_in->cost;
2541 x = alg_in, alg_in = best_alg, best_alg = x;
2542 best_alg->log[best_alg->ops] = m;
2543 best_alg->op[best_alg->ops] = alg_shift;
2544 }
2545 }
2546 if (cache_hit)
2547 goto done;
2548 }
2549
2550 /* If we have an odd number, add or subtract one. */
2551 if ((t & 1) != 0)
2552 {
2553 unsigned HOST_WIDE_INT w;
2554
2555 do_alg_addsub_t_m2:
2556 for (w = 1; (w & t) != 0; w <<= 1)
2557 ;
2558 /* If T was -1, then W will be zero after the loop. This is another
2559 case where T ends with ...111. Handling this with (T + 1) and
2560 subtract 1 produces slightly better code and results in algorithm
2561 selection much faster than treating it like the ...0111 case
2562 below. */
2563 if (w == 0
2564 || (w > 2
2565 /* Reject the case where t is 3.
2566 Thus we prefer addition in that case. */
2567 && t != 3))
2568 {
2569 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2570
2571 op_cost = add_cost[speed][mode];
2572 new_limit.cost = best_cost.cost - op_cost;
2573 new_limit.latency = best_cost.latency - op_cost;
2574 synth_mult (alg_in, t + 1, &new_limit, mode);
2575
2576 alg_in->cost.cost += op_cost;
2577 alg_in->cost.latency += op_cost;
2578 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2579 {
2580 struct algorithm *x;
2581 best_cost = alg_in->cost;
2582 x = alg_in, alg_in = best_alg, best_alg = x;
2583 best_alg->log[best_alg->ops] = 0;
2584 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2585 }
2586 }
2587 else
2588 {
2589 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2590
2591 op_cost = add_cost[speed][mode];
2592 new_limit.cost = best_cost.cost - op_cost;
2593 new_limit.latency = best_cost.latency - op_cost;
2594 synth_mult (alg_in, t - 1, &new_limit, mode);
2595
2596 alg_in->cost.cost += op_cost;
2597 alg_in->cost.latency += op_cost;
2598 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2599 {
2600 struct algorithm *x;
2601 best_cost = alg_in->cost;
2602 x = alg_in, alg_in = best_alg, best_alg = x;
2603 best_alg->log[best_alg->ops] = 0;
2604 best_alg->op[best_alg->ops] = alg_add_t_m2;
2605 }
2606 }
2607 if (cache_hit)
2608 goto done;
2609 }
2610
2611 /* Look for factors of t of the form
2612 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2613 If we find such a factor, we can multiply by t using an algorithm that
2614 multiplies by q, shift the result by m and add/subtract it to itself.
2615
2616 We search for large factors first and loop down, even if large factors
2617 are less probable than small; if we find a large factor we will find a
2618 good sequence quickly, and therefore be able to prune (by decreasing
2619 COST_LIMIT) the search. */
2620
2621 do_alg_addsub_factor:
2622 for (m = floor_log2 (t - 1); m >= 2; m--)
2623 {
2624 unsigned HOST_WIDE_INT d;
2625
2626 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2627 if (t % d == 0 && t > d && m < maxm
2628 && (!cache_hit || cache_alg == alg_add_factor))
2629 {
2630 /* If the target has a cheap shift-and-add instruction use
2631 that in preference to a shift insn followed by an add insn.
2632 Assume that the shift-and-add is "atomic" with a latency
2633 equal to its cost, otherwise assume that on superscalar
2634 hardware the shift may be executed concurrently with the
2635 earlier steps in the algorithm. */
2636 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2637 if (shiftadd_cost[speed][mode][m] < op_cost)
2638 {
2639 op_cost = shiftadd_cost[speed][mode][m];
2640 op_latency = op_cost;
2641 }
2642 else
2643 op_latency = add_cost[speed][mode];
2644
2645 new_limit.cost = best_cost.cost - op_cost;
2646 new_limit.latency = best_cost.latency - op_latency;
2647 synth_mult (alg_in, t / d, &new_limit, mode);
2648
2649 alg_in->cost.cost += op_cost;
2650 alg_in->cost.latency += op_latency;
2651 if (alg_in->cost.latency < op_cost)
2652 alg_in->cost.latency = op_cost;
2653 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2654 {
2655 struct algorithm *x;
2656 best_cost = alg_in->cost;
2657 x = alg_in, alg_in = best_alg, best_alg = x;
2658 best_alg->log[best_alg->ops] = m;
2659 best_alg->op[best_alg->ops] = alg_add_factor;
2660 }
2661 /* Other factors will have been taken care of in the recursion. */
2662 break;
2663 }
2664
2665 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2666 if (t % d == 0 && t > d && m < maxm
2667 && (!cache_hit || cache_alg == alg_sub_factor))
2668 {
2669 /* If the target has a cheap shift-and-subtract insn use
2670 that in preference to a shift insn followed by a sub insn.
2671 Assume that the shift-and-sub is "atomic" with a latency
2672 equal to it's cost, otherwise assume that on superscalar
2673 hardware the shift may be executed concurrently with the
2674 earlier steps in the algorithm. */
2675 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2676 if (shiftsub_cost[speed][mode][m] < op_cost)
2677 {
2678 op_cost = shiftsub_cost[speed][mode][m];
2679 op_latency = op_cost;
2680 }
2681 else
2682 op_latency = add_cost[speed][mode];
2683
2684 new_limit.cost = best_cost.cost - op_cost;
2685 new_limit.latency = best_cost.latency - op_latency;
2686 synth_mult (alg_in, t / d, &new_limit, mode);
2687
2688 alg_in->cost.cost += op_cost;
2689 alg_in->cost.latency += op_latency;
2690 if (alg_in->cost.latency < op_cost)
2691 alg_in->cost.latency = op_cost;
2692 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2693 {
2694 struct algorithm *x;
2695 best_cost = alg_in->cost;
2696 x = alg_in, alg_in = best_alg, best_alg = x;
2697 best_alg->log[best_alg->ops] = m;
2698 best_alg->op[best_alg->ops] = alg_sub_factor;
2699 }
2700 break;
2701 }
2702 }
2703 if (cache_hit)
2704 goto done;
2705
2706 /* Try shift-and-add (load effective address) instructions,
2707 i.e. do a*3, a*5, a*9. */
2708 if ((t & 1) != 0)
2709 {
2710 do_alg_add_t2_m:
2711 q = t - 1;
2712 q = q & -q;
2713 m = exact_log2 (q);
2714 if (m >= 0 && m < maxm)
2715 {
2716 op_cost = shiftadd_cost[speed][mode][m];
2717 new_limit.cost = best_cost.cost - op_cost;
2718 new_limit.latency = best_cost.latency - op_cost;
2719 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2720
2721 alg_in->cost.cost += op_cost;
2722 alg_in->cost.latency += op_cost;
2723 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2724 {
2725 struct algorithm *x;
2726 best_cost = alg_in->cost;
2727 x = alg_in, alg_in = best_alg, best_alg = x;
2728 best_alg->log[best_alg->ops] = m;
2729 best_alg->op[best_alg->ops] = alg_add_t2_m;
2730 }
2731 }
2732 if (cache_hit)
2733 goto done;
2734
2735 do_alg_sub_t2_m:
2736 q = t + 1;
2737 q = q & -q;
2738 m = exact_log2 (q);
2739 if (m >= 0 && m < maxm)
2740 {
2741 op_cost = shiftsub_cost[speed][mode][m];
2742 new_limit.cost = best_cost.cost - op_cost;
2743 new_limit.latency = best_cost.latency - op_cost;
2744 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2745
2746 alg_in->cost.cost += op_cost;
2747 alg_in->cost.latency += op_cost;
2748 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2749 {
2750 struct algorithm *x;
2751 best_cost = alg_in->cost;
2752 x = alg_in, alg_in = best_alg, best_alg = x;
2753 best_alg->log[best_alg->ops] = m;
2754 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2755 }
2756 }
2757 if (cache_hit)
2758 goto done;
2759 }
2760
2761 done:
2762 /* If best_cost has not decreased, we have not found any algorithm. */
2763 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2764 {
2765 /* We failed to find an algorithm. Record alg_impossible for
2766 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2767 we are asked to find an algorithm for T within the same or
2768 lower COST_LIMIT, we can immediately return to the
2769 caller. */
2770 alg_hash[hash_index].t = t;
2771 alg_hash[hash_index].mode = mode;
2772 alg_hash[hash_index].speed = speed;
2773 alg_hash[hash_index].alg = alg_impossible;
2774 alg_hash[hash_index].cost = *cost_limit;
2775 return;
2776 }
2777
2778 /* Cache the result. */
2779 if (!cache_hit)
2780 {
2781 alg_hash[hash_index].t = t;
2782 alg_hash[hash_index].mode = mode;
2783 alg_hash[hash_index].speed = speed;
2784 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2785 alg_hash[hash_index].cost.cost = best_cost.cost;
2786 alg_hash[hash_index].cost.latency = best_cost.latency;
2787 }
2788
2789 /* If we are getting a too long sequence for `struct algorithm'
2790 to record, make this search fail. */
2791 if (best_alg->ops == MAX_BITS_PER_WORD)
2792 return;
2793
2794 /* Copy the algorithm from temporary space to the space at alg_out.
2795 We avoid using structure assignment because the majority of
2796 best_alg is normally undefined, and this is a critical function. */
2797 alg_out->ops = best_alg->ops + 1;
2798 alg_out->cost = best_cost;
2799 memcpy (alg_out->op, best_alg->op,
2800 alg_out->ops * sizeof *alg_out->op);
2801 memcpy (alg_out->log, best_alg->log,
2802 alg_out->ops * sizeof *alg_out->log);
2803 }
2804 \f
2805 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2806 Try three variations:
2807
2808 - a shift/add sequence based on VAL itself
2809 - a shift/add sequence based on -VAL, followed by a negation
2810 - a shift/add sequence based on VAL - 1, followed by an addition.
2811
2812 Return true if the cheapest of these cost less than MULT_COST,
2813 describing the algorithm in *ALG and final fixup in *VARIANT. */
2814
2815 static bool
2816 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2817 struct algorithm *alg, enum mult_variant *variant,
2818 int mult_cost)
2819 {
2820 struct algorithm alg2;
2821 struct mult_cost limit;
2822 int op_cost;
2823 bool speed = optimize_insn_for_speed_p ();
2824
2825 /* Fail quickly for impossible bounds. */
2826 if (mult_cost < 0)
2827 return false;
2828
2829 /* Ensure that mult_cost provides a reasonable upper bound.
2830 Any constant multiplication can be performed with less
2831 than 2 * bits additions. */
2832 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2833 if (mult_cost > op_cost)
2834 mult_cost = op_cost;
2835
2836 *variant = basic_variant;
2837 limit.cost = mult_cost;
2838 limit.latency = mult_cost;
2839 synth_mult (alg, val, &limit, mode);
2840
2841 /* This works only if the inverted value actually fits in an
2842 `unsigned int' */
2843 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2844 {
2845 op_cost = neg_cost[speed][mode];
2846 if (MULT_COST_LESS (&alg->cost, mult_cost))
2847 {
2848 limit.cost = alg->cost.cost - op_cost;
2849 limit.latency = alg->cost.latency - op_cost;
2850 }
2851 else
2852 {
2853 limit.cost = mult_cost - op_cost;
2854 limit.latency = mult_cost - op_cost;
2855 }
2856
2857 synth_mult (&alg2, -val, &limit, mode);
2858 alg2.cost.cost += op_cost;
2859 alg2.cost.latency += op_cost;
2860 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2861 *alg = alg2, *variant = negate_variant;
2862 }
2863
2864 /* This proves very useful for division-by-constant. */
2865 op_cost = add_cost[speed][mode];
2866 if (MULT_COST_LESS (&alg->cost, mult_cost))
2867 {
2868 limit.cost = alg->cost.cost - op_cost;
2869 limit.latency = alg->cost.latency - op_cost;
2870 }
2871 else
2872 {
2873 limit.cost = mult_cost - op_cost;
2874 limit.latency = mult_cost - op_cost;
2875 }
2876
2877 synth_mult (&alg2, val - 1, &limit, mode);
2878 alg2.cost.cost += op_cost;
2879 alg2.cost.latency += op_cost;
2880 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2881 *alg = alg2, *variant = add_variant;
2882
2883 return MULT_COST_LESS (&alg->cost, mult_cost);
2884 }
2885
2886 /* A subroutine of expand_mult, used for constant multiplications.
2887 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2888 convenient. Use the shift/add sequence described by ALG and apply
2889 the final fixup specified by VARIANT. */
2890
2891 static rtx
2892 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2893 rtx target, const struct algorithm *alg,
2894 enum mult_variant variant)
2895 {
2896 HOST_WIDE_INT val_so_far;
2897 rtx insn, accum, tem;
2898 int opno;
2899 enum machine_mode nmode;
2900
2901 /* Avoid referencing memory over and over and invalid sharing
2902 on SUBREGs. */
2903 op0 = force_reg (mode, op0);
2904
2905 /* ACCUM starts out either as OP0 or as a zero, depending on
2906 the first operation. */
2907
2908 if (alg->op[0] == alg_zero)
2909 {
2910 accum = copy_to_mode_reg (mode, const0_rtx);
2911 val_so_far = 0;
2912 }
2913 else if (alg->op[0] == alg_m)
2914 {
2915 accum = copy_to_mode_reg (mode, op0);
2916 val_so_far = 1;
2917 }
2918 else
2919 gcc_unreachable ();
2920
2921 for (opno = 1; opno < alg->ops; opno++)
2922 {
2923 int log = alg->log[opno];
2924 rtx shift_subtarget = optimize ? 0 : accum;
2925 rtx add_target
2926 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2927 && !optimize)
2928 ? target : 0;
2929 rtx accum_target = optimize ? 0 : accum;
2930
2931 switch (alg->op[opno])
2932 {
2933 case alg_shift:
2934 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2935 build_int_cst (NULL_TREE, log),
2936 NULL_RTX, 0);
2937 val_so_far <<= log;
2938 break;
2939
2940 case alg_add_t_m2:
2941 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2942 build_int_cst (NULL_TREE, log),
2943 NULL_RTX, 0);
2944 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2945 add_target ? add_target : accum_target);
2946 val_so_far += (HOST_WIDE_INT) 1 << log;
2947 break;
2948
2949 case alg_sub_t_m2:
2950 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2951 build_int_cst (NULL_TREE, log),
2952 NULL_RTX, 0);
2953 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2954 add_target ? add_target : accum_target);
2955 val_so_far -= (HOST_WIDE_INT) 1 << log;
2956 break;
2957
2958 case alg_add_t2_m:
2959 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2960 build_int_cst (NULL_TREE, log),
2961 shift_subtarget,
2962 0);
2963 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2964 add_target ? add_target : accum_target);
2965 val_so_far = (val_so_far << log) + 1;
2966 break;
2967
2968 case alg_sub_t2_m:
2969 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2970 build_int_cst (NULL_TREE, log),
2971 shift_subtarget, 0);
2972 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2973 add_target ? add_target : accum_target);
2974 val_so_far = (val_so_far << log) - 1;
2975 break;
2976
2977 case alg_add_factor:
2978 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2979 build_int_cst (NULL_TREE, log),
2980 NULL_RTX, 0);
2981 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2982 add_target ? add_target : accum_target);
2983 val_so_far += val_so_far << log;
2984 break;
2985
2986 case alg_sub_factor:
2987 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2988 build_int_cst (NULL_TREE, log),
2989 NULL_RTX, 0);
2990 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2991 (add_target
2992 ? add_target : (optimize ? 0 : tem)));
2993 val_so_far = (val_so_far << log) - val_so_far;
2994 break;
2995
2996 default:
2997 gcc_unreachable ();
2998 }
2999
3000 /* Write a REG_EQUAL note on the last insn so that we can cse
3001 multiplication sequences. Note that if ACCUM is a SUBREG,
3002 we've set the inner register and must properly indicate
3003 that. */
3004
3005 tem = op0, nmode = mode;
3006 if (GET_CODE (accum) == SUBREG)
3007 {
3008 nmode = GET_MODE (SUBREG_REG (accum));
3009 tem = gen_lowpart (nmode, op0);
3010 }
3011
3012 insn = get_last_insn ();
3013 set_unique_reg_note (insn, REG_EQUAL,
3014 gen_rtx_MULT (nmode, tem,
3015 GEN_INT (val_so_far)));
3016 }
3017
3018 if (variant == negate_variant)
3019 {
3020 val_so_far = -val_so_far;
3021 accum = expand_unop (mode, neg_optab, accum, target, 0);
3022 }
3023 else if (variant == add_variant)
3024 {
3025 val_so_far = val_so_far + 1;
3026 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3027 }
3028
3029 /* Compare only the bits of val and val_so_far that are significant
3030 in the result mode, to avoid sign-/zero-extension confusion. */
3031 val &= GET_MODE_MASK (mode);
3032 val_so_far &= GET_MODE_MASK (mode);
3033 gcc_assert (val == val_so_far);
3034
3035 return accum;
3036 }
3037
3038 /* Perform a multiplication and return an rtx for the result.
3039 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3040 TARGET is a suggestion for where to store the result (an rtx).
3041
3042 We check specially for a constant integer as OP1.
3043 If you want this check for OP0 as well, then before calling
3044 you should swap the two operands if OP0 would be constant. */
3045
3046 rtx
3047 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3048 int unsignedp)
3049 {
3050 enum mult_variant variant;
3051 struct algorithm algorithm;
3052 int max_cost;
3053 bool speed = optimize_insn_for_speed_p ();
3054
3055 /* Handling const0_rtx here allows us to use zero as a rogue value for
3056 coeff below. */
3057 if (op1 == const0_rtx)
3058 return const0_rtx;
3059 if (op1 == const1_rtx)
3060 return op0;
3061 if (op1 == constm1_rtx)
3062 return expand_unop (mode,
3063 GET_MODE_CLASS (mode) == MODE_INT
3064 && !unsignedp && flag_trapv
3065 ? negv_optab : neg_optab,
3066 op0, target, 0);
3067
3068 /* These are the operations that are potentially turned into a sequence
3069 of shifts and additions. */
3070 if (SCALAR_INT_MODE_P (mode)
3071 && (unsignedp || !flag_trapv))
3072 {
3073 HOST_WIDE_INT coeff = 0;
3074 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3075
3076 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3077 less than or equal in size to `unsigned int' this doesn't matter.
3078 If the mode is larger than `unsigned int', then synth_mult works
3079 only if the constant value exactly fits in an `unsigned int' without
3080 any truncation. This means that multiplying by negative values does
3081 not work; results are off by 2^32 on a 32 bit machine. */
3082
3083 if (GET_CODE (op1) == CONST_INT)
3084 {
3085 /* Attempt to handle multiplication of DImode values by negative
3086 coefficients, by performing the multiplication by a positive
3087 multiplier and then inverting the result. */
3088 if (INTVAL (op1) < 0
3089 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3090 {
3091 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3092 result is interpreted as an unsigned coefficient.
3093 Exclude cost of op0 from max_cost to match the cost
3094 calculation of the synth_mult. */
3095 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3096 - neg_cost[speed][mode];
3097 if (max_cost > 0
3098 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3099 &variant, max_cost))
3100 {
3101 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3102 NULL_RTX, &algorithm,
3103 variant);
3104 return expand_unop (mode, neg_optab, temp, target, 0);
3105 }
3106 }
3107 else coeff = INTVAL (op1);
3108 }
3109 else if (GET_CODE (op1) == CONST_DOUBLE)
3110 {
3111 /* If we are multiplying in DImode, it may still be a win
3112 to try to work with shifts and adds. */
3113 if (CONST_DOUBLE_HIGH (op1) == 0
3114 && CONST_DOUBLE_LOW (op1) > 0)
3115 coeff = CONST_DOUBLE_LOW (op1);
3116 else if (CONST_DOUBLE_LOW (op1) == 0
3117 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3118 {
3119 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3120 + HOST_BITS_PER_WIDE_INT;
3121 return expand_shift (LSHIFT_EXPR, mode, op0,
3122 build_int_cst (NULL_TREE, shift),
3123 target, unsignedp);
3124 }
3125 }
3126
3127 /* We used to test optimize here, on the grounds that it's better to
3128 produce a smaller program when -O is not used. But this causes
3129 such a terrible slowdown sometimes that it seems better to always
3130 use synth_mult. */
3131 if (coeff != 0)
3132 {
3133 /* Special case powers of two. */
3134 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3135 return expand_shift (LSHIFT_EXPR, mode, op0,
3136 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3137 target, unsignedp);
3138
3139 /* Exclude cost of op0 from max_cost to match the cost
3140 calculation of the synth_mult. */
3141 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3142 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3143 max_cost))
3144 return expand_mult_const (mode, op0, coeff, target,
3145 &algorithm, variant);
3146 }
3147 }
3148
3149 if (GET_CODE (op0) == CONST_DOUBLE)
3150 {
3151 rtx temp = op0;
3152 op0 = op1;
3153 op1 = temp;
3154 }
3155
3156 /* Expand x*2.0 as x+x. */
3157 if (GET_CODE (op1) == CONST_DOUBLE
3158 && SCALAR_FLOAT_MODE_P (mode))
3159 {
3160 REAL_VALUE_TYPE d;
3161 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3162
3163 if (REAL_VALUES_EQUAL (d, dconst2))
3164 {
3165 op0 = force_reg (GET_MODE (op0), op0);
3166 return expand_binop (mode, add_optab, op0, op0,
3167 target, unsignedp, OPTAB_LIB_WIDEN);
3168 }
3169 }
3170
3171 /* This used to use umul_optab if unsigned, but for non-widening multiply
3172 there is no difference between signed and unsigned. */
3173 op0 = expand_binop (mode,
3174 ! unsignedp
3175 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3176 ? smulv_optab : smul_optab,
3177 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3178 gcc_assert (op0);
3179 return op0;
3180 }
3181 \f
3182 /* Return the smallest n such that 2**n >= X. */
3183
3184 int
3185 ceil_log2 (unsigned HOST_WIDE_INT x)
3186 {
3187 return floor_log2 (x - 1) + 1;
3188 }
3189
3190 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3191 replace division by D, and put the least significant N bits of the result
3192 in *MULTIPLIER_PTR and return the most significant bit.
3193
3194 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3195 needed precision is in PRECISION (should be <= N).
3196
3197 PRECISION should be as small as possible so this function can choose
3198 multiplier more freely.
3199
3200 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3201 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3202
3203 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3204 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3205
3206 static
3207 unsigned HOST_WIDE_INT
3208 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3209 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3210 {
3211 HOST_WIDE_INT mhigh_hi, mlow_hi;
3212 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3213 int lgup, post_shift;
3214 int pow, pow2;
3215 unsigned HOST_WIDE_INT nl, dummy1;
3216 HOST_WIDE_INT nh, dummy2;
3217
3218 /* lgup = ceil(log2(divisor)); */
3219 lgup = ceil_log2 (d);
3220
3221 gcc_assert (lgup <= n);
3222
3223 pow = n + lgup;
3224 pow2 = n + lgup - precision;
3225
3226 /* We could handle this with some effort, but this case is much
3227 better handled directly with a scc insn, so rely on caller using
3228 that. */
3229 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3230
3231 /* mlow = 2^(N + lgup)/d */
3232 if (pow >= HOST_BITS_PER_WIDE_INT)
3233 {
3234 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3235 nl = 0;
3236 }
3237 else
3238 {
3239 nh = 0;
3240 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3241 }
3242 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3243 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3244
3245 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3246 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3247 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3248 else
3249 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3250 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3251 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3252
3253 gcc_assert (!mhigh_hi || nh - d < d);
3254 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3255 /* Assert that mlow < mhigh. */
3256 gcc_assert (mlow_hi < mhigh_hi
3257 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3258
3259 /* If precision == N, then mlow, mhigh exceed 2^N
3260 (but they do not exceed 2^(N+1)). */
3261
3262 /* Reduce to lowest terms. */
3263 for (post_shift = lgup; post_shift > 0; post_shift--)
3264 {
3265 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3266 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3267 if (ml_lo >= mh_lo)
3268 break;
3269
3270 mlow_hi = 0;
3271 mlow_lo = ml_lo;
3272 mhigh_hi = 0;
3273 mhigh_lo = mh_lo;
3274 }
3275
3276 *post_shift_ptr = post_shift;
3277 *lgup_ptr = lgup;
3278 if (n < HOST_BITS_PER_WIDE_INT)
3279 {
3280 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3281 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3282 return mhigh_lo >= mask;
3283 }
3284 else
3285 {
3286 *multiplier_ptr = GEN_INT (mhigh_lo);
3287 return mhigh_hi;
3288 }
3289 }
3290
3291 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3292 congruent to 1 (mod 2**N). */
3293
3294 static unsigned HOST_WIDE_INT
3295 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3296 {
3297 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3298
3299 /* The algorithm notes that the choice y = x satisfies
3300 x*y == 1 mod 2^3, since x is assumed odd.
3301 Each iteration doubles the number of bits of significance in y. */
3302
3303 unsigned HOST_WIDE_INT mask;
3304 unsigned HOST_WIDE_INT y = x;
3305 int nbit = 3;
3306
3307 mask = (n == HOST_BITS_PER_WIDE_INT
3308 ? ~(unsigned HOST_WIDE_INT) 0
3309 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3310
3311 while (nbit < n)
3312 {
3313 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3314 nbit *= 2;
3315 }
3316 return y;
3317 }
3318
3319 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3320 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3321 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3322 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3323 become signed.
3324
3325 The result is put in TARGET if that is convenient.
3326
3327 MODE is the mode of operation. */
3328
3329 rtx
3330 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3331 rtx op1, rtx target, int unsignedp)
3332 {
3333 rtx tem;
3334 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3335
3336 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3337 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3338 NULL_RTX, 0);
3339 tem = expand_and (mode, tem, op1, NULL_RTX);
3340 adj_operand
3341 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3342 adj_operand);
3343
3344 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3345 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3346 NULL_RTX, 0);
3347 tem = expand_and (mode, tem, op0, NULL_RTX);
3348 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3349 target);
3350
3351 return target;
3352 }
3353
3354 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3355
3356 static rtx
3357 extract_high_half (enum machine_mode mode, rtx op)
3358 {
3359 enum machine_mode wider_mode;
3360
3361 if (mode == word_mode)
3362 return gen_highpart (mode, op);
3363
3364 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3365
3366 wider_mode = GET_MODE_WIDER_MODE (mode);
3367 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3368 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3369 return convert_modes (mode, wider_mode, op, 0);
3370 }
3371
3372 /* Like expand_mult_highpart, but only consider using a multiplication
3373 optab. OP1 is an rtx for the constant operand. */
3374
3375 static rtx
3376 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3377 rtx target, int unsignedp, int max_cost)
3378 {
3379 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3380 enum machine_mode wider_mode;
3381 optab moptab;
3382 rtx tem;
3383 int size;
3384 bool speed = optimize_insn_for_speed_p ();
3385
3386 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3387
3388 wider_mode = GET_MODE_WIDER_MODE (mode);
3389 size = GET_MODE_BITSIZE (mode);
3390
3391 /* Firstly, try using a multiplication insn that only generates the needed
3392 high part of the product, and in the sign flavor of unsignedp. */
3393 if (mul_highpart_cost[speed][mode] < max_cost)
3394 {
3395 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3396 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3397 unsignedp, OPTAB_DIRECT);
3398 if (tem)
3399 return tem;
3400 }
3401
3402 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3403 Need to adjust the result after the multiplication. */
3404 if (size - 1 < BITS_PER_WORD
3405 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3406 + 4 * add_cost[speed][mode] < max_cost))
3407 {
3408 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3409 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3410 unsignedp, OPTAB_DIRECT);
3411 if (tem)
3412 /* We used the wrong signedness. Adjust the result. */
3413 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3414 tem, unsignedp);
3415 }
3416
3417 /* Try widening multiplication. */
3418 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3419 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3420 && mul_widen_cost[speed][wider_mode] < max_cost)
3421 {
3422 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3423 unsignedp, OPTAB_WIDEN);
3424 if (tem)
3425 return extract_high_half (mode, tem);
3426 }
3427
3428 /* Try widening the mode and perform a non-widening multiplication. */
3429 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3430 && size - 1 < BITS_PER_WORD
3431 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3432 {
3433 rtx insns, wop0, wop1;
3434
3435 /* We need to widen the operands, for example to ensure the
3436 constant multiplier is correctly sign or zero extended.
3437 Use a sequence to clean-up any instructions emitted by
3438 the conversions if things don't work out. */
3439 start_sequence ();
3440 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3441 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3442 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3443 unsignedp, OPTAB_WIDEN);
3444 insns = get_insns ();
3445 end_sequence ();
3446
3447 if (tem)
3448 {
3449 emit_insn (insns);
3450 return extract_high_half (mode, tem);
3451 }
3452 }
3453
3454 /* Try widening multiplication of opposite signedness, and adjust. */
3455 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3456 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3457 && size - 1 < BITS_PER_WORD
3458 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3459 + 4 * add_cost[speed][mode] < max_cost))
3460 {
3461 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3462 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3463 if (tem != 0)
3464 {
3465 tem = extract_high_half (mode, tem);
3466 /* We used the wrong signedness. Adjust the result. */
3467 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3468 target, unsignedp);
3469 }
3470 }
3471
3472 return 0;
3473 }
3474
3475 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3476 putting the high half of the result in TARGET if that is convenient,
3477 and return where the result is. If the operation can not be performed,
3478 0 is returned.
3479
3480 MODE is the mode of operation and result.
3481
3482 UNSIGNEDP nonzero means unsigned multiply.
3483
3484 MAX_COST is the total allowed cost for the expanded RTL. */
3485
3486 static rtx
3487 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3488 rtx target, int unsignedp, int max_cost)
3489 {
3490 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3491 unsigned HOST_WIDE_INT cnst1;
3492 int extra_cost;
3493 bool sign_adjust = false;
3494 enum mult_variant variant;
3495 struct algorithm alg;
3496 rtx tem;
3497 bool speed = optimize_insn_for_speed_p ();
3498
3499 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3500 /* We can't support modes wider than HOST_BITS_PER_INT. */
3501 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3502
3503 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3504
3505 /* We can't optimize modes wider than BITS_PER_WORD.
3506 ??? We might be able to perform double-word arithmetic if
3507 mode == word_mode, however all the cost calculations in
3508 synth_mult etc. assume single-word operations. */
3509 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3510 return expand_mult_highpart_optab (mode, op0, op1, target,
3511 unsignedp, max_cost);
3512
3513 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3514
3515 /* Check whether we try to multiply by a negative constant. */
3516 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3517 {
3518 sign_adjust = true;
3519 extra_cost += add_cost[speed][mode];
3520 }
3521
3522 /* See whether shift/add multiplication is cheap enough. */
3523 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3524 max_cost - extra_cost))
3525 {
3526 /* See whether the specialized multiplication optabs are
3527 cheaper than the shift/add version. */
3528 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3529 alg.cost.cost + extra_cost);
3530 if (tem)
3531 return tem;
3532
3533 tem = convert_to_mode (wider_mode, op0, unsignedp);
3534 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3535 tem = extract_high_half (mode, tem);
3536
3537 /* Adjust result for signedness. */
3538 if (sign_adjust)
3539 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3540
3541 return tem;
3542 }
3543 return expand_mult_highpart_optab (mode, op0, op1, target,
3544 unsignedp, max_cost);
3545 }
3546
3547
3548 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3549
3550 static rtx
3551 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3552 {
3553 unsigned HOST_WIDE_INT masklow, maskhigh;
3554 rtx result, temp, shift, label;
3555 int logd;
3556
3557 logd = floor_log2 (d);
3558 result = gen_reg_rtx (mode);
3559
3560 /* Avoid conditional branches when they're expensive. */
3561 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3562 && optimize_insn_for_speed_p ())
3563 {
3564 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3565 mode, 0, -1);
3566 if (signmask)
3567 {
3568 signmask = force_reg (mode, signmask);
3569 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3570 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3571
3572 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3573 which instruction sequence to use. If logical right shifts
3574 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3575 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3576
3577 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3578 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3579 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3580 {
3581 temp = expand_binop (mode, xor_optab, op0, signmask,
3582 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3583 temp = expand_binop (mode, sub_optab, temp, signmask,
3584 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3585 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3586 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3587 temp = expand_binop (mode, xor_optab, temp, signmask,
3588 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3589 temp = expand_binop (mode, sub_optab, temp, signmask,
3590 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3591 }
3592 else
3593 {
3594 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3595 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3596 signmask = force_reg (mode, signmask);
3597
3598 temp = expand_binop (mode, add_optab, op0, signmask,
3599 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3600 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3601 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3602 temp = expand_binop (mode, sub_optab, temp, signmask,
3603 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3604 }
3605 return temp;
3606 }
3607 }
3608
3609 /* Mask contains the mode's signbit and the significant bits of the
3610 modulus. By including the signbit in the operation, many targets
3611 can avoid an explicit compare operation in the following comparison
3612 against zero. */
3613
3614 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3615 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3616 {
3617 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3618 maskhigh = -1;
3619 }
3620 else
3621 maskhigh = (HOST_WIDE_INT) -1
3622 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3623
3624 temp = expand_binop (mode, and_optab, op0,
3625 immed_double_const (masklow, maskhigh, mode),
3626 result, 1, OPTAB_LIB_WIDEN);
3627 if (temp != result)
3628 emit_move_insn (result, temp);
3629
3630 label = gen_label_rtx ();
3631 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3632
3633 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3634 0, OPTAB_LIB_WIDEN);
3635 masklow = (HOST_WIDE_INT) -1 << logd;
3636 maskhigh = -1;
3637 temp = expand_binop (mode, ior_optab, temp,
3638 immed_double_const (masklow, maskhigh, mode),
3639 result, 1, OPTAB_LIB_WIDEN);
3640 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3641 0, OPTAB_LIB_WIDEN);
3642 if (temp != result)
3643 emit_move_insn (result, temp);
3644 emit_label (label);
3645 return result;
3646 }
3647
3648 /* Expand signed division of OP0 by a power of two D in mode MODE.
3649 This routine is only called for positive values of D. */
3650
3651 static rtx
3652 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3653 {
3654 rtx temp, label;
3655 tree shift;
3656 int logd;
3657
3658 logd = floor_log2 (d);
3659 shift = build_int_cst (NULL_TREE, logd);
3660
3661 if (d == 2
3662 && BRANCH_COST (optimize_insn_for_speed_p (),
3663 false) >= 1)
3664 {
3665 temp = gen_reg_rtx (mode);
3666 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3667 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3668 0, OPTAB_LIB_WIDEN);
3669 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3670 }
3671
3672 #ifdef HAVE_conditional_move
3673 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3674 >= 2)
3675 {
3676 rtx temp2;
3677
3678 /* ??? emit_conditional_move forces a stack adjustment via
3679 compare_from_rtx so, if the sequence is discarded, it will
3680 be lost. Do it now instead. */
3681 do_pending_stack_adjust ();
3682
3683 start_sequence ();
3684 temp2 = copy_to_mode_reg (mode, op0);
3685 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3686 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3687 temp = force_reg (mode, temp);
3688
3689 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3690 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3691 mode, temp, temp2, mode, 0);
3692 if (temp2)
3693 {
3694 rtx seq = get_insns ();
3695 end_sequence ();
3696 emit_insn (seq);
3697 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3698 }
3699 end_sequence ();
3700 }
3701 #endif
3702
3703 if (BRANCH_COST (optimize_insn_for_speed_p (),
3704 false) >= 2)
3705 {
3706 int ushift = GET_MODE_BITSIZE (mode) - logd;
3707
3708 temp = gen_reg_rtx (mode);
3709 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3710 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3711 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3712 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3713 else
3714 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3715 build_int_cst (NULL_TREE, ushift),
3716 NULL_RTX, 1);
3717 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3718 0, OPTAB_LIB_WIDEN);
3719 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3720 }
3721
3722 label = gen_label_rtx ();
3723 temp = copy_to_mode_reg (mode, op0);
3724 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3725 expand_inc (temp, GEN_INT (d - 1));
3726 emit_label (label);
3727 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3728 }
3729 \f
3730 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3731 if that is convenient, and returning where the result is.
3732 You may request either the quotient or the remainder as the result;
3733 specify REM_FLAG nonzero to get the remainder.
3734
3735 CODE is the expression code for which kind of division this is;
3736 it controls how rounding is done. MODE is the machine mode to use.
3737 UNSIGNEDP nonzero means do unsigned division. */
3738
3739 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3740 and then correct it by or'ing in missing high bits
3741 if result of ANDI is nonzero.
3742 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3743 This could optimize to a bfexts instruction.
3744 But C doesn't use these operations, so their optimizations are
3745 left for later. */
3746 /* ??? For modulo, we don't actually need the highpart of the first product,
3747 the low part will do nicely. And for small divisors, the second multiply
3748 can also be a low-part only multiply or even be completely left out.
3749 E.g. to calculate the remainder of a division by 3 with a 32 bit
3750 multiply, multiply with 0x55555556 and extract the upper two bits;
3751 the result is exact for inputs up to 0x1fffffff.
3752 The input range can be reduced by using cross-sum rules.
3753 For odd divisors >= 3, the following table gives right shift counts
3754 so that if a number is shifted by an integer multiple of the given
3755 amount, the remainder stays the same:
3756 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3757 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3758 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3759 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3760 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3761
3762 Cross-sum rules for even numbers can be derived by leaving as many bits
3763 to the right alone as the divisor has zeros to the right.
3764 E.g. if x is an unsigned 32 bit number:
3765 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3766 */
3767
3768 rtx
3769 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3770 rtx op0, rtx op1, rtx target, int unsignedp)
3771 {
3772 enum machine_mode compute_mode;
3773 rtx tquotient;
3774 rtx quotient = 0, remainder = 0;
3775 rtx last;
3776 int size;
3777 rtx insn, set;
3778 optab optab1, optab2;
3779 int op1_is_constant, op1_is_pow2 = 0;
3780 int max_cost, extra_cost;
3781 static HOST_WIDE_INT last_div_const = 0;
3782 static HOST_WIDE_INT ext_op1;
3783 bool speed = optimize_insn_for_speed_p ();
3784
3785 op1_is_constant = GET_CODE (op1) == CONST_INT;
3786 if (op1_is_constant)
3787 {
3788 ext_op1 = INTVAL (op1);
3789 if (unsignedp)
3790 ext_op1 &= GET_MODE_MASK (mode);
3791 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3792 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3793 }
3794
3795 /*
3796 This is the structure of expand_divmod:
3797
3798 First comes code to fix up the operands so we can perform the operations
3799 correctly and efficiently.
3800
3801 Second comes a switch statement with code specific for each rounding mode.
3802 For some special operands this code emits all RTL for the desired
3803 operation, for other cases, it generates only a quotient and stores it in
3804 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3805 to indicate that it has not done anything.
3806
3807 Last comes code that finishes the operation. If QUOTIENT is set and
3808 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3809 QUOTIENT is not set, it is computed using trunc rounding.
3810
3811 We try to generate special code for division and remainder when OP1 is a
3812 constant. If |OP1| = 2**n we can use shifts and some other fast
3813 operations. For other values of OP1, we compute a carefully selected
3814 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3815 by m.
3816
3817 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3818 half of the product. Different strategies for generating the product are
3819 implemented in expand_mult_highpart.
3820
3821 If what we actually want is the remainder, we generate that by another
3822 by-constant multiplication and a subtraction. */
3823
3824 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3825 code below will malfunction if we are, so check here and handle
3826 the special case if so. */
3827 if (op1 == const1_rtx)
3828 return rem_flag ? const0_rtx : op0;
3829
3830 /* When dividing by -1, we could get an overflow.
3831 negv_optab can handle overflows. */
3832 if (! unsignedp && op1 == constm1_rtx)
3833 {
3834 if (rem_flag)
3835 return const0_rtx;
3836 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3837 ? negv_optab : neg_optab, op0, target, 0);
3838 }
3839
3840 if (target
3841 /* Don't use the function value register as a target
3842 since we have to read it as well as write it,
3843 and function-inlining gets confused by this. */
3844 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3845 /* Don't clobber an operand while doing a multi-step calculation. */
3846 || ((rem_flag || op1_is_constant)
3847 && (reg_mentioned_p (target, op0)
3848 || (MEM_P (op0) && MEM_P (target))))
3849 || reg_mentioned_p (target, op1)
3850 || (MEM_P (op1) && MEM_P (target))))
3851 target = 0;
3852
3853 /* Get the mode in which to perform this computation. Normally it will
3854 be MODE, but sometimes we can't do the desired operation in MODE.
3855 If so, pick a wider mode in which we can do the operation. Convert
3856 to that mode at the start to avoid repeated conversions.
3857
3858 First see what operations we need. These depend on the expression
3859 we are evaluating. (We assume that divxx3 insns exist under the
3860 same conditions that modxx3 insns and that these insns don't normally
3861 fail. If these assumptions are not correct, we may generate less
3862 efficient code in some cases.)
3863
3864 Then see if we find a mode in which we can open-code that operation
3865 (either a division, modulus, or shift). Finally, check for the smallest
3866 mode for which we can do the operation with a library call. */
3867
3868 /* We might want to refine this now that we have division-by-constant
3869 optimization. Since expand_mult_highpart tries so many variants, it is
3870 not straightforward to generalize this. Maybe we should make an array
3871 of possible modes in init_expmed? Save this for GCC 2.7. */
3872
3873 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3874 ? (unsignedp ? lshr_optab : ashr_optab)
3875 : (unsignedp ? udiv_optab : sdiv_optab));
3876 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3877 ? optab1
3878 : (unsignedp ? udivmod_optab : sdivmod_optab));
3879
3880 for (compute_mode = mode; compute_mode != VOIDmode;
3881 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3882 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3883 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3884 break;
3885
3886 if (compute_mode == VOIDmode)
3887 for (compute_mode = mode; compute_mode != VOIDmode;
3888 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3889 if (optab_libfunc (optab1, compute_mode)
3890 || optab_libfunc (optab2, compute_mode))
3891 break;
3892
3893 /* If we still couldn't find a mode, use MODE, but expand_binop will
3894 probably die. */
3895 if (compute_mode == VOIDmode)
3896 compute_mode = mode;
3897
3898 if (target && GET_MODE (target) == compute_mode)
3899 tquotient = target;
3900 else
3901 tquotient = gen_reg_rtx (compute_mode);
3902
3903 size = GET_MODE_BITSIZE (compute_mode);
3904 #if 0
3905 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3906 (mode), and thereby get better code when OP1 is a constant. Do that
3907 later. It will require going over all usages of SIZE below. */
3908 size = GET_MODE_BITSIZE (mode);
3909 #endif
3910
3911 /* Only deduct something for a REM if the last divide done was
3912 for a different constant. Then set the constant of the last
3913 divide. */
3914 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3915 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3916 && INTVAL (op1) == last_div_const))
3917 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3918
3919 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3920
3921 /* Now convert to the best mode to use. */
3922 if (compute_mode != mode)
3923 {
3924 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3925 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3926
3927 /* convert_modes may have placed op1 into a register, so we
3928 must recompute the following. */
3929 op1_is_constant = GET_CODE (op1) == CONST_INT;
3930 op1_is_pow2 = (op1_is_constant
3931 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3932 || (! unsignedp
3933 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3934 }
3935
3936 /* If one of the operands is a volatile MEM, copy it into a register. */
3937
3938 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3939 op0 = force_reg (compute_mode, op0);
3940 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3941 op1 = force_reg (compute_mode, op1);
3942
3943 /* If we need the remainder or if OP1 is constant, we need to
3944 put OP0 in a register in case it has any queued subexpressions. */
3945 if (rem_flag || op1_is_constant)
3946 op0 = force_reg (compute_mode, op0);
3947
3948 last = get_last_insn ();
3949
3950 /* Promote floor rounding to trunc rounding for unsigned operations. */
3951 if (unsignedp)
3952 {
3953 if (code == FLOOR_DIV_EXPR)
3954 code = TRUNC_DIV_EXPR;
3955 if (code == FLOOR_MOD_EXPR)
3956 code = TRUNC_MOD_EXPR;
3957 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3958 code = TRUNC_DIV_EXPR;
3959 }
3960
3961 if (op1 != const0_rtx)
3962 switch (code)
3963 {
3964 case TRUNC_MOD_EXPR:
3965 case TRUNC_DIV_EXPR:
3966 if (op1_is_constant)
3967 {
3968 if (unsignedp)
3969 {
3970 unsigned HOST_WIDE_INT mh;
3971 int pre_shift, post_shift;
3972 int dummy;
3973 rtx ml;
3974 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3975 & GET_MODE_MASK (compute_mode));
3976
3977 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3978 {
3979 pre_shift = floor_log2 (d);
3980 if (rem_flag)
3981 {
3982 remainder
3983 = expand_binop (compute_mode, and_optab, op0,
3984 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3985 remainder, 1,
3986 OPTAB_LIB_WIDEN);
3987 if (remainder)
3988 return gen_lowpart (mode, remainder);
3989 }
3990 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3991 build_int_cst (NULL_TREE,
3992 pre_shift),
3993 tquotient, 1);
3994 }
3995 else if (size <= HOST_BITS_PER_WIDE_INT)
3996 {
3997 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3998 {
3999 /* Most significant bit of divisor is set; emit an scc
4000 insn. */
4001 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4002 compute_mode, 1, 1);
4003 }
4004 else
4005 {
4006 /* Find a suitable multiplier and right shift count
4007 instead of multiplying with D. */
4008
4009 mh = choose_multiplier (d, size, size,
4010 &ml, &post_shift, &dummy);
4011
4012 /* If the suggested multiplier is more than SIZE bits,
4013 we can do better for even divisors, using an
4014 initial right shift. */
4015 if (mh != 0 && (d & 1) == 0)
4016 {
4017 pre_shift = floor_log2 (d & -d);
4018 mh = choose_multiplier (d >> pre_shift, size,
4019 size - pre_shift,
4020 &ml, &post_shift, &dummy);
4021 gcc_assert (!mh);
4022 }
4023 else
4024 pre_shift = 0;
4025
4026 if (mh != 0)
4027 {
4028 rtx t1, t2, t3, t4;
4029
4030 if (post_shift - 1 >= BITS_PER_WORD)
4031 goto fail1;
4032
4033 extra_cost
4034 = (shift_cost[speed][compute_mode][post_shift - 1]
4035 + shift_cost[speed][compute_mode][1]
4036 + 2 * add_cost[speed][compute_mode]);
4037 t1 = expand_mult_highpart (compute_mode, op0, ml,
4038 NULL_RTX, 1,
4039 max_cost - extra_cost);
4040 if (t1 == 0)
4041 goto fail1;
4042 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4043 op0, t1),
4044 NULL_RTX);
4045 t3 = expand_shift
4046 (RSHIFT_EXPR, compute_mode, t2,
4047 build_int_cst (NULL_TREE, 1),
4048 NULL_RTX,1);
4049 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4050 t1, t3),
4051 NULL_RTX);
4052 quotient = expand_shift
4053 (RSHIFT_EXPR, compute_mode, t4,
4054 build_int_cst (NULL_TREE, post_shift - 1),
4055 tquotient, 1);
4056 }
4057 else
4058 {
4059 rtx t1, t2;
4060
4061 if (pre_shift >= BITS_PER_WORD
4062 || post_shift >= BITS_PER_WORD)
4063 goto fail1;
4064
4065 t1 = expand_shift
4066 (RSHIFT_EXPR, compute_mode, op0,
4067 build_int_cst (NULL_TREE, pre_shift),
4068 NULL_RTX, 1);
4069 extra_cost
4070 = (shift_cost[speed][compute_mode][pre_shift]
4071 + shift_cost[speed][compute_mode][post_shift]);
4072 t2 = expand_mult_highpart (compute_mode, t1, ml,
4073 NULL_RTX, 1,
4074 max_cost - extra_cost);
4075 if (t2 == 0)
4076 goto fail1;
4077 quotient = expand_shift
4078 (RSHIFT_EXPR, compute_mode, t2,
4079 build_int_cst (NULL_TREE, post_shift),
4080 tquotient, 1);
4081 }
4082 }
4083 }
4084 else /* Too wide mode to use tricky code */
4085 break;
4086
4087 insn = get_last_insn ();
4088 if (insn != last
4089 && (set = single_set (insn)) != 0
4090 && SET_DEST (set) == quotient)
4091 set_unique_reg_note (insn,
4092 REG_EQUAL,
4093 gen_rtx_UDIV (compute_mode, op0, op1));
4094 }
4095 else /* TRUNC_DIV, signed */
4096 {
4097 unsigned HOST_WIDE_INT ml;
4098 int lgup, post_shift;
4099 rtx mlr;
4100 HOST_WIDE_INT d = INTVAL (op1);
4101 unsigned HOST_WIDE_INT abs_d;
4102
4103 /* Since d might be INT_MIN, we have to cast to
4104 unsigned HOST_WIDE_INT before negating to avoid
4105 undefined signed overflow. */
4106 abs_d = (d >= 0
4107 ? (unsigned HOST_WIDE_INT) d
4108 : - (unsigned HOST_WIDE_INT) d);
4109
4110 /* n rem d = n rem -d */
4111 if (rem_flag && d < 0)
4112 {
4113 d = abs_d;
4114 op1 = gen_int_mode (abs_d, compute_mode);
4115 }
4116
4117 if (d == 1)
4118 quotient = op0;
4119 else if (d == -1)
4120 quotient = expand_unop (compute_mode, neg_optab, op0,
4121 tquotient, 0);
4122 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4123 {
4124 /* This case is not handled correctly below. */
4125 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4126 compute_mode, 1, 1);
4127 if (quotient == 0)
4128 goto fail1;
4129 }
4130 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4131 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4132 : sdiv_pow2_cheap[speed][compute_mode])
4133 /* We assume that cheap metric is true if the
4134 optab has an expander for this mode. */
4135 && ((optab_handler ((rem_flag ? smod_optab
4136 : sdiv_optab),
4137 compute_mode)->insn_code
4138 != CODE_FOR_nothing)
4139 || (optab_handler(sdivmod_optab,
4140 compute_mode)
4141 ->insn_code != CODE_FOR_nothing)))
4142 ;
4143 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4144 {
4145 if (rem_flag)
4146 {
4147 remainder = expand_smod_pow2 (compute_mode, op0, d);
4148 if (remainder)
4149 return gen_lowpart (mode, remainder);
4150 }
4151
4152 if (sdiv_pow2_cheap[speed][compute_mode]
4153 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4154 != CODE_FOR_nothing)
4155 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4156 != CODE_FOR_nothing)))
4157 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4158 compute_mode, op0,
4159 gen_int_mode (abs_d,
4160 compute_mode),
4161 NULL_RTX, 0);
4162 else
4163 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4164
4165 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4166 negate the quotient. */
4167 if (d < 0)
4168 {
4169 insn = get_last_insn ();
4170 if (insn != last
4171 && (set = single_set (insn)) != 0
4172 && SET_DEST (set) == quotient
4173 && abs_d < ((unsigned HOST_WIDE_INT) 1
4174 << (HOST_BITS_PER_WIDE_INT - 1)))
4175 set_unique_reg_note (insn,
4176 REG_EQUAL,
4177 gen_rtx_DIV (compute_mode,
4178 op0,
4179 GEN_INT
4180 (trunc_int_for_mode
4181 (abs_d,
4182 compute_mode))));
4183
4184 quotient = expand_unop (compute_mode, neg_optab,
4185 quotient, quotient, 0);
4186 }
4187 }
4188 else if (size <= HOST_BITS_PER_WIDE_INT)
4189 {
4190 choose_multiplier (abs_d, size, size - 1,
4191 &mlr, &post_shift, &lgup);
4192 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4193 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4194 {
4195 rtx t1, t2, t3;
4196
4197 if (post_shift >= BITS_PER_WORD
4198 || size - 1 >= BITS_PER_WORD)
4199 goto fail1;
4200
4201 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4202 + shift_cost[speed][compute_mode][size - 1]
4203 + add_cost[speed][compute_mode]);
4204 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4205 NULL_RTX, 0,
4206 max_cost - extra_cost);
4207 if (t1 == 0)
4208 goto fail1;
4209 t2 = expand_shift
4210 (RSHIFT_EXPR, compute_mode, t1,
4211 build_int_cst (NULL_TREE, post_shift),
4212 NULL_RTX, 0);
4213 t3 = expand_shift
4214 (RSHIFT_EXPR, compute_mode, op0,
4215 build_int_cst (NULL_TREE, size - 1),
4216 NULL_RTX, 0);
4217 if (d < 0)
4218 quotient
4219 = force_operand (gen_rtx_MINUS (compute_mode,
4220 t3, t2),
4221 tquotient);
4222 else
4223 quotient
4224 = force_operand (gen_rtx_MINUS (compute_mode,
4225 t2, t3),
4226 tquotient);
4227 }
4228 else
4229 {
4230 rtx t1, t2, t3, t4;
4231
4232 if (post_shift >= BITS_PER_WORD
4233 || size - 1 >= BITS_PER_WORD)
4234 goto fail1;
4235
4236 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4237 mlr = gen_int_mode (ml, compute_mode);
4238 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4239 + shift_cost[speed][compute_mode][size - 1]
4240 + 2 * add_cost[speed][compute_mode]);
4241 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4242 NULL_RTX, 0,
4243 max_cost - extra_cost);
4244 if (t1 == 0)
4245 goto fail1;
4246 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4247 t1, op0),
4248 NULL_RTX);
4249 t3 = expand_shift
4250 (RSHIFT_EXPR, compute_mode, t2,
4251 build_int_cst (NULL_TREE, post_shift),
4252 NULL_RTX, 0);
4253 t4 = expand_shift
4254 (RSHIFT_EXPR, compute_mode, op0,
4255 build_int_cst (NULL_TREE, size - 1),
4256 NULL_RTX, 0);
4257 if (d < 0)
4258 quotient
4259 = force_operand (gen_rtx_MINUS (compute_mode,
4260 t4, t3),
4261 tquotient);
4262 else
4263 quotient
4264 = force_operand (gen_rtx_MINUS (compute_mode,
4265 t3, t4),
4266 tquotient);
4267 }
4268 }
4269 else /* Too wide mode to use tricky code */
4270 break;
4271
4272 insn = get_last_insn ();
4273 if (insn != last
4274 && (set = single_set (insn)) != 0
4275 && SET_DEST (set) == quotient)
4276 set_unique_reg_note (insn,
4277 REG_EQUAL,
4278 gen_rtx_DIV (compute_mode, op0, op1));
4279 }
4280 break;
4281 }
4282 fail1:
4283 delete_insns_since (last);
4284 break;
4285
4286 case FLOOR_DIV_EXPR:
4287 case FLOOR_MOD_EXPR:
4288 /* We will come here only for signed operations. */
4289 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4290 {
4291 unsigned HOST_WIDE_INT mh;
4292 int pre_shift, lgup, post_shift;
4293 HOST_WIDE_INT d = INTVAL (op1);
4294 rtx ml;
4295
4296 if (d > 0)
4297 {
4298 /* We could just as easily deal with negative constants here,
4299 but it does not seem worth the trouble for GCC 2.6. */
4300 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4301 {
4302 pre_shift = floor_log2 (d);
4303 if (rem_flag)
4304 {
4305 remainder = expand_binop (compute_mode, and_optab, op0,
4306 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4307 remainder, 0, OPTAB_LIB_WIDEN);
4308 if (remainder)
4309 return gen_lowpart (mode, remainder);
4310 }
4311 quotient = expand_shift
4312 (RSHIFT_EXPR, compute_mode, op0,
4313 build_int_cst (NULL_TREE, pre_shift),
4314 tquotient, 0);
4315 }
4316 else
4317 {
4318 rtx t1, t2, t3, t4;
4319
4320 mh = choose_multiplier (d, size, size - 1,
4321 &ml, &post_shift, &lgup);
4322 gcc_assert (!mh);
4323
4324 if (post_shift < BITS_PER_WORD
4325 && size - 1 < BITS_PER_WORD)
4326 {
4327 t1 = expand_shift
4328 (RSHIFT_EXPR, compute_mode, op0,
4329 build_int_cst (NULL_TREE, size - 1),
4330 NULL_RTX, 0);
4331 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4332 NULL_RTX, 0, OPTAB_WIDEN);
4333 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4334 + shift_cost[speed][compute_mode][size - 1]
4335 + 2 * add_cost[speed][compute_mode]);
4336 t3 = expand_mult_highpart (compute_mode, t2, ml,
4337 NULL_RTX, 1,
4338 max_cost - extra_cost);
4339 if (t3 != 0)
4340 {
4341 t4 = expand_shift
4342 (RSHIFT_EXPR, compute_mode, t3,
4343 build_int_cst (NULL_TREE, post_shift),
4344 NULL_RTX, 1);
4345 quotient = expand_binop (compute_mode, xor_optab,
4346 t4, t1, tquotient, 0,
4347 OPTAB_WIDEN);
4348 }
4349 }
4350 }
4351 }
4352 else
4353 {
4354 rtx nsign, t1, t2, t3, t4;
4355 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4356 op0, constm1_rtx), NULL_RTX);
4357 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4358 0, OPTAB_WIDEN);
4359 nsign = expand_shift
4360 (RSHIFT_EXPR, compute_mode, t2,
4361 build_int_cst (NULL_TREE, size - 1),
4362 NULL_RTX, 0);
4363 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4364 NULL_RTX);
4365 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4366 NULL_RTX, 0);
4367 if (t4)
4368 {
4369 rtx t5;
4370 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4371 NULL_RTX, 0);
4372 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4373 t4, t5),
4374 tquotient);
4375 }
4376 }
4377 }
4378
4379 if (quotient != 0)
4380 break;
4381 delete_insns_since (last);
4382
4383 /* Try using an instruction that produces both the quotient and
4384 remainder, using truncation. We can easily compensate the quotient
4385 or remainder to get floor rounding, once we have the remainder.
4386 Notice that we compute also the final remainder value here,
4387 and return the result right away. */
4388 if (target == 0 || GET_MODE (target) != compute_mode)
4389 target = gen_reg_rtx (compute_mode);
4390
4391 if (rem_flag)
4392 {
4393 remainder
4394 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4395 quotient = gen_reg_rtx (compute_mode);
4396 }
4397 else
4398 {
4399 quotient
4400 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4401 remainder = gen_reg_rtx (compute_mode);
4402 }
4403
4404 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4405 quotient, remainder, 0))
4406 {
4407 /* This could be computed with a branch-less sequence.
4408 Save that for later. */
4409 rtx tem;
4410 rtx label = gen_label_rtx ();
4411 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4412 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4413 NULL_RTX, 0, OPTAB_WIDEN);
4414 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4415 expand_dec (quotient, const1_rtx);
4416 expand_inc (remainder, op1);
4417 emit_label (label);
4418 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4419 }
4420
4421 /* No luck with division elimination or divmod. Have to do it
4422 by conditionally adjusting op0 *and* the result. */
4423 {
4424 rtx label1, label2, label3, label4, label5;
4425 rtx adjusted_op0;
4426 rtx tem;
4427
4428 quotient = gen_reg_rtx (compute_mode);
4429 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4430 label1 = gen_label_rtx ();
4431 label2 = gen_label_rtx ();
4432 label3 = gen_label_rtx ();
4433 label4 = gen_label_rtx ();
4434 label5 = gen_label_rtx ();
4435 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4436 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4437 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4438 quotient, 0, OPTAB_LIB_WIDEN);
4439 if (tem != quotient)
4440 emit_move_insn (quotient, tem);
4441 emit_jump_insn (gen_jump (label5));
4442 emit_barrier ();
4443 emit_label (label1);
4444 expand_inc (adjusted_op0, const1_rtx);
4445 emit_jump_insn (gen_jump (label4));
4446 emit_barrier ();
4447 emit_label (label2);
4448 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4449 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4450 quotient, 0, OPTAB_LIB_WIDEN);
4451 if (tem != quotient)
4452 emit_move_insn (quotient, tem);
4453 emit_jump_insn (gen_jump (label5));
4454 emit_barrier ();
4455 emit_label (label3);
4456 expand_dec (adjusted_op0, const1_rtx);
4457 emit_label (label4);
4458 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4459 quotient, 0, OPTAB_LIB_WIDEN);
4460 if (tem != quotient)
4461 emit_move_insn (quotient, tem);
4462 expand_dec (quotient, const1_rtx);
4463 emit_label (label5);
4464 }
4465 break;
4466
4467 case CEIL_DIV_EXPR:
4468 case CEIL_MOD_EXPR:
4469 if (unsignedp)
4470 {
4471 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4472 {
4473 rtx t1, t2, t3;
4474 unsigned HOST_WIDE_INT d = INTVAL (op1);
4475 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4476 build_int_cst (NULL_TREE, floor_log2 (d)),
4477 tquotient, 1);
4478 t2 = expand_binop (compute_mode, and_optab, op0,
4479 GEN_INT (d - 1),
4480 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4481 t3 = gen_reg_rtx (compute_mode);
4482 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4483 compute_mode, 1, 1);
4484 if (t3 == 0)
4485 {
4486 rtx lab;
4487 lab = gen_label_rtx ();
4488 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4489 expand_inc (t1, const1_rtx);
4490 emit_label (lab);
4491 quotient = t1;
4492 }
4493 else
4494 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4495 t1, t3),
4496 tquotient);
4497 break;
4498 }
4499
4500 /* Try using an instruction that produces both the quotient and
4501 remainder, using truncation. We can easily compensate the
4502 quotient or remainder to get ceiling rounding, once we have the
4503 remainder. Notice that we compute also the final remainder
4504 value here, and return the result right away. */
4505 if (target == 0 || GET_MODE (target) != compute_mode)
4506 target = gen_reg_rtx (compute_mode);
4507
4508 if (rem_flag)
4509 {
4510 remainder = (REG_P (target)
4511 ? target : gen_reg_rtx (compute_mode));
4512 quotient = gen_reg_rtx (compute_mode);
4513 }
4514 else
4515 {
4516 quotient = (REG_P (target)
4517 ? target : gen_reg_rtx (compute_mode));
4518 remainder = gen_reg_rtx (compute_mode);
4519 }
4520
4521 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4522 remainder, 1))
4523 {
4524 /* This could be computed with a branch-less sequence.
4525 Save that for later. */
4526 rtx label = gen_label_rtx ();
4527 do_cmp_and_jump (remainder, const0_rtx, EQ,
4528 compute_mode, label);
4529 expand_inc (quotient, const1_rtx);
4530 expand_dec (remainder, op1);
4531 emit_label (label);
4532 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4533 }
4534
4535 /* No luck with division elimination or divmod. Have to do it
4536 by conditionally adjusting op0 *and* the result. */
4537 {
4538 rtx label1, label2;
4539 rtx adjusted_op0, tem;
4540
4541 quotient = gen_reg_rtx (compute_mode);
4542 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4543 label1 = gen_label_rtx ();
4544 label2 = gen_label_rtx ();
4545 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4546 compute_mode, label1);
4547 emit_move_insn (quotient, const0_rtx);
4548 emit_jump_insn (gen_jump (label2));
4549 emit_barrier ();
4550 emit_label (label1);
4551 expand_dec (adjusted_op0, const1_rtx);
4552 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4553 quotient, 1, OPTAB_LIB_WIDEN);
4554 if (tem != quotient)
4555 emit_move_insn (quotient, tem);
4556 expand_inc (quotient, const1_rtx);
4557 emit_label (label2);
4558 }
4559 }
4560 else /* signed */
4561 {
4562 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4563 && INTVAL (op1) >= 0)
4564 {
4565 /* This is extremely similar to the code for the unsigned case
4566 above. For 2.7 we should merge these variants, but for
4567 2.6.1 I don't want to touch the code for unsigned since that
4568 get used in C. The signed case will only be used by other
4569 languages (Ada). */
4570
4571 rtx t1, t2, t3;
4572 unsigned HOST_WIDE_INT d = INTVAL (op1);
4573 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4574 build_int_cst (NULL_TREE, floor_log2 (d)),
4575 tquotient, 0);
4576 t2 = expand_binop (compute_mode, and_optab, op0,
4577 GEN_INT (d - 1),
4578 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4579 t3 = gen_reg_rtx (compute_mode);
4580 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4581 compute_mode, 1, 1);
4582 if (t3 == 0)
4583 {
4584 rtx lab;
4585 lab = gen_label_rtx ();
4586 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4587 expand_inc (t1, const1_rtx);
4588 emit_label (lab);
4589 quotient = t1;
4590 }
4591 else
4592 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4593 t1, t3),
4594 tquotient);
4595 break;
4596 }
4597
4598 /* Try using an instruction that produces both the quotient and
4599 remainder, using truncation. We can easily compensate the
4600 quotient or remainder to get ceiling rounding, once we have the
4601 remainder. Notice that we compute also the final remainder
4602 value here, and return the result right away. */
4603 if (target == 0 || GET_MODE (target) != compute_mode)
4604 target = gen_reg_rtx (compute_mode);
4605 if (rem_flag)
4606 {
4607 remainder= (REG_P (target)
4608 ? target : gen_reg_rtx (compute_mode));
4609 quotient = gen_reg_rtx (compute_mode);
4610 }
4611 else
4612 {
4613 quotient = (REG_P (target)
4614 ? target : gen_reg_rtx (compute_mode));
4615 remainder = gen_reg_rtx (compute_mode);
4616 }
4617
4618 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4619 remainder, 0))
4620 {
4621 /* This could be computed with a branch-less sequence.
4622 Save that for later. */
4623 rtx tem;
4624 rtx label = gen_label_rtx ();
4625 do_cmp_and_jump (remainder, const0_rtx, EQ,
4626 compute_mode, label);
4627 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4628 NULL_RTX, 0, OPTAB_WIDEN);
4629 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4630 expand_inc (quotient, const1_rtx);
4631 expand_dec (remainder, op1);
4632 emit_label (label);
4633 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4634 }
4635
4636 /* No luck with division elimination or divmod. Have to do it
4637 by conditionally adjusting op0 *and* the result. */
4638 {
4639 rtx label1, label2, label3, label4, label5;
4640 rtx adjusted_op0;
4641 rtx tem;
4642
4643 quotient = gen_reg_rtx (compute_mode);
4644 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4645 label1 = gen_label_rtx ();
4646 label2 = gen_label_rtx ();
4647 label3 = gen_label_rtx ();
4648 label4 = gen_label_rtx ();
4649 label5 = gen_label_rtx ();
4650 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4651 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4652 compute_mode, label1);
4653 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4654 quotient, 0, OPTAB_LIB_WIDEN);
4655 if (tem != quotient)
4656 emit_move_insn (quotient, tem);
4657 emit_jump_insn (gen_jump (label5));
4658 emit_barrier ();
4659 emit_label (label1);
4660 expand_dec (adjusted_op0, const1_rtx);
4661 emit_jump_insn (gen_jump (label4));
4662 emit_barrier ();
4663 emit_label (label2);
4664 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4665 compute_mode, label3);
4666 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4667 quotient, 0, OPTAB_LIB_WIDEN);
4668 if (tem != quotient)
4669 emit_move_insn (quotient, tem);
4670 emit_jump_insn (gen_jump (label5));
4671 emit_barrier ();
4672 emit_label (label3);
4673 expand_inc (adjusted_op0, const1_rtx);
4674 emit_label (label4);
4675 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4676 quotient, 0, OPTAB_LIB_WIDEN);
4677 if (tem != quotient)
4678 emit_move_insn (quotient, tem);
4679 expand_inc (quotient, const1_rtx);
4680 emit_label (label5);
4681 }
4682 }
4683 break;
4684
4685 case EXACT_DIV_EXPR:
4686 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4687 {
4688 HOST_WIDE_INT d = INTVAL (op1);
4689 unsigned HOST_WIDE_INT ml;
4690 int pre_shift;
4691 rtx t1;
4692
4693 pre_shift = floor_log2 (d & -d);
4694 ml = invert_mod2n (d >> pre_shift, size);
4695 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4696 build_int_cst (NULL_TREE, pre_shift),
4697 NULL_RTX, unsignedp);
4698 quotient = expand_mult (compute_mode, t1,
4699 gen_int_mode (ml, compute_mode),
4700 NULL_RTX, 1);
4701
4702 insn = get_last_insn ();
4703 set_unique_reg_note (insn,
4704 REG_EQUAL,
4705 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4706 compute_mode,
4707 op0, op1));
4708 }
4709 break;
4710
4711 case ROUND_DIV_EXPR:
4712 case ROUND_MOD_EXPR:
4713 if (unsignedp)
4714 {
4715 rtx tem;
4716 rtx label;
4717 label = gen_label_rtx ();
4718 quotient = gen_reg_rtx (compute_mode);
4719 remainder = gen_reg_rtx (compute_mode);
4720 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4721 {
4722 rtx tem;
4723 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4724 quotient, 1, OPTAB_LIB_WIDEN);
4725 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4726 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4727 remainder, 1, OPTAB_LIB_WIDEN);
4728 }
4729 tem = plus_constant (op1, -1);
4730 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4731 build_int_cst (NULL_TREE, 1),
4732 NULL_RTX, 1);
4733 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4734 expand_inc (quotient, const1_rtx);
4735 expand_dec (remainder, op1);
4736 emit_label (label);
4737 }
4738 else
4739 {
4740 rtx abs_rem, abs_op1, tem, mask;
4741 rtx label;
4742 label = gen_label_rtx ();
4743 quotient = gen_reg_rtx (compute_mode);
4744 remainder = gen_reg_rtx (compute_mode);
4745 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4746 {
4747 rtx tem;
4748 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4749 quotient, 0, OPTAB_LIB_WIDEN);
4750 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4751 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4752 remainder, 0, OPTAB_LIB_WIDEN);
4753 }
4754 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4755 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4756 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4757 build_int_cst (NULL_TREE, 1),
4758 NULL_RTX, 1);
4759 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4760 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4761 NULL_RTX, 0, OPTAB_WIDEN);
4762 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4763 build_int_cst (NULL_TREE, size - 1),
4764 NULL_RTX, 0);
4765 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4766 NULL_RTX, 0, OPTAB_WIDEN);
4767 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4768 NULL_RTX, 0, OPTAB_WIDEN);
4769 expand_inc (quotient, tem);
4770 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4771 NULL_RTX, 0, OPTAB_WIDEN);
4772 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4773 NULL_RTX, 0, OPTAB_WIDEN);
4774 expand_dec (remainder, tem);
4775 emit_label (label);
4776 }
4777 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4778
4779 default:
4780 gcc_unreachable ();
4781 }
4782
4783 if (quotient == 0)
4784 {
4785 if (target && GET_MODE (target) != compute_mode)
4786 target = 0;
4787
4788 if (rem_flag)
4789 {
4790 /* Try to produce the remainder without producing the quotient.
4791 If we seem to have a divmod pattern that does not require widening,
4792 don't try widening here. We should really have a WIDEN argument
4793 to expand_twoval_binop, since what we'd really like to do here is
4794 1) try a mod insn in compute_mode
4795 2) try a divmod insn in compute_mode
4796 3) try a div insn in compute_mode and multiply-subtract to get
4797 remainder
4798 4) try the same things with widening allowed. */
4799 remainder
4800 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4801 op0, op1, target,
4802 unsignedp,
4803 ((optab_handler (optab2, compute_mode)->insn_code
4804 != CODE_FOR_nothing)
4805 ? OPTAB_DIRECT : OPTAB_WIDEN));
4806 if (remainder == 0)
4807 {
4808 /* No luck there. Can we do remainder and divide at once
4809 without a library call? */
4810 remainder = gen_reg_rtx (compute_mode);
4811 if (! expand_twoval_binop ((unsignedp
4812 ? udivmod_optab
4813 : sdivmod_optab),
4814 op0, op1,
4815 NULL_RTX, remainder, unsignedp))
4816 remainder = 0;
4817 }
4818
4819 if (remainder)
4820 return gen_lowpart (mode, remainder);
4821 }
4822
4823 /* Produce the quotient. Try a quotient insn, but not a library call.
4824 If we have a divmod in this mode, use it in preference to widening
4825 the div (for this test we assume it will not fail). Note that optab2
4826 is set to the one of the two optabs that the call below will use. */
4827 quotient
4828 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4829 op0, op1, rem_flag ? NULL_RTX : target,
4830 unsignedp,
4831 ((optab_handler (optab2, compute_mode)->insn_code
4832 != CODE_FOR_nothing)
4833 ? OPTAB_DIRECT : OPTAB_WIDEN));
4834
4835 if (quotient == 0)
4836 {
4837 /* No luck there. Try a quotient-and-remainder insn,
4838 keeping the quotient alone. */
4839 quotient = gen_reg_rtx (compute_mode);
4840 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4841 op0, op1,
4842 quotient, NULL_RTX, unsignedp))
4843 {
4844 quotient = 0;
4845 if (! rem_flag)
4846 /* Still no luck. If we are not computing the remainder,
4847 use a library call for the quotient. */
4848 quotient = sign_expand_binop (compute_mode,
4849 udiv_optab, sdiv_optab,
4850 op0, op1, target,
4851 unsignedp, OPTAB_LIB_WIDEN);
4852 }
4853 }
4854 }
4855
4856 if (rem_flag)
4857 {
4858 if (target && GET_MODE (target) != compute_mode)
4859 target = 0;
4860
4861 if (quotient == 0)
4862 {
4863 /* No divide instruction either. Use library for remainder. */
4864 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4865 op0, op1, target,
4866 unsignedp, OPTAB_LIB_WIDEN);
4867 /* No remainder function. Try a quotient-and-remainder
4868 function, keeping the remainder. */
4869 if (!remainder)
4870 {
4871 remainder = gen_reg_rtx (compute_mode);
4872 if (!expand_twoval_binop_libfunc
4873 (unsignedp ? udivmod_optab : sdivmod_optab,
4874 op0, op1,
4875 NULL_RTX, remainder,
4876 unsignedp ? UMOD : MOD))
4877 remainder = NULL_RTX;
4878 }
4879 }
4880 else
4881 {
4882 /* We divided. Now finish doing X - Y * (X / Y). */
4883 remainder = expand_mult (compute_mode, quotient, op1,
4884 NULL_RTX, unsignedp);
4885 remainder = expand_binop (compute_mode, sub_optab, op0,
4886 remainder, target, unsignedp,
4887 OPTAB_LIB_WIDEN);
4888 }
4889 }
4890
4891 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4892 }
4893 \f
4894 /* Return a tree node with data type TYPE, describing the value of X.
4895 Usually this is an VAR_DECL, if there is no obvious better choice.
4896 X may be an expression, however we only support those expressions
4897 generated by loop.c. */
4898
4899 tree
4900 make_tree (tree type, rtx x)
4901 {
4902 tree t;
4903
4904 switch (GET_CODE (x))
4905 {
4906 case CONST_INT:
4907 {
4908 HOST_WIDE_INT hi = 0;
4909
4910 if (INTVAL (x) < 0
4911 && !(TYPE_UNSIGNED (type)
4912 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4913 < HOST_BITS_PER_WIDE_INT)))
4914 hi = -1;
4915
4916 t = build_int_cst_wide (type, INTVAL (x), hi);
4917
4918 return t;
4919 }
4920
4921 case CONST_DOUBLE:
4922 if (GET_MODE (x) == VOIDmode)
4923 t = build_int_cst_wide (type,
4924 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4925 else
4926 {
4927 REAL_VALUE_TYPE d;
4928
4929 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4930 t = build_real (type, d);
4931 }
4932
4933 return t;
4934
4935 case CONST_VECTOR:
4936 {
4937 int units = CONST_VECTOR_NUNITS (x);
4938 tree itype = TREE_TYPE (type);
4939 tree t = NULL_TREE;
4940 int i;
4941
4942
4943 /* Build a tree with vector elements. */
4944 for (i = units - 1; i >= 0; --i)
4945 {
4946 rtx elt = CONST_VECTOR_ELT (x, i);
4947 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4948 }
4949
4950 return build_vector (type, t);
4951 }
4952
4953 case PLUS:
4954 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4955 make_tree (type, XEXP (x, 1)));
4956
4957 case MINUS:
4958 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4959 make_tree (type, XEXP (x, 1)));
4960
4961 case NEG:
4962 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4963
4964 case MULT:
4965 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4966 make_tree (type, XEXP (x, 1)));
4967
4968 case ASHIFT:
4969 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4970 make_tree (type, XEXP (x, 1)));
4971
4972 case LSHIFTRT:
4973 t = unsigned_type_for (type);
4974 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4975 make_tree (t, XEXP (x, 0)),
4976 make_tree (type, XEXP (x, 1))));
4977
4978 case ASHIFTRT:
4979 t = signed_type_for (type);
4980 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4981 make_tree (t, XEXP (x, 0)),
4982 make_tree (type, XEXP (x, 1))));
4983
4984 case DIV:
4985 if (TREE_CODE (type) != REAL_TYPE)
4986 t = signed_type_for (type);
4987 else
4988 t = type;
4989
4990 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4991 make_tree (t, XEXP (x, 0)),
4992 make_tree (t, XEXP (x, 1))));
4993 case UDIV:
4994 t = unsigned_type_for (type);
4995 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4996 make_tree (t, XEXP (x, 0)),
4997 make_tree (t, XEXP (x, 1))));
4998
4999 case SIGN_EXTEND:
5000 case ZERO_EXTEND:
5001 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5002 GET_CODE (x) == ZERO_EXTEND);
5003 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5004
5005 case CONST:
5006 return make_tree (type, XEXP (x, 0));
5007
5008 case SYMBOL_REF:
5009 t = SYMBOL_REF_DECL (x);
5010 if (t)
5011 return fold_convert (type, build_fold_addr_expr (t));
5012 /* else fall through. */
5013
5014 default:
5015 t = build_decl (VAR_DECL, NULL_TREE, type);
5016
5017 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5018 ptr_mode. So convert. */
5019 if (POINTER_TYPE_P (type))
5020 x = convert_memory_address (TYPE_MODE (type), x);
5021
5022 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5023 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5024 t->decl_with_rtl.rtl = x;
5025
5026 return t;
5027 }
5028 }
5029 \f
5030 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5031 and returning TARGET.
5032
5033 If TARGET is 0, a pseudo-register or constant is returned. */
5034
5035 rtx
5036 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5037 {
5038 rtx tem = 0;
5039
5040 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5041 tem = simplify_binary_operation (AND, mode, op0, op1);
5042 if (tem == 0)
5043 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5044
5045 if (target == 0)
5046 target = tem;
5047 else if (tem != target)
5048 emit_move_insn (target, tem);
5049 return target;
5050 }
5051 \f
5052 /* Helper function for emit_store_flag. */
5053 static rtx
5054 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
5055 int normalizep)
5056 {
5057 rtx op0;
5058 enum machine_mode target_mode = GET_MODE (target);
5059
5060 /* If we are converting to a wider mode, first convert to
5061 TARGET_MODE, then normalize. This produces better combining
5062 opportunities on machines that have a SIGN_EXTRACT when we are
5063 testing a single bit. This mostly benefits the 68k.
5064
5065 If STORE_FLAG_VALUE does not have the sign bit set when
5066 interpreted in MODE, we can do this conversion as unsigned, which
5067 is usually more efficient. */
5068 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5069 {
5070 convert_move (target, subtarget,
5071 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5072 && 0 == (STORE_FLAG_VALUE
5073 & ((HOST_WIDE_INT) 1
5074 << (GET_MODE_BITSIZE (mode) -1))));
5075 op0 = target;
5076 mode = target_mode;
5077 }
5078 else
5079 op0 = subtarget;
5080
5081 /* If we want to keep subexpressions around, don't reuse our last
5082 target. */
5083 if (optimize)
5084 subtarget = 0;
5085
5086 /* Now normalize to the proper value in MODE. Sometimes we don't
5087 have to do anything. */
5088 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5089 ;
5090 /* STORE_FLAG_VALUE might be the most negative number, so write
5091 the comparison this way to avoid a compiler-time warning. */
5092 else if (- normalizep == STORE_FLAG_VALUE)
5093 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
5094
5095 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5096 it hard to use a value of just the sign bit due to ANSI integer
5097 constant typing rules. */
5098 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5099 && (STORE_FLAG_VALUE
5100 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5101 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5102 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5103 normalizep == 1);
5104 else
5105 {
5106 gcc_assert (STORE_FLAG_VALUE & 1);
5107
5108 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5109 if (normalizep == -1)
5110 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5111 }
5112
5113 /* If we were converting to a smaller mode, do the conversion now. */
5114 if (target_mode != mode)
5115 {
5116 convert_move (target, op0, 0);
5117 return target;
5118 }
5119 else
5120 return op0;
5121 }
5122
5123 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5124 and storing in TARGET. Normally return TARGET.
5125 Return 0 if that cannot be done.
5126
5127 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5128 it is VOIDmode, they cannot both be CONST_INT.
5129
5130 UNSIGNEDP is for the case where we have to widen the operands
5131 to perform the operation. It says to use zero-extension.
5132
5133 NORMALIZEP is 1 if we should convert the result to be either zero
5134 or one. Normalize is -1 if we should convert the result to be
5135 either zero or -1. If NORMALIZEP is zero, the result will be left
5136 "raw" out of the scc insn. */
5137
5138 rtx
5139 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5140 enum machine_mode mode, int unsignedp, int normalizep)
5141 {
5142 rtx subtarget;
5143 enum insn_code icode;
5144 enum machine_mode compare_mode;
5145 enum machine_mode target_mode = GET_MODE (target);
5146 rtx tem;
5147 rtx last = get_last_insn ();
5148 rtx pattern, comparison;
5149
5150 if (unsignedp)
5151 code = unsigned_condition (code);
5152
5153 /* If one operand is constant, make it the second one. Only do this
5154 if the other operand is not constant as well. */
5155
5156 if (swap_commutative_operands_p (op0, op1))
5157 {
5158 tem = op0;
5159 op0 = op1;
5160 op1 = tem;
5161 code = swap_condition (code);
5162 }
5163
5164 if (mode == VOIDmode)
5165 mode = GET_MODE (op0);
5166
5167 /* For some comparisons with 1 and -1, we can convert this to
5168 comparisons with zero. This will often produce more opportunities for
5169 store-flag insns. */
5170
5171 switch (code)
5172 {
5173 case LT:
5174 if (op1 == const1_rtx)
5175 op1 = const0_rtx, code = LE;
5176 break;
5177 case LE:
5178 if (op1 == constm1_rtx)
5179 op1 = const0_rtx, code = LT;
5180 break;
5181 case GE:
5182 if (op1 == const1_rtx)
5183 op1 = const0_rtx, code = GT;
5184 break;
5185 case GT:
5186 if (op1 == constm1_rtx)
5187 op1 = const0_rtx, code = GE;
5188 break;
5189 case GEU:
5190 if (op1 == const1_rtx)
5191 op1 = const0_rtx, code = NE;
5192 break;
5193 case LTU:
5194 if (op1 == const1_rtx)
5195 op1 = const0_rtx, code = EQ;
5196 break;
5197 default:
5198 break;
5199 }
5200
5201 /* If we are comparing a double-word integer with zero or -1, we can
5202 convert the comparison into one involving a single word. */
5203 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5204 && GET_MODE_CLASS (mode) == MODE_INT
5205 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5206 {
5207 if ((code == EQ || code == NE)
5208 && (op1 == const0_rtx || op1 == constm1_rtx))
5209 {
5210 rtx op00, op01, op0both;
5211
5212 /* Do a logical OR or AND of the two words and compare the
5213 result. */
5214 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5215 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5216 op0both = expand_binop (word_mode,
5217 op1 == const0_rtx ? ior_optab : and_optab,
5218 op00, op01, NULL_RTX, unsignedp,
5219 OPTAB_DIRECT);
5220
5221 if (op0both != 0)
5222 return emit_store_flag (target, code, op0both, op1, word_mode,
5223 unsignedp, normalizep);
5224 }
5225 else if ((code == LT || code == GE) && op1 == const0_rtx)
5226 {
5227 rtx op0h;
5228
5229 /* If testing the sign bit, can just test on high word. */
5230 op0h = simplify_gen_subreg (word_mode, op0, mode,
5231 subreg_highpart_offset (word_mode,
5232 mode));
5233 return emit_store_flag (target, code, op0h, op1, word_mode,
5234 unsignedp, normalizep);
5235 }
5236 }
5237
5238 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5239 complement of A (for GE) and shifting the sign bit to the low bit. */
5240 if (op1 == const0_rtx && (code == LT || code == GE)
5241 && GET_MODE_CLASS (mode) == MODE_INT
5242 && (normalizep || STORE_FLAG_VALUE == 1
5243 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5244 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5245 == ((unsigned HOST_WIDE_INT) 1
5246 << (GET_MODE_BITSIZE (mode) - 1))))))
5247 {
5248 subtarget = target;
5249
5250 /* If the result is to be wider than OP0, it is best to convert it
5251 first. If it is to be narrower, it is *incorrect* to convert it
5252 first. */
5253 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5254 {
5255 op0 = convert_modes (target_mode, mode, op0, 0);
5256 mode = target_mode;
5257 }
5258
5259 if (target_mode != mode)
5260 subtarget = 0;
5261
5262 if (code == GE)
5263 op0 = expand_unop (mode, one_cmpl_optab, op0,
5264 ((STORE_FLAG_VALUE == 1 || normalizep)
5265 ? 0 : subtarget), 0);
5266
5267 if (STORE_FLAG_VALUE == 1 || normalizep)
5268 /* If we are supposed to produce a 0/1 value, we want to do
5269 a logical shift from the sign bit to the low-order bit; for
5270 a -1/0 value, we do an arithmetic shift. */
5271 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5272 size_int (GET_MODE_BITSIZE (mode) - 1),
5273 subtarget, normalizep != -1);
5274
5275 if (mode != target_mode)
5276 op0 = convert_modes (target_mode, mode, op0, 0);
5277
5278 return op0;
5279 }
5280
5281 icode = setcc_gen_code[(int) code];
5282
5283 if (icode != CODE_FOR_nothing)
5284 {
5285 insn_operand_predicate_fn pred;
5286
5287 /* We think we may be able to do this with a scc insn. Emit the
5288 comparison and then the scc insn. */
5289
5290 do_pending_stack_adjust ();
5291 last = get_last_insn ();
5292
5293 comparison
5294 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5295 if (CONSTANT_P (comparison))
5296 {
5297 switch (GET_CODE (comparison))
5298 {
5299 case CONST_INT:
5300 if (comparison == const0_rtx)
5301 return const0_rtx;
5302 break;
5303
5304 #ifdef FLOAT_STORE_FLAG_VALUE
5305 case CONST_DOUBLE:
5306 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5307 return const0_rtx;
5308 break;
5309 #endif
5310 default:
5311 gcc_unreachable ();
5312 }
5313
5314 if (normalizep == 1)
5315 return const1_rtx;
5316 if (normalizep == -1)
5317 return constm1_rtx;
5318 return const_true_rtx;
5319 }
5320
5321 /* The code of COMPARISON may not match CODE if compare_from_rtx
5322 decided to swap its operands and reverse the original code.
5323
5324 We know that compare_from_rtx returns either a CONST_INT or
5325 a new comparison code, so it is safe to just extract the
5326 code from COMPARISON. */
5327 code = GET_CODE (comparison);
5328
5329 /* Get a reference to the target in the proper mode for this insn. */
5330 compare_mode = insn_data[(int) icode].operand[0].mode;
5331 subtarget = target;
5332 pred = insn_data[(int) icode].operand[0].predicate;
5333 if (optimize || ! (*pred) (subtarget, compare_mode))
5334 subtarget = gen_reg_rtx (compare_mode);
5335
5336 pattern = GEN_FCN (icode) (subtarget);
5337 if (pattern)
5338 {
5339 emit_insn (pattern);
5340 return emit_store_flag_1 (target, subtarget, compare_mode,
5341 normalizep);
5342 }
5343 }
5344 else
5345 {
5346 /* We don't have an scc insn, so try a cstore insn. */
5347
5348 for (compare_mode = mode; compare_mode != VOIDmode;
5349 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5350 {
5351 icode = optab_handler (cstore_optab, compare_mode)->insn_code;
5352 if (icode != CODE_FOR_nothing)
5353 break;
5354 }
5355
5356 if (icode != CODE_FOR_nothing)
5357 {
5358 enum machine_mode result_mode
5359 = insn_data[(int) icode].operand[0].mode;
5360 rtx cstore_op0 = op0;
5361 rtx cstore_op1 = op1;
5362
5363 do_pending_stack_adjust ();
5364 last = get_last_insn ();
5365
5366 if (compare_mode != mode)
5367 {
5368 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5369 unsignedp);
5370 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5371 unsignedp);
5372 }
5373
5374 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5375 compare_mode))
5376 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5377
5378 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5379 compare_mode))
5380 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5381
5382 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5383 cstore_op1);
5384 subtarget = target;
5385
5386 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5387 (subtarget, result_mode)))
5388 subtarget = gen_reg_rtx (result_mode);
5389
5390 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5391 cstore_op1);
5392
5393 if (pattern)
5394 {
5395 emit_insn (pattern);
5396 return emit_store_flag_1 (target, subtarget, result_mode,
5397 normalizep);
5398 }
5399 }
5400 }
5401
5402 delete_insns_since (last);
5403
5404 /* If optimizing, use different pseudo registers for each insn, instead
5405 of reusing the same pseudo. This leads to better CSE, but slows
5406 down the compiler, since there are more pseudos */
5407 subtarget = (!optimize
5408 && (target_mode == mode)) ? target : NULL_RTX;
5409
5410 /* If we reached here, we can't do this with a scc insn. However, there
5411 are some comparisons that can be done directly. For example, if
5412 this is an equality comparison of integers, we can try to exclusive-or
5413 (or subtract) the two operands and use a recursive call to try the
5414 comparison with zero. Don't do any of these cases if branches are
5415 very cheap. */
5416
5417 if (BRANCH_COST (optimize_insn_for_speed_p (),
5418 false) > 0
5419 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5420 && op1 != const0_rtx)
5421 {
5422 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5423 OPTAB_WIDEN);
5424
5425 if (tem == 0)
5426 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5427 OPTAB_WIDEN);
5428 if (tem != 0)
5429 tem = emit_store_flag (target, code, tem, const0_rtx,
5430 mode, unsignedp, normalizep);
5431 if (tem == 0)
5432 delete_insns_since (last);
5433 return tem;
5434 }
5435
5436 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5437 the constant zero. Reject all other comparisons at this point. Only
5438 do LE and GT if branches are expensive since they are expensive on
5439 2-operand machines. */
5440
5441 if (BRANCH_COST (optimize_insn_for_speed_p (),
5442 false) == 0
5443 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5444 || (code != EQ && code != NE
5445 && (BRANCH_COST (optimize_insn_for_speed_p (),
5446 false) <= 1 || (code != LE && code != GT))))
5447 return 0;
5448
5449 /* See what we need to return. We can only return a 1, -1, or the
5450 sign bit. */
5451
5452 if (normalizep == 0)
5453 {
5454 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5455 normalizep = STORE_FLAG_VALUE;
5456
5457 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5458 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5459 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5460 ;
5461 else
5462 return 0;
5463 }
5464
5465 /* Try to put the result of the comparison in the sign bit. Assume we can't
5466 do the necessary operation below. */
5467
5468 tem = 0;
5469
5470 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5471 the sign bit set. */
5472
5473 if (code == LE)
5474 {
5475 /* This is destructive, so SUBTARGET can't be OP0. */
5476 if (rtx_equal_p (subtarget, op0))
5477 subtarget = 0;
5478
5479 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5480 OPTAB_WIDEN);
5481 if (tem)
5482 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5483 OPTAB_WIDEN);
5484 }
5485
5486 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5487 number of bits in the mode of OP0, minus one. */
5488
5489 if (code == GT)
5490 {
5491 if (rtx_equal_p (subtarget, op0))
5492 subtarget = 0;
5493
5494 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5495 size_int (GET_MODE_BITSIZE (mode) - 1),
5496 subtarget, 0);
5497 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5498 OPTAB_WIDEN);
5499 }
5500
5501 if (code == EQ || code == NE)
5502 {
5503 /* For EQ or NE, one way to do the comparison is to apply an operation
5504 that converts the operand into a positive number if it is nonzero
5505 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5506 for NE we negate. This puts the result in the sign bit. Then we
5507 normalize with a shift, if needed.
5508
5509 Two operations that can do the above actions are ABS and FFS, so try
5510 them. If that doesn't work, and MODE is smaller than a full word,
5511 we can use zero-extension to the wider mode (an unsigned conversion)
5512 as the operation. */
5513
5514 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5515 that is compensated by the subsequent overflow when subtracting
5516 one / negating. */
5517
5518 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5519 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5520 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5521 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5522 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5523 {
5524 tem = convert_modes (word_mode, mode, op0, 1);
5525 mode = word_mode;
5526 }
5527
5528 if (tem != 0)
5529 {
5530 if (code == EQ)
5531 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5532 0, OPTAB_WIDEN);
5533 else
5534 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5535 }
5536
5537 /* If we couldn't do it that way, for NE we can "or" the two's complement
5538 of the value with itself. For EQ, we take the one's complement of
5539 that "or", which is an extra insn, so we only handle EQ if branches
5540 are expensive. */
5541
5542 if (tem == 0
5543 && (code == NE
5544 || BRANCH_COST (optimize_insn_for_speed_p (),
5545 false) > 1))
5546 {
5547 if (rtx_equal_p (subtarget, op0))
5548 subtarget = 0;
5549
5550 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5551 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5552 OPTAB_WIDEN);
5553
5554 if (tem && code == EQ)
5555 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5556 }
5557 }
5558
5559 if (tem && normalizep)
5560 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5561 size_int (GET_MODE_BITSIZE (mode) - 1),
5562 subtarget, normalizep == 1);
5563
5564 if (tem)
5565 {
5566 if (GET_MODE (tem) != target_mode)
5567 {
5568 convert_move (target, tem, 0);
5569 tem = target;
5570 }
5571 else if (!subtarget)
5572 {
5573 emit_move_insn (target, tem);
5574 tem = target;
5575 }
5576 }
5577 else
5578 delete_insns_since (last);
5579
5580 return tem;
5581 }
5582
5583 /* Like emit_store_flag, but always succeeds. */
5584
5585 rtx
5586 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5587 enum machine_mode mode, int unsignedp, int normalizep)
5588 {
5589 rtx tem, label;
5590
5591 /* First see if emit_store_flag can do the job. */
5592 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5593 if (tem != 0)
5594 return tem;
5595
5596 if (normalizep == 0)
5597 normalizep = 1;
5598
5599 /* If this failed, we have to do this with set/compare/jump/set code. */
5600
5601 if (!REG_P (target)
5602 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5603 target = gen_reg_rtx (GET_MODE (target));
5604
5605 emit_move_insn (target, const1_rtx);
5606 label = gen_label_rtx ();
5607 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5608 NULL_RTX, label);
5609
5610 emit_move_insn (target, const0_rtx);
5611 emit_label (label);
5612
5613 return target;
5614 }
5615 \f
5616 /* Perform possibly multi-word comparison and conditional jump to LABEL
5617 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5618 now a thin wrapper around do_compare_rtx_and_jump. */
5619
5620 static void
5621 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5622 rtx label)
5623 {
5624 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5625 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5626 NULL_RTX, NULL_RTX, label);
5627 }