re PR target/80846 (auto-vectorized AVX2 horizontal sum should narrow to 128b right...
[gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "langhooks.h"
42
43 struct target_expmed default_target_expmed;
44 #if SWITCHABLE_TARGET
45 struct target_expmed *this_target_expmed = &default_target_expmed;
46 #endif
47
48 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT,
51 unsigned HOST_WIDE_INT,
52 rtx, bool);
53 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
55 rtx, bool);
56 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT,
58 unsigned HOST_WIDE_INT,
59 unsigned HOST_WIDE_INT,
60 rtx, bool);
61 static rtx extract_fixed_bit_field (machine_mode, rtx,
62 unsigned HOST_WIDE_INT,
63 unsigned HOST_WIDE_INT, rtx, int, bool);
64 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
65 unsigned HOST_WIDE_INT,
66 unsigned HOST_WIDE_INT, rtx, int, bool);
67 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
68 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
69 unsigned HOST_WIDE_INT, int, bool);
70 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
71 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
72 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
73
74 /* Return a constant integer mask value of mode MODE with BITSIZE ones
75 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
76 The mask is truncated if necessary to the width of mode MODE. The
77 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
78
79 static inline rtx
80 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
81 {
82 return immed_wide_int_const
83 (wi::shifted_mask (bitpos, bitsize, complement,
84 GET_MODE_PRECISION (mode)), mode);
85 }
86
87 /* Test whether a value is zero of a power of two. */
88 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
89 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
90
91 struct init_expmed_rtl
92 {
93 rtx reg;
94 rtx plus;
95 rtx neg;
96 rtx mult;
97 rtx sdiv;
98 rtx udiv;
99 rtx sdiv_32;
100 rtx smod_32;
101 rtx wide_mult;
102 rtx wide_lshr;
103 rtx wide_trunc;
104 rtx shift;
105 rtx shift_mult;
106 rtx shift_add;
107 rtx shift_sub0;
108 rtx shift_sub1;
109 rtx zext;
110 rtx trunc;
111
112 rtx pow2[MAX_BITS_PER_WORD];
113 rtx cint[MAX_BITS_PER_WORD];
114 };
115
116 static void
117 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
118 machine_mode from_mode, bool speed)
119 {
120 int to_size, from_size;
121 rtx which;
122
123 to_size = GET_MODE_PRECISION (to_mode);
124 from_size = GET_MODE_PRECISION (from_mode);
125
126 /* Most partial integers have a precision less than the "full"
127 integer it requires for storage. In case one doesn't, for
128 comparison purposes here, reduce the bit size by one in that
129 case. */
130 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
131 && pow2p_hwi (to_size))
132 to_size --;
133 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
134 && pow2p_hwi (from_size))
135 from_size --;
136
137 /* Assume cost of zero-extend and sign-extend is the same. */
138 which = (to_size < from_size ? all->trunc : all->zext);
139
140 PUT_MODE (all->reg, from_mode);
141 set_convert_cost (to_mode, from_mode, speed,
142 set_src_cost (which, to_mode, speed));
143 }
144
145 static void
146 init_expmed_one_mode (struct init_expmed_rtl *all,
147 machine_mode mode, int speed)
148 {
149 int m, n, mode_bitsize;
150 machine_mode mode_from;
151
152 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
153
154 PUT_MODE (all->reg, mode);
155 PUT_MODE (all->plus, mode);
156 PUT_MODE (all->neg, mode);
157 PUT_MODE (all->mult, mode);
158 PUT_MODE (all->sdiv, mode);
159 PUT_MODE (all->udiv, mode);
160 PUT_MODE (all->sdiv_32, mode);
161 PUT_MODE (all->smod_32, mode);
162 PUT_MODE (all->wide_trunc, mode);
163 PUT_MODE (all->shift, mode);
164 PUT_MODE (all->shift_mult, mode);
165 PUT_MODE (all->shift_add, mode);
166 PUT_MODE (all->shift_sub0, mode);
167 PUT_MODE (all->shift_sub1, mode);
168 PUT_MODE (all->zext, mode);
169 PUT_MODE (all->trunc, mode);
170
171 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
172 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
173 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
174 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
175 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
176
177 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
178 <= 2 * add_cost (speed, mode)));
179 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
180 <= 4 * add_cost (speed, mode)));
181
182 set_shift_cost (speed, mode, 0, 0);
183 {
184 int cost = add_cost (speed, mode);
185 set_shiftadd_cost (speed, mode, 0, cost);
186 set_shiftsub0_cost (speed, mode, 0, cost);
187 set_shiftsub1_cost (speed, mode, 0, cost);
188 }
189
190 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
191 for (m = 1; m < n; m++)
192 {
193 XEXP (all->shift, 1) = all->cint[m];
194 XEXP (all->shift_mult, 1) = all->pow2[m];
195
196 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
197 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
198 speed));
199 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
200 speed));
201 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
202 speed));
203 }
204
205 if (SCALAR_INT_MODE_P (mode))
206 {
207 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
208 mode_from = (machine_mode)(mode_from + 1))
209 init_expmed_one_conv (all, mode, mode_from, speed);
210 }
211 if (GET_MODE_CLASS (mode) == MODE_INT)
212 {
213 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
214 if (wider_mode != VOIDmode)
215 {
216 PUT_MODE (all->zext, wider_mode);
217 PUT_MODE (all->wide_mult, wider_mode);
218 PUT_MODE (all->wide_lshr, wider_mode);
219 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
220
221 set_mul_widen_cost (speed, wider_mode,
222 set_src_cost (all->wide_mult, wider_mode, speed));
223 set_mul_highpart_cost (speed, mode,
224 set_src_cost (all->wide_trunc, mode, speed));
225 }
226 }
227 }
228
229 void
230 init_expmed (void)
231 {
232 struct init_expmed_rtl all;
233 machine_mode mode = QImode;
234 int m, speed;
235
236 memset (&all, 0, sizeof all);
237 for (m = 1; m < MAX_BITS_PER_WORD; m++)
238 {
239 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
240 all.cint[m] = GEN_INT (m);
241 }
242
243 /* Avoid using hard regs in ways which may be unsupported. */
244 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
245 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
246 all.neg = gen_rtx_NEG (mode, all.reg);
247 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
248 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
249 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
250 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
251 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
252 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
253 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
254 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
255 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
256 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
257 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
258 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
259 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
260 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
261 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
262
263 for (speed = 0; speed < 2; speed++)
264 {
265 crtl->maybe_hot_insn_p = speed;
266 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
267
268 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
269 mode = (machine_mode)(mode + 1))
270 init_expmed_one_mode (&all, mode, speed);
271
272 if (MIN_MODE_PARTIAL_INT != VOIDmode)
273 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
274 mode = (machine_mode)(mode + 1))
275 init_expmed_one_mode (&all, mode, speed);
276
277 if (MIN_MODE_VECTOR_INT != VOIDmode)
278 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
279 mode = (machine_mode)(mode + 1))
280 init_expmed_one_mode (&all, mode, speed);
281 }
282
283 if (alg_hash_used_p ())
284 {
285 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
286 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
287 }
288 else
289 set_alg_hash_used_p (true);
290 default_rtl_profile ();
291
292 ggc_free (all.trunc);
293 ggc_free (all.shift_sub1);
294 ggc_free (all.shift_sub0);
295 ggc_free (all.shift_add);
296 ggc_free (all.shift_mult);
297 ggc_free (all.shift);
298 ggc_free (all.wide_trunc);
299 ggc_free (all.wide_lshr);
300 ggc_free (all.wide_mult);
301 ggc_free (all.zext);
302 ggc_free (all.smod_32);
303 ggc_free (all.sdiv_32);
304 ggc_free (all.udiv);
305 ggc_free (all.sdiv);
306 ggc_free (all.mult);
307 ggc_free (all.neg);
308 ggc_free (all.plus);
309 ggc_free (all.reg);
310 }
311
312 /* Return an rtx representing minus the value of X.
313 MODE is the intended mode of the result,
314 useful if X is a CONST_INT. */
315
316 rtx
317 negate_rtx (machine_mode mode, rtx x)
318 {
319 rtx result = simplify_unary_operation (NEG, mode, x, mode);
320
321 if (result == 0)
322 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
323
324 return result;
325 }
326
327 /* Whether reverse storage order is supported on the target. */
328 static int reverse_storage_order_supported = -1;
329
330 /* Check whether reverse storage order is supported on the target. */
331
332 static void
333 check_reverse_storage_order_support (void)
334 {
335 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
336 {
337 reverse_storage_order_supported = 0;
338 sorry ("reverse scalar storage order");
339 }
340 else
341 reverse_storage_order_supported = 1;
342 }
343
344 /* Whether reverse FP storage order is supported on the target. */
345 static int reverse_float_storage_order_supported = -1;
346
347 /* Check whether reverse FP storage order is supported on the target. */
348
349 static void
350 check_reverse_float_storage_order_support (void)
351 {
352 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
353 {
354 reverse_float_storage_order_supported = 0;
355 sorry ("reverse floating-point scalar storage order");
356 }
357 else
358 reverse_float_storage_order_supported = 1;
359 }
360
361 /* Return an rtx representing value of X with reverse storage order.
362 MODE is the intended mode of the result,
363 useful if X is a CONST_INT. */
364
365 rtx
366 flip_storage_order (machine_mode mode, rtx x)
367 {
368 machine_mode int_mode;
369 rtx result;
370
371 if (mode == QImode)
372 return x;
373
374 if (COMPLEX_MODE_P (mode))
375 {
376 rtx real = read_complex_part (x, false);
377 rtx imag = read_complex_part (x, true);
378
379 real = flip_storage_order (GET_MODE_INNER (mode), real);
380 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
381
382 return gen_rtx_CONCAT (mode, real, imag);
383 }
384
385 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
386 check_reverse_storage_order_support ();
387
388 if (SCALAR_INT_MODE_P (mode))
389 int_mode = mode;
390 else
391 {
392 if (FLOAT_MODE_P (mode)
393 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
394 check_reverse_float_storage_order_support ();
395
396 int_mode = mode_for_size (GET_MODE_PRECISION (mode), MODE_INT, 0);
397 if (int_mode == BLKmode)
398 {
399 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
400 return x;
401 }
402 x = gen_lowpart (int_mode, x);
403 }
404
405 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
406 if (result == 0)
407 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
408
409 if (int_mode != mode)
410 result = gen_lowpart (mode, result);
411
412 return result;
413 }
414
415 /* Adjust bitfield memory MEM so that it points to the first unit of mode
416 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
417 If MODE is BLKmode, return a reference to every byte in the bitfield.
418 Set *NEW_BITNUM to the bit position of the field within the new memory. */
419
420 static rtx
421 narrow_bit_field_mem (rtx mem, machine_mode mode,
422 unsigned HOST_WIDE_INT bitsize,
423 unsigned HOST_WIDE_INT bitnum,
424 unsigned HOST_WIDE_INT *new_bitnum)
425 {
426 if (mode == BLKmode)
427 {
428 *new_bitnum = bitnum % BITS_PER_UNIT;
429 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
430 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
431 / BITS_PER_UNIT);
432 return adjust_bitfield_address_size (mem, mode, offset, size);
433 }
434 else
435 {
436 unsigned int unit = GET_MODE_BITSIZE (mode);
437 *new_bitnum = bitnum % unit;
438 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
439 return adjust_bitfield_address (mem, mode, offset);
440 }
441 }
442
443 /* The caller wants to perform insertion or extraction PATTERN on a
444 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
445 BITREGION_START and BITREGION_END are as for store_bit_field
446 and FIELDMODE is the natural mode of the field.
447
448 Search for a mode that is compatible with the memory access
449 restrictions and (where applicable) with a register insertion or
450 extraction. Return the new memory on success, storing the adjusted
451 bit position in *NEW_BITNUM. Return null otherwise. */
452
453 static rtx
454 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
455 rtx op0, HOST_WIDE_INT bitsize,
456 HOST_WIDE_INT bitnum,
457 unsigned HOST_WIDE_INT bitregion_start,
458 unsigned HOST_WIDE_INT bitregion_end,
459 machine_mode fieldmode,
460 unsigned HOST_WIDE_INT *new_bitnum)
461 {
462 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
463 bitregion_end, MEM_ALIGN (op0),
464 MEM_VOLATILE_P (op0));
465 machine_mode best_mode;
466 if (iter.next_mode (&best_mode))
467 {
468 /* We can use a memory in BEST_MODE. See whether this is true for
469 any wider modes. All other things being equal, we prefer to
470 use the widest mode possible because it tends to expose more
471 CSE opportunities. */
472 if (!iter.prefer_smaller_modes ())
473 {
474 /* Limit the search to the mode required by the corresponding
475 register insertion or extraction instruction, if any. */
476 machine_mode limit_mode = word_mode;
477 extraction_insn insn;
478 if (get_best_reg_extraction_insn (&insn, pattern,
479 GET_MODE_BITSIZE (best_mode),
480 fieldmode))
481 limit_mode = insn.field_mode;
482
483 machine_mode wider_mode;
484 while (iter.next_mode (&wider_mode)
485 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
486 best_mode = wider_mode;
487 }
488 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
489 new_bitnum);
490 }
491 return NULL_RTX;
492 }
493
494 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
495 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
496 offset is then BITNUM / BITS_PER_UNIT. */
497
498 static bool
499 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
500 unsigned HOST_WIDE_INT bitsize,
501 machine_mode struct_mode)
502 {
503 if (BYTES_BIG_ENDIAN)
504 return (bitnum % BITS_PER_UNIT == 0
505 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
506 || (bitnum + bitsize) % BITS_PER_WORD == 0));
507 else
508 return bitnum % BITS_PER_WORD == 0;
509 }
510
511 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
512 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
513 Return false if the access would touch memory outside the range
514 BITREGION_START to BITREGION_END for conformance to the C++ memory
515 model. */
516
517 static bool
518 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
519 unsigned HOST_WIDE_INT bitnum,
520 machine_mode fieldmode,
521 unsigned HOST_WIDE_INT bitregion_start,
522 unsigned HOST_WIDE_INT bitregion_end)
523 {
524 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
525
526 /* -fstrict-volatile-bitfields must be enabled and we must have a
527 volatile MEM. */
528 if (!MEM_P (op0)
529 || !MEM_VOLATILE_P (op0)
530 || flag_strict_volatile_bitfields <= 0)
531 return false;
532
533 /* Non-integral modes likely only happen with packed structures.
534 Punt. */
535 if (!SCALAR_INT_MODE_P (fieldmode))
536 return false;
537
538 /* The bit size must not be larger than the field mode, and
539 the field mode must not be larger than a word. */
540 if (bitsize > modesize || modesize > BITS_PER_WORD)
541 return false;
542
543 /* Check for cases of unaligned fields that must be split. */
544 if (bitnum % modesize + bitsize > modesize)
545 return false;
546
547 /* The memory must be sufficiently aligned for a MODESIZE access.
548 This condition guarantees, that the memory access will not
549 touch anything after the end of the structure. */
550 if (MEM_ALIGN (op0) < modesize)
551 return false;
552
553 /* Check for cases where the C++ memory model applies. */
554 if (bitregion_end != 0
555 && (bitnum - bitnum % modesize < bitregion_start
556 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
557 return false;
558
559 return true;
560 }
561
562 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
563 bit number BITNUM can be treated as a simple value of mode MODE. */
564
565 static bool
566 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
567 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
568 {
569 return (MEM_P (op0)
570 && bitnum % BITS_PER_UNIT == 0
571 && bitsize == GET_MODE_BITSIZE (mode)
572 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
573 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
574 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
575 }
576 \f
577 /* Try to use instruction INSV to store VALUE into a field of OP0.
578 BITSIZE and BITNUM are as for store_bit_field. */
579
580 static bool
581 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
582 unsigned HOST_WIDE_INT bitsize,
583 unsigned HOST_WIDE_INT bitnum,
584 rtx value)
585 {
586 struct expand_operand ops[4];
587 rtx value1;
588 rtx xop0 = op0;
589 rtx_insn *last = get_last_insn ();
590 bool copy_back = false;
591
592 machine_mode op_mode = insv->field_mode;
593 unsigned int unit = GET_MODE_BITSIZE (op_mode);
594 if (bitsize == 0 || bitsize > unit)
595 return false;
596
597 if (MEM_P (xop0))
598 /* Get a reference to the first byte of the field. */
599 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
600 &bitnum);
601 else
602 {
603 /* Convert from counting within OP0 to counting in OP_MODE. */
604 if (BYTES_BIG_ENDIAN)
605 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
606
607 /* If xop0 is a register, we need it in OP_MODE
608 to make it acceptable to the format of insv. */
609 if (GET_CODE (xop0) == SUBREG)
610 /* We can't just change the mode, because this might clobber op0,
611 and we will need the original value of op0 if insv fails. */
612 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
613 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
614 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
615 }
616
617 /* If the destination is a paradoxical subreg such that we need a
618 truncate to the inner mode, perform the insertion on a temporary and
619 truncate the result to the original destination. Note that we can't
620 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
621 X) 0)) is (reg:N X). */
622 if (GET_CODE (xop0) == SUBREG
623 && REG_P (SUBREG_REG (xop0))
624 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
625 op_mode))
626 {
627 rtx tem = gen_reg_rtx (op_mode);
628 emit_move_insn (tem, xop0);
629 xop0 = tem;
630 copy_back = true;
631 }
632
633 /* There are similar overflow check at the start of store_bit_field_1,
634 but that only check the situation where the field lies completely
635 outside the register, while there do have situation where the field
636 lies partialy in the register, we need to adjust bitsize for this
637 partial overflow situation. Without this fix, pr48335-2.c on big-endian
638 will broken on those arch support bit insert instruction, like arm, aarch64
639 etc. */
640 if (bitsize + bitnum > unit && bitnum < unit)
641 {
642 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
643 "destination object, data truncated into %wu-bit",
644 bitsize, unit - bitnum);
645 bitsize = unit - bitnum;
646 }
647
648 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
649 "backwards" from the size of the unit we are inserting into.
650 Otherwise, we count bits from the most significant on a
651 BYTES/BITS_BIG_ENDIAN machine. */
652
653 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
654 bitnum = unit - bitsize - bitnum;
655
656 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
657 value1 = value;
658 if (GET_MODE (value) != op_mode)
659 {
660 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
661 {
662 rtx tmp;
663 /* Optimization: Don't bother really extending VALUE
664 if it has all the bits we will actually use. However,
665 if we must narrow it, be sure we do it correctly. */
666
667 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
668 {
669 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
670 if (! tmp)
671 tmp = simplify_gen_subreg (op_mode,
672 force_reg (GET_MODE (value),
673 value1),
674 GET_MODE (value), 0);
675 }
676 else
677 {
678 tmp = gen_lowpart_if_possible (op_mode, value1);
679 if (! tmp)
680 tmp = gen_lowpart (op_mode, force_reg (GET_MODE (value),
681 value1));
682 }
683 value1 = tmp;
684 }
685 else if (CONST_INT_P (value))
686 value1 = gen_int_mode (INTVAL (value), op_mode);
687 else
688 /* Parse phase is supposed to make VALUE's data type
689 match that of the component reference, which is a type
690 at least as wide as the field; so VALUE should have
691 a mode that corresponds to that type. */
692 gcc_assert (CONSTANT_P (value));
693 }
694
695 create_fixed_operand (&ops[0], xop0);
696 create_integer_operand (&ops[1], bitsize);
697 create_integer_operand (&ops[2], bitnum);
698 create_input_operand (&ops[3], value1, op_mode);
699 if (maybe_expand_insn (insv->icode, 4, ops))
700 {
701 if (copy_back)
702 convert_move (op0, xop0, true);
703 return true;
704 }
705 delete_insns_since (last);
706 return false;
707 }
708
709 /* A subroutine of store_bit_field, with the same arguments. Return true
710 if the operation could be implemented.
711
712 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
713 no other way of implementing the operation. If FALLBACK_P is false,
714 return false instead. */
715
716 static bool
717 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
718 unsigned HOST_WIDE_INT bitnum,
719 unsigned HOST_WIDE_INT bitregion_start,
720 unsigned HOST_WIDE_INT bitregion_end,
721 machine_mode fieldmode,
722 rtx value, bool reverse, bool fallback_p)
723 {
724 rtx op0 = str_rtx;
725 rtx orig_value;
726
727 while (GET_CODE (op0) == SUBREG)
728 {
729 /* The following line once was done only if WORDS_BIG_ENDIAN,
730 but I think that is a mistake. WORDS_BIG_ENDIAN is
731 meaningful at a much higher level; when structures are copied
732 between memory and regs, the higher-numbered regs
733 always get higher addresses. */
734 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
735 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
736 int byte_offset = 0;
737
738 /* Paradoxical subregs need special handling on big-endian machines. */
739 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
740 {
741 int difference = inner_mode_size - outer_mode_size;
742
743 if (WORDS_BIG_ENDIAN)
744 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
745 if (BYTES_BIG_ENDIAN)
746 byte_offset += difference % UNITS_PER_WORD;
747 }
748 else
749 byte_offset = SUBREG_BYTE (op0);
750
751 bitnum += byte_offset * BITS_PER_UNIT;
752 op0 = SUBREG_REG (op0);
753 }
754
755 /* No action is needed if the target is a register and if the field
756 lies completely outside that register. This can occur if the source
757 code contains an out-of-bounds access to a small array. */
758 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
759 return true;
760
761 /* Use vec_set patterns for inserting parts of vectors whenever
762 available. */
763 if (VECTOR_MODE_P (GET_MODE (op0))
764 && !MEM_P (op0)
765 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
766 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
767 && bitsize == GET_MODE_UNIT_BITSIZE (GET_MODE (op0))
768 && !(bitnum % GET_MODE_UNIT_BITSIZE (GET_MODE (op0))))
769 {
770 struct expand_operand ops[3];
771 machine_mode outermode = GET_MODE (op0);
772 machine_mode innermode = GET_MODE_INNER (outermode);
773 enum insn_code icode = optab_handler (vec_set_optab, outermode);
774 int pos = bitnum / GET_MODE_BITSIZE (innermode);
775
776 create_fixed_operand (&ops[0], op0);
777 create_input_operand (&ops[1], value, innermode);
778 create_integer_operand (&ops[2], pos);
779 if (maybe_expand_insn (icode, 3, ops))
780 return true;
781 }
782
783 /* If the target is a register, overwriting the entire object, or storing
784 a full-word or multi-word field can be done with just a SUBREG. */
785 if (!MEM_P (op0)
786 && bitsize == GET_MODE_BITSIZE (fieldmode)
787 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
788 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
789 {
790 /* Use the subreg machinery either to narrow OP0 to the required
791 words or to cope with mode punning between equal-sized modes.
792 In the latter case, use subreg on the rhs side, not lhs. */
793 rtx sub;
794
795 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
796 {
797 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
798 if (sub)
799 {
800 if (reverse)
801 sub = flip_storage_order (GET_MODE (op0), sub);
802 emit_move_insn (op0, sub);
803 return true;
804 }
805 }
806 else
807 {
808 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
809 bitnum / BITS_PER_UNIT);
810 if (sub)
811 {
812 if (reverse)
813 value = flip_storage_order (fieldmode, value);
814 emit_move_insn (sub, value);
815 return true;
816 }
817 }
818 }
819
820 /* If the target is memory, storing any naturally aligned field can be
821 done with a simple store. For targets that support fast unaligned
822 memory, any naturally sized, unit aligned field can be done directly. */
823 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
824 {
825 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
826 if (reverse)
827 value = flip_storage_order (fieldmode, value);
828 emit_move_insn (op0, value);
829 return true;
830 }
831
832 /* Make sure we are playing with integral modes. Pun with subregs
833 if we aren't. This must come after the entire register case above,
834 since that case is valid for any mode. The following cases are only
835 valid for integral modes. */
836 {
837 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
838 if (imode != GET_MODE (op0))
839 {
840 if (MEM_P (op0))
841 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
842 else
843 {
844 gcc_assert (imode != BLKmode);
845 op0 = gen_lowpart (imode, op0);
846 }
847 }
848 }
849
850 /* Storing an lsb-aligned field in a register
851 can be done with a movstrict instruction. */
852
853 if (!MEM_P (op0)
854 && !reverse
855 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
856 && bitsize == GET_MODE_BITSIZE (fieldmode)
857 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
858 {
859 struct expand_operand ops[2];
860 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
861 rtx arg0 = op0;
862 unsigned HOST_WIDE_INT subreg_off;
863
864 if (GET_CODE (arg0) == SUBREG)
865 {
866 /* Else we've got some float mode source being extracted into
867 a different float mode destination -- this combination of
868 subregs results in Severe Tire Damage. */
869 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
870 || GET_MODE_CLASS (fieldmode) == MODE_INT
871 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
872 arg0 = SUBREG_REG (arg0);
873 }
874
875 subreg_off = bitnum / BITS_PER_UNIT;
876 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
877 {
878 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
879
880 create_fixed_operand (&ops[0], arg0);
881 /* Shrink the source operand to FIELDMODE. */
882 create_convert_operand_to (&ops[1], value, fieldmode, false);
883 if (maybe_expand_insn (icode, 2, ops))
884 return true;
885 }
886 }
887
888 /* Handle fields bigger than a word. */
889
890 if (bitsize > BITS_PER_WORD)
891 {
892 /* Here we transfer the words of the field
893 in the order least significant first.
894 This is because the most significant word is the one which may
895 be less than full.
896 However, only do that if the value is not BLKmode. */
897
898 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
899 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
900 unsigned int i;
901 rtx_insn *last;
902
903 /* This is the mode we must force value to, so that there will be enough
904 subwords to extract. Note that fieldmode will often (always?) be
905 VOIDmode, because that is what store_field uses to indicate that this
906 is a bit field, but passing VOIDmode to operand_subword_force
907 is not allowed. */
908 fieldmode = GET_MODE (value);
909 if (fieldmode == VOIDmode)
910 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
911
912 last = get_last_insn ();
913 for (i = 0; i < nwords; i++)
914 {
915 /* If I is 0, use the low-order word in both field and target;
916 if I is 1, use the next to lowest word; and so on. */
917 unsigned int wordnum = (backwards
918 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
919 - i - 1
920 : i);
921 unsigned int bit_offset = (backwards ^ reverse
922 ? MAX ((int) bitsize - ((int) i + 1)
923 * BITS_PER_WORD,
924 0)
925 : (int) i * BITS_PER_WORD);
926 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
927 unsigned HOST_WIDE_INT new_bitsize =
928 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
929
930 /* If the remaining chunk doesn't have full wordsize we have
931 to make sure that for big-endian machines the higher order
932 bits are used. */
933 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
934 value_word = simplify_expand_binop (word_mode, lshr_optab,
935 value_word,
936 GEN_INT (BITS_PER_WORD
937 - new_bitsize),
938 NULL_RTX, true,
939 OPTAB_LIB_WIDEN);
940
941 if (!store_bit_field_1 (op0, new_bitsize,
942 bitnum + bit_offset,
943 bitregion_start, bitregion_end,
944 word_mode,
945 value_word, reverse, fallback_p))
946 {
947 delete_insns_since (last);
948 return false;
949 }
950 }
951 return true;
952 }
953
954 /* If VALUE has a floating-point or complex mode, access it as an
955 integer of the corresponding size. This can occur on a machine
956 with 64 bit registers that uses SFmode for float. It can also
957 occur for unaligned float or complex fields. */
958 orig_value = value;
959 if (GET_MODE (value) != VOIDmode
960 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
961 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
962 {
963 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
964 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
965 }
966
967 /* If OP0 is a multi-word register, narrow it to the affected word.
968 If the region spans two words, defer to store_split_bit_field.
969 Don't do this if op0 is a single hard register wider than word
970 such as a float or vector register. */
971 if (!MEM_P (op0)
972 && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD
973 && (!REG_P (op0)
974 || !HARD_REGISTER_P (op0)
975 || HARD_REGNO_NREGS (REGNO (op0), GET_MODE (op0)) != 1))
976 {
977 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
978 {
979 if (!fallback_p)
980 return false;
981
982 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
983 bitregion_end, value, reverse);
984 return true;
985 }
986 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
987 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
988 gcc_assert (op0);
989 bitnum %= BITS_PER_WORD;
990 }
991
992 /* From here on we can assume that the field to be stored in fits
993 within a word. If the destination is a register, it too fits
994 in a word. */
995
996 extraction_insn insv;
997 if (!MEM_P (op0)
998 && !reverse
999 && get_best_reg_extraction_insn (&insv, EP_insv,
1000 GET_MODE_BITSIZE (GET_MODE (op0)),
1001 fieldmode)
1002 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
1003 return true;
1004
1005 /* If OP0 is a memory, try copying it to a register and seeing if a
1006 cheap register alternative is available. */
1007 if (MEM_P (op0) && !reverse)
1008 {
1009 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1010 fieldmode)
1011 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
1012 return true;
1013
1014 rtx_insn *last = get_last_insn ();
1015
1016 /* Try loading part of OP0 into a register, inserting the bitfield
1017 into that, and then copying the result back to OP0. */
1018 unsigned HOST_WIDE_INT bitpos;
1019 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1020 bitregion_start, bitregion_end,
1021 fieldmode, &bitpos);
1022 if (xop0)
1023 {
1024 rtx tempreg = copy_to_reg (xop0);
1025 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1026 bitregion_start, bitregion_end,
1027 fieldmode, orig_value, reverse, false))
1028 {
1029 emit_move_insn (xop0, tempreg);
1030 return true;
1031 }
1032 delete_insns_since (last);
1033 }
1034 }
1035
1036 if (!fallback_p)
1037 return false;
1038
1039 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
1040 bitregion_end, value, reverse);
1041 return true;
1042 }
1043
1044 /* Generate code to store value from rtx VALUE
1045 into a bit-field within structure STR_RTX
1046 containing BITSIZE bits starting at bit BITNUM.
1047
1048 BITREGION_START is bitpos of the first bitfield in this region.
1049 BITREGION_END is the bitpos of the ending bitfield in this region.
1050 These two fields are 0, if the C++ memory model does not apply,
1051 or we are not interested in keeping track of bitfield regions.
1052
1053 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1054
1055 If REVERSE is true, the store is to be done in reverse order. */
1056
1057 void
1058 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1059 unsigned HOST_WIDE_INT bitnum,
1060 unsigned HOST_WIDE_INT bitregion_start,
1061 unsigned HOST_WIDE_INT bitregion_end,
1062 machine_mode fieldmode,
1063 rtx value, bool reverse)
1064 {
1065 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1066 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
1067 bitregion_start, bitregion_end))
1068 {
1069 /* Storing of a full word can be done with a simple store.
1070 We know here that the field can be accessed with one single
1071 instruction. For targets that support unaligned memory,
1072 an unaligned access may be necessary. */
1073 if (bitsize == GET_MODE_BITSIZE (fieldmode))
1074 {
1075 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
1076 bitnum / BITS_PER_UNIT);
1077 if (reverse)
1078 value = flip_storage_order (fieldmode, value);
1079 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1080 emit_move_insn (str_rtx, value);
1081 }
1082 else
1083 {
1084 rtx temp;
1085
1086 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
1087 &bitnum);
1088 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
1089 temp = copy_to_reg (str_rtx);
1090 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
1091 fieldmode, value, reverse, true))
1092 gcc_unreachable ();
1093
1094 emit_move_insn (str_rtx, temp);
1095 }
1096
1097 return;
1098 }
1099
1100 /* Under the C++0x memory model, we must not touch bits outside the
1101 bit region. Adjust the address to start at the beginning of the
1102 bit region. */
1103 if (MEM_P (str_rtx) && bitregion_start > 0)
1104 {
1105 machine_mode bestmode;
1106 HOST_WIDE_INT offset, size;
1107
1108 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1109
1110 offset = bitregion_start / BITS_PER_UNIT;
1111 bitnum -= bitregion_start;
1112 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1113 bitregion_end -= bitregion_start;
1114 bitregion_start = 0;
1115 bestmode = get_best_mode (bitsize, bitnum,
1116 bitregion_start, bitregion_end,
1117 MEM_ALIGN (str_rtx), VOIDmode,
1118 MEM_VOLATILE_P (str_rtx));
1119 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1120 }
1121
1122 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1123 bitregion_start, bitregion_end,
1124 fieldmode, value, reverse, true))
1125 gcc_unreachable ();
1126 }
1127 \f
1128 /* Use shifts and boolean operations to store VALUE into a bit field of
1129 width BITSIZE in OP0, starting at bit BITNUM.
1130
1131 If REVERSE is true, the store is to be done in reverse order. */
1132
1133 static void
1134 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1135 unsigned HOST_WIDE_INT bitnum,
1136 unsigned HOST_WIDE_INT bitregion_start,
1137 unsigned HOST_WIDE_INT bitregion_end,
1138 rtx value, bool reverse)
1139 {
1140 /* There is a case not handled here:
1141 a structure with a known alignment of just a halfword
1142 and a field split across two aligned halfwords within the structure.
1143 Or likewise a structure with a known alignment of just a byte
1144 and a field split across two bytes.
1145 Such cases are not supposed to be able to occur. */
1146
1147 if (MEM_P (op0))
1148 {
1149 machine_mode mode = GET_MODE (op0);
1150 if (GET_MODE_BITSIZE (mode) == 0
1151 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1152 mode = word_mode;
1153 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1154 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1155
1156 if (mode == VOIDmode)
1157 {
1158 /* The only way this should occur is if the field spans word
1159 boundaries. */
1160 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1161 bitregion_end, value, reverse);
1162 return;
1163 }
1164
1165 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1166 }
1167
1168 store_fixed_bit_field_1 (op0, bitsize, bitnum, value, reverse);
1169 }
1170
1171 /* Helper function for store_fixed_bit_field, stores
1172 the bit field always using the MODE of OP0. */
1173
1174 static void
1175 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1176 unsigned HOST_WIDE_INT bitnum,
1177 rtx value, bool reverse)
1178 {
1179 machine_mode mode;
1180 rtx temp;
1181 int all_zero = 0;
1182 int all_one = 0;
1183
1184 mode = GET_MODE (op0);
1185 gcc_assert (SCALAR_INT_MODE_P (mode));
1186
1187 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1188 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1189
1190 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1191 /* BITNUM is the distance between our msb
1192 and that of the containing datum.
1193 Convert it to the distance from the lsb. */
1194 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1195
1196 /* Now BITNUM is always the distance between our lsb
1197 and that of OP0. */
1198
1199 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1200 we must first convert its mode to MODE. */
1201
1202 if (CONST_INT_P (value))
1203 {
1204 unsigned HOST_WIDE_INT v = UINTVAL (value);
1205
1206 if (bitsize < HOST_BITS_PER_WIDE_INT)
1207 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1208
1209 if (v == 0)
1210 all_zero = 1;
1211 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1212 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1213 || (bitsize == HOST_BITS_PER_WIDE_INT
1214 && v == HOST_WIDE_INT_M1U))
1215 all_one = 1;
1216
1217 value = lshift_value (mode, v, bitnum);
1218 }
1219 else
1220 {
1221 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1222 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1223
1224 if (GET_MODE (value) != mode)
1225 value = convert_to_mode (mode, value, 1);
1226
1227 if (must_and)
1228 value = expand_binop (mode, and_optab, value,
1229 mask_rtx (mode, 0, bitsize, 0),
1230 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1231 if (bitnum > 0)
1232 value = expand_shift (LSHIFT_EXPR, mode, value,
1233 bitnum, NULL_RTX, 1);
1234 }
1235
1236 if (reverse)
1237 value = flip_storage_order (mode, value);
1238
1239 /* Now clear the chosen bits in OP0,
1240 except that if VALUE is -1 we need not bother. */
1241 /* We keep the intermediates in registers to allow CSE to combine
1242 consecutive bitfield assignments. */
1243
1244 temp = force_reg (mode, op0);
1245
1246 if (! all_one)
1247 {
1248 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1249 if (reverse)
1250 mask = flip_storage_order (mode, mask);
1251 temp = expand_binop (mode, and_optab, temp, mask,
1252 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1253 temp = force_reg (mode, temp);
1254 }
1255
1256 /* Now logical-or VALUE into OP0, unless it is zero. */
1257
1258 if (! all_zero)
1259 {
1260 temp = expand_binop (mode, ior_optab, temp, value,
1261 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1262 temp = force_reg (mode, temp);
1263 }
1264
1265 if (op0 != temp)
1266 {
1267 op0 = copy_rtx (op0);
1268 emit_move_insn (op0, temp);
1269 }
1270 }
1271 \f
1272 /* Store a bit field that is split across multiple accessible memory objects.
1273
1274 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1275 BITSIZE is the field width; BITPOS the position of its first bit
1276 (within the word).
1277 VALUE is the value to store.
1278
1279 If REVERSE is true, the store is to be done in reverse order.
1280
1281 This does not yet handle fields wider than BITS_PER_WORD. */
1282
1283 static void
1284 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1285 unsigned HOST_WIDE_INT bitpos,
1286 unsigned HOST_WIDE_INT bitregion_start,
1287 unsigned HOST_WIDE_INT bitregion_end,
1288 rtx value, bool reverse)
1289 {
1290 unsigned int unit, total_bits, bitsdone = 0;
1291
1292 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1293 much at a time. */
1294 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1295 unit = BITS_PER_WORD;
1296 else
1297 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1298
1299 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1300 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1301 again, and we will mutually recurse forever. */
1302 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1303 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1304
1305 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1306 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1307 that VALUE might be a floating-point constant. */
1308 if (CONSTANT_P (value) && !CONST_INT_P (value))
1309 {
1310 rtx word = gen_lowpart_common (word_mode, value);
1311
1312 if (word && (value != word))
1313 value = word;
1314 else
1315 value = gen_lowpart_common (word_mode,
1316 force_reg (GET_MODE (value) != VOIDmode
1317 ? GET_MODE (value)
1318 : word_mode, value));
1319 }
1320
1321 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1322
1323 while (bitsdone < bitsize)
1324 {
1325 unsigned HOST_WIDE_INT thissize;
1326 unsigned HOST_WIDE_INT thispos;
1327 unsigned HOST_WIDE_INT offset;
1328 rtx part, word;
1329
1330 offset = (bitpos + bitsdone) / unit;
1331 thispos = (bitpos + bitsdone) % unit;
1332
1333 /* When region of bytes we can touch is restricted, decrease
1334 UNIT close to the end of the region as needed. If op0 is a REG
1335 or SUBREG of REG, don't do this, as there can't be data races
1336 on a register and we can expand shorter code in some cases. */
1337 if (bitregion_end
1338 && unit > BITS_PER_UNIT
1339 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1340 && !REG_P (op0)
1341 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1342 {
1343 unit = unit / 2;
1344 continue;
1345 }
1346
1347 /* THISSIZE must not overrun a word boundary. Otherwise,
1348 store_fixed_bit_field will call us again, and we will mutually
1349 recurse forever. */
1350 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1351 thissize = MIN (thissize, unit - thispos);
1352
1353 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1354 {
1355 /* Fetch successively less significant portions. */
1356 if (CONST_INT_P (value))
1357 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1358 >> (bitsize - bitsdone - thissize))
1359 & ((HOST_WIDE_INT_1 << thissize) - 1));
1360 /* Likewise, but the source is little-endian. */
1361 else if (reverse)
1362 part = extract_fixed_bit_field (word_mode, value, thissize,
1363 bitsize - bitsdone - thissize,
1364 NULL_RTX, 1, false);
1365 else
1366 {
1367 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1368 /* The args are chosen so that the last part includes the
1369 lsb. Give extract_bit_field the value it needs (with
1370 endianness compensation) to fetch the piece we want. */
1371 part = extract_fixed_bit_field (word_mode, value, thissize,
1372 total_bits - bitsize + bitsdone,
1373 NULL_RTX, 1, false);
1374 }
1375 }
1376 else
1377 {
1378 /* Fetch successively more significant portions. */
1379 if (CONST_INT_P (value))
1380 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1381 >> bitsdone)
1382 & ((HOST_WIDE_INT_1 << thissize) - 1));
1383 /* Likewise, but the source is big-endian. */
1384 else if (reverse)
1385 part = extract_fixed_bit_field (word_mode, value, thissize,
1386 total_bits - bitsdone - thissize,
1387 NULL_RTX, 1, false);
1388 else
1389 part = extract_fixed_bit_field (word_mode, value, thissize,
1390 bitsdone, NULL_RTX, 1, false);
1391 }
1392
1393 /* If OP0 is a register, then handle OFFSET here. */
1394 if (SUBREG_P (op0) || REG_P (op0))
1395 {
1396 machine_mode op0_mode = GET_MODE (op0);
1397 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1398 word = offset ? const0_rtx : op0;
1399 else
1400 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1401 GET_MODE (op0));
1402 offset &= BITS_PER_WORD / unit - 1;
1403 }
1404 else
1405 word = op0;
1406
1407 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1408 it is just an out-of-bounds access. Ignore it. */
1409 if (word != const0_rtx)
1410 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1411 bitregion_start, bitregion_end, part,
1412 reverse);
1413 bitsdone += thissize;
1414 }
1415 }
1416 \f
1417 /* A subroutine of extract_bit_field_1 that converts return value X
1418 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1419 to extract_bit_field. */
1420
1421 static rtx
1422 convert_extracted_bit_field (rtx x, machine_mode mode,
1423 machine_mode tmode, bool unsignedp)
1424 {
1425 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1426 return x;
1427
1428 /* If the x mode is not a scalar integral, first convert to the
1429 integer mode of that size and then access it as a floating-point
1430 value via a SUBREG. */
1431 if (!SCALAR_INT_MODE_P (tmode))
1432 {
1433 machine_mode smode;
1434
1435 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1436 x = convert_to_mode (smode, x, unsignedp);
1437 x = force_reg (smode, x);
1438 return gen_lowpart (tmode, x);
1439 }
1440
1441 return convert_to_mode (tmode, x, unsignedp);
1442 }
1443
1444 /* Try to use an ext(z)v pattern to extract a field from OP0.
1445 Return the extracted value on success, otherwise return null.
1446 EXT_MODE is the mode of the extraction and the other arguments
1447 are as for extract_bit_field. */
1448
1449 static rtx
1450 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1451 unsigned HOST_WIDE_INT bitsize,
1452 unsigned HOST_WIDE_INT bitnum,
1453 int unsignedp, rtx target,
1454 machine_mode mode, machine_mode tmode)
1455 {
1456 struct expand_operand ops[4];
1457 rtx spec_target = target;
1458 rtx spec_target_subreg = 0;
1459 machine_mode ext_mode = extv->field_mode;
1460 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1461
1462 if (bitsize == 0 || unit < bitsize)
1463 return NULL_RTX;
1464
1465 if (MEM_P (op0))
1466 /* Get a reference to the first byte of the field. */
1467 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1468 &bitnum);
1469 else
1470 {
1471 /* Convert from counting within OP0 to counting in EXT_MODE. */
1472 if (BYTES_BIG_ENDIAN)
1473 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1474
1475 /* If op0 is a register, we need it in EXT_MODE to make it
1476 acceptable to the format of ext(z)v. */
1477 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1478 return NULL_RTX;
1479 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1480 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1481 }
1482
1483 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1484 "backwards" from the size of the unit we are extracting from.
1485 Otherwise, we count bits from the most significant on a
1486 BYTES/BITS_BIG_ENDIAN machine. */
1487
1488 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1489 bitnum = unit - bitsize - bitnum;
1490
1491 if (target == 0)
1492 target = spec_target = gen_reg_rtx (tmode);
1493
1494 if (GET_MODE (target) != ext_mode)
1495 {
1496 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1497 between the mode of the extraction (word_mode) and the target
1498 mode. Instead, create a temporary and use convert_move to set
1499 the target. */
1500 if (REG_P (target)
1501 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1502 {
1503 target = gen_lowpart (ext_mode, target);
1504 if (GET_MODE_PRECISION (ext_mode)
1505 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1506 spec_target_subreg = target;
1507 }
1508 else
1509 target = gen_reg_rtx (ext_mode);
1510 }
1511
1512 create_output_operand (&ops[0], target, ext_mode);
1513 create_fixed_operand (&ops[1], op0);
1514 create_integer_operand (&ops[2], bitsize);
1515 create_integer_operand (&ops[3], bitnum);
1516 if (maybe_expand_insn (extv->icode, 4, ops))
1517 {
1518 target = ops[0].value;
1519 if (target == spec_target)
1520 return target;
1521 if (target == spec_target_subreg)
1522 return spec_target;
1523 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1524 }
1525 return NULL_RTX;
1526 }
1527
1528 /* A subroutine of extract_bit_field, with the same arguments.
1529 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1530 if we can find no other means of implementing the operation.
1531 if FALLBACK_P is false, return NULL instead. */
1532
1533 static rtx
1534 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1535 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1536 machine_mode mode, machine_mode tmode,
1537 bool reverse, bool fallback_p, rtx *alt_rtl)
1538 {
1539 rtx op0 = str_rtx;
1540 machine_mode int_mode;
1541 machine_mode mode1;
1542
1543 if (tmode == VOIDmode)
1544 tmode = mode;
1545
1546 while (GET_CODE (op0) == SUBREG)
1547 {
1548 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1549 op0 = SUBREG_REG (op0);
1550 }
1551
1552 /* If we have an out-of-bounds access to a register, just return an
1553 uninitialized register of the required mode. This can occur if the
1554 source code contains an out-of-bounds access to a small array. */
1555 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1556 return gen_reg_rtx (tmode);
1557
1558 if (REG_P (op0)
1559 && mode == GET_MODE (op0)
1560 && bitnum == 0
1561 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1562 {
1563 if (reverse)
1564 op0 = flip_storage_order (mode, op0);
1565 /* We're trying to extract a full register from itself. */
1566 return op0;
1567 }
1568
1569 /* First try to check for vector from vector extractions. */
1570 if (VECTOR_MODE_P (GET_MODE (op0))
1571 && !MEM_P (op0)
1572 && VECTOR_MODE_P (tmode)
1573 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (tmode))
1574 {
1575 machine_mode new_mode = GET_MODE (op0);
1576 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1577 {
1578 new_mode = mode_for_vector (GET_MODE_INNER (tmode),
1579 GET_MODE_BITSIZE (GET_MODE (op0))
1580 / GET_MODE_UNIT_BITSIZE (tmode));
1581 if (!VECTOR_MODE_P (new_mode)
1582 || GET_MODE_SIZE (new_mode) != GET_MODE_SIZE (GET_MODE (op0))
1583 || GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)
1584 || !targetm.vector_mode_supported_p (new_mode))
1585 new_mode = VOIDmode;
1586 }
1587 if (new_mode != VOIDmode
1588 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1589 != CODE_FOR_nothing)
1590 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (tmode)
1591 == bitnum / GET_MODE_BITSIZE (tmode)))
1592 {
1593 struct expand_operand ops[3];
1594 machine_mode outermode = new_mode;
1595 machine_mode innermode = tmode;
1596 enum insn_code icode
1597 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1598 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1599
1600 if (new_mode != GET_MODE (op0))
1601 op0 = gen_lowpart (new_mode, op0);
1602 create_output_operand (&ops[0], target, innermode);
1603 ops[0].target = 1;
1604 create_input_operand (&ops[1], op0, outermode);
1605 create_integer_operand (&ops[2], pos);
1606 if (maybe_expand_insn (icode, 3, ops))
1607 {
1608 if (alt_rtl && ops[0].target)
1609 *alt_rtl = target;
1610 target = ops[0].value;
1611 if (GET_MODE (target) != mode)
1612 return gen_lowpart (tmode, target);
1613 return target;
1614 }
1615 }
1616 }
1617
1618 /* See if we can get a better vector mode before extracting. */
1619 if (VECTOR_MODE_P (GET_MODE (op0))
1620 && !MEM_P (op0)
1621 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1622 {
1623 machine_mode new_mode;
1624
1625 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1626 new_mode = MIN_MODE_VECTOR_FLOAT;
1627 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1628 new_mode = MIN_MODE_VECTOR_FRACT;
1629 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1630 new_mode = MIN_MODE_VECTOR_UFRACT;
1631 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1632 new_mode = MIN_MODE_VECTOR_ACCUM;
1633 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1634 new_mode = MIN_MODE_VECTOR_UACCUM;
1635 else
1636 new_mode = MIN_MODE_VECTOR_INT;
1637
1638 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1639 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1640 && GET_MODE_UNIT_SIZE (new_mode) == GET_MODE_SIZE (tmode)
1641 && targetm.vector_mode_supported_p (new_mode))
1642 break;
1643 if (new_mode != VOIDmode)
1644 op0 = gen_lowpart (new_mode, op0);
1645 }
1646
1647 /* Use vec_extract patterns for extracting parts of vectors whenever
1648 available. */
1649 if (VECTOR_MODE_P (GET_MODE (op0))
1650 && !MEM_P (op0)
1651 && (convert_optab_handler (vec_extract_optab, GET_MODE (op0),
1652 GET_MODE_INNER (GET_MODE (op0)))
1653 != CODE_FOR_nothing)
1654 && ((bitnum + bitsize - 1) / GET_MODE_UNIT_BITSIZE (GET_MODE (op0))
1655 == bitnum / GET_MODE_UNIT_BITSIZE (GET_MODE (op0))))
1656 {
1657 struct expand_operand ops[3];
1658 machine_mode outermode = GET_MODE (op0);
1659 machine_mode innermode = GET_MODE_INNER (outermode);
1660 enum insn_code icode
1661 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1662 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1663
1664 create_output_operand (&ops[0], target, innermode);
1665 ops[0].target = 1;
1666 create_input_operand (&ops[1], op0, outermode);
1667 create_integer_operand (&ops[2], pos);
1668 if (maybe_expand_insn (icode, 3, ops))
1669 {
1670 if (alt_rtl && ops[0].target)
1671 *alt_rtl = target;
1672 target = ops[0].value;
1673 if (GET_MODE (target) != mode)
1674 return gen_lowpart (tmode, target);
1675 return target;
1676 }
1677 }
1678
1679 /* Make sure we are playing with integral modes. Pun with subregs
1680 if we aren't. */
1681 {
1682 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1683 if (imode != GET_MODE (op0))
1684 {
1685 if (MEM_P (op0))
1686 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1687 else if (imode != BLKmode)
1688 {
1689 op0 = gen_lowpart (imode, op0);
1690
1691 /* If we got a SUBREG, force it into a register since we
1692 aren't going to be able to do another SUBREG on it. */
1693 if (GET_CODE (op0) == SUBREG)
1694 op0 = force_reg (imode, op0);
1695 }
1696 else
1697 {
1698 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1699 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1700 emit_move_insn (mem, op0);
1701 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1702 }
1703 }
1704 }
1705
1706 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1707 If that's wrong, the solution is to test for it and set TARGET to 0
1708 if needed. */
1709
1710 /* Get the mode of the field to use for atomic access or subreg
1711 conversion. */
1712 mode1 = mode;
1713 if (SCALAR_INT_MODE_P (tmode))
1714 {
1715 machine_mode try_mode = mode_for_size (bitsize,
1716 GET_MODE_CLASS (tmode), 0);
1717 if (try_mode != BLKmode)
1718 mode1 = try_mode;
1719 }
1720 gcc_assert (mode1 != BLKmode);
1721
1722 /* Extraction of a full MODE1 value can be done with a subreg as long
1723 as the least significant bit of the value is the least significant
1724 bit of either OP0 or a word of OP0. */
1725 if (!MEM_P (op0)
1726 && !reverse
1727 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1728 && bitsize == GET_MODE_BITSIZE (mode1)
1729 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1730 {
1731 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1732 bitnum / BITS_PER_UNIT);
1733 if (sub)
1734 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1735 }
1736
1737 /* Extraction of a full MODE1 value can be done with a load as long as
1738 the field is on a byte boundary and is sufficiently aligned. */
1739 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1740 {
1741 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1742 if (reverse)
1743 op0 = flip_storage_order (mode1, op0);
1744 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1745 }
1746
1747 /* Handle fields bigger than a word. */
1748
1749 if (bitsize > BITS_PER_WORD)
1750 {
1751 /* Here we transfer the words of the field
1752 in the order least significant first.
1753 This is because the most significant word is the one which may
1754 be less than full. */
1755
1756 const bool backwards = WORDS_BIG_ENDIAN;
1757 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1758 unsigned int i;
1759 rtx_insn *last;
1760
1761 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1762 target = gen_reg_rtx (mode);
1763
1764 /* In case we're about to clobber a base register or something
1765 (see gcc.c-torture/execute/20040625-1.c). */
1766 if (reg_mentioned_p (target, str_rtx))
1767 target = gen_reg_rtx (mode);
1768
1769 /* Indicate for flow that the entire target reg is being set. */
1770 emit_clobber (target);
1771
1772 last = get_last_insn ();
1773 for (i = 0; i < nwords; i++)
1774 {
1775 /* If I is 0, use the low-order word in both field and target;
1776 if I is 1, use the next to lowest word; and so on. */
1777 /* Word number in TARGET to use. */
1778 unsigned int wordnum
1779 = (backwards
1780 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1781 : i);
1782 /* Offset from start of field in OP0. */
1783 unsigned int bit_offset = (backwards ^ reverse
1784 ? MAX ((int) bitsize - ((int) i + 1)
1785 * BITS_PER_WORD,
1786 0)
1787 : (int) i * BITS_PER_WORD);
1788 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1789 rtx result_part
1790 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1791 bitsize - i * BITS_PER_WORD),
1792 bitnum + bit_offset, 1, target_part,
1793 mode, word_mode, reverse, fallback_p, NULL);
1794
1795 gcc_assert (target_part);
1796 if (!result_part)
1797 {
1798 delete_insns_since (last);
1799 return NULL;
1800 }
1801
1802 if (result_part != target_part)
1803 emit_move_insn (target_part, result_part);
1804 }
1805
1806 if (unsignedp)
1807 {
1808 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1809 need to be zero'd out. */
1810 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1811 {
1812 unsigned int i, total_words;
1813
1814 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1815 for (i = nwords; i < total_words; i++)
1816 emit_move_insn
1817 (operand_subword (target,
1818 backwards ? total_words - i - 1 : i,
1819 1, VOIDmode),
1820 const0_rtx);
1821 }
1822 return target;
1823 }
1824
1825 /* Signed bit field: sign-extend with two arithmetic shifts. */
1826 target = expand_shift (LSHIFT_EXPR, mode, target,
1827 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1828 return expand_shift (RSHIFT_EXPR, mode, target,
1829 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1830 }
1831
1832 /* If OP0 is a multi-word register, narrow it to the affected word.
1833 If the region spans two words, defer to extract_split_bit_field. */
1834 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1835 {
1836 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1837 {
1838 if (!fallback_p)
1839 return NULL_RTX;
1840 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp,
1841 reverse);
1842 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1843 }
1844 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1845 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1846 bitnum %= BITS_PER_WORD;
1847 }
1848
1849 /* From here on we know the desired field is smaller than a word.
1850 If OP0 is a register, it too fits within a word. */
1851 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1852 extraction_insn extv;
1853 if (!MEM_P (op0)
1854 && !reverse
1855 /* ??? We could limit the structure size to the part of OP0 that
1856 contains the field, with appropriate checks for endianness
1857 and TRULY_NOOP_TRUNCATION. */
1858 && get_best_reg_extraction_insn (&extv, pattern,
1859 GET_MODE_BITSIZE (GET_MODE (op0)),
1860 tmode))
1861 {
1862 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1863 unsignedp, target, mode,
1864 tmode);
1865 if (result)
1866 return result;
1867 }
1868
1869 /* If OP0 is a memory, try copying it to a register and seeing if a
1870 cheap register alternative is available. */
1871 if (MEM_P (op0) & !reverse)
1872 {
1873 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1874 tmode))
1875 {
1876 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1877 bitnum, unsignedp,
1878 target, mode,
1879 tmode);
1880 if (result)
1881 return result;
1882 }
1883
1884 rtx_insn *last = get_last_insn ();
1885
1886 /* Try loading part of OP0 into a register and extracting the
1887 bitfield from that. */
1888 unsigned HOST_WIDE_INT bitpos;
1889 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1890 0, 0, tmode, &bitpos);
1891 if (xop0)
1892 {
1893 xop0 = copy_to_reg (xop0);
1894 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1895 unsignedp, target,
1896 mode, tmode, reverse, false, NULL);
1897 if (result)
1898 return result;
1899 delete_insns_since (last);
1900 }
1901 }
1902
1903 if (!fallback_p)
1904 return NULL;
1905
1906 /* Find a correspondingly-sized integer field, so we can apply
1907 shifts and masks to it. */
1908 int_mode = int_mode_for_mode (tmode);
1909 if (int_mode == BLKmode)
1910 int_mode = int_mode_for_mode (mode);
1911 /* Should probably push op0 out to memory and then do a load. */
1912 gcc_assert (int_mode != BLKmode);
1913
1914 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum, target,
1915 unsignedp, reverse);
1916
1917 /* Complex values must be reversed piecewise, so we need to undo the global
1918 reversal, convert to the complex mode and reverse again. */
1919 if (reverse && COMPLEX_MODE_P (tmode))
1920 {
1921 target = flip_storage_order (int_mode, target);
1922 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
1923 target = flip_storage_order (tmode, target);
1924 }
1925 else
1926 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
1927
1928 return target;
1929 }
1930
1931 /* Generate code to extract a byte-field from STR_RTX
1932 containing BITSIZE bits, starting at BITNUM,
1933 and put it in TARGET if possible (if TARGET is nonzero).
1934 Regardless of TARGET, we return the rtx for where the value is placed.
1935
1936 STR_RTX is the structure containing the byte (a REG or MEM).
1937 UNSIGNEDP is nonzero if this is an unsigned bit field.
1938 MODE is the natural mode of the field value once extracted.
1939 TMODE is the mode the caller would like the value to have;
1940 but the value may be returned with type MODE instead.
1941
1942 If REVERSE is true, the extraction is to be done in reverse order.
1943
1944 If a TARGET is specified and we can store in it at no extra cost,
1945 we do so, and return TARGET.
1946 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1947 if they are equally easy. */
1948
1949 rtx
1950 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1951 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1952 machine_mode mode, machine_mode tmode, bool reverse,
1953 rtx *alt_rtl)
1954 {
1955 machine_mode mode1;
1956
1957 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1958 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1959 mode1 = GET_MODE (str_rtx);
1960 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1961 mode1 = GET_MODE (target);
1962 else
1963 mode1 = tmode;
1964
1965 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1966 {
1967 /* Extraction of a full MODE1 value can be done with a simple load.
1968 We know here that the field can be accessed with one single
1969 instruction. For targets that support unaligned memory,
1970 an unaligned access may be necessary. */
1971 if (bitsize == GET_MODE_BITSIZE (mode1))
1972 {
1973 rtx result = adjust_bitfield_address (str_rtx, mode1,
1974 bitnum / BITS_PER_UNIT);
1975 if (reverse)
1976 result = flip_storage_order (mode1, result);
1977 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1978 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1979 }
1980
1981 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1982 &bitnum);
1983 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1984 str_rtx = copy_to_reg (str_rtx);
1985 }
1986
1987 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1988 target, mode, tmode, reverse, true, alt_rtl);
1989 }
1990 \f
1991 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1992 from bit BITNUM of OP0.
1993
1994 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1995 If REVERSE is true, the extraction is to be done in reverse order.
1996
1997 If TARGET is nonzero, attempts to store the value there
1998 and return TARGET, but this is not guaranteed.
1999 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2000
2001 static rtx
2002 extract_fixed_bit_field (machine_mode tmode, rtx op0,
2003 unsigned HOST_WIDE_INT bitsize,
2004 unsigned HOST_WIDE_INT bitnum, rtx target,
2005 int unsignedp, bool reverse)
2006 {
2007 if (MEM_P (op0))
2008 {
2009 machine_mode mode
2010 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
2011 MEM_VOLATILE_P (op0));
2012
2013 if (mode == VOIDmode)
2014 /* The only way this should occur is if the field spans word
2015 boundaries. */
2016 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp,
2017 reverse);
2018
2019 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
2020 }
2021
2022 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
2023 target, unsignedp, reverse);
2024 }
2025
2026 /* Helper function for extract_fixed_bit_field, extracts
2027 the bit field always using the MODE of OP0. */
2028
2029 static rtx
2030 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
2031 unsigned HOST_WIDE_INT bitsize,
2032 unsigned HOST_WIDE_INT bitnum, rtx target,
2033 int unsignedp, bool reverse)
2034 {
2035 machine_mode mode = GET_MODE (op0);
2036 gcc_assert (SCALAR_INT_MODE_P (mode));
2037
2038 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2039 for invalid input, such as extract equivalent of f5 from
2040 gcc.dg/pr48335-2.c. */
2041
2042 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2043 /* BITNUM is the distance between our msb and that of OP0.
2044 Convert it to the distance from the lsb. */
2045 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2046
2047 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2048 We have reduced the big-endian case to the little-endian case. */
2049 if (reverse)
2050 op0 = flip_storage_order (mode, op0);
2051
2052 if (unsignedp)
2053 {
2054 if (bitnum)
2055 {
2056 /* If the field does not already start at the lsb,
2057 shift it so it does. */
2058 /* Maybe propagate the target for the shift. */
2059 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2060 if (tmode != mode)
2061 subtarget = 0;
2062 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2063 }
2064 /* Convert the value to the desired mode. */
2065 if (mode != tmode)
2066 op0 = convert_to_mode (tmode, op0, 1);
2067
2068 /* Unless the msb of the field used to be the msb when we shifted,
2069 mask out the upper bits. */
2070
2071 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
2072 return expand_binop (GET_MODE (op0), and_optab, op0,
2073 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
2074 target, 1, OPTAB_LIB_WIDEN);
2075 return op0;
2076 }
2077
2078 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2079 then arithmetic-shift its lsb to the lsb of the word. */
2080 op0 = force_reg (mode, op0);
2081
2082 /* Find the narrowest integer mode that contains the field. */
2083
2084 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2085 mode = GET_MODE_WIDER_MODE (mode))
2086 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
2087 {
2088 op0 = convert_to_mode (mode, op0, 0);
2089 break;
2090 }
2091
2092 if (mode != tmode)
2093 target = 0;
2094
2095 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2096 {
2097 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2098 /* Maybe propagate the target for the shift. */
2099 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2100 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2101 }
2102
2103 return expand_shift (RSHIFT_EXPR, mode, op0,
2104 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2105 }
2106
2107 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2108 VALUE << BITPOS. */
2109
2110 static rtx
2111 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2112 int bitpos)
2113 {
2114 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2115 }
2116 \f
2117 /* Extract a bit field that is split across two words
2118 and return an RTX for the result.
2119
2120 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2121 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2122 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2123
2124 If REVERSE is true, the extraction is to be done in reverse order. */
2125
2126 static rtx
2127 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2128 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2129 bool reverse)
2130 {
2131 unsigned int unit;
2132 unsigned int bitsdone = 0;
2133 rtx result = NULL_RTX;
2134 int first = 1;
2135
2136 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2137 much at a time. */
2138 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2139 unit = BITS_PER_WORD;
2140 else
2141 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2142
2143 while (bitsdone < bitsize)
2144 {
2145 unsigned HOST_WIDE_INT thissize;
2146 rtx part, word;
2147 unsigned HOST_WIDE_INT thispos;
2148 unsigned HOST_WIDE_INT offset;
2149
2150 offset = (bitpos + bitsdone) / unit;
2151 thispos = (bitpos + bitsdone) % unit;
2152
2153 /* THISSIZE must not overrun a word boundary. Otherwise,
2154 extract_fixed_bit_field will call us again, and we will mutually
2155 recurse forever. */
2156 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2157 thissize = MIN (thissize, unit - thispos);
2158
2159 /* If OP0 is a register, then handle OFFSET here. */
2160 if (SUBREG_P (op0) || REG_P (op0))
2161 {
2162 word = operand_subword_force (op0, offset, GET_MODE (op0));
2163 offset = 0;
2164 }
2165 else
2166 word = op0;
2167
2168 /* Extract the parts in bit-counting order,
2169 whose meaning is determined by BYTES_PER_UNIT.
2170 OFFSET is in UNITs, and UNIT is in bits. */
2171 part = extract_fixed_bit_field (word_mode, word, thissize,
2172 offset * unit + thispos, 0, 1, reverse);
2173 bitsdone += thissize;
2174
2175 /* Shift this part into place for the result. */
2176 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2177 {
2178 if (bitsize != bitsdone)
2179 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2180 bitsize - bitsdone, 0, 1);
2181 }
2182 else
2183 {
2184 if (bitsdone != thissize)
2185 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2186 bitsdone - thissize, 0, 1);
2187 }
2188
2189 if (first)
2190 result = part;
2191 else
2192 /* Combine the parts with bitwise or. This works
2193 because we extracted each part as an unsigned bit field. */
2194 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2195 OPTAB_LIB_WIDEN);
2196
2197 first = 0;
2198 }
2199
2200 /* Unsigned bit field: we are done. */
2201 if (unsignedp)
2202 return result;
2203 /* Signed bit field: sign-extend with two arithmetic shifts. */
2204 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2205 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2206 return expand_shift (RSHIFT_EXPR, word_mode, result,
2207 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2208 }
2209 \f
2210 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2211 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2212 MODE, fill the upper bits with zeros. Fail if the layout of either
2213 mode is unknown (as for CC modes) or if the extraction would involve
2214 unprofitable mode punning. Return the value on success, otherwise
2215 return null.
2216
2217 This is different from gen_lowpart* in these respects:
2218
2219 - the returned value must always be considered an rvalue
2220
2221 - when MODE is wider than SRC_MODE, the extraction involves
2222 a zero extension
2223
2224 - when MODE is smaller than SRC_MODE, the extraction involves
2225 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2226
2227 In other words, this routine performs a computation, whereas the
2228 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2229 operations. */
2230
2231 rtx
2232 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2233 {
2234 machine_mode int_mode, src_int_mode;
2235
2236 if (mode == src_mode)
2237 return src;
2238
2239 if (CONSTANT_P (src))
2240 {
2241 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2242 fails, it will happily create (subreg (symbol_ref)) or similar
2243 invalid SUBREGs. */
2244 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2245 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2246 if (ret)
2247 return ret;
2248
2249 if (GET_MODE (src) == VOIDmode
2250 || !validate_subreg (mode, src_mode, src, byte))
2251 return NULL_RTX;
2252
2253 src = force_reg (GET_MODE (src), src);
2254 return gen_rtx_SUBREG (mode, src, byte);
2255 }
2256
2257 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2258 return NULL_RTX;
2259
2260 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2261 && MODES_TIEABLE_P (mode, src_mode))
2262 {
2263 rtx x = gen_lowpart_common (mode, src);
2264 if (x)
2265 return x;
2266 }
2267
2268 src_int_mode = int_mode_for_mode (src_mode);
2269 int_mode = int_mode_for_mode (mode);
2270 if (src_int_mode == BLKmode || int_mode == BLKmode)
2271 return NULL_RTX;
2272
2273 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2274 return NULL_RTX;
2275 if (!MODES_TIEABLE_P (int_mode, mode))
2276 return NULL_RTX;
2277
2278 src = gen_lowpart (src_int_mode, src);
2279 src = convert_modes (int_mode, src_int_mode, src, true);
2280 src = gen_lowpart (mode, src);
2281 return src;
2282 }
2283 \f
2284 /* Add INC into TARGET. */
2285
2286 void
2287 expand_inc (rtx target, rtx inc)
2288 {
2289 rtx value = expand_binop (GET_MODE (target), add_optab,
2290 target, inc,
2291 target, 0, OPTAB_LIB_WIDEN);
2292 if (value != target)
2293 emit_move_insn (target, value);
2294 }
2295
2296 /* Subtract DEC from TARGET. */
2297
2298 void
2299 expand_dec (rtx target, rtx dec)
2300 {
2301 rtx value = expand_binop (GET_MODE (target), sub_optab,
2302 target, dec,
2303 target, 0, OPTAB_LIB_WIDEN);
2304 if (value != target)
2305 emit_move_insn (target, value);
2306 }
2307 \f
2308 /* Output a shift instruction for expression code CODE,
2309 with SHIFTED being the rtx for the value to shift,
2310 and AMOUNT the rtx for the amount to shift by.
2311 Store the result in the rtx TARGET, if that is convenient.
2312 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2313 Return the rtx for where the value is.
2314 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2315 in which case 0 is returned. */
2316
2317 static rtx
2318 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2319 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2320 {
2321 rtx op1, temp = 0;
2322 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2323 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2324 optab lshift_optab = ashl_optab;
2325 optab rshift_arith_optab = ashr_optab;
2326 optab rshift_uns_optab = lshr_optab;
2327 optab lrotate_optab = rotl_optab;
2328 optab rrotate_optab = rotr_optab;
2329 machine_mode op1_mode;
2330 machine_mode scalar_mode = mode;
2331 int attempt;
2332 bool speed = optimize_insn_for_speed_p ();
2333
2334 if (VECTOR_MODE_P (mode))
2335 scalar_mode = GET_MODE_INNER (mode);
2336 op1 = amount;
2337 op1_mode = GET_MODE (op1);
2338
2339 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2340 shift amount is a vector, use the vector/vector shift patterns. */
2341 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2342 {
2343 lshift_optab = vashl_optab;
2344 rshift_arith_optab = vashr_optab;
2345 rshift_uns_optab = vlshr_optab;
2346 lrotate_optab = vrotl_optab;
2347 rrotate_optab = vrotr_optab;
2348 }
2349
2350 /* Previously detected shift-counts computed by NEGATE_EXPR
2351 and shifted in the other direction; but that does not work
2352 on all machines. */
2353
2354 if (SHIFT_COUNT_TRUNCATED)
2355 {
2356 if (CONST_INT_P (op1)
2357 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2358 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2359 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2360 % GET_MODE_BITSIZE (scalar_mode));
2361 else if (GET_CODE (op1) == SUBREG
2362 && subreg_lowpart_p (op1)
2363 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2364 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2365 op1 = SUBREG_REG (op1);
2366 }
2367
2368 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2369 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2370 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2371 amount instead. */
2372 if (rotate
2373 && CONST_INT_P (op1)
2374 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2375 GET_MODE_BITSIZE (scalar_mode) - 1))
2376 {
2377 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2378 left = !left;
2379 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2380 }
2381
2382 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2383 Note that this is not the case for bigger values. For instance a rotation
2384 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2385 0x04030201 (bswapsi). */
2386 if (rotate
2387 && CONST_INT_P (op1)
2388 && INTVAL (op1) == BITS_PER_UNIT
2389 && GET_MODE_SIZE (scalar_mode) == 2
2390 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2391 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2392 unsignedp);
2393
2394 if (op1 == const0_rtx)
2395 return shifted;
2396
2397 /* Check whether its cheaper to implement a left shift by a constant
2398 bit count by a sequence of additions. */
2399 if (code == LSHIFT_EXPR
2400 && CONST_INT_P (op1)
2401 && INTVAL (op1) > 0
2402 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2403 && INTVAL (op1) < MAX_BITS_PER_WORD
2404 && (shift_cost (speed, mode, INTVAL (op1))
2405 > INTVAL (op1) * add_cost (speed, mode))
2406 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2407 {
2408 int i;
2409 for (i = 0; i < INTVAL (op1); i++)
2410 {
2411 temp = force_reg (mode, shifted);
2412 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2413 unsignedp, OPTAB_LIB_WIDEN);
2414 }
2415 return shifted;
2416 }
2417
2418 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2419 {
2420 enum optab_methods methods;
2421
2422 if (attempt == 0)
2423 methods = OPTAB_DIRECT;
2424 else if (attempt == 1)
2425 methods = OPTAB_WIDEN;
2426 else
2427 methods = OPTAB_LIB_WIDEN;
2428
2429 if (rotate)
2430 {
2431 /* Widening does not work for rotation. */
2432 if (methods == OPTAB_WIDEN)
2433 continue;
2434 else if (methods == OPTAB_LIB_WIDEN)
2435 {
2436 /* If we have been unable to open-code this by a rotation,
2437 do it as the IOR of two shifts. I.e., to rotate A
2438 by N bits, compute
2439 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2440 where C is the bitsize of A.
2441
2442 It is theoretically possible that the target machine might
2443 not be able to perform either shift and hence we would
2444 be making two libcalls rather than just the one for the
2445 shift (similarly if IOR could not be done). We will allow
2446 this extremely unlikely lossage to avoid complicating the
2447 code below. */
2448
2449 rtx subtarget = target == shifted ? 0 : target;
2450 rtx new_amount, other_amount;
2451 rtx temp1;
2452
2453 new_amount = op1;
2454 if (op1 == const0_rtx)
2455 return shifted;
2456 else if (CONST_INT_P (op1))
2457 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2458 - INTVAL (op1));
2459 else
2460 {
2461 other_amount
2462 = simplify_gen_unary (NEG, GET_MODE (op1),
2463 op1, GET_MODE (op1));
2464 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2465 other_amount
2466 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2467 gen_int_mode (mask, GET_MODE (op1)));
2468 }
2469
2470 shifted = force_reg (mode, shifted);
2471
2472 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2473 mode, shifted, new_amount, 0, 1);
2474 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2475 mode, shifted, other_amount,
2476 subtarget, 1);
2477 return expand_binop (mode, ior_optab, temp, temp1, target,
2478 unsignedp, methods);
2479 }
2480
2481 temp = expand_binop (mode,
2482 left ? lrotate_optab : rrotate_optab,
2483 shifted, op1, target, unsignedp, methods);
2484 }
2485 else if (unsignedp)
2486 temp = expand_binop (mode,
2487 left ? lshift_optab : rshift_uns_optab,
2488 shifted, op1, target, unsignedp, methods);
2489
2490 /* Do arithmetic shifts.
2491 Also, if we are going to widen the operand, we can just as well
2492 use an arithmetic right-shift instead of a logical one. */
2493 if (temp == 0 && ! rotate
2494 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2495 {
2496 enum optab_methods methods1 = methods;
2497
2498 /* If trying to widen a log shift to an arithmetic shift,
2499 don't accept an arithmetic shift of the same size. */
2500 if (unsignedp)
2501 methods1 = OPTAB_MUST_WIDEN;
2502
2503 /* Arithmetic shift */
2504
2505 temp = expand_binop (mode,
2506 left ? lshift_optab : rshift_arith_optab,
2507 shifted, op1, target, unsignedp, methods1);
2508 }
2509
2510 /* We used to try extzv here for logical right shifts, but that was
2511 only useful for one machine, the VAX, and caused poor code
2512 generation there for lshrdi3, so the code was deleted and a
2513 define_expand for lshrsi3 was added to vax.md. */
2514 }
2515
2516 gcc_assert (temp != NULL_RTX || may_fail);
2517 return temp;
2518 }
2519
2520 /* Output a shift instruction for expression code CODE,
2521 with SHIFTED being the rtx for the value to shift,
2522 and AMOUNT the amount to shift by.
2523 Store the result in the rtx TARGET, if that is convenient.
2524 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2525 Return the rtx for where the value is. */
2526
2527 rtx
2528 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2529 int amount, rtx target, int unsignedp)
2530 {
2531 return expand_shift_1 (code, mode,
2532 shifted, GEN_INT (amount), target, unsignedp);
2533 }
2534
2535 /* Likewise, but return 0 if that cannot be done. */
2536
2537 static rtx
2538 maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2539 int amount, rtx target, int unsignedp)
2540 {
2541 return expand_shift_1 (code, mode,
2542 shifted, GEN_INT (amount), target, unsignedp, true);
2543 }
2544
2545 /* Output a shift instruction for expression code CODE,
2546 with SHIFTED being the rtx for the value to shift,
2547 and AMOUNT the tree for the amount to shift by.
2548 Store the result in the rtx TARGET, if that is convenient.
2549 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2550 Return the rtx for where the value is. */
2551
2552 rtx
2553 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2554 tree amount, rtx target, int unsignedp)
2555 {
2556 return expand_shift_1 (code, mode,
2557 shifted, expand_normal (amount), target, unsignedp);
2558 }
2559
2560 \f
2561 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2562 const struct mult_cost *, machine_mode mode);
2563 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2564 const struct algorithm *, enum mult_variant);
2565 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2566 static rtx extract_high_half (machine_mode, rtx);
2567 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2568 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2569 int, int);
2570 /* Compute and return the best algorithm for multiplying by T.
2571 The algorithm must cost less than cost_limit
2572 If retval.cost >= COST_LIMIT, no algorithm was found and all
2573 other field of the returned struct are undefined.
2574 MODE is the machine mode of the multiplication. */
2575
2576 static void
2577 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2578 const struct mult_cost *cost_limit, machine_mode mode)
2579 {
2580 int m;
2581 struct algorithm *alg_in, *best_alg;
2582 struct mult_cost best_cost;
2583 struct mult_cost new_limit;
2584 int op_cost, op_latency;
2585 unsigned HOST_WIDE_INT orig_t = t;
2586 unsigned HOST_WIDE_INT q;
2587 int maxm, hash_index;
2588 bool cache_hit = false;
2589 enum alg_code cache_alg = alg_zero;
2590 bool speed = optimize_insn_for_speed_p ();
2591 machine_mode imode;
2592 struct alg_hash_entry *entry_ptr;
2593
2594 /* Indicate that no algorithm is yet found. If no algorithm
2595 is found, this value will be returned and indicate failure. */
2596 alg_out->cost.cost = cost_limit->cost + 1;
2597 alg_out->cost.latency = cost_limit->latency + 1;
2598
2599 if (cost_limit->cost < 0
2600 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2601 return;
2602
2603 /* Be prepared for vector modes. */
2604 imode = GET_MODE_INNER (mode);
2605
2606 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2607
2608 /* Restrict the bits of "t" to the multiplication's mode. */
2609 t &= GET_MODE_MASK (imode);
2610
2611 /* t == 1 can be done in zero cost. */
2612 if (t == 1)
2613 {
2614 alg_out->ops = 1;
2615 alg_out->cost.cost = 0;
2616 alg_out->cost.latency = 0;
2617 alg_out->op[0] = alg_m;
2618 return;
2619 }
2620
2621 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2622 fail now. */
2623 if (t == 0)
2624 {
2625 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2626 return;
2627 else
2628 {
2629 alg_out->ops = 1;
2630 alg_out->cost.cost = zero_cost (speed);
2631 alg_out->cost.latency = zero_cost (speed);
2632 alg_out->op[0] = alg_zero;
2633 return;
2634 }
2635 }
2636
2637 /* We'll be needing a couple extra algorithm structures now. */
2638
2639 alg_in = XALLOCA (struct algorithm);
2640 best_alg = XALLOCA (struct algorithm);
2641 best_cost = *cost_limit;
2642
2643 /* Compute the hash index. */
2644 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2645
2646 /* See if we already know what to do for T. */
2647 entry_ptr = alg_hash_entry_ptr (hash_index);
2648 if (entry_ptr->t == t
2649 && entry_ptr->mode == mode
2650 && entry_ptr->speed == speed
2651 && entry_ptr->alg != alg_unknown)
2652 {
2653 cache_alg = entry_ptr->alg;
2654
2655 if (cache_alg == alg_impossible)
2656 {
2657 /* The cache tells us that it's impossible to synthesize
2658 multiplication by T within entry_ptr->cost. */
2659 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2660 /* COST_LIMIT is at least as restrictive as the one
2661 recorded in the hash table, in which case we have no
2662 hope of synthesizing a multiplication. Just
2663 return. */
2664 return;
2665
2666 /* If we get here, COST_LIMIT is less restrictive than the
2667 one recorded in the hash table, so we may be able to
2668 synthesize a multiplication. Proceed as if we didn't
2669 have the cache entry. */
2670 }
2671 else
2672 {
2673 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2674 /* The cached algorithm shows that this multiplication
2675 requires more cost than COST_LIMIT. Just return. This
2676 way, we don't clobber this cache entry with
2677 alg_impossible but retain useful information. */
2678 return;
2679
2680 cache_hit = true;
2681
2682 switch (cache_alg)
2683 {
2684 case alg_shift:
2685 goto do_alg_shift;
2686
2687 case alg_add_t_m2:
2688 case alg_sub_t_m2:
2689 goto do_alg_addsub_t_m2;
2690
2691 case alg_add_factor:
2692 case alg_sub_factor:
2693 goto do_alg_addsub_factor;
2694
2695 case alg_add_t2_m:
2696 goto do_alg_add_t2_m;
2697
2698 case alg_sub_t2_m:
2699 goto do_alg_sub_t2_m;
2700
2701 default:
2702 gcc_unreachable ();
2703 }
2704 }
2705 }
2706
2707 /* If we have a group of zero bits at the low-order part of T, try
2708 multiplying by the remaining bits and then doing a shift. */
2709
2710 if ((t & 1) == 0)
2711 {
2712 do_alg_shift:
2713 m = ctz_or_zero (t); /* m = number of low zero bits */
2714 if (m < maxm)
2715 {
2716 q = t >> m;
2717 /* The function expand_shift will choose between a shift and
2718 a sequence of additions, so the observed cost is given as
2719 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2720 op_cost = m * add_cost (speed, mode);
2721 if (shift_cost (speed, mode, m) < op_cost)
2722 op_cost = shift_cost (speed, mode, m);
2723 new_limit.cost = best_cost.cost - op_cost;
2724 new_limit.latency = best_cost.latency - op_cost;
2725 synth_mult (alg_in, q, &new_limit, mode);
2726
2727 alg_in->cost.cost += op_cost;
2728 alg_in->cost.latency += op_cost;
2729 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2730 {
2731 best_cost = alg_in->cost;
2732 std::swap (alg_in, best_alg);
2733 best_alg->log[best_alg->ops] = m;
2734 best_alg->op[best_alg->ops] = alg_shift;
2735 }
2736
2737 /* See if treating ORIG_T as a signed number yields a better
2738 sequence. Try this sequence only for a negative ORIG_T
2739 as it would be useless for a non-negative ORIG_T. */
2740 if ((HOST_WIDE_INT) orig_t < 0)
2741 {
2742 /* Shift ORIG_T as follows because a right shift of a
2743 negative-valued signed type is implementation
2744 defined. */
2745 q = ~(~orig_t >> m);
2746 /* The function expand_shift will choose between a shift
2747 and a sequence of additions, so the observed cost is
2748 given as MIN (m * add_cost(speed, mode),
2749 shift_cost(speed, mode, m)). */
2750 op_cost = m * add_cost (speed, mode);
2751 if (shift_cost (speed, mode, m) < op_cost)
2752 op_cost = shift_cost (speed, mode, m);
2753 new_limit.cost = best_cost.cost - op_cost;
2754 new_limit.latency = best_cost.latency - op_cost;
2755 synth_mult (alg_in, q, &new_limit, mode);
2756
2757 alg_in->cost.cost += op_cost;
2758 alg_in->cost.latency += op_cost;
2759 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2760 {
2761 best_cost = alg_in->cost;
2762 std::swap (alg_in, best_alg);
2763 best_alg->log[best_alg->ops] = m;
2764 best_alg->op[best_alg->ops] = alg_shift;
2765 }
2766 }
2767 }
2768 if (cache_hit)
2769 goto done;
2770 }
2771
2772 /* If we have an odd number, add or subtract one. */
2773 if ((t & 1) != 0)
2774 {
2775 unsigned HOST_WIDE_INT w;
2776
2777 do_alg_addsub_t_m2:
2778 for (w = 1; (w & t) != 0; w <<= 1)
2779 ;
2780 /* If T was -1, then W will be zero after the loop. This is another
2781 case where T ends with ...111. Handling this with (T + 1) and
2782 subtract 1 produces slightly better code and results in algorithm
2783 selection much faster than treating it like the ...0111 case
2784 below. */
2785 if (w == 0
2786 || (w > 2
2787 /* Reject the case where t is 3.
2788 Thus we prefer addition in that case. */
2789 && t != 3))
2790 {
2791 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2792
2793 op_cost = add_cost (speed, mode);
2794 new_limit.cost = best_cost.cost - op_cost;
2795 new_limit.latency = best_cost.latency - op_cost;
2796 synth_mult (alg_in, t + 1, &new_limit, mode);
2797
2798 alg_in->cost.cost += op_cost;
2799 alg_in->cost.latency += op_cost;
2800 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2801 {
2802 best_cost = alg_in->cost;
2803 std::swap (alg_in, best_alg);
2804 best_alg->log[best_alg->ops] = 0;
2805 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2806 }
2807 }
2808 else
2809 {
2810 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2811
2812 op_cost = add_cost (speed, mode);
2813 new_limit.cost = best_cost.cost - op_cost;
2814 new_limit.latency = best_cost.latency - op_cost;
2815 synth_mult (alg_in, t - 1, &new_limit, mode);
2816
2817 alg_in->cost.cost += op_cost;
2818 alg_in->cost.latency += op_cost;
2819 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2820 {
2821 best_cost = alg_in->cost;
2822 std::swap (alg_in, best_alg);
2823 best_alg->log[best_alg->ops] = 0;
2824 best_alg->op[best_alg->ops] = alg_add_t_m2;
2825 }
2826 }
2827
2828 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2829 quickly with a - a * n for some appropriate constant n. */
2830 m = exact_log2 (-orig_t + 1);
2831 if (m >= 0 && m < maxm)
2832 {
2833 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2834 /* If the target has a cheap shift-and-subtract insn use
2835 that in preference to a shift insn followed by a sub insn.
2836 Assume that the shift-and-sub is "atomic" with a latency
2837 equal to it's cost, otherwise assume that on superscalar
2838 hardware the shift may be executed concurrently with the
2839 earlier steps in the algorithm. */
2840 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2841 {
2842 op_cost = shiftsub1_cost (speed, mode, m);
2843 op_latency = op_cost;
2844 }
2845 else
2846 op_latency = add_cost (speed, mode);
2847
2848 new_limit.cost = best_cost.cost - op_cost;
2849 new_limit.latency = best_cost.latency - op_latency;
2850 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2851 &new_limit, mode);
2852
2853 alg_in->cost.cost += op_cost;
2854 alg_in->cost.latency += op_latency;
2855 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2856 {
2857 best_cost = alg_in->cost;
2858 std::swap (alg_in, best_alg);
2859 best_alg->log[best_alg->ops] = m;
2860 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2861 }
2862 }
2863
2864 if (cache_hit)
2865 goto done;
2866 }
2867
2868 /* Look for factors of t of the form
2869 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2870 If we find such a factor, we can multiply by t using an algorithm that
2871 multiplies by q, shift the result by m and add/subtract it to itself.
2872
2873 We search for large factors first and loop down, even if large factors
2874 are less probable than small; if we find a large factor we will find a
2875 good sequence quickly, and therefore be able to prune (by decreasing
2876 COST_LIMIT) the search. */
2877
2878 do_alg_addsub_factor:
2879 for (m = floor_log2 (t - 1); m >= 2; m--)
2880 {
2881 unsigned HOST_WIDE_INT d;
2882
2883 d = (HOST_WIDE_INT_1U << m) + 1;
2884 if (t % d == 0 && t > d && m < maxm
2885 && (!cache_hit || cache_alg == alg_add_factor))
2886 {
2887 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2888 if (shiftadd_cost (speed, mode, m) <= op_cost)
2889 op_cost = shiftadd_cost (speed, mode, m);
2890
2891 op_latency = op_cost;
2892
2893
2894 new_limit.cost = best_cost.cost - op_cost;
2895 new_limit.latency = best_cost.latency - op_latency;
2896 synth_mult (alg_in, t / d, &new_limit, mode);
2897
2898 alg_in->cost.cost += op_cost;
2899 alg_in->cost.latency += op_latency;
2900 if (alg_in->cost.latency < op_cost)
2901 alg_in->cost.latency = op_cost;
2902 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2903 {
2904 best_cost = alg_in->cost;
2905 std::swap (alg_in, best_alg);
2906 best_alg->log[best_alg->ops] = m;
2907 best_alg->op[best_alg->ops] = alg_add_factor;
2908 }
2909 /* Other factors will have been taken care of in the recursion. */
2910 break;
2911 }
2912
2913 d = (HOST_WIDE_INT_1U << m) - 1;
2914 if (t % d == 0 && t > d && m < maxm
2915 && (!cache_hit || cache_alg == alg_sub_factor))
2916 {
2917 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2918 if (shiftsub0_cost (speed, mode, m) <= op_cost)
2919 op_cost = shiftsub0_cost (speed, mode, m);
2920
2921 op_latency = op_cost;
2922
2923 new_limit.cost = best_cost.cost - op_cost;
2924 new_limit.latency = best_cost.latency - op_latency;
2925 synth_mult (alg_in, t / d, &new_limit, mode);
2926
2927 alg_in->cost.cost += op_cost;
2928 alg_in->cost.latency += op_latency;
2929 if (alg_in->cost.latency < op_cost)
2930 alg_in->cost.latency = op_cost;
2931 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2932 {
2933 best_cost = alg_in->cost;
2934 std::swap (alg_in, best_alg);
2935 best_alg->log[best_alg->ops] = m;
2936 best_alg->op[best_alg->ops] = alg_sub_factor;
2937 }
2938 break;
2939 }
2940 }
2941 if (cache_hit)
2942 goto done;
2943
2944 /* Try shift-and-add (load effective address) instructions,
2945 i.e. do a*3, a*5, a*9. */
2946 if ((t & 1) != 0)
2947 {
2948 do_alg_add_t2_m:
2949 q = t - 1;
2950 m = ctz_hwi (q);
2951 if (q && m < maxm)
2952 {
2953 op_cost = shiftadd_cost (speed, mode, m);
2954 new_limit.cost = best_cost.cost - op_cost;
2955 new_limit.latency = best_cost.latency - op_cost;
2956 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2957
2958 alg_in->cost.cost += op_cost;
2959 alg_in->cost.latency += op_cost;
2960 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2961 {
2962 best_cost = alg_in->cost;
2963 std::swap (alg_in, best_alg);
2964 best_alg->log[best_alg->ops] = m;
2965 best_alg->op[best_alg->ops] = alg_add_t2_m;
2966 }
2967 }
2968 if (cache_hit)
2969 goto done;
2970
2971 do_alg_sub_t2_m:
2972 q = t + 1;
2973 m = ctz_hwi (q);
2974 if (q && m < maxm)
2975 {
2976 op_cost = shiftsub0_cost (speed, mode, m);
2977 new_limit.cost = best_cost.cost - op_cost;
2978 new_limit.latency = best_cost.latency - op_cost;
2979 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2980
2981 alg_in->cost.cost += op_cost;
2982 alg_in->cost.latency += op_cost;
2983 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2984 {
2985 best_cost = alg_in->cost;
2986 std::swap (alg_in, best_alg);
2987 best_alg->log[best_alg->ops] = m;
2988 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2989 }
2990 }
2991 if (cache_hit)
2992 goto done;
2993 }
2994
2995 done:
2996 /* If best_cost has not decreased, we have not found any algorithm. */
2997 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2998 {
2999 /* We failed to find an algorithm. Record alg_impossible for
3000 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3001 we are asked to find an algorithm for T within the same or
3002 lower COST_LIMIT, we can immediately return to the
3003 caller. */
3004 entry_ptr->t = t;
3005 entry_ptr->mode = mode;
3006 entry_ptr->speed = speed;
3007 entry_ptr->alg = alg_impossible;
3008 entry_ptr->cost = *cost_limit;
3009 return;
3010 }
3011
3012 /* Cache the result. */
3013 if (!cache_hit)
3014 {
3015 entry_ptr->t = t;
3016 entry_ptr->mode = mode;
3017 entry_ptr->speed = speed;
3018 entry_ptr->alg = best_alg->op[best_alg->ops];
3019 entry_ptr->cost.cost = best_cost.cost;
3020 entry_ptr->cost.latency = best_cost.latency;
3021 }
3022
3023 /* If we are getting a too long sequence for `struct algorithm'
3024 to record, make this search fail. */
3025 if (best_alg->ops == MAX_BITS_PER_WORD)
3026 return;
3027
3028 /* Copy the algorithm from temporary space to the space at alg_out.
3029 We avoid using structure assignment because the majority of
3030 best_alg is normally undefined, and this is a critical function. */
3031 alg_out->ops = best_alg->ops + 1;
3032 alg_out->cost = best_cost;
3033 memcpy (alg_out->op, best_alg->op,
3034 alg_out->ops * sizeof *alg_out->op);
3035 memcpy (alg_out->log, best_alg->log,
3036 alg_out->ops * sizeof *alg_out->log);
3037 }
3038 \f
3039 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3040 Try three variations:
3041
3042 - a shift/add sequence based on VAL itself
3043 - a shift/add sequence based on -VAL, followed by a negation
3044 - a shift/add sequence based on VAL - 1, followed by an addition.
3045
3046 Return true if the cheapest of these cost less than MULT_COST,
3047 describing the algorithm in *ALG and final fixup in *VARIANT. */
3048
3049 bool
3050 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3051 struct algorithm *alg, enum mult_variant *variant,
3052 int mult_cost)
3053 {
3054 struct algorithm alg2;
3055 struct mult_cost limit;
3056 int op_cost;
3057 bool speed = optimize_insn_for_speed_p ();
3058
3059 /* Fail quickly for impossible bounds. */
3060 if (mult_cost < 0)
3061 return false;
3062
3063 /* Ensure that mult_cost provides a reasonable upper bound.
3064 Any constant multiplication can be performed with less
3065 than 2 * bits additions. */
3066 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3067 if (mult_cost > op_cost)
3068 mult_cost = op_cost;
3069
3070 *variant = basic_variant;
3071 limit.cost = mult_cost;
3072 limit.latency = mult_cost;
3073 synth_mult (alg, val, &limit, mode);
3074
3075 /* This works only if the inverted value actually fits in an
3076 `unsigned int' */
3077 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3078 {
3079 op_cost = neg_cost (speed, mode);
3080 if (MULT_COST_LESS (&alg->cost, mult_cost))
3081 {
3082 limit.cost = alg->cost.cost - op_cost;
3083 limit.latency = alg->cost.latency - op_cost;
3084 }
3085 else
3086 {
3087 limit.cost = mult_cost - op_cost;
3088 limit.latency = mult_cost - op_cost;
3089 }
3090
3091 synth_mult (&alg2, -val, &limit, mode);
3092 alg2.cost.cost += op_cost;
3093 alg2.cost.latency += op_cost;
3094 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3095 *alg = alg2, *variant = negate_variant;
3096 }
3097
3098 /* This proves very useful for division-by-constant. */
3099 op_cost = add_cost (speed, mode);
3100 if (MULT_COST_LESS (&alg->cost, mult_cost))
3101 {
3102 limit.cost = alg->cost.cost - op_cost;
3103 limit.latency = alg->cost.latency - op_cost;
3104 }
3105 else
3106 {
3107 limit.cost = mult_cost - op_cost;
3108 limit.latency = mult_cost - op_cost;
3109 }
3110
3111 synth_mult (&alg2, val - 1, &limit, mode);
3112 alg2.cost.cost += op_cost;
3113 alg2.cost.latency += op_cost;
3114 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3115 *alg = alg2, *variant = add_variant;
3116
3117 return MULT_COST_LESS (&alg->cost, mult_cost);
3118 }
3119
3120 /* A subroutine of expand_mult, used for constant multiplications.
3121 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3122 convenient. Use the shift/add sequence described by ALG and apply
3123 the final fixup specified by VARIANT. */
3124
3125 static rtx
3126 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3127 rtx target, const struct algorithm *alg,
3128 enum mult_variant variant)
3129 {
3130 unsigned HOST_WIDE_INT val_so_far;
3131 rtx_insn *insn;
3132 rtx accum, tem;
3133 int opno;
3134 machine_mode nmode;
3135
3136 /* Avoid referencing memory over and over and invalid sharing
3137 on SUBREGs. */
3138 op0 = force_reg (mode, op0);
3139
3140 /* ACCUM starts out either as OP0 or as a zero, depending on
3141 the first operation. */
3142
3143 if (alg->op[0] == alg_zero)
3144 {
3145 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3146 val_so_far = 0;
3147 }
3148 else if (alg->op[0] == alg_m)
3149 {
3150 accum = copy_to_mode_reg (mode, op0);
3151 val_so_far = 1;
3152 }
3153 else
3154 gcc_unreachable ();
3155
3156 for (opno = 1; opno < alg->ops; opno++)
3157 {
3158 int log = alg->log[opno];
3159 rtx shift_subtarget = optimize ? 0 : accum;
3160 rtx add_target
3161 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3162 && !optimize)
3163 ? target : 0;
3164 rtx accum_target = optimize ? 0 : accum;
3165 rtx accum_inner;
3166
3167 switch (alg->op[opno])
3168 {
3169 case alg_shift:
3170 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3171 /* REG_EQUAL note will be attached to the following insn. */
3172 emit_move_insn (accum, tem);
3173 val_so_far <<= log;
3174 break;
3175
3176 case alg_add_t_m2:
3177 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3178 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3179 add_target ? add_target : accum_target);
3180 val_so_far += HOST_WIDE_INT_1U << log;
3181 break;
3182
3183 case alg_sub_t_m2:
3184 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3185 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3186 add_target ? add_target : accum_target);
3187 val_so_far -= HOST_WIDE_INT_1U << log;
3188 break;
3189
3190 case alg_add_t2_m:
3191 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3192 log, shift_subtarget, 0);
3193 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3194 add_target ? add_target : accum_target);
3195 val_so_far = (val_so_far << log) + 1;
3196 break;
3197
3198 case alg_sub_t2_m:
3199 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3200 log, shift_subtarget, 0);
3201 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3202 add_target ? add_target : accum_target);
3203 val_so_far = (val_so_far << log) - 1;
3204 break;
3205
3206 case alg_add_factor:
3207 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3208 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3209 add_target ? add_target : accum_target);
3210 val_so_far += val_so_far << log;
3211 break;
3212
3213 case alg_sub_factor:
3214 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3215 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3216 (add_target
3217 ? add_target : (optimize ? 0 : tem)));
3218 val_so_far = (val_so_far << log) - val_so_far;
3219 break;
3220
3221 default:
3222 gcc_unreachable ();
3223 }
3224
3225 if (SCALAR_INT_MODE_P (mode))
3226 {
3227 /* Write a REG_EQUAL note on the last insn so that we can cse
3228 multiplication sequences. Note that if ACCUM is a SUBREG,
3229 we've set the inner register and must properly indicate that. */
3230 tem = op0, nmode = mode;
3231 accum_inner = accum;
3232 if (GET_CODE (accum) == SUBREG)
3233 {
3234 accum_inner = SUBREG_REG (accum);
3235 nmode = GET_MODE (accum_inner);
3236 tem = gen_lowpart (nmode, op0);
3237 }
3238
3239 insn = get_last_insn ();
3240 set_dst_reg_note (insn, REG_EQUAL,
3241 gen_rtx_MULT (nmode, tem,
3242 gen_int_mode (val_so_far, nmode)),
3243 accum_inner);
3244 }
3245 }
3246
3247 if (variant == negate_variant)
3248 {
3249 val_so_far = -val_so_far;
3250 accum = expand_unop (mode, neg_optab, accum, target, 0);
3251 }
3252 else if (variant == add_variant)
3253 {
3254 val_so_far = val_so_far + 1;
3255 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3256 }
3257
3258 /* Compare only the bits of val and val_so_far that are significant
3259 in the result mode, to avoid sign-/zero-extension confusion. */
3260 nmode = GET_MODE_INNER (mode);
3261 val &= GET_MODE_MASK (nmode);
3262 val_so_far &= GET_MODE_MASK (nmode);
3263 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3264
3265 return accum;
3266 }
3267
3268 /* Perform a multiplication and return an rtx for the result.
3269 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3270 TARGET is a suggestion for where to store the result (an rtx).
3271
3272 We check specially for a constant integer as OP1.
3273 If you want this check for OP0 as well, then before calling
3274 you should swap the two operands if OP0 would be constant. */
3275
3276 rtx
3277 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3278 int unsignedp)
3279 {
3280 enum mult_variant variant;
3281 struct algorithm algorithm;
3282 rtx scalar_op1;
3283 int max_cost;
3284 bool speed = optimize_insn_for_speed_p ();
3285 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3286
3287 if (CONSTANT_P (op0))
3288 std::swap (op0, op1);
3289
3290 /* For vectors, there are several simplifications that can be made if
3291 all elements of the vector constant are identical. */
3292 scalar_op1 = unwrap_const_vec_duplicate (op1);
3293
3294 if (INTEGRAL_MODE_P (mode))
3295 {
3296 rtx fake_reg;
3297 HOST_WIDE_INT coeff;
3298 bool is_neg;
3299 int mode_bitsize;
3300
3301 if (op1 == CONST0_RTX (mode))
3302 return op1;
3303 if (op1 == CONST1_RTX (mode))
3304 return op0;
3305 if (op1 == CONSTM1_RTX (mode))
3306 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3307 op0, target, 0);
3308
3309 if (do_trapv)
3310 goto skip_synth;
3311
3312 /* If mode is integer vector mode, check if the backend supports
3313 vector lshift (by scalar or vector) at all. If not, we can't use
3314 synthetized multiply. */
3315 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3316 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3317 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3318 goto skip_synth;
3319
3320 /* These are the operations that are potentially turned into
3321 a sequence of shifts and additions. */
3322 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3323
3324 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3325 less than or equal in size to `unsigned int' this doesn't matter.
3326 If the mode is larger than `unsigned int', then synth_mult works
3327 only if the constant value exactly fits in an `unsigned int' without
3328 any truncation. This means that multiplying by negative values does
3329 not work; results are off by 2^32 on a 32 bit machine. */
3330 if (CONST_INT_P (scalar_op1))
3331 {
3332 coeff = INTVAL (scalar_op1);
3333 is_neg = coeff < 0;
3334 }
3335 #if TARGET_SUPPORTS_WIDE_INT
3336 else if (CONST_WIDE_INT_P (scalar_op1))
3337 #else
3338 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3339 #endif
3340 {
3341 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3342 /* Perfect power of 2 (other than 1, which is handled above). */
3343 if (shift > 0)
3344 return expand_shift (LSHIFT_EXPR, mode, op0,
3345 shift, target, unsignedp);
3346 else
3347 goto skip_synth;
3348 }
3349 else
3350 goto skip_synth;
3351
3352 /* We used to test optimize here, on the grounds that it's better to
3353 produce a smaller program when -O is not used. But this causes
3354 such a terrible slowdown sometimes that it seems better to always
3355 use synth_mult. */
3356
3357 /* Special case powers of two. */
3358 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3359 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3360 return expand_shift (LSHIFT_EXPR, mode, op0,
3361 floor_log2 (coeff), target, unsignedp);
3362
3363 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3364
3365 /* Attempt to handle multiplication of DImode values by negative
3366 coefficients, by performing the multiplication by a positive
3367 multiplier and then inverting the result. */
3368 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3369 {
3370 /* Its safe to use -coeff even for INT_MIN, as the
3371 result is interpreted as an unsigned coefficient.
3372 Exclude cost of op0 from max_cost to match the cost
3373 calculation of the synth_mult. */
3374 coeff = -(unsigned HOST_WIDE_INT) coeff;
3375 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3376 mode, speed)
3377 - neg_cost (speed, mode));
3378 if (max_cost <= 0)
3379 goto skip_synth;
3380
3381 /* Special case powers of two. */
3382 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3383 {
3384 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3385 floor_log2 (coeff), target, unsignedp);
3386 return expand_unop (mode, neg_optab, temp, target, 0);
3387 }
3388
3389 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3390 max_cost))
3391 {
3392 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3393 &algorithm, variant);
3394 return expand_unop (mode, neg_optab, temp, target, 0);
3395 }
3396 goto skip_synth;
3397 }
3398
3399 /* Exclude cost of op0 from max_cost to match the cost
3400 calculation of the synth_mult. */
3401 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3402 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3403 return expand_mult_const (mode, op0, coeff, target,
3404 &algorithm, variant);
3405 }
3406 skip_synth:
3407
3408 /* Expand x*2.0 as x+x. */
3409 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3410 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3411 {
3412 op0 = force_reg (GET_MODE (op0), op0);
3413 return expand_binop (mode, add_optab, op0, op0,
3414 target, unsignedp, OPTAB_LIB_WIDEN);
3415 }
3416
3417 /* This used to use umul_optab if unsigned, but for non-widening multiply
3418 there is no difference between signed and unsigned. */
3419 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3420 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3421 gcc_assert (op0);
3422 return op0;
3423 }
3424
3425 /* Return a cost estimate for multiplying a register by the given
3426 COEFFicient in the given MODE and SPEED. */
3427
3428 int
3429 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3430 {
3431 int max_cost;
3432 struct algorithm algorithm;
3433 enum mult_variant variant;
3434
3435 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3436 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3437 mode, speed);
3438 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3439 return algorithm.cost.cost;
3440 else
3441 return max_cost;
3442 }
3443
3444 /* Perform a widening multiplication and return an rtx for the result.
3445 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3446 TARGET is a suggestion for where to store the result (an rtx).
3447 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3448 or smul_widen_optab.
3449
3450 We check specially for a constant integer as OP1, comparing the
3451 cost of a widening multiply against the cost of a sequence of shifts
3452 and adds. */
3453
3454 rtx
3455 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3456 int unsignedp, optab this_optab)
3457 {
3458 bool speed = optimize_insn_for_speed_p ();
3459 rtx cop1;
3460
3461 if (CONST_INT_P (op1)
3462 && GET_MODE (op0) != VOIDmode
3463 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3464 this_optab == umul_widen_optab))
3465 && CONST_INT_P (cop1)
3466 && (INTVAL (cop1) >= 0
3467 || HWI_COMPUTABLE_MODE_P (mode)))
3468 {
3469 HOST_WIDE_INT coeff = INTVAL (cop1);
3470 int max_cost;
3471 enum mult_variant variant;
3472 struct algorithm algorithm;
3473
3474 if (coeff == 0)
3475 return CONST0_RTX (mode);
3476
3477 /* Special case powers of two. */
3478 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3479 {
3480 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3481 return expand_shift (LSHIFT_EXPR, mode, op0,
3482 floor_log2 (coeff), target, unsignedp);
3483 }
3484
3485 /* Exclude cost of op0 from max_cost to match the cost
3486 calculation of the synth_mult. */
3487 max_cost = mul_widen_cost (speed, mode);
3488 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3489 max_cost))
3490 {
3491 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3492 return expand_mult_const (mode, op0, coeff, target,
3493 &algorithm, variant);
3494 }
3495 }
3496 return expand_binop (mode, this_optab, op0, op1, target,
3497 unsignedp, OPTAB_LIB_WIDEN);
3498 }
3499 \f
3500 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3501 replace division by D, and put the least significant N bits of the result
3502 in *MULTIPLIER_PTR and return the most significant bit.
3503
3504 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3505 needed precision is in PRECISION (should be <= N).
3506
3507 PRECISION should be as small as possible so this function can choose
3508 multiplier more freely.
3509
3510 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3511 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3512
3513 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3514 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3515
3516 unsigned HOST_WIDE_INT
3517 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3518 unsigned HOST_WIDE_INT *multiplier_ptr,
3519 int *post_shift_ptr, int *lgup_ptr)
3520 {
3521 int lgup, post_shift;
3522 int pow, pow2;
3523
3524 /* lgup = ceil(log2(divisor)); */
3525 lgup = ceil_log2 (d);
3526
3527 gcc_assert (lgup <= n);
3528
3529 pow = n + lgup;
3530 pow2 = n + lgup - precision;
3531
3532 /* mlow = 2^(N + lgup)/d */
3533 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3534 wide_int mlow = wi::udiv_trunc (val, d);
3535
3536 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3537 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3538 wide_int mhigh = wi::udiv_trunc (val, d);
3539
3540 /* If precision == N, then mlow, mhigh exceed 2^N
3541 (but they do not exceed 2^(N+1)). */
3542
3543 /* Reduce to lowest terms. */
3544 for (post_shift = lgup; post_shift > 0; post_shift--)
3545 {
3546 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3547 HOST_BITS_PER_WIDE_INT);
3548 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3549 HOST_BITS_PER_WIDE_INT);
3550 if (ml_lo >= mh_lo)
3551 break;
3552
3553 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3554 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3555 }
3556
3557 *post_shift_ptr = post_shift;
3558 *lgup_ptr = lgup;
3559 if (n < HOST_BITS_PER_WIDE_INT)
3560 {
3561 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3562 *multiplier_ptr = mhigh.to_uhwi () & mask;
3563 return mhigh.to_uhwi () >= mask;
3564 }
3565 else
3566 {
3567 *multiplier_ptr = mhigh.to_uhwi ();
3568 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3569 }
3570 }
3571
3572 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3573 congruent to 1 (mod 2**N). */
3574
3575 static unsigned HOST_WIDE_INT
3576 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3577 {
3578 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3579
3580 /* The algorithm notes that the choice y = x satisfies
3581 x*y == 1 mod 2^3, since x is assumed odd.
3582 Each iteration doubles the number of bits of significance in y. */
3583
3584 unsigned HOST_WIDE_INT mask;
3585 unsigned HOST_WIDE_INT y = x;
3586 int nbit = 3;
3587
3588 mask = (n == HOST_BITS_PER_WIDE_INT
3589 ? HOST_WIDE_INT_M1U
3590 : (HOST_WIDE_INT_1U << n) - 1);
3591
3592 while (nbit < n)
3593 {
3594 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3595 nbit *= 2;
3596 }
3597 return y;
3598 }
3599
3600 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3601 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3602 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3603 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3604 become signed.
3605
3606 The result is put in TARGET if that is convenient.
3607
3608 MODE is the mode of operation. */
3609
3610 rtx
3611 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3612 rtx op1, rtx target, int unsignedp)
3613 {
3614 rtx tem;
3615 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3616
3617 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3618 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3619 tem = expand_and (mode, tem, op1, NULL_RTX);
3620 adj_operand
3621 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3622 adj_operand);
3623
3624 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3625 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3626 tem = expand_and (mode, tem, op0, NULL_RTX);
3627 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3628 target);
3629
3630 return target;
3631 }
3632
3633 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3634
3635 static rtx
3636 extract_high_half (machine_mode mode, rtx op)
3637 {
3638 machine_mode wider_mode;
3639
3640 if (mode == word_mode)
3641 return gen_highpart (mode, op);
3642
3643 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3644
3645 wider_mode = GET_MODE_WIDER_MODE (mode);
3646 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3647 GET_MODE_BITSIZE (mode), 0, 1);
3648 return convert_modes (mode, wider_mode, op, 0);
3649 }
3650
3651 /* Like expmed_mult_highpart, but only consider using a multiplication
3652 optab. OP1 is an rtx for the constant operand. */
3653
3654 static rtx
3655 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3656 rtx target, int unsignedp, int max_cost)
3657 {
3658 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3659 machine_mode wider_mode;
3660 optab moptab;
3661 rtx tem;
3662 int size;
3663 bool speed = optimize_insn_for_speed_p ();
3664
3665 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3666
3667 wider_mode = GET_MODE_WIDER_MODE (mode);
3668 size = GET_MODE_BITSIZE (mode);
3669
3670 /* Firstly, try using a multiplication insn that only generates the needed
3671 high part of the product, and in the sign flavor of unsignedp. */
3672 if (mul_highpart_cost (speed, mode) < max_cost)
3673 {
3674 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3675 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3676 unsignedp, OPTAB_DIRECT);
3677 if (tem)
3678 return tem;
3679 }
3680
3681 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3682 Need to adjust the result after the multiplication. */
3683 if (size - 1 < BITS_PER_WORD
3684 && (mul_highpart_cost (speed, mode)
3685 + 2 * shift_cost (speed, mode, size-1)
3686 + 4 * add_cost (speed, mode) < max_cost))
3687 {
3688 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3689 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3690 unsignedp, OPTAB_DIRECT);
3691 if (tem)
3692 /* We used the wrong signedness. Adjust the result. */
3693 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3694 tem, unsignedp);
3695 }
3696
3697 /* Try widening multiplication. */
3698 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3699 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3700 && mul_widen_cost (speed, wider_mode) < max_cost)
3701 {
3702 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3703 unsignedp, OPTAB_WIDEN);
3704 if (tem)
3705 return extract_high_half (mode, tem);
3706 }
3707
3708 /* Try widening the mode and perform a non-widening multiplication. */
3709 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3710 && size - 1 < BITS_PER_WORD
3711 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3712 < max_cost))
3713 {
3714 rtx_insn *insns;
3715 rtx wop0, wop1;
3716
3717 /* We need to widen the operands, for example to ensure the
3718 constant multiplier is correctly sign or zero extended.
3719 Use a sequence to clean-up any instructions emitted by
3720 the conversions if things don't work out. */
3721 start_sequence ();
3722 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3723 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3724 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3725 unsignedp, OPTAB_WIDEN);
3726 insns = get_insns ();
3727 end_sequence ();
3728
3729 if (tem)
3730 {
3731 emit_insn (insns);
3732 return extract_high_half (mode, tem);
3733 }
3734 }
3735
3736 /* Try widening multiplication of opposite signedness, and adjust. */
3737 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3738 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3739 && size - 1 < BITS_PER_WORD
3740 && (mul_widen_cost (speed, wider_mode)
3741 + 2 * shift_cost (speed, mode, size-1)
3742 + 4 * add_cost (speed, mode) < max_cost))
3743 {
3744 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3745 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3746 if (tem != 0)
3747 {
3748 tem = extract_high_half (mode, tem);
3749 /* We used the wrong signedness. Adjust the result. */
3750 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3751 target, unsignedp);
3752 }
3753 }
3754
3755 return 0;
3756 }
3757
3758 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3759 putting the high half of the result in TARGET if that is convenient,
3760 and return where the result is. If the operation can not be performed,
3761 0 is returned.
3762
3763 MODE is the mode of operation and result.
3764
3765 UNSIGNEDP nonzero means unsigned multiply.
3766
3767 MAX_COST is the total allowed cost for the expanded RTL. */
3768
3769 static rtx
3770 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3771 rtx target, int unsignedp, int max_cost)
3772 {
3773 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3774 unsigned HOST_WIDE_INT cnst1;
3775 int extra_cost;
3776 bool sign_adjust = false;
3777 enum mult_variant variant;
3778 struct algorithm alg;
3779 rtx tem;
3780 bool speed = optimize_insn_for_speed_p ();
3781
3782 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3783 /* We can't support modes wider than HOST_BITS_PER_INT. */
3784 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3785
3786 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3787
3788 /* We can't optimize modes wider than BITS_PER_WORD.
3789 ??? We might be able to perform double-word arithmetic if
3790 mode == word_mode, however all the cost calculations in
3791 synth_mult etc. assume single-word operations. */
3792 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3793 return expmed_mult_highpart_optab (mode, op0, op1, target,
3794 unsignedp, max_cost);
3795
3796 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3797
3798 /* Check whether we try to multiply by a negative constant. */
3799 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3800 {
3801 sign_adjust = true;
3802 extra_cost += add_cost (speed, mode);
3803 }
3804
3805 /* See whether shift/add multiplication is cheap enough. */
3806 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3807 max_cost - extra_cost))
3808 {
3809 /* See whether the specialized multiplication optabs are
3810 cheaper than the shift/add version. */
3811 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3812 alg.cost.cost + extra_cost);
3813 if (tem)
3814 return tem;
3815
3816 tem = convert_to_mode (wider_mode, op0, unsignedp);
3817 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3818 tem = extract_high_half (mode, tem);
3819
3820 /* Adjust result for signedness. */
3821 if (sign_adjust)
3822 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3823
3824 return tem;
3825 }
3826 return expmed_mult_highpart_optab (mode, op0, op1, target,
3827 unsignedp, max_cost);
3828 }
3829
3830
3831 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3832
3833 static rtx
3834 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3835 {
3836 rtx result, temp, shift;
3837 rtx_code_label *label;
3838 int logd;
3839 int prec = GET_MODE_PRECISION (mode);
3840
3841 logd = floor_log2 (d);
3842 result = gen_reg_rtx (mode);
3843
3844 /* Avoid conditional branches when they're expensive. */
3845 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3846 && optimize_insn_for_speed_p ())
3847 {
3848 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3849 mode, 0, -1);
3850 if (signmask)
3851 {
3852 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
3853 signmask = force_reg (mode, signmask);
3854 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3855
3856 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3857 which instruction sequence to use. If logical right shifts
3858 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3859 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3860
3861 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3862 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3863 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3864 > COSTS_N_INSNS (2)))
3865 {
3866 temp = expand_binop (mode, xor_optab, op0, signmask,
3867 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3868 temp = expand_binop (mode, sub_optab, temp, signmask,
3869 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3870 temp = expand_binop (mode, and_optab, temp,
3871 gen_int_mode (masklow, mode),
3872 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3873 temp = expand_binop (mode, xor_optab, temp, signmask,
3874 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3875 temp = expand_binop (mode, sub_optab, temp, signmask,
3876 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3877 }
3878 else
3879 {
3880 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3881 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3882 signmask = force_reg (mode, signmask);
3883
3884 temp = expand_binop (mode, add_optab, op0, signmask,
3885 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3886 temp = expand_binop (mode, and_optab, temp,
3887 gen_int_mode (masklow, mode),
3888 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3889 temp = expand_binop (mode, sub_optab, temp, signmask,
3890 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3891 }
3892 return temp;
3893 }
3894 }
3895
3896 /* Mask contains the mode's signbit and the significant bits of the
3897 modulus. By including the signbit in the operation, many targets
3898 can avoid an explicit compare operation in the following comparison
3899 against zero. */
3900 wide_int mask = wi::mask (logd, false, prec);
3901 mask = wi::set_bit (mask, prec - 1);
3902
3903 temp = expand_binop (mode, and_optab, op0,
3904 immed_wide_int_const (mask, mode),
3905 result, 1, OPTAB_LIB_WIDEN);
3906 if (temp != result)
3907 emit_move_insn (result, temp);
3908
3909 label = gen_label_rtx ();
3910 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3911
3912 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3913 0, OPTAB_LIB_WIDEN);
3914
3915 mask = wi::mask (logd, true, prec);
3916 temp = expand_binop (mode, ior_optab, temp,
3917 immed_wide_int_const (mask, mode),
3918 result, 1, OPTAB_LIB_WIDEN);
3919 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3920 0, OPTAB_LIB_WIDEN);
3921 if (temp != result)
3922 emit_move_insn (result, temp);
3923 emit_label (label);
3924 return result;
3925 }
3926
3927 /* Expand signed division of OP0 by a power of two D in mode MODE.
3928 This routine is only called for positive values of D. */
3929
3930 static rtx
3931 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3932 {
3933 rtx temp;
3934 rtx_code_label *label;
3935 int logd;
3936
3937 logd = floor_log2 (d);
3938
3939 if (d == 2
3940 && BRANCH_COST (optimize_insn_for_speed_p (),
3941 false) >= 1)
3942 {
3943 temp = gen_reg_rtx (mode);
3944 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3945 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3946 0, OPTAB_LIB_WIDEN);
3947 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3948 }
3949
3950 if (HAVE_conditional_move
3951 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3952 {
3953 rtx temp2;
3954
3955 start_sequence ();
3956 temp2 = copy_to_mode_reg (mode, op0);
3957 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3958 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3959 temp = force_reg (mode, temp);
3960
3961 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3962 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3963 mode, temp, temp2, mode, 0);
3964 if (temp2)
3965 {
3966 rtx_insn *seq = get_insns ();
3967 end_sequence ();
3968 emit_insn (seq);
3969 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3970 }
3971 end_sequence ();
3972 }
3973
3974 if (BRANCH_COST (optimize_insn_for_speed_p (),
3975 false) >= 2)
3976 {
3977 int ushift = GET_MODE_BITSIZE (mode) - logd;
3978
3979 temp = gen_reg_rtx (mode);
3980 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3981 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3982 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3983 > COSTS_N_INSNS (1))
3984 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3985 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3986 else
3987 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3988 ushift, NULL_RTX, 1);
3989 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3990 0, OPTAB_LIB_WIDEN);
3991 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3992 }
3993
3994 label = gen_label_rtx ();
3995 temp = copy_to_mode_reg (mode, op0);
3996 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3997 expand_inc (temp, gen_int_mode (d - 1, mode));
3998 emit_label (label);
3999 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4000 }
4001 \f
4002 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4003 if that is convenient, and returning where the result is.
4004 You may request either the quotient or the remainder as the result;
4005 specify REM_FLAG nonzero to get the remainder.
4006
4007 CODE is the expression code for which kind of division this is;
4008 it controls how rounding is done. MODE is the machine mode to use.
4009 UNSIGNEDP nonzero means do unsigned division. */
4010
4011 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4012 and then correct it by or'ing in missing high bits
4013 if result of ANDI is nonzero.
4014 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4015 This could optimize to a bfexts instruction.
4016 But C doesn't use these operations, so their optimizations are
4017 left for later. */
4018 /* ??? For modulo, we don't actually need the highpart of the first product,
4019 the low part will do nicely. And for small divisors, the second multiply
4020 can also be a low-part only multiply or even be completely left out.
4021 E.g. to calculate the remainder of a division by 3 with a 32 bit
4022 multiply, multiply with 0x55555556 and extract the upper two bits;
4023 the result is exact for inputs up to 0x1fffffff.
4024 The input range can be reduced by using cross-sum rules.
4025 For odd divisors >= 3, the following table gives right shift counts
4026 so that if a number is shifted by an integer multiple of the given
4027 amount, the remainder stays the same:
4028 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4029 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4030 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4031 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4032 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4033
4034 Cross-sum rules for even numbers can be derived by leaving as many bits
4035 to the right alone as the divisor has zeros to the right.
4036 E.g. if x is an unsigned 32 bit number:
4037 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4038 */
4039
4040 rtx
4041 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4042 rtx op0, rtx op1, rtx target, int unsignedp)
4043 {
4044 machine_mode compute_mode;
4045 rtx tquotient;
4046 rtx quotient = 0, remainder = 0;
4047 rtx_insn *last;
4048 int size;
4049 rtx_insn *insn;
4050 optab optab1, optab2;
4051 int op1_is_constant, op1_is_pow2 = 0;
4052 int max_cost, extra_cost;
4053 static HOST_WIDE_INT last_div_const = 0;
4054 bool speed = optimize_insn_for_speed_p ();
4055
4056 op1_is_constant = CONST_INT_P (op1);
4057 if (op1_is_constant)
4058 {
4059 wide_int ext_op1 = rtx_mode_t (op1, mode);
4060 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4061 || (! unsignedp
4062 && wi::popcount (wi::neg (ext_op1)) == 1));
4063 }
4064
4065 /*
4066 This is the structure of expand_divmod:
4067
4068 First comes code to fix up the operands so we can perform the operations
4069 correctly and efficiently.
4070
4071 Second comes a switch statement with code specific for each rounding mode.
4072 For some special operands this code emits all RTL for the desired
4073 operation, for other cases, it generates only a quotient and stores it in
4074 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4075 to indicate that it has not done anything.
4076
4077 Last comes code that finishes the operation. If QUOTIENT is set and
4078 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4079 QUOTIENT is not set, it is computed using trunc rounding.
4080
4081 We try to generate special code for division and remainder when OP1 is a
4082 constant. If |OP1| = 2**n we can use shifts and some other fast
4083 operations. For other values of OP1, we compute a carefully selected
4084 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4085 by m.
4086
4087 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4088 half of the product. Different strategies for generating the product are
4089 implemented in expmed_mult_highpart.
4090
4091 If what we actually want is the remainder, we generate that by another
4092 by-constant multiplication and a subtraction. */
4093
4094 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4095 code below will malfunction if we are, so check here and handle
4096 the special case if so. */
4097 if (op1 == const1_rtx)
4098 return rem_flag ? const0_rtx : op0;
4099
4100 /* When dividing by -1, we could get an overflow.
4101 negv_optab can handle overflows. */
4102 if (! unsignedp && op1 == constm1_rtx)
4103 {
4104 if (rem_flag)
4105 return const0_rtx;
4106 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4107 ? negv_optab : neg_optab, op0, target, 0);
4108 }
4109
4110 if (target
4111 /* Don't use the function value register as a target
4112 since we have to read it as well as write it,
4113 and function-inlining gets confused by this. */
4114 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4115 /* Don't clobber an operand while doing a multi-step calculation. */
4116 || ((rem_flag || op1_is_constant)
4117 && (reg_mentioned_p (target, op0)
4118 || (MEM_P (op0) && MEM_P (target))))
4119 || reg_mentioned_p (target, op1)
4120 || (MEM_P (op1) && MEM_P (target))))
4121 target = 0;
4122
4123 /* Get the mode in which to perform this computation. Normally it will
4124 be MODE, but sometimes we can't do the desired operation in MODE.
4125 If so, pick a wider mode in which we can do the operation. Convert
4126 to that mode at the start to avoid repeated conversions.
4127
4128 First see what operations we need. These depend on the expression
4129 we are evaluating. (We assume that divxx3 insns exist under the
4130 same conditions that modxx3 insns and that these insns don't normally
4131 fail. If these assumptions are not correct, we may generate less
4132 efficient code in some cases.)
4133
4134 Then see if we find a mode in which we can open-code that operation
4135 (either a division, modulus, or shift). Finally, check for the smallest
4136 mode for which we can do the operation with a library call. */
4137
4138 /* We might want to refine this now that we have division-by-constant
4139 optimization. Since expmed_mult_highpart tries so many variants, it is
4140 not straightforward to generalize this. Maybe we should make an array
4141 of possible modes in init_expmed? Save this for GCC 2.7. */
4142
4143 optab1 = (op1_is_pow2
4144 ? (unsignedp ? lshr_optab : ashr_optab)
4145 : (unsignedp ? udiv_optab : sdiv_optab));
4146 optab2 = (op1_is_pow2 ? optab1
4147 : (unsignedp ? udivmod_optab : sdivmod_optab));
4148
4149 for (compute_mode = mode; compute_mode != VOIDmode;
4150 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4151 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4152 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4153 break;
4154
4155 if (compute_mode == VOIDmode)
4156 for (compute_mode = mode; compute_mode != VOIDmode;
4157 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4158 if (optab_libfunc (optab1, compute_mode)
4159 || optab_libfunc (optab2, compute_mode))
4160 break;
4161
4162 /* If we still couldn't find a mode, use MODE, but expand_binop will
4163 probably die. */
4164 if (compute_mode == VOIDmode)
4165 compute_mode = mode;
4166
4167 if (target && GET_MODE (target) == compute_mode)
4168 tquotient = target;
4169 else
4170 tquotient = gen_reg_rtx (compute_mode);
4171
4172 size = GET_MODE_BITSIZE (compute_mode);
4173 #if 0
4174 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4175 (mode), and thereby get better code when OP1 is a constant. Do that
4176 later. It will require going over all usages of SIZE below. */
4177 size = GET_MODE_BITSIZE (mode);
4178 #endif
4179
4180 /* Only deduct something for a REM if the last divide done was
4181 for a different constant. Then set the constant of the last
4182 divide. */
4183 max_cost = (unsignedp
4184 ? udiv_cost (speed, compute_mode)
4185 : sdiv_cost (speed, compute_mode));
4186 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4187 && INTVAL (op1) == last_div_const))
4188 max_cost -= (mul_cost (speed, compute_mode)
4189 + add_cost (speed, compute_mode));
4190
4191 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4192
4193 /* Now convert to the best mode to use. */
4194 if (compute_mode != mode)
4195 {
4196 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4197 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4198
4199 /* convert_modes may have placed op1 into a register, so we
4200 must recompute the following. */
4201 op1_is_constant = CONST_INT_P (op1);
4202 if (op1_is_constant)
4203 {
4204 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4205 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4206 || (! unsignedp
4207 && wi::popcount (wi::neg (ext_op1)) == 1));
4208 }
4209 else
4210 op1_is_pow2 = 0;
4211 }
4212
4213 /* If one of the operands is a volatile MEM, copy it into a register. */
4214
4215 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4216 op0 = force_reg (compute_mode, op0);
4217 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4218 op1 = force_reg (compute_mode, op1);
4219
4220 /* If we need the remainder or if OP1 is constant, we need to
4221 put OP0 in a register in case it has any queued subexpressions. */
4222 if (rem_flag || op1_is_constant)
4223 op0 = force_reg (compute_mode, op0);
4224
4225 last = get_last_insn ();
4226
4227 /* Promote floor rounding to trunc rounding for unsigned operations. */
4228 if (unsignedp)
4229 {
4230 if (code == FLOOR_DIV_EXPR)
4231 code = TRUNC_DIV_EXPR;
4232 if (code == FLOOR_MOD_EXPR)
4233 code = TRUNC_MOD_EXPR;
4234 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4235 code = TRUNC_DIV_EXPR;
4236 }
4237
4238 if (op1 != const0_rtx)
4239 switch (code)
4240 {
4241 case TRUNC_MOD_EXPR:
4242 case TRUNC_DIV_EXPR:
4243 if (op1_is_constant)
4244 {
4245 if (unsignedp)
4246 {
4247 unsigned HOST_WIDE_INT mh, ml;
4248 int pre_shift, post_shift;
4249 int dummy;
4250 wide_int wd = rtx_mode_t (op1, compute_mode);
4251 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4252
4253 if (wi::popcount (wd) == 1)
4254 {
4255 pre_shift = floor_log2 (d);
4256 if (rem_flag)
4257 {
4258 unsigned HOST_WIDE_INT mask
4259 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4260 remainder
4261 = expand_binop (compute_mode, and_optab, op0,
4262 gen_int_mode (mask, compute_mode),
4263 remainder, 1,
4264 OPTAB_LIB_WIDEN);
4265 if (remainder)
4266 return gen_lowpart (mode, remainder);
4267 }
4268 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4269 pre_shift, tquotient, 1);
4270 }
4271 else if (size <= HOST_BITS_PER_WIDE_INT)
4272 {
4273 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4274 {
4275 /* Most significant bit of divisor is set; emit an scc
4276 insn. */
4277 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4278 compute_mode, 1, 1);
4279 }
4280 else
4281 {
4282 /* Find a suitable multiplier and right shift count
4283 instead of multiplying with D. */
4284
4285 mh = choose_multiplier (d, size, size,
4286 &ml, &post_shift, &dummy);
4287
4288 /* If the suggested multiplier is more than SIZE bits,
4289 we can do better for even divisors, using an
4290 initial right shift. */
4291 if (mh != 0 && (d & 1) == 0)
4292 {
4293 pre_shift = ctz_or_zero (d);
4294 mh = choose_multiplier (d >> pre_shift, size,
4295 size - pre_shift,
4296 &ml, &post_shift, &dummy);
4297 gcc_assert (!mh);
4298 }
4299 else
4300 pre_shift = 0;
4301
4302 if (mh != 0)
4303 {
4304 rtx t1, t2, t3, t4;
4305
4306 if (post_shift - 1 >= BITS_PER_WORD)
4307 goto fail1;
4308
4309 extra_cost
4310 = (shift_cost (speed, compute_mode, post_shift - 1)
4311 + shift_cost (speed, compute_mode, 1)
4312 + 2 * add_cost (speed, compute_mode));
4313 t1 = expmed_mult_highpart
4314 (compute_mode, op0,
4315 gen_int_mode (ml, compute_mode),
4316 NULL_RTX, 1, max_cost - extra_cost);
4317 if (t1 == 0)
4318 goto fail1;
4319 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4320 op0, t1),
4321 NULL_RTX);
4322 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4323 t2, 1, NULL_RTX, 1);
4324 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4325 t1, t3),
4326 NULL_RTX);
4327 quotient = expand_shift
4328 (RSHIFT_EXPR, compute_mode, t4,
4329 post_shift - 1, tquotient, 1);
4330 }
4331 else
4332 {
4333 rtx t1, t2;
4334
4335 if (pre_shift >= BITS_PER_WORD
4336 || post_shift >= BITS_PER_WORD)
4337 goto fail1;
4338
4339 t1 = expand_shift
4340 (RSHIFT_EXPR, compute_mode, op0,
4341 pre_shift, NULL_RTX, 1);
4342 extra_cost
4343 = (shift_cost (speed, compute_mode, pre_shift)
4344 + shift_cost (speed, compute_mode, post_shift));
4345 t2 = expmed_mult_highpart
4346 (compute_mode, t1,
4347 gen_int_mode (ml, compute_mode),
4348 NULL_RTX, 1, max_cost - extra_cost);
4349 if (t2 == 0)
4350 goto fail1;
4351 quotient = expand_shift
4352 (RSHIFT_EXPR, compute_mode, t2,
4353 post_shift, tquotient, 1);
4354 }
4355 }
4356 }
4357 else /* Too wide mode to use tricky code */
4358 break;
4359
4360 insn = get_last_insn ();
4361 if (insn != last)
4362 set_dst_reg_note (insn, REG_EQUAL,
4363 gen_rtx_UDIV (compute_mode, op0, op1),
4364 quotient);
4365 }
4366 else /* TRUNC_DIV, signed */
4367 {
4368 unsigned HOST_WIDE_INT ml;
4369 int lgup, post_shift;
4370 rtx mlr;
4371 HOST_WIDE_INT d = INTVAL (op1);
4372 unsigned HOST_WIDE_INT abs_d;
4373
4374 /* Since d might be INT_MIN, we have to cast to
4375 unsigned HOST_WIDE_INT before negating to avoid
4376 undefined signed overflow. */
4377 abs_d = (d >= 0
4378 ? (unsigned HOST_WIDE_INT) d
4379 : - (unsigned HOST_WIDE_INT) d);
4380
4381 /* n rem d = n rem -d */
4382 if (rem_flag && d < 0)
4383 {
4384 d = abs_d;
4385 op1 = gen_int_mode (abs_d, compute_mode);
4386 }
4387
4388 if (d == 1)
4389 quotient = op0;
4390 else if (d == -1)
4391 quotient = expand_unop (compute_mode, neg_optab, op0,
4392 tquotient, 0);
4393 else if (size <= HOST_BITS_PER_WIDE_INT
4394 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4395 {
4396 /* This case is not handled correctly below. */
4397 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4398 compute_mode, 1, 1);
4399 if (quotient == 0)
4400 goto fail1;
4401 }
4402 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4403 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4404 && (rem_flag
4405 ? smod_pow2_cheap (speed, compute_mode)
4406 : sdiv_pow2_cheap (speed, compute_mode))
4407 /* We assume that cheap metric is true if the
4408 optab has an expander for this mode. */
4409 && ((optab_handler ((rem_flag ? smod_optab
4410 : sdiv_optab),
4411 compute_mode)
4412 != CODE_FOR_nothing)
4413 || (optab_handler (sdivmod_optab,
4414 compute_mode)
4415 != CODE_FOR_nothing)))
4416 ;
4417 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d)
4418 && (size <= HOST_BITS_PER_WIDE_INT
4419 || abs_d != (unsigned HOST_WIDE_INT) d))
4420 {
4421 if (rem_flag)
4422 {
4423 remainder = expand_smod_pow2 (compute_mode, op0, d);
4424 if (remainder)
4425 return gen_lowpart (mode, remainder);
4426 }
4427
4428 if (sdiv_pow2_cheap (speed, compute_mode)
4429 && ((optab_handler (sdiv_optab, compute_mode)
4430 != CODE_FOR_nothing)
4431 || (optab_handler (sdivmod_optab, compute_mode)
4432 != CODE_FOR_nothing)))
4433 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4434 compute_mode, op0,
4435 gen_int_mode (abs_d,
4436 compute_mode),
4437 NULL_RTX, 0);
4438 else
4439 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4440
4441 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4442 negate the quotient. */
4443 if (d < 0)
4444 {
4445 insn = get_last_insn ();
4446 if (insn != last
4447 && abs_d < (HOST_WIDE_INT_1U
4448 << (HOST_BITS_PER_WIDE_INT - 1)))
4449 set_dst_reg_note (insn, REG_EQUAL,
4450 gen_rtx_DIV (compute_mode, op0,
4451 gen_int_mode
4452 (abs_d,
4453 compute_mode)),
4454 quotient);
4455
4456 quotient = expand_unop (compute_mode, neg_optab,
4457 quotient, quotient, 0);
4458 }
4459 }
4460 else if (size <= HOST_BITS_PER_WIDE_INT)
4461 {
4462 choose_multiplier (abs_d, size, size - 1,
4463 &ml, &post_shift, &lgup);
4464 if (ml < HOST_WIDE_INT_1U << (size - 1))
4465 {
4466 rtx t1, t2, t3;
4467
4468 if (post_shift >= BITS_PER_WORD
4469 || size - 1 >= BITS_PER_WORD)
4470 goto fail1;
4471
4472 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4473 + shift_cost (speed, compute_mode, size - 1)
4474 + add_cost (speed, compute_mode));
4475 t1 = expmed_mult_highpart
4476 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4477 NULL_RTX, 0, max_cost - extra_cost);
4478 if (t1 == 0)
4479 goto fail1;
4480 t2 = expand_shift
4481 (RSHIFT_EXPR, compute_mode, t1,
4482 post_shift, NULL_RTX, 0);
4483 t3 = expand_shift
4484 (RSHIFT_EXPR, compute_mode, op0,
4485 size - 1, NULL_RTX, 0);
4486 if (d < 0)
4487 quotient
4488 = force_operand (gen_rtx_MINUS (compute_mode,
4489 t3, t2),
4490 tquotient);
4491 else
4492 quotient
4493 = force_operand (gen_rtx_MINUS (compute_mode,
4494 t2, t3),
4495 tquotient);
4496 }
4497 else
4498 {
4499 rtx t1, t2, t3, t4;
4500
4501 if (post_shift >= BITS_PER_WORD
4502 || size - 1 >= BITS_PER_WORD)
4503 goto fail1;
4504
4505 ml |= HOST_WIDE_INT_M1U << (size - 1);
4506 mlr = gen_int_mode (ml, compute_mode);
4507 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4508 + shift_cost (speed, compute_mode, size - 1)
4509 + 2 * add_cost (speed, compute_mode));
4510 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4511 NULL_RTX, 0,
4512 max_cost - extra_cost);
4513 if (t1 == 0)
4514 goto fail1;
4515 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4516 t1, op0),
4517 NULL_RTX);
4518 t3 = expand_shift
4519 (RSHIFT_EXPR, compute_mode, t2,
4520 post_shift, NULL_RTX, 0);
4521 t4 = expand_shift
4522 (RSHIFT_EXPR, compute_mode, op0,
4523 size - 1, NULL_RTX, 0);
4524 if (d < 0)
4525 quotient
4526 = force_operand (gen_rtx_MINUS (compute_mode,
4527 t4, t3),
4528 tquotient);
4529 else
4530 quotient
4531 = force_operand (gen_rtx_MINUS (compute_mode,
4532 t3, t4),
4533 tquotient);
4534 }
4535 }
4536 else /* Too wide mode to use tricky code */
4537 break;
4538
4539 insn = get_last_insn ();
4540 if (insn != last)
4541 set_dst_reg_note (insn, REG_EQUAL,
4542 gen_rtx_DIV (compute_mode, op0, op1),
4543 quotient);
4544 }
4545 break;
4546 }
4547 fail1:
4548 delete_insns_since (last);
4549 break;
4550
4551 case FLOOR_DIV_EXPR:
4552 case FLOOR_MOD_EXPR:
4553 /* We will come here only for signed operations. */
4554 if (op1_is_constant && size <= HOST_BITS_PER_WIDE_INT)
4555 {
4556 unsigned HOST_WIDE_INT mh, ml;
4557 int pre_shift, lgup, post_shift;
4558 HOST_WIDE_INT d = INTVAL (op1);
4559
4560 if (d > 0)
4561 {
4562 /* We could just as easily deal with negative constants here,
4563 but it does not seem worth the trouble for GCC 2.6. */
4564 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4565 {
4566 pre_shift = floor_log2 (d);
4567 if (rem_flag)
4568 {
4569 unsigned HOST_WIDE_INT mask
4570 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4571 remainder = expand_binop
4572 (compute_mode, and_optab, op0,
4573 gen_int_mode (mask, compute_mode),
4574 remainder, 0, OPTAB_LIB_WIDEN);
4575 if (remainder)
4576 return gen_lowpart (mode, remainder);
4577 }
4578 quotient = expand_shift
4579 (RSHIFT_EXPR, compute_mode, op0,
4580 pre_shift, tquotient, 0);
4581 }
4582 else
4583 {
4584 rtx t1, t2, t3, t4;
4585
4586 mh = choose_multiplier (d, size, size - 1,
4587 &ml, &post_shift, &lgup);
4588 gcc_assert (!mh);
4589
4590 if (post_shift < BITS_PER_WORD
4591 && size - 1 < BITS_PER_WORD)
4592 {
4593 t1 = expand_shift
4594 (RSHIFT_EXPR, compute_mode, op0,
4595 size - 1, NULL_RTX, 0);
4596 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4597 NULL_RTX, 0, OPTAB_WIDEN);
4598 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4599 + shift_cost (speed, compute_mode, size - 1)
4600 + 2 * add_cost (speed, compute_mode));
4601 t3 = expmed_mult_highpart
4602 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4603 NULL_RTX, 1, max_cost - extra_cost);
4604 if (t3 != 0)
4605 {
4606 t4 = expand_shift
4607 (RSHIFT_EXPR, compute_mode, t3,
4608 post_shift, NULL_RTX, 1);
4609 quotient = expand_binop (compute_mode, xor_optab,
4610 t4, t1, tquotient, 0,
4611 OPTAB_WIDEN);
4612 }
4613 }
4614 }
4615 }
4616 else
4617 {
4618 rtx nsign, t1, t2, t3, t4;
4619 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4620 op0, constm1_rtx), NULL_RTX);
4621 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4622 0, OPTAB_WIDEN);
4623 nsign = expand_shift (RSHIFT_EXPR, compute_mode, t2,
4624 size - 1, NULL_RTX, 0);
4625 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4626 NULL_RTX);
4627 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4628 NULL_RTX, 0);
4629 if (t4)
4630 {
4631 rtx t5;
4632 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4633 NULL_RTX, 0);
4634 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4635 t4, t5),
4636 tquotient);
4637 }
4638 }
4639 }
4640
4641 if (quotient != 0)
4642 break;
4643 delete_insns_since (last);
4644
4645 /* Try using an instruction that produces both the quotient and
4646 remainder, using truncation. We can easily compensate the quotient
4647 or remainder to get floor rounding, once we have the remainder.
4648 Notice that we compute also the final remainder value here,
4649 and return the result right away. */
4650 if (target == 0 || GET_MODE (target) != compute_mode)
4651 target = gen_reg_rtx (compute_mode);
4652
4653 if (rem_flag)
4654 {
4655 remainder
4656 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4657 quotient = gen_reg_rtx (compute_mode);
4658 }
4659 else
4660 {
4661 quotient
4662 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4663 remainder = gen_reg_rtx (compute_mode);
4664 }
4665
4666 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4667 quotient, remainder, 0))
4668 {
4669 /* This could be computed with a branch-less sequence.
4670 Save that for later. */
4671 rtx tem;
4672 rtx_code_label *label = gen_label_rtx ();
4673 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4674 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4675 NULL_RTX, 0, OPTAB_WIDEN);
4676 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4677 expand_dec (quotient, const1_rtx);
4678 expand_inc (remainder, op1);
4679 emit_label (label);
4680 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4681 }
4682
4683 /* No luck with division elimination or divmod. Have to do it
4684 by conditionally adjusting op0 *and* the result. */
4685 {
4686 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4687 rtx adjusted_op0;
4688 rtx tem;
4689
4690 quotient = gen_reg_rtx (compute_mode);
4691 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4692 label1 = gen_label_rtx ();
4693 label2 = gen_label_rtx ();
4694 label3 = gen_label_rtx ();
4695 label4 = gen_label_rtx ();
4696 label5 = gen_label_rtx ();
4697 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4698 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4699 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4700 quotient, 0, OPTAB_LIB_WIDEN);
4701 if (tem != quotient)
4702 emit_move_insn (quotient, tem);
4703 emit_jump_insn (targetm.gen_jump (label5));
4704 emit_barrier ();
4705 emit_label (label1);
4706 expand_inc (adjusted_op0, const1_rtx);
4707 emit_jump_insn (targetm.gen_jump (label4));
4708 emit_barrier ();
4709 emit_label (label2);
4710 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4711 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4712 quotient, 0, OPTAB_LIB_WIDEN);
4713 if (tem != quotient)
4714 emit_move_insn (quotient, tem);
4715 emit_jump_insn (targetm.gen_jump (label5));
4716 emit_barrier ();
4717 emit_label (label3);
4718 expand_dec (adjusted_op0, const1_rtx);
4719 emit_label (label4);
4720 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4721 quotient, 0, OPTAB_LIB_WIDEN);
4722 if (tem != quotient)
4723 emit_move_insn (quotient, tem);
4724 expand_dec (quotient, const1_rtx);
4725 emit_label (label5);
4726 }
4727 break;
4728
4729 case CEIL_DIV_EXPR:
4730 case CEIL_MOD_EXPR:
4731 if (unsignedp)
4732 {
4733 if (op1_is_constant
4734 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4735 && (size <= HOST_BITS_PER_WIDE_INT
4736 || INTVAL (op1) >= 0))
4737 {
4738 rtx t1, t2, t3;
4739 unsigned HOST_WIDE_INT d = INTVAL (op1);
4740 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4741 floor_log2 (d), tquotient, 1);
4742 t2 = expand_binop (compute_mode, and_optab, op0,
4743 gen_int_mode (d - 1, compute_mode),
4744 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4745 t3 = gen_reg_rtx (compute_mode);
4746 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4747 compute_mode, 1, 1);
4748 if (t3 == 0)
4749 {
4750 rtx_code_label *lab;
4751 lab = gen_label_rtx ();
4752 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4753 expand_inc (t1, const1_rtx);
4754 emit_label (lab);
4755 quotient = t1;
4756 }
4757 else
4758 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4759 t1, t3),
4760 tquotient);
4761 break;
4762 }
4763
4764 /* Try using an instruction that produces both the quotient and
4765 remainder, using truncation. We can easily compensate the
4766 quotient or remainder to get ceiling rounding, once we have the
4767 remainder. Notice that we compute also the final remainder
4768 value here, and return the result right away. */
4769 if (target == 0 || GET_MODE (target) != compute_mode)
4770 target = gen_reg_rtx (compute_mode);
4771
4772 if (rem_flag)
4773 {
4774 remainder = (REG_P (target)
4775 ? target : gen_reg_rtx (compute_mode));
4776 quotient = gen_reg_rtx (compute_mode);
4777 }
4778 else
4779 {
4780 quotient = (REG_P (target)
4781 ? target : gen_reg_rtx (compute_mode));
4782 remainder = gen_reg_rtx (compute_mode);
4783 }
4784
4785 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4786 remainder, 1))
4787 {
4788 /* This could be computed with a branch-less sequence.
4789 Save that for later. */
4790 rtx_code_label *label = gen_label_rtx ();
4791 do_cmp_and_jump (remainder, const0_rtx, EQ,
4792 compute_mode, label);
4793 expand_inc (quotient, const1_rtx);
4794 expand_dec (remainder, op1);
4795 emit_label (label);
4796 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4797 }
4798
4799 /* No luck with division elimination or divmod. Have to do it
4800 by conditionally adjusting op0 *and* the result. */
4801 {
4802 rtx_code_label *label1, *label2;
4803 rtx adjusted_op0, tem;
4804
4805 quotient = gen_reg_rtx (compute_mode);
4806 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4807 label1 = gen_label_rtx ();
4808 label2 = gen_label_rtx ();
4809 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4810 compute_mode, label1);
4811 emit_move_insn (quotient, const0_rtx);
4812 emit_jump_insn (targetm.gen_jump (label2));
4813 emit_barrier ();
4814 emit_label (label1);
4815 expand_dec (adjusted_op0, const1_rtx);
4816 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4817 quotient, 1, OPTAB_LIB_WIDEN);
4818 if (tem != quotient)
4819 emit_move_insn (quotient, tem);
4820 expand_inc (quotient, const1_rtx);
4821 emit_label (label2);
4822 }
4823 }
4824 else /* signed */
4825 {
4826 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4827 && INTVAL (op1) >= 0)
4828 {
4829 /* This is extremely similar to the code for the unsigned case
4830 above. For 2.7 we should merge these variants, but for
4831 2.6.1 I don't want to touch the code for unsigned since that
4832 get used in C. The signed case will only be used by other
4833 languages (Ada). */
4834
4835 rtx t1, t2, t3;
4836 unsigned HOST_WIDE_INT d = INTVAL (op1);
4837 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4838 floor_log2 (d), tquotient, 0);
4839 t2 = expand_binop (compute_mode, and_optab, op0,
4840 gen_int_mode (d - 1, compute_mode),
4841 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4842 t3 = gen_reg_rtx (compute_mode);
4843 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4844 compute_mode, 1, 1);
4845 if (t3 == 0)
4846 {
4847 rtx_code_label *lab;
4848 lab = gen_label_rtx ();
4849 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4850 expand_inc (t1, const1_rtx);
4851 emit_label (lab);
4852 quotient = t1;
4853 }
4854 else
4855 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4856 t1, t3),
4857 tquotient);
4858 break;
4859 }
4860
4861 /* Try using an instruction that produces both the quotient and
4862 remainder, using truncation. We can easily compensate the
4863 quotient or remainder to get ceiling rounding, once we have the
4864 remainder. Notice that we compute also the final remainder
4865 value here, and return the result right away. */
4866 if (target == 0 || GET_MODE (target) != compute_mode)
4867 target = gen_reg_rtx (compute_mode);
4868 if (rem_flag)
4869 {
4870 remainder= (REG_P (target)
4871 ? target : gen_reg_rtx (compute_mode));
4872 quotient = gen_reg_rtx (compute_mode);
4873 }
4874 else
4875 {
4876 quotient = (REG_P (target)
4877 ? target : gen_reg_rtx (compute_mode));
4878 remainder = gen_reg_rtx (compute_mode);
4879 }
4880
4881 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4882 remainder, 0))
4883 {
4884 /* This could be computed with a branch-less sequence.
4885 Save that for later. */
4886 rtx tem;
4887 rtx_code_label *label = gen_label_rtx ();
4888 do_cmp_and_jump (remainder, const0_rtx, EQ,
4889 compute_mode, label);
4890 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4891 NULL_RTX, 0, OPTAB_WIDEN);
4892 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4893 expand_inc (quotient, const1_rtx);
4894 expand_dec (remainder, op1);
4895 emit_label (label);
4896 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4897 }
4898
4899 /* No luck with division elimination or divmod. Have to do it
4900 by conditionally adjusting op0 *and* the result. */
4901 {
4902 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4903 rtx adjusted_op0;
4904 rtx tem;
4905
4906 quotient = gen_reg_rtx (compute_mode);
4907 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4908 label1 = gen_label_rtx ();
4909 label2 = gen_label_rtx ();
4910 label3 = gen_label_rtx ();
4911 label4 = gen_label_rtx ();
4912 label5 = gen_label_rtx ();
4913 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4914 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4915 compute_mode, label1);
4916 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4917 quotient, 0, OPTAB_LIB_WIDEN);
4918 if (tem != quotient)
4919 emit_move_insn (quotient, tem);
4920 emit_jump_insn (targetm.gen_jump (label5));
4921 emit_barrier ();
4922 emit_label (label1);
4923 expand_dec (adjusted_op0, const1_rtx);
4924 emit_jump_insn (targetm.gen_jump (label4));
4925 emit_barrier ();
4926 emit_label (label2);
4927 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4928 compute_mode, label3);
4929 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4930 quotient, 0, OPTAB_LIB_WIDEN);
4931 if (tem != quotient)
4932 emit_move_insn (quotient, tem);
4933 emit_jump_insn (targetm.gen_jump (label5));
4934 emit_barrier ();
4935 emit_label (label3);
4936 expand_inc (adjusted_op0, const1_rtx);
4937 emit_label (label4);
4938 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4939 quotient, 0, OPTAB_LIB_WIDEN);
4940 if (tem != quotient)
4941 emit_move_insn (quotient, tem);
4942 expand_inc (quotient, const1_rtx);
4943 emit_label (label5);
4944 }
4945 }
4946 break;
4947
4948 case EXACT_DIV_EXPR:
4949 if (op1_is_constant && size <= HOST_BITS_PER_WIDE_INT)
4950 {
4951 HOST_WIDE_INT d = INTVAL (op1);
4952 unsigned HOST_WIDE_INT ml;
4953 int pre_shift;
4954 rtx t1;
4955
4956 pre_shift = ctz_or_zero (d);
4957 ml = invert_mod2n (d >> pre_shift, size);
4958 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4959 pre_shift, NULL_RTX, unsignedp);
4960 quotient = expand_mult (compute_mode, t1,
4961 gen_int_mode (ml, compute_mode),
4962 NULL_RTX, 1);
4963
4964 insn = get_last_insn ();
4965 set_dst_reg_note (insn, REG_EQUAL,
4966 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4967 compute_mode, op0, op1),
4968 quotient);
4969 }
4970 break;
4971
4972 case ROUND_DIV_EXPR:
4973 case ROUND_MOD_EXPR:
4974 if (unsignedp)
4975 {
4976 rtx tem;
4977 rtx_code_label *label;
4978 label = gen_label_rtx ();
4979 quotient = gen_reg_rtx (compute_mode);
4980 remainder = gen_reg_rtx (compute_mode);
4981 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4982 {
4983 rtx tem;
4984 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4985 quotient, 1, OPTAB_LIB_WIDEN);
4986 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4987 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4988 remainder, 1, OPTAB_LIB_WIDEN);
4989 }
4990 tem = plus_constant (compute_mode, op1, -1);
4991 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4992 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4993 expand_inc (quotient, const1_rtx);
4994 expand_dec (remainder, op1);
4995 emit_label (label);
4996 }
4997 else
4998 {
4999 rtx abs_rem, abs_op1, tem, mask;
5000 rtx_code_label *label;
5001 label = gen_label_rtx ();
5002 quotient = gen_reg_rtx (compute_mode);
5003 remainder = gen_reg_rtx (compute_mode);
5004 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5005 {
5006 rtx tem;
5007 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
5008 quotient, 0, OPTAB_LIB_WIDEN);
5009 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
5010 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
5011 remainder, 0, OPTAB_LIB_WIDEN);
5012 }
5013 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
5014 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
5015 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
5016 1, NULL_RTX, 1);
5017 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
5018 tem = expand_binop (compute_mode, xor_optab, op0, op1,
5019 NULL_RTX, 0, OPTAB_WIDEN);
5020 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
5021 size - 1, NULL_RTX, 0);
5022 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
5023 NULL_RTX, 0, OPTAB_WIDEN);
5024 tem = expand_binop (compute_mode, sub_optab, tem, mask,
5025 NULL_RTX, 0, OPTAB_WIDEN);
5026 expand_inc (quotient, tem);
5027 tem = expand_binop (compute_mode, xor_optab, mask, op1,
5028 NULL_RTX, 0, OPTAB_WIDEN);
5029 tem = expand_binop (compute_mode, sub_optab, tem, mask,
5030 NULL_RTX, 0, OPTAB_WIDEN);
5031 expand_dec (remainder, tem);
5032 emit_label (label);
5033 }
5034 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5035
5036 default:
5037 gcc_unreachable ();
5038 }
5039
5040 if (quotient == 0)
5041 {
5042 if (target && GET_MODE (target) != compute_mode)
5043 target = 0;
5044
5045 if (rem_flag)
5046 {
5047 /* Try to produce the remainder without producing the quotient.
5048 If we seem to have a divmod pattern that does not require widening,
5049 don't try widening here. We should really have a WIDEN argument
5050 to expand_twoval_binop, since what we'd really like to do here is
5051 1) try a mod insn in compute_mode
5052 2) try a divmod insn in compute_mode
5053 3) try a div insn in compute_mode and multiply-subtract to get
5054 remainder
5055 4) try the same things with widening allowed. */
5056 remainder
5057 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5058 op0, op1, target,
5059 unsignedp,
5060 ((optab_handler (optab2, compute_mode)
5061 != CODE_FOR_nothing)
5062 ? OPTAB_DIRECT : OPTAB_WIDEN));
5063 if (remainder == 0)
5064 {
5065 /* No luck there. Can we do remainder and divide at once
5066 without a library call? */
5067 remainder = gen_reg_rtx (compute_mode);
5068 if (! expand_twoval_binop ((unsignedp
5069 ? udivmod_optab
5070 : sdivmod_optab),
5071 op0, op1,
5072 NULL_RTX, remainder, unsignedp))
5073 remainder = 0;
5074 }
5075
5076 if (remainder)
5077 return gen_lowpart (mode, remainder);
5078 }
5079
5080 /* Produce the quotient. Try a quotient insn, but not a library call.
5081 If we have a divmod in this mode, use it in preference to widening
5082 the div (for this test we assume it will not fail). Note that optab2
5083 is set to the one of the two optabs that the call below will use. */
5084 quotient
5085 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5086 op0, op1, rem_flag ? NULL_RTX : target,
5087 unsignedp,
5088 ((optab_handler (optab2, compute_mode)
5089 != CODE_FOR_nothing)
5090 ? OPTAB_DIRECT : OPTAB_WIDEN));
5091
5092 if (quotient == 0)
5093 {
5094 /* No luck there. Try a quotient-and-remainder insn,
5095 keeping the quotient alone. */
5096 quotient = gen_reg_rtx (compute_mode);
5097 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5098 op0, op1,
5099 quotient, NULL_RTX, unsignedp))
5100 {
5101 quotient = 0;
5102 if (! rem_flag)
5103 /* Still no luck. If we are not computing the remainder,
5104 use a library call for the quotient. */
5105 quotient = sign_expand_binop (compute_mode,
5106 udiv_optab, sdiv_optab,
5107 op0, op1, target,
5108 unsignedp, OPTAB_LIB_WIDEN);
5109 }
5110 }
5111 }
5112
5113 if (rem_flag)
5114 {
5115 if (target && GET_MODE (target) != compute_mode)
5116 target = 0;
5117
5118 if (quotient == 0)
5119 {
5120 /* No divide instruction either. Use library for remainder. */
5121 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5122 op0, op1, target,
5123 unsignedp, OPTAB_LIB_WIDEN);
5124 /* No remainder function. Try a quotient-and-remainder
5125 function, keeping the remainder. */
5126 if (!remainder)
5127 {
5128 remainder = gen_reg_rtx (compute_mode);
5129 if (!expand_twoval_binop_libfunc
5130 (unsignedp ? udivmod_optab : sdivmod_optab,
5131 op0, op1,
5132 NULL_RTX, remainder,
5133 unsignedp ? UMOD : MOD))
5134 remainder = NULL_RTX;
5135 }
5136 }
5137 else
5138 {
5139 /* We divided. Now finish doing X - Y * (X / Y). */
5140 remainder = expand_mult (compute_mode, quotient, op1,
5141 NULL_RTX, unsignedp);
5142 remainder = expand_binop (compute_mode, sub_optab, op0,
5143 remainder, target, unsignedp,
5144 OPTAB_LIB_WIDEN);
5145 }
5146 }
5147
5148 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5149 }
5150 \f
5151 /* Return a tree node with data type TYPE, describing the value of X.
5152 Usually this is an VAR_DECL, if there is no obvious better choice.
5153 X may be an expression, however we only support those expressions
5154 generated by loop.c. */
5155
5156 tree
5157 make_tree (tree type, rtx x)
5158 {
5159 tree t;
5160
5161 switch (GET_CODE (x))
5162 {
5163 case CONST_INT:
5164 case CONST_WIDE_INT:
5165 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
5166 return t;
5167
5168 case CONST_DOUBLE:
5169 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5170 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5171 t = wide_int_to_tree (type,
5172 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5173 HOST_BITS_PER_WIDE_INT * 2));
5174 else
5175 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5176
5177 return t;
5178
5179 case CONST_VECTOR:
5180 {
5181 int units = CONST_VECTOR_NUNITS (x);
5182 tree itype = TREE_TYPE (type);
5183 tree *elts;
5184 int i;
5185
5186 /* Build a tree with vector elements. */
5187 elts = XALLOCAVEC (tree, units);
5188 for (i = units - 1; i >= 0; --i)
5189 {
5190 rtx elt = CONST_VECTOR_ELT (x, i);
5191 elts[i] = make_tree (itype, elt);
5192 }
5193
5194 return build_vector (type, elts);
5195 }
5196
5197 case PLUS:
5198 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5199 make_tree (type, XEXP (x, 1)));
5200
5201 case MINUS:
5202 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5203 make_tree (type, XEXP (x, 1)));
5204
5205 case NEG:
5206 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5207
5208 case MULT:
5209 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5210 make_tree (type, XEXP (x, 1)));
5211
5212 case ASHIFT:
5213 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5214 make_tree (type, XEXP (x, 1)));
5215
5216 case LSHIFTRT:
5217 t = unsigned_type_for (type);
5218 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5219 make_tree (t, XEXP (x, 0)),
5220 make_tree (type, XEXP (x, 1))));
5221
5222 case ASHIFTRT:
5223 t = signed_type_for (type);
5224 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5225 make_tree (t, XEXP (x, 0)),
5226 make_tree (type, XEXP (x, 1))));
5227
5228 case DIV:
5229 if (TREE_CODE (type) != REAL_TYPE)
5230 t = signed_type_for (type);
5231 else
5232 t = type;
5233
5234 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5235 make_tree (t, XEXP (x, 0)),
5236 make_tree (t, XEXP (x, 1))));
5237 case UDIV:
5238 t = unsigned_type_for (type);
5239 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5240 make_tree (t, XEXP (x, 0)),
5241 make_tree (t, XEXP (x, 1))));
5242
5243 case SIGN_EXTEND:
5244 case ZERO_EXTEND:
5245 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5246 GET_CODE (x) == ZERO_EXTEND);
5247 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5248
5249 case CONST:
5250 return make_tree (type, XEXP (x, 0));
5251
5252 case SYMBOL_REF:
5253 t = SYMBOL_REF_DECL (x);
5254 if (t)
5255 return fold_convert (type, build_fold_addr_expr (t));
5256 /* fall through. */
5257
5258 default:
5259 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5260
5261 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5262 address mode to pointer mode. */
5263 if (POINTER_TYPE_P (type))
5264 x = convert_memory_address_addr_space
5265 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5266
5267 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5268 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5269 t->decl_with_rtl.rtl = x;
5270
5271 return t;
5272 }
5273 }
5274 \f
5275 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5276 and returning TARGET.
5277
5278 If TARGET is 0, a pseudo-register or constant is returned. */
5279
5280 rtx
5281 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5282 {
5283 rtx tem = 0;
5284
5285 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5286 tem = simplify_binary_operation (AND, mode, op0, op1);
5287 if (tem == 0)
5288 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5289
5290 if (target == 0)
5291 target = tem;
5292 else if (tem != target)
5293 emit_move_insn (target, tem);
5294 return target;
5295 }
5296
5297 /* Helper function for emit_store_flag. */
5298 rtx
5299 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5300 machine_mode mode, machine_mode compare_mode,
5301 int unsignedp, rtx x, rtx y, int normalizep,
5302 machine_mode target_mode)
5303 {
5304 struct expand_operand ops[4];
5305 rtx op0, comparison, subtarget;
5306 rtx_insn *last;
5307 machine_mode result_mode = targetm.cstore_mode (icode);
5308
5309 last = get_last_insn ();
5310 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5311 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5312 if (!x || !y)
5313 {
5314 delete_insns_since (last);
5315 return NULL_RTX;
5316 }
5317
5318 if (target_mode == VOIDmode)
5319 target_mode = result_mode;
5320 if (!target)
5321 target = gen_reg_rtx (target_mode);
5322
5323 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5324
5325 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5326 create_fixed_operand (&ops[1], comparison);
5327 create_fixed_operand (&ops[2], x);
5328 create_fixed_operand (&ops[3], y);
5329 if (!maybe_expand_insn (icode, 4, ops))
5330 {
5331 delete_insns_since (last);
5332 return NULL_RTX;
5333 }
5334 subtarget = ops[0].value;
5335
5336 /* If we are converting to a wider mode, first convert to
5337 TARGET_MODE, then normalize. This produces better combining
5338 opportunities on machines that have a SIGN_EXTRACT when we are
5339 testing a single bit. This mostly benefits the 68k.
5340
5341 If STORE_FLAG_VALUE does not have the sign bit set when
5342 interpreted in MODE, we can do this conversion as unsigned, which
5343 is usually more efficient. */
5344 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5345 {
5346 convert_move (target, subtarget,
5347 val_signbit_known_clear_p (result_mode,
5348 STORE_FLAG_VALUE));
5349 op0 = target;
5350 result_mode = target_mode;
5351 }
5352 else
5353 op0 = subtarget;
5354
5355 /* If we want to keep subexpressions around, don't reuse our last
5356 target. */
5357 if (optimize)
5358 subtarget = 0;
5359
5360 /* Now normalize to the proper value in MODE. Sometimes we don't
5361 have to do anything. */
5362 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5363 ;
5364 /* STORE_FLAG_VALUE might be the most negative number, so write
5365 the comparison this way to avoid a compiler-time warning. */
5366 else if (- normalizep == STORE_FLAG_VALUE)
5367 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5368
5369 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5370 it hard to use a value of just the sign bit due to ANSI integer
5371 constant typing rules. */
5372 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5373 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5374 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5375 normalizep == 1);
5376 else
5377 {
5378 gcc_assert (STORE_FLAG_VALUE & 1);
5379
5380 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5381 if (normalizep == -1)
5382 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5383 }
5384
5385 /* If we were converting to a smaller mode, do the conversion now. */
5386 if (target_mode != result_mode)
5387 {
5388 convert_move (target, op0, 0);
5389 return target;
5390 }
5391 else
5392 return op0;
5393 }
5394
5395
5396 /* A subroutine of emit_store_flag only including "tricks" that do not
5397 need a recursive call. These are kept separate to avoid infinite
5398 loops. */
5399
5400 static rtx
5401 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5402 machine_mode mode, int unsignedp, int normalizep,
5403 machine_mode target_mode)
5404 {
5405 rtx subtarget;
5406 enum insn_code icode;
5407 machine_mode compare_mode;
5408 enum mode_class mclass;
5409 enum rtx_code scode;
5410
5411 if (unsignedp)
5412 code = unsigned_condition (code);
5413 scode = swap_condition (code);
5414
5415 /* If one operand is constant, make it the second one. Only do this
5416 if the other operand is not constant as well. */
5417
5418 if (swap_commutative_operands_p (op0, op1))
5419 {
5420 std::swap (op0, op1);
5421 code = swap_condition (code);
5422 }
5423
5424 if (mode == VOIDmode)
5425 mode = GET_MODE (op0);
5426
5427 /* For some comparisons with 1 and -1, we can convert this to
5428 comparisons with zero. This will often produce more opportunities for
5429 store-flag insns. */
5430
5431 switch (code)
5432 {
5433 case LT:
5434 if (op1 == const1_rtx)
5435 op1 = const0_rtx, code = LE;
5436 break;
5437 case LE:
5438 if (op1 == constm1_rtx)
5439 op1 = const0_rtx, code = LT;
5440 break;
5441 case GE:
5442 if (op1 == const1_rtx)
5443 op1 = const0_rtx, code = GT;
5444 break;
5445 case GT:
5446 if (op1 == constm1_rtx)
5447 op1 = const0_rtx, code = GE;
5448 break;
5449 case GEU:
5450 if (op1 == const1_rtx)
5451 op1 = const0_rtx, code = NE;
5452 break;
5453 case LTU:
5454 if (op1 == const1_rtx)
5455 op1 = const0_rtx, code = EQ;
5456 break;
5457 default:
5458 break;
5459 }
5460
5461 /* If we are comparing a double-word integer with zero or -1, we can
5462 convert the comparison into one involving a single word. */
5463 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5464 && GET_MODE_CLASS (mode) == MODE_INT
5465 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5466 {
5467 rtx tem;
5468 if ((code == EQ || code == NE)
5469 && (op1 == const0_rtx || op1 == constm1_rtx))
5470 {
5471 rtx op00, op01;
5472
5473 /* Do a logical OR or AND of the two words and compare the
5474 result. */
5475 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5476 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5477 tem = expand_binop (word_mode,
5478 op1 == const0_rtx ? ior_optab : and_optab,
5479 op00, op01, NULL_RTX, unsignedp,
5480 OPTAB_DIRECT);
5481
5482 if (tem != 0)
5483 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5484 unsignedp, normalizep);
5485 }
5486 else if ((code == LT || code == GE) && op1 == const0_rtx)
5487 {
5488 rtx op0h;
5489
5490 /* If testing the sign bit, can just test on high word. */
5491 op0h = simplify_gen_subreg (word_mode, op0, mode,
5492 subreg_highpart_offset (word_mode,
5493 mode));
5494 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5495 unsignedp, normalizep);
5496 }
5497 else
5498 tem = NULL_RTX;
5499
5500 if (tem)
5501 {
5502 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5503 return tem;
5504 if (!target)
5505 target = gen_reg_rtx (target_mode);
5506
5507 convert_move (target, tem,
5508 !val_signbit_known_set_p (word_mode,
5509 (normalizep ? normalizep
5510 : STORE_FLAG_VALUE)));
5511 return target;
5512 }
5513 }
5514
5515 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5516 complement of A (for GE) and shifting the sign bit to the low bit. */
5517 if (op1 == const0_rtx && (code == LT || code == GE)
5518 && GET_MODE_CLASS (mode) == MODE_INT
5519 && (normalizep || STORE_FLAG_VALUE == 1
5520 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5521 {
5522 subtarget = target;
5523
5524 if (!target)
5525 target_mode = mode;
5526
5527 /* If the result is to be wider than OP0, it is best to convert it
5528 first. If it is to be narrower, it is *incorrect* to convert it
5529 first. */
5530 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5531 {
5532 op0 = convert_modes (target_mode, mode, op0, 0);
5533 mode = target_mode;
5534 }
5535
5536 if (target_mode != mode)
5537 subtarget = 0;
5538
5539 if (code == GE)
5540 op0 = expand_unop (mode, one_cmpl_optab, op0,
5541 ((STORE_FLAG_VALUE == 1 || normalizep)
5542 ? 0 : subtarget), 0);
5543
5544 if (STORE_FLAG_VALUE == 1 || normalizep)
5545 /* If we are supposed to produce a 0/1 value, we want to do
5546 a logical shift from the sign bit to the low-order bit; for
5547 a -1/0 value, we do an arithmetic shift. */
5548 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5549 GET_MODE_BITSIZE (mode) - 1,
5550 subtarget, normalizep != -1);
5551
5552 if (mode != target_mode)
5553 op0 = convert_modes (target_mode, mode, op0, 0);
5554
5555 return op0;
5556 }
5557
5558 mclass = GET_MODE_CLASS (mode);
5559 for (compare_mode = mode; compare_mode != VOIDmode;
5560 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5561 {
5562 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5563 icode = optab_handler (cstore_optab, optab_mode);
5564 if (icode != CODE_FOR_nothing)
5565 {
5566 do_pending_stack_adjust ();
5567 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5568 unsignedp, op0, op1, normalizep, target_mode);
5569 if (tem)
5570 return tem;
5571
5572 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5573 {
5574 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5575 unsignedp, op1, op0, normalizep, target_mode);
5576 if (tem)
5577 return tem;
5578 }
5579 break;
5580 }
5581 }
5582
5583 return 0;
5584 }
5585
5586 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5587 and storing in TARGET. Normally return TARGET.
5588 Return 0 if that cannot be done.
5589
5590 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5591 it is VOIDmode, they cannot both be CONST_INT.
5592
5593 UNSIGNEDP is for the case where we have to widen the operands
5594 to perform the operation. It says to use zero-extension.
5595
5596 NORMALIZEP is 1 if we should convert the result to be either zero
5597 or one. Normalize is -1 if we should convert the result to be
5598 either zero or -1. If NORMALIZEP is zero, the result will be left
5599 "raw" out of the scc insn. */
5600
5601 rtx
5602 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5603 machine_mode mode, int unsignedp, int normalizep)
5604 {
5605 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5606 enum rtx_code rcode;
5607 rtx subtarget;
5608 rtx tem, trueval;
5609 rtx_insn *last;
5610
5611 /* If we compare constants, we shouldn't use a store-flag operation,
5612 but a constant load. We can get there via the vanilla route that
5613 usually generates a compare-branch sequence, but will in this case
5614 fold the comparison to a constant, and thus elide the branch. */
5615 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5616 return NULL_RTX;
5617
5618 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5619 target_mode);
5620 if (tem)
5621 return tem;
5622
5623 /* If we reached here, we can't do this with a scc insn, however there
5624 are some comparisons that can be done in other ways. Don't do any
5625 of these cases if branches are very cheap. */
5626 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5627 return 0;
5628
5629 /* See what we need to return. We can only return a 1, -1, or the
5630 sign bit. */
5631
5632 if (normalizep == 0)
5633 {
5634 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5635 normalizep = STORE_FLAG_VALUE;
5636
5637 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5638 ;
5639 else
5640 return 0;
5641 }
5642
5643 last = get_last_insn ();
5644
5645 /* If optimizing, use different pseudo registers for each insn, instead
5646 of reusing the same pseudo. This leads to better CSE, but slows
5647 down the compiler, since there are more pseudos */
5648 subtarget = (!optimize
5649 && (target_mode == mode)) ? target : NULL_RTX;
5650 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5651
5652 /* For floating-point comparisons, try the reverse comparison or try
5653 changing the "orderedness" of the comparison. */
5654 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5655 {
5656 enum rtx_code first_code;
5657 bool and_them;
5658
5659 rcode = reverse_condition_maybe_unordered (code);
5660 if (can_compare_p (rcode, mode, ccp_store_flag)
5661 && (code == ORDERED || code == UNORDERED
5662 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5663 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5664 {
5665 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5666 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5667
5668 /* For the reverse comparison, use either an addition or a XOR. */
5669 if (want_add
5670 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5671 optimize_insn_for_speed_p ()) == 0)
5672 {
5673 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5674 STORE_FLAG_VALUE, target_mode);
5675 if (tem)
5676 return expand_binop (target_mode, add_optab, tem,
5677 gen_int_mode (normalizep, target_mode),
5678 target, 0, OPTAB_WIDEN);
5679 }
5680 else if (!want_add
5681 && rtx_cost (trueval, mode, XOR, 1,
5682 optimize_insn_for_speed_p ()) == 0)
5683 {
5684 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5685 normalizep, target_mode);
5686 if (tem)
5687 return expand_binop (target_mode, xor_optab, tem, trueval,
5688 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5689 }
5690 }
5691
5692 delete_insns_since (last);
5693
5694 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5695 if (code == ORDERED || code == UNORDERED)
5696 return 0;
5697
5698 and_them = split_comparison (code, mode, &first_code, &code);
5699
5700 /* If there are no NaNs, the first comparison should always fall through.
5701 Effectively change the comparison to the other one. */
5702 if (!HONOR_NANS (mode))
5703 {
5704 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5705 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5706 target_mode);
5707 }
5708
5709 if (!HAVE_conditional_move)
5710 return 0;
5711
5712 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5713 conditional move. */
5714 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5715 normalizep, target_mode);
5716 if (tem == 0)
5717 return 0;
5718
5719 if (and_them)
5720 tem = emit_conditional_move (target, code, op0, op1, mode,
5721 tem, const0_rtx, GET_MODE (tem), 0);
5722 else
5723 tem = emit_conditional_move (target, code, op0, op1, mode,
5724 trueval, tem, GET_MODE (tem), 0);
5725
5726 if (tem == 0)
5727 delete_insns_since (last);
5728 return tem;
5729 }
5730
5731 /* The remaining tricks only apply to integer comparisons. */
5732
5733 if (GET_MODE_CLASS (mode) != MODE_INT)
5734 return 0;
5735
5736 /* If this is an equality comparison of integers, we can try to exclusive-or
5737 (or subtract) the two operands and use a recursive call to try the
5738 comparison with zero. Don't do any of these cases if branches are
5739 very cheap. */
5740
5741 if ((code == EQ || code == NE) && op1 != const0_rtx)
5742 {
5743 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5744 OPTAB_WIDEN);
5745
5746 if (tem == 0)
5747 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5748 OPTAB_WIDEN);
5749 if (tem != 0)
5750 tem = emit_store_flag (target, code, tem, const0_rtx,
5751 mode, unsignedp, normalizep);
5752 if (tem != 0)
5753 return tem;
5754
5755 delete_insns_since (last);
5756 }
5757
5758 /* For integer comparisons, try the reverse comparison. However, for
5759 small X and if we'd have anyway to extend, implementing "X != 0"
5760 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5761 rcode = reverse_condition (code);
5762 if (can_compare_p (rcode, mode, ccp_store_flag)
5763 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5764 && code == NE
5765 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5766 && op1 == const0_rtx))
5767 {
5768 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5769 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5770
5771 /* Again, for the reverse comparison, use either an addition or a XOR. */
5772 if (want_add
5773 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5774 optimize_insn_for_speed_p ()) == 0)
5775 {
5776 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5777 STORE_FLAG_VALUE, target_mode);
5778 if (tem != 0)
5779 tem = expand_binop (target_mode, add_optab, tem,
5780 gen_int_mode (normalizep, target_mode),
5781 target, 0, OPTAB_WIDEN);
5782 }
5783 else if (!want_add
5784 && rtx_cost (trueval, mode, XOR, 1,
5785 optimize_insn_for_speed_p ()) == 0)
5786 {
5787 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5788 normalizep, target_mode);
5789 if (tem != 0)
5790 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5791 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5792 }
5793
5794 if (tem != 0)
5795 return tem;
5796 delete_insns_since (last);
5797 }
5798
5799 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5800 the constant zero. Reject all other comparisons at this point. Only
5801 do LE and GT if branches are expensive since they are expensive on
5802 2-operand machines. */
5803
5804 if (op1 != const0_rtx
5805 || (code != EQ && code != NE
5806 && (BRANCH_COST (optimize_insn_for_speed_p (),
5807 false) <= 1 || (code != LE && code != GT))))
5808 return 0;
5809
5810 /* Try to put the result of the comparison in the sign bit. Assume we can't
5811 do the necessary operation below. */
5812
5813 tem = 0;
5814
5815 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5816 the sign bit set. */
5817
5818 if (code == LE)
5819 {
5820 /* This is destructive, so SUBTARGET can't be OP0. */
5821 if (rtx_equal_p (subtarget, op0))
5822 subtarget = 0;
5823
5824 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5825 OPTAB_WIDEN);
5826 if (tem)
5827 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5828 OPTAB_WIDEN);
5829 }
5830
5831 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5832 number of bits in the mode of OP0, minus one. */
5833
5834 if (code == GT)
5835 {
5836 if (rtx_equal_p (subtarget, op0))
5837 subtarget = 0;
5838
5839 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5840 GET_MODE_BITSIZE (mode) - 1,
5841 subtarget, 0);
5842 if (tem)
5843 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5844 OPTAB_WIDEN);
5845 }
5846
5847 if (code == EQ || code == NE)
5848 {
5849 /* For EQ or NE, one way to do the comparison is to apply an operation
5850 that converts the operand into a positive number if it is nonzero
5851 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5852 for NE we negate. This puts the result in the sign bit. Then we
5853 normalize with a shift, if needed.
5854
5855 Two operations that can do the above actions are ABS and FFS, so try
5856 them. If that doesn't work, and MODE is smaller than a full word,
5857 we can use zero-extension to the wider mode (an unsigned conversion)
5858 as the operation. */
5859
5860 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5861 that is compensated by the subsequent overflow when subtracting
5862 one / negating. */
5863
5864 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5865 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5866 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5867 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5868 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5869 {
5870 tem = convert_modes (word_mode, mode, op0, 1);
5871 mode = word_mode;
5872 }
5873
5874 if (tem != 0)
5875 {
5876 if (code == EQ)
5877 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5878 0, OPTAB_WIDEN);
5879 else
5880 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5881 }
5882
5883 /* If we couldn't do it that way, for NE we can "or" the two's complement
5884 of the value with itself. For EQ, we take the one's complement of
5885 that "or", which is an extra insn, so we only handle EQ if branches
5886 are expensive. */
5887
5888 if (tem == 0
5889 && (code == NE
5890 || BRANCH_COST (optimize_insn_for_speed_p (),
5891 false) > 1))
5892 {
5893 if (rtx_equal_p (subtarget, op0))
5894 subtarget = 0;
5895
5896 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5897 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5898 OPTAB_WIDEN);
5899
5900 if (tem && code == EQ)
5901 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5902 }
5903 }
5904
5905 if (tem && normalizep)
5906 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5907 GET_MODE_BITSIZE (mode) - 1,
5908 subtarget, normalizep == 1);
5909
5910 if (tem)
5911 {
5912 if (!target)
5913 ;
5914 else if (GET_MODE (tem) != target_mode)
5915 {
5916 convert_move (target, tem, 0);
5917 tem = target;
5918 }
5919 else if (!subtarget)
5920 {
5921 emit_move_insn (target, tem);
5922 tem = target;
5923 }
5924 }
5925 else
5926 delete_insns_since (last);
5927
5928 return tem;
5929 }
5930
5931 /* Like emit_store_flag, but always succeeds. */
5932
5933 rtx
5934 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5935 machine_mode mode, int unsignedp, int normalizep)
5936 {
5937 rtx tem;
5938 rtx_code_label *label;
5939 rtx trueval, falseval;
5940
5941 /* First see if emit_store_flag can do the job. */
5942 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5943 if (tem != 0)
5944 return tem;
5945
5946 if (!target)
5947 target = gen_reg_rtx (word_mode);
5948
5949 /* If this failed, we have to do this with set/compare/jump/set code.
5950 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5951 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5952 if (code == NE
5953 && GET_MODE_CLASS (mode) == MODE_INT
5954 && REG_P (target)
5955 && op0 == target
5956 && op1 == const0_rtx)
5957 {
5958 label = gen_label_rtx ();
5959 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
5960 NULL_RTX, NULL, label,
5961 profile_probability::uninitialized ());
5962 emit_move_insn (target, trueval);
5963 emit_label (label);
5964 return target;
5965 }
5966
5967 if (!REG_P (target)
5968 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5969 target = gen_reg_rtx (GET_MODE (target));
5970
5971 /* Jump in the right direction if the target cannot implement CODE
5972 but can jump on its reverse condition. */
5973 falseval = const0_rtx;
5974 if (! can_compare_p (code, mode, ccp_jump)
5975 && (! FLOAT_MODE_P (mode)
5976 || code == ORDERED || code == UNORDERED
5977 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5978 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5979 {
5980 enum rtx_code rcode;
5981 if (FLOAT_MODE_P (mode))
5982 rcode = reverse_condition_maybe_unordered (code);
5983 else
5984 rcode = reverse_condition (code);
5985
5986 /* Canonicalize to UNORDERED for the libcall. */
5987 if (can_compare_p (rcode, mode, ccp_jump)
5988 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5989 {
5990 falseval = trueval;
5991 trueval = const0_rtx;
5992 code = rcode;
5993 }
5994 }
5995
5996 emit_move_insn (target, trueval);
5997 label = gen_label_rtx ();
5998 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
5999 label, profile_probability::uninitialized ());
6000
6001 emit_move_insn (target, falseval);
6002 emit_label (label);
6003
6004 return target;
6005 }
6006 \f
6007 /* Perform possibly multi-word comparison and conditional jump to LABEL
6008 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6009 now a thin wrapper around do_compare_rtx_and_jump. */
6010
6011 static void
6012 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6013 rtx_code_label *label)
6014 {
6015 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6016 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6017 NULL, label, profile_probability::uninitialized ());
6018 }