[AArch64] Add support for the SVE PCS
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
65
66
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
74
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
77 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT,
79 unsigned HOST_WIDE_INT, bool);
80 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
81 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
82 static rtx_insn *compress_float_constant (rtx, rtx);
83 static rtx get_subtarget (rtx);
84 static void store_constructor (tree, rtx, int, poly_int64, bool);
85 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
86 machine_mode, tree, alias_set_type, bool, bool);
87
88 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
89
90 static int is_aligning_offset (const_tree, const_tree);
91 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
92 static rtx do_store_flag (sepops, rtx, machine_mode);
93 #ifdef PUSH_ROUNDING
94 static void emit_single_push_insn (machine_mode, rtx, tree);
95 #endif
96 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
97 profile_probability);
98 static rtx const_vector_from_tree (tree);
99 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
100 static tree tree_expr_size (const_tree);
101 static HOST_WIDE_INT int_expr_size (tree);
102 static void convert_mode_scalar (rtx, rtx, int);
103
104 \f
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
108
109 void
110 init_expr_target (void)
111 {
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
116
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
122
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
126
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
130
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
133 {
134 int regno;
135
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
139
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
142
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
147 {
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
150
151 set_mode_and_regno (reg, mode, regno);
152
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
157
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
162
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
167
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
172 }
173 }
174
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
176
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
179 {
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
183 {
184 enum insn_code ic;
185
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
189
190 PUT_MODE (mem, srcmode);
191
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
194 }
195 }
196 }
197
198 /* This is run at the start of compiling a function. */
199
200 void
201 init_expr (void)
202 {
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
204 }
205 \f
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
211
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
214 {
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
217
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
220
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
225
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
229
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
237 {
238 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
239 from_mode = to_int_mode;
240 }
241
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
243
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
246 {
247 emit_move_insn (to, from);
248 return;
249 }
250
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
252 {
253 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
254 GET_MODE_BITSIZE (to_mode)));
255
256 if (VECTOR_MODE_P (to_mode))
257 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
258 else
259 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
260
261 emit_move_insn (to, from);
262 return;
263 }
264
265 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
266 {
267 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
268 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
269 return;
270 }
271
272 convert_mode_scalar (to, from, unsignedp);
273 }
274
275 /* Like convert_move, but deals only with scalar modes. */
276
277 static void
278 convert_mode_scalar (rtx to, rtx from, int unsignedp)
279 {
280 /* Both modes should be scalar types. */
281 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
282 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
283 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
284 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
285 enum insn_code code;
286 rtx libcall;
287
288 gcc_assert (to_real == from_real);
289
290 /* rtx code for making an equivalent value. */
291 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
292 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
293
294 if (to_real)
295 {
296 rtx value;
297 rtx_insn *insns;
298 convert_optab tab;
299
300 gcc_assert ((GET_MODE_PRECISION (from_mode)
301 != GET_MODE_PRECISION (to_mode))
302 || (DECIMAL_FLOAT_MODE_P (from_mode)
303 != DECIMAL_FLOAT_MODE_P (to_mode)));
304
305 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
306 /* Conversion between decimal float and binary float, same size. */
307 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
308 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
309 tab = sext_optab;
310 else
311 tab = trunc_optab;
312
313 /* Try converting directly if the insn is supported. */
314
315 code = convert_optab_handler (tab, to_mode, from_mode);
316 if (code != CODE_FOR_nothing)
317 {
318 emit_unop_insn (code, to, from,
319 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
320 return;
321 }
322
323 /* Otherwise use a libcall. */
324 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
325
326 /* Is this conversion implemented yet? */
327 gcc_assert (libcall);
328
329 start_sequence ();
330 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
331 from, from_mode);
332 insns = get_insns ();
333 end_sequence ();
334 emit_libcall_block (insns, to, value,
335 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
336 from)
337 : gen_rtx_FLOAT_EXTEND (to_mode, from));
338 return;
339 }
340
341 /* Handle pointer conversion. */ /* SPEE 900220. */
342 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
343 {
344 convert_optab ctab;
345
346 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
347 ctab = trunc_optab;
348 else if (unsignedp)
349 ctab = zext_optab;
350 else
351 ctab = sext_optab;
352
353 if (convert_optab_handler (ctab, to_mode, from_mode)
354 != CODE_FOR_nothing)
355 {
356 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
357 to, from, UNKNOWN);
358 return;
359 }
360 }
361
362 /* Targets are expected to provide conversion insns between PxImode and
363 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
364 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
365 {
366 scalar_int_mode full_mode
367 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
368
369 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
370 != CODE_FOR_nothing);
371
372 if (full_mode != from_mode)
373 from = convert_to_mode (full_mode, from, unsignedp);
374 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
375 to, from, UNKNOWN);
376 return;
377 }
378 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
379 {
380 rtx new_from;
381 scalar_int_mode full_mode
382 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
383 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
384 enum insn_code icode;
385
386 icode = convert_optab_handler (ctab, full_mode, from_mode);
387 gcc_assert (icode != CODE_FOR_nothing);
388
389 if (to_mode == full_mode)
390 {
391 emit_unop_insn (icode, to, from, UNKNOWN);
392 return;
393 }
394
395 new_from = gen_reg_rtx (full_mode);
396 emit_unop_insn (icode, new_from, from, UNKNOWN);
397
398 /* else proceed to integer conversions below. */
399 from_mode = full_mode;
400 from = new_from;
401 }
402
403 /* Make sure both are fixed-point modes or both are not. */
404 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
405 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
406 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
407 {
408 /* If we widen from_mode to to_mode and they are in the same class,
409 we won't saturate the result.
410 Otherwise, always saturate the result to play safe. */
411 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
412 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
413 expand_fixed_convert (to, from, 0, 0);
414 else
415 expand_fixed_convert (to, from, 0, 1);
416 return;
417 }
418
419 /* Now both modes are integers. */
420
421 /* Handle expanding beyond a word. */
422 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
423 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
424 {
425 rtx_insn *insns;
426 rtx lowpart;
427 rtx fill_value;
428 rtx lowfrom;
429 int i;
430 scalar_mode lowpart_mode;
431 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
432
433 /* Try converting directly if the insn is supported. */
434 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
435 != CODE_FOR_nothing)
436 {
437 /* If FROM is a SUBREG, put it into a register. Do this
438 so that we always generate the same set of insns for
439 better cse'ing; if an intermediate assignment occurred,
440 we won't be doing the operation directly on the SUBREG. */
441 if (optimize > 0 && GET_CODE (from) == SUBREG)
442 from = force_reg (from_mode, from);
443 emit_unop_insn (code, to, from, equiv_code);
444 return;
445 }
446 /* Next, try converting via full word. */
447 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
448 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
449 != CODE_FOR_nothing))
450 {
451 rtx word_to = gen_reg_rtx (word_mode);
452 if (REG_P (to))
453 {
454 if (reg_overlap_mentioned_p (to, from))
455 from = force_reg (from_mode, from);
456 emit_clobber (to);
457 }
458 convert_move (word_to, from, unsignedp);
459 emit_unop_insn (code, to, word_to, equiv_code);
460 return;
461 }
462
463 /* No special multiword conversion insn; do it by hand. */
464 start_sequence ();
465
466 /* Since we will turn this into a no conflict block, we must ensure
467 the source does not overlap the target so force it into an isolated
468 register when maybe so. Likewise for any MEM input, since the
469 conversion sequence might require several references to it and we
470 must ensure we're getting the same value every time. */
471
472 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
473 from = force_reg (from_mode, from);
474
475 /* Get a copy of FROM widened to a word, if necessary. */
476 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
477 lowpart_mode = word_mode;
478 else
479 lowpart_mode = from_mode;
480
481 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
482
483 lowpart = gen_lowpart (lowpart_mode, to);
484 emit_move_insn (lowpart, lowfrom);
485
486 /* Compute the value to put in each remaining word. */
487 if (unsignedp)
488 fill_value = const0_rtx;
489 else
490 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
491 LT, lowfrom, const0_rtx,
492 lowpart_mode, 0, -1);
493
494 /* Fill the remaining words. */
495 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
496 {
497 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
498 rtx subword = operand_subword (to, index, 1, to_mode);
499
500 gcc_assert (subword);
501
502 if (fill_value != subword)
503 emit_move_insn (subword, fill_value);
504 }
505
506 insns = get_insns ();
507 end_sequence ();
508
509 emit_insn (insns);
510 return;
511 }
512
513 /* Truncating multi-word to a word or less. */
514 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
515 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
516 {
517 if (!((MEM_P (from)
518 && ! MEM_VOLATILE_P (from)
519 && direct_load[(int) to_mode]
520 && ! mode_dependent_address_p (XEXP (from, 0),
521 MEM_ADDR_SPACE (from)))
522 || REG_P (from)
523 || GET_CODE (from) == SUBREG))
524 from = force_reg (from_mode, from);
525 convert_move (to, gen_lowpart (word_mode, from), 0);
526 return;
527 }
528
529 /* Now follow all the conversions between integers
530 no more than a word long. */
531
532 /* For truncation, usually we can just refer to FROM in a narrower mode. */
533 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
534 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
535 {
536 if (!((MEM_P (from)
537 && ! MEM_VOLATILE_P (from)
538 && direct_load[(int) to_mode]
539 && ! mode_dependent_address_p (XEXP (from, 0),
540 MEM_ADDR_SPACE (from)))
541 || REG_P (from)
542 || GET_CODE (from) == SUBREG))
543 from = force_reg (from_mode, from);
544 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
545 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
546 from = copy_to_reg (from);
547 emit_move_insn (to, gen_lowpart (to_mode, from));
548 return;
549 }
550
551 /* Handle extension. */
552 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
553 {
554 /* Convert directly if that works. */
555 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
556 != CODE_FOR_nothing)
557 {
558 emit_unop_insn (code, to, from, equiv_code);
559 return;
560 }
561 else
562 {
563 rtx tmp;
564 int shift_amount;
565
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
569 {
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
578 {
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
582 }
583 }
584
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
597 }
598 }
599
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
603 {
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
607 }
608
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
612
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
617 {
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
621 }
622
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
625 }
626
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
633
634 rtx
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
636 {
637 return convert_modes (mode, VOIDmode, x, unsignedp);
638 }
639
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
644
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
647
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
649
650 rtx
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
652 {
653 rtx temp;
654 scalar_int_mode int_mode;
655
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
658
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
666
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
669
670 if (mode == oldmode)
671 return x;
672
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
675 {
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
685 }
686
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || CONST_POLY_INT_P (x)
696 || (REG_P (x)
697 && (!HARD_REGISTER_P (x)
698 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
699 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
700 return gen_lowpart (int_mode, x);
701
702 /* Converting from integer constant into mode is always equivalent to an
703 subreg operation. */
704 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
705 {
706 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
707 GET_MODE_BITSIZE (oldmode)));
708 return simplify_gen_subreg (mode, x, oldmode, 0);
709 }
710
711 temp = gen_reg_rtx (mode);
712 convert_move (temp, x, unsignedp);
713 return temp;
714 }
715 \f
716 /* Return the largest alignment we can use for doing a move (or store)
717 of MAX_PIECES. ALIGN is the largest alignment we could use. */
718
719 static unsigned int
720 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
721 {
722 scalar_int_mode tmode
723 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
724
725 if (align >= GET_MODE_ALIGNMENT (tmode))
726 align = GET_MODE_ALIGNMENT (tmode);
727 else
728 {
729 scalar_int_mode xmode = NARROWEST_INT_MODE;
730 opt_scalar_int_mode mode_iter;
731 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
732 {
733 tmode = mode_iter.require ();
734 if (GET_MODE_SIZE (tmode) > max_pieces
735 || targetm.slow_unaligned_access (tmode, align))
736 break;
737 xmode = tmode;
738 }
739
740 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
741 }
742
743 return align;
744 }
745
746 /* Return the widest integer mode that is narrower than SIZE bytes. */
747
748 static scalar_int_mode
749 widest_int_mode_for_size (unsigned int size)
750 {
751 scalar_int_mode result = NARROWEST_INT_MODE;
752
753 gcc_checking_assert (size > 1);
754
755 opt_scalar_int_mode tmode;
756 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
757 if (GET_MODE_SIZE (tmode.require ()) < size)
758 result = tmode.require ();
759
760 return result;
761 }
762
763 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
764 and should be performed piecewise. */
765
766 static bool
767 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
768 enum by_pieces_operation op)
769 {
770 return targetm.use_by_pieces_infrastructure_p (len, align, op,
771 optimize_insn_for_speed_p ());
772 }
773
774 /* Determine whether the LEN bytes can be moved by using several move
775 instructions. Return nonzero if a call to move_by_pieces should
776 succeed. */
777
778 bool
779 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
780 {
781 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
782 }
783
784 /* Return number of insns required to perform operation OP by pieces
785 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
786
787 unsigned HOST_WIDE_INT
788 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
789 unsigned int max_size, by_pieces_operation op)
790 {
791 unsigned HOST_WIDE_INT n_insns = 0;
792
793 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
794
795 while (max_size > 1 && l > 0)
796 {
797 scalar_int_mode mode = widest_int_mode_for_size (max_size);
798 enum insn_code icode;
799
800 unsigned int modesize = GET_MODE_SIZE (mode);
801
802 icode = optab_handler (mov_optab, mode);
803 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
804 {
805 unsigned HOST_WIDE_INT n_pieces = l / modesize;
806 l %= modesize;
807 switch (op)
808 {
809 default:
810 n_insns += n_pieces;
811 break;
812
813 case COMPARE_BY_PIECES:
814 int batch = targetm.compare_by_pieces_branch_ratio (mode);
815 int batch_ops = 4 * batch - 1;
816 unsigned HOST_WIDE_INT full = n_pieces / batch;
817 n_insns += full * batch_ops;
818 if (n_pieces % batch != 0)
819 n_insns++;
820 break;
821
822 }
823 }
824 max_size = modesize;
825 }
826
827 gcc_assert (!l);
828 return n_insns;
829 }
830
831 /* Used when performing piecewise block operations, holds information
832 about one of the memory objects involved. The member functions
833 can be used to generate code for loading from the object and
834 updating the address when iterating. */
835
836 class pieces_addr
837 {
838 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
839 stack pushes. */
840 rtx m_obj;
841 /* The address of the object. Can differ from that seen in the
842 MEM rtx if we copied the address to a register. */
843 rtx m_addr;
844 /* Nonzero if the address on the object has an autoincrement already,
845 signifies whether that was an increment or decrement. */
846 signed char m_addr_inc;
847 /* Nonzero if we intend to use autoinc without the address already
848 having autoinc form. We will insert add insns around each memory
849 reference, expecting later passes to form autoinc addressing modes.
850 The only supported options are predecrement and postincrement. */
851 signed char m_explicit_inc;
852 /* True if we have either of the two possible cases of using
853 autoincrement. */
854 bool m_auto;
855 /* True if this is an address to be used for load operations rather
856 than stores. */
857 bool m_is_load;
858
859 /* Optionally, a function to obtain constants for any given offset into
860 the objects, and data associated with it. */
861 by_pieces_constfn m_constfn;
862 void *m_cfndata;
863 public:
864 pieces_addr (rtx, bool, by_pieces_constfn, void *);
865 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
866 void increment_address (HOST_WIDE_INT);
867 void maybe_predec (HOST_WIDE_INT);
868 void maybe_postinc (HOST_WIDE_INT);
869 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
870 int get_addr_inc ()
871 {
872 return m_addr_inc;
873 }
874 };
875
876 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
877 true if the operation to be performed on this object is a load
878 rather than a store. For stores, OBJ can be NULL, in which case we
879 assume the operation is a stack push. For loads, the optional
880 CONSTFN and its associated CFNDATA can be used in place of the
881 memory load. */
882
883 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
884 void *cfndata)
885 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
886 {
887 m_addr_inc = 0;
888 m_auto = false;
889 if (obj)
890 {
891 rtx addr = XEXP (obj, 0);
892 rtx_code code = GET_CODE (addr);
893 m_addr = addr;
894 bool dec = code == PRE_DEC || code == POST_DEC;
895 bool inc = code == PRE_INC || code == POST_INC;
896 m_auto = inc || dec;
897 if (m_auto)
898 m_addr_inc = dec ? -1 : 1;
899
900 /* While we have always looked for these codes here, the code
901 implementing the memory operation has never handled them.
902 Support could be added later if necessary or beneficial. */
903 gcc_assert (code != PRE_INC && code != POST_DEC);
904 }
905 else
906 {
907 m_addr = NULL_RTX;
908 if (!is_load)
909 {
910 m_auto = true;
911 if (STACK_GROWS_DOWNWARD)
912 m_addr_inc = -1;
913 else
914 m_addr_inc = 1;
915 }
916 else
917 gcc_assert (constfn != NULL);
918 }
919 m_explicit_inc = 0;
920 if (constfn)
921 gcc_assert (is_load);
922 }
923
924 /* Decide whether to use autoinc for an address involved in a memory op.
925 MODE is the mode of the accesses, REVERSE is true if we've decided to
926 perform the operation starting from the end, and LEN is the length of
927 the operation. Don't override an earlier decision to set m_auto. */
928
929 void
930 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
931 HOST_WIDE_INT len)
932 {
933 if (m_auto || m_obj == NULL_RTX)
934 return;
935
936 bool use_predec = (m_is_load
937 ? USE_LOAD_PRE_DECREMENT (mode)
938 : USE_STORE_PRE_DECREMENT (mode));
939 bool use_postinc = (m_is_load
940 ? USE_LOAD_POST_INCREMENT (mode)
941 : USE_STORE_POST_INCREMENT (mode));
942 machine_mode addr_mode = get_address_mode (m_obj);
943
944 if (use_predec && reverse)
945 {
946 m_addr = copy_to_mode_reg (addr_mode,
947 plus_constant (addr_mode,
948 m_addr, len));
949 m_auto = true;
950 m_explicit_inc = -1;
951 }
952 else if (use_postinc && !reverse)
953 {
954 m_addr = copy_to_mode_reg (addr_mode, m_addr);
955 m_auto = true;
956 m_explicit_inc = 1;
957 }
958 else if (CONSTANT_P (m_addr))
959 m_addr = copy_to_mode_reg (addr_mode, m_addr);
960 }
961
962 /* Adjust the address to refer to the data at OFFSET in MODE. If we
963 are using autoincrement for this address, we don't add the offset,
964 but we still modify the MEM's properties. */
965
966 rtx
967 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
968 {
969 if (m_constfn)
970 return m_constfn (m_cfndata, offset, mode);
971 if (m_obj == NULL_RTX)
972 return NULL_RTX;
973 if (m_auto)
974 return adjust_automodify_address (m_obj, mode, m_addr, offset);
975 else
976 return adjust_address (m_obj, mode, offset);
977 }
978
979 /* Emit an add instruction to increment the address by SIZE. */
980
981 void
982 pieces_addr::increment_address (HOST_WIDE_INT size)
983 {
984 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
985 emit_insn (gen_add2_insn (m_addr, amount));
986 }
987
988 /* If we are supposed to decrement the address after each access, emit code
989 to do so now. Increment by SIZE (which has should have the correct sign
990 already). */
991
992 void
993 pieces_addr::maybe_predec (HOST_WIDE_INT size)
994 {
995 if (m_explicit_inc >= 0)
996 return;
997 gcc_assert (HAVE_PRE_DECREMENT);
998 increment_address (size);
999 }
1000
1001 /* If we are supposed to decrement the address after each access, emit code
1002 to do so now. Increment by SIZE. */
1003
1004 void
1005 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1006 {
1007 if (m_explicit_inc <= 0)
1008 return;
1009 gcc_assert (HAVE_POST_INCREMENT);
1010 increment_address (size);
1011 }
1012
1013 /* This structure is used by do_op_by_pieces to describe the operation
1014 to be performed. */
1015
1016 class op_by_pieces_d
1017 {
1018 protected:
1019 pieces_addr m_to, m_from;
1020 unsigned HOST_WIDE_INT m_len;
1021 HOST_WIDE_INT m_offset;
1022 unsigned int m_align;
1023 unsigned int m_max_size;
1024 bool m_reverse;
1025
1026 /* Virtual functions, overriden by derived classes for the specific
1027 operation. */
1028 virtual void generate (rtx, rtx, machine_mode) = 0;
1029 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1030 virtual void finish_mode (machine_mode)
1031 {
1032 }
1033
1034 public:
1035 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1036 unsigned HOST_WIDE_INT, unsigned int);
1037 void run ();
1038 };
1039
1040 /* The constructor for an op_by_pieces_d structure. We require two
1041 objects named TO and FROM, which are identified as loads or stores
1042 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1043 and its associated FROM_CFN_DATA can be used to replace loads with
1044 constant values. LEN describes the length of the operation. */
1045
1046 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1047 rtx from, bool from_load,
1048 by_pieces_constfn from_cfn,
1049 void *from_cfn_data,
1050 unsigned HOST_WIDE_INT len,
1051 unsigned int align)
1052 : m_to (to, to_load, NULL, NULL),
1053 m_from (from, from_load, from_cfn, from_cfn_data),
1054 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1055 {
1056 int toi = m_to.get_addr_inc ();
1057 int fromi = m_from.get_addr_inc ();
1058 if (toi >= 0 && fromi >= 0)
1059 m_reverse = false;
1060 else if (toi <= 0 && fromi <= 0)
1061 m_reverse = true;
1062 else
1063 gcc_unreachable ();
1064
1065 m_offset = m_reverse ? len : 0;
1066 align = MIN (to ? MEM_ALIGN (to) : align,
1067 from ? MEM_ALIGN (from) : align);
1068
1069 /* If copying requires more than two move insns,
1070 copy addresses to registers (to make displacements shorter)
1071 and use post-increment if available. */
1072 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1073 {
1074 /* Find the mode of the largest comparison. */
1075 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1076
1077 m_from.decide_autoinc (mode, m_reverse, len);
1078 m_to.decide_autoinc (mode, m_reverse, len);
1079 }
1080
1081 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1082 m_align = align;
1083 }
1084
1085 /* This function contains the main loop used for expanding a block
1086 operation. First move what we can in the largest integer mode,
1087 then go to successively smaller modes. For every access, call
1088 GENFUN with the two operands and the EXTRA_DATA. */
1089
1090 void
1091 op_by_pieces_d::run ()
1092 {
1093 while (m_max_size > 1 && m_len > 0)
1094 {
1095 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1096
1097 if (prepare_mode (mode, m_align))
1098 {
1099 unsigned int size = GET_MODE_SIZE (mode);
1100 rtx to1 = NULL_RTX, from1;
1101
1102 while (m_len >= size)
1103 {
1104 if (m_reverse)
1105 m_offset -= size;
1106
1107 to1 = m_to.adjust (mode, m_offset);
1108 from1 = m_from.adjust (mode, m_offset);
1109
1110 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1111 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1112
1113 generate (to1, from1, mode);
1114
1115 m_to.maybe_postinc (size);
1116 m_from.maybe_postinc (size);
1117
1118 if (!m_reverse)
1119 m_offset += size;
1120
1121 m_len -= size;
1122 }
1123
1124 finish_mode (mode);
1125 }
1126
1127 m_max_size = GET_MODE_SIZE (mode);
1128 }
1129
1130 /* The code above should have handled everything. */
1131 gcc_assert (!m_len);
1132 }
1133
1134 /* Derived class from op_by_pieces_d, providing support for block move
1135 operations. */
1136
1137 class move_by_pieces_d : public op_by_pieces_d
1138 {
1139 insn_gen_fn m_gen_fun;
1140 void generate (rtx, rtx, machine_mode);
1141 bool prepare_mode (machine_mode, unsigned int);
1142
1143 public:
1144 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1145 unsigned int align)
1146 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1147 {
1148 }
1149 rtx finish_retmode (memop_ret);
1150 };
1151
1152 /* Return true if MODE can be used for a set of copies, given an
1153 alignment ALIGN. Prepare whatever data is necessary for later
1154 calls to generate. */
1155
1156 bool
1157 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1158 {
1159 insn_code icode = optab_handler (mov_optab, mode);
1160 m_gen_fun = GEN_FCN (icode);
1161 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1162 }
1163
1164 /* A callback used when iterating for a compare_by_pieces_operation.
1165 OP0 and OP1 are the values that have been loaded and should be
1166 compared in MODE. If OP0 is NULL, this means we should generate a
1167 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1168 gen function that should be used to generate the mode. */
1169
1170 void
1171 move_by_pieces_d::generate (rtx op0, rtx op1,
1172 machine_mode mode ATTRIBUTE_UNUSED)
1173 {
1174 #ifdef PUSH_ROUNDING
1175 if (op0 == NULL_RTX)
1176 {
1177 emit_single_push_insn (mode, op1, NULL);
1178 return;
1179 }
1180 #endif
1181 emit_insn (m_gen_fun (op0, op1));
1182 }
1183
1184 /* Perform the final adjustment at the end of a string to obtain the
1185 correct return value for the block operation.
1186 Return value is based on RETMODE argument. */
1187
1188 rtx
1189 move_by_pieces_d::finish_retmode (memop_ret retmode)
1190 {
1191 gcc_assert (!m_reverse);
1192 if (retmode == RETURN_END_MINUS_ONE)
1193 {
1194 m_to.maybe_postinc (-1);
1195 --m_offset;
1196 }
1197 return m_to.adjust (QImode, m_offset);
1198 }
1199
1200 /* Generate several move instructions to copy LEN bytes from block FROM to
1201 block TO. (These are MEM rtx's with BLKmode).
1202
1203 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1204 used to push FROM to the stack.
1205
1206 ALIGN is maximum stack alignment we can assume.
1207
1208 Return value is based on RETMODE argument. */
1209
1210 rtx
1211 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1212 unsigned int align, memop_ret retmode)
1213 {
1214 #ifndef PUSH_ROUNDING
1215 if (to == NULL)
1216 gcc_unreachable ();
1217 #endif
1218
1219 move_by_pieces_d data (to, from, len, align);
1220
1221 data.run ();
1222
1223 if (retmode != RETURN_BEGIN)
1224 return data.finish_retmode (retmode);
1225 else
1226 return to;
1227 }
1228
1229 /* Derived class from op_by_pieces_d, providing support for block move
1230 operations. */
1231
1232 class store_by_pieces_d : public op_by_pieces_d
1233 {
1234 insn_gen_fn m_gen_fun;
1235 void generate (rtx, rtx, machine_mode);
1236 bool prepare_mode (machine_mode, unsigned int);
1237
1238 public:
1239 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1240 unsigned HOST_WIDE_INT len, unsigned int align)
1241 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1242 {
1243 }
1244 rtx finish_retmode (memop_ret);
1245 };
1246
1247 /* Return true if MODE can be used for a set of stores, given an
1248 alignment ALIGN. Prepare whatever data is necessary for later
1249 calls to generate. */
1250
1251 bool
1252 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1253 {
1254 insn_code icode = optab_handler (mov_optab, mode);
1255 m_gen_fun = GEN_FCN (icode);
1256 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1257 }
1258
1259 /* A callback used when iterating for a store_by_pieces_operation.
1260 OP0 and OP1 are the values that have been loaded and should be
1261 compared in MODE. If OP0 is NULL, this means we should generate a
1262 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1263 gen function that should be used to generate the mode. */
1264
1265 void
1266 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1267 {
1268 emit_insn (m_gen_fun (op0, op1));
1269 }
1270
1271 /* Perform the final adjustment at the end of a string to obtain the
1272 correct return value for the block operation.
1273 Return value is based on RETMODE argument. */
1274
1275 rtx
1276 store_by_pieces_d::finish_retmode (memop_ret retmode)
1277 {
1278 gcc_assert (!m_reverse);
1279 if (retmode == RETURN_END_MINUS_ONE)
1280 {
1281 m_to.maybe_postinc (-1);
1282 --m_offset;
1283 }
1284 return m_to.adjust (QImode, m_offset);
1285 }
1286
1287 /* Determine whether the LEN bytes generated by CONSTFUN can be
1288 stored to memory using several move instructions. CONSTFUNDATA is
1289 a pointer which will be passed as argument in every CONSTFUN call.
1290 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1291 a memset operation and false if it's a copy of a constant string.
1292 Return nonzero if a call to store_by_pieces should succeed. */
1293
1294 int
1295 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1296 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1297 void *constfundata, unsigned int align, bool memsetp)
1298 {
1299 unsigned HOST_WIDE_INT l;
1300 unsigned int max_size;
1301 HOST_WIDE_INT offset = 0;
1302 enum insn_code icode;
1303 int reverse;
1304 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1305 rtx cst ATTRIBUTE_UNUSED;
1306
1307 if (len == 0)
1308 return 1;
1309
1310 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1311 memsetp
1312 ? SET_BY_PIECES
1313 : STORE_BY_PIECES,
1314 optimize_insn_for_speed_p ()))
1315 return 0;
1316
1317 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1318
1319 /* We would first store what we can in the largest integer mode, then go to
1320 successively smaller modes. */
1321
1322 for (reverse = 0;
1323 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1324 reverse++)
1325 {
1326 l = len;
1327 max_size = STORE_MAX_PIECES + 1;
1328 while (max_size > 1 && l > 0)
1329 {
1330 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1331
1332 icode = optab_handler (mov_optab, mode);
1333 if (icode != CODE_FOR_nothing
1334 && align >= GET_MODE_ALIGNMENT (mode))
1335 {
1336 unsigned int size = GET_MODE_SIZE (mode);
1337
1338 while (l >= size)
1339 {
1340 if (reverse)
1341 offset -= size;
1342
1343 cst = (*constfun) (constfundata, offset, mode);
1344 if (!targetm.legitimate_constant_p (mode, cst))
1345 return 0;
1346
1347 if (!reverse)
1348 offset += size;
1349
1350 l -= size;
1351 }
1352 }
1353
1354 max_size = GET_MODE_SIZE (mode);
1355 }
1356
1357 /* The code above should have handled everything. */
1358 gcc_assert (!l);
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* Generate several move instructions to store LEN bytes generated by
1365 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1366 pointer which will be passed as argument in every CONSTFUN call.
1367 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1368 a memset operation and false if it's a copy of a constant string.
1369 Return value is based on RETMODE argument. */
1370
1371 rtx
1372 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1373 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1374 void *constfundata, unsigned int align, bool memsetp,
1375 memop_ret retmode)
1376 {
1377 if (len == 0)
1378 {
1379 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1380 return to;
1381 }
1382
1383 gcc_assert (targetm.use_by_pieces_infrastructure_p
1384 (len, align,
1385 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1386 optimize_insn_for_speed_p ()));
1387
1388 store_by_pieces_d data (to, constfun, constfundata, len, align);
1389 data.run ();
1390
1391 if (retmode != RETURN_BEGIN)
1392 return data.finish_retmode (retmode);
1393 else
1394 return to;
1395 }
1396
1397 /* Callback routine for clear_by_pieces.
1398 Return const0_rtx unconditionally. */
1399
1400 static rtx
1401 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1402 {
1403 return const0_rtx;
1404 }
1405
1406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1408
1409 static void
1410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1411 {
1412 if (len == 0)
1413 return;
1414
1415 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1416 data.run ();
1417 }
1418
1419 /* Context used by compare_by_pieces_genfn. It stores the fail label
1420 to jump to in case of miscomparison, and for branch ratios greater than 1,
1421 it stores an accumulator and the current and maximum counts before
1422 emitting another branch. */
1423
1424 class compare_by_pieces_d : public op_by_pieces_d
1425 {
1426 rtx_code_label *m_fail_label;
1427 rtx m_accumulator;
1428 int m_count, m_batch;
1429
1430 void generate (rtx, rtx, machine_mode);
1431 bool prepare_mode (machine_mode, unsigned int);
1432 void finish_mode (machine_mode);
1433 public:
1434 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1435 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1436 rtx_code_label *fail_label)
1437 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1438 {
1439 m_fail_label = fail_label;
1440 }
1441 };
1442
1443 /* A callback used when iterating for a compare_by_pieces_operation.
1444 OP0 and OP1 are the values that have been loaded and should be
1445 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1446 context structure. */
1447
1448 void
1449 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1450 {
1451 if (m_batch > 1)
1452 {
1453 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1454 true, OPTAB_LIB_WIDEN);
1455 if (m_count != 0)
1456 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1457 true, OPTAB_LIB_WIDEN);
1458 m_accumulator = temp;
1459
1460 if (++m_count < m_batch)
1461 return;
1462
1463 m_count = 0;
1464 op0 = m_accumulator;
1465 op1 = const0_rtx;
1466 m_accumulator = NULL_RTX;
1467 }
1468 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1469 m_fail_label, profile_probability::uninitialized ());
1470 }
1471
1472 /* Return true if MODE can be used for a set of moves and comparisons,
1473 given an alignment ALIGN. Prepare whatever data is necessary for
1474 later calls to generate. */
1475
1476 bool
1477 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1478 {
1479 insn_code icode = optab_handler (mov_optab, mode);
1480 if (icode == CODE_FOR_nothing
1481 || align < GET_MODE_ALIGNMENT (mode)
1482 || !can_compare_p (EQ, mode, ccp_jump))
1483 return false;
1484 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1485 if (m_batch < 0)
1486 return false;
1487 m_accumulator = NULL_RTX;
1488 m_count = 0;
1489 return true;
1490 }
1491
1492 /* Called after expanding a series of comparisons in MODE. If we have
1493 accumulated results for which we haven't emitted a branch yet, do
1494 so now. */
1495
1496 void
1497 compare_by_pieces_d::finish_mode (machine_mode mode)
1498 {
1499 if (m_accumulator != NULL_RTX)
1500 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1501 NULL_RTX, NULL, m_fail_label,
1502 profile_probability::uninitialized ());
1503 }
1504
1505 /* Generate several move instructions to compare LEN bytes from blocks
1506 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1507
1508 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1509 used to push FROM to the stack.
1510
1511 ALIGN is maximum stack alignment we can assume.
1512
1513 Optionally, the caller can pass a constfn and associated data in A1_CFN
1514 and A1_CFN_DATA. describing that the second operand being compared is a
1515 known constant and how to obtain its data. */
1516
1517 static rtx
1518 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1519 rtx target, unsigned int align,
1520 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1521 {
1522 rtx_code_label *fail_label = gen_label_rtx ();
1523 rtx_code_label *end_label = gen_label_rtx ();
1524
1525 if (target == NULL_RTX
1526 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1527 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1528
1529 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1530 fail_label);
1531
1532 data.run ();
1533
1534 emit_move_insn (target, const0_rtx);
1535 emit_jump (end_label);
1536 emit_barrier ();
1537 emit_label (fail_label);
1538 emit_move_insn (target, const1_rtx);
1539 emit_label (end_label);
1540
1541 return target;
1542 }
1543 \f
1544 /* Emit code to move a block Y to a block X. This may be done with
1545 string-move instructions, with multiple scalar move instructions,
1546 or with a library call.
1547
1548 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1549 SIZE is an rtx that says how long they are.
1550 ALIGN is the maximum alignment we can assume they have.
1551 METHOD describes what kind of copy this is, and what mechanisms may be used.
1552 MIN_SIZE is the minimal size of block to move
1553 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1554 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1555
1556 Return the address of the new block, if memcpy is called and returns it,
1557 0 otherwise. */
1558
1559 rtx
1560 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1561 unsigned int expected_align, HOST_WIDE_INT expected_size,
1562 unsigned HOST_WIDE_INT min_size,
1563 unsigned HOST_WIDE_INT max_size,
1564 unsigned HOST_WIDE_INT probable_max_size,
1565 bool bail_out_libcall, bool *is_move_done,
1566 bool might_overlap)
1567 {
1568 int may_use_call;
1569 rtx retval = 0;
1570 unsigned int align;
1571
1572 if (is_move_done)
1573 *is_move_done = true;
1574
1575 gcc_assert (size);
1576 if (CONST_INT_P (size) && INTVAL (size) == 0)
1577 return 0;
1578
1579 switch (method)
1580 {
1581 case BLOCK_OP_NORMAL:
1582 case BLOCK_OP_TAILCALL:
1583 may_use_call = 1;
1584 break;
1585
1586 case BLOCK_OP_CALL_PARM:
1587 may_use_call = block_move_libcall_safe_for_call_parm ();
1588
1589 /* Make inhibit_defer_pop nonzero around the library call
1590 to force it to pop the arguments right away. */
1591 NO_DEFER_POP;
1592 break;
1593
1594 case BLOCK_OP_NO_LIBCALL:
1595 may_use_call = 0;
1596 break;
1597
1598 case BLOCK_OP_NO_LIBCALL_RET:
1599 may_use_call = -1;
1600 break;
1601
1602 default:
1603 gcc_unreachable ();
1604 }
1605
1606 gcc_assert (MEM_P (x) && MEM_P (y));
1607 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1608 gcc_assert (align >= BITS_PER_UNIT);
1609
1610 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1611 block copy is more efficient for other large modes, e.g. DCmode. */
1612 x = adjust_address (x, BLKmode, 0);
1613 y = adjust_address (y, BLKmode, 0);
1614
1615 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1616 can be incorrect is coming from __builtin_memcpy. */
1617 poly_int64 const_size;
1618 if (poly_int_rtx_p (size, &const_size))
1619 {
1620 x = shallow_copy_rtx (x);
1621 y = shallow_copy_rtx (y);
1622 set_mem_size (x, const_size);
1623 set_mem_size (y, const_size);
1624 }
1625
1626 bool pieces_ok = CONST_INT_P (size)
1627 && can_move_by_pieces (INTVAL (size), align);
1628 bool pattern_ok = false;
1629
1630 if (!pieces_ok || might_overlap)
1631 {
1632 pattern_ok
1633 = emit_block_move_via_pattern (x, y, size, align,
1634 expected_align, expected_size,
1635 min_size, max_size, probable_max_size,
1636 might_overlap);
1637 if (!pattern_ok && might_overlap)
1638 {
1639 /* Do not try any of the other methods below as they are not safe
1640 for overlapping moves. */
1641 *is_move_done = false;
1642 return retval;
1643 }
1644 }
1645
1646 if (pattern_ok)
1647 ;
1648 else if (pieces_ok)
1649 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1650 else if (may_use_call && !might_overlap
1651 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1652 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1653 {
1654 if (bail_out_libcall)
1655 {
1656 if (is_move_done)
1657 *is_move_done = false;
1658 return retval;
1659 }
1660
1661 if (may_use_call < 0)
1662 return pc_rtx;
1663
1664 retval = emit_block_copy_via_libcall (x, y, size,
1665 method == BLOCK_OP_TAILCALL);
1666 }
1667 else if (might_overlap)
1668 *is_move_done = false;
1669 else
1670 emit_block_move_via_loop (x, y, size, align);
1671
1672 if (method == BLOCK_OP_CALL_PARM)
1673 OK_DEFER_POP;
1674
1675 return retval;
1676 }
1677
1678 rtx
1679 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1680 {
1681 unsigned HOST_WIDE_INT max, min = 0;
1682 if (GET_CODE (size) == CONST_INT)
1683 min = max = UINTVAL (size);
1684 else
1685 max = GET_MODE_MASK (GET_MODE (size));
1686 return emit_block_move_hints (x, y, size, method, 0, -1,
1687 min, max, max);
1688 }
1689
1690 /* A subroutine of emit_block_move. Returns true if calling the
1691 block move libcall will not clobber any parameters which may have
1692 already been placed on the stack. */
1693
1694 static bool
1695 block_move_libcall_safe_for_call_parm (void)
1696 {
1697 tree fn;
1698
1699 /* If arguments are pushed on the stack, then they're safe. */
1700 if (PUSH_ARGS)
1701 return true;
1702
1703 /* If registers go on the stack anyway, any argument is sure to clobber
1704 an outgoing argument. */
1705 #if defined (REG_PARM_STACK_SPACE)
1706 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1707 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1708 depend on its argument. */
1709 (void) fn;
1710 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1711 && REG_PARM_STACK_SPACE (fn) != 0)
1712 return false;
1713 #endif
1714
1715 /* If any argument goes in memory, then it might clobber an outgoing
1716 argument. */
1717 {
1718 CUMULATIVE_ARGS args_so_far_v;
1719 cumulative_args_t args_so_far;
1720 tree arg;
1721
1722 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1723 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1724 args_so_far = pack_cumulative_args (&args_so_far_v);
1725
1726 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1727 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1728 {
1729 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1730 function_arg_info arg_info (mode, /*named=*/true);
1731 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
1732 if (!tmp || !REG_P (tmp))
1733 return false;
1734 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
1735 return false;
1736 targetm.calls.function_arg_advance (args_so_far, arg_info);
1737 }
1738 }
1739 return true;
1740 }
1741
1742 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
1743 return true if successful.
1744
1745 X is the destination of the copy or move.
1746 Y is the source of the copy or move.
1747 SIZE is the size of the block to be moved.
1748
1749 MIGHT_OVERLAP indicates this originated with expansion of a
1750 builtin_memmove() and the source and destination blocks may
1751 overlap.
1752 */
1753
1754 static bool
1755 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
1756 unsigned int expected_align,
1757 HOST_WIDE_INT expected_size,
1758 unsigned HOST_WIDE_INT min_size,
1759 unsigned HOST_WIDE_INT max_size,
1760 unsigned HOST_WIDE_INT probable_max_size,
1761 bool might_overlap)
1762 {
1763 if (expected_align < align)
1764 expected_align = align;
1765 if (expected_size != -1)
1766 {
1767 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1768 expected_size = probable_max_size;
1769 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1770 expected_size = min_size;
1771 }
1772
1773 /* Since this is a move insn, we don't care about volatility. */
1774 temporary_volatile_ok v (true);
1775
1776 /* Try the most limited insn first, because there's no point
1777 including more than one in the machine description unless
1778 the more limited one has some advantage. */
1779
1780 opt_scalar_int_mode mode_iter;
1781 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1782 {
1783 scalar_int_mode mode = mode_iter.require ();
1784 enum insn_code code;
1785 if (might_overlap)
1786 code = direct_optab_handler (movmem_optab, mode);
1787 else
1788 code = direct_optab_handler (cpymem_optab, mode);
1789
1790 if (code != CODE_FOR_nothing
1791 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1792 here because if SIZE is less than the mode mask, as it is
1793 returned by the macro, it will definitely be less than the
1794 actual mode mask. Since SIZE is within the Pmode address
1795 space, we limit MODE to Pmode. */
1796 && ((CONST_INT_P (size)
1797 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1798 <= (GET_MODE_MASK (mode) >> 1)))
1799 || max_size <= (GET_MODE_MASK (mode) >> 1)
1800 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1801 {
1802 class expand_operand ops[9];
1803 unsigned int nops;
1804
1805 /* ??? When called via emit_block_move_for_call, it'd be
1806 nice if there were some way to inform the backend, so
1807 that it doesn't fail the expansion because it thinks
1808 emitting the libcall would be more efficient. */
1809 nops = insn_data[(int) code].n_generator_args;
1810 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1811
1812 create_fixed_operand (&ops[0], x);
1813 create_fixed_operand (&ops[1], y);
1814 /* The check above guarantees that this size conversion is valid. */
1815 create_convert_operand_to (&ops[2], size, mode, true);
1816 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1817 if (nops >= 6)
1818 {
1819 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1820 create_integer_operand (&ops[5], expected_size);
1821 }
1822 if (nops >= 8)
1823 {
1824 create_integer_operand (&ops[6], min_size);
1825 /* If we cannot represent the maximal size,
1826 make parameter NULL. */
1827 if ((HOST_WIDE_INT) max_size != -1)
1828 create_integer_operand (&ops[7], max_size);
1829 else
1830 create_fixed_operand (&ops[7], NULL);
1831 }
1832 if (nops == 9)
1833 {
1834 /* If we cannot represent the maximal size,
1835 make parameter NULL. */
1836 if ((HOST_WIDE_INT) probable_max_size != -1)
1837 create_integer_operand (&ops[8], probable_max_size);
1838 else
1839 create_fixed_operand (&ops[8], NULL);
1840 }
1841 if (maybe_expand_insn (code, nops, ops))
1842 return true;
1843 }
1844 }
1845
1846 return false;
1847 }
1848
1849 /* A subroutine of emit_block_move. Copy the data via an explicit
1850 loop. This is used only when libcalls are forbidden. */
1851 /* ??? It'd be nice to copy in hunks larger than QImode. */
1852
1853 static void
1854 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1855 unsigned int align ATTRIBUTE_UNUSED)
1856 {
1857 rtx_code_label *cmp_label, *top_label;
1858 rtx iter, x_addr, y_addr, tmp;
1859 machine_mode x_addr_mode = get_address_mode (x);
1860 machine_mode y_addr_mode = get_address_mode (y);
1861 machine_mode iter_mode;
1862
1863 iter_mode = GET_MODE (size);
1864 if (iter_mode == VOIDmode)
1865 iter_mode = word_mode;
1866
1867 top_label = gen_label_rtx ();
1868 cmp_label = gen_label_rtx ();
1869 iter = gen_reg_rtx (iter_mode);
1870
1871 emit_move_insn (iter, const0_rtx);
1872
1873 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1874 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1875 do_pending_stack_adjust ();
1876
1877 emit_jump (cmp_label);
1878 emit_label (top_label);
1879
1880 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1881 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1882
1883 if (x_addr_mode != y_addr_mode)
1884 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1885 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1886
1887 x = change_address (x, QImode, x_addr);
1888 y = change_address (y, QImode, y_addr);
1889
1890 emit_move_insn (x, y);
1891
1892 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1893 true, OPTAB_LIB_WIDEN);
1894 if (tmp != iter)
1895 emit_move_insn (iter, tmp);
1896
1897 emit_label (cmp_label);
1898
1899 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1900 true, top_label,
1901 profile_probability::guessed_always ()
1902 .apply_scale (9, 10));
1903 }
1904 \f
1905 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1906 TAILCALL is true if this is a tail call. */
1907
1908 rtx
1909 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1910 rtx size, bool tailcall)
1911 {
1912 rtx dst_addr, src_addr;
1913 tree call_expr, dst_tree, src_tree, size_tree;
1914 machine_mode size_mode;
1915
1916 /* Since dst and src are passed to a libcall, mark the corresponding
1917 tree EXPR as addressable. */
1918 tree dst_expr = MEM_EXPR (dst);
1919 tree src_expr = MEM_EXPR (src);
1920 if (dst_expr)
1921 mark_addressable (dst_expr);
1922 if (src_expr)
1923 mark_addressable (src_expr);
1924
1925 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1926 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1927 dst_tree = make_tree (ptr_type_node, dst_addr);
1928
1929 src_addr = copy_addr_to_reg (XEXP (src, 0));
1930 src_addr = convert_memory_address (ptr_mode, src_addr);
1931 src_tree = make_tree (ptr_type_node, src_addr);
1932
1933 size_mode = TYPE_MODE (sizetype);
1934 size = convert_to_mode (size_mode, size, 1);
1935 size = copy_to_mode_reg (size_mode, size);
1936 size_tree = make_tree (sizetype, size);
1937
1938 /* It is incorrect to use the libcall calling conventions for calls to
1939 memcpy/memmove/memcmp because they can be provided by the user. */
1940 tree fn = builtin_decl_implicit (fncode);
1941 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1942 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1943
1944 return expand_call (call_expr, NULL_RTX, false);
1945 }
1946
1947 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1948 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1949 otherwise return null. */
1950
1951 rtx
1952 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1953 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1954 HOST_WIDE_INT align)
1955 {
1956 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1957
1958 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1959 target = NULL_RTX;
1960
1961 class expand_operand ops[5];
1962 create_output_operand (&ops[0], target, insn_mode);
1963 create_fixed_operand (&ops[1], arg1_rtx);
1964 create_fixed_operand (&ops[2], arg2_rtx);
1965 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1966 TYPE_UNSIGNED (arg3_type));
1967 create_integer_operand (&ops[4], align);
1968 if (maybe_expand_insn (icode, 5, ops))
1969 return ops[0].value;
1970 return NULL_RTX;
1971 }
1972
1973 /* Expand a block compare between X and Y with length LEN using the
1974 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1975 of the expression that was used to calculate the length. ALIGN
1976 gives the known minimum common alignment. */
1977
1978 static rtx
1979 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1980 unsigned align)
1981 {
1982 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1983 implementing memcmp because it will stop if it encounters two
1984 zero bytes. */
1985 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1986
1987 if (icode == CODE_FOR_nothing)
1988 return NULL_RTX;
1989
1990 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1991 }
1992
1993 /* Emit code to compare a block Y to a block X. This may be done with
1994 string-compare instructions, with multiple scalar instructions,
1995 or with a library call.
1996
1997 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1998 they are. LEN_TYPE is the type of the expression that was used to
1999 calculate it.
2000
2001 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2002 value of a normal memcmp call, instead we can just compare for equality.
2003 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2004 returning NULL_RTX.
2005
2006 Optionally, the caller can pass a constfn and associated data in Y_CFN
2007 and Y_CFN_DATA. describing that the second operand being compared is a
2008 known constant and how to obtain its data.
2009 Return the result of the comparison, or NULL_RTX if we failed to
2010 perform the operation. */
2011
2012 rtx
2013 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2014 bool equality_only, by_pieces_constfn y_cfn,
2015 void *y_cfndata)
2016 {
2017 rtx result = 0;
2018
2019 if (CONST_INT_P (len) && INTVAL (len) == 0)
2020 return const0_rtx;
2021
2022 gcc_assert (MEM_P (x) && MEM_P (y));
2023 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2024 gcc_assert (align >= BITS_PER_UNIT);
2025
2026 x = adjust_address (x, BLKmode, 0);
2027 y = adjust_address (y, BLKmode, 0);
2028
2029 if (equality_only
2030 && CONST_INT_P (len)
2031 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2032 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2033 y_cfn, y_cfndata);
2034 else
2035 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2036
2037 return result;
2038 }
2039 \f
2040 /* Copy all or part of a value X into registers starting at REGNO.
2041 The number of registers to be filled is NREGS. */
2042
2043 void
2044 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2045 {
2046 if (nregs == 0)
2047 return;
2048
2049 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2050 x = validize_mem (force_const_mem (mode, x));
2051
2052 /* See if the machine can do this with a load multiple insn. */
2053 if (targetm.have_load_multiple ())
2054 {
2055 rtx_insn *last = get_last_insn ();
2056 rtx first = gen_rtx_REG (word_mode, regno);
2057 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2058 GEN_INT (nregs)))
2059 {
2060 emit_insn (pat);
2061 return;
2062 }
2063 else
2064 delete_insns_since (last);
2065 }
2066
2067 for (int i = 0; i < nregs; i++)
2068 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2069 operand_subword_force (x, i, mode));
2070 }
2071
2072 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2073 The number of registers to be filled is NREGS. */
2074
2075 void
2076 move_block_from_reg (int regno, rtx x, int nregs)
2077 {
2078 if (nregs == 0)
2079 return;
2080
2081 /* See if the machine can do this with a store multiple insn. */
2082 if (targetm.have_store_multiple ())
2083 {
2084 rtx_insn *last = get_last_insn ();
2085 rtx first = gen_rtx_REG (word_mode, regno);
2086 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2087 GEN_INT (nregs)))
2088 {
2089 emit_insn (pat);
2090 return;
2091 }
2092 else
2093 delete_insns_since (last);
2094 }
2095
2096 for (int i = 0; i < nregs; i++)
2097 {
2098 rtx tem = operand_subword (x, i, 1, BLKmode);
2099
2100 gcc_assert (tem);
2101
2102 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2103 }
2104 }
2105
2106 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2107 ORIG, where ORIG is a non-consecutive group of registers represented by
2108 a PARALLEL. The clone is identical to the original except in that the
2109 original set of registers is replaced by a new set of pseudo registers.
2110 The new set has the same modes as the original set. */
2111
2112 rtx
2113 gen_group_rtx (rtx orig)
2114 {
2115 int i, length;
2116 rtx *tmps;
2117
2118 gcc_assert (GET_CODE (orig) == PARALLEL);
2119
2120 length = XVECLEN (orig, 0);
2121 tmps = XALLOCAVEC (rtx, length);
2122
2123 /* Skip a NULL entry in first slot. */
2124 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2125
2126 if (i)
2127 tmps[0] = 0;
2128
2129 for (; i < length; i++)
2130 {
2131 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2132 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2133
2134 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2135 }
2136
2137 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2138 }
2139
2140 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2141 except that values are placed in TMPS[i], and must later be moved
2142 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2143
2144 static void
2145 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2146 poly_int64 ssize)
2147 {
2148 rtx src;
2149 int start, i;
2150 machine_mode m = GET_MODE (orig_src);
2151
2152 gcc_assert (GET_CODE (dst) == PARALLEL);
2153
2154 if (m != VOIDmode
2155 && !SCALAR_INT_MODE_P (m)
2156 && !MEM_P (orig_src)
2157 && GET_CODE (orig_src) != CONCAT)
2158 {
2159 scalar_int_mode imode;
2160 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2161 {
2162 src = gen_reg_rtx (imode);
2163 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2164 }
2165 else
2166 {
2167 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2168 emit_move_insn (src, orig_src);
2169 }
2170 emit_group_load_1 (tmps, dst, src, type, ssize);
2171 return;
2172 }
2173
2174 /* Check for a NULL entry, used to indicate that the parameter goes
2175 both on the stack and in registers. */
2176 if (XEXP (XVECEXP (dst, 0, 0), 0))
2177 start = 0;
2178 else
2179 start = 1;
2180
2181 /* Process the pieces. */
2182 for (i = start; i < XVECLEN (dst, 0); i++)
2183 {
2184 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2185 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2186 poly_int64 bytelen = GET_MODE_SIZE (mode);
2187 poly_int64 shift = 0;
2188
2189 /* Handle trailing fragments that run over the size of the struct.
2190 It's the target's responsibility to make sure that the fragment
2191 cannot be strictly smaller in some cases and strictly larger
2192 in others. */
2193 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2194 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2195 {
2196 /* Arrange to shift the fragment to where it belongs.
2197 extract_bit_field loads to the lsb of the reg. */
2198 if (
2199 #ifdef BLOCK_REG_PADDING
2200 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2201 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2202 #else
2203 BYTES_BIG_ENDIAN
2204 #endif
2205 )
2206 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2207 bytelen = ssize - bytepos;
2208 gcc_assert (maybe_gt (bytelen, 0));
2209 }
2210
2211 /* If we won't be loading directly from memory, protect the real source
2212 from strange tricks we might play; but make sure that the source can
2213 be loaded directly into the destination. */
2214 src = orig_src;
2215 if (!MEM_P (orig_src)
2216 && (!CONSTANT_P (orig_src)
2217 || (GET_MODE (orig_src) != mode
2218 && GET_MODE (orig_src) != VOIDmode)))
2219 {
2220 if (GET_MODE (orig_src) == VOIDmode)
2221 src = gen_reg_rtx (mode);
2222 else
2223 src = gen_reg_rtx (GET_MODE (orig_src));
2224
2225 emit_move_insn (src, orig_src);
2226 }
2227
2228 /* Optimize the access just a bit. */
2229 if (MEM_P (src)
2230 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2231 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2232 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2233 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2234 {
2235 tmps[i] = gen_reg_rtx (mode);
2236 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2237 }
2238 else if (COMPLEX_MODE_P (mode)
2239 && GET_MODE (src) == mode
2240 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2241 /* Let emit_move_complex do the bulk of the work. */
2242 tmps[i] = src;
2243 else if (GET_CODE (src) == CONCAT)
2244 {
2245 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2246 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2247 unsigned int elt;
2248 poly_int64 subpos;
2249
2250 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2251 && known_le (subpos + bytelen, slen0))
2252 {
2253 /* The following assumes that the concatenated objects all
2254 have the same size. In this case, a simple calculation
2255 can be used to determine the object and the bit field
2256 to be extracted. */
2257 tmps[i] = XEXP (src, elt);
2258 if (maybe_ne (subpos, 0)
2259 || maybe_ne (subpos + bytelen, slen0)
2260 || (!CONSTANT_P (tmps[i])
2261 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2262 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2263 subpos * BITS_PER_UNIT,
2264 1, NULL_RTX, mode, mode, false,
2265 NULL);
2266 }
2267 else
2268 {
2269 rtx mem;
2270
2271 gcc_assert (known_eq (bytepos, 0));
2272 mem = assign_stack_temp (GET_MODE (src), slen);
2273 emit_move_insn (mem, src);
2274 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2275 0, 1, NULL_RTX, mode, mode, false,
2276 NULL);
2277 }
2278 }
2279 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2280 SIMD register, which is currently broken. While we get GCC
2281 to emit proper RTL for these cases, let's dump to memory. */
2282 else if (VECTOR_MODE_P (GET_MODE (dst))
2283 && REG_P (src))
2284 {
2285 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2286 rtx mem;
2287
2288 mem = assign_stack_temp (GET_MODE (src), slen);
2289 emit_move_insn (mem, src);
2290 tmps[i] = adjust_address (mem, mode, bytepos);
2291 }
2292 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2293 && XVECLEN (dst, 0) > 1)
2294 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2295 else if (CONSTANT_P (src))
2296 {
2297 if (known_eq (bytelen, ssize))
2298 tmps[i] = src;
2299 else
2300 {
2301 rtx first, second;
2302
2303 /* TODO: const_wide_int can have sizes other than this... */
2304 gcc_assert (known_eq (2 * bytelen, ssize));
2305 split_double (src, &first, &second);
2306 if (i)
2307 tmps[i] = second;
2308 else
2309 tmps[i] = first;
2310 }
2311 }
2312 else if (REG_P (src) && GET_MODE (src) == mode)
2313 tmps[i] = src;
2314 else
2315 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2316 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2317 mode, mode, false, NULL);
2318
2319 if (maybe_ne (shift, 0))
2320 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2321 shift, tmps[i], 0);
2322 }
2323 }
2324
2325 /* Emit code to move a block SRC of type TYPE to a block DST,
2326 where DST is non-consecutive registers represented by a PARALLEL.
2327 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2328 if not known. */
2329
2330 void
2331 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2332 {
2333 rtx *tmps;
2334 int i;
2335
2336 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2337 emit_group_load_1 (tmps, dst, src, type, ssize);
2338
2339 /* Copy the extracted pieces into the proper (probable) hard regs. */
2340 for (i = 0; i < XVECLEN (dst, 0); i++)
2341 {
2342 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2343 if (d == NULL)
2344 continue;
2345 emit_move_insn (d, tmps[i]);
2346 }
2347 }
2348
2349 /* Similar, but load SRC into new pseudos in a format that looks like
2350 PARALLEL. This can later be fed to emit_group_move to get things
2351 in the right place. */
2352
2353 rtx
2354 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2355 {
2356 rtvec vec;
2357 int i;
2358
2359 vec = rtvec_alloc (XVECLEN (parallel, 0));
2360 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2361
2362 /* Convert the vector to look just like the original PARALLEL, except
2363 with the computed values. */
2364 for (i = 0; i < XVECLEN (parallel, 0); i++)
2365 {
2366 rtx e = XVECEXP (parallel, 0, i);
2367 rtx d = XEXP (e, 0);
2368
2369 if (d)
2370 {
2371 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2372 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2373 }
2374 RTVEC_ELT (vec, i) = e;
2375 }
2376
2377 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2378 }
2379
2380 /* Emit code to move a block SRC to block DST, where SRC and DST are
2381 non-consecutive groups of registers, each represented by a PARALLEL. */
2382
2383 void
2384 emit_group_move (rtx dst, rtx src)
2385 {
2386 int i;
2387
2388 gcc_assert (GET_CODE (src) == PARALLEL
2389 && GET_CODE (dst) == PARALLEL
2390 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2391
2392 /* Skip first entry if NULL. */
2393 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2394 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2395 XEXP (XVECEXP (src, 0, i), 0));
2396 }
2397
2398 /* Move a group of registers represented by a PARALLEL into pseudos. */
2399
2400 rtx
2401 emit_group_move_into_temps (rtx src)
2402 {
2403 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2404 int i;
2405
2406 for (i = 0; i < XVECLEN (src, 0); i++)
2407 {
2408 rtx e = XVECEXP (src, 0, i);
2409 rtx d = XEXP (e, 0);
2410
2411 if (d)
2412 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2413 RTVEC_ELT (vec, i) = e;
2414 }
2415
2416 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2417 }
2418
2419 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2420 where SRC is non-consecutive registers represented by a PARALLEL.
2421 SSIZE represents the total size of block ORIG_DST, or -1 if not
2422 known. */
2423
2424 void
2425 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2426 poly_int64 ssize)
2427 {
2428 rtx *tmps, dst;
2429 int start, finish, i;
2430 machine_mode m = GET_MODE (orig_dst);
2431
2432 gcc_assert (GET_CODE (src) == PARALLEL);
2433
2434 if (!SCALAR_INT_MODE_P (m)
2435 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2436 {
2437 scalar_int_mode imode;
2438 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2439 {
2440 dst = gen_reg_rtx (imode);
2441 emit_group_store (dst, src, type, ssize);
2442 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2443 }
2444 else
2445 {
2446 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2447 emit_group_store (dst, src, type, ssize);
2448 }
2449 emit_move_insn (orig_dst, dst);
2450 return;
2451 }
2452
2453 /* Check for a NULL entry, used to indicate that the parameter goes
2454 both on the stack and in registers. */
2455 if (XEXP (XVECEXP (src, 0, 0), 0))
2456 start = 0;
2457 else
2458 start = 1;
2459 finish = XVECLEN (src, 0);
2460
2461 tmps = XALLOCAVEC (rtx, finish);
2462
2463 /* Copy the (probable) hard regs into pseudos. */
2464 for (i = start; i < finish; i++)
2465 {
2466 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2467 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2468 {
2469 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2470 emit_move_insn (tmps[i], reg);
2471 }
2472 else
2473 tmps[i] = reg;
2474 }
2475
2476 /* If we won't be storing directly into memory, protect the real destination
2477 from strange tricks we might play. */
2478 dst = orig_dst;
2479 if (GET_CODE (dst) == PARALLEL)
2480 {
2481 rtx temp;
2482
2483 /* We can get a PARALLEL dst if there is a conditional expression in
2484 a return statement. In that case, the dst and src are the same,
2485 so no action is necessary. */
2486 if (rtx_equal_p (dst, src))
2487 return;
2488
2489 /* It is unclear if we can ever reach here, but we may as well handle
2490 it. Allocate a temporary, and split this into a store/load to/from
2491 the temporary. */
2492 temp = assign_stack_temp (GET_MODE (dst), ssize);
2493 emit_group_store (temp, src, type, ssize);
2494 emit_group_load (dst, temp, type, ssize);
2495 return;
2496 }
2497 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2498 {
2499 machine_mode outer = GET_MODE (dst);
2500 machine_mode inner;
2501 poly_int64 bytepos;
2502 bool done = false;
2503 rtx temp;
2504
2505 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2506 dst = gen_reg_rtx (outer);
2507
2508 /* Make life a bit easier for combine. */
2509 /* If the first element of the vector is the low part
2510 of the destination mode, use a paradoxical subreg to
2511 initialize the destination. */
2512 if (start < finish)
2513 {
2514 inner = GET_MODE (tmps[start]);
2515 bytepos = subreg_lowpart_offset (inner, outer);
2516 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2517 bytepos))
2518 {
2519 temp = simplify_gen_subreg (outer, tmps[start],
2520 inner, 0);
2521 if (temp)
2522 {
2523 emit_move_insn (dst, temp);
2524 done = true;
2525 start++;
2526 }
2527 }
2528 }
2529
2530 /* If the first element wasn't the low part, try the last. */
2531 if (!done
2532 && start < finish - 1)
2533 {
2534 inner = GET_MODE (tmps[finish - 1]);
2535 bytepos = subreg_lowpart_offset (inner, outer);
2536 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2537 finish - 1), 1)),
2538 bytepos))
2539 {
2540 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2541 inner, 0);
2542 if (temp)
2543 {
2544 emit_move_insn (dst, temp);
2545 done = true;
2546 finish--;
2547 }
2548 }
2549 }
2550
2551 /* Otherwise, simply initialize the result to zero. */
2552 if (!done)
2553 emit_move_insn (dst, CONST0_RTX (outer));
2554 }
2555
2556 /* Process the pieces. */
2557 for (i = start; i < finish; i++)
2558 {
2559 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2560 machine_mode mode = GET_MODE (tmps[i]);
2561 poly_int64 bytelen = GET_MODE_SIZE (mode);
2562 poly_uint64 adj_bytelen;
2563 rtx dest = dst;
2564
2565 /* Handle trailing fragments that run over the size of the struct.
2566 It's the target's responsibility to make sure that the fragment
2567 cannot be strictly smaller in some cases and strictly larger
2568 in others. */
2569 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2570 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2571 adj_bytelen = ssize - bytepos;
2572 else
2573 adj_bytelen = bytelen;
2574
2575 if (GET_CODE (dst) == CONCAT)
2576 {
2577 if (known_le (bytepos + adj_bytelen,
2578 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2579 dest = XEXP (dst, 0);
2580 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2581 {
2582 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2583 dest = XEXP (dst, 1);
2584 }
2585 else
2586 {
2587 machine_mode dest_mode = GET_MODE (dest);
2588 machine_mode tmp_mode = GET_MODE (tmps[i]);
2589
2590 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2591
2592 if (GET_MODE_ALIGNMENT (dest_mode)
2593 >= GET_MODE_ALIGNMENT (tmp_mode))
2594 {
2595 dest = assign_stack_temp (dest_mode,
2596 GET_MODE_SIZE (dest_mode));
2597 emit_move_insn (adjust_address (dest,
2598 tmp_mode,
2599 bytepos),
2600 tmps[i]);
2601 dst = dest;
2602 }
2603 else
2604 {
2605 dest = assign_stack_temp (tmp_mode,
2606 GET_MODE_SIZE (tmp_mode));
2607 emit_move_insn (dest, tmps[i]);
2608 dst = adjust_address (dest, dest_mode, bytepos);
2609 }
2610 break;
2611 }
2612 }
2613
2614 /* Handle trailing fragments that run over the size of the struct. */
2615 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2616 {
2617 /* store_bit_field always takes its value from the lsb.
2618 Move the fragment to the lsb if it's not already there. */
2619 if (
2620 #ifdef BLOCK_REG_PADDING
2621 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2622 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2623 #else
2624 BYTES_BIG_ENDIAN
2625 #endif
2626 )
2627 {
2628 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2629 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2630 shift, tmps[i], 0);
2631 }
2632
2633 /* Make sure not to write past the end of the struct. */
2634 store_bit_field (dest,
2635 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2636 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2637 VOIDmode, tmps[i], false);
2638 }
2639
2640 /* Optimize the access just a bit. */
2641 else if (MEM_P (dest)
2642 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2643 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2644 && multiple_p (bytepos * BITS_PER_UNIT,
2645 GET_MODE_ALIGNMENT (mode))
2646 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2647 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2648
2649 else
2650 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2651 0, 0, mode, tmps[i], false);
2652 }
2653
2654 /* Copy from the pseudo into the (probable) hard reg. */
2655 if (orig_dst != dst)
2656 emit_move_insn (orig_dst, dst);
2657 }
2658
2659 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2660 of the value stored in X. */
2661
2662 rtx
2663 maybe_emit_group_store (rtx x, tree type)
2664 {
2665 machine_mode mode = TYPE_MODE (type);
2666 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2667 if (GET_CODE (x) == PARALLEL)
2668 {
2669 rtx result = gen_reg_rtx (mode);
2670 emit_group_store (result, x, type, int_size_in_bytes (type));
2671 return result;
2672 }
2673 return x;
2674 }
2675
2676 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2677
2678 This is used on targets that return BLKmode values in registers. */
2679
2680 static void
2681 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2682 {
2683 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2684 rtx src = NULL, dst = NULL;
2685 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2686 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2687 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2688 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2689 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2690 fixed_size_mode copy_mode;
2691
2692 /* BLKmode registers created in the back-end shouldn't have survived. */
2693 gcc_assert (mode != BLKmode);
2694
2695 /* If the structure doesn't take up a whole number of words, see whether
2696 SRCREG is padded on the left or on the right. If it's on the left,
2697 set PADDING_CORRECTION to the number of bits to skip.
2698
2699 In most ABIs, the structure will be returned at the least end of
2700 the register, which translates to right padding on little-endian
2701 targets and left padding on big-endian targets. The opposite
2702 holds if the structure is returned at the most significant
2703 end of the register. */
2704 if (bytes % UNITS_PER_WORD != 0
2705 && (targetm.calls.return_in_msb (type)
2706 ? !BYTES_BIG_ENDIAN
2707 : BYTES_BIG_ENDIAN))
2708 padding_correction
2709 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2710
2711 /* We can use a single move if we have an exact mode for the size. */
2712 else if (MEM_P (target)
2713 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2714 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2715 && bytes == GET_MODE_SIZE (mode))
2716 {
2717 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2718 return;
2719 }
2720
2721 /* And if we additionally have the same mode for a register. */
2722 else if (REG_P (target)
2723 && GET_MODE (target) == mode
2724 && bytes == GET_MODE_SIZE (mode))
2725 {
2726 emit_move_insn (target, srcreg);
2727 return;
2728 }
2729
2730 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2731 into a new pseudo which is a full word. */
2732 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2733 {
2734 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2735 mode = word_mode;
2736 }
2737
2738 /* Copy the structure BITSIZE bits at a time. If the target lives in
2739 memory, take care of not reading/writing past its end by selecting
2740 a copy mode suited to BITSIZE. This should always be possible given
2741 how it is computed.
2742
2743 If the target lives in register, make sure not to select a copy mode
2744 larger than the mode of the register.
2745
2746 We could probably emit more efficient code for machines which do not use
2747 strict alignment, but it doesn't seem worth the effort at the current
2748 time. */
2749
2750 copy_mode = word_mode;
2751 if (MEM_P (target))
2752 {
2753 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2754 if (mem_mode.exists ())
2755 copy_mode = mem_mode.require ();
2756 }
2757 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2758 copy_mode = tmode;
2759
2760 for (bitpos = 0, xbitpos = padding_correction;
2761 bitpos < bytes * BITS_PER_UNIT;
2762 bitpos += bitsize, xbitpos += bitsize)
2763 {
2764 /* We need a new source operand each time xbitpos is on a
2765 word boundary and when xbitpos == padding_correction
2766 (the first time through). */
2767 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2768 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2769
2770 /* We need a new destination operand each time bitpos is on
2771 a word boundary. */
2772 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2773 dst = target;
2774 else if (bitpos % BITS_PER_WORD == 0)
2775 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2776
2777 /* Use xbitpos for the source extraction (right justified) and
2778 bitpos for the destination store (left justified). */
2779 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2780 extract_bit_field (src, bitsize,
2781 xbitpos % BITS_PER_WORD, 1,
2782 NULL_RTX, copy_mode, copy_mode,
2783 false, NULL),
2784 false);
2785 }
2786 }
2787
2788 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2789 register if it contains any data, otherwise return null.
2790
2791 This is used on targets that return BLKmode values in registers. */
2792
2793 rtx
2794 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2795 {
2796 int i, n_regs;
2797 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2798 unsigned int bitsize;
2799 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2800 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2801 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2802 fixed_size_mode dst_mode;
2803 scalar_int_mode min_mode;
2804
2805 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2806
2807 x = expand_normal (src);
2808
2809 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2810 if (bytes == 0)
2811 return NULL_RTX;
2812
2813 /* If the structure doesn't take up a whole number of words, see
2814 whether the register value should be padded on the left or on
2815 the right. Set PADDING_CORRECTION to the number of padding
2816 bits needed on the left side.
2817
2818 In most ABIs, the structure will be returned at the least end of
2819 the register, which translates to right padding on little-endian
2820 targets and left padding on big-endian targets. The opposite
2821 holds if the structure is returned at the most significant
2822 end of the register. */
2823 if (bytes % UNITS_PER_WORD != 0
2824 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2825 ? !BYTES_BIG_ENDIAN
2826 : BYTES_BIG_ENDIAN))
2827 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2828 * BITS_PER_UNIT));
2829
2830 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2831 dst_words = XALLOCAVEC (rtx, n_regs);
2832 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2833 min_mode = smallest_int_mode_for_size (bitsize);
2834
2835 /* Copy the structure BITSIZE bits at a time. */
2836 for (bitpos = 0, xbitpos = padding_correction;
2837 bitpos < bytes * BITS_PER_UNIT;
2838 bitpos += bitsize, xbitpos += bitsize)
2839 {
2840 /* We need a new destination pseudo each time xbitpos is
2841 on a word boundary and when xbitpos == padding_correction
2842 (the first time through). */
2843 if (xbitpos % BITS_PER_WORD == 0
2844 || xbitpos == padding_correction)
2845 {
2846 /* Generate an appropriate register. */
2847 dst_word = gen_reg_rtx (word_mode);
2848 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2849
2850 /* Clear the destination before we move anything into it. */
2851 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2852 }
2853
2854 /* Find the largest integer mode that can be used to copy all or as
2855 many bits as possible of the structure if the target supports larger
2856 copies. There are too many corner cases here w.r.t to alignments on
2857 the read/writes. So if there is any padding just use single byte
2858 operations. */
2859 opt_scalar_int_mode mode_iter;
2860 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2861 {
2862 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2863 {
2864 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2865 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2866 && msize <= BITS_PER_WORD)
2867 bitsize = msize;
2868 else
2869 break;
2870 }
2871 }
2872
2873 /* We need a new source operand each time bitpos is on a word
2874 boundary. */
2875 if (bitpos % BITS_PER_WORD == 0)
2876 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2877
2878 /* Use bitpos for the source extraction (left justified) and
2879 xbitpos for the destination store (right justified). */
2880 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2881 0, 0, word_mode,
2882 extract_bit_field (src_word, bitsize,
2883 bitpos % BITS_PER_WORD, 1,
2884 NULL_RTX, word_mode, word_mode,
2885 false, NULL),
2886 false);
2887 }
2888
2889 if (mode == BLKmode)
2890 {
2891 /* Find the smallest integer mode large enough to hold the
2892 entire structure. */
2893 opt_scalar_int_mode mode_iter;
2894 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2895 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2896 break;
2897
2898 /* A suitable mode should have been found. */
2899 mode = mode_iter.require ();
2900 }
2901
2902 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2903 dst_mode = word_mode;
2904 else
2905 dst_mode = mode;
2906 dst = gen_reg_rtx (dst_mode);
2907
2908 for (i = 0; i < n_regs; i++)
2909 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2910
2911 if (mode != dst_mode)
2912 dst = gen_lowpart (mode, dst);
2913
2914 return dst;
2915 }
2916
2917 /* Add a USE expression for REG to the (possibly empty) list pointed
2918 to by CALL_FUSAGE. REG must denote a hard register. */
2919
2920 void
2921 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2922 {
2923 gcc_assert (REG_P (reg));
2924
2925 if (!HARD_REGISTER_P (reg))
2926 return;
2927
2928 *call_fusage
2929 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2930 }
2931
2932 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2933 to by CALL_FUSAGE. REG must denote a hard register. */
2934
2935 void
2936 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2937 {
2938 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2939
2940 *call_fusage
2941 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2942 }
2943
2944 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2945 starting at REGNO. All of these registers must be hard registers. */
2946
2947 void
2948 use_regs (rtx *call_fusage, int regno, int nregs)
2949 {
2950 int i;
2951
2952 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2953
2954 for (i = 0; i < nregs; i++)
2955 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2956 }
2957
2958 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2959 PARALLEL REGS. This is for calls that pass values in multiple
2960 non-contiguous locations. The Irix 6 ABI has examples of this. */
2961
2962 void
2963 use_group_regs (rtx *call_fusage, rtx regs)
2964 {
2965 int i;
2966
2967 for (i = 0; i < XVECLEN (regs, 0); i++)
2968 {
2969 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2970
2971 /* A NULL entry means the parameter goes both on the stack and in
2972 registers. This can also be a MEM for targets that pass values
2973 partially on the stack and partially in registers. */
2974 if (reg != 0 && REG_P (reg))
2975 use_reg (call_fusage, reg);
2976 }
2977 }
2978
2979 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2980 assigment and the code of the expresion on the RHS is CODE. Return
2981 NULL otherwise. */
2982
2983 static gimple *
2984 get_def_for_expr (tree name, enum tree_code code)
2985 {
2986 gimple *def_stmt;
2987
2988 if (TREE_CODE (name) != SSA_NAME)
2989 return NULL;
2990
2991 def_stmt = get_gimple_for_ssa_name (name);
2992 if (!def_stmt
2993 || gimple_assign_rhs_code (def_stmt) != code)
2994 return NULL;
2995
2996 return def_stmt;
2997 }
2998
2999 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3000 assigment and the class of the expresion on the RHS is CLASS. Return
3001 NULL otherwise. */
3002
3003 static gimple *
3004 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3005 {
3006 gimple *def_stmt;
3007
3008 if (TREE_CODE (name) != SSA_NAME)
3009 return NULL;
3010
3011 def_stmt = get_gimple_for_ssa_name (name);
3012 if (!def_stmt
3013 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3014 return NULL;
3015
3016 return def_stmt;
3017 }
3018 \f
3019 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3020 its length in bytes. */
3021
3022 rtx
3023 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3024 unsigned int expected_align, HOST_WIDE_INT expected_size,
3025 unsigned HOST_WIDE_INT min_size,
3026 unsigned HOST_WIDE_INT max_size,
3027 unsigned HOST_WIDE_INT probable_max_size)
3028 {
3029 machine_mode mode = GET_MODE (object);
3030 unsigned int align;
3031
3032 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3033
3034 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3035 just move a zero. Otherwise, do this a piece at a time. */
3036 poly_int64 size_val;
3037 if (mode != BLKmode
3038 && poly_int_rtx_p (size, &size_val)
3039 && known_eq (size_val, GET_MODE_SIZE (mode)))
3040 {
3041 rtx zero = CONST0_RTX (mode);
3042 if (zero != NULL)
3043 {
3044 emit_move_insn (object, zero);
3045 return NULL;
3046 }
3047
3048 if (COMPLEX_MODE_P (mode))
3049 {
3050 zero = CONST0_RTX (GET_MODE_INNER (mode));
3051 if (zero != NULL)
3052 {
3053 write_complex_part (object, zero, 0);
3054 write_complex_part (object, zero, 1);
3055 return NULL;
3056 }
3057 }
3058 }
3059
3060 if (size == const0_rtx)
3061 return NULL;
3062
3063 align = MEM_ALIGN (object);
3064
3065 if (CONST_INT_P (size)
3066 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3067 CLEAR_BY_PIECES,
3068 optimize_insn_for_speed_p ()))
3069 clear_by_pieces (object, INTVAL (size), align);
3070 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3071 expected_align, expected_size,
3072 min_size, max_size, probable_max_size))
3073 ;
3074 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3075 return set_storage_via_libcall (object, size, const0_rtx,
3076 method == BLOCK_OP_TAILCALL);
3077 else
3078 gcc_unreachable ();
3079
3080 return NULL;
3081 }
3082
3083 rtx
3084 clear_storage (rtx object, rtx size, enum block_op_methods method)
3085 {
3086 unsigned HOST_WIDE_INT max, min = 0;
3087 if (GET_CODE (size) == CONST_INT)
3088 min = max = UINTVAL (size);
3089 else
3090 max = GET_MODE_MASK (GET_MODE (size));
3091 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3092 }
3093
3094
3095 /* A subroutine of clear_storage. Expand a call to memset.
3096 Return the return value of memset, 0 otherwise. */
3097
3098 rtx
3099 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3100 {
3101 tree call_expr, fn, object_tree, size_tree, val_tree;
3102 machine_mode size_mode;
3103
3104 object = copy_addr_to_reg (XEXP (object, 0));
3105 object_tree = make_tree (ptr_type_node, object);
3106
3107 if (!CONST_INT_P (val))
3108 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3109 val_tree = make_tree (integer_type_node, val);
3110
3111 size_mode = TYPE_MODE (sizetype);
3112 size = convert_to_mode (size_mode, size, 1);
3113 size = copy_to_mode_reg (size_mode, size);
3114 size_tree = make_tree (sizetype, size);
3115
3116 /* It is incorrect to use the libcall calling conventions for calls to
3117 memset because it can be provided by the user. */
3118 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3119 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3120 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3121
3122 return expand_call (call_expr, NULL_RTX, false);
3123 }
3124 \f
3125 /* Expand a setmem pattern; return true if successful. */
3126
3127 bool
3128 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3129 unsigned int expected_align, HOST_WIDE_INT expected_size,
3130 unsigned HOST_WIDE_INT min_size,
3131 unsigned HOST_WIDE_INT max_size,
3132 unsigned HOST_WIDE_INT probable_max_size)
3133 {
3134 /* Try the most limited insn first, because there's no point
3135 including more than one in the machine description unless
3136 the more limited one has some advantage. */
3137
3138 if (expected_align < align)
3139 expected_align = align;
3140 if (expected_size != -1)
3141 {
3142 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3143 expected_size = max_size;
3144 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3145 expected_size = min_size;
3146 }
3147
3148 opt_scalar_int_mode mode_iter;
3149 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3150 {
3151 scalar_int_mode mode = mode_iter.require ();
3152 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3153
3154 if (code != CODE_FOR_nothing
3155 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3156 here because if SIZE is less than the mode mask, as it is
3157 returned by the macro, it will definitely be less than the
3158 actual mode mask. Since SIZE is within the Pmode address
3159 space, we limit MODE to Pmode. */
3160 && ((CONST_INT_P (size)
3161 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3162 <= (GET_MODE_MASK (mode) >> 1)))
3163 || max_size <= (GET_MODE_MASK (mode) >> 1)
3164 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3165 {
3166 class expand_operand ops[9];
3167 unsigned int nops;
3168
3169 nops = insn_data[(int) code].n_generator_args;
3170 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3171
3172 create_fixed_operand (&ops[0], object);
3173 /* The check above guarantees that this size conversion is valid. */
3174 create_convert_operand_to (&ops[1], size, mode, true);
3175 create_convert_operand_from (&ops[2], val, byte_mode, true);
3176 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3177 if (nops >= 6)
3178 {
3179 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3180 create_integer_operand (&ops[5], expected_size);
3181 }
3182 if (nops >= 8)
3183 {
3184 create_integer_operand (&ops[6], min_size);
3185 /* If we cannot represent the maximal size,
3186 make parameter NULL. */
3187 if ((HOST_WIDE_INT) max_size != -1)
3188 create_integer_operand (&ops[7], max_size);
3189 else
3190 create_fixed_operand (&ops[7], NULL);
3191 }
3192 if (nops == 9)
3193 {
3194 /* If we cannot represent the maximal size,
3195 make parameter NULL. */
3196 if ((HOST_WIDE_INT) probable_max_size != -1)
3197 create_integer_operand (&ops[8], probable_max_size);
3198 else
3199 create_fixed_operand (&ops[8], NULL);
3200 }
3201 if (maybe_expand_insn (code, nops, ops))
3202 return true;
3203 }
3204 }
3205
3206 return false;
3207 }
3208
3209 \f
3210 /* Write to one of the components of the complex value CPLX. Write VAL to
3211 the real part if IMAG_P is false, and the imaginary part if its true. */
3212
3213 void
3214 write_complex_part (rtx cplx, rtx val, bool imag_p)
3215 {
3216 machine_mode cmode;
3217 scalar_mode imode;
3218 unsigned ibitsize;
3219
3220 if (GET_CODE (cplx) == CONCAT)
3221 {
3222 emit_move_insn (XEXP (cplx, imag_p), val);
3223 return;
3224 }
3225
3226 cmode = GET_MODE (cplx);
3227 imode = GET_MODE_INNER (cmode);
3228 ibitsize = GET_MODE_BITSIZE (imode);
3229
3230 /* For MEMs simplify_gen_subreg may generate an invalid new address
3231 because, e.g., the original address is considered mode-dependent
3232 by the target, which restricts simplify_subreg from invoking
3233 adjust_address_nv. Instead of preparing fallback support for an
3234 invalid address, we call adjust_address_nv directly. */
3235 if (MEM_P (cplx))
3236 {
3237 emit_move_insn (adjust_address_nv (cplx, imode,
3238 imag_p ? GET_MODE_SIZE (imode) : 0),
3239 val);
3240 return;
3241 }
3242
3243 /* If the sub-object is at least word sized, then we know that subregging
3244 will work. This special case is important, since store_bit_field
3245 wants to operate on integer modes, and there's rarely an OImode to
3246 correspond to TCmode. */
3247 if (ibitsize >= BITS_PER_WORD
3248 /* For hard regs we have exact predicates. Assume we can split
3249 the original object if it spans an even number of hard regs.
3250 This special case is important for SCmode on 64-bit platforms
3251 where the natural size of floating-point regs is 32-bit. */
3252 || (REG_P (cplx)
3253 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3254 && REG_NREGS (cplx) % 2 == 0))
3255 {
3256 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3257 imag_p ? GET_MODE_SIZE (imode) : 0);
3258 if (part)
3259 {
3260 emit_move_insn (part, val);
3261 return;
3262 }
3263 else
3264 /* simplify_gen_subreg may fail for sub-word MEMs. */
3265 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3266 }
3267
3268 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3269 false);
3270 }
3271
3272 /* Extract one of the components of the complex value CPLX. Extract the
3273 real part if IMAG_P is false, and the imaginary part if it's true. */
3274
3275 rtx
3276 read_complex_part (rtx cplx, bool imag_p)
3277 {
3278 machine_mode cmode;
3279 scalar_mode imode;
3280 unsigned ibitsize;
3281
3282 if (GET_CODE (cplx) == CONCAT)
3283 return XEXP (cplx, imag_p);
3284
3285 cmode = GET_MODE (cplx);
3286 imode = GET_MODE_INNER (cmode);
3287 ibitsize = GET_MODE_BITSIZE (imode);
3288
3289 /* Special case reads from complex constants that got spilled to memory. */
3290 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3291 {
3292 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3293 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3294 {
3295 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3296 if (CONSTANT_CLASS_P (part))
3297 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3298 }
3299 }
3300
3301 /* For MEMs simplify_gen_subreg may generate an invalid new address
3302 because, e.g., the original address is considered mode-dependent
3303 by the target, which restricts simplify_subreg from invoking
3304 adjust_address_nv. Instead of preparing fallback support for an
3305 invalid address, we call adjust_address_nv directly. */
3306 if (MEM_P (cplx))
3307 return adjust_address_nv (cplx, imode,
3308 imag_p ? GET_MODE_SIZE (imode) : 0);
3309
3310 /* If the sub-object is at least word sized, then we know that subregging
3311 will work. This special case is important, since extract_bit_field
3312 wants to operate on integer modes, and there's rarely an OImode to
3313 correspond to TCmode. */
3314 if (ibitsize >= BITS_PER_WORD
3315 /* For hard regs we have exact predicates. Assume we can split
3316 the original object if it spans an even number of hard regs.
3317 This special case is important for SCmode on 64-bit platforms
3318 where the natural size of floating-point regs is 32-bit. */
3319 || (REG_P (cplx)
3320 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3321 && REG_NREGS (cplx) % 2 == 0))
3322 {
3323 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3324 imag_p ? GET_MODE_SIZE (imode) : 0);
3325 if (ret)
3326 return ret;
3327 else
3328 /* simplify_gen_subreg may fail for sub-word MEMs. */
3329 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3330 }
3331
3332 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3333 true, NULL_RTX, imode, imode, false, NULL);
3334 }
3335 \f
3336 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3337 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3338 represented in NEW_MODE. If FORCE is true, this will never happen, as
3339 we'll force-create a SUBREG if needed. */
3340
3341 static rtx
3342 emit_move_change_mode (machine_mode new_mode,
3343 machine_mode old_mode, rtx x, bool force)
3344 {
3345 rtx ret;
3346
3347 if (push_operand (x, GET_MODE (x)))
3348 {
3349 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3350 MEM_COPY_ATTRIBUTES (ret, x);
3351 }
3352 else if (MEM_P (x))
3353 {
3354 /* We don't have to worry about changing the address since the
3355 size in bytes is supposed to be the same. */
3356 if (reload_in_progress)
3357 {
3358 /* Copy the MEM to change the mode and move any
3359 substitutions from the old MEM to the new one. */
3360 ret = adjust_address_nv (x, new_mode, 0);
3361 copy_replacements (x, ret);
3362 }
3363 else
3364 ret = adjust_address (x, new_mode, 0);
3365 }
3366 else
3367 {
3368 /* Note that we do want simplify_subreg's behavior of validating
3369 that the new mode is ok for a hard register. If we were to use
3370 simplify_gen_subreg, we would create the subreg, but would
3371 probably run into the target not being able to implement it. */
3372 /* Except, of course, when FORCE is true, when this is exactly what
3373 we want. Which is needed for CCmodes on some targets. */
3374 if (force)
3375 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3376 else
3377 ret = simplify_subreg (new_mode, x, old_mode, 0);
3378 }
3379
3380 return ret;
3381 }
3382
3383 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3384 an integer mode of the same size as MODE. Returns the instruction
3385 emitted, or NULL if such a move could not be generated. */
3386
3387 static rtx_insn *
3388 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3389 {
3390 scalar_int_mode imode;
3391 enum insn_code code;
3392
3393 /* There must exist a mode of the exact size we require. */
3394 if (!int_mode_for_mode (mode).exists (&imode))
3395 return NULL;
3396
3397 /* The target must support moves in this mode. */
3398 code = optab_handler (mov_optab, imode);
3399 if (code == CODE_FOR_nothing)
3400 return NULL;
3401
3402 x = emit_move_change_mode (imode, mode, x, force);
3403 if (x == NULL_RTX)
3404 return NULL;
3405 y = emit_move_change_mode (imode, mode, y, force);
3406 if (y == NULL_RTX)
3407 return NULL;
3408 return emit_insn (GEN_FCN (code) (x, y));
3409 }
3410
3411 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3412 Return an equivalent MEM that does not use an auto-increment. */
3413
3414 rtx
3415 emit_move_resolve_push (machine_mode mode, rtx x)
3416 {
3417 enum rtx_code code = GET_CODE (XEXP (x, 0));
3418 rtx temp;
3419
3420 poly_int64 adjust = GET_MODE_SIZE (mode);
3421 #ifdef PUSH_ROUNDING
3422 adjust = PUSH_ROUNDING (adjust);
3423 #endif
3424 if (code == PRE_DEC || code == POST_DEC)
3425 adjust = -adjust;
3426 else if (code == PRE_MODIFY || code == POST_MODIFY)
3427 {
3428 rtx expr = XEXP (XEXP (x, 0), 1);
3429
3430 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3431 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3432 if (GET_CODE (expr) == MINUS)
3433 val = -val;
3434 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3435 adjust = val;
3436 }
3437
3438 /* Do not use anti_adjust_stack, since we don't want to update
3439 stack_pointer_delta. */
3440 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3441 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3442 0, OPTAB_LIB_WIDEN);
3443 if (temp != stack_pointer_rtx)
3444 emit_move_insn (stack_pointer_rtx, temp);
3445
3446 switch (code)
3447 {
3448 case PRE_INC:
3449 case PRE_DEC:
3450 case PRE_MODIFY:
3451 temp = stack_pointer_rtx;
3452 break;
3453 case POST_INC:
3454 case POST_DEC:
3455 case POST_MODIFY:
3456 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3457 break;
3458 default:
3459 gcc_unreachable ();
3460 }
3461
3462 return replace_equiv_address (x, temp);
3463 }
3464
3465 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3466 X is known to satisfy push_operand, and MODE is known to be complex.
3467 Returns the last instruction emitted. */
3468
3469 rtx_insn *
3470 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3471 {
3472 scalar_mode submode = GET_MODE_INNER (mode);
3473 bool imag_first;
3474
3475 #ifdef PUSH_ROUNDING
3476 poly_int64 submodesize = GET_MODE_SIZE (submode);
3477
3478 /* In case we output to the stack, but the size is smaller than the
3479 machine can push exactly, we need to use move instructions. */
3480 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3481 {
3482 x = emit_move_resolve_push (mode, x);
3483 return emit_move_insn (x, y);
3484 }
3485 #endif
3486
3487 /* Note that the real part always precedes the imag part in memory
3488 regardless of machine's endianness. */
3489 switch (GET_CODE (XEXP (x, 0)))
3490 {
3491 case PRE_DEC:
3492 case POST_DEC:
3493 imag_first = true;
3494 break;
3495 case PRE_INC:
3496 case POST_INC:
3497 imag_first = false;
3498 break;
3499 default:
3500 gcc_unreachable ();
3501 }
3502
3503 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3504 read_complex_part (y, imag_first));
3505 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3506 read_complex_part (y, !imag_first));
3507 }
3508
3509 /* A subroutine of emit_move_complex. Perform the move from Y to X
3510 via two moves of the parts. Returns the last instruction emitted. */
3511
3512 rtx_insn *
3513 emit_move_complex_parts (rtx x, rtx y)
3514 {
3515 /* Show the output dies here. This is necessary for SUBREGs
3516 of pseudos since we cannot track their lifetimes correctly;
3517 hard regs shouldn't appear here except as return values. */
3518 if (!reload_completed && !reload_in_progress
3519 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3520 emit_clobber (x);
3521
3522 write_complex_part (x, read_complex_part (y, false), false);
3523 write_complex_part (x, read_complex_part (y, true), true);
3524
3525 return get_last_insn ();
3526 }
3527
3528 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3529 MODE is known to be complex. Returns the last instruction emitted. */
3530
3531 static rtx_insn *
3532 emit_move_complex (machine_mode mode, rtx x, rtx y)
3533 {
3534 bool try_int;
3535
3536 /* Need to take special care for pushes, to maintain proper ordering
3537 of the data, and possibly extra padding. */
3538 if (push_operand (x, mode))
3539 return emit_move_complex_push (mode, x, y);
3540
3541 /* See if we can coerce the target into moving both values at once, except
3542 for floating point where we favor moving as parts if this is easy. */
3543 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3544 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3545 && !(REG_P (x)
3546 && HARD_REGISTER_P (x)
3547 && REG_NREGS (x) == 1)
3548 && !(REG_P (y)
3549 && HARD_REGISTER_P (y)
3550 && REG_NREGS (y) == 1))
3551 try_int = false;
3552 /* Not possible if the values are inherently not adjacent. */
3553 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3554 try_int = false;
3555 /* Is possible if both are registers (or subregs of registers). */
3556 else if (register_operand (x, mode) && register_operand (y, mode))
3557 try_int = true;
3558 /* If one of the operands is a memory, and alignment constraints
3559 are friendly enough, we may be able to do combined memory operations.
3560 We do not attempt this if Y is a constant because that combination is
3561 usually better with the by-parts thing below. */
3562 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3563 && (!STRICT_ALIGNMENT
3564 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3565 try_int = true;
3566 else
3567 try_int = false;
3568
3569 if (try_int)
3570 {
3571 rtx_insn *ret;
3572
3573 /* For memory to memory moves, optimal behavior can be had with the
3574 existing block move logic. */
3575 if (MEM_P (x) && MEM_P (y))
3576 {
3577 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3578 BLOCK_OP_NO_LIBCALL);
3579 return get_last_insn ();
3580 }
3581
3582 ret = emit_move_via_integer (mode, x, y, true);
3583 if (ret)
3584 return ret;
3585 }
3586
3587 return emit_move_complex_parts (x, y);
3588 }
3589
3590 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3591 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3592
3593 static rtx_insn *
3594 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3595 {
3596 rtx_insn *ret;
3597
3598 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3599 if (mode != CCmode)
3600 {
3601 enum insn_code code = optab_handler (mov_optab, CCmode);
3602 if (code != CODE_FOR_nothing)
3603 {
3604 x = emit_move_change_mode (CCmode, mode, x, true);
3605 y = emit_move_change_mode (CCmode, mode, y, true);
3606 return emit_insn (GEN_FCN (code) (x, y));
3607 }
3608 }
3609
3610 /* Otherwise, find the MODE_INT mode of the same width. */
3611 ret = emit_move_via_integer (mode, x, y, false);
3612 gcc_assert (ret != NULL);
3613 return ret;
3614 }
3615
3616 /* Return true if word I of OP lies entirely in the
3617 undefined bits of a paradoxical subreg. */
3618
3619 static bool
3620 undefined_operand_subword_p (const_rtx op, int i)
3621 {
3622 if (GET_CODE (op) != SUBREG)
3623 return false;
3624 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3625 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3626 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3627 || known_le (offset, -UNITS_PER_WORD));
3628 }
3629
3630 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3631 MODE is any multi-word or full-word mode that lacks a move_insn
3632 pattern. Note that you will get better code if you define such
3633 patterns, even if they must turn into multiple assembler instructions. */
3634
3635 static rtx_insn *
3636 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3637 {
3638 rtx_insn *last_insn = 0;
3639 rtx_insn *seq;
3640 rtx inner;
3641 bool need_clobber;
3642 int i, mode_size;
3643
3644 /* This function can only handle cases where the number of words is
3645 known at compile time. */
3646 mode_size = GET_MODE_SIZE (mode).to_constant ();
3647 gcc_assert (mode_size >= UNITS_PER_WORD);
3648
3649 /* If X is a push on the stack, do the push now and replace
3650 X with a reference to the stack pointer. */
3651 if (push_operand (x, mode))
3652 x = emit_move_resolve_push (mode, x);
3653
3654 /* If we are in reload, see if either operand is a MEM whose address
3655 is scheduled for replacement. */
3656 if (reload_in_progress && MEM_P (x)
3657 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3658 x = replace_equiv_address_nv (x, inner);
3659 if (reload_in_progress && MEM_P (y)
3660 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3661 y = replace_equiv_address_nv (y, inner);
3662
3663 start_sequence ();
3664
3665 need_clobber = false;
3666 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3667 {
3668 rtx xpart = operand_subword (x, i, 1, mode);
3669 rtx ypart;
3670
3671 /* Do not generate code for a move if it would come entirely
3672 from the undefined bits of a paradoxical subreg. */
3673 if (undefined_operand_subword_p (y, i))
3674 continue;
3675
3676 ypart = operand_subword (y, i, 1, mode);
3677
3678 /* If we can't get a part of Y, put Y into memory if it is a
3679 constant. Otherwise, force it into a register. Then we must
3680 be able to get a part of Y. */
3681 if (ypart == 0 && CONSTANT_P (y))
3682 {
3683 y = use_anchored_address (force_const_mem (mode, y));
3684 ypart = operand_subword (y, i, 1, mode);
3685 }
3686 else if (ypart == 0)
3687 ypart = operand_subword_force (y, i, mode);
3688
3689 gcc_assert (xpart && ypart);
3690
3691 need_clobber |= (GET_CODE (xpart) == SUBREG);
3692
3693 last_insn = emit_move_insn (xpart, ypart);
3694 }
3695
3696 seq = get_insns ();
3697 end_sequence ();
3698
3699 /* Show the output dies here. This is necessary for SUBREGs
3700 of pseudos since we cannot track their lifetimes correctly;
3701 hard regs shouldn't appear here except as return values.
3702 We never want to emit such a clobber after reload. */
3703 if (x != y
3704 && ! (reload_in_progress || reload_completed)
3705 && need_clobber != 0)
3706 emit_clobber (x);
3707
3708 emit_insn (seq);
3709
3710 return last_insn;
3711 }
3712
3713 /* Low level part of emit_move_insn.
3714 Called just like emit_move_insn, but assumes X and Y
3715 are basically valid. */
3716
3717 rtx_insn *
3718 emit_move_insn_1 (rtx x, rtx y)
3719 {
3720 machine_mode mode = GET_MODE (x);
3721 enum insn_code code;
3722
3723 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3724
3725 code = optab_handler (mov_optab, mode);
3726 if (code != CODE_FOR_nothing)
3727 return emit_insn (GEN_FCN (code) (x, y));
3728
3729 /* Expand complex moves by moving real part and imag part. */
3730 if (COMPLEX_MODE_P (mode))
3731 return emit_move_complex (mode, x, y);
3732
3733 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3734 || ALL_FIXED_POINT_MODE_P (mode))
3735 {
3736 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3737
3738 /* If we can't find an integer mode, use multi words. */
3739 if (result)
3740 return result;
3741 else
3742 return emit_move_multi_word (mode, x, y);
3743 }
3744
3745 if (GET_MODE_CLASS (mode) == MODE_CC)
3746 return emit_move_ccmode (mode, x, y);
3747
3748 /* Try using a move pattern for the corresponding integer mode. This is
3749 only safe when simplify_subreg can convert MODE constants into integer
3750 constants. At present, it can only do this reliably if the value
3751 fits within a HOST_WIDE_INT. */
3752 if (!CONSTANT_P (y)
3753 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3754 {
3755 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3756
3757 if (ret)
3758 {
3759 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3760 return ret;
3761 }
3762 }
3763
3764 return emit_move_multi_word (mode, x, y);
3765 }
3766
3767 /* Generate code to copy Y into X.
3768 Both Y and X must have the same mode, except that
3769 Y can be a constant with VOIDmode.
3770 This mode cannot be BLKmode; use emit_block_move for that.
3771
3772 Return the last instruction emitted. */
3773
3774 rtx_insn *
3775 emit_move_insn (rtx x, rtx y)
3776 {
3777 machine_mode mode = GET_MODE (x);
3778 rtx y_cst = NULL_RTX;
3779 rtx_insn *last_insn;
3780 rtx set;
3781
3782 gcc_assert (mode != BLKmode
3783 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3784
3785 if (CONSTANT_P (y))
3786 {
3787 if (optimize
3788 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3789 && (last_insn = compress_float_constant (x, y)))
3790 return last_insn;
3791
3792 y_cst = y;
3793
3794 if (!targetm.legitimate_constant_p (mode, y))
3795 {
3796 y = force_const_mem (mode, y);
3797
3798 /* If the target's cannot_force_const_mem prevented the spill,
3799 assume that the target's move expanders will also take care
3800 of the non-legitimate constant. */
3801 if (!y)
3802 y = y_cst;
3803 else
3804 y = use_anchored_address (y);
3805 }
3806 }
3807
3808 /* If X or Y are memory references, verify that their addresses are valid
3809 for the machine. */
3810 if (MEM_P (x)
3811 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3812 MEM_ADDR_SPACE (x))
3813 && ! push_operand (x, GET_MODE (x))))
3814 x = validize_mem (x);
3815
3816 if (MEM_P (y)
3817 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3818 MEM_ADDR_SPACE (y)))
3819 y = validize_mem (y);
3820
3821 gcc_assert (mode != BLKmode);
3822
3823 last_insn = emit_move_insn_1 (x, y);
3824
3825 if (y_cst && REG_P (x)
3826 && (set = single_set (last_insn)) != NULL_RTX
3827 && SET_DEST (set) == x
3828 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3829 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3830
3831 return last_insn;
3832 }
3833
3834 /* Generate the body of an instruction to copy Y into X.
3835 It may be a list of insns, if one insn isn't enough. */
3836
3837 rtx_insn *
3838 gen_move_insn (rtx x, rtx y)
3839 {
3840 rtx_insn *seq;
3841
3842 start_sequence ();
3843 emit_move_insn_1 (x, y);
3844 seq = get_insns ();
3845 end_sequence ();
3846 return seq;
3847 }
3848
3849 /* If Y is representable exactly in a narrower mode, and the target can
3850 perform the extension directly from constant or memory, then emit the
3851 move as an extension. */
3852
3853 static rtx_insn *
3854 compress_float_constant (rtx x, rtx y)
3855 {
3856 machine_mode dstmode = GET_MODE (x);
3857 machine_mode orig_srcmode = GET_MODE (y);
3858 machine_mode srcmode;
3859 const REAL_VALUE_TYPE *r;
3860 int oldcost, newcost;
3861 bool speed = optimize_insn_for_speed_p ();
3862
3863 r = CONST_DOUBLE_REAL_VALUE (y);
3864
3865 if (targetm.legitimate_constant_p (dstmode, y))
3866 oldcost = set_src_cost (y, orig_srcmode, speed);
3867 else
3868 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3869
3870 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3871 {
3872 enum insn_code ic;
3873 rtx trunc_y;
3874 rtx_insn *last_insn;
3875
3876 /* Skip if the target can't extend this way. */
3877 ic = can_extend_p (dstmode, srcmode, 0);
3878 if (ic == CODE_FOR_nothing)
3879 continue;
3880
3881 /* Skip if the narrowed value isn't exact. */
3882 if (! exact_real_truncate (srcmode, r))
3883 continue;
3884
3885 trunc_y = const_double_from_real_value (*r, srcmode);
3886
3887 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3888 {
3889 /* Skip if the target needs extra instructions to perform
3890 the extension. */
3891 if (!insn_operand_matches (ic, 1, trunc_y))
3892 continue;
3893 /* This is valid, but may not be cheaper than the original. */
3894 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3895 dstmode, speed);
3896 if (oldcost < newcost)
3897 continue;
3898 }
3899 else if (float_extend_from_mem[dstmode][srcmode])
3900 {
3901 trunc_y = force_const_mem (srcmode, trunc_y);
3902 /* This is valid, but may not be cheaper than the original. */
3903 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3904 dstmode, speed);
3905 if (oldcost < newcost)
3906 continue;
3907 trunc_y = validize_mem (trunc_y);
3908 }
3909 else
3910 continue;
3911
3912 /* For CSE's benefit, force the compressed constant pool entry
3913 into a new pseudo. This constant may be used in different modes,
3914 and if not, combine will put things back together for us. */
3915 trunc_y = force_reg (srcmode, trunc_y);
3916
3917 /* If x is a hard register, perform the extension into a pseudo,
3918 so that e.g. stack realignment code is aware of it. */
3919 rtx target = x;
3920 if (REG_P (x) && HARD_REGISTER_P (x))
3921 target = gen_reg_rtx (dstmode);
3922
3923 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3924 last_insn = get_last_insn ();
3925
3926 if (REG_P (target))
3927 set_unique_reg_note (last_insn, REG_EQUAL, y);
3928
3929 if (target != x)
3930 return emit_move_insn (x, target);
3931 return last_insn;
3932 }
3933
3934 return NULL;
3935 }
3936 \f
3937 /* Pushing data onto the stack. */
3938
3939 /* Push a block of length SIZE (perhaps variable)
3940 and return an rtx to address the beginning of the block.
3941 The value may be virtual_outgoing_args_rtx.
3942
3943 EXTRA is the number of bytes of padding to push in addition to SIZE.
3944 BELOW nonzero means this padding comes at low addresses;
3945 otherwise, the padding comes at high addresses. */
3946
3947 rtx
3948 push_block (rtx size, poly_int64 extra, int below)
3949 {
3950 rtx temp;
3951
3952 size = convert_modes (Pmode, ptr_mode, size, 1);
3953 if (CONSTANT_P (size))
3954 anti_adjust_stack (plus_constant (Pmode, size, extra));
3955 else if (REG_P (size) && known_eq (extra, 0))
3956 anti_adjust_stack (size);
3957 else
3958 {
3959 temp = copy_to_mode_reg (Pmode, size);
3960 if (maybe_ne (extra, 0))
3961 temp = expand_binop (Pmode, add_optab, temp,
3962 gen_int_mode (extra, Pmode),
3963 temp, 0, OPTAB_LIB_WIDEN);
3964 anti_adjust_stack (temp);
3965 }
3966
3967 if (STACK_GROWS_DOWNWARD)
3968 {
3969 temp = virtual_outgoing_args_rtx;
3970 if (maybe_ne (extra, 0) && below)
3971 temp = plus_constant (Pmode, temp, extra);
3972 }
3973 else
3974 {
3975 poly_int64 csize;
3976 if (poly_int_rtx_p (size, &csize))
3977 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3978 -csize - (below ? 0 : extra));
3979 else if (maybe_ne (extra, 0) && !below)
3980 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3981 negate_rtx (Pmode, plus_constant (Pmode, size,
3982 extra)));
3983 else
3984 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3985 negate_rtx (Pmode, size));
3986 }
3987
3988 return memory_address (NARROWEST_INT_MODE, temp);
3989 }
3990
3991 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3992
3993 static rtx
3994 mem_autoinc_base (rtx mem)
3995 {
3996 if (MEM_P (mem))
3997 {
3998 rtx addr = XEXP (mem, 0);
3999 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4000 return XEXP (addr, 0);
4001 }
4002 return NULL;
4003 }
4004
4005 /* A utility routine used here, in reload, and in try_split. The insns
4006 after PREV up to and including LAST are known to adjust the stack,
4007 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4008 placing notes as appropriate. PREV may be NULL, indicating the
4009 entire insn sequence prior to LAST should be scanned.
4010
4011 The set of allowed stack pointer modifications is small:
4012 (1) One or more auto-inc style memory references (aka pushes),
4013 (2) One or more addition/subtraction with the SP as destination,
4014 (3) A single move insn with the SP as destination,
4015 (4) A call_pop insn,
4016 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4017
4018 Insns in the sequence that do not modify the SP are ignored,
4019 except for noreturn calls.
4020
4021 The return value is the amount of adjustment that can be trivially
4022 verified, via immediate operand or auto-inc. If the adjustment
4023 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4024
4025 poly_int64
4026 find_args_size_adjust (rtx_insn *insn)
4027 {
4028 rtx dest, set, pat;
4029 int i;
4030
4031 pat = PATTERN (insn);
4032 set = NULL;
4033
4034 /* Look for a call_pop pattern. */
4035 if (CALL_P (insn))
4036 {
4037 /* We have to allow non-call_pop patterns for the case
4038 of emit_single_push_insn of a TLS address. */
4039 if (GET_CODE (pat) != PARALLEL)
4040 return 0;
4041
4042 /* All call_pop have a stack pointer adjust in the parallel.
4043 The call itself is always first, and the stack adjust is
4044 usually last, so search from the end. */
4045 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4046 {
4047 set = XVECEXP (pat, 0, i);
4048 if (GET_CODE (set) != SET)
4049 continue;
4050 dest = SET_DEST (set);
4051 if (dest == stack_pointer_rtx)
4052 break;
4053 }
4054 /* We'd better have found the stack pointer adjust. */
4055 if (i == 0)
4056 return 0;
4057 /* Fall through to process the extracted SET and DEST
4058 as if it was a standalone insn. */
4059 }
4060 else if (GET_CODE (pat) == SET)
4061 set = pat;
4062 else if ((set = single_set (insn)) != NULL)
4063 ;
4064 else if (GET_CODE (pat) == PARALLEL)
4065 {
4066 /* ??? Some older ports use a parallel with a stack adjust
4067 and a store for a PUSH_ROUNDING pattern, rather than a
4068 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4069 /* ??? See h8300 and m68k, pushqi1. */
4070 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4071 {
4072 set = XVECEXP (pat, 0, i);
4073 if (GET_CODE (set) != SET)
4074 continue;
4075 dest = SET_DEST (set);
4076 if (dest == stack_pointer_rtx)
4077 break;
4078
4079 /* We do not expect an auto-inc of the sp in the parallel. */
4080 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4081 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4082 != stack_pointer_rtx);
4083 }
4084 if (i < 0)
4085 return 0;
4086 }
4087 else
4088 return 0;
4089
4090 dest = SET_DEST (set);
4091
4092 /* Look for direct modifications of the stack pointer. */
4093 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4094 {
4095 /* Look for a trivial adjustment, otherwise assume nothing. */
4096 /* Note that the SPU restore_stack_block pattern refers to
4097 the stack pointer in V4SImode. Consider that non-trivial. */
4098 poly_int64 offset;
4099 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4100 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4101 return offset;
4102 /* ??? Reload can generate no-op moves, which will be cleaned
4103 up later. Recognize it and continue searching. */
4104 else if (rtx_equal_p (dest, SET_SRC (set)))
4105 return 0;
4106 else
4107 return HOST_WIDE_INT_MIN;
4108 }
4109 else
4110 {
4111 rtx mem, addr;
4112
4113 /* Otherwise only think about autoinc patterns. */
4114 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4115 {
4116 mem = dest;
4117 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4118 != stack_pointer_rtx);
4119 }
4120 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4121 mem = SET_SRC (set);
4122 else
4123 return 0;
4124
4125 addr = XEXP (mem, 0);
4126 switch (GET_CODE (addr))
4127 {
4128 case PRE_INC:
4129 case POST_INC:
4130 return GET_MODE_SIZE (GET_MODE (mem));
4131 case PRE_DEC:
4132 case POST_DEC:
4133 return -GET_MODE_SIZE (GET_MODE (mem));
4134 case PRE_MODIFY:
4135 case POST_MODIFY:
4136 addr = XEXP (addr, 1);
4137 gcc_assert (GET_CODE (addr) == PLUS);
4138 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4139 return rtx_to_poly_int64 (XEXP (addr, 1));
4140 default:
4141 gcc_unreachable ();
4142 }
4143 }
4144 }
4145
4146 poly_int64
4147 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4148 poly_int64 end_args_size)
4149 {
4150 poly_int64 args_size = end_args_size;
4151 bool saw_unknown = false;
4152 rtx_insn *insn;
4153
4154 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4155 {
4156 if (!NONDEBUG_INSN_P (insn))
4157 continue;
4158
4159 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4160 a call argument containing a TLS address that itself requires
4161 a call to __tls_get_addr. The handling of stack_pointer_delta
4162 in emit_single_push_insn is supposed to ensure that any such
4163 notes are already correct. */
4164 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4165 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4166
4167 poly_int64 this_delta = find_args_size_adjust (insn);
4168 if (known_eq (this_delta, 0))
4169 {
4170 if (!CALL_P (insn)
4171 || ACCUMULATE_OUTGOING_ARGS
4172 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4173 continue;
4174 }
4175
4176 gcc_assert (!saw_unknown);
4177 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4178 saw_unknown = true;
4179
4180 if (!note)
4181 add_args_size_note (insn, args_size);
4182 if (STACK_GROWS_DOWNWARD)
4183 this_delta = -poly_uint64 (this_delta);
4184
4185 if (saw_unknown)
4186 args_size = HOST_WIDE_INT_MIN;
4187 else
4188 args_size -= this_delta;
4189 }
4190
4191 return args_size;
4192 }
4193
4194 #ifdef PUSH_ROUNDING
4195 /* Emit single push insn. */
4196
4197 static void
4198 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4199 {
4200 rtx dest_addr;
4201 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4202 rtx dest;
4203 enum insn_code icode;
4204
4205 /* If there is push pattern, use it. Otherwise try old way of throwing
4206 MEM representing push operation to move expander. */
4207 icode = optab_handler (push_optab, mode);
4208 if (icode != CODE_FOR_nothing)
4209 {
4210 class expand_operand ops[1];
4211
4212 create_input_operand (&ops[0], x, mode);
4213 if (maybe_expand_insn (icode, 1, ops))
4214 return;
4215 }
4216 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4217 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4218 /* If we are to pad downward, adjust the stack pointer first and
4219 then store X into the stack location using an offset. This is
4220 because emit_move_insn does not know how to pad; it does not have
4221 access to type. */
4222 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4223 {
4224 emit_move_insn (stack_pointer_rtx,
4225 expand_binop (Pmode,
4226 STACK_GROWS_DOWNWARD ? sub_optab
4227 : add_optab,
4228 stack_pointer_rtx,
4229 gen_int_mode (rounded_size, Pmode),
4230 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4231
4232 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4233 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4234 /* We have already decremented the stack pointer, so get the
4235 previous value. */
4236 offset += rounded_size;
4237
4238 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4239 /* We have already incremented the stack pointer, so get the
4240 previous value. */
4241 offset -= rounded_size;
4242
4243 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4244 }
4245 else
4246 {
4247 if (STACK_GROWS_DOWNWARD)
4248 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4249 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4250 else
4251 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4252 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4253
4254 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4255 }
4256
4257 dest = gen_rtx_MEM (mode, dest_addr);
4258
4259 if (type != 0)
4260 {
4261 set_mem_attributes (dest, type, 1);
4262
4263 if (cfun->tail_call_marked)
4264 /* Function incoming arguments may overlap with sibling call
4265 outgoing arguments and we cannot allow reordering of reads
4266 from function arguments with stores to outgoing arguments
4267 of sibling calls. */
4268 set_mem_alias_set (dest, 0);
4269 }
4270 emit_move_insn (dest, x);
4271 }
4272
4273 /* Emit and annotate a single push insn. */
4274
4275 static void
4276 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4277 {
4278 poly_int64 delta, old_delta = stack_pointer_delta;
4279 rtx_insn *prev = get_last_insn ();
4280 rtx_insn *last;
4281
4282 emit_single_push_insn_1 (mode, x, type);
4283
4284 /* Adjust stack_pointer_delta to describe the situation after the push
4285 we just performed. Note that we must do this after the push rather
4286 than before the push in case calculating X needs pushes and pops of
4287 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4288 for such pushes and pops must not include the effect of the future
4289 push of X. */
4290 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4291
4292 last = get_last_insn ();
4293
4294 /* Notice the common case where we emitted exactly one insn. */
4295 if (PREV_INSN (last) == prev)
4296 {
4297 add_args_size_note (last, stack_pointer_delta);
4298 return;
4299 }
4300
4301 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4302 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4303 || known_eq (delta, old_delta));
4304 }
4305 #endif
4306
4307 /* If reading SIZE bytes from X will end up reading from
4308 Y return the number of bytes that overlap. Return -1
4309 if there is no overlap or -2 if we can't determine
4310 (for example when X and Y have different base registers). */
4311
4312 static int
4313 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4314 {
4315 rtx tmp = plus_constant (Pmode, x, size);
4316 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4317
4318 if (!CONST_INT_P (sub))
4319 return -2;
4320
4321 HOST_WIDE_INT val = INTVAL (sub);
4322
4323 return IN_RANGE (val, 1, size) ? val : -1;
4324 }
4325
4326 /* Generate code to push X onto the stack, assuming it has mode MODE and
4327 type TYPE.
4328 MODE is redundant except when X is a CONST_INT (since they don't
4329 carry mode info).
4330 SIZE is an rtx for the size of data to be copied (in bytes),
4331 needed only if X is BLKmode.
4332 Return true if successful. May return false if asked to push a
4333 partial argument during a sibcall optimization (as specified by
4334 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4335 to not overlap.
4336
4337 ALIGN (in bits) is maximum alignment we can assume.
4338
4339 If PARTIAL and REG are both nonzero, then copy that many of the first
4340 bytes of X into registers starting with REG, and push the rest of X.
4341 The amount of space pushed is decreased by PARTIAL bytes.
4342 REG must be a hard register in this case.
4343 If REG is zero but PARTIAL is not, take any all others actions for an
4344 argument partially in registers, but do not actually load any
4345 registers.
4346
4347 EXTRA is the amount in bytes of extra space to leave next to this arg.
4348 This is ignored if an argument block has already been allocated.
4349
4350 On a machine that lacks real push insns, ARGS_ADDR is the address of
4351 the bottom of the argument block for this call. We use indexing off there
4352 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4353 argument block has not been preallocated.
4354
4355 ARGS_SO_FAR is the size of args previously pushed for this call.
4356
4357 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4358 for arguments passed in registers. If nonzero, it will be the number
4359 of bytes required. */
4360
4361 bool
4362 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4363 unsigned int align, int partial, rtx reg, poly_int64 extra,
4364 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4365 rtx alignment_pad, bool sibcall_p)
4366 {
4367 rtx xinner;
4368 pad_direction stack_direction
4369 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4370
4371 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4372 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4373 Default is below for small data on big-endian machines; else above. */
4374 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4375
4376 /* Invert direction if stack is post-decrement.
4377 FIXME: why? */
4378 if (STACK_PUSH_CODE == POST_DEC)
4379 if (where_pad != PAD_NONE)
4380 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4381
4382 xinner = x;
4383
4384 int nregs = partial / UNITS_PER_WORD;
4385 rtx *tmp_regs = NULL;
4386 int overlapping = 0;
4387
4388 if (mode == BLKmode
4389 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4390 {
4391 /* Copy a block into the stack, entirely or partially. */
4392
4393 rtx temp;
4394 int used;
4395 int offset;
4396 int skip;
4397
4398 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4399 used = partial - offset;
4400
4401 if (mode != BLKmode)
4402 {
4403 /* A value is to be stored in an insufficiently aligned
4404 stack slot; copy via a suitably aligned slot if
4405 necessary. */
4406 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4407 if (!MEM_P (xinner))
4408 {
4409 temp = assign_temp (type, 1, 1);
4410 emit_move_insn (temp, xinner);
4411 xinner = temp;
4412 }
4413 }
4414
4415 gcc_assert (size);
4416
4417 /* USED is now the # of bytes we need not copy to the stack
4418 because registers will take care of them. */
4419
4420 if (partial != 0)
4421 xinner = adjust_address (xinner, BLKmode, used);
4422
4423 /* If the partial register-part of the arg counts in its stack size,
4424 skip the part of stack space corresponding to the registers.
4425 Otherwise, start copying to the beginning of the stack space,
4426 by setting SKIP to 0. */
4427 skip = (reg_parm_stack_space == 0) ? 0 : used;
4428
4429 #ifdef PUSH_ROUNDING
4430 /* Do it with several push insns if that doesn't take lots of insns
4431 and if there is no difficulty with push insns that skip bytes
4432 on the stack for alignment purposes. */
4433 if (args_addr == 0
4434 && PUSH_ARGS
4435 && CONST_INT_P (size)
4436 && skip == 0
4437 && MEM_ALIGN (xinner) >= align
4438 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4439 /* Here we avoid the case of a structure whose weak alignment
4440 forces many pushes of a small amount of data,
4441 and such small pushes do rounding that causes trouble. */
4442 && ((!targetm.slow_unaligned_access (word_mode, align))
4443 || align >= BIGGEST_ALIGNMENT
4444 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4445 align / BITS_PER_UNIT))
4446 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4447 {
4448 /* Push padding now if padding above and stack grows down,
4449 or if padding below and stack grows up.
4450 But if space already allocated, this has already been done. */
4451 if (maybe_ne (extra, 0)
4452 && args_addr == 0
4453 && where_pad != PAD_NONE
4454 && where_pad != stack_direction)
4455 anti_adjust_stack (gen_int_mode (extra, Pmode));
4456
4457 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4458 RETURN_BEGIN);
4459 }
4460 else
4461 #endif /* PUSH_ROUNDING */
4462 {
4463 rtx target;
4464
4465 /* Otherwise make space on the stack and copy the data
4466 to the address of that space. */
4467
4468 /* Deduct words put into registers from the size we must copy. */
4469 if (partial != 0)
4470 {
4471 if (CONST_INT_P (size))
4472 size = GEN_INT (INTVAL (size) - used);
4473 else
4474 size = expand_binop (GET_MODE (size), sub_optab, size,
4475 gen_int_mode (used, GET_MODE (size)),
4476 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4477 }
4478
4479 /* Get the address of the stack space.
4480 In this case, we do not deal with EXTRA separately.
4481 A single stack adjust will do. */
4482 poly_int64 const_args_so_far;
4483 if (! args_addr)
4484 {
4485 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4486 extra = 0;
4487 }
4488 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
4489 temp = memory_address (BLKmode,
4490 plus_constant (Pmode, args_addr,
4491 skip + const_args_so_far));
4492 else
4493 temp = memory_address (BLKmode,
4494 plus_constant (Pmode,
4495 gen_rtx_PLUS (Pmode,
4496 args_addr,
4497 args_so_far),
4498 skip));
4499
4500 if (!ACCUMULATE_OUTGOING_ARGS)
4501 {
4502 /* If the source is referenced relative to the stack pointer,
4503 copy it to another register to stabilize it. We do not need
4504 to do this if we know that we won't be changing sp. */
4505
4506 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4507 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4508 temp = copy_to_reg (temp);
4509 }
4510
4511 target = gen_rtx_MEM (BLKmode, temp);
4512
4513 /* We do *not* set_mem_attributes here, because incoming arguments
4514 may overlap with sibling call outgoing arguments and we cannot
4515 allow reordering of reads from function arguments with stores
4516 to outgoing arguments of sibling calls. We do, however, want
4517 to record the alignment of the stack slot. */
4518 /* ALIGN may well be better aligned than TYPE, e.g. due to
4519 PARM_BOUNDARY. Assume the caller isn't lying. */
4520 set_mem_align (target, align);
4521
4522 /* If part should go in registers and pushing to that part would
4523 overwrite some of the values that need to go into regs, load the
4524 overlapping values into temporary pseudos to be moved into the hard
4525 regs at the end after the stack pushing has completed.
4526 We cannot load them directly into the hard regs here because
4527 they can be clobbered by the block move expansions.
4528 See PR 65358. */
4529
4530 if (partial > 0 && reg != 0 && mode == BLKmode
4531 && GET_CODE (reg) != PARALLEL)
4532 {
4533 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4534 if (overlapping > 0)
4535 {
4536 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4537 overlapping /= UNITS_PER_WORD;
4538
4539 tmp_regs = XALLOCAVEC (rtx, overlapping);
4540
4541 for (int i = 0; i < overlapping; i++)
4542 tmp_regs[i] = gen_reg_rtx (word_mode);
4543
4544 for (int i = 0; i < overlapping; i++)
4545 emit_move_insn (tmp_regs[i],
4546 operand_subword_force (target, i, mode));
4547 }
4548 else if (overlapping == -1)
4549 overlapping = 0;
4550 /* Could not determine whether there is overlap.
4551 Fail the sibcall. */
4552 else
4553 {
4554 overlapping = 0;
4555 if (sibcall_p)
4556 return false;
4557 }
4558 }
4559 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4560 }
4561 }
4562 else if (partial > 0)
4563 {
4564 /* Scalar partly in registers. This case is only supported
4565 for fixed-wdth modes. */
4566 int num_words = GET_MODE_SIZE (mode).to_constant ();
4567 num_words /= UNITS_PER_WORD;
4568 int i;
4569 int not_stack;
4570 /* # bytes of start of argument
4571 that we must make space for but need not store. */
4572 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4573 int args_offset = INTVAL (args_so_far);
4574 int skip;
4575
4576 /* Push padding now if padding above and stack grows down,
4577 or if padding below and stack grows up.
4578 But if space already allocated, this has already been done. */
4579 if (maybe_ne (extra, 0)
4580 && args_addr == 0
4581 && where_pad != PAD_NONE
4582 && where_pad != stack_direction)
4583 anti_adjust_stack (gen_int_mode (extra, Pmode));
4584
4585 /* If we make space by pushing it, we might as well push
4586 the real data. Otherwise, we can leave OFFSET nonzero
4587 and leave the space uninitialized. */
4588 if (args_addr == 0)
4589 offset = 0;
4590
4591 /* Now NOT_STACK gets the number of words that we don't need to
4592 allocate on the stack. Convert OFFSET to words too. */
4593 not_stack = (partial - offset) / UNITS_PER_WORD;
4594 offset /= UNITS_PER_WORD;
4595
4596 /* If the partial register-part of the arg counts in its stack size,
4597 skip the part of stack space corresponding to the registers.
4598 Otherwise, start copying to the beginning of the stack space,
4599 by setting SKIP to 0. */
4600 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4601
4602 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4603 x = validize_mem (force_const_mem (mode, x));
4604
4605 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4606 SUBREGs of such registers are not allowed. */
4607 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4608 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4609 x = copy_to_reg (x);
4610
4611 /* Loop over all the words allocated on the stack for this arg. */
4612 /* We can do it by words, because any scalar bigger than a word
4613 has a size a multiple of a word. */
4614 for (i = num_words - 1; i >= not_stack; i--)
4615 if (i >= not_stack + offset)
4616 if (!emit_push_insn (operand_subword_force (x, i, mode),
4617 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4618 0, args_addr,
4619 GEN_INT (args_offset + ((i - not_stack + skip)
4620 * UNITS_PER_WORD)),
4621 reg_parm_stack_space, alignment_pad, sibcall_p))
4622 return false;
4623 }
4624 else
4625 {
4626 rtx addr;
4627 rtx dest;
4628
4629 /* Push padding now if padding above and stack grows down,
4630 or if padding below and stack grows up.
4631 But if space already allocated, this has already been done. */
4632 if (maybe_ne (extra, 0)
4633 && args_addr == 0
4634 && where_pad != PAD_NONE
4635 && where_pad != stack_direction)
4636 anti_adjust_stack (gen_int_mode (extra, Pmode));
4637
4638 #ifdef PUSH_ROUNDING
4639 if (args_addr == 0 && PUSH_ARGS)
4640 emit_single_push_insn (mode, x, type);
4641 else
4642 #endif
4643 {
4644 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4645 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4646
4647 /* We do *not* set_mem_attributes here, because incoming arguments
4648 may overlap with sibling call outgoing arguments and we cannot
4649 allow reordering of reads from function arguments with stores
4650 to outgoing arguments of sibling calls. We do, however, want
4651 to record the alignment of the stack slot. */
4652 /* ALIGN may well be better aligned than TYPE, e.g. due to
4653 PARM_BOUNDARY. Assume the caller isn't lying. */
4654 set_mem_align (dest, align);
4655
4656 emit_move_insn (dest, x);
4657 }
4658 }
4659
4660 /* Move the partial arguments into the registers and any overlapping
4661 values that we moved into the pseudos in tmp_regs. */
4662 if (partial > 0 && reg != 0)
4663 {
4664 /* Handle calls that pass values in multiple non-contiguous locations.
4665 The Irix 6 ABI has examples of this. */
4666 if (GET_CODE (reg) == PARALLEL)
4667 emit_group_load (reg, x, type, -1);
4668 else
4669 {
4670 gcc_assert (partial % UNITS_PER_WORD == 0);
4671 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4672
4673 for (int i = 0; i < overlapping; i++)
4674 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4675 + nregs - overlapping + i),
4676 tmp_regs[i]);
4677
4678 }
4679 }
4680
4681 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4682 anti_adjust_stack (gen_int_mode (extra, Pmode));
4683
4684 if (alignment_pad && args_addr == 0)
4685 anti_adjust_stack (alignment_pad);
4686
4687 return true;
4688 }
4689 \f
4690 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4691 operations. */
4692
4693 static rtx
4694 get_subtarget (rtx x)
4695 {
4696 return (optimize
4697 || x == 0
4698 /* Only registers can be subtargets. */
4699 || !REG_P (x)
4700 /* Don't use hard regs to avoid extending their life. */
4701 || REGNO (x) < FIRST_PSEUDO_REGISTER
4702 ? 0 : x);
4703 }
4704
4705 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4706 FIELD is a bitfield. Returns true if the optimization was successful,
4707 and there's nothing else to do. */
4708
4709 static bool
4710 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4711 poly_uint64 pbitpos,
4712 poly_uint64 pbitregion_start,
4713 poly_uint64 pbitregion_end,
4714 machine_mode mode1, rtx str_rtx,
4715 tree to, tree src, bool reverse)
4716 {
4717 /* str_mode is not guaranteed to be a scalar type. */
4718 machine_mode str_mode = GET_MODE (str_rtx);
4719 unsigned int str_bitsize;
4720 tree op0, op1;
4721 rtx value, result;
4722 optab binop;
4723 gimple *srcstmt;
4724 enum tree_code code;
4725
4726 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4727 if (mode1 != VOIDmode
4728 || !pbitsize.is_constant (&bitsize)
4729 || !pbitpos.is_constant (&bitpos)
4730 || !pbitregion_start.is_constant (&bitregion_start)
4731 || !pbitregion_end.is_constant (&bitregion_end)
4732 || bitsize >= BITS_PER_WORD
4733 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4734 || str_bitsize > BITS_PER_WORD
4735 || TREE_SIDE_EFFECTS (to)
4736 || TREE_THIS_VOLATILE (to))
4737 return false;
4738
4739 STRIP_NOPS (src);
4740 if (TREE_CODE (src) != SSA_NAME)
4741 return false;
4742 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4743 return false;
4744
4745 srcstmt = get_gimple_for_ssa_name (src);
4746 if (!srcstmt
4747 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4748 return false;
4749
4750 code = gimple_assign_rhs_code (srcstmt);
4751
4752 op0 = gimple_assign_rhs1 (srcstmt);
4753
4754 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4755 to find its initialization. Hopefully the initialization will
4756 be from a bitfield load. */
4757 if (TREE_CODE (op0) == SSA_NAME)
4758 {
4759 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4760
4761 /* We want to eventually have OP0 be the same as TO, which
4762 should be a bitfield. */
4763 if (!op0stmt
4764 || !is_gimple_assign (op0stmt)
4765 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4766 return false;
4767 op0 = gimple_assign_rhs1 (op0stmt);
4768 }
4769
4770 op1 = gimple_assign_rhs2 (srcstmt);
4771
4772 if (!operand_equal_p (to, op0, 0))
4773 return false;
4774
4775 if (MEM_P (str_rtx))
4776 {
4777 unsigned HOST_WIDE_INT offset1;
4778
4779 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4780 str_bitsize = BITS_PER_WORD;
4781
4782 scalar_int_mode best_mode;
4783 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4784 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4785 return false;
4786 str_mode = best_mode;
4787 str_bitsize = GET_MODE_BITSIZE (best_mode);
4788
4789 offset1 = bitpos;
4790 bitpos %= str_bitsize;
4791 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4792 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4793 }
4794 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4795 return false;
4796
4797 /* If the bit field covers the whole REG/MEM, store_field
4798 will likely generate better code. */
4799 if (bitsize >= str_bitsize)
4800 return false;
4801
4802 /* We can't handle fields split across multiple entities. */
4803 if (bitpos + bitsize > str_bitsize)
4804 return false;
4805
4806 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4807 bitpos = str_bitsize - bitpos - bitsize;
4808
4809 switch (code)
4810 {
4811 case PLUS_EXPR:
4812 case MINUS_EXPR:
4813 /* For now, just optimize the case of the topmost bitfield
4814 where we don't need to do any masking and also
4815 1 bit bitfields where xor can be used.
4816 We might win by one instruction for the other bitfields
4817 too if insv/extv instructions aren't used, so that
4818 can be added later. */
4819 if ((reverse || bitpos + bitsize != str_bitsize)
4820 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4821 break;
4822
4823 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4824 value = convert_modes (str_mode,
4825 TYPE_MODE (TREE_TYPE (op1)), value,
4826 TYPE_UNSIGNED (TREE_TYPE (op1)));
4827
4828 /* We may be accessing data outside the field, which means
4829 we can alias adjacent data. */
4830 if (MEM_P (str_rtx))
4831 {
4832 str_rtx = shallow_copy_rtx (str_rtx);
4833 set_mem_alias_set (str_rtx, 0);
4834 set_mem_expr (str_rtx, 0);
4835 }
4836
4837 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4838 {
4839 value = expand_and (str_mode, value, const1_rtx, NULL);
4840 binop = xor_optab;
4841 }
4842 else
4843 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4844
4845 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4846 if (reverse)
4847 value = flip_storage_order (str_mode, value);
4848 result = expand_binop (str_mode, binop, str_rtx,
4849 value, str_rtx, 1, OPTAB_WIDEN);
4850 if (result != str_rtx)
4851 emit_move_insn (str_rtx, result);
4852 return true;
4853
4854 case BIT_IOR_EXPR:
4855 case BIT_XOR_EXPR:
4856 if (TREE_CODE (op1) != INTEGER_CST)
4857 break;
4858 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4859 value = convert_modes (str_mode,
4860 TYPE_MODE (TREE_TYPE (op1)), value,
4861 TYPE_UNSIGNED (TREE_TYPE (op1)));
4862
4863 /* We may be accessing data outside the field, which means
4864 we can alias adjacent data. */
4865 if (MEM_P (str_rtx))
4866 {
4867 str_rtx = shallow_copy_rtx (str_rtx);
4868 set_mem_alias_set (str_rtx, 0);
4869 set_mem_expr (str_rtx, 0);
4870 }
4871
4872 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4873 if (bitpos + bitsize != str_bitsize)
4874 {
4875 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4876 str_mode);
4877 value = expand_and (str_mode, value, mask, NULL_RTX);
4878 }
4879 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4880 if (reverse)
4881 value = flip_storage_order (str_mode, value);
4882 result = expand_binop (str_mode, binop, str_rtx,
4883 value, str_rtx, 1, OPTAB_WIDEN);
4884 if (result != str_rtx)
4885 emit_move_insn (str_rtx, result);
4886 return true;
4887
4888 default:
4889 break;
4890 }
4891
4892 return false;
4893 }
4894
4895 /* In the C++ memory model, consecutive bit fields in a structure are
4896 considered one memory location.
4897
4898 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4899 returns the bit range of consecutive bits in which this COMPONENT_REF
4900 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4901 and *OFFSET may be adjusted in the process.
4902
4903 If the access does not need to be restricted, 0 is returned in both
4904 *BITSTART and *BITEND. */
4905
4906 void
4907 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
4908 poly_int64_pod *bitpos, tree *offset)
4909 {
4910 poly_int64 bitoffset;
4911 tree field, repr;
4912
4913 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4914
4915 field = TREE_OPERAND (exp, 1);
4916 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4917 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4918 need to limit the range we can access. */
4919 if (!repr)
4920 {
4921 *bitstart = *bitend = 0;
4922 return;
4923 }
4924
4925 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4926 part of a larger bit field, then the representative does not serve any
4927 useful purpose. This can occur in Ada. */
4928 if (handled_component_p (TREE_OPERAND (exp, 0)))
4929 {
4930 machine_mode rmode;
4931 poly_int64 rbitsize, rbitpos;
4932 tree roffset;
4933 int unsignedp, reversep, volatilep = 0;
4934 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4935 &roffset, &rmode, &unsignedp, &reversep,
4936 &volatilep);
4937 if (!multiple_p (rbitpos, BITS_PER_UNIT))
4938 {
4939 *bitstart = *bitend = 0;
4940 return;
4941 }
4942 }
4943
4944 /* Compute the adjustment to bitpos from the offset of the field
4945 relative to the representative. DECL_FIELD_OFFSET of field and
4946 repr are the same by construction if they are not constants,
4947 see finish_bitfield_layout. */
4948 poly_uint64 field_offset, repr_offset;
4949 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
4950 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
4951 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
4952 else
4953 bitoffset = 0;
4954 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4955 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4956
4957 /* If the adjustment is larger than bitpos, we would have a negative bit
4958 position for the lower bound and this may wreak havoc later. Adjust
4959 offset and bitpos to make the lower bound non-negative in that case. */
4960 if (maybe_gt (bitoffset, *bitpos))
4961 {
4962 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
4963 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
4964
4965 *bitpos += adjust_bits;
4966 if (*offset == NULL_TREE)
4967 *offset = size_int (-adjust_bytes);
4968 else
4969 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
4970 *bitstart = 0;
4971 }
4972 else
4973 *bitstart = *bitpos - bitoffset;
4974
4975 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
4976 }
4977
4978 /* Returns true if BASE is a DECL that does not reside in memory and
4979 has non-BLKmode. DECL_RTL must not be a MEM; if
4980 DECL_RTL was not set yet, return false. */
4981
4982 static inline bool
4983 non_mem_decl_p (tree base)
4984 {
4985 if (!DECL_P (base)
4986 || TREE_ADDRESSABLE (base)
4987 || DECL_MODE (base) == BLKmode)
4988 return false;
4989
4990 if (!DECL_RTL_SET_P (base))
4991 return false;
4992
4993 return (!MEM_P (DECL_RTL (base)));
4994 }
4995
4996 /* Returns true if REF refers to an object that does not
4997 reside in memory and has non-BLKmode. */
4998
4999 static inline bool
5000 mem_ref_refers_to_non_mem_p (tree ref)
5001 {
5002 tree base;
5003
5004 if (TREE_CODE (ref) == MEM_REF
5005 || TREE_CODE (ref) == TARGET_MEM_REF)
5006 {
5007 tree addr = TREE_OPERAND (ref, 0);
5008
5009 if (TREE_CODE (addr) != ADDR_EXPR)
5010 return false;
5011
5012 base = TREE_OPERAND (addr, 0);
5013 }
5014 else
5015 base = ref;
5016
5017 return non_mem_decl_p (base);
5018 }
5019
5020 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5021 is true, try generating a nontemporal store. */
5022
5023 void
5024 expand_assignment (tree to, tree from, bool nontemporal)
5025 {
5026 rtx to_rtx = 0;
5027 rtx result;
5028 machine_mode mode;
5029 unsigned int align;
5030 enum insn_code icode;
5031
5032 /* Don't crash if the lhs of the assignment was erroneous. */
5033 if (TREE_CODE (to) == ERROR_MARK)
5034 {
5035 expand_normal (from);
5036 return;
5037 }
5038
5039 /* Optimize away no-op moves without side-effects. */
5040 if (operand_equal_p (to, from, 0))
5041 return;
5042
5043 /* Handle misaligned stores. */
5044 mode = TYPE_MODE (TREE_TYPE (to));
5045 if ((TREE_CODE (to) == MEM_REF
5046 || TREE_CODE (to) == TARGET_MEM_REF
5047 || DECL_P (to))
5048 && mode != BLKmode
5049 && !mem_ref_refers_to_non_mem_p (to)
5050 && ((align = get_object_alignment (to))
5051 < GET_MODE_ALIGNMENT (mode))
5052 && (((icode = optab_handler (movmisalign_optab, mode))
5053 != CODE_FOR_nothing)
5054 || targetm.slow_unaligned_access (mode, align)))
5055 {
5056 rtx reg, mem;
5057
5058 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5059 reg = force_not_mem (reg);
5060 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5061 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5062 reg = flip_storage_order (mode, reg);
5063
5064 if (icode != CODE_FOR_nothing)
5065 {
5066 class expand_operand ops[2];
5067
5068 create_fixed_operand (&ops[0], mem);
5069 create_input_operand (&ops[1], reg, mode);
5070 /* The movmisalign<mode> pattern cannot fail, else the assignment
5071 would silently be omitted. */
5072 expand_insn (icode, 2, ops);
5073 }
5074 else
5075 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5076 false);
5077 return;
5078 }
5079
5080 /* Assignment of a structure component needs special treatment
5081 if the structure component's rtx is not simply a MEM.
5082 Assignment of an array element at a constant index, and assignment of
5083 an array element in an unaligned packed structure field, has the same
5084 problem. Same for (partially) storing into a non-memory object. */
5085 if (handled_component_p (to)
5086 || (TREE_CODE (to) == MEM_REF
5087 && (REF_REVERSE_STORAGE_ORDER (to)
5088 || mem_ref_refers_to_non_mem_p (to)))
5089 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5090 {
5091 machine_mode mode1;
5092 poly_int64 bitsize, bitpos;
5093 poly_uint64 bitregion_start = 0;
5094 poly_uint64 bitregion_end = 0;
5095 tree offset;
5096 int unsignedp, reversep, volatilep = 0;
5097 tree tem;
5098
5099 push_temp_slots ();
5100 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5101 &unsignedp, &reversep, &volatilep);
5102
5103 /* Make sure bitpos is not negative, it can wreak havoc later. */
5104 if (maybe_lt (bitpos, 0))
5105 {
5106 gcc_assert (offset == NULL_TREE);
5107 offset = size_int (bits_to_bytes_round_down (bitpos));
5108 bitpos = num_trailing_bits (bitpos);
5109 }
5110
5111 if (TREE_CODE (to) == COMPONENT_REF
5112 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5113 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5114 /* The C++ memory model naturally applies to byte-aligned fields.
5115 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5116 BITSIZE are not byte-aligned, there is no need to limit the range
5117 we can access. This can occur with packed structures in Ada. */
5118 else if (maybe_gt (bitsize, 0)
5119 && multiple_p (bitsize, BITS_PER_UNIT)
5120 && multiple_p (bitpos, BITS_PER_UNIT))
5121 {
5122 bitregion_start = bitpos;
5123 bitregion_end = bitpos + bitsize - 1;
5124 }
5125
5126 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5127
5128 /* If the field has a mode, we want to access it in the
5129 field's mode, not the computed mode.
5130 If a MEM has VOIDmode (external with incomplete type),
5131 use BLKmode for it instead. */
5132 if (MEM_P (to_rtx))
5133 {
5134 if (mode1 != VOIDmode)
5135 to_rtx = adjust_address (to_rtx, mode1, 0);
5136 else if (GET_MODE (to_rtx) == VOIDmode)
5137 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5138 }
5139
5140 if (offset != 0)
5141 {
5142 machine_mode address_mode;
5143 rtx offset_rtx;
5144
5145 if (!MEM_P (to_rtx))
5146 {
5147 /* We can get constant negative offsets into arrays with broken
5148 user code. Translate this to a trap instead of ICEing. */
5149 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5150 expand_builtin_trap ();
5151 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5152 }
5153
5154 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5155 address_mode = get_address_mode (to_rtx);
5156 if (GET_MODE (offset_rtx) != address_mode)
5157 {
5158 /* We cannot be sure that the RTL in offset_rtx is valid outside
5159 of a memory address context, so force it into a register
5160 before attempting to convert it to the desired mode. */
5161 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5162 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5163 }
5164
5165 /* If we have an expression in OFFSET_RTX and a non-zero
5166 byte offset in BITPOS, adding the byte offset before the
5167 OFFSET_RTX results in better intermediate code, which makes
5168 later rtl optimization passes perform better.
5169
5170 We prefer intermediate code like this:
5171
5172 r124:DI=r123:DI+0x18
5173 [r124:DI]=r121:DI
5174
5175 ... instead of ...
5176
5177 r124:DI=r123:DI+0x10
5178 [r124:DI+0x8]=r121:DI
5179
5180 This is only done for aligned data values, as these can
5181 be expected to result in single move instructions. */
5182 poly_int64 bytepos;
5183 if (mode1 != VOIDmode
5184 && maybe_ne (bitpos, 0)
5185 && maybe_gt (bitsize, 0)
5186 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5187 && multiple_p (bitpos, bitsize)
5188 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5189 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5190 {
5191 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5192 bitregion_start = 0;
5193 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5194 bitregion_end -= bitpos;
5195 bitpos = 0;
5196 }
5197
5198 to_rtx = offset_address (to_rtx, offset_rtx,
5199 highest_pow2_factor_for_target (to,
5200 offset));
5201 }
5202
5203 /* No action is needed if the target is not a memory and the field
5204 lies completely outside that target. This can occur if the source
5205 code contains an out-of-bounds access to a small array. */
5206 if (!MEM_P (to_rtx)
5207 && GET_MODE (to_rtx) != BLKmode
5208 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5209 {
5210 expand_normal (from);
5211 result = NULL;
5212 }
5213 /* Handle expand_expr of a complex value returning a CONCAT. */
5214 else if (GET_CODE (to_rtx) == CONCAT)
5215 {
5216 machine_mode to_mode = GET_MODE (to_rtx);
5217 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5218 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5219 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5220 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5221 && known_eq (bitpos, 0)
5222 && known_eq (bitsize, mode_bitsize))
5223 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5224 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5225 && known_eq (bitsize, inner_bitsize)
5226 && (known_eq (bitpos, 0)
5227 || known_eq (bitpos, inner_bitsize)))
5228 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5229 false, nontemporal, reversep);
5230 else if (known_le (bitpos + bitsize, inner_bitsize))
5231 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5232 bitregion_start, bitregion_end,
5233 mode1, from, get_alias_set (to),
5234 nontemporal, reversep);
5235 else if (known_ge (bitpos, inner_bitsize))
5236 result = store_field (XEXP (to_rtx, 1), bitsize,
5237 bitpos - inner_bitsize,
5238 bitregion_start, bitregion_end,
5239 mode1, from, get_alias_set (to),
5240 nontemporal, reversep);
5241 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5242 {
5243 result = expand_normal (from);
5244 if (GET_CODE (result) == CONCAT)
5245 {
5246 to_mode = GET_MODE_INNER (to_mode);
5247 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5248 rtx from_real
5249 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5250 from_mode, 0);
5251 rtx from_imag
5252 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5253 from_mode, 0);
5254 if (!from_real || !from_imag)
5255 goto concat_store_slow;
5256 emit_move_insn (XEXP (to_rtx, 0), from_real);
5257 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5258 }
5259 else
5260 {
5261 rtx from_rtx;
5262 if (MEM_P (result))
5263 from_rtx = change_address (result, to_mode, NULL_RTX);
5264 else
5265 from_rtx
5266 = simplify_gen_subreg (to_mode, result,
5267 TYPE_MODE (TREE_TYPE (from)), 0);
5268 if (from_rtx)
5269 {
5270 emit_move_insn (XEXP (to_rtx, 0),
5271 read_complex_part (from_rtx, false));
5272 emit_move_insn (XEXP (to_rtx, 1),
5273 read_complex_part (from_rtx, true));
5274 }
5275 else
5276 {
5277 to_mode = GET_MODE_INNER (to_mode);
5278 rtx from_real
5279 = simplify_gen_subreg (to_mode, result,
5280 TYPE_MODE (TREE_TYPE (from)),
5281 0);
5282 rtx from_imag
5283 = simplify_gen_subreg (to_mode, result,
5284 TYPE_MODE (TREE_TYPE (from)),
5285 GET_MODE_SIZE (to_mode));
5286 if (!from_real || !from_imag)
5287 goto concat_store_slow;
5288 emit_move_insn (XEXP (to_rtx, 0), from_real);
5289 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5290 }
5291 }
5292 }
5293 else
5294 {
5295 concat_store_slow:;
5296 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5297 GET_MODE_SIZE (GET_MODE (to_rtx)));
5298 write_complex_part (temp, XEXP (to_rtx, 0), false);
5299 write_complex_part (temp, XEXP (to_rtx, 1), true);
5300 result = store_field (temp, bitsize, bitpos,
5301 bitregion_start, bitregion_end,
5302 mode1, from, get_alias_set (to),
5303 nontemporal, reversep);
5304 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5305 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5306 }
5307 }
5308 /* For calls to functions returning variable length structures, if TO_RTX
5309 is not a MEM, go through a MEM because we must not create temporaries
5310 of the VLA type. */
5311 else if (!MEM_P (to_rtx)
5312 && TREE_CODE (from) == CALL_EXPR
5313 && COMPLETE_TYPE_P (TREE_TYPE (from))
5314 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5315 {
5316 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5317 GET_MODE_SIZE (GET_MODE (to_rtx)));
5318 result = store_field (temp, bitsize, bitpos, bitregion_start,
5319 bitregion_end, mode1, from, get_alias_set (to),
5320 nontemporal, reversep);
5321 emit_move_insn (to_rtx, temp);
5322 }
5323 else
5324 {
5325 if (MEM_P (to_rtx))
5326 {
5327 /* If the field is at offset zero, we could have been given the
5328 DECL_RTX of the parent struct. Don't munge it. */
5329 to_rtx = shallow_copy_rtx (to_rtx);
5330 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5331 if (volatilep)
5332 MEM_VOLATILE_P (to_rtx) = 1;
5333 }
5334
5335 gcc_checking_assert (known_ge (bitpos, 0));
5336 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5337 bitregion_start, bitregion_end,
5338 mode1, to_rtx, to, from,
5339 reversep))
5340 result = NULL;
5341 else
5342 result = store_field (to_rtx, bitsize, bitpos,
5343 bitregion_start, bitregion_end,
5344 mode1, from, get_alias_set (to),
5345 nontemporal, reversep);
5346 }
5347
5348 if (result)
5349 preserve_temp_slots (result);
5350 pop_temp_slots ();
5351 return;
5352 }
5353
5354 /* If the rhs is a function call and its value is not an aggregate,
5355 call the function before we start to compute the lhs.
5356 This is needed for correct code for cases such as
5357 val = setjmp (buf) on machines where reference to val
5358 requires loading up part of an address in a separate insn.
5359
5360 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5361 since it might be a promoted variable where the zero- or sign- extension
5362 needs to be done. Handling this in the normal way is safe because no
5363 computation is done before the call. The same is true for SSA names. */
5364 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5365 && COMPLETE_TYPE_P (TREE_TYPE (from))
5366 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5367 && ! (((VAR_P (to)
5368 || TREE_CODE (to) == PARM_DECL
5369 || TREE_CODE (to) == RESULT_DECL)
5370 && REG_P (DECL_RTL (to)))
5371 || TREE_CODE (to) == SSA_NAME))
5372 {
5373 rtx value;
5374
5375 push_temp_slots ();
5376 value = expand_normal (from);
5377
5378 if (to_rtx == 0)
5379 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5380
5381 /* Handle calls that return values in multiple non-contiguous locations.
5382 The Irix 6 ABI has examples of this. */
5383 if (GET_CODE (to_rtx) == PARALLEL)
5384 {
5385 if (GET_CODE (value) == PARALLEL)
5386 emit_group_move (to_rtx, value);
5387 else
5388 emit_group_load (to_rtx, value, TREE_TYPE (from),
5389 int_size_in_bytes (TREE_TYPE (from)));
5390 }
5391 else if (GET_CODE (value) == PARALLEL)
5392 emit_group_store (to_rtx, value, TREE_TYPE (from),
5393 int_size_in_bytes (TREE_TYPE (from)));
5394 else if (GET_MODE (to_rtx) == BLKmode)
5395 {
5396 /* Handle calls that return BLKmode values in registers. */
5397 if (REG_P (value))
5398 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5399 else
5400 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5401 }
5402 else
5403 {
5404 if (POINTER_TYPE_P (TREE_TYPE (to)))
5405 value = convert_memory_address_addr_space
5406 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5407 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5408
5409 emit_move_insn (to_rtx, value);
5410 }
5411
5412 preserve_temp_slots (to_rtx);
5413 pop_temp_slots ();
5414 return;
5415 }
5416
5417 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5418 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5419
5420 /* Don't move directly into a return register. */
5421 if (TREE_CODE (to) == RESULT_DECL
5422 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5423 {
5424 rtx temp;
5425
5426 push_temp_slots ();
5427
5428 /* If the source is itself a return value, it still is in a pseudo at
5429 this point so we can move it back to the return register directly. */
5430 if (REG_P (to_rtx)
5431 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5432 && TREE_CODE (from) != CALL_EXPR)
5433 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5434 else
5435 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5436
5437 /* Handle calls that return values in multiple non-contiguous locations.
5438 The Irix 6 ABI has examples of this. */
5439 if (GET_CODE (to_rtx) == PARALLEL)
5440 {
5441 if (GET_CODE (temp) == PARALLEL)
5442 emit_group_move (to_rtx, temp);
5443 else
5444 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5445 int_size_in_bytes (TREE_TYPE (from)));
5446 }
5447 else if (temp)
5448 emit_move_insn (to_rtx, temp);
5449
5450 preserve_temp_slots (to_rtx);
5451 pop_temp_slots ();
5452 return;
5453 }
5454
5455 /* In case we are returning the contents of an object which overlaps
5456 the place the value is being stored, use a safe function when copying
5457 a value through a pointer into a structure value return block. */
5458 if (TREE_CODE (to) == RESULT_DECL
5459 && TREE_CODE (from) == INDIRECT_REF
5460 && ADDR_SPACE_GENERIC_P
5461 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5462 && refs_may_alias_p (to, from)
5463 && cfun->returns_struct
5464 && !cfun->returns_pcc_struct)
5465 {
5466 rtx from_rtx, size;
5467
5468 push_temp_slots ();
5469 size = expr_size (from);
5470 from_rtx = expand_normal (from);
5471
5472 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5473
5474 preserve_temp_slots (to_rtx);
5475 pop_temp_slots ();
5476 return;
5477 }
5478
5479 /* Compute FROM and store the value in the rtx we got. */
5480
5481 push_temp_slots ();
5482 result = store_expr (from, to_rtx, 0, nontemporal, false);
5483 preserve_temp_slots (result);
5484 pop_temp_slots ();
5485 return;
5486 }
5487
5488 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5489 succeeded, false otherwise. */
5490
5491 bool
5492 emit_storent_insn (rtx to, rtx from)
5493 {
5494 class expand_operand ops[2];
5495 machine_mode mode = GET_MODE (to);
5496 enum insn_code code = optab_handler (storent_optab, mode);
5497
5498 if (code == CODE_FOR_nothing)
5499 return false;
5500
5501 create_fixed_operand (&ops[0], to);
5502 create_input_operand (&ops[1], from, mode);
5503 return maybe_expand_insn (code, 2, ops);
5504 }
5505
5506 /* Helper function for store_expr storing of STRING_CST. */
5507
5508 static rtx
5509 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5510 {
5511 tree str = (tree) data;
5512
5513 gcc_assert (offset >= 0);
5514 if (offset >= TREE_STRING_LENGTH (str))
5515 return const0_rtx;
5516
5517 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5518 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5519 {
5520 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5521 size_t l = TREE_STRING_LENGTH (str) - offset;
5522 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5523 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5524 return c_readstr (p, mode, false);
5525 }
5526
5527 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5528 }
5529
5530 /* Generate code for computing expression EXP,
5531 and storing the value into TARGET.
5532
5533 If the mode is BLKmode then we may return TARGET itself.
5534 It turns out that in BLKmode it doesn't cause a problem.
5535 because C has no operators that could combine two different
5536 assignments into the same BLKmode object with different values
5537 with no sequence point. Will other languages need this to
5538 be more thorough?
5539
5540 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5541 stack, and block moves may need to be treated specially.
5542
5543 If NONTEMPORAL is true, try using a nontemporal store instruction.
5544
5545 If REVERSE is true, the store is to be done in reverse order. */
5546
5547 rtx
5548 store_expr (tree exp, rtx target, int call_param_p,
5549 bool nontemporal, bool reverse)
5550 {
5551 rtx temp;
5552 rtx alt_rtl = NULL_RTX;
5553 location_t loc = curr_insn_location ();
5554
5555 if (VOID_TYPE_P (TREE_TYPE (exp)))
5556 {
5557 /* C++ can generate ?: expressions with a throw expression in one
5558 branch and an rvalue in the other. Here, we resolve attempts to
5559 store the throw expression's nonexistent result. */
5560 gcc_assert (!call_param_p);
5561 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5562 return NULL_RTX;
5563 }
5564 if (TREE_CODE (exp) == COMPOUND_EXPR)
5565 {
5566 /* Perform first part of compound expression, then assign from second
5567 part. */
5568 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5569 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5570 return store_expr (TREE_OPERAND (exp, 1), target,
5571 call_param_p, nontemporal, reverse);
5572 }
5573 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5574 {
5575 /* For conditional expression, get safe form of the target. Then
5576 test the condition, doing the appropriate assignment on either
5577 side. This avoids the creation of unnecessary temporaries.
5578 For non-BLKmode, it is more efficient not to do this. */
5579
5580 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5581
5582 do_pending_stack_adjust ();
5583 NO_DEFER_POP;
5584 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5585 profile_probability::uninitialized ());
5586 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5587 nontemporal, reverse);
5588 emit_jump_insn (targetm.gen_jump (lab2));
5589 emit_barrier ();
5590 emit_label (lab1);
5591 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5592 nontemporal, reverse);
5593 emit_label (lab2);
5594 OK_DEFER_POP;
5595
5596 return NULL_RTX;
5597 }
5598 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5599 /* If this is a scalar in a register that is stored in a wider mode
5600 than the declared mode, compute the result into its declared mode
5601 and then convert to the wider mode. Our value is the computed
5602 expression. */
5603 {
5604 rtx inner_target = 0;
5605 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5606 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5607
5608 /* We can do the conversion inside EXP, which will often result
5609 in some optimizations. Do the conversion in two steps: first
5610 change the signedness, if needed, then the extend. But don't
5611 do this if the type of EXP is a subtype of something else
5612 since then the conversion might involve more than just
5613 converting modes. */
5614 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5615 && TREE_TYPE (TREE_TYPE (exp)) == 0
5616 && GET_MODE_PRECISION (outer_mode)
5617 == TYPE_PRECISION (TREE_TYPE (exp)))
5618 {
5619 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5620 TYPE_UNSIGNED (TREE_TYPE (exp))))
5621 {
5622 /* Some types, e.g. Fortran's logical*4, won't have a signed
5623 version, so use the mode instead. */
5624 tree ntype
5625 = (signed_or_unsigned_type_for
5626 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5627 if (ntype == NULL)
5628 ntype = lang_hooks.types.type_for_mode
5629 (TYPE_MODE (TREE_TYPE (exp)),
5630 SUBREG_PROMOTED_SIGN (target));
5631
5632 exp = fold_convert_loc (loc, ntype, exp);
5633 }
5634
5635 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5636 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5637 exp);
5638
5639 inner_target = SUBREG_REG (target);
5640 }
5641
5642 temp = expand_expr (exp, inner_target, VOIDmode,
5643 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5644
5645
5646 /* If TEMP is a VOIDmode constant, use convert_modes to make
5647 sure that we properly convert it. */
5648 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5649 {
5650 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5651 temp, SUBREG_PROMOTED_SIGN (target));
5652 temp = convert_modes (inner_mode, outer_mode, temp,
5653 SUBREG_PROMOTED_SIGN (target));
5654 }
5655
5656 convert_move (SUBREG_REG (target), temp,
5657 SUBREG_PROMOTED_SIGN (target));
5658
5659 return NULL_RTX;
5660 }
5661 else if ((TREE_CODE (exp) == STRING_CST
5662 || (TREE_CODE (exp) == MEM_REF
5663 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5664 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5665 == STRING_CST
5666 && integer_zerop (TREE_OPERAND (exp, 1))))
5667 && !nontemporal && !call_param_p
5668 && MEM_P (target))
5669 {
5670 /* Optimize initialization of an array with a STRING_CST. */
5671 HOST_WIDE_INT exp_len, str_copy_len;
5672 rtx dest_mem;
5673 tree str = TREE_CODE (exp) == STRING_CST
5674 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5675
5676 exp_len = int_expr_size (exp);
5677 if (exp_len <= 0)
5678 goto normal_expr;
5679
5680 if (TREE_STRING_LENGTH (str) <= 0)
5681 goto normal_expr;
5682
5683 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5684 MEM_ALIGN (target), false))
5685 {
5686 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5687 MEM_ALIGN (target), false, RETURN_BEGIN);
5688 return NULL_RTX;
5689 }
5690
5691 str_copy_len = TREE_STRING_LENGTH (str);
5692 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5693 {
5694 str_copy_len += STORE_MAX_PIECES - 1;
5695 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5696 }
5697 if (str_copy_len >= exp_len)
5698 goto normal_expr;
5699
5700 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5701 (void *) str, MEM_ALIGN (target), false))
5702 goto normal_expr;
5703
5704 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5705 (void *) str, MEM_ALIGN (target), false,
5706 RETURN_END);
5707 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
5708 exp_len - str_copy_len),
5709 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5710 return NULL_RTX;
5711 }
5712 else
5713 {
5714 rtx tmp_target;
5715
5716 normal_expr:
5717 /* If we want to use a nontemporal or a reverse order store, force the
5718 value into a register first. */
5719 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5720 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5721 (call_param_p
5722 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5723 &alt_rtl, false);
5724 }
5725
5726 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5727 the same as that of TARGET, adjust the constant. This is needed, for
5728 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5729 only a word-sized value. */
5730 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5731 && TREE_CODE (exp) != ERROR_MARK
5732 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5733 {
5734 if (GET_MODE_CLASS (GET_MODE (target))
5735 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5736 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5737 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5738 {
5739 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5740 TYPE_MODE (TREE_TYPE (exp)), 0);
5741 if (t)
5742 temp = t;
5743 }
5744 if (GET_MODE (temp) == VOIDmode)
5745 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5746 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5747 }
5748
5749 /* If value was not generated in the target, store it there.
5750 Convert the value to TARGET's type first if necessary and emit the
5751 pending incrementations that have been queued when expanding EXP.
5752 Note that we cannot emit the whole queue blindly because this will
5753 effectively disable the POST_INC optimization later.
5754
5755 If TEMP and TARGET compare equal according to rtx_equal_p, but
5756 one or both of them are volatile memory refs, we have to distinguish
5757 two cases:
5758 - expand_expr has used TARGET. In this case, we must not generate
5759 another copy. This can be detected by TARGET being equal according
5760 to == .
5761 - expand_expr has not used TARGET - that means that the source just
5762 happens to have the same RTX form. Since temp will have been created
5763 by expand_expr, it will compare unequal according to == .
5764 We must generate a copy in this case, to reach the correct number
5765 of volatile memory references. */
5766
5767 if ((! rtx_equal_p (temp, target)
5768 || (temp != target && (side_effects_p (temp)
5769 || side_effects_p (target))))
5770 && TREE_CODE (exp) != ERROR_MARK
5771 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5772 but TARGET is not valid memory reference, TEMP will differ
5773 from TARGET although it is really the same location. */
5774 && !(alt_rtl
5775 && rtx_equal_p (alt_rtl, target)
5776 && !side_effects_p (alt_rtl)
5777 && !side_effects_p (target))
5778 /* If there's nothing to copy, don't bother. Don't call
5779 expr_size unless necessary, because some front-ends (C++)
5780 expr_size-hook must not be given objects that are not
5781 supposed to be bit-copied or bit-initialized. */
5782 && expr_size (exp) != const0_rtx)
5783 {
5784 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5785 {
5786 if (GET_MODE (target) == BLKmode)
5787 {
5788 /* Handle calls that return BLKmode values in registers. */
5789 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5790 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5791 else
5792 store_bit_field (target,
5793 rtx_to_poly_int64 (expr_size (exp))
5794 * BITS_PER_UNIT,
5795 0, 0, 0, GET_MODE (temp), temp, reverse);
5796 }
5797 else
5798 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5799 }
5800
5801 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5802 {
5803 /* Handle copying a string constant into an array. The string
5804 constant may be shorter than the array. So copy just the string's
5805 actual length, and clear the rest. First get the size of the data
5806 type of the string, which is actually the size of the target. */
5807 rtx size = expr_size (exp);
5808
5809 if (CONST_INT_P (size)
5810 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5811 emit_block_move (target, temp, size,
5812 (call_param_p
5813 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5814 else
5815 {
5816 machine_mode pointer_mode
5817 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5818 machine_mode address_mode = get_address_mode (target);
5819
5820 /* Compute the size of the data to copy from the string. */
5821 tree copy_size
5822 = size_binop_loc (loc, MIN_EXPR,
5823 make_tree (sizetype, size),
5824 size_int (TREE_STRING_LENGTH (exp)));
5825 rtx copy_size_rtx
5826 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5827 (call_param_p
5828 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5829 rtx_code_label *label = 0;
5830
5831 /* Copy that much. */
5832 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5833 TYPE_UNSIGNED (sizetype));
5834 emit_block_move (target, temp, copy_size_rtx,
5835 (call_param_p
5836 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5837
5838 /* Figure out how much is left in TARGET that we have to clear.
5839 Do all calculations in pointer_mode. */
5840 poly_int64 const_copy_size;
5841 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5842 {
5843 size = plus_constant (address_mode, size, -const_copy_size);
5844 target = adjust_address (target, BLKmode, const_copy_size);
5845 }
5846 else
5847 {
5848 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5849 copy_size_rtx, NULL_RTX, 0,
5850 OPTAB_LIB_WIDEN);
5851
5852 if (GET_MODE (copy_size_rtx) != address_mode)
5853 copy_size_rtx = convert_to_mode (address_mode,
5854 copy_size_rtx,
5855 TYPE_UNSIGNED (sizetype));
5856
5857 target = offset_address (target, copy_size_rtx,
5858 highest_pow2_factor (copy_size));
5859 label = gen_label_rtx ();
5860 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5861 GET_MODE (size), 0, label);
5862 }
5863
5864 if (size != const0_rtx)
5865 clear_storage (target, size, BLOCK_OP_NORMAL);
5866
5867 if (label)
5868 emit_label (label);
5869 }
5870 }
5871 /* Handle calls that return values in multiple non-contiguous locations.
5872 The Irix 6 ABI has examples of this. */
5873 else if (GET_CODE (target) == PARALLEL)
5874 {
5875 if (GET_CODE (temp) == PARALLEL)
5876 emit_group_move (target, temp);
5877 else
5878 emit_group_load (target, temp, TREE_TYPE (exp),
5879 int_size_in_bytes (TREE_TYPE (exp)));
5880 }
5881 else if (GET_CODE (temp) == PARALLEL)
5882 emit_group_store (target, temp, TREE_TYPE (exp),
5883 int_size_in_bytes (TREE_TYPE (exp)));
5884 else if (GET_MODE (temp) == BLKmode)
5885 emit_block_move (target, temp, expr_size (exp),
5886 (call_param_p
5887 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5888 /* If we emit a nontemporal store, there is nothing else to do. */
5889 else if (nontemporal && emit_storent_insn (target, temp))
5890 ;
5891 else
5892 {
5893 if (reverse)
5894 temp = flip_storage_order (GET_MODE (target), temp);
5895 temp = force_operand (temp, target);
5896 if (temp != target)
5897 emit_move_insn (target, temp);
5898 }
5899 }
5900
5901 return NULL_RTX;
5902 }
5903 \f
5904 /* Return true if field F of structure TYPE is a flexible array. */
5905
5906 static bool
5907 flexible_array_member_p (const_tree f, const_tree type)
5908 {
5909 const_tree tf;
5910
5911 tf = TREE_TYPE (f);
5912 return (DECL_CHAIN (f) == NULL
5913 && TREE_CODE (tf) == ARRAY_TYPE
5914 && TYPE_DOMAIN (tf)
5915 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5916 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5917 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5918 && int_size_in_bytes (type) >= 0);
5919 }
5920
5921 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5922 must have in order for it to completely initialize a value of type TYPE.
5923 Return -1 if the number isn't known.
5924
5925 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5926
5927 static HOST_WIDE_INT
5928 count_type_elements (const_tree type, bool for_ctor_p)
5929 {
5930 switch (TREE_CODE (type))
5931 {
5932 case ARRAY_TYPE:
5933 {
5934 tree nelts;
5935
5936 nelts = array_type_nelts (type);
5937 if (nelts && tree_fits_uhwi_p (nelts))
5938 {
5939 unsigned HOST_WIDE_INT n;
5940
5941 n = tree_to_uhwi (nelts) + 1;
5942 if (n == 0 || for_ctor_p)
5943 return n;
5944 else
5945 return n * count_type_elements (TREE_TYPE (type), false);
5946 }
5947 return for_ctor_p ? -1 : 1;
5948 }
5949
5950 case RECORD_TYPE:
5951 {
5952 unsigned HOST_WIDE_INT n;
5953 tree f;
5954
5955 n = 0;
5956 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5957 if (TREE_CODE (f) == FIELD_DECL)
5958 {
5959 if (!for_ctor_p)
5960 n += count_type_elements (TREE_TYPE (f), false);
5961 else if (!flexible_array_member_p (f, type))
5962 /* Don't count flexible arrays, which are not supposed
5963 to be initialized. */
5964 n += 1;
5965 }
5966
5967 return n;
5968 }
5969
5970 case UNION_TYPE:
5971 case QUAL_UNION_TYPE:
5972 {
5973 tree f;
5974 HOST_WIDE_INT n, m;
5975
5976 gcc_assert (!for_ctor_p);
5977 /* Estimate the number of scalars in each field and pick the
5978 maximum. Other estimates would do instead; the idea is simply
5979 to make sure that the estimate is not sensitive to the ordering
5980 of the fields. */
5981 n = 1;
5982 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5983 if (TREE_CODE (f) == FIELD_DECL)
5984 {
5985 m = count_type_elements (TREE_TYPE (f), false);
5986 /* If the field doesn't span the whole union, add an extra
5987 scalar for the rest. */
5988 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5989 TYPE_SIZE (type)) != 1)
5990 m++;
5991 if (n < m)
5992 n = m;
5993 }
5994 return n;
5995 }
5996
5997 case COMPLEX_TYPE:
5998 return 2;
5999
6000 case VECTOR_TYPE:
6001 {
6002 unsigned HOST_WIDE_INT nelts;
6003 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6004 return nelts;
6005 else
6006 return -1;
6007 }
6008
6009 case INTEGER_TYPE:
6010 case REAL_TYPE:
6011 case FIXED_POINT_TYPE:
6012 case ENUMERAL_TYPE:
6013 case BOOLEAN_TYPE:
6014 case POINTER_TYPE:
6015 case OFFSET_TYPE:
6016 case REFERENCE_TYPE:
6017 case NULLPTR_TYPE:
6018 return 1;
6019
6020 case ERROR_MARK:
6021 return 0;
6022
6023 case VOID_TYPE:
6024 case METHOD_TYPE:
6025 case FUNCTION_TYPE:
6026 case LANG_TYPE:
6027 default:
6028 gcc_unreachable ();
6029 }
6030 }
6031
6032 /* Helper for categorize_ctor_elements. Identical interface. */
6033
6034 static bool
6035 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6036 HOST_WIDE_INT *p_unique_nz_elts,
6037 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6038 {
6039 unsigned HOST_WIDE_INT idx;
6040 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6041 tree value, purpose, elt_type;
6042
6043 /* Whether CTOR is a valid constant initializer, in accordance with what
6044 initializer_constant_valid_p does. If inferred from the constructor
6045 elements, true until proven otherwise. */
6046 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6047 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6048
6049 nz_elts = 0;
6050 unique_nz_elts = 0;
6051 init_elts = 0;
6052 num_fields = 0;
6053 elt_type = NULL_TREE;
6054
6055 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6056 {
6057 HOST_WIDE_INT mult = 1;
6058
6059 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6060 {
6061 tree lo_index = TREE_OPERAND (purpose, 0);
6062 tree hi_index = TREE_OPERAND (purpose, 1);
6063
6064 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6065 mult = (tree_to_uhwi (hi_index)
6066 - tree_to_uhwi (lo_index) + 1);
6067 }
6068 num_fields += mult;
6069 elt_type = TREE_TYPE (value);
6070
6071 switch (TREE_CODE (value))
6072 {
6073 case CONSTRUCTOR:
6074 {
6075 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6076
6077 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6078 &ic, p_complete);
6079
6080 nz_elts += mult * nz;
6081 unique_nz_elts += unz;
6082 init_elts += mult * ic;
6083
6084 if (const_from_elts_p && const_p)
6085 const_p = const_elt_p;
6086 }
6087 break;
6088
6089 case INTEGER_CST:
6090 case REAL_CST:
6091 case FIXED_CST:
6092 if (!initializer_zerop (value))
6093 {
6094 nz_elts += mult;
6095 unique_nz_elts++;
6096 }
6097 init_elts += mult;
6098 break;
6099
6100 case STRING_CST:
6101 nz_elts += mult * TREE_STRING_LENGTH (value);
6102 unique_nz_elts += TREE_STRING_LENGTH (value);
6103 init_elts += mult * TREE_STRING_LENGTH (value);
6104 break;
6105
6106 case COMPLEX_CST:
6107 if (!initializer_zerop (TREE_REALPART (value)))
6108 {
6109 nz_elts += mult;
6110 unique_nz_elts++;
6111 }
6112 if (!initializer_zerop (TREE_IMAGPART (value)))
6113 {
6114 nz_elts += mult;
6115 unique_nz_elts++;
6116 }
6117 init_elts += 2 * mult;
6118 break;
6119
6120 case VECTOR_CST:
6121 {
6122 /* We can only construct constant-length vectors using
6123 CONSTRUCTOR. */
6124 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6125 for (unsigned int i = 0; i < nunits; ++i)
6126 {
6127 tree v = VECTOR_CST_ELT (value, i);
6128 if (!initializer_zerop (v))
6129 {
6130 nz_elts += mult;
6131 unique_nz_elts++;
6132 }
6133 init_elts += mult;
6134 }
6135 }
6136 break;
6137
6138 default:
6139 {
6140 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6141 nz_elts += mult * tc;
6142 unique_nz_elts += tc;
6143 init_elts += mult * tc;
6144
6145 if (const_from_elts_p && const_p)
6146 const_p
6147 = initializer_constant_valid_p (value,
6148 elt_type,
6149 TYPE_REVERSE_STORAGE_ORDER
6150 (TREE_TYPE (ctor)))
6151 != NULL_TREE;
6152 }
6153 break;
6154 }
6155 }
6156
6157 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6158 num_fields, elt_type))
6159 *p_complete = false;
6160
6161 *p_nz_elts += nz_elts;
6162 *p_unique_nz_elts += unique_nz_elts;
6163 *p_init_elts += init_elts;
6164
6165 return const_p;
6166 }
6167
6168 /* Examine CTOR to discover:
6169 * how many scalar fields are set to nonzero values,
6170 and place it in *P_NZ_ELTS;
6171 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6172 high - low + 1 (this can be useful for callers to determine ctors
6173 that could be cheaply initialized with - perhaps nested - loops
6174 compared to copied from huge read-only data),
6175 and place it in *P_UNIQUE_NZ_ELTS;
6176 * how many scalar fields in total are in CTOR,
6177 and place it in *P_ELT_COUNT.
6178 * whether the constructor is complete -- in the sense that every
6179 meaningful byte is explicitly given a value --
6180 and place it in *P_COMPLETE.
6181
6182 Return whether or not CTOR is a valid static constant initializer, the same
6183 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6184
6185 bool
6186 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6187 HOST_WIDE_INT *p_unique_nz_elts,
6188 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6189 {
6190 *p_nz_elts = 0;
6191 *p_unique_nz_elts = 0;
6192 *p_init_elts = 0;
6193 *p_complete = true;
6194
6195 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6196 p_init_elts, p_complete);
6197 }
6198
6199 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6200 of which had type LAST_TYPE. Each element was itself a complete
6201 initializer, in the sense that every meaningful byte was explicitly
6202 given a value. Return true if the same is true for the constructor
6203 as a whole. */
6204
6205 bool
6206 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6207 const_tree last_type)
6208 {
6209 if (TREE_CODE (type) == UNION_TYPE
6210 || TREE_CODE (type) == QUAL_UNION_TYPE)
6211 {
6212 if (num_elts == 0)
6213 return false;
6214
6215 gcc_assert (num_elts == 1 && last_type);
6216
6217 /* ??? We could look at each element of the union, and find the
6218 largest element. Which would avoid comparing the size of the
6219 initialized element against any tail padding in the union.
6220 Doesn't seem worth the effort... */
6221 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6222 }
6223
6224 return count_type_elements (type, true) == num_elts;
6225 }
6226
6227 /* Return 1 if EXP contains mostly (3/4) zeros. */
6228
6229 static int
6230 mostly_zeros_p (const_tree exp)
6231 {
6232 if (TREE_CODE (exp) == CONSTRUCTOR)
6233 {
6234 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6235 bool complete_p;
6236
6237 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6238 &complete_p);
6239 return !complete_p || nz_elts < init_elts / 4;
6240 }
6241
6242 return initializer_zerop (exp);
6243 }
6244
6245 /* Return 1 if EXP contains all zeros. */
6246
6247 static int
6248 all_zeros_p (const_tree exp)
6249 {
6250 if (TREE_CODE (exp) == CONSTRUCTOR)
6251 {
6252 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6253 bool complete_p;
6254
6255 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6256 &complete_p);
6257 return nz_elts == 0;
6258 }
6259
6260 return initializer_zerop (exp);
6261 }
6262 \f
6263 /* Helper function for store_constructor.
6264 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6265 CLEARED is as for store_constructor.
6266 ALIAS_SET is the alias set to use for any stores.
6267 If REVERSE is true, the store is to be done in reverse order.
6268
6269 This provides a recursive shortcut back to store_constructor when it isn't
6270 necessary to go through store_field. This is so that we can pass through
6271 the cleared field to let store_constructor know that we may not have to
6272 clear a substructure if the outer structure has already been cleared. */
6273
6274 static void
6275 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6276 poly_uint64 bitregion_start,
6277 poly_uint64 bitregion_end,
6278 machine_mode mode,
6279 tree exp, int cleared,
6280 alias_set_type alias_set, bool reverse)
6281 {
6282 poly_int64 bytepos;
6283 poly_uint64 bytesize;
6284 if (TREE_CODE (exp) == CONSTRUCTOR
6285 /* We can only call store_constructor recursively if the size and
6286 bit position are on a byte boundary. */
6287 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6288 && maybe_ne (bitsize, 0U)
6289 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6290 /* If we have a nonzero bitpos for a register target, then we just
6291 let store_field do the bitfield handling. This is unlikely to
6292 generate unnecessary clear instructions anyways. */
6293 && (known_eq (bitpos, 0) || MEM_P (target)))
6294 {
6295 if (MEM_P (target))
6296 {
6297 machine_mode target_mode = GET_MODE (target);
6298 if (target_mode != BLKmode
6299 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6300 target_mode = BLKmode;
6301 target = adjust_address (target, target_mode, bytepos);
6302 }
6303
6304
6305 /* Update the alias set, if required. */
6306 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6307 && MEM_ALIAS_SET (target) != 0)
6308 {
6309 target = copy_rtx (target);
6310 set_mem_alias_set (target, alias_set);
6311 }
6312
6313 store_constructor (exp, target, cleared, bytesize, reverse);
6314 }
6315 else
6316 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6317 exp, alias_set, false, reverse);
6318 }
6319
6320
6321 /* Returns the number of FIELD_DECLs in TYPE. */
6322
6323 static int
6324 fields_length (const_tree type)
6325 {
6326 tree t = TYPE_FIELDS (type);
6327 int count = 0;
6328
6329 for (; t; t = DECL_CHAIN (t))
6330 if (TREE_CODE (t) == FIELD_DECL)
6331 ++count;
6332
6333 return count;
6334 }
6335
6336
6337 /* Store the value of constructor EXP into the rtx TARGET.
6338 TARGET is either a REG or a MEM; we know it cannot conflict, since
6339 safe_from_p has been called.
6340 CLEARED is true if TARGET is known to have been zero'd.
6341 SIZE is the number of bytes of TARGET we are allowed to modify: this
6342 may not be the same as the size of EXP if we are assigning to a field
6343 which has been packed to exclude padding bits.
6344 If REVERSE is true, the store is to be done in reverse order. */
6345
6346 static void
6347 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6348 bool reverse)
6349 {
6350 tree type = TREE_TYPE (exp);
6351 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6352 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6353
6354 switch (TREE_CODE (type))
6355 {
6356 case RECORD_TYPE:
6357 case UNION_TYPE:
6358 case QUAL_UNION_TYPE:
6359 {
6360 unsigned HOST_WIDE_INT idx;
6361 tree field, value;
6362
6363 /* The storage order is specified for every aggregate type. */
6364 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6365
6366 /* If size is zero or the target is already cleared, do nothing. */
6367 if (known_eq (size, 0) || cleared)
6368 cleared = 1;
6369 /* We either clear the aggregate or indicate the value is dead. */
6370 else if ((TREE_CODE (type) == UNION_TYPE
6371 || TREE_CODE (type) == QUAL_UNION_TYPE)
6372 && ! CONSTRUCTOR_ELTS (exp))
6373 /* If the constructor is empty, clear the union. */
6374 {
6375 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6376 cleared = 1;
6377 }
6378
6379 /* If we are building a static constructor into a register,
6380 set the initial value as zero so we can fold the value into
6381 a constant. But if more than one register is involved,
6382 this probably loses. */
6383 else if (REG_P (target) && TREE_STATIC (exp)
6384 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6385 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6386 {
6387 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6388 cleared = 1;
6389 }
6390
6391 /* If the constructor has fewer fields than the structure or
6392 if we are initializing the structure to mostly zeros, clear
6393 the whole structure first. Don't do this if TARGET is a
6394 register whose mode size isn't equal to SIZE since
6395 clear_storage can't handle this case. */
6396 else if (known_size_p (size)
6397 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6398 || mostly_zeros_p (exp))
6399 && (!REG_P (target)
6400 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6401 {
6402 clear_storage (target, gen_int_mode (size, Pmode),
6403 BLOCK_OP_NORMAL);
6404 cleared = 1;
6405 }
6406
6407 if (REG_P (target) && !cleared)
6408 emit_clobber (target);
6409
6410 /* Store each element of the constructor into the
6411 corresponding field of TARGET. */
6412 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6413 {
6414 machine_mode mode;
6415 HOST_WIDE_INT bitsize;
6416 HOST_WIDE_INT bitpos = 0;
6417 tree offset;
6418 rtx to_rtx = target;
6419
6420 /* Just ignore missing fields. We cleared the whole
6421 structure, above, if any fields are missing. */
6422 if (field == 0)
6423 continue;
6424
6425 if (cleared && initializer_zerop (value))
6426 continue;
6427
6428 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6429 bitsize = tree_to_uhwi (DECL_SIZE (field));
6430 else
6431 gcc_unreachable ();
6432
6433 mode = DECL_MODE (field);
6434 if (DECL_BIT_FIELD (field))
6435 mode = VOIDmode;
6436
6437 offset = DECL_FIELD_OFFSET (field);
6438 if (tree_fits_shwi_p (offset)
6439 && tree_fits_shwi_p (bit_position (field)))
6440 {
6441 bitpos = int_bit_position (field);
6442 offset = NULL_TREE;
6443 }
6444 else
6445 gcc_unreachable ();
6446
6447 /* If this initializes a field that is smaller than a
6448 word, at the start of a word, try to widen it to a full
6449 word. This special case allows us to output C++ member
6450 function initializations in a form that the optimizers
6451 can understand. */
6452 if (WORD_REGISTER_OPERATIONS
6453 && REG_P (target)
6454 && bitsize < BITS_PER_WORD
6455 && bitpos % BITS_PER_WORD == 0
6456 && GET_MODE_CLASS (mode) == MODE_INT
6457 && TREE_CODE (value) == INTEGER_CST
6458 && exp_size >= 0
6459 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6460 {
6461 type = TREE_TYPE (value);
6462
6463 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6464 {
6465 type = lang_hooks.types.type_for_mode
6466 (word_mode, TYPE_UNSIGNED (type));
6467 value = fold_convert (type, value);
6468 /* Make sure the bits beyond the original bitsize are zero
6469 so that we can correctly avoid extra zeroing stores in
6470 later constructor elements. */
6471 tree bitsize_mask
6472 = wide_int_to_tree (type, wi::mask (bitsize, false,
6473 BITS_PER_WORD));
6474 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6475 }
6476
6477 if (BYTES_BIG_ENDIAN)
6478 value
6479 = fold_build2 (LSHIFT_EXPR, type, value,
6480 build_int_cst (type,
6481 BITS_PER_WORD - bitsize));
6482 bitsize = BITS_PER_WORD;
6483 mode = word_mode;
6484 }
6485
6486 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6487 && DECL_NONADDRESSABLE_P (field))
6488 {
6489 to_rtx = copy_rtx (to_rtx);
6490 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6491 }
6492
6493 store_constructor_field (to_rtx, bitsize, bitpos,
6494 0, bitregion_end, mode,
6495 value, cleared,
6496 get_alias_set (TREE_TYPE (field)),
6497 reverse);
6498 }
6499 break;
6500 }
6501 case ARRAY_TYPE:
6502 {
6503 tree value, index;
6504 unsigned HOST_WIDE_INT i;
6505 int need_to_clear;
6506 tree domain;
6507 tree elttype = TREE_TYPE (type);
6508 int const_bounds_p;
6509 HOST_WIDE_INT minelt = 0;
6510 HOST_WIDE_INT maxelt = 0;
6511
6512 /* The storage order is specified for every aggregate type. */
6513 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6514
6515 domain = TYPE_DOMAIN (type);
6516 const_bounds_p = (TYPE_MIN_VALUE (domain)
6517 && TYPE_MAX_VALUE (domain)
6518 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6519 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6520
6521 /* If we have constant bounds for the range of the type, get them. */
6522 if (const_bounds_p)
6523 {
6524 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6525 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6526 }
6527
6528 /* If the constructor has fewer elements than the array, clear
6529 the whole array first. Similarly if this is static
6530 constructor of a non-BLKmode object. */
6531 if (cleared)
6532 need_to_clear = 0;
6533 else if (REG_P (target) && TREE_STATIC (exp))
6534 need_to_clear = 1;
6535 else
6536 {
6537 unsigned HOST_WIDE_INT idx;
6538 HOST_WIDE_INT count = 0, zero_count = 0;
6539 need_to_clear = ! const_bounds_p;
6540
6541 /* This loop is a more accurate version of the loop in
6542 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6543 is also needed to check for missing elements. */
6544 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6545 {
6546 HOST_WIDE_INT this_node_count;
6547
6548 if (need_to_clear)
6549 break;
6550
6551 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6552 {
6553 tree lo_index = TREE_OPERAND (index, 0);
6554 tree hi_index = TREE_OPERAND (index, 1);
6555
6556 if (! tree_fits_uhwi_p (lo_index)
6557 || ! tree_fits_uhwi_p (hi_index))
6558 {
6559 need_to_clear = 1;
6560 break;
6561 }
6562
6563 this_node_count = (tree_to_uhwi (hi_index)
6564 - tree_to_uhwi (lo_index) + 1);
6565 }
6566 else
6567 this_node_count = 1;
6568
6569 count += this_node_count;
6570 if (mostly_zeros_p (value))
6571 zero_count += this_node_count;
6572 }
6573
6574 /* Clear the entire array first if there are any missing
6575 elements, or if the incidence of zero elements is >=
6576 75%. */
6577 if (! need_to_clear
6578 && (count < maxelt - minelt + 1
6579 || 4 * zero_count >= 3 * count))
6580 need_to_clear = 1;
6581 }
6582
6583 if (need_to_clear && maybe_gt (size, 0))
6584 {
6585 if (REG_P (target))
6586 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6587 else
6588 clear_storage (target, gen_int_mode (size, Pmode),
6589 BLOCK_OP_NORMAL);
6590 cleared = 1;
6591 }
6592
6593 if (!cleared && REG_P (target))
6594 /* Inform later passes that the old value is dead. */
6595 emit_clobber (target);
6596
6597 /* Store each element of the constructor into the
6598 corresponding element of TARGET, determined by counting the
6599 elements. */
6600 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6601 {
6602 machine_mode mode;
6603 poly_int64 bitsize;
6604 HOST_WIDE_INT bitpos;
6605 rtx xtarget = target;
6606
6607 if (cleared && initializer_zerop (value))
6608 continue;
6609
6610 mode = TYPE_MODE (elttype);
6611 if (mode != BLKmode)
6612 bitsize = GET_MODE_BITSIZE (mode);
6613 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6614 bitsize = -1;
6615
6616 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6617 {
6618 tree lo_index = TREE_OPERAND (index, 0);
6619 tree hi_index = TREE_OPERAND (index, 1);
6620 rtx index_r, pos_rtx;
6621 HOST_WIDE_INT lo, hi, count;
6622 tree position;
6623
6624 /* If the range is constant and "small", unroll the loop. */
6625 if (const_bounds_p
6626 && tree_fits_shwi_p (lo_index)
6627 && tree_fits_shwi_p (hi_index)
6628 && (lo = tree_to_shwi (lo_index),
6629 hi = tree_to_shwi (hi_index),
6630 count = hi - lo + 1,
6631 (!MEM_P (target)
6632 || count <= 2
6633 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6634 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6635 <= 40 * 8)))))
6636 {
6637 lo -= minelt; hi -= minelt;
6638 for (; lo <= hi; lo++)
6639 {
6640 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6641
6642 if (MEM_P (target)
6643 && !MEM_KEEP_ALIAS_SET_P (target)
6644 && TREE_CODE (type) == ARRAY_TYPE
6645 && TYPE_NONALIASED_COMPONENT (type))
6646 {
6647 target = copy_rtx (target);
6648 MEM_KEEP_ALIAS_SET_P (target) = 1;
6649 }
6650
6651 store_constructor_field
6652 (target, bitsize, bitpos, 0, bitregion_end,
6653 mode, value, cleared,
6654 get_alias_set (elttype), reverse);
6655 }
6656 }
6657 else
6658 {
6659 rtx_code_label *loop_start = gen_label_rtx ();
6660 rtx_code_label *loop_end = gen_label_rtx ();
6661 tree exit_cond;
6662
6663 expand_normal (hi_index);
6664
6665 index = build_decl (EXPR_LOCATION (exp),
6666 VAR_DECL, NULL_TREE, domain);
6667 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6668 SET_DECL_RTL (index, index_r);
6669 store_expr (lo_index, index_r, 0, false, reverse);
6670
6671 /* Build the head of the loop. */
6672 do_pending_stack_adjust ();
6673 emit_label (loop_start);
6674
6675 /* Assign value to element index. */
6676 position =
6677 fold_convert (ssizetype,
6678 fold_build2 (MINUS_EXPR,
6679 TREE_TYPE (index),
6680 index,
6681 TYPE_MIN_VALUE (domain)));
6682
6683 position =
6684 size_binop (MULT_EXPR, position,
6685 fold_convert (ssizetype,
6686 TYPE_SIZE_UNIT (elttype)));
6687
6688 pos_rtx = expand_normal (position);
6689 xtarget = offset_address (target, pos_rtx,
6690 highest_pow2_factor (position));
6691 xtarget = adjust_address (xtarget, mode, 0);
6692 if (TREE_CODE (value) == CONSTRUCTOR)
6693 store_constructor (value, xtarget, cleared,
6694 exact_div (bitsize, BITS_PER_UNIT),
6695 reverse);
6696 else
6697 store_expr (value, xtarget, 0, false, reverse);
6698
6699 /* Generate a conditional jump to exit the loop. */
6700 exit_cond = build2 (LT_EXPR, integer_type_node,
6701 index, hi_index);
6702 jumpif (exit_cond, loop_end,
6703 profile_probability::uninitialized ());
6704
6705 /* Update the loop counter, and jump to the head of
6706 the loop. */
6707 expand_assignment (index,
6708 build2 (PLUS_EXPR, TREE_TYPE (index),
6709 index, integer_one_node),
6710 false);
6711
6712 emit_jump (loop_start);
6713
6714 /* Build the end of the loop. */
6715 emit_label (loop_end);
6716 }
6717 }
6718 else if ((index != 0 && ! tree_fits_shwi_p (index))
6719 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6720 {
6721 tree position;
6722
6723 if (index == 0)
6724 index = ssize_int (1);
6725
6726 if (minelt)
6727 index = fold_convert (ssizetype,
6728 fold_build2 (MINUS_EXPR,
6729 TREE_TYPE (index),
6730 index,
6731 TYPE_MIN_VALUE (domain)));
6732
6733 position =
6734 size_binop (MULT_EXPR, index,
6735 fold_convert (ssizetype,
6736 TYPE_SIZE_UNIT (elttype)));
6737 xtarget = offset_address (target,
6738 expand_normal (position),
6739 highest_pow2_factor (position));
6740 xtarget = adjust_address (xtarget, mode, 0);
6741 store_expr (value, xtarget, 0, false, reverse);
6742 }
6743 else
6744 {
6745 if (index != 0)
6746 bitpos = ((tree_to_shwi (index) - minelt)
6747 * tree_to_uhwi (TYPE_SIZE (elttype)));
6748 else
6749 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6750
6751 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6752 && TREE_CODE (type) == ARRAY_TYPE
6753 && TYPE_NONALIASED_COMPONENT (type))
6754 {
6755 target = copy_rtx (target);
6756 MEM_KEEP_ALIAS_SET_P (target) = 1;
6757 }
6758 store_constructor_field (target, bitsize, bitpos, 0,
6759 bitregion_end, mode, value,
6760 cleared, get_alias_set (elttype),
6761 reverse);
6762 }
6763 }
6764 break;
6765 }
6766
6767 case VECTOR_TYPE:
6768 {
6769 unsigned HOST_WIDE_INT idx;
6770 constructor_elt *ce;
6771 int i;
6772 int need_to_clear;
6773 insn_code icode = CODE_FOR_nothing;
6774 tree elt;
6775 tree elttype = TREE_TYPE (type);
6776 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6777 machine_mode eltmode = TYPE_MODE (elttype);
6778 HOST_WIDE_INT bitsize;
6779 HOST_WIDE_INT bitpos;
6780 rtvec vector = NULL;
6781 poly_uint64 n_elts;
6782 unsigned HOST_WIDE_INT const_n_elts;
6783 alias_set_type alias;
6784 bool vec_vec_init_p = false;
6785 machine_mode mode = GET_MODE (target);
6786
6787 gcc_assert (eltmode != BLKmode);
6788
6789 /* Try using vec_duplicate_optab for uniform vectors. */
6790 if (!TREE_SIDE_EFFECTS (exp)
6791 && VECTOR_MODE_P (mode)
6792 && eltmode == GET_MODE_INNER (mode)
6793 && ((icode = optab_handler (vec_duplicate_optab, mode))
6794 != CODE_FOR_nothing)
6795 && (elt = uniform_vector_p (exp)))
6796 {
6797 class expand_operand ops[2];
6798 create_output_operand (&ops[0], target, mode);
6799 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6800 expand_insn (icode, 2, ops);
6801 if (!rtx_equal_p (target, ops[0].value))
6802 emit_move_insn (target, ops[0].value);
6803 break;
6804 }
6805
6806 n_elts = TYPE_VECTOR_SUBPARTS (type);
6807 if (REG_P (target)
6808 && VECTOR_MODE_P (mode)
6809 && n_elts.is_constant (&const_n_elts))
6810 {
6811 machine_mode emode = eltmode;
6812
6813 if (CONSTRUCTOR_NELTS (exp)
6814 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6815 == VECTOR_TYPE))
6816 {
6817 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6818 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6819 * TYPE_VECTOR_SUBPARTS (etype),
6820 n_elts));
6821 emode = TYPE_MODE (etype);
6822 }
6823 icode = convert_optab_handler (vec_init_optab, mode, emode);
6824 if (icode != CODE_FOR_nothing)
6825 {
6826 unsigned int n = const_n_elts;
6827
6828 if (emode != eltmode)
6829 {
6830 n = CONSTRUCTOR_NELTS (exp);
6831 vec_vec_init_p = true;
6832 }
6833 vector = rtvec_alloc (n);
6834 for (unsigned int k = 0; k < n; k++)
6835 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
6836 }
6837 }
6838
6839 /* If the constructor has fewer elements than the vector,
6840 clear the whole array first. Similarly if this is static
6841 constructor of a non-BLKmode object. */
6842 if (cleared)
6843 need_to_clear = 0;
6844 else if (REG_P (target) && TREE_STATIC (exp))
6845 need_to_clear = 1;
6846 else
6847 {
6848 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6849 tree value;
6850
6851 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6852 {
6853 tree sz = TYPE_SIZE (TREE_TYPE (value));
6854 int n_elts_here
6855 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6856 TYPE_SIZE (elttype)));
6857
6858 count += n_elts_here;
6859 if (mostly_zeros_p (value))
6860 zero_count += n_elts_here;
6861 }
6862
6863 /* Clear the entire vector first if there are any missing elements,
6864 or if the incidence of zero elements is >= 75%. */
6865 need_to_clear = (maybe_lt (count, n_elts)
6866 || 4 * zero_count >= 3 * count);
6867 }
6868
6869 if (need_to_clear && maybe_gt (size, 0) && !vector)
6870 {
6871 if (REG_P (target))
6872 emit_move_insn (target, CONST0_RTX (mode));
6873 else
6874 clear_storage (target, gen_int_mode (size, Pmode),
6875 BLOCK_OP_NORMAL);
6876 cleared = 1;
6877 }
6878
6879 /* Inform later passes that the old value is dead. */
6880 if (!cleared && !vector && REG_P (target))
6881 emit_move_insn (target, CONST0_RTX (mode));
6882
6883 if (MEM_P (target))
6884 alias = MEM_ALIAS_SET (target);
6885 else
6886 alias = get_alias_set (elttype);
6887
6888 /* Store each element of the constructor into the corresponding
6889 element of TARGET, determined by counting the elements. */
6890 for (idx = 0, i = 0;
6891 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6892 idx++, i += bitsize / elt_size)
6893 {
6894 HOST_WIDE_INT eltpos;
6895 tree value = ce->value;
6896
6897 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6898 if (cleared && initializer_zerop (value))
6899 continue;
6900
6901 if (ce->index)
6902 eltpos = tree_to_uhwi (ce->index);
6903 else
6904 eltpos = i;
6905
6906 if (vector)
6907 {
6908 if (vec_vec_init_p)
6909 {
6910 gcc_assert (ce->index == NULL_TREE);
6911 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6912 eltpos = idx;
6913 }
6914 else
6915 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6916 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6917 }
6918 else
6919 {
6920 machine_mode value_mode
6921 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6922 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6923 bitpos = eltpos * elt_size;
6924 store_constructor_field (target, bitsize, bitpos, 0,
6925 bitregion_end, value_mode,
6926 value, cleared, alias, reverse);
6927 }
6928 }
6929
6930 if (vector)
6931 emit_insn (GEN_FCN (icode) (target,
6932 gen_rtx_PARALLEL (mode, vector)));
6933 break;
6934 }
6935
6936 default:
6937 gcc_unreachable ();
6938 }
6939 }
6940
6941 /* Store the value of EXP (an expression tree)
6942 into a subfield of TARGET which has mode MODE and occupies
6943 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6944 If MODE is VOIDmode, it means that we are storing into a bit-field.
6945
6946 BITREGION_START is bitpos of the first bitfield in this region.
6947 BITREGION_END is the bitpos of the ending bitfield in this region.
6948 These two fields are 0, if the C++ memory model does not apply,
6949 or we are not interested in keeping track of bitfield regions.
6950
6951 Always return const0_rtx unless we have something particular to
6952 return.
6953
6954 ALIAS_SET is the alias set for the destination. This value will
6955 (in general) be different from that for TARGET, since TARGET is a
6956 reference to the containing structure.
6957
6958 If NONTEMPORAL is true, try generating a nontemporal store.
6959
6960 If REVERSE is true, the store is to be done in reverse order. */
6961
6962 static rtx
6963 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
6964 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
6965 machine_mode mode, tree exp,
6966 alias_set_type alias_set, bool nontemporal, bool reverse)
6967 {
6968 if (TREE_CODE (exp) == ERROR_MARK)
6969 return const0_rtx;
6970
6971 /* If we have nothing to store, do nothing unless the expression has
6972 side-effects. Don't do that for zero sized addressable lhs of
6973 calls. */
6974 if (known_eq (bitsize, 0)
6975 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6976 || TREE_CODE (exp) != CALL_EXPR))
6977 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6978
6979 if (GET_CODE (target) == CONCAT)
6980 {
6981 /* We're storing into a struct containing a single __complex. */
6982
6983 gcc_assert (known_eq (bitpos, 0));
6984 return store_expr (exp, target, 0, nontemporal, reverse);
6985 }
6986
6987 /* If the structure is in a register or if the component
6988 is a bit field, we cannot use addressing to access it.
6989 Use bit-field techniques or SUBREG to store in it. */
6990
6991 poly_int64 decl_bitsize;
6992 if (mode == VOIDmode
6993 || (mode != BLKmode && ! direct_store[(int) mode]
6994 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6995 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6996 || REG_P (target)
6997 || GET_CODE (target) == SUBREG
6998 /* If the field isn't aligned enough to store as an ordinary memref,
6999 store it as a bit field. */
7000 || (mode != BLKmode
7001 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7002 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7003 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7004 || !multiple_p (bitpos, BITS_PER_UNIT)))
7005 || (known_size_p (bitsize)
7006 && mode != BLKmode
7007 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7008 /* If the RHS and field are a constant size and the size of the
7009 RHS isn't the same size as the bitfield, we must use bitfield
7010 operations. */
7011 || (known_size_p (bitsize)
7012 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7013 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7014 bitsize)
7015 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7016 we will handle specially below. */
7017 && !(TREE_CODE (exp) == CONSTRUCTOR
7018 && multiple_p (bitsize, BITS_PER_UNIT))
7019 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7020 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7021 includes some extra padding. store_expr / expand_expr will in
7022 that case call get_inner_reference that will have the bitsize
7023 we check here and thus the block move will not clobber the
7024 padding that shouldn't be clobbered. In the future we could
7025 replace the TREE_ADDRESSABLE check with a check that
7026 get_base_address needs to live in memory. */
7027 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7028 || TREE_CODE (exp) != COMPONENT_REF
7029 || !multiple_p (bitsize, BITS_PER_UNIT)
7030 || !multiple_p (bitpos, BITS_PER_UNIT)
7031 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7032 &decl_bitsize)
7033 || maybe_ne (decl_bitsize, bitsize)))
7034 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7035 decl we must use bitfield operations. */
7036 || (known_size_p (bitsize)
7037 && TREE_CODE (exp) == MEM_REF
7038 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7039 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7040 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7041 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7042 {
7043 rtx temp;
7044 gimple *nop_def;
7045
7046 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7047 implies a mask operation. If the precision is the same size as
7048 the field we're storing into, that mask is redundant. This is
7049 particularly common with bit field assignments generated by the
7050 C front end. */
7051 nop_def = get_def_for_expr (exp, NOP_EXPR);
7052 if (nop_def)
7053 {
7054 tree type = TREE_TYPE (exp);
7055 if (INTEGRAL_TYPE_P (type)
7056 && maybe_ne (TYPE_PRECISION (type),
7057 GET_MODE_BITSIZE (TYPE_MODE (type)))
7058 && known_eq (bitsize, TYPE_PRECISION (type)))
7059 {
7060 tree op = gimple_assign_rhs1 (nop_def);
7061 type = TREE_TYPE (op);
7062 if (INTEGRAL_TYPE_P (type)
7063 && known_ge (TYPE_PRECISION (type), bitsize))
7064 exp = op;
7065 }
7066 }
7067
7068 temp = expand_normal (exp);
7069
7070 /* We don't support variable-sized BLKmode bitfields, since our
7071 handling of BLKmode is bound up with the ability to break
7072 things into words. */
7073 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7074
7075 /* Handle calls that return values in multiple non-contiguous locations.
7076 The Irix 6 ABI has examples of this. */
7077 if (GET_CODE (temp) == PARALLEL)
7078 {
7079 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7080 machine_mode temp_mode = GET_MODE (temp);
7081 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7082 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7083 rtx temp_target = gen_reg_rtx (temp_mode);
7084 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7085 temp = temp_target;
7086 }
7087
7088 /* Handle calls that return BLKmode values in registers. */
7089 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7090 {
7091 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7092 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7093 temp = temp_target;
7094 }
7095
7096 /* If the value has aggregate type and an integral mode then, if BITSIZE
7097 is narrower than this mode and this is for big-endian data, we first
7098 need to put the value into the low-order bits for store_bit_field,
7099 except when MODE is BLKmode and BITSIZE larger than the word size
7100 (see the handling of fields larger than a word in store_bit_field).
7101 Moreover, the field may be not aligned on a byte boundary; in this
7102 case, if it has reverse storage order, it needs to be accessed as a
7103 scalar field with reverse storage order and we must first put the
7104 value into target order. */
7105 scalar_int_mode temp_mode;
7106 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7107 && is_int_mode (GET_MODE (temp), &temp_mode))
7108 {
7109 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7110
7111 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7112
7113 if (reverse)
7114 temp = flip_storage_order (temp_mode, temp);
7115
7116 gcc_checking_assert (known_le (bitsize, size));
7117 if (maybe_lt (bitsize, size)
7118 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7119 /* Use of to_constant for BLKmode was checked above. */
7120 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7121 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7122 size - bitsize, NULL_RTX, 1);
7123 }
7124
7125 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7126 if (mode != VOIDmode && mode != BLKmode
7127 && mode != TYPE_MODE (TREE_TYPE (exp)))
7128 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7129
7130 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7131 and BITPOS must be aligned on a byte boundary. If so, we simply do
7132 a block copy. Likewise for a BLKmode-like TARGET. */
7133 if (GET_MODE (temp) == BLKmode
7134 && (GET_MODE (target) == BLKmode
7135 || (MEM_P (target)
7136 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7137 && multiple_p (bitpos, BITS_PER_UNIT)
7138 && multiple_p (bitsize, BITS_PER_UNIT))))
7139 {
7140 gcc_assert (MEM_P (target) && MEM_P (temp));
7141 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7142 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7143
7144 target = adjust_address (target, VOIDmode, bytepos);
7145 emit_block_move (target, temp,
7146 gen_int_mode (bytesize, Pmode),
7147 BLOCK_OP_NORMAL);
7148
7149 return const0_rtx;
7150 }
7151
7152 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7153 word size, we need to load the value (see again store_bit_field). */
7154 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7155 {
7156 temp_mode = smallest_int_mode_for_size (bitsize);
7157 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7158 temp_mode, false, NULL);
7159 }
7160
7161 /* Store the value in the bitfield. */
7162 gcc_checking_assert (known_ge (bitpos, 0));
7163 store_bit_field (target, bitsize, bitpos,
7164 bitregion_start, bitregion_end,
7165 mode, temp, reverse);
7166
7167 return const0_rtx;
7168 }
7169 else
7170 {
7171 /* Now build a reference to just the desired component. */
7172 rtx to_rtx = adjust_address (target, mode,
7173 exact_div (bitpos, BITS_PER_UNIT));
7174
7175 if (to_rtx == target)
7176 to_rtx = copy_rtx (to_rtx);
7177
7178 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7179 set_mem_alias_set (to_rtx, alias_set);
7180
7181 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7182 into a target smaller than its type; handle that case now. */
7183 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7184 {
7185 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7186 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7187 return to_rtx;
7188 }
7189
7190 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7191 }
7192 }
7193 \f
7194 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7195 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7196 codes and find the ultimate containing object, which we return.
7197
7198 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7199 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7200 storage order of the field.
7201 If the position of the field is variable, we store a tree
7202 giving the variable offset (in units) in *POFFSET.
7203 This offset is in addition to the bit position.
7204 If the position is not variable, we store 0 in *POFFSET.
7205
7206 If any of the extraction expressions is volatile,
7207 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7208
7209 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7210 Otherwise, it is a mode that can be used to access the field.
7211
7212 If the field describes a variable-sized object, *PMODE is set to
7213 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7214 this case, but the address of the object can be found. */
7215
7216 tree
7217 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7218 poly_int64_pod *pbitpos, tree *poffset,
7219 machine_mode *pmode, int *punsignedp,
7220 int *preversep, int *pvolatilep)
7221 {
7222 tree size_tree = 0;
7223 machine_mode mode = VOIDmode;
7224 bool blkmode_bitfield = false;
7225 tree offset = size_zero_node;
7226 poly_offset_int bit_offset = 0;
7227
7228 /* First get the mode, signedness, storage order and size. We do this from
7229 just the outermost expression. */
7230 *pbitsize = -1;
7231 if (TREE_CODE (exp) == COMPONENT_REF)
7232 {
7233 tree field = TREE_OPERAND (exp, 1);
7234 size_tree = DECL_SIZE (field);
7235 if (flag_strict_volatile_bitfields > 0
7236 && TREE_THIS_VOLATILE (exp)
7237 && DECL_BIT_FIELD_TYPE (field)
7238 && DECL_MODE (field) != BLKmode)
7239 /* Volatile bitfields should be accessed in the mode of the
7240 field's type, not the mode computed based on the bit
7241 size. */
7242 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7243 else if (!DECL_BIT_FIELD (field))
7244 {
7245 mode = DECL_MODE (field);
7246 /* For vector fields re-check the target flags, as DECL_MODE
7247 could have been set with different target flags than
7248 the current function has. */
7249 if (mode == BLKmode
7250 && VECTOR_TYPE_P (TREE_TYPE (field))
7251 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7252 mode = TYPE_MODE (TREE_TYPE (field));
7253 }
7254 else if (DECL_MODE (field) == BLKmode)
7255 blkmode_bitfield = true;
7256
7257 *punsignedp = DECL_UNSIGNED (field);
7258 }
7259 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7260 {
7261 size_tree = TREE_OPERAND (exp, 1);
7262 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7263 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7264
7265 /* For vector element types with the correct size of access or for
7266 vector typed accesses use the mode of the access type. */
7267 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7268 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7269 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7270 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7271 mode = TYPE_MODE (TREE_TYPE (exp));
7272 }
7273 else
7274 {
7275 mode = TYPE_MODE (TREE_TYPE (exp));
7276 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7277
7278 if (mode == BLKmode)
7279 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7280 else
7281 *pbitsize = GET_MODE_BITSIZE (mode);
7282 }
7283
7284 if (size_tree != 0)
7285 {
7286 if (! tree_fits_uhwi_p (size_tree))
7287 mode = BLKmode, *pbitsize = -1;
7288 else
7289 *pbitsize = tree_to_uhwi (size_tree);
7290 }
7291
7292 *preversep = reverse_storage_order_for_component_p (exp);
7293
7294 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7295 and find the ultimate containing object. */
7296 while (1)
7297 {
7298 switch (TREE_CODE (exp))
7299 {
7300 case BIT_FIELD_REF:
7301 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7302 break;
7303
7304 case COMPONENT_REF:
7305 {
7306 tree field = TREE_OPERAND (exp, 1);
7307 tree this_offset = component_ref_field_offset (exp);
7308
7309 /* If this field hasn't been filled in yet, don't go past it.
7310 This should only happen when folding expressions made during
7311 type construction. */
7312 if (this_offset == 0)
7313 break;
7314
7315 offset = size_binop (PLUS_EXPR, offset, this_offset);
7316 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7317
7318 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7319 }
7320 break;
7321
7322 case ARRAY_REF:
7323 case ARRAY_RANGE_REF:
7324 {
7325 tree index = TREE_OPERAND (exp, 1);
7326 tree low_bound = array_ref_low_bound (exp);
7327 tree unit_size = array_ref_element_size (exp);
7328
7329 /* We assume all arrays have sizes that are a multiple of a byte.
7330 First subtract the lower bound, if any, in the type of the
7331 index, then convert to sizetype and multiply by the size of
7332 the array element. */
7333 if (! integer_zerop (low_bound))
7334 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7335 index, low_bound);
7336
7337 offset = size_binop (PLUS_EXPR, offset,
7338 size_binop (MULT_EXPR,
7339 fold_convert (sizetype, index),
7340 unit_size));
7341 }
7342 break;
7343
7344 case REALPART_EXPR:
7345 break;
7346
7347 case IMAGPART_EXPR:
7348 bit_offset += *pbitsize;
7349 break;
7350
7351 case VIEW_CONVERT_EXPR:
7352 break;
7353
7354 case MEM_REF:
7355 /* Hand back the decl for MEM[&decl, off]. */
7356 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7357 {
7358 tree off = TREE_OPERAND (exp, 1);
7359 if (!integer_zerop (off))
7360 {
7361 poly_offset_int boff = mem_ref_offset (exp);
7362 boff <<= LOG2_BITS_PER_UNIT;
7363 bit_offset += boff;
7364 }
7365 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7366 }
7367 goto done;
7368
7369 default:
7370 goto done;
7371 }
7372
7373 /* If any reference in the chain is volatile, the effect is volatile. */
7374 if (TREE_THIS_VOLATILE (exp))
7375 *pvolatilep = 1;
7376
7377 exp = TREE_OPERAND (exp, 0);
7378 }
7379 done:
7380
7381 /* If OFFSET is constant, see if we can return the whole thing as a
7382 constant bit position. Make sure to handle overflow during
7383 this conversion. */
7384 if (poly_int_tree_p (offset))
7385 {
7386 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7387 TYPE_PRECISION (sizetype));
7388 tem <<= LOG2_BITS_PER_UNIT;
7389 tem += bit_offset;
7390 if (tem.to_shwi (pbitpos))
7391 *poffset = offset = NULL_TREE;
7392 }
7393
7394 /* Otherwise, split it up. */
7395 if (offset)
7396 {
7397 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7398 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7399 {
7400 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7401 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7402 offset = size_binop (PLUS_EXPR, offset,
7403 build_int_cst (sizetype, bytes.force_shwi ()));
7404 }
7405
7406 *poffset = offset;
7407 }
7408
7409 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7410 if (mode == VOIDmode
7411 && blkmode_bitfield
7412 && multiple_p (*pbitpos, BITS_PER_UNIT)
7413 && multiple_p (*pbitsize, BITS_PER_UNIT))
7414 *pmode = BLKmode;
7415 else
7416 *pmode = mode;
7417
7418 return exp;
7419 }
7420
7421 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7422
7423 static unsigned HOST_WIDE_INT
7424 target_align (const_tree target)
7425 {
7426 /* We might have a chain of nested references with intermediate misaligning
7427 bitfields components, so need to recurse to find out. */
7428
7429 unsigned HOST_WIDE_INT this_align, outer_align;
7430
7431 switch (TREE_CODE (target))
7432 {
7433 case BIT_FIELD_REF:
7434 return 1;
7435
7436 case COMPONENT_REF:
7437 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7438 outer_align = target_align (TREE_OPERAND (target, 0));
7439 return MIN (this_align, outer_align);
7440
7441 case ARRAY_REF:
7442 case ARRAY_RANGE_REF:
7443 this_align = TYPE_ALIGN (TREE_TYPE (target));
7444 outer_align = target_align (TREE_OPERAND (target, 0));
7445 return MIN (this_align, outer_align);
7446
7447 CASE_CONVERT:
7448 case NON_LVALUE_EXPR:
7449 case VIEW_CONVERT_EXPR:
7450 this_align = TYPE_ALIGN (TREE_TYPE (target));
7451 outer_align = target_align (TREE_OPERAND (target, 0));
7452 return MAX (this_align, outer_align);
7453
7454 default:
7455 return TYPE_ALIGN (TREE_TYPE (target));
7456 }
7457 }
7458
7459 \f
7460 /* Given an rtx VALUE that may contain additions and multiplications, return
7461 an equivalent value that just refers to a register, memory, or constant.
7462 This is done by generating instructions to perform the arithmetic and
7463 returning a pseudo-register containing the value.
7464
7465 The returned value may be a REG, SUBREG, MEM or constant. */
7466
7467 rtx
7468 force_operand (rtx value, rtx target)
7469 {
7470 rtx op1, op2;
7471 /* Use subtarget as the target for operand 0 of a binary operation. */
7472 rtx subtarget = get_subtarget (target);
7473 enum rtx_code code = GET_CODE (value);
7474
7475 /* Check for subreg applied to an expression produced by loop optimizer. */
7476 if (code == SUBREG
7477 && !REG_P (SUBREG_REG (value))
7478 && !MEM_P (SUBREG_REG (value)))
7479 {
7480 value
7481 = simplify_gen_subreg (GET_MODE (value),
7482 force_reg (GET_MODE (SUBREG_REG (value)),
7483 force_operand (SUBREG_REG (value),
7484 NULL_RTX)),
7485 GET_MODE (SUBREG_REG (value)),
7486 SUBREG_BYTE (value));
7487 code = GET_CODE (value);
7488 }
7489
7490 /* Check for a PIC address load. */
7491 if ((code == PLUS || code == MINUS)
7492 && XEXP (value, 0) == pic_offset_table_rtx
7493 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7494 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7495 || GET_CODE (XEXP (value, 1)) == CONST))
7496 {
7497 if (!subtarget)
7498 subtarget = gen_reg_rtx (GET_MODE (value));
7499 emit_move_insn (subtarget, value);
7500 return subtarget;
7501 }
7502
7503 if (ARITHMETIC_P (value))
7504 {
7505 op2 = XEXP (value, 1);
7506 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7507 subtarget = 0;
7508 if (code == MINUS && CONST_INT_P (op2))
7509 {
7510 code = PLUS;
7511 op2 = negate_rtx (GET_MODE (value), op2);
7512 }
7513
7514 /* Check for an addition with OP2 a constant integer and our first
7515 operand a PLUS of a virtual register and something else. In that
7516 case, we want to emit the sum of the virtual register and the
7517 constant first and then add the other value. This allows virtual
7518 register instantiation to simply modify the constant rather than
7519 creating another one around this addition. */
7520 if (code == PLUS && CONST_INT_P (op2)
7521 && GET_CODE (XEXP (value, 0)) == PLUS
7522 && REG_P (XEXP (XEXP (value, 0), 0))
7523 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7524 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7525 {
7526 rtx temp = expand_simple_binop (GET_MODE (value), code,
7527 XEXP (XEXP (value, 0), 0), op2,
7528 subtarget, 0, OPTAB_LIB_WIDEN);
7529 return expand_simple_binop (GET_MODE (value), code, temp,
7530 force_operand (XEXP (XEXP (value,
7531 0), 1), 0),
7532 target, 0, OPTAB_LIB_WIDEN);
7533 }
7534
7535 op1 = force_operand (XEXP (value, 0), subtarget);
7536 op2 = force_operand (op2, NULL_RTX);
7537 switch (code)
7538 {
7539 case MULT:
7540 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7541 case DIV:
7542 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7543 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7544 target, 1, OPTAB_LIB_WIDEN);
7545 else
7546 return expand_divmod (0,
7547 FLOAT_MODE_P (GET_MODE (value))
7548 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7549 GET_MODE (value), op1, op2, target, 0);
7550 case MOD:
7551 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7552 target, 0);
7553 case UDIV:
7554 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7555 target, 1);
7556 case UMOD:
7557 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7558 target, 1);
7559 case ASHIFTRT:
7560 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7561 target, 0, OPTAB_LIB_WIDEN);
7562 default:
7563 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7564 target, 1, OPTAB_LIB_WIDEN);
7565 }
7566 }
7567 if (UNARY_P (value))
7568 {
7569 if (!target)
7570 target = gen_reg_rtx (GET_MODE (value));
7571 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7572 switch (code)
7573 {
7574 case ZERO_EXTEND:
7575 case SIGN_EXTEND:
7576 case TRUNCATE:
7577 case FLOAT_EXTEND:
7578 case FLOAT_TRUNCATE:
7579 convert_move (target, op1, code == ZERO_EXTEND);
7580 return target;
7581
7582 case FIX:
7583 case UNSIGNED_FIX:
7584 expand_fix (target, op1, code == UNSIGNED_FIX);
7585 return target;
7586
7587 case FLOAT:
7588 case UNSIGNED_FLOAT:
7589 expand_float (target, op1, code == UNSIGNED_FLOAT);
7590 return target;
7591
7592 default:
7593 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7594 }
7595 }
7596
7597 #ifdef INSN_SCHEDULING
7598 /* On machines that have insn scheduling, we want all memory reference to be
7599 explicit, so we need to deal with such paradoxical SUBREGs. */
7600 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7601 value
7602 = simplify_gen_subreg (GET_MODE (value),
7603 force_reg (GET_MODE (SUBREG_REG (value)),
7604 force_operand (SUBREG_REG (value),
7605 NULL_RTX)),
7606 GET_MODE (SUBREG_REG (value)),
7607 SUBREG_BYTE (value));
7608 #endif
7609
7610 return value;
7611 }
7612 \f
7613 /* Subroutine of expand_expr: return nonzero iff there is no way that
7614 EXP can reference X, which is being modified. TOP_P is nonzero if this
7615 call is going to be used to determine whether we need a temporary
7616 for EXP, as opposed to a recursive call to this function.
7617
7618 It is always safe for this routine to return zero since it merely
7619 searches for optimization opportunities. */
7620
7621 int
7622 safe_from_p (const_rtx x, tree exp, int top_p)
7623 {
7624 rtx exp_rtl = 0;
7625 int i, nops;
7626
7627 if (x == 0
7628 /* If EXP has varying size, we MUST use a target since we currently
7629 have no way of allocating temporaries of variable size
7630 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7631 So we assume here that something at a higher level has prevented a
7632 clash. This is somewhat bogus, but the best we can do. Only
7633 do this when X is BLKmode and when we are at the top level. */
7634 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7635 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7636 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7637 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7638 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7639 != INTEGER_CST)
7640 && GET_MODE (x) == BLKmode)
7641 /* If X is in the outgoing argument area, it is always safe. */
7642 || (MEM_P (x)
7643 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7644 || (GET_CODE (XEXP (x, 0)) == PLUS
7645 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7646 return 1;
7647
7648 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7649 find the underlying pseudo. */
7650 if (GET_CODE (x) == SUBREG)
7651 {
7652 x = SUBREG_REG (x);
7653 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7654 return 0;
7655 }
7656
7657 /* Now look at our tree code and possibly recurse. */
7658 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7659 {
7660 case tcc_declaration:
7661 exp_rtl = DECL_RTL_IF_SET (exp);
7662 break;
7663
7664 case tcc_constant:
7665 return 1;
7666
7667 case tcc_exceptional:
7668 if (TREE_CODE (exp) == TREE_LIST)
7669 {
7670 while (1)
7671 {
7672 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7673 return 0;
7674 exp = TREE_CHAIN (exp);
7675 if (!exp)
7676 return 1;
7677 if (TREE_CODE (exp) != TREE_LIST)
7678 return safe_from_p (x, exp, 0);
7679 }
7680 }
7681 else if (TREE_CODE (exp) == CONSTRUCTOR)
7682 {
7683 constructor_elt *ce;
7684 unsigned HOST_WIDE_INT idx;
7685
7686 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7687 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7688 || !safe_from_p (x, ce->value, 0))
7689 return 0;
7690 return 1;
7691 }
7692 else if (TREE_CODE (exp) == ERROR_MARK)
7693 return 1; /* An already-visited SAVE_EXPR? */
7694 else
7695 return 0;
7696
7697 case tcc_statement:
7698 /* The only case we look at here is the DECL_INITIAL inside a
7699 DECL_EXPR. */
7700 return (TREE_CODE (exp) != DECL_EXPR
7701 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7702 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7703 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7704
7705 case tcc_binary:
7706 case tcc_comparison:
7707 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7708 return 0;
7709 /* Fall through. */
7710
7711 case tcc_unary:
7712 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7713
7714 case tcc_expression:
7715 case tcc_reference:
7716 case tcc_vl_exp:
7717 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7718 the expression. If it is set, we conflict iff we are that rtx or
7719 both are in memory. Otherwise, we check all operands of the
7720 expression recursively. */
7721
7722 switch (TREE_CODE (exp))
7723 {
7724 case ADDR_EXPR:
7725 /* If the operand is static or we are static, we can't conflict.
7726 Likewise if we don't conflict with the operand at all. */
7727 if (staticp (TREE_OPERAND (exp, 0))
7728 || TREE_STATIC (exp)
7729 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7730 return 1;
7731
7732 /* Otherwise, the only way this can conflict is if we are taking
7733 the address of a DECL a that address if part of X, which is
7734 very rare. */
7735 exp = TREE_OPERAND (exp, 0);
7736 if (DECL_P (exp))
7737 {
7738 if (!DECL_RTL_SET_P (exp)
7739 || !MEM_P (DECL_RTL (exp)))
7740 return 0;
7741 else
7742 exp_rtl = XEXP (DECL_RTL (exp), 0);
7743 }
7744 break;
7745
7746 case MEM_REF:
7747 if (MEM_P (x)
7748 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7749 get_alias_set (exp)))
7750 return 0;
7751 break;
7752
7753 case CALL_EXPR:
7754 /* Assume that the call will clobber all hard registers and
7755 all of memory. */
7756 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7757 || MEM_P (x))
7758 return 0;
7759 break;
7760
7761 case WITH_CLEANUP_EXPR:
7762 case CLEANUP_POINT_EXPR:
7763 /* Lowered by gimplify.c. */
7764 gcc_unreachable ();
7765
7766 case SAVE_EXPR:
7767 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7768
7769 default:
7770 break;
7771 }
7772
7773 /* If we have an rtx, we do not need to scan our operands. */
7774 if (exp_rtl)
7775 break;
7776
7777 nops = TREE_OPERAND_LENGTH (exp);
7778 for (i = 0; i < nops; i++)
7779 if (TREE_OPERAND (exp, i) != 0
7780 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7781 return 0;
7782
7783 break;
7784
7785 case tcc_type:
7786 /* Should never get a type here. */
7787 gcc_unreachable ();
7788 }
7789
7790 /* If we have an rtl, find any enclosed object. Then see if we conflict
7791 with it. */
7792 if (exp_rtl)
7793 {
7794 if (GET_CODE (exp_rtl) == SUBREG)
7795 {
7796 exp_rtl = SUBREG_REG (exp_rtl);
7797 if (REG_P (exp_rtl)
7798 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7799 return 0;
7800 }
7801
7802 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7803 are memory and they conflict. */
7804 return ! (rtx_equal_p (x, exp_rtl)
7805 || (MEM_P (x) && MEM_P (exp_rtl)
7806 && true_dependence (exp_rtl, VOIDmode, x)));
7807 }
7808
7809 /* If we reach here, it is safe. */
7810 return 1;
7811 }
7812
7813 \f
7814 /* Return the highest power of two that EXP is known to be a multiple of.
7815 This is used in updating alignment of MEMs in array references. */
7816
7817 unsigned HOST_WIDE_INT
7818 highest_pow2_factor (const_tree exp)
7819 {
7820 unsigned HOST_WIDE_INT ret;
7821 int trailing_zeros = tree_ctz (exp);
7822 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7823 return BIGGEST_ALIGNMENT;
7824 ret = HOST_WIDE_INT_1U << trailing_zeros;
7825 if (ret > BIGGEST_ALIGNMENT)
7826 return BIGGEST_ALIGNMENT;
7827 return ret;
7828 }
7829
7830 /* Similar, except that the alignment requirements of TARGET are
7831 taken into account. Assume it is at least as aligned as its
7832 type, unless it is a COMPONENT_REF in which case the layout of
7833 the structure gives the alignment. */
7834
7835 static unsigned HOST_WIDE_INT
7836 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7837 {
7838 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7839 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7840
7841 return MAX (factor, talign);
7842 }
7843 \f
7844 /* Convert the tree comparison code TCODE to the rtl one where the
7845 signedness is UNSIGNEDP. */
7846
7847 static enum rtx_code
7848 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7849 {
7850 enum rtx_code code;
7851 switch (tcode)
7852 {
7853 case EQ_EXPR:
7854 code = EQ;
7855 break;
7856 case NE_EXPR:
7857 code = NE;
7858 break;
7859 case LT_EXPR:
7860 code = unsignedp ? LTU : LT;
7861 break;
7862 case LE_EXPR:
7863 code = unsignedp ? LEU : LE;
7864 break;
7865 case GT_EXPR:
7866 code = unsignedp ? GTU : GT;
7867 break;
7868 case GE_EXPR:
7869 code = unsignedp ? GEU : GE;
7870 break;
7871 case UNORDERED_EXPR:
7872 code = UNORDERED;
7873 break;
7874 case ORDERED_EXPR:
7875 code = ORDERED;
7876 break;
7877 case UNLT_EXPR:
7878 code = UNLT;
7879 break;
7880 case UNLE_EXPR:
7881 code = UNLE;
7882 break;
7883 case UNGT_EXPR:
7884 code = UNGT;
7885 break;
7886 case UNGE_EXPR:
7887 code = UNGE;
7888 break;
7889 case UNEQ_EXPR:
7890 code = UNEQ;
7891 break;
7892 case LTGT_EXPR:
7893 code = LTGT;
7894 break;
7895
7896 default:
7897 gcc_unreachable ();
7898 }
7899 return code;
7900 }
7901
7902 /* Subroutine of expand_expr. Expand the two operands of a binary
7903 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7904 The value may be stored in TARGET if TARGET is nonzero. The
7905 MODIFIER argument is as documented by expand_expr. */
7906
7907 void
7908 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7909 enum expand_modifier modifier)
7910 {
7911 if (! safe_from_p (target, exp1, 1))
7912 target = 0;
7913 if (operand_equal_p (exp0, exp1, 0))
7914 {
7915 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7916 *op1 = copy_rtx (*op0);
7917 }
7918 else
7919 {
7920 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7921 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7922 }
7923 }
7924
7925 \f
7926 /* Return a MEM that contains constant EXP. DEFER is as for
7927 output_constant_def and MODIFIER is as for expand_expr. */
7928
7929 static rtx
7930 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7931 {
7932 rtx mem;
7933
7934 mem = output_constant_def (exp, defer);
7935 if (modifier != EXPAND_INITIALIZER)
7936 mem = use_anchored_address (mem);
7937 return mem;
7938 }
7939
7940 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7941 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7942
7943 static rtx
7944 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7945 enum expand_modifier modifier, addr_space_t as)
7946 {
7947 rtx result, subtarget;
7948 tree inner, offset;
7949 poly_int64 bitsize, bitpos;
7950 int unsignedp, reversep, volatilep = 0;
7951 machine_mode mode1;
7952
7953 /* If we are taking the address of a constant and are at the top level,
7954 we have to use output_constant_def since we can't call force_const_mem
7955 at top level. */
7956 /* ??? This should be considered a front-end bug. We should not be
7957 generating ADDR_EXPR of something that isn't an LVALUE. The only
7958 exception here is STRING_CST. */
7959 if (CONSTANT_CLASS_P (exp))
7960 {
7961 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7962 if (modifier < EXPAND_SUM)
7963 result = force_operand (result, target);
7964 return result;
7965 }
7966
7967 /* Everything must be something allowed by is_gimple_addressable. */
7968 switch (TREE_CODE (exp))
7969 {
7970 case INDIRECT_REF:
7971 /* This case will happen via recursion for &a->b. */
7972 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7973
7974 case MEM_REF:
7975 {
7976 tree tem = TREE_OPERAND (exp, 0);
7977 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7978 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7979 return expand_expr (tem, target, tmode, modifier);
7980 }
7981
7982 case TARGET_MEM_REF:
7983 return addr_for_mem_ref (exp, as, true);
7984
7985 case CONST_DECL:
7986 /* Expand the initializer like constants above. */
7987 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7988 0, modifier), 0);
7989 if (modifier < EXPAND_SUM)
7990 result = force_operand (result, target);
7991 return result;
7992
7993 case REALPART_EXPR:
7994 /* The real part of the complex number is always first, therefore
7995 the address is the same as the address of the parent object. */
7996 offset = 0;
7997 bitpos = 0;
7998 inner = TREE_OPERAND (exp, 0);
7999 break;
8000
8001 case IMAGPART_EXPR:
8002 /* The imaginary part of the complex number is always second.
8003 The expression is therefore always offset by the size of the
8004 scalar type. */
8005 offset = 0;
8006 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8007 inner = TREE_OPERAND (exp, 0);
8008 break;
8009
8010 case COMPOUND_LITERAL_EXPR:
8011 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8012 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8013 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8014 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8015 the initializers aren't gimplified. */
8016 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8017 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
8018 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8019 target, tmode, modifier, as);
8020 /* FALLTHRU */
8021 default:
8022 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8023 expand_expr, as that can have various side effects; LABEL_DECLs for
8024 example, may not have their DECL_RTL set yet. Expand the rtl of
8025 CONSTRUCTORs too, which should yield a memory reference for the
8026 constructor's contents. Assume language specific tree nodes can
8027 be expanded in some interesting way. */
8028 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8029 if (DECL_P (exp)
8030 || TREE_CODE (exp) == CONSTRUCTOR
8031 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8032 {
8033 result = expand_expr (exp, target, tmode,
8034 modifier == EXPAND_INITIALIZER
8035 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8036
8037 /* If the DECL isn't in memory, then the DECL wasn't properly
8038 marked TREE_ADDRESSABLE, which will be either a front-end
8039 or a tree optimizer bug. */
8040
8041 gcc_assert (MEM_P (result));
8042 result = XEXP (result, 0);
8043
8044 /* ??? Is this needed anymore? */
8045 if (DECL_P (exp))
8046 TREE_USED (exp) = 1;
8047
8048 if (modifier != EXPAND_INITIALIZER
8049 && modifier != EXPAND_CONST_ADDRESS
8050 && modifier != EXPAND_SUM)
8051 result = force_operand (result, target);
8052 return result;
8053 }
8054
8055 /* Pass FALSE as the last argument to get_inner_reference although
8056 we are expanding to RTL. The rationale is that we know how to
8057 handle "aligning nodes" here: we can just bypass them because
8058 they won't change the final object whose address will be returned
8059 (they actually exist only for that purpose). */
8060 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8061 &unsignedp, &reversep, &volatilep);
8062 break;
8063 }
8064
8065 /* We must have made progress. */
8066 gcc_assert (inner != exp);
8067
8068 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8069 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8070 inner alignment, force the inner to be sufficiently aligned. */
8071 if (CONSTANT_CLASS_P (inner)
8072 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8073 {
8074 inner = copy_node (inner);
8075 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8076 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8077 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8078 }
8079 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8080
8081 if (offset)
8082 {
8083 rtx tmp;
8084
8085 if (modifier != EXPAND_NORMAL)
8086 result = force_operand (result, NULL);
8087 tmp = expand_expr (offset, NULL_RTX, tmode,
8088 modifier == EXPAND_INITIALIZER
8089 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8090
8091 /* expand_expr is allowed to return an object in a mode other
8092 than TMODE. If it did, we need to convert. */
8093 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8094 tmp = convert_modes (tmode, GET_MODE (tmp),
8095 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8096 result = convert_memory_address_addr_space (tmode, result, as);
8097 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8098
8099 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8100 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8101 else
8102 {
8103 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8104 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8105 1, OPTAB_LIB_WIDEN);
8106 }
8107 }
8108
8109 if (maybe_ne (bitpos, 0))
8110 {
8111 /* Someone beforehand should have rejected taking the address
8112 of an object that isn't byte-aligned. */
8113 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8114 result = convert_memory_address_addr_space (tmode, result, as);
8115 result = plus_constant (tmode, result, bytepos);
8116 if (modifier < EXPAND_SUM)
8117 result = force_operand (result, target);
8118 }
8119
8120 return result;
8121 }
8122
8123 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8124 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8125
8126 static rtx
8127 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8128 enum expand_modifier modifier)
8129 {
8130 addr_space_t as = ADDR_SPACE_GENERIC;
8131 scalar_int_mode address_mode = Pmode;
8132 scalar_int_mode pointer_mode = ptr_mode;
8133 machine_mode rmode;
8134 rtx result;
8135
8136 /* Target mode of VOIDmode says "whatever's natural". */
8137 if (tmode == VOIDmode)
8138 tmode = TYPE_MODE (TREE_TYPE (exp));
8139
8140 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8141 {
8142 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8143 address_mode = targetm.addr_space.address_mode (as);
8144 pointer_mode = targetm.addr_space.pointer_mode (as);
8145 }
8146
8147 /* We can get called with some Weird Things if the user does silliness
8148 like "(short) &a". In that case, convert_memory_address won't do
8149 the right thing, so ignore the given target mode. */
8150 scalar_int_mode new_tmode = (tmode == pointer_mode
8151 ? pointer_mode
8152 : address_mode);
8153
8154 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8155 new_tmode, modifier, as);
8156
8157 /* Despite expand_expr claims concerning ignoring TMODE when not
8158 strictly convenient, stuff breaks if we don't honor it. Note
8159 that combined with the above, we only do this for pointer modes. */
8160 rmode = GET_MODE (result);
8161 if (rmode == VOIDmode)
8162 rmode = new_tmode;
8163 if (rmode != new_tmode)
8164 result = convert_memory_address_addr_space (new_tmode, result, as);
8165
8166 return result;
8167 }
8168
8169 /* Generate code for computing CONSTRUCTOR EXP.
8170 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8171 is TRUE, instead of creating a temporary variable in memory
8172 NULL is returned and the caller needs to handle it differently. */
8173
8174 static rtx
8175 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8176 bool avoid_temp_mem)
8177 {
8178 tree type = TREE_TYPE (exp);
8179 machine_mode mode = TYPE_MODE (type);
8180
8181 /* Try to avoid creating a temporary at all. This is possible
8182 if all of the initializer is zero.
8183 FIXME: try to handle all [0..255] initializers we can handle
8184 with memset. */
8185 if (TREE_STATIC (exp)
8186 && !TREE_ADDRESSABLE (exp)
8187 && target != 0 && mode == BLKmode
8188 && all_zeros_p (exp))
8189 {
8190 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8191 return target;
8192 }
8193
8194 /* All elts simple constants => refer to a constant in memory. But
8195 if this is a non-BLKmode mode, let it store a field at a time
8196 since that should make a CONST_INT, CONST_WIDE_INT or
8197 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8198 use, it is best to store directly into the target unless the type
8199 is large enough that memcpy will be used. If we are making an
8200 initializer and all operands are constant, put it in memory as
8201 well.
8202
8203 FIXME: Avoid trying to fill vector constructors piece-meal.
8204 Output them with output_constant_def below unless we're sure
8205 they're zeros. This should go away when vector initializers
8206 are treated like VECTOR_CST instead of arrays. */
8207 if ((TREE_STATIC (exp)
8208 && ((mode == BLKmode
8209 && ! (target != 0 && safe_from_p (target, exp, 1)))
8210 || TREE_ADDRESSABLE (exp)
8211 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8212 && (! can_move_by_pieces
8213 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8214 TYPE_ALIGN (type)))
8215 && ! mostly_zeros_p (exp))))
8216 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8217 && TREE_CONSTANT (exp)))
8218 {
8219 rtx constructor;
8220
8221 if (avoid_temp_mem)
8222 return NULL_RTX;
8223
8224 constructor = expand_expr_constant (exp, 1, modifier);
8225
8226 if (modifier != EXPAND_CONST_ADDRESS
8227 && modifier != EXPAND_INITIALIZER
8228 && modifier != EXPAND_SUM)
8229 constructor = validize_mem (constructor);
8230
8231 return constructor;
8232 }
8233
8234 /* Handle calls that pass values in multiple non-contiguous
8235 locations. The Irix 6 ABI has examples of this. */
8236 if (target == 0 || ! safe_from_p (target, exp, 1)
8237 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8238 {
8239 if (avoid_temp_mem)
8240 return NULL_RTX;
8241
8242 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8243 }
8244
8245 store_constructor (exp, target, 0, int_expr_size (exp), false);
8246 return target;
8247 }
8248
8249
8250 /* expand_expr: generate code for computing expression EXP.
8251 An rtx for the computed value is returned. The value is never null.
8252 In the case of a void EXP, const0_rtx is returned.
8253
8254 The value may be stored in TARGET if TARGET is nonzero.
8255 TARGET is just a suggestion; callers must assume that
8256 the rtx returned may not be the same as TARGET.
8257
8258 If TARGET is CONST0_RTX, it means that the value will be ignored.
8259
8260 If TMODE is not VOIDmode, it suggests generating the
8261 result in mode TMODE. But this is done only when convenient.
8262 Otherwise, TMODE is ignored and the value generated in its natural mode.
8263 TMODE is just a suggestion; callers must assume that
8264 the rtx returned may not have mode TMODE.
8265
8266 Note that TARGET may have neither TMODE nor MODE. In that case, it
8267 probably will not be used.
8268
8269 If MODIFIER is EXPAND_SUM then when EXP is an addition
8270 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8271 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8272 products as above, or REG or MEM, or constant.
8273 Ordinarily in such cases we would output mul or add instructions
8274 and then return a pseudo reg containing the sum.
8275
8276 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8277 it also marks a label as absolutely required (it can't be dead).
8278 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8279 This is used for outputting expressions used in initializers.
8280
8281 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8282 with a constant address even if that address is not normally legitimate.
8283 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8284
8285 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8286 a call parameter. Such targets require special care as we haven't yet
8287 marked TARGET so that it's safe from being trashed by libcalls. We
8288 don't want to use TARGET for anything but the final result;
8289 Intermediate values must go elsewhere. Additionally, calls to
8290 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8291
8292 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8293 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8294 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8295 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8296 recursively.
8297 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8298 then *ALT_RTL is set to TARGET (before legitimziation).
8299
8300 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8301 In this case, we don't adjust a returned MEM rtx that wouldn't be
8302 sufficiently aligned for its mode; instead, it's up to the caller
8303 to deal with it afterwards. This is used to make sure that unaligned
8304 base objects for which out-of-bounds accesses are supported, for
8305 example record types with trailing arrays, aren't realigned behind
8306 the back of the caller.
8307 The normal operating mode is to pass FALSE for this parameter. */
8308
8309 rtx
8310 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8311 enum expand_modifier modifier, rtx *alt_rtl,
8312 bool inner_reference_p)
8313 {
8314 rtx ret;
8315
8316 /* Handle ERROR_MARK before anybody tries to access its type. */
8317 if (TREE_CODE (exp) == ERROR_MARK
8318 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8319 {
8320 ret = CONST0_RTX (tmode);
8321 return ret ? ret : const0_rtx;
8322 }
8323
8324 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8325 inner_reference_p);
8326 return ret;
8327 }
8328
8329 /* Try to expand the conditional expression which is represented by
8330 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8331 return the rtl reg which represents the result. Otherwise return
8332 NULL_RTX. */
8333
8334 static rtx
8335 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8336 tree treeop1 ATTRIBUTE_UNUSED,
8337 tree treeop2 ATTRIBUTE_UNUSED)
8338 {
8339 rtx insn;
8340 rtx op00, op01, op1, op2;
8341 enum rtx_code comparison_code;
8342 machine_mode comparison_mode;
8343 gimple *srcstmt;
8344 rtx temp;
8345 tree type = TREE_TYPE (treeop1);
8346 int unsignedp = TYPE_UNSIGNED (type);
8347 machine_mode mode = TYPE_MODE (type);
8348 machine_mode orig_mode = mode;
8349 static bool expanding_cond_expr_using_cmove = false;
8350
8351 /* Conditional move expansion can end up TERing two operands which,
8352 when recursively hitting conditional expressions can result in
8353 exponential behavior if the cmove expansion ultimatively fails.
8354 It's hardly profitable to TER a cmove into a cmove so avoid doing
8355 that by failing early if we end up recursing. */
8356 if (expanding_cond_expr_using_cmove)
8357 return NULL_RTX;
8358
8359 /* If we cannot do a conditional move on the mode, try doing it
8360 with the promoted mode. */
8361 if (!can_conditionally_move_p (mode))
8362 {
8363 mode = promote_mode (type, mode, &unsignedp);
8364 if (!can_conditionally_move_p (mode))
8365 return NULL_RTX;
8366 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8367 }
8368 else
8369 temp = assign_temp (type, 0, 1);
8370
8371 expanding_cond_expr_using_cmove = true;
8372 start_sequence ();
8373 expand_operands (treeop1, treeop2,
8374 temp, &op1, &op2, EXPAND_NORMAL);
8375
8376 if (TREE_CODE (treeop0) == SSA_NAME
8377 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8378 {
8379 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8380 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8381 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8382 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8383 comparison_mode = TYPE_MODE (type);
8384 unsignedp = TYPE_UNSIGNED (type);
8385 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8386 }
8387 else if (COMPARISON_CLASS_P (treeop0))
8388 {
8389 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8390 enum tree_code cmpcode = TREE_CODE (treeop0);
8391 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8392 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8393 unsignedp = TYPE_UNSIGNED (type);
8394 comparison_mode = TYPE_MODE (type);
8395 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8396 }
8397 else
8398 {
8399 op00 = expand_normal (treeop0);
8400 op01 = const0_rtx;
8401 comparison_code = NE;
8402 comparison_mode = GET_MODE (op00);
8403 if (comparison_mode == VOIDmode)
8404 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8405 }
8406 expanding_cond_expr_using_cmove = false;
8407
8408 if (GET_MODE (op1) != mode)
8409 op1 = gen_lowpart (mode, op1);
8410
8411 if (GET_MODE (op2) != mode)
8412 op2 = gen_lowpart (mode, op2);
8413
8414 /* Try to emit the conditional move. */
8415 insn = emit_conditional_move (temp, comparison_code,
8416 op00, op01, comparison_mode,
8417 op1, op2, mode,
8418 unsignedp);
8419
8420 /* If we could do the conditional move, emit the sequence,
8421 and return. */
8422 if (insn)
8423 {
8424 rtx_insn *seq = get_insns ();
8425 end_sequence ();
8426 emit_insn (seq);
8427 return convert_modes (orig_mode, mode, temp, 0);
8428 }
8429
8430 /* Otherwise discard the sequence and fall back to code with
8431 branches. */
8432 end_sequence ();
8433 return NULL_RTX;
8434 }
8435
8436 /* A helper function for expand_expr_real_2 to be used with a
8437 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8438 is nonzero, with alignment ALIGN in bits.
8439 Store the value at TARGET if possible (if TARGET is nonzero).
8440 Regardless of TARGET, we return the rtx for where the value is placed.
8441 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8442 then *ALT_RTL is set to TARGET (before legitimziation). */
8443
8444 static rtx
8445 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
8446 unsigned int align, rtx target, rtx *alt_rtl)
8447 {
8448 enum insn_code icode;
8449
8450 if ((icode = optab_handler (movmisalign_optab, mode))
8451 != CODE_FOR_nothing)
8452 {
8453 class expand_operand ops[2];
8454
8455 /* We've already validated the memory, and we're creating a
8456 new pseudo destination. The predicates really can't fail,
8457 nor can the generator. */
8458 create_output_operand (&ops[0], NULL_RTX, mode);
8459 create_fixed_operand (&ops[1], temp);
8460 expand_insn (icode, 2, ops);
8461 temp = ops[0].value;
8462 }
8463 else if (targetm.slow_unaligned_access (mode, align))
8464 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
8465 0, unsignedp, target,
8466 mode, mode, false, alt_rtl);
8467 return temp;
8468 }
8469
8470 rtx
8471 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8472 enum expand_modifier modifier)
8473 {
8474 rtx op0, op1, op2, temp;
8475 rtx_code_label *lab;
8476 tree type;
8477 int unsignedp;
8478 machine_mode mode;
8479 scalar_int_mode int_mode;
8480 enum tree_code code = ops->code;
8481 optab this_optab;
8482 rtx subtarget, original_target;
8483 int ignore;
8484 bool reduce_bit_field;
8485 location_t loc = ops->location;
8486 tree treeop0, treeop1, treeop2;
8487 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8488 ? reduce_to_bit_field_precision ((expr), \
8489 target, \
8490 type) \
8491 : (expr))
8492
8493 type = ops->type;
8494 mode = TYPE_MODE (type);
8495 unsignedp = TYPE_UNSIGNED (type);
8496
8497 treeop0 = ops->op0;
8498 treeop1 = ops->op1;
8499 treeop2 = ops->op2;
8500
8501 /* We should be called only on simple (binary or unary) expressions,
8502 exactly those that are valid in gimple expressions that aren't
8503 GIMPLE_SINGLE_RHS (or invalid). */
8504 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8505 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8506 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8507
8508 ignore = (target == const0_rtx
8509 || ((CONVERT_EXPR_CODE_P (code)
8510 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8511 && TREE_CODE (type) == VOID_TYPE));
8512
8513 /* We should be called only if we need the result. */
8514 gcc_assert (!ignore);
8515
8516 /* An operation in what may be a bit-field type needs the
8517 result to be reduced to the precision of the bit-field type,
8518 which is narrower than that of the type's mode. */
8519 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8520 && !type_has_mode_precision_p (type));
8521
8522 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8523 target = 0;
8524
8525 /* Use subtarget as the target for operand 0 of a binary operation. */
8526 subtarget = get_subtarget (target);
8527 original_target = target;
8528
8529 switch (code)
8530 {
8531 case NON_LVALUE_EXPR:
8532 case PAREN_EXPR:
8533 CASE_CONVERT:
8534 if (treeop0 == error_mark_node)
8535 return const0_rtx;
8536
8537 if (TREE_CODE (type) == UNION_TYPE)
8538 {
8539 tree valtype = TREE_TYPE (treeop0);
8540
8541 /* If both input and output are BLKmode, this conversion isn't doing
8542 anything except possibly changing memory attribute. */
8543 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8544 {
8545 rtx result = expand_expr (treeop0, target, tmode,
8546 modifier);
8547
8548 result = copy_rtx (result);
8549 set_mem_attributes (result, type, 0);
8550 return result;
8551 }
8552
8553 if (target == 0)
8554 {
8555 if (TYPE_MODE (type) != BLKmode)
8556 target = gen_reg_rtx (TYPE_MODE (type));
8557 else
8558 target = assign_temp (type, 1, 1);
8559 }
8560
8561 if (MEM_P (target))
8562 /* Store data into beginning of memory target. */
8563 store_expr (treeop0,
8564 adjust_address (target, TYPE_MODE (valtype), 0),
8565 modifier == EXPAND_STACK_PARM,
8566 false, TYPE_REVERSE_STORAGE_ORDER (type));
8567
8568 else
8569 {
8570 gcc_assert (REG_P (target)
8571 && !TYPE_REVERSE_STORAGE_ORDER (type));
8572
8573 /* Store this field into a union of the proper type. */
8574 poly_uint64 op0_size
8575 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8576 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8577 store_field (target,
8578 /* The conversion must be constructed so that
8579 we know at compile time how many bits
8580 to preserve. */
8581 ordered_min (op0_size, union_size),
8582 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8583 false, false);
8584 }
8585
8586 /* Return the entire union. */
8587 return target;
8588 }
8589
8590 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8591 {
8592 op0 = expand_expr (treeop0, target, VOIDmode,
8593 modifier);
8594
8595 /* If the signedness of the conversion differs and OP0 is
8596 a promoted SUBREG, clear that indication since we now
8597 have to do the proper extension. */
8598 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8599 && GET_CODE (op0) == SUBREG)
8600 SUBREG_PROMOTED_VAR_P (op0) = 0;
8601
8602 return REDUCE_BIT_FIELD (op0);
8603 }
8604
8605 op0 = expand_expr (treeop0, NULL_RTX, mode,
8606 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8607 if (GET_MODE (op0) == mode)
8608 ;
8609
8610 /* If OP0 is a constant, just convert it into the proper mode. */
8611 else if (CONSTANT_P (op0))
8612 {
8613 tree inner_type = TREE_TYPE (treeop0);
8614 machine_mode inner_mode = GET_MODE (op0);
8615
8616 if (inner_mode == VOIDmode)
8617 inner_mode = TYPE_MODE (inner_type);
8618
8619 if (modifier == EXPAND_INITIALIZER)
8620 op0 = lowpart_subreg (mode, op0, inner_mode);
8621 else
8622 op0= convert_modes (mode, inner_mode, op0,
8623 TYPE_UNSIGNED (inner_type));
8624 }
8625
8626 else if (modifier == EXPAND_INITIALIZER)
8627 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8628 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8629
8630 else if (target == 0)
8631 op0 = convert_to_mode (mode, op0,
8632 TYPE_UNSIGNED (TREE_TYPE
8633 (treeop0)));
8634 else
8635 {
8636 convert_move (target, op0,
8637 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8638 op0 = target;
8639 }
8640
8641 return REDUCE_BIT_FIELD (op0);
8642
8643 case ADDR_SPACE_CONVERT_EXPR:
8644 {
8645 tree treeop0_type = TREE_TYPE (treeop0);
8646
8647 gcc_assert (POINTER_TYPE_P (type));
8648 gcc_assert (POINTER_TYPE_P (treeop0_type));
8649
8650 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8651 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8652
8653 /* Conversions between pointers to the same address space should
8654 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8655 gcc_assert (as_to != as_from);
8656
8657 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8658
8659 /* Ask target code to handle conversion between pointers
8660 to overlapping address spaces. */
8661 if (targetm.addr_space.subset_p (as_to, as_from)
8662 || targetm.addr_space.subset_p (as_from, as_to))
8663 {
8664 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8665 }
8666 else
8667 {
8668 /* For disjoint address spaces, converting anything but a null
8669 pointer invokes undefined behavior. We truncate or extend the
8670 value as if we'd converted via integers, which handles 0 as
8671 required, and all others as the programmer likely expects. */
8672 #ifndef POINTERS_EXTEND_UNSIGNED
8673 const int POINTERS_EXTEND_UNSIGNED = 1;
8674 #endif
8675 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8676 op0, POINTERS_EXTEND_UNSIGNED);
8677 }
8678 gcc_assert (op0);
8679 return op0;
8680 }
8681
8682 case POINTER_PLUS_EXPR:
8683 /* Even though the sizetype mode and the pointer's mode can be different
8684 expand is able to handle this correctly and get the correct result out
8685 of the PLUS_EXPR code. */
8686 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8687 if sizetype precision is smaller than pointer precision. */
8688 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8689 treeop1 = fold_convert_loc (loc, type,
8690 fold_convert_loc (loc, ssizetype,
8691 treeop1));
8692 /* If sizetype precision is larger than pointer precision, truncate the
8693 offset to have matching modes. */
8694 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8695 treeop1 = fold_convert_loc (loc, type, treeop1);
8696 /* FALLTHRU */
8697
8698 case PLUS_EXPR:
8699 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8700 something else, make sure we add the register to the constant and
8701 then to the other thing. This case can occur during strength
8702 reduction and doing it this way will produce better code if the
8703 frame pointer or argument pointer is eliminated.
8704
8705 fold-const.c will ensure that the constant is always in the inner
8706 PLUS_EXPR, so the only case we need to do anything about is if
8707 sp, ap, or fp is our second argument, in which case we must swap
8708 the innermost first argument and our second argument. */
8709
8710 if (TREE_CODE (treeop0) == PLUS_EXPR
8711 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8712 && VAR_P (treeop1)
8713 && (DECL_RTL (treeop1) == frame_pointer_rtx
8714 || DECL_RTL (treeop1) == stack_pointer_rtx
8715 || DECL_RTL (treeop1) == arg_pointer_rtx))
8716 {
8717 gcc_unreachable ();
8718 }
8719
8720 /* If the result is to be ptr_mode and we are adding an integer to
8721 something, we might be forming a constant. So try to use
8722 plus_constant. If it produces a sum and we can't accept it,
8723 use force_operand. This allows P = &ARR[const] to generate
8724 efficient code on machines where a SYMBOL_REF is not a valid
8725 address.
8726
8727 If this is an EXPAND_SUM call, always return the sum. */
8728 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8729 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8730 {
8731 if (modifier == EXPAND_STACK_PARM)
8732 target = 0;
8733 if (TREE_CODE (treeop0) == INTEGER_CST
8734 && HWI_COMPUTABLE_MODE_P (mode)
8735 && TREE_CONSTANT (treeop1))
8736 {
8737 rtx constant_part;
8738 HOST_WIDE_INT wc;
8739 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8740
8741 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8742 EXPAND_SUM);
8743 /* Use wi::shwi to ensure that the constant is
8744 truncated according to the mode of OP1, then sign extended
8745 to a HOST_WIDE_INT. Using the constant directly can result
8746 in non-canonical RTL in a 64x32 cross compile. */
8747 wc = TREE_INT_CST_LOW (treeop0);
8748 constant_part =
8749 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8750 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8751 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8752 op1 = force_operand (op1, target);
8753 return REDUCE_BIT_FIELD (op1);
8754 }
8755
8756 else if (TREE_CODE (treeop1) == INTEGER_CST
8757 && HWI_COMPUTABLE_MODE_P (mode)
8758 && TREE_CONSTANT (treeop0))
8759 {
8760 rtx constant_part;
8761 HOST_WIDE_INT wc;
8762 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8763
8764 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8765 (modifier == EXPAND_INITIALIZER
8766 ? EXPAND_INITIALIZER : EXPAND_SUM));
8767 if (! CONSTANT_P (op0))
8768 {
8769 op1 = expand_expr (treeop1, NULL_RTX,
8770 VOIDmode, modifier);
8771 /* Return a PLUS if modifier says it's OK. */
8772 if (modifier == EXPAND_SUM
8773 || modifier == EXPAND_INITIALIZER)
8774 return simplify_gen_binary (PLUS, mode, op0, op1);
8775 goto binop2;
8776 }
8777 /* Use wi::shwi to ensure that the constant is
8778 truncated according to the mode of OP1, then sign extended
8779 to a HOST_WIDE_INT. Using the constant directly can result
8780 in non-canonical RTL in a 64x32 cross compile. */
8781 wc = TREE_INT_CST_LOW (treeop1);
8782 constant_part
8783 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8784 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8785 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8786 op0 = force_operand (op0, target);
8787 return REDUCE_BIT_FIELD (op0);
8788 }
8789 }
8790
8791 /* Use TER to expand pointer addition of a negated value
8792 as pointer subtraction. */
8793 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8794 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8795 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8796 && TREE_CODE (treeop1) == SSA_NAME
8797 && TYPE_MODE (TREE_TYPE (treeop0))
8798 == TYPE_MODE (TREE_TYPE (treeop1)))
8799 {
8800 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8801 if (def)
8802 {
8803 treeop1 = gimple_assign_rhs1 (def);
8804 code = MINUS_EXPR;
8805 goto do_minus;
8806 }
8807 }
8808
8809 /* No sense saving up arithmetic to be done
8810 if it's all in the wrong mode to form part of an address.
8811 And force_operand won't know whether to sign-extend or
8812 zero-extend. */
8813 if (modifier != EXPAND_INITIALIZER
8814 && (modifier != EXPAND_SUM || mode != ptr_mode))
8815 {
8816 expand_operands (treeop0, treeop1,
8817 subtarget, &op0, &op1, modifier);
8818 if (op0 == const0_rtx)
8819 return op1;
8820 if (op1 == const0_rtx)
8821 return op0;
8822 goto binop2;
8823 }
8824
8825 expand_operands (treeop0, treeop1,
8826 subtarget, &op0, &op1, modifier);
8827 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8828
8829 case MINUS_EXPR:
8830 case POINTER_DIFF_EXPR:
8831 do_minus:
8832 /* For initializers, we are allowed to return a MINUS of two
8833 symbolic constants. Here we handle all cases when both operands
8834 are constant. */
8835 /* Handle difference of two symbolic constants,
8836 for the sake of an initializer. */
8837 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8838 && really_constant_p (treeop0)
8839 && really_constant_p (treeop1))
8840 {
8841 expand_operands (treeop0, treeop1,
8842 NULL_RTX, &op0, &op1, modifier);
8843 return simplify_gen_binary (MINUS, mode, op0, op1);
8844 }
8845
8846 /* No sense saving up arithmetic to be done
8847 if it's all in the wrong mode to form part of an address.
8848 And force_operand won't know whether to sign-extend or
8849 zero-extend. */
8850 if (modifier != EXPAND_INITIALIZER
8851 && (modifier != EXPAND_SUM || mode != ptr_mode))
8852 goto binop;
8853
8854 expand_operands (treeop0, treeop1,
8855 subtarget, &op0, &op1, modifier);
8856
8857 /* Convert A - const to A + (-const). */
8858 if (CONST_INT_P (op1))
8859 {
8860 op1 = negate_rtx (mode, op1);
8861 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8862 }
8863
8864 goto binop2;
8865
8866 case WIDEN_MULT_PLUS_EXPR:
8867 case WIDEN_MULT_MINUS_EXPR:
8868 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8869 op2 = expand_normal (treeop2);
8870 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8871 target, unsignedp);
8872 return target;
8873
8874 case WIDEN_MULT_EXPR:
8875 /* If first operand is constant, swap them.
8876 Thus the following special case checks need only
8877 check the second operand. */
8878 if (TREE_CODE (treeop0) == INTEGER_CST)
8879 std::swap (treeop0, treeop1);
8880
8881 /* First, check if we have a multiplication of one signed and one
8882 unsigned operand. */
8883 if (TREE_CODE (treeop1) != INTEGER_CST
8884 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8885 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8886 {
8887 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8888 this_optab = usmul_widen_optab;
8889 if (find_widening_optab_handler (this_optab, mode, innermode)
8890 != CODE_FOR_nothing)
8891 {
8892 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8893 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8894 EXPAND_NORMAL);
8895 else
8896 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8897 EXPAND_NORMAL);
8898 /* op0 and op1 might still be constant, despite the above
8899 != INTEGER_CST check. Handle it. */
8900 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8901 {
8902 op0 = convert_modes (mode, innermode, op0, true);
8903 op1 = convert_modes (mode, innermode, op1, false);
8904 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8905 target, unsignedp));
8906 }
8907 goto binop3;
8908 }
8909 }
8910 /* Check for a multiplication with matching signedness. */
8911 else if ((TREE_CODE (treeop1) == INTEGER_CST
8912 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8913 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8914 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8915 {
8916 tree op0type = TREE_TYPE (treeop0);
8917 machine_mode innermode = TYPE_MODE (op0type);
8918 bool zextend_p = TYPE_UNSIGNED (op0type);
8919 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8920 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8921
8922 if (TREE_CODE (treeop0) != INTEGER_CST)
8923 {
8924 if (find_widening_optab_handler (this_optab, mode, innermode)
8925 != CODE_FOR_nothing)
8926 {
8927 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8928 EXPAND_NORMAL);
8929 /* op0 and op1 might still be constant, despite the above
8930 != INTEGER_CST check. Handle it. */
8931 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8932 {
8933 widen_mult_const:
8934 op0 = convert_modes (mode, innermode, op0, zextend_p);
8935 op1
8936 = convert_modes (mode, innermode, op1,
8937 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8938 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8939 target,
8940 unsignedp));
8941 }
8942 temp = expand_widening_mult (mode, op0, op1, target,
8943 unsignedp, this_optab);
8944 return REDUCE_BIT_FIELD (temp);
8945 }
8946 if (find_widening_optab_handler (other_optab, mode, innermode)
8947 != CODE_FOR_nothing
8948 && innermode == word_mode)
8949 {
8950 rtx htem, hipart;
8951 op0 = expand_normal (treeop0);
8952 op1 = expand_normal (treeop1);
8953 /* op0 and op1 might be constants, despite the above
8954 != INTEGER_CST check. Handle it. */
8955 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8956 goto widen_mult_const;
8957 temp = expand_binop (mode, other_optab, op0, op1, target,
8958 unsignedp, OPTAB_LIB_WIDEN);
8959 hipart = gen_highpart (word_mode, temp);
8960 htem = expand_mult_highpart_adjust (word_mode, hipart,
8961 op0, op1, hipart,
8962 zextend_p);
8963 if (htem != hipart)
8964 emit_move_insn (hipart, htem);
8965 return REDUCE_BIT_FIELD (temp);
8966 }
8967 }
8968 }
8969 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8970 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8971 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8972 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8973
8974 case MULT_EXPR:
8975 /* If this is a fixed-point operation, then we cannot use the code
8976 below because "expand_mult" doesn't support sat/no-sat fixed-point
8977 multiplications. */
8978 if (ALL_FIXED_POINT_MODE_P (mode))
8979 goto binop;
8980
8981 /* If first operand is constant, swap them.
8982 Thus the following special case checks need only
8983 check the second operand. */
8984 if (TREE_CODE (treeop0) == INTEGER_CST)
8985 std::swap (treeop0, treeop1);
8986
8987 /* Attempt to return something suitable for generating an
8988 indexed address, for machines that support that. */
8989
8990 if (modifier == EXPAND_SUM && mode == ptr_mode
8991 && tree_fits_shwi_p (treeop1))
8992 {
8993 tree exp1 = treeop1;
8994
8995 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8996 EXPAND_SUM);
8997
8998 if (!REG_P (op0))
8999 op0 = force_operand (op0, NULL_RTX);
9000 if (!REG_P (op0))
9001 op0 = copy_to_mode_reg (mode, op0);
9002
9003 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
9004 gen_int_mode (tree_to_shwi (exp1),
9005 TYPE_MODE (TREE_TYPE (exp1)))));
9006 }
9007
9008 if (modifier == EXPAND_STACK_PARM)
9009 target = 0;
9010
9011 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9012 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9013
9014 case TRUNC_MOD_EXPR:
9015 case FLOOR_MOD_EXPR:
9016 case CEIL_MOD_EXPR:
9017 case ROUND_MOD_EXPR:
9018
9019 case TRUNC_DIV_EXPR:
9020 case FLOOR_DIV_EXPR:
9021 case CEIL_DIV_EXPR:
9022 case ROUND_DIV_EXPR:
9023 case EXACT_DIV_EXPR:
9024 {
9025 /* If this is a fixed-point operation, then we cannot use the code
9026 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9027 divisions. */
9028 if (ALL_FIXED_POINT_MODE_P (mode))
9029 goto binop;
9030
9031 if (modifier == EXPAND_STACK_PARM)
9032 target = 0;
9033 /* Possible optimization: compute the dividend with EXPAND_SUM
9034 then if the divisor is constant can optimize the case
9035 where some terms of the dividend have coeffs divisible by it. */
9036 expand_operands (treeop0, treeop1,
9037 subtarget, &op0, &op1, EXPAND_NORMAL);
9038 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9039 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
9040 if (SCALAR_INT_MODE_P (mode)
9041 && optimize >= 2
9042 && get_range_pos_neg (treeop0) == 1
9043 && get_range_pos_neg (treeop1) == 1)
9044 {
9045 /* If both arguments are known to be positive when interpreted
9046 as signed, we can expand it as both signed and unsigned
9047 division or modulo. Choose the cheaper sequence in that case. */
9048 bool speed_p = optimize_insn_for_speed_p ();
9049 do_pending_stack_adjust ();
9050 start_sequence ();
9051 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9052 rtx_insn *uns_insns = get_insns ();
9053 end_sequence ();
9054 start_sequence ();
9055 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9056 rtx_insn *sgn_insns = get_insns ();
9057 end_sequence ();
9058 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9059 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9060
9061 /* If costs are the same then use as tie breaker the other
9062 other factor. */
9063 if (uns_cost == sgn_cost)
9064 {
9065 uns_cost = seq_cost (uns_insns, !speed_p);
9066 sgn_cost = seq_cost (sgn_insns, !speed_p);
9067 }
9068
9069 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9070 {
9071 emit_insn (uns_insns);
9072 return uns_ret;
9073 }
9074 emit_insn (sgn_insns);
9075 return sgn_ret;
9076 }
9077 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9078 }
9079 case RDIV_EXPR:
9080 goto binop;
9081
9082 case MULT_HIGHPART_EXPR:
9083 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9084 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9085 gcc_assert (temp);
9086 return temp;
9087
9088 case FIXED_CONVERT_EXPR:
9089 op0 = expand_normal (treeop0);
9090 if (target == 0 || modifier == EXPAND_STACK_PARM)
9091 target = gen_reg_rtx (mode);
9092
9093 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9094 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9095 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9096 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9097 else
9098 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9099 return target;
9100
9101 case FIX_TRUNC_EXPR:
9102 op0 = expand_normal (treeop0);
9103 if (target == 0 || modifier == EXPAND_STACK_PARM)
9104 target = gen_reg_rtx (mode);
9105 expand_fix (target, op0, unsignedp);
9106 return target;
9107
9108 case FLOAT_EXPR:
9109 op0 = expand_normal (treeop0);
9110 if (target == 0 || modifier == EXPAND_STACK_PARM)
9111 target = gen_reg_rtx (mode);
9112 /* expand_float can't figure out what to do if FROM has VOIDmode.
9113 So give it the correct mode. With -O, cse will optimize this. */
9114 if (GET_MODE (op0) == VOIDmode)
9115 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9116 op0);
9117 expand_float (target, op0,
9118 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9119 return target;
9120
9121 case NEGATE_EXPR:
9122 op0 = expand_expr (treeop0, subtarget,
9123 VOIDmode, EXPAND_NORMAL);
9124 if (modifier == EXPAND_STACK_PARM)
9125 target = 0;
9126 temp = expand_unop (mode,
9127 optab_for_tree_code (NEGATE_EXPR, type,
9128 optab_default),
9129 op0, target, 0);
9130 gcc_assert (temp);
9131 return REDUCE_BIT_FIELD (temp);
9132
9133 case ABS_EXPR:
9134 case ABSU_EXPR:
9135 op0 = expand_expr (treeop0, subtarget,
9136 VOIDmode, EXPAND_NORMAL);
9137 if (modifier == EXPAND_STACK_PARM)
9138 target = 0;
9139
9140 /* ABS_EXPR is not valid for complex arguments. */
9141 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9142 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9143
9144 /* Unsigned abs is simply the operand. Testing here means we don't
9145 risk generating incorrect code below. */
9146 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9147 return op0;
9148
9149 return expand_abs (mode, op0, target, unsignedp,
9150 safe_from_p (target, treeop0, 1));
9151
9152 case MAX_EXPR:
9153 case MIN_EXPR:
9154 target = original_target;
9155 if (target == 0
9156 || modifier == EXPAND_STACK_PARM
9157 || (MEM_P (target) && MEM_VOLATILE_P (target))
9158 || GET_MODE (target) != mode
9159 || (REG_P (target)
9160 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9161 target = gen_reg_rtx (mode);
9162 expand_operands (treeop0, treeop1,
9163 target, &op0, &op1, EXPAND_NORMAL);
9164
9165 /* First try to do it with a special MIN or MAX instruction.
9166 If that does not win, use a conditional jump to select the proper
9167 value. */
9168 this_optab = optab_for_tree_code (code, type, optab_default);
9169 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9170 OPTAB_WIDEN);
9171 if (temp != 0)
9172 return temp;
9173
9174 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9175 and similarly for MAX <x, y>. */
9176 if (VECTOR_TYPE_P (type))
9177 {
9178 tree t0 = make_tree (type, op0);
9179 tree t1 = make_tree (type, op1);
9180 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9181 type, t0, t1);
9182 return expand_vec_cond_expr (type, comparison, t0, t1,
9183 original_target);
9184 }
9185
9186 /* At this point, a MEM target is no longer useful; we will get better
9187 code without it. */
9188
9189 if (! REG_P (target))
9190 target = gen_reg_rtx (mode);
9191
9192 /* If op1 was placed in target, swap op0 and op1. */
9193 if (target != op0 && target == op1)
9194 std::swap (op0, op1);
9195
9196 /* We generate better code and avoid problems with op1 mentioning
9197 target by forcing op1 into a pseudo if it isn't a constant. */
9198 if (! CONSTANT_P (op1))
9199 op1 = force_reg (mode, op1);
9200
9201 {
9202 enum rtx_code comparison_code;
9203 rtx cmpop1 = op1;
9204
9205 if (code == MAX_EXPR)
9206 comparison_code = unsignedp ? GEU : GE;
9207 else
9208 comparison_code = unsignedp ? LEU : LE;
9209
9210 /* Canonicalize to comparisons against 0. */
9211 if (op1 == const1_rtx)
9212 {
9213 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9214 or (a != 0 ? a : 1) for unsigned.
9215 For MIN we are safe converting (a <= 1 ? a : 1)
9216 into (a <= 0 ? a : 1) */
9217 cmpop1 = const0_rtx;
9218 if (code == MAX_EXPR)
9219 comparison_code = unsignedp ? NE : GT;
9220 }
9221 if (op1 == constm1_rtx && !unsignedp)
9222 {
9223 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9224 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9225 cmpop1 = const0_rtx;
9226 if (code == MIN_EXPR)
9227 comparison_code = LT;
9228 }
9229
9230 /* Use a conditional move if possible. */
9231 if (can_conditionally_move_p (mode))
9232 {
9233 rtx insn;
9234
9235 start_sequence ();
9236
9237 /* Try to emit the conditional move. */
9238 insn = emit_conditional_move (target, comparison_code,
9239 op0, cmpop1, mode,
9240 op0, op1, mode,
9241 unsignedp);
9242
9243 /* If we could do the conditional move, emit the sequence,
9244 and return. */
9245 if (insn)
9246 {
9247 rtx_insn *seq = get_insns ();
9248 end_sequence ();
9249 emit_insn (seq);
9250 return target;
9251 }
9252
9253 /* Otherwise discard the sequence and fall back to code with
9254 branches. */
9255 end_sequence ();
9256 }
9257
9258 if (target != op0)
9259 emit_move_insn (target, op0);
9260
9261 lab = gen_label_rtx ();
9262 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9263 unsignedp, mode, NULL_RTX, NULL, lab,
9264 profile_probability::uninitialized ());
9265 }
9266 emit_move_insn (target, op1);
9267 emit_label (lab);
9268 return target;
9269
9270 case BIT_NOT_EXPR:
9271 op0 = expand_expr (treeop0, subtarget,
9272 VOIDmode, EXPAND_NORMAL);
9273 if (modifier == EXPAND_STACK_PARM)
9274 target = 0;
9275 /* In case we have to reduce the result to bitfield precision
9276 for unsigned bitfield expand this as XOR with a proper constant
9277 instead. */
9278 if (reduce_bit_field && TYPE_UNSIGNED (type))
9279 {
9280 int_mode = SCALAR_INT_TYPE_MODE (type);
9281 wide_int mask = wi::mask (TYPE_PRECISION (type),
9282 false, GET_MODE_PRECISION (int_mode));
9283
9284 temp = expand_binop (int_mode, xor_optab, op0,
9285 immed_wide_int_const (mask, int_mode),
9286 target, 1, OPTAB_LIB_WIDEN);
9287 }
9288 else
9289 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9290 gcc_assert (temp);
9291 return temp;
9292
9293 /* ??? Can optimize bitwise operations with one arg constant.
9294 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9295 and (a bitwise1 b) bitwise2 b (etc)
9296 but that is probably not worth while. */
9297
9298 case BIT_AND_EXPR:
9299 case BIT_IOR_EXPR:
9300 case BIT_XOR_EXPR:
9301 goto binop;
9302
9303 case LROTATE_EXPR:
9304 case RROTATE_EXPR:
9305 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9306 || type_has_mode_precision_p (type));
9307 /* fall through */
9308
9309 case LSHIFT_EXPR:
9310 case RSHIFT_EXPR:
9311 {
9312 /* If this is a fixed-point operation, then we cannot use the code
9313 below because "expand_shift" doesn't support sat/no-sat fixed-point
9314 shifts. */
9315 if (ALL_FIXED_POINT_MODE_P (mode))
9316 goto binop;
9317
9318 if (! safe_from_p (subtarget, treeop1, 1))
9319 subtarget = 0;
9320 if (modifier == EXPAND_STACK_PARM)
9321 target = 0;
9322 op0 = expand_expr (treeop0, subtarget,
9323 VOIDmode, EXPAND_NORMAL);
9324
9325 /* Left shift optimization when shifting across word_size boundary.
9326
9327 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9328 there isn't native instruction to support this wide mode
9329 left shift. Given below scenario:
9330
9331 Type A = (Type) B << C
9332
9333 |< T >|
9334 | dest_high | dest_low |
9335
9336 | word_size |
9337
9338 If the shift amount C caused we shift B to across the word
9339 size boundary, i.e part of B shifted into high half of
9340 destination register, and part of B remains in the low
9341 half, then GCC will use the following left shift expand
9342 logic:
9343
9344 1. Initialize dest_low to B.
9345 2. Initialize every bit of dest_high to the sign bit of B.
9346 3. Logic left shift dest_low by C bit to finalize dest_low.
9347 The value of dest_low before this shift is kept in a temp D.
9348 4. Logic left shift dest_high by C.
9349 5. Logic right shift D by (word_size - C).
9350 6. Or the result of 4 and 5 to finalize dest_high.
9351
9352 While, by checking gimple statements, if operand B is
9353 coming from signed extension, then we can simplify above
9354 expand logic into:
9355
9356 1. dest_high = src_low >> (word_size - C).
9357 2. dest_low = src_low << C.
9358
9359 We can use one arithmetic right shift to finish all the
9360 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9361 needed from 6 into 2.
9362
9363 The case is similar for zero extension, except that we
9364 initialize dest_high to zero rather than copies of the sign
9365 bit from B. Furthermore, we need to use a logical right shift
9366 in this case.
9367
9368 The choice of sign-extension versus zero-extension is
9369 determined entirely by whether or not B is signed and is
9370 independent of the current setting of unsignedp. */
9371
9372 temp = NULL_RTX;
9373 if (code == LSHIFT_EXPR
9374 && target
9375 && REG_P (target)
9376 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9377 && mode == int_mode
9378 && TREE_CONSTANT (treeop1)
9379 && TREE_CODE (treeop0) == SSA_NAME)
9380 {
9381 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9382 if (is_gimple_assign (def)
9383 && gimple_assign_rhs_code (def) == NOP_EXPR)
9384 {
9385 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9386 (TREE_TYPE (gimple_assign_rhs1 (def)));
9387
9388 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9389 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9390 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9391 >= GET_MODE_BITSIZE (word_mode)))
9392 {
9393 rtx_insn *seq, *seq_old;
9394 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9395 int_mode);
9396 bool extend_unsigned
9397 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9398 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9399 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9400 rtx dest_high = simplify_gen_subreg (word_mode, target,
9401 int_mode, high_off);
9402 HOST_WIDE_INT ramount = (BITS_PER_WORD
9403 - TREE_INT_CST_LOW (treeop1));
9404 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9405
9406 start_sequence ();
9407 /* dest_high = src_low >> (word_size - C). */
9408 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9409 rshift, dest_high,
9410 extend_unsigned);
9411 if (temp != dest_high)
9412 emit_move_insn (dest_high, temp);
9413
9414 /* dest_low = src_low << C. */
9415 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9416 treeop1, dest_low, unsignedp);
9417 if (temp != dest_low)
9418 emit_move_insn (dest_low, temp);
9419
9420 seq = get_insns ();
9421 end_sequence ();
9422 temp = target ;
9423
9424 if (have_insn_for (ASHIFT, int_mode))
9425 {
9426 bool speed_p = optimize_insn_for_speed_p ();
9427 start_sequence ();
9428 rtx ret_old = expand_variable_shift (code, int_mode,
9429 op0, treeop1,
9430 target,
9431 unsignedp);
9432
9433 seq_old = get_insns ();
9434 end_sequence ();
9435 if (seq_cost (seq, speed_p)
9436 >= seq_cost (seq_old, speed_p))
9437 {
9438 seq = seq_old;
9439 temp = ret_old;
9440 }
9441 }
9442 emit_insn (seq);
9443 }
9444 }
9445 }
9446
9447 if (temp == NULL_RTX)
9448 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9449 unsignedp);
9450 if (code == LSHIFT_EXPR)
9451 temp = REDUCE_BIT_FIELD (temp);
9452 return temp;
9453 }
9454
9455 /* Could determine the answer when only additive constants differ. Also,
9456 the addition of one can be handled by changing the condition. */
9457 case LT_EXPR:
9458 case LE_EXPR:
9459 case GT_EXPR:
9460 case GE_EXPR:
9461 case EQ_EXPR:
9462 case NE_EXPR:
9463 case UNORDERED_EXPR:
9464 case ORDERED_EXPR:
9465 case UNLT_EXPR:
9466 case UNLE_EXPR:
9467 case UNGT_EXPR:
9468 case UNGE_EXPR:
9469 case UNEQ_EXPR:
9470 case LTGT_EXPR:
9471 {
9472 temp = do_store_flag (ops,
9473 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9474 tmode != VOIDmode ? tmode : mode);
9475 if (temp)
9476 return temp;
9477
9478 /* Use a compare and a jump for BLKmode comparisons, or for function
9479 type comparisons is have_canonicalize_funcptr_for_compare. */
9480
9481 if ((target == 0
9482 || modifier == EXPAND_STACK_PARM
9483 || ! safe_from_p (target, treeop0, 1)
9484 || ! safe_from_p (target, treeop1, 1)
9485 /* Make sure we don't have a hard reg (such as function's return
9486 value) live across basic blocks, if not optimizing. */
9487 || (!optimize && REG_P (target)
9488 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9489 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9490
9491 emit_move_insn (target, const0_rtx);
9492
9493 rtx_code_label *lab1 = gen_label_rtx ();
9494 jumpifnot_1 (code, treeop0, treeop1, lab1,
9495 profile_probability::uninitialized ());
9496
9497 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9498 emit_move_insn (target, constm1_rtx);
9499 else
9500 emit_move_insn (target, const1_rtx);
9501
9502 emit_label (lab1);
9503 return target;
9504 }
9505 case COMPLEX_EXPR:
9506 /* Get the rtx code of the operands. */
9507 op0 = expand_normal (treeop0);
9508 op1 = expand_normal (treeop1);
9509
9510 if (!target)
9511 target = gen_reg_rtx (TYPE_MODE (type));
9512 else
9513 /* If target overlaps with op1, then either we need to force
9514 op1 into a pseudo (if target also overlaps with op0),
9515 or write the complex parts in reverse order. */
9516 switch (GET_CODE (target))
9517 {
9518 case CONCAT:
9519 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9520 {
9521 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9522 {
9523 complex_expr_force_op1:
9524 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9525 emit_move_insn (temp, op1);
9526 op1 = temp;
9527 break;
9528 }
9529 complex_expr_swap_order:
9530 /* Move the imaginary (op1) and real (op0) parts to their
9531 location. */
9532 write_complex_part (target, op1, true);
9533 write_complex_part (target, op0, false);
9534
9535 return target;
9536 }
9537 break;
9538 case MEM:
9539 temp = adjust_address_nv (target,
9540 GET_MODE_INNER (GET_MODE (target)), 0);
9541 if (reg_overlap_mentioned_p (temp, op1))
9542 {
9543 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9544 temp = adjust_address_nv (target, imode,
9545 GET_MODE_SIZE (imode));
9546 if (reg_overlap_mentioned_p (temp, op0))
9547 goto complex_expr_force_op1;
9548 goto complex_expr_swap_order;
9549 }
9550 break;
9551 default:
9552 if (reg_overlap_mentioned_p (target, op1))
9553 {
9554 if (reg_overlap_mentioned_p (target, op0))
9555 goto complex_expr_force_op1;
9556 goto complex_expr_swap_order;
9557 }
9558 break;
9559 }
9560
9561 /* Move the real (op0) and imaginary (op1) parts to their location. */
9562 write_complex_part (target, op0, false);
9563 write_complex_part (target, op1, true);
9564
9565 return target;
9566
9567 case WIDEN_SUM_EXPR:
9568 {
9569 tree oprnd0 = treeop0;
9570 tree oprnd1 = treeop1;
9571
9572 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9573 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9574 target, unsignedp);
9575 return target;
9576 }
9577
9578 case VEC_UNPACK_HI_EXPR:
9579 case VEC_UNPACK_LO_EXPR:
9580 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9581 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9582 {
9583 op0 = expand_normal (treeop0);
9584 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9585 target, unsignedp);
9586 gcc_assert (temp);
9587 return temp;
9588 }
9589
9590 case VEC_UNPACK_FLOAT_HI_EXPR:
9591 case VEC_UNPACK_FLOAT_LO_EXPR:
9592 {
9593 op0 = expand_normal (treeop0);
9594 /* The signedness is determined from input operand. */
9595 temp = expand_widen_pattern_expr
9596 (ops, op0, NULL_RTX, NULL_RTX,
9597 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9598
9599 gcc_assert (temp);
9600 return temp;
9601 }
9602
9603 case VEC_WIDEN_MULT_HI_EXPR:
9604 case VEC_WIDEN_MULT_LO_EXPR:
9605 case VEC_WIDEN_MULT_EVEN_EXPR:
9606 case VEC_WIDEN_MULT_ODD_EXPR:
9607 case VEC_WIDEN_LSHIFT_HI_EXPR:
9608 case VEC_WIDEN_LSHIFT_LO_EXPR:
9609 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9610 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9611 target, unsignedp);
9612 gcc_assert (target);
9613 return target;
9614
9615 case VEC_PACK_SAT_EXPR:
9616 case VEC_PACK_FIX_TRUNC_EXPR:
9617 mode = TYPE_MODE (TREE_TYPE (treeop0));
9618 goto binop;
9619
9620 case VEC_PACK_TRUNC_EXPR:
9621 if (VECTOR_BOOLEAN_TYPE_P (type)
9622 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9623 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9624 && SCALAR_INT_MODE_P (mode))
9625 {
9626 class expand_operand eops[4];
9627 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9628 expand_operands (treeop0, treeop1,
9629 subtarget, &op0, &op1, EXPAND_NORMAL);
9630 this_optab = vec_pack_sbool_trunc_optab;
9631 enum insn_code icode = optab_handler (this_optab, imode);
9632 create_output_operand (&eops[0], target, mode);
9633 create_convert_operand_from (&eops[1], op0, imode, false);
9634 create_convert_operand_from (&eops[2], op1, imode, false);
9635 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9636 create_input_operand (&eops[3], temp, imode);
9637 expand_insn (icode, 4, eops);
9638 return eops[0].value;
9639 }
9640 mode = TYPE_MODE (TREE_TYPE (treeop0));
9641 goto binop;
9642
9643 case VEC_PACK_FLOAT_EXPR:
9644 mode = TYPE_MODE (TREE_TYPE (treeop0));
9645 expand_operands (treeop0, treeop1,
9646 subtarget, &op0, &op1, EXPAND_NORMAL);
9647 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9648 optab_default);
9649 target = expand_binop (mode, this_optab, op0, op1, target,
9650 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9651 OPTAB_LIB_WIDEN);
9652 gcc_assert (target);
9653 return target;
9654
9655 case VEC_PERM_EXPR:
9656 {
9657 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9658 vec_perm_builder sel;
9659 if (TREE_CODE (treeop2) == VECTOR_CST
9660 && tree_to_vec_perm_builder (&sel, treeop2))
9661 {
9662 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9663 temp = expand_vec_perm_const (mode, op0, op1, sel,
9664 sel_mode, target);
9665 }
9666 else
9667 {
9668 op2 = expand_normal (treeop2);
9669 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9670 }
9671 gcc_assert (temp);
9672 return temp;
9673 }
9674
9675 case DOT_PROD_EXPR:
9676 {
9677 tree oprnd0 = treeop0;
9678 tree oprnd1 = treeop1;
9679 tree oprnd2 = treeop2;
9680
9681 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9682 op2 = expand_normal (oprnd2);
9683 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9684 target, unsignedp);
9685 return target;
9686 }
9687
9688 case SAD_EXPR:
9689 {
9690 tree oprnd0 = treeop0;
9691 tree oprnd1 = treeop1;
9692 tree oprnd2 = treeop2;
9693
9694 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9695 op2 = expand_normal (oprnd2);
9696 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9697 target, unsignedp);
9698 return target;
9699 }
9700
9701 case REALIGN_LOAD_EXPR:
9702 {
9703 tree oprnd0 = treeop0;
9704 tree oprnd1 = treeop1;
9705 tree oprnd2 = treeop2;
9706
9707 this_optab = optab_for_tree_code (code, type, optab_default);
9708 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9709 op2 = expand_normal (oprnd2);
9710 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9711 target, unsignedp);
9712 gcc_assert (temp);
9713 return temp;
9714 }
9715
9716 case COND_EXPR:
9717 {
9718 /* A COND_EXPR with its type being VOID_TYPE represents a
9719 conditional jump and is handled in
9720 expand_gimple_cond_expr. */
9721 gcc_assert (!VOID_TYPE_P (type));
9722
9723 /* Note that COND_EXPRs whose type is a structure or union
9724 are required to be constructed to contain assignments of
9725 a temporary variable, so that we can evaluate them here
9726 for side effect only. If type is void, we must do likewise. */
9727
9728 gcc_assert (!TREE_ADDRESSABLE (type)
9729 && !ignore
9730 && TREE_TYPE (treeop1) != void_type_node
9731 && TREE_TYPE (treeop2) != void_type_node);
9732
9733 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9734 if (temp)
9735 return temp;
9736
9737 /* If we are not to produce a result, we have no target. Otherwise,
9738 if a target was specified use it; it will not be used as an
9739 intermediate target unless it is safe. If no target, use a
9740 temporary. */
9741
9742 if (modifier != EXPAND_STACK_PARM
9743 && original_target
9744 && safe_from_p (original_target, treeop0, 1)
9745 && GET_MODE (original_target) == mode
9746 && !MEM_P (original_target))
9747 temp = original_target;
9748 else
9749 temp = assign_temp (type, 0, 1);
9750
9751 do_pending_stack_adjust ();
9752 NO_DEFER_POP;
9753 rtx_code_label *lab0 = gen_label_rtx ();
9754 rtx_code_label *lab1 = gen_label_rtx ();
9755 jumpifnot (treeop0, lab0,
9756 profile_probability::uninitialized ());
9757 store_expr (treeop1, temp,
9758 modifier == EXPAND_STACK_PARM,
9759 false, false);
9760
9761 emit_jump_insn (targetm.gen_jump (lab1));
9762 emit_barrier ();
9763 emit_label (lab0);
9764 store_expr (treeop2, temp,
9765 modifier == EXPAND_STACK_PARM,
9766 false, false);
9767
9768 emit_label (lab1);
9769 OK_DEFER_POP;
9770 return temp;
9771 }
9772
9773 case VEC_COND_EXPR:
9774 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9775 return target;
9776
9777 case VEC_DUPLICATE_EXPR:
9778 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9779 target = expand_vector_broadcast (mode, op0);
9780 gcc_assert (target);
9781 return target;
9782
9783 case VEC_SERIES_EXPR:
9784 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9785 return expand_vec_series_expr (mode, op0, op1, target);
9786
9787 case BIT_INSERT_EXPR:
9788 {
9789 unsigned bitpos = tree_to_uhwi (treeop2);
9790 unsigned bitsize;
9791 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9792 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9793 else
9794 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9795 op0 = expand_normal (treeop0);
9796 op1 = expand_normal (treeop1);
9797 rtx dst = gen_reg_rtx (mode);
9798 emit_move_insn (dst, op0);
9799 store_bit_field (dst, bitsize, bitpos, 0, 0,
9800 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9801 return dst;
9802 }
9803
9804 default:
9805 gcc_unreachable ();
9806 }
9807
9808 /* Here to do an ordinary binary operator. */
9809 binop:
9810 expand_operands (treeop0, treeop1,
9811 subtarget, &op0, &op1, EXPAND_NORMAL);
9812 binop2:
9813 this_optab = optab_for_tree_code (code, type, optab_default);
9814 binop3:
9815 if (modifier == EXPAND_STACK_PARM)
9816 target = 0;
9817 temp = expand_binop (mode, this_optab, op0, op1, target,
9818 unsignedp, OPTAB_LIB_WIDEN);
9819 gcc_assert (temp);
9820 /* Bitwise operations do not need bitfield reduction as we expect their
9821 operands being properly truncated. */
9822 if (code == BIT_XOR_EXPR
9823 || code == BIT_AND_EXPR
9824 || code == BIT_IOR_EXPR)
9825 return temp;
9826 return REDUCE_BIT_FIELD (temp);
9827 }
9828 #undef REDUCE_BIT_FIELD
9829
9830
9831 /* Return TRUE if expression STMT is suitable for replacement.
9832 Never consider memory loads as replaceable, because those don't ever lead
9833 into constant expressions. */
9834
9835 static bool
9836 stmt_is_replaceable_p (gimple *stmt)
9837 {
9838 if (ssa_is_replaceable_p (stmt))
9839 {
9840 /* Don't move around loads. */
9841 if (!gimple_assign_single_p (stmt)
9842 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9843 return true;
9844 }
9845 return false;
9846 }
9847
9848 rtx
9849 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9850 enum expand_modifier modifier, rtx *alt_rtl,
9851 bool inner_reference_p)
9852 {
9853 rtx op0, op1, temp, decl_rtl;
9854 tree type;
9855 int unsignedp;
9856 machine_mode mode, dmode;
9857 enum tree_code code = TREE_CODE (exp);
9858 rtx subtarget, original_target;
9859 int ignore;
9860 tree context;
9861 bool reduce_bit_field;
9862 location_t loc = EXPR_LOCATION (exp);
9863 struct separate_ops ops;
9864 tree treeop0, treeop1, treeop2;
9865 tree ssa_name = NULL_TREE;
9866 gimple *g;
9867
9868 type = TREE_TYPE (exp);
9869 mode = TYPE_MODE (type);
9870 unsignedp = TYPE_UNSIGNED (type);
9871
9872 treeop0 = treeop1 = treeop2 = NULL_TREE;
9873 if (!VL_EXP_CLASS_P (exp))
9874 switch (TREE_CODE_LENGTH (code))
9875 {
9876 default:
9877 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9878 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9879 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9880 case 0: break;
9881 }
9882 ops.code = code;
9883 ops.type = type;
9884 ops.op0 = treeop0;
9885 ops.op1 = treeop1;
9886 ops.op2 = treeop2;
9887 ops.location = loc;
9888
9889 ignore = (target == const0_rtx
9890 || ((CONVERT_EXPR_CODE_P (code)
9891 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9892 && TREE_CODE (type) == VOID_TYPE));
9893
9894 /* An operation in what may be a bit-field type needs the
9895 result to be reduced to the precision of the bit-field type,
9896 which is narrower than that of the type's mode. */
9897 reduce_bit_field = (!ignore
9898 && INTEGRAL_TYPE_P (type)
9899 && !type_has_mode_precision_p (type));
9900
9901 /* If we are going to ignore this result, we need only do something
9902 if there is a side-effect somewhere in the expression. If there
9903 is, short-circuit the most common cases here. Note that we must
9904 not call expand_expr with anything but const0_rtx in case this
9905 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9906
9907 if (ignore)
9908 {
9909 if (! TREE_SIDE_EFFECTS (exp))
9910 return const0_rtx;
9911
9912 /* Ensure we reference a volatile object even if value is ignored, but
9913 don't do this if all we are doing is taking its address. */
9914 if (TREE_THIS_VOLATILE (exp)
9915 && TREE_CODE (exp) != FUNCTION_DECL
9916 && mode != VOIDmode && mode != BLKmode
9917 && modifier != EXPAND_CONST_ADDRESS)
9918 {
9919 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9920 if (MEM_P (temp))
9921 copy_to_reg (temp);
9922 return const0_rtx;
9923 }
9924
9925 if (TREE_CODE_CLASS (code) == tcc_unary
9926 || code == BIT_FIELD_REF
9927 || code == COMPONENT_REF
9928 || code == INDIRECT_REF)
9929 return expand_expr (treeop0, const0_rtx, VOIDmode,
9930 modifier);
9931
9932 else if (TREE_CODE_CLASS (code) == tcc_binary
9933 || TREE_CODE_CLASS (code) == tcc_comparison
9934 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9935 {
9936 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9937 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9938 return const0_rtx;
9939 }
9940
9941 target = 0;
9942 }
9943
9944 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9945 target = 0;
9946
9947 /* Use subtarget as the target for operand 0 of a binary operation. */
9948 subtarget = get_subtarget (target);
9949 original_target = target;
9950
9951 switch (code)
9952 {
9953 case LABEL_DECL:
9954 {
9955 tree function = decl_function_context (exp);
9956
9957 temp = label_rtx (exp);
9958 temp = gen_rtx_LABEL_REF (Pmode, temp);
9959
9960 if (function != current_function_decl
9961 && function != 0)
9962 LABEL_REF_NONLOCAL_P (temp) = 1;
9963
9964 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9965 return temp;
9966 }
9967
9968 case SSA_NAME:
9969 /* ??? ivopts calls expander, without any preparation from
9970 out-of-ssa. So fake instructions as if this was an access to the
9971 base variable. This unnecessarily allocates a pseudo, see how we can
9972 reuse it, if partition base vars have it set already. */
9973 if (!currently_expanding_to_rtl)
9974 {
9975 tree var = SSA_NAME_VAR (exp);
9976 if (var && DECL_RTL_SET_P (var))
9977 return DECL_RTL (var);
9978 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9979 LAST_VIRTUAL_REGISTER + 1);
9980 }
9981
9982 g = get_gimple_for_ssa_name (exp);
9983 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9984 if (g == NULL
9985 && modifier == EXPAND_INITIALIZER
9986 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9987 && (optimize || !SSA_NAME_VAR (exp)
9988 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9989 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9990 g = SSA_NAME_DEF_STMT (exp);
9991 if (g)
9992 {
9993 rtx r;
9994 location_t saved_loc = curr_insn_location ();
9995 loc = gimple_location (g);
9996 if (loc != UNKNOWN_LOCATION)
9997 set_curr_insn_location (loc);
9998 ops.code = gimple_assign_rhs_code (g);
9999 switch (get_gimple_rhs_class (ops.code))
10000 {
10001 case GIMPLE_TERNARY_RHS:
10002 ops.op2 = gimple_assign_rhs3 (g);
10003 /* Fallthru */
10004 case GIMPLE_BINARY_RHS:
10005 ops.op1 = gimple_assign_rhs2 (g);
10006
10007 /* Try to expand conditonal compare. */
10008 if (targetm.gen_ccmp_first)
10009 {
10010 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10011 r = expand_ccmp_expr (g, mode);
10012 if (r)
10013 break;
10014 }
10015 /* Fallthru */
10016 case GIMPLE_UNARY_RHS:
10017 ops.op0 = gimple_assign_rhs1 (g);
10018 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10019 ops.location = loc;
10020 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10021 break;
10022 case GIMPLE_SINGLE_RHS:
10023 {
10024 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10025 tmode, modifier, alt_rtl,
10026 inner_reference_p);
10027 break;
10028 }
10029 default:
10030 gcc_unreachable ();
10031 }
10032 set_curr_insn_location (saved_loc);
10033 if (REG_P (r) && !REG_EXPR (r))
10034 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10035 return r;
10036 }
10037
10038 ssa_name = exp;
10039 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10040 exp = SSA_NAME_VAR (ssa_name);
10041 goto expand_decl_rtl;
10042
10043 case PARM_DECL:
10044 case VAR_DECL:
10045 /* If a static var's type was incomplete when the decl was written,
10046 but the type is complete now, lay out the decl now. */
10047 if (DECL_SIZE (exp) == 0
10048 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10049 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10050 layout_decl (exp, 0);
10051
10052 /* fall through */
10053
10054 case FUNCTION_DECL:
10055 case RESULT_DECL:
10056 decl_rtl = DECL_RTL (exp);
10057 expand_decl_rtl:
10058 gcc_assert (decl_rtl);
10059
10060 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10061 settings for VECTOR_TYPE_P that might switch for the function. */
10062 if (currently_expanding_to_rtl
10063 && code == VAR_DECL && MEM_P (decl_rtl)
10064 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10065 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10066 else
10067 decl_rtl = copy_rtx (decl_rtl);
10068
10069 /* Record writes to register variables. */
10070 if (modifier == EXPAND_WRITE
10071 && REG_P (decl_rtl)
10072 && HARD_REGISTER_P (decl_rtl))
10073 add_to_hard_reg_set (&crtl->asm_clobbers,
10074 GET_MODE (decl_rtl), REGNO (decl_rtl));
10075
10076 /* Ensure variable marked as used even if it doesn't go through
10077 a parser. If it hasn't be used yet, write out an external
10078 definition. */
10079 if (exp)
10080 TREE_USED (exp) = 1;
10081
10082 /* Show we haven't gotten RTL for this yet. */
10083 temp = 0;
10084
10085 /* Variables inherited from containing functions should have
10086 been lowered by this point. */
10087 if (exp)
10088 context = decl_function_context (exp);
10089 gcc_assert (!exp
10090 || SCOPE_FILE_SCOPE_P (context)
10091 || context == current_function_decl
10092 || TREE_STATIC (exp)
10093 || DECL_EXTERNAL (exp)
10094 /* ??? C++ creates functions that are not TREE_STATIC. */
10095 || TREE_CODE (exp) == FUNCTION_DECL);
10096
10097 /* This is the case of an array whose size is to be determined
10098 from its initializer, while the initializer is still being parsed.
10099 ??? We aren't parsing while expanding anymore. */
10100
10101 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10102 temp = validize_mem (decl_rtl);
10103
10104 /* If DECL_RTL is memory, we are in the normal case and the
10105 address is not valid, get the address into a register. */
10106
10107 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10108 {
10109 if (alt_rtl)
10110 *alt_rtl = decl_rtl;
10111 decl_rtl = use_anchored_address (decl_rtl);
10112 if (modifier != EXPAND_CONST_ADDRESS
10113 && modifier != EXPAND_SUM
10114 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10115 : GET_MODE (decl_rtl),
10116 XEXP (decl_rtl, 0),
10117 MEM_ADDR_SPACE (decl_rtl)))
10118 temp = replace_equiv_address (decl_rtl,
10119 copy_rtx (XEXP (decl_rtl, 0)));
10120 }
10121
10122 /* If we got something, return it. But first, set the alignment
10123 if the address is a register. */
10124 if (temp != 0)
10125 {
10126 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10127 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10128 }
10129 else if (MEM_P (decl_rtl))
10130 temp = decl_rtl;
10131
10132 if (temp != 0)
10133 {
10134 if (MEM_P (temp)
10135 && modifier != EXPAND_WRITE
10136 && modifier != EXPAND_MEMORY
10137 && modifier != EXPAND_INITIALIZER
10138 && modifier != EXPAND_CONST_ADDRESS
10139 && modifier != EXPAND_SUM
10140 && !inner_reference_p
10141 && mode != BLKmode
10142 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10143 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10144 MEM_ALIGN (temp), NULL_RTX, NULL);
10145
10146 return temp;
10147 }
10148
10149 if (exp)
10150 dmode = DECL_MODE (exp);
10151 else
10152 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10153
10154 /* If the mode of DECL_RTL does not match that of the decl,
10155 there are two cases: we are dealing with a BLKmode value
10156 that is returned in a register, or we are dealing with
10157 a promoted value. In the latter case, return a SUBREG
10158 of the wanted mode, but mark it so that we know that it
10159 was already extended. */
10160 if (REG_P (decl_rtl)
10161 && dmode != BLKmode
10162 && GET_MODE (decl_rtl) != dmode)
10163 {
10164 machine_mode pmode;
10165
10166 /* Get the signedness to be used for this variable. Ensure we get
10167 the same mode we got when the variable was declared. */
10168 if (code != SSA_NAME)
10169 pmode = promote_decl_mode (exp, &unsignedp);
10170 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10171 && gimple_code (g) == GIMPLE_CALL
10172 && !gimple_call_internal_p (g))
10173 pmode = promote_function_mode (type, mode, &unsignedp,
10174 gimple_call_fntype (g),
10175 2);
10176 else
10177 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10178 gcc_assert (GET_MODE (decl_rtl) == pmode);
10179
10180 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10181 SUBREG_PROMOTED_VAR_P (temp) = 1;
10182 SUBREG_PROMOTED_SET (temp, unsignedp);
10183 return temp;
10184 }
10185
10186 return decl_rtl;
10187
10188 case INTEGER_CST:
10189 {
10190 /* Given that TYPE_PRECISION (type) is not always equal to
10191 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10192 the former to the latter according to the signedness of the
10193 type. */
10194 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
10195 temp = immed_wide_int_const
10196 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
10197 return temp;
10198 }
10199
10200 case VECTOR_CST:
10201 {
10202 tree tmp = NULL_TREE;
10203 if (VECTOR_MODE_P (mode))
10204 return const_vector_from_tree (exp);
10205 scalar_int_mode int_mode;
10206 if (is_int_mode (mode, &int_mode))
10207 {
10208 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10209 return const_scalar_mask_from_tree (int_mode, exp);
10210 else
10211 {
10212 tree type_for_mode
10213 = lang_hooks.types.type_for_mode (int_mode, 1);
10214 if (type_for_mode)
10215 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10216 type_for_mode, exp);
10217 }
10218 }
10219 if (!tmp)
10220 {
10221 vec<constructor_elt, va_gc> *v;
10222 /* Constructors need to be fixed-length. FIXME. */
10223 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10224 vec_alloc (v, nunits);
10225 for (unsigned int i = 0; i < nunits; ++i)
10226 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10227 tmp = build_constructor (type, v);
10228 }
10229 return expand_expr (tmp, ignore ? const0_rtx : target,
10230 tmode, modifier);
10231 }
10232
10233 case CONST_DECL:
10234 if (modifier == EXPAND_WRITE)
10235 {
10236 /* Writing into CONST_DECL is always invalid, but handle it
10237 gracefully. */
10238 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10239 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10240 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10241 EXPAND_NORMAL, as);
10242 op0 = memory_address_addr_space (mode, op0, as);
10243 temp = gen_rtx_MEM (mode, op0);
10244 set_mem_addr_space (temp, as);
10245 return temp;
10246 }
10247 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10248
10249 case REAL_CST:
10250 /* If optimized, generate immediate CONST_DOUBLE
10251 which will be turned into memory by reload if necessary.
10252
10253 We used to force a register so that loop.c could see it. But
10254 this does not allow gen_* patterns to perform optimizations with
10255 the constants. It also produces two insns in cases like "x = 1.0;".
10256 On most machines, floating-point constants are not permitted in
10257 many insns, so we'd end up copying it to a register in any case.
10258
10259 Now, we do the copying in expand_binop, if appropriate. */
10260 return const_double_from_real_value (TREE_REAL_CST (exp),
10261 TYPE_MODE (TREE_TYPE (exp)));
10262
10263 case FIXED_CST:
10264 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10265 TYPE_MODE (TREE_TYPE (exp)));
10266
10267 case COMPLEX_CST:
10268 /* Handle evaluating a complex constant in a CONCAT target. */
10269 if (original_target && GET_CODE (original_target) == CONCAT)
10270 {
10271 rtx rtarg, itarg;
10272
10273 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10274 rtarg = XEXP (original_target, 0);
10275 itarg = XEXP (original_target, 1);
10276
10277 /* Move the real and imaginary parts separately. */
10278 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10279 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10280
10281 if (op0 != rtarg)
10282 emit_move_insn (rtarg, op0);
10283 if (op1 != itarg)
10284 emit_move_insn (itarg, op1);
10285
10286 return original_target;
10287 }
10288
10289 /* fall through */
10290
10291 case STRING_CST:
10292 temp = expand_expr_constant (exp, 1, modifier);
10293
10294 /* temp contains a constant address.
10295 On RISC machines where a constant address isn't valid,
10296 make some insns to get that address into a register. */
10297 if (modifier != EXPAND_CONST_ADDRESS
10298 && modifier != EXPAND_INITIALIZER
10299 && modifier != EXPAND_SUM
10300 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10301 MEM_ADDR_SPACE (temp)))
10302 return replace_equiv_address (temp,
10303 copy_rtx (XEXP (temp, 0)));
10304 return temp;
10305
10306 case POLY_INT_CST:
10307 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10308
10309 case SAVE_EXPR:
10310 {
10311 tree val = treeop0;
10312 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10313 inner_reference_p);
10314
10315 if (!SAVE_EXPR_RESOLVED_P (exp))
10316 {
10317 /* We can indeed still hit this case, typically via builtin
10318 expanders calling save_expr immediately before expanding
10319 something. Assume this means that we only have to deal
10320 with non-BLKmode values. */
10321 gcc_assert (GET_MODE (ret) != BLKmode);
10322
10323 val = build_decl (curr_insn_location (),
10324 VAR_DECL, NULL, TREE_TYPE (exp));
10325 DECL_ARTIFICIAL (val) = 1;
10326 DECL_IGNORED_P (val) = 1;
10327 treeop0 = val;
10328 TREE_OPERAND (exp, 0) = treeop0;
10329 SAVE_EXPR_RESOLVED_P (exp) = 1;
10330
10331 if (!CONSTANT_P (ret))
10332 ret = copy_to_reg (ret);
10333 SET_DECL_RTL (val, ret);
10334 }
10335
10336 return ret;
10337 }
10338
10339
10340 case CONSTRUCTOR:
10341 /* If we don't need the result, just ensure we evaluate any
10342 subexpressions. */
10343 if (ignore)
10344 {
10345 unsigned HOST_WIDE_INT idx;
10346 tree value;
10347
10348 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10349 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10350
10351 return const0_rtx;
10352 }
10353
10354 return expand_constructor (exp, target, modifier, false);
10355
10356 case TARGET_MEM_REF:
10357 {
10358 addr_space_t as
10359 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10360 unsigned int align;
10361
10362 op0 = addr_for_mem_ref (exp, as, true);
10363 op0 = memory_address_addr_space (mode, op0, as);
10364 temp = gen_rtx_MEM (mode, op0);
10365 set_mem_attributes (temp, exp, 0);
10366 set_mem_addr_space (temp, as);
10367 align = get_object_alignment (exp);
10368 if (modifier != EXPAND_WRITE
10369 && modifier != EXPAND_MEMORY
10370 && mode != BLKmode
10371 && align < GET_MODE_ALIGNMENT (mode))
10372 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10373 align, NULL_RTX, NULL);
10374 return temp;
10375 }
10376
10377 case MEM_REF:
10378 {
10379 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10380 addr_space_t as
10381 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10382 machine_mode address_mode;
10383 tree base = TREE_OPERAND (exp, 0);
10384 gimple *def_stmt;
10385 unsigned align;
10386 /* Handle expansion of non-aliased memory with non-BLKmode. That
10387 might end up in a register. */
10388 if (mem_ref_refers_to_non_mem_p (exp))
10389 {
10390 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10391 base = TREE_OPERAND (base, 0);
10392 poly_uint64 type_size;
10393 if (known_eq (offset, 0)
10394 && !reverse
10395 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10396 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10397 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10398 target, tmode, modifier);
10399 if (TYPE_MODE (type) == BLKmode)
10400 {
10401 temp = assign_stack_temp (DECL_MODE (base),
10402 GET_MODE_SIZE (DECL_MODE (base)));
10403 store_expr (base, temp, 0, false, false);
10404 temp = adjust_address (temp, BLKmode, offset);
10405 set_mem_size (temp, int_size_in_bytes (type));
10406 return temp;
10407 }
10408 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10409 bitsize_int (offset * BITS_PER_UNIT));
10410 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10411 return expand_expr (exp, target, tmode, modifier);
10412 }
10413 address_mode = targetm.addr_space.address_mode (as);
10414 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10415 {
10416 tree mask = gimple_assign_rhs2 (def_stmt);
10417 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10418 gimple_assign_rhs1 (def_stmt), mask);
10419 TREE_OPERAND (exp, 0) = base;
10420 }
10421 align = get_object_alignment (exp);
10422 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10423 op0 = memory_address_addr_space (mode, op0, as);
10424 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10425 {
10426 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10427 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10428 op0 = memory_address_addr_space (mode, op0, as);
10429 }
10430 temp = gen_rtx_MEM (mode, op0);
10431 set_mem_attributes (temp, exp, 0);
10432 set_mem_addr_space (temp, as);
10433 if (TREE_THIS_VOLATILE (exp))
10434 MEM_VOLATILE_P (temp) = 1;
10435 if (modifier != EXPAND_WRITE
10436 && modifier != EXPAND_MEMORY
10437 && !inner_reference_p
10438 && mode != BLKmode
10439 && align < GET_MODE_ALIGNMENT (mode))
10440 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
10441 modifier == EXPAND_STACK_PARM
10442 ? NULL_RTX : target, alt_rtl);
10443 if (reverse
10444 && modifier != EXPAND_MEMORY
10445 && modifier != EXPAND_WRITE)
10446 temp = flip_storage_order (mode, temp);
10447 return temp;
10448 }
10449
10450 case ARRAY_REF:
10451
10452 {
10453 tree array = treeop0;
10454 tree index = treeop1;
10455 tree init;
10456
10457 /* Fold an expression like: "foo"[2].
10458 This is not done in fold so it won't happen inside &.
10459 Don't fold if this is for wide characters since it's too
10460 difficult to do correctly and this is a very rare case. */
10461
10462 if (modifier != EXPAND_CONST_ADDRESS
10463 && modifier != EXPAND_INITIALIZER
10464 && modifier != EXPAND_MEMORY)
10465 {
10466 tree t = fold_read_from_constant_string (exp);
10467
10468 if (t)
10469 return expand_expr (t, target, tmode, modifier);
10470 }
10471
10472 /* If this is a constant index into a constant array,
10473 just get the value from the array. Handle both the cases when
10474 we have an explicit constructor and when our operand is a variable
10475 that was declared const. */
10476
10477 if (modifier != EXPAND_CONST_ADDRESS
10478 && modifier != EXPAND_INITIALIZER
10479 && modifier != EXPAND_MEMORY
10480 && TREE_CODE (array) == CONSTRUCTOR
10481 && ! TREE_SIDE_EFFECTS (array)
10482 && TREE_CODE (index) == INTEGER_CST)
10483 {
10484 unsigned HOST_WIDE_INT ix;
10485 tree field, value;
10486
10487 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10488 field, value)
10489 if (tree_int_cst_equal (field, index))
10490 {
10491 if (!TREE_SIDE_EFFECTS (value))
10492 return expand_expr (fold (value), target, tmode, modifier);
10493 break;
10494 }
10495 }
10496
10497 else if (optimize >= 1
10498 && modifier != EXPAND_CONST_ADDRESS
10499 && modifier != EXPAND_INITIALIZER
10500 && modifier != EXPAND_MEMORY
10501 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10502 && TREE_CODE (index) == INTEGER_CST
10503 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10504 && (init = ctor_for_folding (array)) != error_mark_node)
10505 {
10506 if (init == NULL_TREE)
10507 {
10508 tree value = build_zero_cst (type);
10509 if (TREE_CODE (value) == CONSTRUCTOR)
10510 {
10511 /* If VALUE is a CONSTRUCTOR, this optimization is only
10512 useful if this doesn't store the CONSTRUCTOR into
10513 memory. If it does, it is more efficient to just
10514 load the data from the array directly. */
10515 rtx ret = expand_constructor (value, target,
10516 modifier, true);
10517 if (ret == NULL_RTX)
10518 value = NULL_TREE;
10519 }
10520
10521 if (value)
10522 return expand_expr (value, target, tmode, modifier);
10523 }
10524 else if (TREE_CODE (init) == CONSTRUCTOR)
10525 {
10526 unsigned HOST_WIDE_INT ix;
10527 tree field, value;
10528
10529 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10530 field, value)
10531 if (tree_int_cst_equal (field, index))
10532 {
10533 if (TREE_SIDE_EFFECTS (value))
10534 break;
10535
10536 if (TREE_CODE (value) == CONSTRUCTOR)
10537 {
10538 /* If VALUE is a CONSTRUCTOR, this
10539 optimization is only useful if
10540 this doesn't store the CONSTRUCTOR
10541 into memory. If it does, it is more
10542 efficient to just load the data from
10543 the array directly. */
10544 rtx ret = expand_constructor (value, target,
10545 modifier, true);
10546 if (ret == NULL_RTX)
10547 break;
10548 }
10549
10550 return
10551 expand_expr (fold (value), target, tmode, modifier);
10552 }
10553 }
10554 else if (TREE_CODE (init) == STRING_CST)
10555 {
10556 tree low_bound = array_ref_low_bound (exp);
10557 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10558
10559 /* Optimize the special case of a zero lower bound.
10560
10561 We convert the lower bound to sizetype to avoid problems
10562 with constant folding. E.g. suppose the lower bound is
10563 1 and its mode is QI. Without the conversion
10564 (ARRAY + (INDEX - (unsigned char)1))
10565 becomes
10566 (ARRAY + (-(unsigned char)1) + INDEX)
10567 which becomes
10568 (ARRAY + 255 + INDEX). Oops! */
10569 if (!integer_zerop (low_bound))
10570 index1 = size_diffop_loc (loc, index1,
10571 fold_convert_loc (loc, sizetype,
10572 low_bound));
10573
10574 if (tree_fits_uhwi_p (index1)
10575 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10576 {
10577 tree char_type = TREE_TYPE (TREE_TYPE (init));
10578 scalar_int_mode char_mode;
10579
10580 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
10581 && GET_MODE_SIZE (char_mode) == 1)
10582 return gen_int_mode (TREE_STRING_POINTER (init)
10583 [TREE_INT_CST_LOW (index1)],
10584 char_mode);
10585 }
10586 }
10587 }
10588 }
10589 goto normal_inner_ref;
10590
10591 case COMPONENT_REF:
10592 /* If the operand is a CONSTRUCTOR, we can just extract the
10593 appropriate field if it is present. */
10594 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10595 {
10596 unsigned HOST_WIDE_INT idx;
10597 tree field, value;
10598 scalar_int_mode field_mode;
10599
10600 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10601 idx, field, value)
10602 if (field == treeop1
10603 /* We can normally use the value of the field in the
10604 CONSTRUCTOR. However, if this is a bitfield in
10605 an integral mode that we can fit in a HOST_WIDE_INT,
10606 we must mask only the number of bits in the bitfield,
10607 since this is done implicitly by the constructor. If
10608 the bitfield does not meet either of those conditions,
10609 we can't do this optimization. */
10610 && (! DECL_BIT_FIELD (field)
10611 || (is_int_mode (DECL_MODE (field), &field_mode)
10612 && (GET_MODE_PRECISION (field_mode)
10613 <= HOST_BITS_PER_WIDE_INT))))
10614 {
10615 if (DECL_BIT_FIELD (field)
10616 && modifier == EXPAND_STACK_PARM)
10617 target = 0;
10618 op0 = expand_expr (value, target, tmode, modifier);
10619 if (DECL_BIT_FIELD (field))
10620 {
10621 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10622 scalar_int_mode imode
10623 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10624
10625 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10626 {
10627 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10628 imode);
10629 op0 = expand_and (imode, op0, op1, target);
10630 }
10631 else
10632 {
10633 int count = GET_MODE_PRECISION (imode) - bitsize;
10634
10635 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10636 target, 0);
10637 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10638 target, 0);
10639 }
10640 }
10641
10642 return op0;
10643 }
10644 }
10645 goto normal_inner_ref;
10646
10647 case BIT_FIELD_REF:
10648 case ARRAY_RANGE_REF:
10649 normal_inner_ref:
10650 {
10651 machine_mode mode1, mode2;
10652 poly_int64 bitsize, bitpos, bytepos;
10653 tree offset;
10654 int reversep, volatilep = 0, must_force_mem;
10655 tree tem
10656 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10657 &unsignedp, &reversep, &volatilep);
10658 rtx orig_op0, memloc;
10659 bool clear_mem_expr = false;
10660
10661 /* If we got back the original object, something is wrong. Perhaps
10662 we are evaluating an expression too early. In any event, don't
10663 infinitely recurse. */
10664 gcc_assert (tem != exp);
10665
10666 /* If TEM's type is a union of variable size, pass TARGET to the inner
10667 computation, since it will need a temporary and TARGET is known
10668 to have to do. This occurs in unchecked conversion in Ada. */
10669 orig_op0 = op0
10670 = expand_expr_real (tem,
10671 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10672 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10673 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10674 != INTEGER_CST)
10675 && modifier != EXPAND_STACK_PARM
10676 ? target : NULL_RTX),
10677 VOIDmode,
10678 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10679 NULL, true);
10680
10681 /* If the field has a mode, we want to access it in the
10682 field's mode, not the computed mode.
10683 If a MEM has VOIDmode (external with incomplete type),
10684 use BLKmode for it instead. */
10685 if (MEM_P (op0))
10686 {
10687 if (mode1 != VOIDmode)
10688 op0 = adjust_address (op0, mode1, 0);
10689 else if (GET_MODE (op0) == VOIDmode)
10690 op0 = adjust_address (op0, BLKmode, 0);
10691 }
10692
10693 mode2
10694 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10695
10696 /* Make sure bitpos is not negative, it can wreak havoc later. */
10697 if (maybe_lt (bitpos, 0))
10698 {
10699 gcc_checking_assert (offset == NULL_TREE);
10700 offset = size_int (bits_to_bytes_round_down (bitpos));
10701 bitpos = num_trailing_bits (bitpos);
10702 }
10703
10704 /* If we have either an offset, a BLKmode result, or a reference
10705 outside the underlying object, we must force it to memory.
10706 Such a case can occur in Ada if we have unchecked conversion
10707 of an expression from a scalar type to an aggregate type or
10708 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10709 passed a partially uninitialized object or a view-conversion
10710 to a larger size. */
10711 must_force_mem = (offset
10712 || mode1 == BLKmode
10713 || (mode == BLKmode
10714 && !int_mode_for_size (bitsize, 1).exists ())
10715 || maybe_gt (bitpos + bitsize,
10716 GET_MODE_BITSIZE (mode2)));
10717
10718 /* Handle CONCAT first. */
10719 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10720 {
10721 if (known_eq (bitpos, 0)
10722 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10723 && COMPLEX_MODE_P (mode1)
10724 && COMPLEX_MODE_P (GET_MODE (op0))
10725 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10726 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10727 {
10728 if (reversep)
10729 op0 = flip_storage_order (GET_MODE (op0), op0);
10730 if (mode1 != GET_MODE (op0))
10731 {
10732 rtx parts[2];
10733 for (int i = 0; i < 2; i++)
10734 {
10735 rtx op = read_complex_part (op0, i != 0);
10736 if (GET_CODE (op) == SUBREG)
10737 op = force_reg (GET_MODE (op), op);
10738 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
10739 if (temp)
10740 op = temp;
10741 else
10742 {
10743 if (!REG_P (op) && !MEM_P (op))
10744 op = force_reg (GET_MODE (op), op);
10745 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10746 }
10747 parts[i] = op;
10748 }
10749 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10750 }
10751 return op0;
10752 }
10753 if (known_eq (bitpos, 0)
10754 && known_eq (bitsize,
10755 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10756 && maybe_ne (bitsize, 0))
10757 {
10758 op0 = XEXP (op0, 0);
10759 mode2 = GET_MODE (op0);
10760 }
10761 else if (known_eq (bitpos,
10762 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10763 && known_eq (bitsize,
10764 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10765 && maybe_ne (bitpos, 0)
10766 && maybe_ne (bitsize, 0))
10767 {
10768 op0 = XEXP (op0, 1);
10769 bitpos = 0;
10770 mode2 = GET_MODE (op0);
10771 }
10772 else
10773 /* Otherwise force into memory. */
10774 must_force_mem = 1;
10775 }
10776
10777 /* If this is a constant, put it in a register if it is a legitimate
10778 constant and we don't need a memory reference. */
10779 if (CONSTANT_P (op0)
10780 && mode2 != BLKmode
10781 && targetm.legitimate_constant_p (mode2, op0)
10782 && !must_force_mem)
10783 op0 = force_reg (mode2, op0);
10784
10785 /* Otherwise, if this is a constant, try to force it to the constant
10786 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10787 is a legitimate constant. */
10788 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10789 op0 = validize_mem (memloc);
10790
10791 /* Otherwise, if this is a constant or the object is not in memory
10792 and need be, put it there. */
10793 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10794 {
10795 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10796 emit_move_insn (memloc, op0);
10797 op0 = memloc;
10798 clear_mem_expr = true;
10799 }
10800
10801 if (offset)
10802 {
10803 machine_mode address_mode;
10804 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10805 EXPAND_SUM);
10806
10807 gcc_assert (MEM_P (op0));
10808
10809 address_mode = get_address_mode (op0);
10810 if (GET_MODE (offset_rtx) != address_mode)
10811 {
10812 /* We cannot be sure that the RTL in offset_rtx is valid outside
10813 of a memory address context, so force it into a register
10814 before attempting to convert it to the desired mode. */
10815 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10816 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10817 }
10818
10819 /* See the comment in expand_assignment for the rationale. */
10820 if (mode1 != VOIDmode
10821 && maybe_ne (bitpos, 0)
10822 && maybe_gt (bitsize, 0)
10823 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10824 && multiple_p (bitpos, bitsize)
10825 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10826 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10827 {
10828 op0 = adjust_address (op0, mode1, bytepos);
10829 bitpos = 0;
10830 }
10831
10832 op0 = offset_address (op0, offset_rtx,
10833 highest_pow2_factor (offset));
10834 }
10835
10836 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10837 record its alignment as BIGGEST_ALIGNMENT. */
10838 if (MEM_P (op0)
10839 && known_eq (bitpos, 0)
10840 && offset != 0
10841 && is_aligning_offset (offset, tem))
10842 set_mem_align (op0, BIGGEST_ALIGNMENT);
10843
10844 /* Don't forget about volatility even if this is a bitfield. */
10845 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10846 {
10847 if (op0 == orig_op0)
10848 op0 = copy_rtx (op0);
10849
10850 MEM_VOLATILE_P (op0) = 1;
10851 }
10852
10853 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
10854 {
10855 if (op0 == orig_op0)
10856 op0 = copy_rtx (op0);
10857
10858 set_mem_align (op0, BITS_PER_UNIT);
10859 }
10860
10861 /* In cases where an aligned union has an unaligned object
10862 as a field, we might be extracting a BLKmode value from
10863 an integer-mode (e.g., SImode) object. Handle this case
10864 by doing the extract into an object as wide as the field
10865 (which we know to be the width of a basic mode), then
10866 storing into memory, and changing the mode to BLKmode. */
10867 if (mode1 == VOIDmode
10868 || REG_P (op0) || GET_CODE (op0) == SUBREG
10869 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10870 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10871 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10872 && modifier != EXPAND_CONST_ADDRESS
10873 && modifier != EXPAND_INITIALIZER
10874 && modifier != EXPAND_MEMORY)
10875 /* If the bitfield is volatile and the bitsize
10876 is narrower than the access size of the bitfield,
10877 we need to extract bitfields from the access. */
10878 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10879 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10880 && mode1 != BLKmode
10881 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
10882 /* If the field isn't aligned enough to fetch as a memref,
10883 fetch it as a bit field. */
10884 || (mode1 != BLKmode
10885 && (((MEM_P (op0)
10886 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10887 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
10888 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10889 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
10890 && modifier != EXPAND_MEMORY
10891 && ((modifier == EXPAND_CONST_ADDRESS
10892 || modifier == EXPAND_INITIALIZER)
10893 ? STRICT_ALIGNMENT
10894 : targetm.slow_unaligned_access (mode1,
10895 MEM_ALIGN (op0))))
10896 || !multiple_p (bitpos, BITS_PER_UNIT)))
10897 /* If the type and the field are a constant size and the
10898 size of the type isn't the same size as the bitfield,
10899 we must use bitfield operations. */
10900 || (known_size_p (bitsize)
10901 && TYPE_SIZE (TREE_TYPE (exp))
10902 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
10903 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
10904 bitsize)))
10905 {
10906 machine_mode ext_mode = mode;
10907
10908 if (ext_mode == BLKmode
10909 && ! (target != 0 && MEM_P (op0)
10910 && MEM_P (target)
10911 && multiple_p (bitpos, BITS_PER_UNIT)))
10912 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10913
10914 if (ext_mode == BLKmode)
10915 {
10916 if (target == 0)
10917 target = assign_temp (type, 1, 1);
10918
10919 /* ??? Unlike the similar test a few lines below, this one is
10920 very likely obsolete. */
10921 if (known_eq (bitsize, 0))
10922 return target;
10923
10924 /* In this case, BITPOS must start at a byte boundary and
10925 TARGET, if specified, must be a MEM. */
10926 gcc_assert (MEM_P (op0)
10927 && (!target || MEM_P (target)));
10928
10929 bytepos = exact_div (bitpos, BITS_PER_UNIT);
10930 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
10931 emit_block_move (target,
10932 adjust_address (op0, VOIDmode, bytepos),
10933 gen_int_mode (bytesize, Pmode),
10934 (modifier == EXPAND_STACK_PARM
10935 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10936
10937 return target;
10938 }
10939
10940 /* If we have nothing to extract, the result will be 0 for targets
10941 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10942 return 0 for the sake of consistency, as reading a zero-sized
10943 bitfield is valid in Ada and the value is fully specified. */
10944 if (known_eq (bitsize, 0))
10945 return const0_rtx;
10946
10947 op0 = validize_mem (op0);
10948
10949 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10950 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10951
10952 /* If the result has aggregate type and the extraction is done in
10953 an integral mode, then the field may be not aligned on a byte
10954 boundary; in this case, if it has reverse storage order, it
10955 needs to be extracted as a scalar field with reverse storage
10956 order and put back into memory order afterwards. */
10957 if (AGGREGATE_TYPE_P (type)
10958 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10959 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10960
10961 gcc_checking_assert (known_ge (bitpos, 0));
10962 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10963 (modifier == EXPAND_STACK_PARM
10964 ? NULL_RTX : target),
10965 ext_mode, ext_mode, reversep, alt_rtl);
10966
10967 /* If the result has aggregate type and the mode of OP0 is an
10968 integral mode then, if BITSIZE is narrower than this mode
10969 and this is for big-endian data, we must put the field
10970 into the high-order bits. And we must also put it back
10971 into memory order if it has been previously reversed. */
10972 scalar_int_mode op0_mode;
10973 if (AGGREGATE_TYPE_P (type)
10974 && is_int_mode (GET_MODE (op0), &op0_mode))
10975 {
10976 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10977
10978 gcc_checking_assert (known_le (bitsize, size));
10979 if (maybe_lt (bitsize, size)
10980 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10981 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10982 size - bitsize, op0, 1);
10983
10984 if (reversep)
10985 op0 = flip_storage_order (op0_mode, op0);
10986 }
10987
10988 /* If the result type is BLKmode, store the data into a temporary
10989 of the appropriate type, but with the mode corresponding to the
10990 mode for the data we have (op0's mode). */
10991 if (mode == BLKmode)
10992 {
10993 rtx new_rtx
10994 = assign_stack_temp_for_type (ext_mode,
10995 GET_MODE_BITSIZE (ext_mode),
10996 type);
10997 emit_move_insn (new_rtx, op0);
10998 op0 = copy_rtx (new_rtx);
10999 PUT_MODE (op0, BLKmode);
11000 }
11001
11002 return op0;
11003 }
11004
11005 /* If the result is BLKmode, use that to access the object
11006 now as well. */
11007 if (mode == BLKmode)
11008 mode1 = BLKmode;
11009
11010 /* Get a reference to just this component. */
11011 bytepos = bits_to_bytes_round_down (bitpos);
11012 if (modifier == EXPAND_CONST_ADDRESS
11013 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11014 op0 = adjust_address_nv (op0, mode1, bytepos);
11015 else
11016 op0 = adjust_address (op0, mode1, bytepos);
11017
11018 if (op0 == orig_op0)
11019 op0 = copy_rtx (op0);
11020
11021 /* Don't set memory attributes if the base expression is
11022 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11023 we should just honor its original memory attributes. */
11024 if (!(TREE_CODE (tem) == SSA_NAME
11025 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11026 set_mem_attributes (op0, exp, 0);
11027
11028 if (REG_P (XEXP (op0, 0)))
11029 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11030
11031 /* If op0 is a temporary because the original expressions was forced
11032 to memory, clear MEM_EXPR so that the original expression cannot
11033 be marked as addressable through MEM_EXPR of the temporary. */
11034 if (clear_mem_expr)
11035 set_mem_expr (op0, NULL_TREE);
11036
11037 MEM_VOLATILE_P (op0) |= volatilep;
11038
11039 if (reversep
11040 && modifier != EXPAND_MEMORY
11041 && modifier != EXPAND_WRITE)
11042 op0 = flip_storage_order (mode1, op0);
11043
11044 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11045 || modifier == EXPAND_CONST_ADDRESS
11046 || modifier == EXPAND_INITIALIZER)
11047 return op0;
11048
11049 if (target == 0)
11050 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11051
11052 convert_move (target, op0, unsignedp);
11053 return target;
11054 }
11055
11056 case OBJ_TYPE_REF:
11057 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11058
11059 case CALL_EXPR:
11060 /* All valid uses of __builtin_va_arg_pack () are removed during
11061 inlining. */
11062 if (CALL_EXPR_VA_ARG_PACK (exp))
11063 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
11064 {
11065 tree fndecl = get_callee_fndecl (exp), attr;
11066
11067 if (fndecl
11068 /* Don't diagnose the error attribute in thunks, those are
11069 artificially created. */
11070 && !CALL_FROM_THUNK_P (exp)
11071 && (attr = lookup_attribute ("error",
11072 DECL_ATTRIBUTES (fndecl))) != NULL)
11073 {
11074 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11075 error ("%Kcall to %qs declared with attribute error: %s", exp,
11076 identifier_to_locale (ident),
11077 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11078 }
11079 if (fndecl
11080 /* Don't diagnose the warning attribute in thunks, those are
11081 artificially created. */
11082 && !CALL_FROM_THUNK_P (exp)
11083 && (attr = lookup_attribute ("warning",
11084 DECL_ATTRIBUTES (fndecl))) != NULL)
11085 {
11086 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11087 warning_at (tree_nonartificial_location (exp),
11088 OPT_Wattribute_warning,
11089 "%Kcall to %qs declared with attribute warning: %s",
11090 exp, identifier_to_locale (ident),
11091 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11092 }
11093
11094 /* Check for a built-in function. */
11095 if (fndecl && fndecl_built_in_p (fndecl))
11096 {
11097 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11098 return expand_builtin (exp, target, subtarget, tmode, ignore);
11099 }
11100 }
11101 return expand_call (exp, target, ignore);
11102
11103 case VIEW_CONVERT_EXPR:
11104 op0 = NULL_RTX;
11105
11106 /* If we are converting to BLKmode, try to avoid an intermediate
11107 temporary by fetching an inner memory reference. */
11108 if (mode == BLKmode
11109 && poly_int_tree_p (TYPE_SIZE (type))
11110 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11111 && handled_component_p (treeop0))
11112 {
11113 machine_mode mode1;
11114 poly_int64 bitsize, bitpos, bytepos;
11115 tree offset;
11116 int reversep, volatilep = 0;
11117 tree tem
11118 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11119 &unsignedp, &reversep, &volatilep);
11120
11121 /* ??? We should work harder and deal with non-zero offsets. */
11122 if (!offset
11123 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11124 && !reversep
11125 && known_size_p (bitsize)
11126 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11127 {
11128 /* See the normal_inner_ref case for the rationale. */
11129 rtx orig_op0
11130 = expand_expr_real (tem,
11131 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11132 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11133 != INTEGER_CST)
11134 && modifier != EXPAND_STACK_PARM
11135 ? target : NULL_RTX),
11136 VOIDmode,
11137 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11138 NULL, true);
11139
11140 if (MEM_P (orig_op0))
11141 {
11142 op0 = orig_op0;
11143
11144 /* Get a reference to just this component. */
11145 if (modifier == EXPAND_CONST_ADDRESS
11146 || modifier == EXPAND_SUM
11147 || modifier == EXPAND_INITIALIZER)
11148 op0 = adjust_address_nv (op0, mode, bytepos);
11149 else
11150 op0 = adjust_address (op0, mode, bytepos);
11151
11152 if (op0 == orig_op0)
11153 op0 = copy_rtx (op0);
11154
11155 set_mem_attributes (op0, treeop0, 0);
11156 if (REG_P (XEXP (op0, 0)))
11157 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11158
11159 MEM_VOLATILE_P (op0) |= volatilep;
11160 }
11161 }
11162 }
11163
11164 if (!op0)
11165 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11166 NULL, inner_reference_p);
11167
11168 /* If the input and output modes are both the same, we are done. */
11169 if (mode == GET_MODE (op0))
11170 ;
11171 /* If neither mode is BLKmode, and both modes are the same size
11172 then we can use gen_lowpart. */
11173 else if (mode != BLKmode
11174 && GET_MODE (op0) != BLKmode
11175 && known_eq (GET_MODE_PRECISION (mode),
11176 GET_MODE_PRECISION (GET_MODE (op0)))
11177 && !COMPLEX_MODE_P (GET_MODE (op0)))
11178 {
11179 if (GET_CODE (op0) == SUBREG)
11180 op0 = force_reg (GET_MODE (op0), op0);
11181 temp = gen_lowpart_common (mode, op0);
11182 if (temp)
11183 op0 = temp;
11184 else
11185 {
11186 if (!REG_P (op0) && !MEM_P (op0))
11187 op0 = force_reg (GET_MODE (op0), op0);
11188 op0 = gen_lowpart (mode, op0);
11189 }
11190 }
11191 /* If both types are integral, convert from one mode to the other. */
11192 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11193 op0 = convert_modes (mode, GET_MODE (op0), op0,
11194 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11195 /* If the output type is a bit-field type, do an extraction. */
11196 else if (reduce_bit_field)
11197 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11198 TYPE_UNSIGNED (type), NULL_RTX,
11199 mode, mode, false, NULL);
11200 /* As a last resort, spill op0 to memory, and reload it in a
11201 different mode. */
11202 else if (!MEM_P (op0))
11203 {
11204 /* If the operand is not a MEM, force it into memory. Since we
11205 are going to be changing the mode of the MEM, don't call
11206 force_const_mem for constants because we don't allow pool
11207 constants to change mode. */
11208 tree inner_type = TREE_TYPE (treeop0);
11209
11210 gcc_assert (!TREE_ADDRESSABLE (exp));
11211
11212 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11213 target
11214 = assign_stack_temp_for_type
11215 (TYPE_MODE (inner_type),
11216 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11217
11218 emit_move_insn (target, op0);
11219 op0 = target;
11220 }
11221
11222 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11223 output type is such that the operand is known to be aligned, indicate
11224 that it is. Otherwise, we need only be concerned about alignment for
11225 non-BLKmode results. */
11226 if (MEM_P (op0))
11227 {
11228 enum insn_code icode;
11229
11230 if (modifier != EXPAND_WRITE
11231 && modifier != EXPAND_MEMORY
11232 && !inner_reference_p
11233 && mode != BLKmode
11234 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11235 {
11236 /* If the target does have special handling for unaligned
11237 loads of mode then use them. */
11238 if ((icode = optab_handler (movmisalign_optab, mode))
11239 != CODE_FOR_nothing)
11240 {
11241 rtx reg;
11242
11243 op0 = adjust_address (op0, mode, 0);
11244 /* We've already validated the memory, and we're creating a
11245 new pseudo destination. The predicates really can't
11246 fail. */
11247 reg = gen_reg_rtx (mode);
11248
11249 /* Nor can the insn generator. */
11250 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11251 emit_insn (insn);
11252 return reg;
11253 }
11254 else if (STRICT_ALIGNMENT)
11255 {
11256 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11257 poly_uint64 temp_size = mode_size;
11258 if (GET_MODE (op0) != BLKmode)
11259 temp_size = upper_bound (temp_size,
11260 GET_MODE_SIZE (GET_MODE (op0)));
11261 rtx new_rtx
11262 = assign_stack_temp_for_type (mode, temp_size, type);
11263 rtx new_with_op0_mode
11264 = adjust_address (new_rtx, GET_MODE (op0), 0);
11265
11266 gcc_assert (!TREE_ADDRESSABLE (exp));
11267
11268 if (GET_MODE (op0) == BLKmode)
11269 {
11270 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11271 emit_block_move (new_with_op0_mode, op0, size_rtx,
11272 (modifier == EXPAND_STACK_PARM
11273 ? BLOCK_OP_CALL_PARM
11274 : BLOCK_OP_NORMAL));
11275 }
11276 else
11277 emit_move_insn (new_with_op0_mode, op0);
11278
11279 op0 = new_rtx;
11280 }
11281 }
11282
11283 op0 = adjust_address (op0, mode, 0);
11284 }
11285
11286 return op0;
11287
11288 case MODIFY_EXPR:
11289 {
11290 tree lhs = treeop0;
11291 tree rhs = treeop1;
11292 gcc_assert (ignore);
11293
11294 /* Check for |= or &= of a bitfield of size one into another bitfield
11295 of size 1. In this case, (unless we need the result of the
11296 assignment) we can do this more efficiently with a
11297 test followed by an assignment, if necessary.
11298
11299 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11300 things change so we do, this code should be enhanced to
11301 support it. */
11302 if (TREE_CODE (lhs) == COMPONENT_REF
11303 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11304 || TREE_CODE (rhs) == BIT_AND_EXPR)
11305 && TREE_OPERAND (rhs, 0) == lhs
11306 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11307 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11308 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11309 {
11310 rtx_code_label *label = gen_label_rtx ();
11311 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11312 profile_probability prob = profile_probability::uninitialized ();
11313 if (value)
11314 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11315 else
11316 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11317 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11318 false);
11319 do_pending_stack_adjust ();
11320 emit_label (label);
11321 return const0_rtx;
11322 }
11323
11324 expand_assignment (lhs, rhs, false);
11325 return const0_rtx;
11326 }
11327
11328 case ADDR_EXPR:
11329 return expand_expr_addr_expr (exp, target, tmode, modifier);
11330
11331 case REALPART_EXPR:
11332 op0 = expand_normal (treeop0);
11333 return read_complex_part (op0, false);
11334
11335 case IMAGPART_EXPR:
11336 op0 = expand_normal (treeop0);
11337 return read_complex_part (op0, true);
11338
11339 case RETURN_EXPR:
11340 case LABEL_EXPR:
11341 case GOTO_EXPR:
11342 case SWITCH_EXPR:
11343 case ASM_EXPR:
11344 /* Expanded in cfgexpand.c. */
11345 gcc_unreachable ();
11346
11347 case TRY_CATCH_EXPR:
11348 case CATCH_EXPR:
11349 case EH_FILTER_EXPR:
11350 case TRY_FINALLY_EXPR:
11351 case EH_ELSE_EXPR:
11352 /* Lowered by tree-eh.c. */
11353 gcc_unreachable ();
11354
11355 case WITH_CLEANUP_EXPR:
11356 case CLEANUP_POINT_EXPR:
11357 case TARGET_EXPR:
11358 case CASE_LABEL_EXPR:
11359 case VA_ARG_EXPR:
11360 case BIND_EXPR:
11361 case INIT_EXPR:
11362 case CONJ_EXPR:
11363 case COMPOUND_EXPR:
11364 case PREINCREMENT_EXPR:
11365 case PREDECREMENT_EXPR:
11366 case POSTINCREMENT_EXPR:
11367 case POSTDECREMENT_EXPR:
11368 case LOOP_EXPR:
11369 case EXIT_EXPR:
11370 case COMPOUND_LITERAL_EXPR:
11371 /* Lowered by gimplify.c. */
11372 gcc_unreachable ();
11373
11374 case FDESC_EXPR:
11375 /* Function descriptors are not valid except for as
11376 initialization constants, and should not be expanded. */
11377 gcc_unreachable ();
11378
11379 case WITH_SIZE_EXPR:
11380 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11381 have pulled out the size to use in whatever context it needed. */
11382 return expand_expr_real (treeop0, original_target, tmode,
11383 modifier, alt_rtl, inner_reference_p);
11384
11385 default:
11386 return expand_expr_real_2 (&ops, target, tmode, modifier);
11387 }
11388 }
11389 \f
11390 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11391 signedness of TYPE), possibly returning the result in TARGET.
11392 TYPE is known to be a partial integer type. */
11393 static rtx
11394 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11395 {
11396 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11397 if (target && GET_MODE (target) != GET_MODE (exp))
11398 target = 0;
11399 /* For constant values, reduce using build_int_cst_type. */
11400 poly_int64 const_exp;
11401 if (poly_int_rtx_p (exp, &const_exp))
11402 {
11403 tree t = build_int_cst_type (type, const_exp);
11404 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11405 }
11406 else if (TYPE_UNSIGNED (type))
11407 {
11408 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11409 rtx mask = immed_wide_int_const
11410 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11411 return expand_and (mode, exp, mask, target);
11412 }
11413 else
11414 {
11415 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11416 int count = GET_MODE_PRECISION (mode) - prec;
11417 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11418 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11419 }
11420 }
11421 \f
11422 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11423 when applied to the address of EXP produces an address known to be
11424 aligned more than BIGGEST_ALIGNMENT. */
11425
11426 static int
11427 is_aligning_offset (const_tree offset, const_tree exp)
11428 {
11429 /* Strip off any conversions. */
11430 while (CONVERT_EXPR_P (offset))
11431 offset = TREE_OPERAND (offset, 0);
11432
11433 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11434 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11435 if (TREE_CODE (offset) != BIT_AND_EXPR
11436 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11437 || compare_tree_int (TREE_OPERAND (offset, 1),
11438 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11439 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11440 return 0;
11441
11442 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11443 It must be NEGATE_EXPR. Then strip any more conversions. */
11444 offset = TREE_OPERAND (offset, 0);
11445 while (CONVERT_EXPR_P (offset))
11446 offset = TREE_OPERAND (offset, 0);
11447
11448 if (TREE_CODE (offset) != NEGATE_EXPR)
11449 return 0;
11450
11451 offset = TREE_OPERAND (offset, 0);
11452 while (CONVERT_EXPR_P (offset))
11453 offset = TREE_OPERAND (offset, 0);
11454
11455 /* This must now be the address of EXP. */
11456 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11457 }
11458 \f
11459 /* Return the tree node if an ARG corresponds to a string constant or zero
11460 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11461 non-constant) offset in bytes within the string that ARG is accessing.
11462 If MEM_SIZE is non-zero the storage size of the memory is returned.
11463 If DECL is non-zero the constant declaration is returned if available. */
11464
11465 tree
11466 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11467 {
11468 tree dummy = NULL_TREE;;
11469 if (!mem_size)
11470 mem_size = &dummy;
11471
11472 /* Store the type of the original expression before conversions
11473 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11474 removed. */
11475 tree argtype = TREE_TYPE (arg);
11476
11477 tree array;
11478 STRIP_NOPS (arg);
11479
11480 /* Non-constant index into the character array in an ARRAY_REF
11481 expression or null. */
11482 tree varidx = NULL_TREE;
11483
11484 poly_int64 base_off = 0;
11485
11486 if (TREE_CODE (arg) == ADDR_EXPR)
11487 {
11488 arg = TREE_OPERAND (arg, 0);
11489 tree ref = arg;
11490 if (TREE_CODE (arg) == ARRAY_REF)
11491 {
11492 tree idx = TREE_OPERAND (arg, 1);
11493 if (TREE_CODE (idx) != INTEGER_CST)
11494 {
11495 /* From a pointer (but not array) argument extract the variable
11496 index to prevent get_addr_base_and_unit_offset() from failing
11497 due to it. Use it later to compute the non-constant offset
11498 into the string and return it to the caller. */
11499 varidx = idx;
11500 ref = TREE_OPERAND (arg, 0);
11501
11502 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11503 return NULL_TREE;
11504
11505 if (!integer_zerop (array_ref_low_bound (arg)))
11506 return NULL_TREE;
11507
11508 if (!integer_onep (array_ref_element_size (arg)))
11509 return NULL_TREE;
11510 }
11511 }
11512 array = get_addr_base_and_unit_offset (ref, &base_off);
11513 if (!array
11514 || (TREE_CODE (array) != VAR_DECL
11515 && TREE_CODE (array) != CONST_DECL
11516 && TREE_CODE (array) != STRING_CST))
11517 return NULL_TREE;
11518 }
11519 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11520 {
11521 tree arg0 = TREE_OPERAND (arg, 0);
11522 tree arg1 = TREE_OPERAND (arg, 1);
11523
11524 tree offset;
11525 tree str = string_constant (arg0, &offset, mem_size, decl);
11526 if (!str)
11527 {
11528 str = string_constant (arg1, &offset, mem_size, decl);
11529 arg1 = arg0;
11530 }
11531
11532 if (str)
11533 {
11534 /* Avoid pointers to arrays (see bug 86622). */
11535 if (POINTER_TYPE_P (TREE_TYPE (arg))
11536 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11537 && !(decl && !*decl)
11538 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11539 && tree_fits_uhwi_p (*mem_size)
11540 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11541 return NULL_TREE;
11542
11543 tree type = TREE_TYPE (offset);
11544 arg1 = fold_convert (type, arg1);
11545 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11546 return str;
11547 }
11548 return NULL_TREE;
11549 }
11550 else if (TREE_CODE (arg) == SSA_NAME)
11551 {
11552 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11553 if (!is_gimple_assign (stmt))
11554 return NULL_TREE;
11555
11556 tree rhs1 = gimple_assign_rhs1 (stmt);
11557 tree_code code = gimple_assign_rhs_code (stmt);
11558 if (code == ADDR_EXPR)
11559 return string_constant (rhs1, ptr_offset, mem_size, decl);
11560 else if (code != POINTER_PLUS_EXPR)
11561 return NULL_TREE;
11562
11563 tree offset;
11564 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11565 {
11566 /* Avoid pointers to arrays (see bug 86622). */
11567 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11568 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11569 && !(decl && !*decl)
11570 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11571 && tree_fits_uhwi_p (*mem_size)
11572 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11573 return NULL_TREE;
11574
11575 tree rhs2 = gimple_assign_rhs2 (stmt);
11576 tree type = TREE_TYPE (offset);
11577 rhs2 = fold_convert (type, rhs2);
11578 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11579 return str;
11580 }
11581 return NULL_TREE;
11582 }
11583 else if (DECL_P (arg))
11584 array = arg;
11585 else
11586 return NULL_TREE;
11587
11588 tree offset = wide_int_to_tree (sizetype, base_off);
11589 if (varidx)
11590 {
11591 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11592 return NULL_TREE;
11593
11594 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11595 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11596 if (TREE_CODE (chartype) != INTEGER_TYPE)
11597 return NULL;
11598
11599 offset = fold_convert (sizetype, varidx);
11600 }
11601
11602 if (TREE_CODE (array) == STRING_CST)
11603 {
11604 *ptr_offset = fold_convert (sizetype, offset);
11605 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11606 if (decl)
11607 *decl = NULL_TREE;
11608 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11609 >= TREE_STRING_LENGTH (array));
11610 return array;
11611 }
11612
11613 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11614 return NULL_TREE;
11615
11616 tree init = ctor_for_folding (array);
11617
11618 /* Handle variables initialized with string literals. */
11619 if (!init || init == error_mark_node)
11620 return NULL_TREE;
11621 if (TREE_CODE (init) == CONSTRUCTOR)
11622 {
11623 /* Convert the 64-bit constant offset to a wider type to avoid
11624 overflow. */
11625 offset_int wioff;
11626 if (!base_off.is_constant (&wioff))
11627 return NULL_TREE;
11628
11629 wioff *= BITS_PER_UNIT;
11630 if (!wi::fits_uhwi_p (wioff))
11631 return NULL_TREE;
11632
11633 base_off = wioff.to_uhwi ();
11634 unsigned HOST_WIDE_INT fieldoff = 0;
11635 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
11636 &fieldoff);
11637 HOST_WIDE_INT cstoff;
11638 if (!base_off.is_constant (&cstoff))
11639 return NULL_TREE;
11640
11641 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11642 tree off = build_int_cst (sizetype, cstoff);
11643 if (varidx)
11644 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11645 else
11646 offset = off;
11647 }
11648
11649 if (!init)
11650 return NULL_TREE;
11651
11652 *ptr_offset = offset;
11653
11654 tree inittype = TREE_TYPE (init);
11655
11656 if (TREE_CODE (init) == INTEGER_CST
11657 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11658 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
11659 {
11660 /* For a reference to (address of) a single constant character,
11661 store the native representation of the character in CHARBUF.
11662 If the reference is to an element of an array or a member
11663 of a struct, only consider narrow characters until ctors
11664 for wide character arrays are transformed to STRING_CSTs
11665 like those for narrow arrays. */
11666 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11667 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11668 if (len > 0)
11669 {
11670 /* Construct a string literal with elements of INITTYPE and
11671 the representation above. Then strip
11672 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11673 init = build_string_literal (len, (char *)charbuf, inittype);
11674 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11675 }
11676 }
11677
11678 tree initsize = TYPE_SIZE_UNIT (inittype);
11679
11680 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
11681 {
11682 /* Fold an empty/zero constructor for an implicitly initialized
11683 object or subobject into the empty string. */
11684
11685 /* Determine the character type from that of the original
11686 expression. */
11687 tree chartype = argtype;
11688 if (POINTER_TYPE_P (chartype))
11689 chartype = TREE_TYPE (chartype);
11690 while (TREE_CODE (chartype) == ARRAY_TYPE)
11691 chartype = TREE_TYPE (chartype);
11692 /* Convert a char array to an empty STRING_CST having an array
11693 of the expected type. */
11694 if (!initsize)
11695 initsize = integer_zero_node;
11696
11697 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
11698 init = build_string_literal (size ? 1 : 0, "", chartype, size);
11699 init = TREE_OPERAND (init, 0);
11700 init = TREE_OPERAND (init, 0);
11701
11702 *ptr_offset = integer_zero_node;
11703 }
11704
11705 if (decl)
11706 *decl = array;
11707
11708 if (TREE_CODE (init) != STRING_CST)
11709 return NULL_TREE;
11710
11711 *mem_size = initsize;
11712
11713 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11714
11715 return init;
11716 }
11717 \f
11718 /* Compute the modular multiplicative inverse of A modulo M
11719 using extended Euclid's algorithm. Assumes A and M are coprime. */
11720 static wide_int
11721 mod_inv (const wide_int &a, const wide_int &b)
11722 {
11723 /* Verify the assumption. */
11724 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11725
11726 unsigned int p = a.get_precision () + 1;
11727 gcc_checking_assert (b.get_precision () + 1 == p);
11728 wide_int c = wide_int::from (a, p, UNSIGNED);
11729 wide_int d = wide_int::from (b, p, UNSIGNED);
11730 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11731 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11732
11733 if (wi::eq_p (b, 1))
11734 return wide_int::from (1, p, UNSIGNED);
11735
11736 while (wi::gt_p (c, 1, UNSIGNED))
11737 {
11738 wide_int t = d;
11739 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11740 c = t;
11741 wide_int s = x0;
11742 x0 = wi::sub (x1, wi::mul (q, x0));
11743 x1 = s;
11744 }
11745 if (wi::lt_p (x1, 0, SIGNED))
11746 x1 += d;
11747 return x1;
11748 }
11749
11750 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11751 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11752 for C2 > 0 to x & C3 == C2
11753 for C2 < 0 to x & C3 == (C2 & C3). */
11754 enum tree_code
11755 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11756 {
11757 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11758 tree treeop0 = gimple_assign_rhs1 (stmt);
11759 tree treeop1 = gimple_assign_rhs2 (stmt);
11760 tree type = TREE_TYPE (*arg0);
11761 scalar_int_mode mode;
11762 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11763 return code;
11764 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11765 || TYPE_PRECISION (type) <= 1
11766 || TYPE_UNSIGNED (type)
11767 /* Signed x % c == 0 should have been optimized into unsigned modulo
11768 earlier. */
11769 || integer_zerop (*arg1)
11770 /* If c is known to be non-negative, modulo will be expanded as unsigned
11771 modulo. */
11772 || get_range_pos_neg (treeop0) == 1)
11773 return code;
11774
11775 /* x % c == d where d < 0 && d <= -c should be always false. */
11776 if (tree_int_cst_sgn (*arg1) == -1
11777 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11778 return code;
11779
11780 int prec = TYPE_PRECISION (type);
11781 wide_int w = wi::to_wide (treeop1) - 1;
11782 w |= wi::shifted_mask (0, prec - 1, true, prec);
11783 tree c3 = wide_int_to_tree (type, w);
11784 tree c4 = *arg1;
11785 if (tree_int_cst_sgn (*arg1) == -1)
11786 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11787
11788 rtx op0 = expand_normal (treeop0);
11789 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11790
11791 bool speed_p = optimize_insn_for_speed_p ();
11792
11793 do_pending_stack_adjust ();
11794
11795 location_t loc = gimple_location (stmt);
11796 struct separate_ops ops;
11797 ops.code = TRUNC_MOD_EXPR;
11798 ops.location = loc;
11799 ops.type = TREE_TYPE (treeop0);
11800 ops.op0 = treeop0;
11801 ops.op1 = treeop1;
11802 ops.op2 = NULL_TREE;
11803 start_sequence ();
11804 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11805 EXPAND_NORMAL);
11806 rtx_insn *moinsns = get_insns ();
11807 end_sequence ();
11808
11809 unsigned mocost = seq_cost (moinsns, speed_p);
11810 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11811 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11812
11813 ops.code = BIT_AND_EXPR;
11814 ops.location = loc;
11815 ops.type = TREE_TYPE (treeop0);
11816 ops.op0 = treeop0;
11817 ops.op1 = c3;
11818 ops.op2 = NULL_TREE;
11819 start_sequence ();
11820 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11821 EXPAND_NORMAL);
11822 rtx_insn *muinsns = get_insns ();
11823 end_sequence ();
11824
11825 unsigned mucost = seq_cost (muinsns, speed_p);
11826 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11827 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11828
11829 if (mocost <= mucost)
11830 {
11831 emit_insn (moinsns);
11832 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11833 return code;
11834 }
11835
11836 emit_insn (muinsns);
11837 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11838 *arg1 = c4;
11839 return code;
11840 }
11841
11842 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11843 If C1 is odd to:
11844 (X - C2) * C3 <= C4 (or >), where
11845 C3 is modular multiplicative inverse of C1 and 1<<prec and
11846 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11847 if C2 > ((1<<prec) - 1) % C1).
11848 If C1 is even, S = ctz (C1) and C2 is 0, use
11849 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11850 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11851
11852 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11853 unsigned):
11854 (X * C3) + C4 <= 2 * C4, where
11855 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11856 C4 is ((1<<(prec - 1) - 1) / C1).
11857 If C1 is even, S = ctz(C1), use
11858 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11859 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11860 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11861
11862 See the Hacker's Delight book, section 10-17. */
11863 enum tree_code
11864 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11865 {
11866 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
11867 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
11868
11869 if (optimize < 2)
11870 return code;
11871
11872 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11873 if (stmt == NULL)
11874 return code;
11875
11876 tree treeop0 = gimple_assign_rhs1 (stmt);
11877 tree treeop1 = gimple_assign_rhs2 (stmt);
11878 if (TREE_CODE (treeop0) != SSA_NAME
11879 || TREE_CODE (treeop1) != INTEGER_CST
11880 /* Don't optimize the undefined behavior case x % 0;
11881 x % 1 should have been optimized into zero, punt if
11882 it makes it here for whatever reason;
11883 x % -c should have been optimized into x % c. */
11884 || compare_tree_int (treeop1, 2) <= 0
11885 /* Likewise x % c == d where d >= c should be always false. */
11886 || tree_int_cst_le (treeop1, *arg1))
11887 return code;
11888
11889 /* Unsigned x % pow2 is handled right already, for signed
11890 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11891 if (integer_pow2p (treeop1))
11892 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
11893
11894 tree type = TREE_TYPE (*arg0);
11895 scalar_int_mode mode;
11896 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11897 return code;
11898 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11899 || TYPE_PRECISION (type) <= 1)
11900 return code;
11901
11902 signop sgn = UNSIGNED;
11903 /* If both operands are known to have the sign bit clear, handle
11904 even the signed modulo case as unsigned. treeop1 is always
11905 positive >= 2, checked above. */
11906 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
11907 sgn = SIGNED;
11908
11909 if (!TYPE_UNSIGNED (type))
11910 {
11911 if (tree_int_cst_sgn (*arg1) == -1)
11912 return code;
11913 type = unsigned_type_for (type);
11914 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
11915 return code;
11916 }
11917
11918 int prec = TYPE_PRECISION (type);
11919 wide_int w = wi::to_wide (treeop1);
11920 int shift = wi::ctz (w);
11921 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11922 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11923 If C1 is odd, we can handle all cases by subtracting
11924 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11925 e.g. by testing for overflow on the subtraction, punt on that for now
11926 though. */
11927 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
11928 {
11929 if (sgn == SIGNED)
11930 return code;
11931 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
11932 if (wi::gtu_p (wi::to_wide (*arg1), x))
11933 return code;
11934 }
11935
11936 imm_use_iterator imm_iter;
11937 use_operand_p use_p;
11938 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
11939 {
11940 gimple *use_stmt = USE_STMT (use_p);
11941 /* Punt if treeop0 is used in the same bb in a division
11942 or another modulo with the same divisor. We should expect
11943 the division and modulo combined together. */
11944 if (use_stmt == stmt
11945 || gimple_bb (use_stmt) != gimple_bb (stmt))
11946 continue;
11947 if (!is_gimple_assign (use_stmt)
11948 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
11949 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
11950 continue;
11951 if (gimple_assign_rhs1 (use_stmt) != treeop0
11952 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
11953 continue;
11954 return code;
11955 }
11956
11957 w = wi::lrshift (w, shift);
11958 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
11959 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
11960 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
11961 tree c3 = wide_int_to_tree (type, m);
11962 tree c5 = NULL_TREE;
11963 wide_int d, e;
11964 if (sgn == UNSIGNED)
11965 {
11966 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
11967 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
11968 otherwise use < or subtract one from C4. E.g. for
11969 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
11970 x % 3U == 1 already needs to be
11971 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
11972 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
11973 d -= 1;
11974 if (shift)
11975 d = wi::lrshift (d, shift);
11976 }
11977 else
11978 {
11979 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
11980 if (!shift)
11981 d = wi::lshift (e, 1);
11982 else
11983 {
11984 e = wi::bit_and (e, wi::mask (shift, true, prec));
11985 d = wi::lrshift (e, shift - 1);
11986 }
11987 c5 = wide_int_to_tree (type, e);
11988 }
11989 tree c4 = wide_int_to_tree (type, d);
11990
11991 rtx op0 = expand_normal (treeop0);
11992 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11993
11994 bool speed_p = optimize_insn_for_speed_p ();
11995
11996 do_pending_stack_adjust ();
11997
11998 location_t loc = gimple_location (stmt);
11999 struct separate_ops ops;
12000 ops.code = TRUNC_MOD_EXPR;
12001 ops.location = loc;
12002 ops.type = TREE_TYPE (treeop0);
12003 ops.op0 = treeop0;
12004 ops.op1 = treeop1;
12005 ops.op2 = NULL_TREE;
12006 start_sequence ();
12007 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12008 EXPAND_NORMAL);
12009 rtx_insn *moinsns = get_insns ();
12010 end_sequence ();
12011
12012 unsigned mocost = seq_cost (moinsns, speed_p);
12013 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12014 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12015
12016 tree t = fold_convert_loc (loc, type, treeop0);
12017 if (!integer_zerop (*arg1))
12018 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12019 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12020 if (sgn == SIGNED)
12021 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12022 if (shift)
12023 {
12024 tree s = build_int_cst (NULL_TREE, shift);
12025 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12026 }
12027
12028 start_sequence ();
12029 rtx mur = expand_normal (t);
12030 rtx_insn *muinsns = get_insns ();
12031 end_sequence ();
12032
12033 unsigned mucost = seq_cost (muinsns, speed_p);
12034 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12035 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12036
12037 if (mocost <= mucost)
12038 {
12039 emit_insn (moinsns);
12040 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12041 return code;
12042 }
12043
12044 emit_insn (muinsns);
12045 *arg0 = make_tree (type, mur);
12046 *arg1 = c4;
12047 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12048 }
12049 \f
12050 /* Generate code to calculate OPS, and exploded expression
12051 using a store-flag instruction and return an rtx for the result.
12052 OPS reflects a comparison.
12053
12054 If TARGET is nonzero, store the result there if convenient.
12055
12056 Return zero if there is no suitable set-flag instruction
12057 available on this machine.
12058
12059 Once expand_expr has been called on the arguments of the comparison,
12060 we are committed to doing the store flag, since it is not safe to
12061 re-evaluate the expression. We emit the store-flag insn by calling
12062 emit_store_flag, but only expand the arguments if we have a reason
12063 to believe that emit_store_flag will be successful. If we think that
12064 it will, but it isn't, we have to simulate the store-flag with a
12065 set/jump/set sequence. */
12066
12067 static rtx
12068 do_store_flag (sepops ops, rtx target, machine_mode mode)
12069 {
12070 enum rtx_code code;
12071 tree arg0, arg1, type;
12072 machine_mode operand_mode;
12073 int unsignedp;
12074 rtx op0, op1;
12075 rtx subtarget = target;
12076 location_t loc = ops->location;
12077
12078 arg0 = ops->op0;
12079 arg1 = ops->op1;
12080
12081 /* Don't crash if the comparison was erroneous. */
12082 if (arg0 == error_mark_node || arg1 == error_mark_node)
12083 return const0_rtx;
12084
12085 type = TREE_TYPE (arg0);
12086 operand_mode = TYPE_MODE (type);
12087 unsignedp = TYPE_UNSIGNED (type);
12088
12089 /* We won't bother with BLKmode store-flag operations because it would mean
12090 passing a lot of information to emit_store_flag. */
12091 if (operand_mode == BLKmode)
12092 return 0;
12093
12094 /* We won't bother with store-flag operations involving function pointers
12095 when function pointers must be canonicalized before comparisons. */
12096 if (targetm.have_canonicalize_funcptr_for_compare ()
12097 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
12098 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
12099 || (POINTER_TYPE_P (TREE_TYPE (arg1))
12100 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
12101 return 0;
12102
12103 STRIP_NOPS (arg0);
12104 STRIP_NOPS (arg1);
12105
12106 /* For vector typed comparisons emit code to generate the desired
12107 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12108 expander for this. */
12109 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12110 {
12111 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12112 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12113 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12114 return expand_vec_cmp_expr (ops->type, ifexp, target);
12115 else
12116 {
12117 tree if_true = constant_boolean_node (true, ops->type);
12118 tree if_false = constant_boolean_node (false, ops->type);
12119 return expand_vec_cond_expr (ops->type, ifexp, if_true,
12120 if_false, target);
12121 }
12122 }
12123
12124 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12125 into (x - C2) * C3 < C4. */
12126 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12127 && TREE_CODE (arg0) == SSA_NAME
12128 && TREE_CODE (arg1) == INTEGER_CST)
12129 {
12130 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
12131 &arg0, &arg1);
12132 if (new_code != ops->code)
12133 {
12134 struct separate_ops nops = *ops;
12135 nops.code = ops->code = new_code;
12136 nops.op0 = arg0;
12137 nops.op1 = arg1;
12138 nops.type = TREE_TYPE (arg0);
12139 return do_store_flag (&nops, target, mode);
12140 }
12141 }
12142
12143 /* Get the rtx comparison code to use. We know that EXP is a comparison
12144 operation of some type. Some comparisons against 1 and -1 can be
12145 converted to comparisons with zero. Do so here so that the tests
12146 below will be aware that we have a comparison with zero. These
12147 tests will not catch constants in the first operand, but constants
12148 are rarely passed as the first operand. */
12149
12150 switch (ops->code)
12151 {
12152 case EQ_EXPR:
12153 code = EQ;
12154 break;
12155 case NE_EXPR:
12156 code = NE;
12157 break;
12158 case LT_EXPR:
12159 if (integer_onep (arg1))
12160 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12161 else
12162 code = unsignedp ? LTU : LT;
12163 break;
12164 case LE_EXPR:
12165 if (! unsignedp && integer_all_onesp (arg1))
12166 arg1 = integer_zero_node, code = LT;
12167 else
12168 code = unsignedp ? LEU : LE;
12169 break;
12170 case GT_EXPR:
12171 if (! unsignedp && integer_all_onesp (arg1))
12172 arg1 = integer_zero_node, code = GE;
12173 else
12174 code = unsignedp ? GTU : GT;
12175 break;
12176 case GE_EXPR:
12177 if (integer_onep (arg1))
12178 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12179 else
12180 code = unsignedp ? GEU : GE;
12181 break;
12182
12183 case UNORDERED_EXPR:
12184 code = UNORDERED;
12185 break;
12186 case ORDERED_EXPR:
12187 code = ORDERED;
12188 break;
12189 case UNLT_EXPR:
12190 code = UNLT;
12191 break;
12192 case UNLE_EXPR:
12193 code = UNLE;
12194 break;
12195 case UNGT_EXPR:
12196 code = UNGT;
12197 break;
12198 case UNGE_EXPR:
12199 code = UNGE;
12200 break;
12201 case UNEQ_EXPR:
12202 code = UNEQ;
12203 break;
12204 case LTGT_EXPR:
12205 code = LTGT;
12206 break;
12207
12208 default:
12209 gcc_unreachable ();
12210 }
12211
12212 /* Put a constant second. */
12213 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12214 || TREE_CODE (arg0) == FIXED_CST)
12215 {
12216 std::swap (arg0, arg1);
12217 code = swap_condition (code);
12218 }
12219
12220 /* If this is an equality or inequality test of a single bit, we can
12221 do this by shifting the bit being tested to the low-order bit and
12222 masking the result with the constant 1. If the condition was EQ,
12223 we xor it with 1. This does not require an scc insn and is faster
12224 than an scc insn even if we have it.
12225
12226 The code to make this transformation was moved into fold_single_bit_test,
12227 so we just call into the folder and expand its result. */
12228
12229 if ((code == NE || code == EQ)
12230 && integer_zerop (arg1)
12231 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12232 {
12233 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12234 if (srcstmt
12235 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12236 {
12237 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12238 type = lang_hooks.types.type_for_mode (mode, unsignedp);
12239 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12240 gimple_assign_rhs1 (srcstmt),
12241 gimple_assign_rhs2 (srcstmt));
12242 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12243 if (temp)
12244 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12245 }
12246 }
12247
12248 if (! get_subtarget (target)
12249 || GET_MODE (subtarget) != operand_mode)
12250 subtarget = 0;
12251
12252 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12253
12254 if (target == 0)
12255 target = gen_reg_rtx (mode);
12256
12257 /* Try a cstore if possible. */
12258 return emit_store_flag_force (target, code, op0, op1,
12259 operand_mode, unsignedp,
12260 (TYPE_PRECISION (ops->type) == 1
12261 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12262 }
12263 \f
12264 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12265 0 otherwise (i.e. if there is no casesi instruction).
12266
12267 DEFAULT_PROBABILITY is the probability of jumping to the default
12268 label. */
12269 int
12270 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12271 rtx table_label, rtx default_label, rtx fallback_label,
12272 profile_probability default_probability)
12273 {
12274 class expand_operand ops[5];
12275 scalar_int_mode index_mode = SImode;
12276 rtx op1, op2, index;
12277
12278 if (! targetm.have_casesi ())
12279 return 0;
12280
12281 /* The index must be some form of integer. Convert it to SImode. */
12282 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12283 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12284 {
12285 rtx rangertx = expand_normal (range);
12286
12287 /* We must handle the endpoints in the original mode. */
12288 index_expr = build2 (MINUS_EXPR, index_type,
12289 index_expr, minval);
12290 minval = integer_zero_node;
12291 index = expand_normal (index_expr);
12292 if (default_label)
12293 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12294 omode, 1, default_label,
12295 default_probability);
12296 /* Now we can safely truncate. */
12297 index = convert_to_mode (index_mode, index, 0);
12298 }
12299 else
12300 {
12301 if (omode != index_mode)
12302 {
12303 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12304 index_expr = fold_convert (index_type, index_expr);
12305 }
12306
12307 index = expand_normal (index_expr);
12308 }
12309
12310 do_pending_stack_adjust ();
12311
12312 op1 = expand_normal (minval);
12313 op2 = expand_normal (range);
12314
12315 create_input_operand (&ops[0], index, index_mode);
12316 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12317 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12318 create_fixed_operand (&ops[3], table_label);
12319 create_fixed_operand (&ops[4], (default_label
12320 ? default_label
12321 : fallback_label));
12322 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12323 return 1;
12324 }
12325
12326 /* Attempt to generate a tablejump instruction; same concept. */
12327 /* Subroutine of the next function.
12328
12329 INDEX is the value being switched on, with the lowest value
12330 in the table already subtracted.
12331 MODE is its expected mode (needed if INDEX is constant).
12332 RANGE is the length of the jump table.
12333 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12334
12335 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12336 index value is out of range.
12337 DEFAULT_PROBABILITY is the probability of jumping to
12338 the default label. */
12339
12340 static void
12341 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12342 rtx default_label, profile_probability default_probability)
12343 {
12344 rtx temp, vector;
12345
12346 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12347 cfun->cfg->max_jumptable_ents = INTVAL (range);
12348
12349 /* Do an unsigned comparison (in the proper mode) between the index
12350 expression and the value which represents the length of the range.
12351 Since we just finished subtracting the lower bound of the range
12352 from the index expression, this comparison allows us to simultaneously
12353 check that the original index expression value is both greater than
12354 or equal to the minimum value of the range and less than or equal to
12355 the maximum value of the range. */
12356
12357 if (default_label)
12358 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12359 default_label, default_probability);
12360
12361 /* If index is in range, it must fit in Pmode.
12362 Convert to Pmode so we can index with it. */
12363 if (mode != Pmode)
12364 {
12365 unsigned int width;
12366
12367 /* We know the value of INDEX is between 0 and RANGE. If we have a
12368 sign-extended subreg, and RANGE does not have the sign bit set, then
12369 we have a value that is valid for both sign and zero extension. In
12370 this case, we get better code if we sign extend. */
12371 if (GET_CODE (index) == SUBREG
12372 && SUBREG_PROMOTED_VAR_P (index)
12373 && SUBREG_PROMOTED_SIGNED_P (index)
12374 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12375 <= HOST_BITS_PER_WIDE_INT)
12376 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12377 index = convert_to_mode (Pmode, index, 0);
12378 else
12379 index = convert_to_mode (Pmode, index, 1);
12380 }
12381
12382 /* Don't let a MEM slip through, because then INDEX that comes
12383 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12384 and break_out_memory_refs will go to work on it and mess it up. */
12385 #ifdef PIC_CASE_VECTOR_ADDRESS
12386 if (flag_pic && !REG_P (index))
12387 index = copy_to_mode_reg (Pmode, index);
12388 #endif
12389
12390 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12391 GET_MODE_SIZE, because this indicates how large insns are. The other
12392 uses should all be Pmode, because they are addresses. This code
12393 could fail if addresses and insns are not the same size. */
12394 index = simplify_gen_binary (MULT, Pmode, index,
12395 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12396 Pmode));
12397 index = simplify_gen_binary (PLUS, Pmode, index,
12398 gen_rtx_LABEL_REF (Pmode, table_label));
12399
12400 #ifdef PIC_CASE_VECTOR_ADDRESS
12401 if (flag_pic)
12402 index = PIC_CASE_VECTOR_ADDRESS (index);
12403 else
12404 #endif
12405 index = memory_address (CASE_VECTOR_MODE, index);
12406 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12407 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12408 convert_move (temp, vector, 0);
12409
12410 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12411
12412 /* If we are generating PIC code or if the table is PC-relative, the
12413 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12414 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12415 emit_barrier ();
12416 }
12417
12418 int
12419 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12420 rtx table_label, rtx default_label,
12421 profile_probability default_probability)
12422 {
12423 rtx index;
12424
12425 if (! targetm.have_tablejump ())
12426 return 0;
12427
12428 index_expr = fold_build2 (MINUS_EXPR, index_type,
12429 fold_convert (index_type, index_expr),
12430 fold_convert (index_type, minval));
12431 index = expand_normal (index_expr);
12432 do_pending_stack_adjust ();
12433
12434 do_tablejump (index, TYPE_MODE (index_type),
12435 convert_modes (TYPE_MODE (index_type),
12436 TYPE_MODE (TREE_TYPE (range)),
12437 expand_normal (range),
12438 TYPE_UNSIGNED (TREE_TYPE (range))),
12439 table_label, default_label, default_probability);
12440 return 1;
12441 }
12442
12443 /* Return a CONST_VECTOR rtx representing vector mask for
12444 a VECTOR_CST of booleans. */
12445 static rtx
12446 const_vector_mask_from_tree (tree exp)
12447 {
12448 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12449 machine_mode inner = GET_MODE_INNER (mode);
12450
12451 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12452 VECTOR_CST_NELTS_PER_PATTERN (exp));
12453 unsigned int count = builder.encoded_nelts ();
12454 for (unsigned int i = 0; i < count; ++i)
12455 {
12456 tree elt = VECTOR_CST_ELT (exp, i);
12457 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12458 if (integer_zerop (elt))
12459 builder.quick_push (CONST0_RTX (inner));
12460 else if (integer_onep (elt)
12461 || integer_minus_onep (elt))
12462 builder.quick_push (CONSTM1_RTX (inner));
12463 else
12464 gcc_unreachable ();
12465 }
12466 return builder.build ();
12467 }
12468
12469 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12470 Return a constant scalar rtx of mode MODE in which bit X is set if element
12471 X of EXP is nonzero. */
12472 static rtx
12473 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12474 {
12475 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12476 tree elt;
12477
12478 /* The result has a fixed number of bits so the input must too. */
12479 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12480 for (unsigned int i = 0; i < nunits; ++i)
12481 {
12482 elt = VECTOR_CST_ELT (exp, i);
12483 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12484 if (integer_all_onesp (elt))
12485 res = wi::set_bit (res, i);
12486 else
12487 gcc_assert (integer_zerop (elt));
12488 }
12489
12490 return immed_wide_int_const (res, mode);
12491 }
12492
12493 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12494 static rtx
12495 const_vector_from_tree (tree exp)
12496 {
12497 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12498
12499 if (initializer_zerop (exp))
12500 return CONST0_RTX (mode);
12501
12502 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12503 return const_vector_mask_from_tree (exp);
12504
12505 machine_mode inner = GET_MODE_INNER (mode);
12506
12507 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12508 VECTOR_CST_NELTS_PER_PATTERN (exp));
12509 unsigned int count = builder.encoded_nelts ();
12510 for (unsigned int i = 0; i < count; ++i)
12511 {
12512 tree elt = VECTOR_CST_ELT (exp, i);
12513 if (TREE_CODE (elt) == REAL_CST)
12514 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12515 inner));
12516 else if (TREE_CODE (elt) == FIXED_CST)
12517 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12518 inner));
12519 else
12520 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12521 inner));
12522 }
12523 return builder.build ();
12524 }
12525
12526 /* Build a decl for a personality function given a language prefix. */
12527
12528 tree
12529 build_personality_function (const char *lang)
12530 {
12531 const char *unwind_and_version;
12532 tree decl, type;
12533 char *name;
12534
12535 switch (targetm_common.except_unwind_info (&global_options))
12536 {
12537 case UI_NONE:
12538 return NULL;
12539 case UI_SJLJ:
12540 unwind_and_version = "_sj0";
12541 break;
12542 case UI_DWARF2:
12543 case UI_TARGET:
12544 unwind_and_version = "_v0";
12545 break;
12546 case UI_SEH:
12547 unwind_and_version = "_seh0";
12548 break;
12549 default:
12550 gcc_unreachable ();
12551 }
12552
12553 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12554
12555 type = build_function_type_list (integer_type_node, integer_type_node,
12556 long_long_unsigned_type_node,
12557 ptr_type_node, ptr_type_node, NULL_TREE);
12558 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12559 get_identifier (name), type);
12560 DECL_ARTIFICIAL (decl) = 1;
12561 DECL_EXTERNAL (decl) = 1;
12562 TREE_PUBLIC (decl) = 1;
12563
12564 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12565 are the flags assigned by targetm.encode_section_info. */
12566 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12567
12568 return decl;
12569 }
12570
12571 /* Extracts the personality function of DECL and returns the corresponding
12572 libfunc. */
12573
12574 rtx
12575 get_personality_function (tree decl)
12576 {
12577 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12578 enum eh_personality_kind pk;
12579
12580 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12581 if (pk == eh_personality_none)
12582 return NULL;
12583
12584 if (!personality
12585 && pk == eh_personality_any)
12586 personality = lang_hooks.eh_personality ();
12587
12588 if (pk == eh_personality_lang)
12589 gcc_assert (personality != NULL_TREE);
12590
12591 return XEXP (DECL_RTL (personality), 0);
12592 }
12593
12594 /* Returns a tree for the size of EXP in bytes. */
12595
12596 static tree
12597 tree_expr_size (const_tree exp)
12598 {
12599 if (DECL_P (exp)
12600 && DECL_SIZE_UNIT (exp) != 0)
12601 return DECL_SIZE_UNIT (exp);
12602 else
12603 return size_in_bytes (TREE_TYPE (exp));
12604 }
12605
12606 /* Return an rtx for the size in bytes of the value of EXP. */
12607
12608 rtx
12609 expr_size (tree exp)
12610 {
12611 tree size;
12612
12613 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12614 size = TREE_OPERAND (exp, 1);
12615 else
12616 {
12617 size = tree_expr_size (exp);
12618 gcc_assert (size);
12619 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12620 }
12621
12622 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12623 }
12624
12625 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12626 if the size can vary or is larger than an integer. */
12627
12628 static HOST_WIDE_INT
12629 int_expr_size (tree exp)
12630 {
12631 tree size;
12632
12633 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12634 size = TREE_OPERAND (exp, 1);
12635 else
12636 {
12637 size = tree_expr_size (exp);
12638 gcc_assert (size);
12639 }
12640
12641 if (size == 0 || !tree_fits_shwi_p (size))
12642 return -1;
12643
12644 return tree_to_shwi (size);
12645 }