4a8a4ca1d0780dad25a6cbf72a12cd22aba0b637
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
57 #include "ssaexpand.h"
58
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
61
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
64
65 #ifdef PUSH_ROUNDING
66
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
70 #endif
71 #endif
72
73 #endif
74
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
78 #else
79 #define STACK_PUSH_CODE PRE_INC
80 #endif
81 #endif
82
83
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
90 int cse_not_expected;
91
92 /* This structure is used by move_by_pieces to describe the move to
93 be performed. */
94 struct move_by_pieces_d
95 {
96 rtx to;
97 rtx to_addr;
98 int autinc_to;
99 int explicit_inc_to;
100 rtx from;
101 rtx from_addr;
102 int autinc_from;
103 int explicit_inc_from;
104 unsigned HOST_WIDE_INT len;
105 HOST_WIDE_INT offset;
106 int reverse;
107 };
108
109 /* This structure is used by store_by_pieces to describe the clear to
110 be performed. */
111
112 struct store_by_pieces_d
113 {
114 rtx to;
115 rtx to_addr;
116 int autinc_to;
117 int explicit_inc_to;
118 unsigned HOST_WIDE_INT len;
119 HOST_WIDE_INT offset;
120 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
121 void *constfundata;
122 int reverse;
123 };
124
125 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
126 unsigned int,
127 unsigned int);
128 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
129 struct move_by_pieces_d *);
130 static bool block_move_libcall_safe_for_call_parm (void);
131 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
132 static tree emit_block_move_libcall_fn (int);
133 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
134 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
135 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
136 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
137 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
138 struct store_by_pieces_d *);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, alias_set_type);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, alias_set_type, bool);
148
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150
151 static int is_aligning_offset (const_tree, const_tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
162
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
166
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
169
170 /* Record for each mode whether we can float-extend from memory. */
171
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
180 #endif
181
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
188 #endif
189
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero. */
192 #ifndef SET_BY_PIECES_P
193 #define SET_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
196 #endif
197
198 /* This macro is used to determine whether store_by_pieces should be
199 called to "memcpy" storage when the source is a constant string. */
200 #ifndef STORE_BY_PIECES_P
201 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
202 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
203 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
204 #endif
205
206 /* This array records the insn_code of insns to perform block moves. */
207 enum insn_code movmem_optab[NUM_MACHINE_MODES];
208
209 /* This array records the insn_code of insns to perform block sets. */
210 enum insn_code setmem_optab[NUM_MACHINE_MODES];
211
212 /* These arrays record the insn_code of three different kinds of insns
213 to perform block compares. */
214 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
216 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
217
218 /* Synchronization primitives. */
219 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
240
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
242
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
246 \f
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
250
251 void
252 init_expr_target (void)
253 {
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
259
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
265
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
269
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
273
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
276 {
277 int regno;
278
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
283
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
286
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
291 {
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
294
295 SET_REGNO (reg, regno);
296
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
301
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
306
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
311
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
316 }
317 }
318
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
320
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 {
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
327 {
328 enum insn_code ic;
329
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
333
334 PUT_MODE (mem, srcmode);
335
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
338 }
339 }
340 }
341
342 /* This is run at the start of compiling a function. */
343
344 void
345 init_expr (void)
346 {
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 }
349 \f
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
355
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
358 {
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
365
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369
370
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
374
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
379
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
383
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
389
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
391
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
394 {
395 emit_move_insn (to, from);
396 return;
397 }
398
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
400 {
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
402
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
407
408 emit_move_insn (to, from);
409 return;
410 }
411
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
413 {
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
417 }
418
419 if (to_real)
420 {
421 rtx value, insns;
422 convert_optab tab;
423
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
428
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
436
437 /* Try converting directly if the insn is supported. */
438
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
441 {
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
445 }
446
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
449
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
452
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
463 }
464
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
469 {
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
472
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
475
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
481 }
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
483 {
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
487
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
490
491 if (to_mode == full_mode)
492 {
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
496 }
497
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
501
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
505 }
506
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
511 {
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
521 }
522
523 /* Now both modes are integers. */
524
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
528 {
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
536
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
540 {
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
549 }
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
554 {
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
557 {
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
561 }
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
565 }
566
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
569
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
572
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
575
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
581
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
583
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
586
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
591 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
592 LT, lowfrom, const0_rtx,
593 VOIDmode, 0, -1);
594
595 /* Fill the remaining words. */
596 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
597 {
598 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
599 rtx subword = operand_subword (to, index, 1, to_mode);
600
601 gcc_assert (subword);
602
603 if (fill_value != subword)
604 emit_move_insn (subword, fill_value);
605 }
606
607 insns = get_insns ();
608 end_sequence ();
609
610 emit_insn (insns);
611 return;
612 }
613
614 /* Truncating multi-word to a word or less. */
615 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
616 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
617 {
618 if (!((MEM_P (from)
619 && ! MEM_VOLATILE_P (from)
620 && direct_load[(int) to_mode]
621 && ! mode_dependent_address_p (XEXP (from, 0)))
622 || REG_P (from)
623 || GET_CODE (from) == SUBREG))
624 from = force_reg (from_mode, from);
625 convert_move (to, gen_lowpart (word_mode, from), 0);
626 return;
627 }
628
629 /* Now follow all the conversions between integers
630 no more than a word long. */
631
632 /* For truncation, usually we can just refer to FROM in a narrower mode. */
633 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
634 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
635 GET_MODE_BITSIZE (from_mode)))
636 {
637 if (!((MEM_P (from)
638 && ! MEM_VOLATILE_P (from)
639 && direct_load[(int) to_mode]
640 && ! mode_dependent_address_p (XEXP (from, 0)))
641 || REG_P (from)
642 || GET_CODE (from) == SUBREG))
643 from = force_reg (from_mode, from);
644 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
645 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
646 from = copy_to_reg (from);
647 emit_move_insn (to, gen_lowpart (to_mode, from));
648 return;
649 }
650
651 /* Handle extension. */
652 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
653 {
654 /* Convert directly if that works. */
655 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
656 != CODE_FOR_nothing)
657 {
658 emit_unop_insn (code, to, from, equiv_code);
659 return;
660 }
661 else
662 {
663 enum machine_mode intermediate;
664 rtx tmp;
665 tree shift_amount;
666
667 /* Search for a mode to convert via. */
668 for (intermediate = from_mode; intermediate != VOIDmode;
669 intermediate = GET_MODE_WIDER_MODE (intermediate))
670 if (((can_extend_p (to_mode, intermediate, unsignedp)
671 != CODE_FOR_nothing)
672 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
673 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
674 GET_MODE_BITSIZE (intermediate))))
675 && (can_extend_p (intermediate, from_mode, unsignedp)
676 != CODE_FOR_nothing))
677 {
678 convert_move (to, convert_to_mode (intermediate, from,
679 unsignedp), unsignedp);
680 return;
681 }
682
683 /* No suitable intermediate mode.
684 Generate what we need with shifts. */
685 shift_amount = build_int_cst (NULL_TREE,
686 GET_MODE_BITSIZE (to_mode)
687 - GET_MODE_BITSIZE (from_mode));
688 from = gen_lowpart (to_mode, force_reg (from_mode, from));
689 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
690 to, unsignedp);
691 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
692 to, unsignedp);
693 if (tmp != to)
694 emit_move_insn (to, tmp);
695 return;
696 }
697 }
698
699 /* Support special truncate insns for certain modes. */
700 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
701 {
702 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
703 to, from, UNKNOWN);
704 return;
705 }
706
707 /* Handle truncation of volatile memrefs, and so on;
708 the things that couldn't be truncated directly,
709 and for which there was no special instruction.
710
711 ??? Code above formerly short-circuited this, for most integer
712 mode pairs, with a force_reg in from_mode followed by a recursive
713 call to this routine. Appears always to have been wrong. */
714 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
715 {
716 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
717 emit_move_insn (to, temp);
718 return;
719 }
720
721 /* Mode combination is not recognized. */
722 gcc_unreachable ();
723 }
724
725 /* Return an rtx for a value that would result
726 from converting X to mode MODE.
727 Both X and MODE may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
729 This can be done by referring to a part of X in place
730 or by copying to a new temporary with conversion. */
731
732 rtx
733 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
734 {
735 return convert_modes (mode, VOIDmode, x, unsignedp);
736 }
737
738 /* Return an rtx for a value that would result
739 from converting X from mode OLDMODE to mode MODE.
740 Both modes may be floating, or both integer.
741 UNSIGNEDP is nonzero if X is an unsigned value.
742
743 This can be done by referring to a part of X in place
744 or by copying to a new temporary with conversion.
745
746 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
747
748 rtx
749 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
750 {
751 rtx temp;
752
753 /* If FROM is a SUBREG that indicates that we have already done at least
754 the required extension, strip it. */
755
756 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
757 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
758 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
759 x = gen_lowpart (mode, x);
760
761 if (GET_MODE (x) != VOIDmode)
762 oldmode = GET_MODE (x);
763
764 if (mode == oldmode)
765 return x;
766
767 /* There is one case that we must handle specially: If we are converting
768 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
769 we are to interpret the constant as unsigned, gen_lowpart will do
770 the wrong if the constant appears negative. What we want to do is
771 make the high-order word of the constant zero, not all ones. */
772
773 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
774 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
775 && CONST_INT_P (x) && INTVAL (x) < 0)
776 {
777 HOST_WIDE_INT val = INTVAL (x);
778
779 if (oldmode != VOIDmode
780 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
781 {
782 int width = GET_MODE_BITSIZE (oldmode);
783
784 /* We need to zero extend VAL. */
785 val &= ((HOST_WIDE_INT) 1 << width) - 1;
786 }
787
788 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
789 }
790
791 /* We can do this with a gen_lowpart if both desired and current modes
792 are integer, and this is either a constant integer, a register, or a
793 non-volatile MEM. Except for the constant case where MODE is no
794 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
795
796 if ((CONST_INT_P (x)
797 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
798 || (GET_MODE_CLASS (mode) == MODE_INT
799 && GET_MODE_CLASS (oldmode) == MODE_INT
800 && (GET_CODE (x) == CONST_DOUBLE
801 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
802 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
803 && direct_load[(int) mode])
804 || (REG_P (x)
805 && (! HARD_REGISTER_P (x)
806 || HARD_REGNO_MODE_OK (REGNO (x), mode))
807 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
808 GET_MODE_BITSIZE (GET_MODE (x)))))))))
809 {
810 /* ?? If we don't know OLDMODE, we have to assume here that
811 X does not need sign- or zero-extension. This may not be
812 the case, but it's the best we can do. */
813 if (CONST_INT_P (x) && oldmode != VOIDmode
814 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
815 {
816 HOST_WIDE_INT val = INTVAL (x);
817 int width = GET_MODE_BITSIZE (oldmode);
818
819 /* We must sign or zero-extend in this case. Start by
820 zero-extending, then sign extend if we need to. */
821 val &= ((HOST_WIDE_INT) 1 << width) - 1;
822 if (! unsignedp
823 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
824 val |= (HOST_WIDE_INT) (-1) << width;
825
826 return gen_int_mode (val, mode);
827 }
828
829 return gen_lowpart (mode, x);
830 }
831
832 /* Converting from integer constant into mode is always equivalent to an
833 subreg operation. */
834 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
835 {
836 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
837 return simplify_gen_subreg (mode, x, oldmode, 0);
838 }
839
840 temp = gen_reg_rtx (mode);
841 convert_move (temp, x, unsignedp);
842 return temp;
843 }
844 \f
845 /* STORE_MAX_PIECES is the number of bytes at a time that we can
846 store efficiently. Due to internal GCC limitations, this is
847 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
848 for an immediate constant. */
849
850 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
851
852 /* Determine whether the LEN bytes can be moved by using several move
853 instructions. Return nonzero if a call to move_by_pieces should
854 succeed. */
855
856 int
857 can_move_by_pieces (unsigned HOST_WIDE_INT len,
858 unsigned int align ATTRIBUTE_UNUSED)
859 {
860 return MOVE_BY_PIECES_P (len, align);
861 }
862
863 /* Generate several move instructions to copy LEN bytes from block FROM to
864 block TO. (These are MEM rtx's with BLKmode).
865
866 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
867 used to push FROM to the stack.
868
869 ALIGN is maximum stack alignment we can assume.
870
871 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
872 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
873 stpcpy. */
874
875 rtx
876 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
877 unsigned int align, int endp)
878 {
879 struct move_by_pieces_d data;
880 rtx to_addr, from_addr = XEXP (from, 0);
881 unsigned int max_size = MOVE_MAX_PIECES + 1;
882 enum machine_mode mode = VOIDmode, tmode;
883 enum insn_code icode;
884
885 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
886
887 data.offset = 0;
888 data.from_addr = from_addr;
889 if (to)
890 {
891 to_addr = XEXP (to, 0);
892 data.to = to;
893 data.autinc_to
894 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
895 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
896 data.reverse
897 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
898 }
899 else
900 {
901 to_addr = NULL_RTX;
902 data.to = NULL_RTX;
903 data.autinc_to = 1;
904 #ifdef STACK_GROWS_DOWNWARD
905 data.reverse = 1;
906 #else
907 data.reverse = 0;
908 #endif
909 }
910 data.to_addr = to_addr;
911 data.from = from;
912 data.autinc_from
913 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
914 || GET_CODE (from_addr) == POST_INC
915 || GET_CODE (from_addr) == POST_DEC);
916
917 data.explicit_inc_from = 0;
918 data.explicit_inc_to = 0;
919 if (data.reverse) data.offset = len;
920 data.len = len;
921
922 /* If copying requires more than two move insns,
923 copy addresses to registers (to make displacements shorter)
924 and use post-increment if available. */
925 if (!(data.autinc_from && data.autinc_to)
926 && move_by_pieces_ninsns (len, align, max_size) > 2)
927 {
928 /* Find the mode of the largest move... */
929 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
930 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
931 if (GET_MODE_SIZE (tmode) < max_size)
932 mode = tmode;
933
934 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
935 {
936 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
937 data.autinc_from = 1;
938 data.explicit_inc_from = -1;
939 }
940 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
941 {
942 data.from_addr = copy_addr_to_reg (from_addr);
943 data.autinc_from = 1;
944 data.explicit_inc_from = 1;
945 }
946 if (!data.autinc_from && CONSTANT_P (from_addr))
947 data.from_addr = copy_addr_to_reg (from_addr);
948 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
949 {
950 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
951 data.autinc_to = 1;
952 data.explicit_inc_to = -1;
953 }
954 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 {
956 data.to_addr = copy_addr_to_reg (to_addr);
957 data.autinc_to = 1;
958 data.explicit_inc_to = 1;
959 }
960 if (!data.autinc_to && CONSTANT_P (to_addr))
961 data.to_addr = copy_addr_to_reg (to_addr);
962 }
963
964 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
965 if (align >= GET_MODE_ALIGNMENT (tmode))
966 align = GET_MODE_ALIGNMENT (tmode);
967 else
968 {
969 enum machine_mode xmode;
970
971 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
972 tmode != VOIDmode;
973 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
974 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
975 || SLOW_UNALIGNED_ACCESS (tmode, align))
976 break;
977
978 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
979 }
980
981 /* First move what we can in the largest integer mode, then go to
982 successively smaller modes. */
983
984 while (max_size > 1)
985 {
986 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
987 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
988 if (GET_MODE_SIZE (tmode) < max_size)
989 mode = tmode;
990
991 if (mode == VOIDmode)
992 break;
993
994 icode = optab_handler (mov_optab, mode)->insn_code;
995 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
996 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
997
998 max_size = GET_MODE_SIZE (mode);
999 }
1000
1001 /* The code above should have handled everything. */
1002 gcc_assert (!data.len);
1003
1004 if (endp)
1005 {
1006 rtx to1;
1007
1008 gcc_assert (!data.reverse);
1009 if (data.autinc_to)
1010 {
1011 if (endp == 2)
1012 {
1013 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1014 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1015 else
1016 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1017 -1));
1018 }
1019 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1020 data.offset);
1021 }
1022 else
1023 {
1024 if (endp == 2)
1025 --data.offset;
1026 to1 = adjust_address (data.to, QImode, data.offset);
1027 }
1028 return to1;
1029 }
1030 else
1031 return data.to;
1032 }
1033
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1036
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1039 unsigned int max_size)
1040 {
1041 unsigned HOST_WIDE_INT n_insns = 0;
1042 enum machine_mode tmode;
1043
1044 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1045 if (align >= GET_MODE_ALIGNMENT (tmode))
1046 align = GET_MODE_ALIGNMENT (tmode);
1047 else
1048 {
1049 enum machine_mode tmode, xmode;
1050
1051 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1052 tmode != VOIDmode;
1053 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1054 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode, align))
1056 break;
1057
1058 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1059 }
1060
1061 while (max_size > 1)
1062 {
1063 enum machine_mode mode = VOIDmode;
1064 enum insn_code icode;
1065
1066 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1067 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1068 if (GET_MODE_SIZE (tmode) < max_size)
1069 mode = tmode;
1070
1071 if (mode == VOIDmode)
1072 break;
1073
1074 icode = optab_handler (mov_optab, mode)->insn_code;
1075 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1076 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1077
1078 max_size = GET_MODE_SIZE (mode);
1079 }
1080
1081 gcc_assert (!l);
1082 return n_insns;
1083 }
1084
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1088
1089 static void
1090 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1091 struct move_by_pieces_d *data)
1092 {
1093 unsigned int size = GET_MODE_SIZE (mode);
1094 rtx to1 = NULL_RTX, from1;
1095
1096 while (data->len >= size)
1097 {
1098 if (data->reverse)
1099 data->offset -= size;
1100
1101 if (data->to)
1102 {
1103 if (data->autinc_to)
1104 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1105 data->offset);
1106 else
1107 to1 = adjust_address (data->to, mode, data->offset);
1108 }
1109
1110 if (data->autinc_from)
1111 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1112 data->offset);
1113 else
1114 from1 = adjust_address (data->from, mode, data->offset);
1115
1116 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1117 emit_insn (gen_add2_insn (data->to_addr,
1118 GEN_INT (-(HOST_WIDE_INT)size)));
1119 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1120 emit_insn (gen_add2_insn (data->from_addr,
1121 GEN_INT (-(HOST_WIDE_INT)size)));
1122
1123 if (data->to)
1124 emit_insn ((*genfun) (to1, from1));
1125 else
1126 {
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode, from1, NULL);
1129 #else
1130 gcc_unreachable ();
1131 #endif
1132 }
1133
1134 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1135 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1136 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1137 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1138
1139 if (! data->reverse)
1140 data->offset += size;
1141
1142 data->len -= size;
1143 }
1144 }
1145 \f
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1149
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1154
1155 Return the address of the new block, if memcpy is called and returns it,
1156 0 otherwise. */
1157
1158 rtx
1159 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1160 unsigned int expected_align, HOST_WIDE_INT expected_size)
1161 {
1162 bool may_use_call;
1163 rtx retval = 0;
1164 unsigned int align;
1165
1166 switch (method)
1167 {
1168 case BLOCK_OP_NORMAL:
1169 case BLOCK_OP_TAILCALL:
1170 may_use_call = true;
1171 break;
1172
1173 case BLOCK_OP_CALL_PARM:
1174 may_use_call = block_move_libcall_safe_for_call_parm ();
1175
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1178 NO_DEFER_POP;
1179 break;
1180
1181 case BLOCK_OP_NO_LIBCALL:
1182 may_use_call = false;
1183 break;
1184
1185 default:
1186 gcc_unreachable ();
1187 }
1188
1189 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1190
1191 gcc_assert (MEM_P (x));
1192 gcc_assert (MEM_P (y));
1193 gcc_assert (size);
1194
1195 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1196 block copy is more efficient for other large modes, e.g. DCmode. */
1197 x = adjust_address (x, BLKmode, 0);
1198 y = adjust_address (y, BLKmode, 0);
1199
1200 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1201 can be incorrect is coming from __builtin_memcpy. */
1202 if (CONST_INT_P (size))
1203 {
1204 if (INTVAL (size) == 0)
1205 return 0;
1206
1207 x = shallow_copy_rtx (x);
1208 y = shallow_copy_rtx (y);
1209 set_mem_size (x, size);
1210 set_mem_size (y, size);
1211 }
1212
1213 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1214 move_by_pieces (x, y, INTVAL (size), align, 0);
1215 else if (emit_block_move_via_movmem (x, y, size, align,
1216 expected_align, expected_size))
1217 ;
1218 else if (may_use_call)
1219 retval = emit_block_move_via_libcall (x, y, size,
1220 method == BLOCK_OP_TAILCALL);
1221 else
1222 emit_block_move_via_loop (x, y, size, align);
1223
1224 if (method == BLOCK_OP_CALL_PARM)
1225 OK_DEFER_POP;
1226
1227 return retval;
1228 }
1229
1230 rtx
1231 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1232 {
1233 return emit_block_move_hints (x, y, size, method, 0, -1);
1234 }
1235
1236 /* A subroutine of emit_block_move. Returns true if calling the
1237 block move libcall will not clobber any parameters which may have
1238 already been placed on the stack. */
1239
1240 static bool
1241 block_move_libcall_safe_for_call_parm (void)
1242 {
1243 #if defined (REG_PARM_STACK_SPACE)
1244 tree fn;
1245 #endif
1246
1247 /* If arguments are pushed on the stack, then they're safe. */
1248 if (PUSH_ARGS)
1249 return true;
1250
1251 /* If registers go on the stack anyway, any argument is sure to clobber
1252 an outgoing argument. */
1253 #if defined (REG_PARM_STACK_SPACE)
1254 fn = emit_block_move_libcall_fn (false);
1255 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1256 && REG_PARM_STACK_SPACE (fn) != 0)
1257 return false;
1258 #endif
1259
1260 /* If any argument goes in memory, then it might clobber an outgoing
1261 argument. */
1262 {
1263 CUMULATIVE_ARGS args_so_far;
1264 tree fn, arg;
1265
1266 fn = emit_block_move_libcall_fn (false);
1267 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1268
1269 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1270 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1271 {
1272 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1273 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1274 if (!tmp || !REG_P (tmp))
1275 return false;
1276 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1277 return false;
1278 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1279 }
1280 }
1281 return true;
1282 }
1283
1284 /* A subroutine of emit_block_move. Expand a movmem pattern;
1285 return true if successful. */
1286
1287 static bool
1288 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1289 unsigned int expected_align, HOST_WIDE_INT expected_size)
1290 {
1291 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1292 int save_volatile_ok = volatile_ok;
1293 enum machine_mode mode;
1294
1295 if (expected_align < align)
1296 expected_align = align;
1297
1298 /* Since this is a move insn, we don't care about volatility. */
1299 volatile_ok = 1;
1300
1301 /* Try the most limited insn first, because there's no point
1302 including more than one in the machine description unless
1303 the more limited one has some advantage. */
1304
1305 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1306 mode = GET_MODE_WIDER_MODE (mode))
1307 {
1308 enum insn_code code = movmem_optab[(int) mode];
1309 insn_operand_predicate_fn pred;
1310
1311 if (code != CODE_FOR_nothing
1312 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1313 here because if SIZE is less than the mode mask, as it is
1314 returned by the macro, it will definitely be less than the
1315 actual mode mask. */
1316 && ((CONST_INT_P (size)
1317 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1318 <= (GET_MODE_MASK (mode) >> 1)))
1319 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1320 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1321 || (*pred) (x, BLKmode))
1322 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1323 || (*pred) (y, BLKmode))
1324 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1325 || (*pred) (opalign, VOIDmode)))
1326 {
1327 rtx op2;
1328 rtx last = get_last_insn ();
1329 rtx pat;
1330
1331 op2 = convert_to_mode (mode, size, 1);
1332 pred = insn_data[(int) code].operand[2].predicate;
1333 if (pred != 0 && ! (*pred) (op2, mode))
1334 op2 = copy_to_mode_reg (mode, op2);
1335
1336 /* ??? When called via emit_block_move_for_call, it'd be
1337 nice if there were some way to inform the backend, so
1338 that it doesn't fail the expansion because it thinks
1339 emitting the libcall would be more efficient. */
1340
1341 if (insn_data[(int) code].n_operands == 4)
1342 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1343 else
1344 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1345 GEN_INT (expected_align
1346 / BITS_PER_UNIT),
1347 GEN_INT (expected_size));
1348 if (pat)
1349 {
1350 emit_insn (pat);
1351 volatile_ok = save_volatile_ok;
1352 return true;
1353 }
1354 else
1355 delete_insns_since (last);
1356 }
1357 }
1358
1359 volatile_ok = save_volatile_ok;
1360 return false;
1361 }
1362
1363 /* A subroutine of emit_block_move. Expand a call to memcpy.
1364 Return the return value from memcpy, 0 otherwise. */
1365
1366 rtx
1367 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1368 {
1369 rtx dst_addr, src_addr;
1370 tree call_expr, fn, src_tree, dst_tree, size_tree;
1371 enum machine_mode size_mode;
1372 rtx retval;
1373
1374 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1375 pseudos. We can then place those new pseudos into a VAR_DECL and
1376 use them later. */
1377
1378 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1379 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1380
1381 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1382 src_addr = convert_memory_address (ptr_mode, src_addr);
1383
1384 dst_tree = make_tree (ptr_type_node, dst_addr);
1385 src_tree = make_tree (ptr_type_node, src_addr);
1386
1387 size_mode = TYPE_MODE (sizetype);
1388
1389 size = convert_to_mode (size_mode, size, 1);
1390 size = copy_to_mode_reg (size_mode, size);
1391
1392 /* It is incorrect to use the libcall calling conventions to call
1393 memcpy in this context. This could be a user call to memcpy and
1394 the user may wish to examine the return value from memcpy. For
1395 targets where libcalls and normal calls have different conventions
1396 for returning pointers, we could end up generating incorrect code. */
1397
1398 size_tree = make_tree (sizetype, size);
1399
1400 fn = emit_block_move_libcall_fn (true);
1401 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1402 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1403
1404 retval = expand_normal (call_expr);
1405
1406 return retval;
1407 }
1408
1409 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1410 for the function we use for block copies. The first time FOR_CALL
1411 is true, we call assemble_external. */
1412
1413 static GTY(()) tree block_move_fn;
1414
1415 void
1416 init_block_move_fn (const char *asmspec)
1417 {
1418 if (!block_move_fn)
1419 {
1420 tree args, fn;
1421
1422 fn = get_identifier ("memcpy");
1423 args = build_function_type_list (ptr_type_node, ptr_type_node,
1424 const_ptr_type_node, sizetype,
1425 NULL_TREE);
1426
1427 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1428 DECL_EXTERNAL (fn) = 1;
1429 TREE_PUBLIC (fn) = 1;
1430 DECL_ARTIFICIAL (fn) = 1;
1431 TREE_NOTHROW (fn) = 1;
1432 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1433 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1434
1435 block_move_fn = fn;
1436 }
1437
1438 if (asmspec)
1439 set_user_assembler_name (block_move_fn, asmspec);
1440 }
1441
1442 static tree
1443 emit_block_move_libcall_fn (int for_call)
1444 {
1445 static bool emitted_extern;
1446
1447 if (!block_move_fn)
1448 init_block_move_fn (NULL);
1449
1450 if (for_call && !emitted_extern)
1451 {
1452 emitted_extern = true;
1453 make_decl_rtl (block_move_fn);
1454 assemble_external (block_move_fn);
1455 }
1456
1457 return block_move_fn;
1458 }
1459
1460 /* A subroutine of emit_block_move. Copy the data via an explicit
1461 loop. This is used only when libcalls are forbidden. */
1462 /* ??? It'd be nice to copy in hunks larger than QImode. */
1463
1464 static void
1465 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1466 unsigned int align ATTRIBUTE_UNUSED)
1467 {
1468 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1469 enum machine_mode iter_mode;
1470
1471 iter_mode = GET_MODE (size);
1472 if (iter_mode == VOIDmode)
1473 iter_mode = word_mode;
1474
1475 top_label = gen_label_rtx ();
1476 cmp_label = gen_label_rtx ();
1477 iter = gen_reg_rtx (iter_mode);
1478
1479 emit_move_insn (iter, const0_rtx);
1480
1481 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1482 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1483 do_pending_stack_adjust ();
1484
1485 emit_jump (cmp_label);
1486 emit_label (top_label);
1487
1488 tmp = convert_modes (Pmode, iter_mode, iter, true);
1489 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1490 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1491 x = change_address (x, QImode, x_addr);
1492 y = change_address (y, QImode, y_addr);
1493
1494 emit_move_insn (x, y);
1495
1496 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1497 true, OPTAB_LIB_WIDEN);
1498 if (tmp != iter)
1499 emit_move_insn (iter, tmp);
1500
1501 emit_label (cmp_label);
1502
1503 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1504 true, top_label);
1505 }
1506 \f
1507 /* Copy all or part of a value X into registers starting at REGNO.
1508 The number of registers to be filled is NREGS. */
1509
1510 void
1511 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1512 {
1513 int i;
1514 #ifdef HAVE_load_multiple
1515 rtx pat;
1516 rtx last;
1517 #endif
1518
1519 if (nregs == 0)
1520 return;
1521
1522 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1523 x = validize_mem (force_const_mem (mode, x));
1524
1525 /* See if the machine can do this with a load multiple insn. */
1526 #ifdef HAVE_load_multiple
1527 if (HAVE_load_multiple)
1528 {
1529 last = get_last_insn ();
1530 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1531 GEN_INT (nregs));
1532 if (pat)
1533 {
1534 emit_insn (pat);
1535 return;
1536 }
1537 else
1538 delete_insns_since (last);
1539 }
1540 #endif
1541
1542 for (i = 0; i < nregs; i++)
1543 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1544 operand_subword_force (x, i, mode));
1545 }
1546
1547 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1549
1550 void
1551 move_block_from_reg (int regno, rtx x, int nregs)
1552 {
1553 int i;
1554
1555 if (nregs == 0)
1556 return;
1557
1558 /* See if the machine can do this with a store multiple insn. */
1559 #ifdef HAVE_store_multiple
1560 if (HAVE_store_multiple)
1561 {
1562 rtx last = get_last_insn ();
1563 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1564 GEN_INT (nregs));
1565 if (pat)
1566 {
1567 emit_insn (pat);
1568 return;
1569 }
1570 else
1571 delete_insns_since (last);
1572 }
1573 #endif
1574
1575 for (i = 0; i < nregs; i++)
1576 {
1577 rtx tem = operand_subword (x, i, 1, BLKmode);
1578
1579 gcc_assert (tem);
1580
1581 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1582 }
1583 }
1584
1585 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1586 ORIG, where ORIG is a non-consecutive group of registers represented by
1587 a PARALLEL. The clone is identical to the original except in that the
1588 original set of registers is replaced by a new set of pseudo registers.
1589 The new set has the same modes as the original set. */
1590
1591 rtx
1592 gen_group_rtx (rtx orig)
1593 {
1594 int i, length;
1595 rtx *tmps;
1596
1597 gcc_assert (GET_CODE (orig) == PARALLEL);
1598
1599 length = XVECLEN (orig, 0);
1600 tmps = XALLOCAVEC (rtx, length);
1601
1602 /* Skip a NULL entry in first slot. */
1603 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1604
1605 if (i)
1606 tmps[0] = 0;
1607
1608 for (; i < length; i++)
1609 {
1610 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1611 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1612
1613 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1614 }
1615
1616 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1617 }
1618
1619 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1620 except that values are placed in TMPS[i], and must later be moved
1621 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1622
1623 static void
1624 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1625 {
1626 rtx src;
1627 int start, i;
1628 enum machine_mode m = GET_MODE (orig_src);
1629
1630 gcc_assert (GET_CODE (dst) == PARALLEL);
1631
1632 if (m != VOIDmode
1633 && !SCALAR_INT_MODE_P (m)
1634 && !MEM_P (orig_src)
1635 && GET_CODE (orig_src) != CONCAT)
1636 {
1637 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1638 if (imode == BLKmode)
1639 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1640 else
1641 src = gen_reg_rtx (imode);
1642 if (imode != BLKmode)
1643 src = gen_lowpart (GET_MODE (orig_src), src);
1644 emit_move_insn (src, orig_src);
1645 /* ...and back again. */
1646 if (imode != BLKmode)
1647 src = gen_lowpart (imode, src);
1648 emit_group_load_1 (tmps, dst, src, type, ssize);
1649 return;
1650 }
1651
1652 /* Check for a NULL entry, used to indicate that the parameter goes
1653 both on the stack and in registers. */
1654 if (XEXP (XVECEXP (dst, 0, 0), 0))
1655 start = 0;
1656 else
1657 start = 1;
1658
1659 /* Process the pieces. */
1660 for (i = start; i < XVECLEN (dst, 0); i++)
1661 {
1662 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1663 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1664 unsigned int bytelen = GET_MODE_SIZE (mode);
1665 int shift = 0;
1666
1667 /* Handle trailing fragments that run over the size of the struct. */
1668 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1669 {
1670 /* Arrange to shift the fragment to where it belongs.
1671 extract_bit_field loads to the lsb of the reg. */
1672 if (
1673 #ifdef BLOCK_REG_PADDING
1674 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1675 == (BYTES_BIG_ENDIAN ? upward : downward)
1676 #else
1677 BYTES_BIG_ENDIAN
1678 #endif
1679 )
1680 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1681 bytelen = ssize - bytepos;
1682 gcc_assert (bytelen > 0);
1683 }
1684
1685 /* If we won't be loading directly from memory, protect the real source
1686 from strange tricks we might play; but make sure that the source can
1687 be loaded directly into the destination. */
1688 src = orig_src;
1689 if (!MEM_P (orig_src)
1690 && (!CONSTANT_P (orig_src)
1691 || (GET_MODE (orig_src) != mode
1692 && GET_MODE (orig_src) != VOIDmode)))
1693 {
1694 if (GET_MODE (orig_src) == VOIDmode)
1695 src = gen_reg_rtx (mode);
1696 else
1697 src = gen_reg_rtx (GET_MODE (orig_src));
1698
1699 emit_move_insn (src, orig_src);
1700 }
1701
1702 /* Optimize the access just a bit. */
1703 if (MEM_P (src)
1704 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1705 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1706 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1707 && bytelen == GET_MODE_SIZE (mode))
1708 {
1709 tmps[i] = gen_reg_rtx (mode);
1710 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1711 }
1712 else if (COMPLEX_MODE_P (mode)
1713 && GET_MODE (src) == mode
1714 && bytelen == GET_MODE_SIZE (mode))
1715 /* Let emit_move_complex do the bulk of the work. */
1716 tmps[i] = src;
1717 else if (GET_CODE (src) == CONCAT)
1718 {
1719 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1720 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1721
1722 if ((bytepos == 0 && bytelen == slen0)
1723 || (bytepos != 0 && bytepos + bytelen <= slen))
1724 {
1725 /* The following assumes that the concatenated objects all
1726 have the same size. In this case, a simple calculation
1727 can be used to determine the object and the bit field
1728 to be extracted. */
1729 tmps[i] = XEXP (src, bytepos / slen0);
1730 if (! CONSTANT_P (tmps[i])
1731 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1732 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1733 (bytepos % slen0) * BITS_PER_UNIT,
1734 1, NULL_RTX, mode, mode);
1735 }
1736 else
1737 {
1738 rtx mem;
1739
1740 gcc_assert (!bytepos);
1741 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1742 emit_move_insn (mem, src);
1743 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1744 0, 1, NULL_RTX, mode, mode);
1745 }
1746 }
1747 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1748 SIMD register, which is currently broken. While we get GCC
1749 to emit proper RTL for these cases, let's dump to memory. */
1750 else if (VECTOR_MODE_P (GET_MODE (dst))
1751 && REG_P (src))
1752 {
1753 int slen = GET_MODE_SIZE (GET_MODE (src));
1754 rtx mem;
1755
1756 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1757 emit_move_insn (mem, src);
1758 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1759 }
1760 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1761 && XVECLEN (dst, 0) > 1)
1762 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1763 else if (CONSTANT_P (src))
1764 {
1765 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1766
1767 if (len == ssize)
1768 tmps[i] = src;
1769 else
1770 {
1771 rtx first, second;
1772
1773 gcc_assert (2 * len == ssize);
1774 split_double (src, &first, &second);
1775 if (i)
1776 tmps[i] = second;
1777 else
1778 tmps[i] = first;
1779 }
1780 }
1781 else if (REG_P (src) && GET_MODE (src) == mode)
1782 tmps[i] = src;
1783 else
1784 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1785 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1786 mode, mode);
1787
1788 if (shift)
1789 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1790 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1791 }
1792 }
1793
1794 /* Emit code to move a block SRC of type TYPE to a block DST,
1795 where DST is non-consecutive registers represented by a PARALLEL.
1796 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1797 if not known. */
1798
1799 void
1800 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1801 {
1802 rtx *tmps;
1803 int i;
1804
1805 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1806 emit_group_load_1 (tmps, dst, src, type, ssize);
1807
1808 /* Copy the extracted pieces into the proper (probable) hard regs. */
1809 for (i = 0; i < XVECLEN (dst, 0); i++)
1810 {
1811 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1812 if (d == NULL)
1813 continue;
1814 emit_move_insn (d, tmps[i]);
1815 }
1816 }
1817
1818 /* Similar, but load SRC into new pseudos in a format that looks like
1819 PARALLEL. This can later be fed to emit_group_move to get things
1820 in the right place. */
1821
1822 rtx
1823 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1824 {
1825 rtvec vec;
1826 int i;
1827
1828 vec = rtvec_alloc (XVECLEN (parallel, 0));
1829 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1830
1831 /* Convert the vector to look just like the original PARALLEL, except
1832 with the computed values. */
1833 for (i = 0; i < XVECLEN (parallel, 0); i++)
1834 {
1835 rtx e = XVECEXP (parallel, 0, i);
1836 rtx d = XEXP (e, 0);
1837
1838 if (d)
1839 {
1840 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1841 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1842 }
1843 RTVEC_ELT (vec, i) = e;
1844 }
1845
1846 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1847 }
1848
1849 /* Emit code to move a block SRC to block DST, where SRC and DST are
1850 non-consecutive groups of registers, each represented by a PARALLEL. */
1851
1852 void
1853 emit_group_move (rtx dst, rtx src)
1854 {
1855 int i;
1856
1857 gcc_assert (GET_CODE (src) == PARALLEL
1858 && GET_CODE (dst) == PARALLEL
1859 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1860
1861 /* Skip first entry if NULL. */
1862 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1863 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1864 XEXP (XVECEXP (src, 0, i), 0));
1865 }
1866
1867 /* Move a group of registers represented by a PARALLEL into pseudos. */
1868
1869 rtx
1870 emit_group_move_into_temps (rtx src)
1871 {
1872 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1873 int i;
1874
1875 for (i = 0; i < XVECLEN (src, 0); i++)
1876 {
1877 rtx e = XVECEXP (src, 0, i);
1878 rtx d = XEXP (e, 0);
1879
1880 if (d)
1881 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1882 RTVEC_ELT (vec, i) = e;
1883 }
1884
1885 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1886 }
1887
1888 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1889 where SRC is non-consecutive registers represented by a PARALLEL.
1890 SSIZE represents the total size of block ORIG_DST, or -1 if not
1891 known. */
1892
1893 void
1894 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1895 {
1896 rtx *tmps, dst;
1897 int start, finish, i;
1898 enum machine_mode m = GET_MODE (orig_dst);
1899
1900 gcc_assert (GET_CODE (src) == PARALLEL);
1901
1902 if (!SCALAR_INT_MODE_P (m)
1903 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1904 {
1905 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1906 if (imode == BLKmode)
1907 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1908 else
1909 dst = gen_reg_rtx (imode);
1910 emit_group_store (dst, src, type, ssize);
1911 if (imode != BLKmode)
1912 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1913 emit_move_insn (orig_dst, dst);
1914 return;
1915 }
1916
1917 /* Check for a NULL entry, used to indicate that the parameter goes
1918 both on the stack and in registers. */
1919 if (XEXP (XVECEXP (src, 0, 0), 0))
1920 start = 0;
1921 else
1922 start = 1;
1923 finish = XVECLEN (src, 0);
1924
1925 tmps = XALLOCAVEC (rtx, finish);
1926
1927 /* Copy the (probable) hard regs into pseudos. */
1928 for (i = start; i < finish; i++)
1929 {
1930 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1931 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1932 {
1933 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1934 emit_move_insn (tmps[i], reg);
1935 }
1936 else
1937 tmps[i] = reg;
1938 }
1939
1940 /* If we won't be storing directly into memory, protect the real destination
1941 from strange tricks we might play. */
1942 dst = orig_dst;
1943 if (GET_CODE (dst) == PARALLEL)
1944 {
1945 rtx temp;
1946
1947 /* We can get a PARALLEL dst if there is a conditional expression in
1948 a return statement. In that case, the dst and src are the same,
1949 so no action is necessary. */
1950 if (rtx_equal_p (dst, src))
1951 return;
1952
1953 /* It is unclear if we can ever reach here, but we may as well handle
1954 it. Allocate a temporary, and split this into a store/load to/from
1955 the temporary. */
1956
1957 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1958 emit_group_store (temp, src, type, ssize);
1959 emit_group_load (dst, temp, type, ssize);
1960 return;
1961 }
1962 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1963 {
1964 enum machine_mode outer = GET_MODE (dst);
1965 enum machine_mode inner;
1966 HOST_WIDE_INT bytepos;
1967 bool done = false;
1968 rtx temp;
1969
1970 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1971 dst = gen_reg_rtx (outer);
1972
1973 /* Make life a bit easier for combine. */
1974 /* If the first element of the vector is the low part
1975 of the destination mode, use a paradoxical subreg to
1976 initialize the destination. */
1977 if (start < finish)
1978 {
1979 inner = GET_MODE (tmps[start]);
1980 bytepos = subreg_lowpart_offset (inner, outer);
1981 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1982 {
1983 temp = simplify_gen_subreg (outer, tmps[start],
1984 inner, 0);
1985 if (temp)
1986 {
1987 emit_move_insn (dst, temp);
1988 done = true;
1989 start++;
1990 }
1991 }
1992 }
1993
1994 /* If the first element wasn't the low part, try the last. */
1995 if (!done
1996 && start < finish - 1)
1997 {
1998 inner = GET_MODE (tmps[finish - 1]);
1999 bytepos = subreg_lowpart_offset (inner, outer);
2000 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2001 {
2002 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2003 inner, 0);
2004 if (temp)
2005 {
2006 emit_move_insn (dst, temp);
2007 done = true;
2008 finish--;
2009 }
2010 }
2011 }
2012
2013 /* Otherwise, simply initialize the result to zero. */
2014 if (!done)
2015 emit_move_insn (dst, CONST0_RTX (outer));
2016 }
2017
2018 /* Process the pieces. */
2019 for (i = start; i < finish; i++)
2020 {
2021 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2022 enum machine_mode mode = GET_MODE (tmps[i]);
2023 unsigned int bytelen = GET_MODE_SIZE (mode);
2024 unsigned int adj_bytelen = bytelen;
2025 rtx dest = dst;
2026
2027 /* Handle trailing fragments that run over the size of the struct. */
2028 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2029 adj_bytelen = ssize - bytepos;
2030
2031 if (GET_CODE (dst) == CONCAT)
2032 {
2033 if (bytepos + adj_bytelen
2034 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2035 dest = XEXP (dst, 0);
2036 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2037 {
2038 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2039 dest = XEXP (dst, 1);
2040 }
2041 else
2042 {
2043 enum machine_mode dest_mode = GET_MODE (dest);
2044 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2045
2046 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2047
2048 if (GET_MODE_ALIGNMENT (dest_mode)
2049 >= GET_MODE_ALIGNMENT (tmp_mode))
2050 {
2051 dest = assign_stack_temp (dest_mode,
2052 GET_MODE_SIZE (dest_mode),
2053 0);
2054 emit_move_insn (adjust_address (dest,
2055 tmp_mode,
2056 bytepos),
2057 tmps[i]);
2058 dst = dest;
2059 }
2060 else
2061 {
2062 dest = assign_stack_temp (tmp_mode,
2063 GET_MODE_SIZE (tmp_mode),
2064 0);
2065 emit_move_insn (dest, tmps[i]);
2066 dst = adjust_address (dest, dest_mode, bytepos);
2067 }
2068 break;
2069 }
2070 }
2071
2072 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2073 {
2074 /* store_bit_field always takes its value from the lsb.
2075 Move the fragment to the lsb if it's not already there. */
2076 if (
2077 #ifdef BLOCK_REG_PADDING
2078 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2079 == (BYTES_BIG_ENDIAN ? upward : downward)
2080 #else
2081 BYTES_BIG_ENDIAN
2082 #endif
2083 )
2084 {
2085 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2086 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2087 build_int_cst (NULL_TREE, shift),
2088 tmps[i], 0);
2089 }
2090 bytelen = adj_bytelen;
2091 }
2092
2093 /* Optimize the access just a bit. */
2094 if (MEM_P (dest)
2095 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2096 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2097 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2098 && bytelen == GET_MODE_SIZE (mode))
2099 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2100 else
2101 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2102 mode, tmps[i]);
2103 }
2104
2105 /* Copy from the pseudo into the (probable) hard reg. */
2106 if (orig_dst != dst)
2107 emit_move_insn (orig_dst, dst);
2108 }
2109
2110 /* Generate code to copy a BLKmode object of TYPE out of a
2111 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2112 is null, a stack temporary is created. TGTBLK is returned.
2113
2114 The purpose of this routine is to handle functions that return
2115 BLKmode structures in registers. Some machines (the PA for example)
2116 want to return all small structures in registers regardless of the
2117 structure's alignment. */
2118
2119 rtx
2120 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2121 {
2122 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2123 rtx src = NULL, dst = NULL;
2124 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2125 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2126 enum machine_mode copy_mode;
2127
2128 if (tgtblk == 0)
2129 {
2130 tgtblk = assign_temp (build_qualified_type (type,
2131 (TYPE_QUALS (type)
2132 | TYPE_QUAL_CONST)),
2133 0, 1, 1);
2134 preserve_temp_slots (tgtblk);
2135 }
2136
2137 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2138 into a new pseudo which is a full word. */
2139
2140 if (GET_MODE (srcreg) != BLKmode
2141 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2142 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2143
2144 /* If the structure doesn't take up a whole number of words, see whether
2145 SRCREG is padded on the left or on the right. If it's on the left,
2146 set PADDING_CORRECTION to the number of bits to skip.
2147
2148 In most ABIs, the structure will be returned at the least end of
2149 the register, which translates to right padding on little-endian
2150 targets and left padding on big-endian targets. The opposite
2151 holds if the structure is returned at the most significant
2152 end of the register. */
2153 if (bytes % UNITS_PER_WORD != 0
2154 && (targetm.calls.return_in_msb (type)
2155 ? !BYTES_BIG_ENDIAN
2156 : BYTES_BIG_ENDIAN))
2157 padding_correction
2158 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2159
2160 /* Copy the structure BITSIZE bits at a time. If the target lives in
2161 memory, take care of not reading/writing past its end by selecting
2162 a copy mode suited to BITSIZE. This should always be possible given
2163 how it is computed.
2164
2165 We could probably emit more efficient code for machines which do not use
2166 strict alignment, but it doesn't seem worth the effort at the current
2167 time. */
2168
2169 copy_mode = word_mode;
2170 if (MEM_P (tgtblk))
2171 {
2172 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2173 if (mem_mode != BLKmode)
2174 copy_mode = mem_mode;
2175 }
2176
2177 for (bitpos = 0, xbitpos = padding_correction;
2178 bitpos < bytes * BITS_PER_UNIT;
2179 bitpos += bitsize, xbitpos += bitsize)
2180 {
2181 /* We need a new source operand each time xbitpos is on a
2182 word boundary and when xbitpos == padding_correction
2183 (the first time through). */
2184 if (xbitpos % BITS_PER_WORD == 0
2185 || xbitpos == padding_correction)
2186 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2187 GET_MODE (srcreg));
2188
2189 /* We need a new destination operand each time bitpos is on
2190 a word boundary. */
2191 if (bitpos % BITS_PER_WORD == 0)
2192 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2193
2194 /* Use xbitpos for the source extraction (right justified) and
2195 bitpos for the destination store (left justified). */
2196 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2197 extract_bit_field (src, bitsize,
2198 xbitpos % BITS_PER_WORD, 1,
2199 NULL_RTX, copy_mode, copy_mode));
2200 }
2201
2202 return tgtblk;
2203 }
2204
2205 /* Add a USE expression for REG to the (possibly empty) list pointed
2206 to by CALL_FUSAGE. REG must denote a hard register. */
2207
2208 void
2209 use_reg (rtx *call_fusage, rtx reg)
2210 {
2211 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2212
2213 *call_fusage
2214 = gen_rtx_EXPR_LIST (VOIDmode,
2215 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2216 }
2217
2218 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2219 starting at REGNO. All of these registers must be hard registers. */
2220
2221 void
2222 use_regs (rtx *call_fusage, int regno, int nregs)
2223 {
2224 int i;
2225
2226 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2227
2228 for (i = 0; i < nregs; i++)
2229 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2230 }
2231
2232 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2233 PARALLEL REGS. This is for calls that pass values in multiple
2234 non-contiguous locations. The Irix 6 ABI has examples of this. */
2235
2236 void
2237 use_group_regs (rtx *call_fusage, rtx regs)
2238 {
2239 int i;
2240
2241 for (i = 0; i < XVECLEN (regs, 0); i++)
2242 {
2243 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2244
2245 /* A NULL entry means the parameter goes both on the stack and in
2246 registers. This can also be a MEM for targets that pass values
2247 partially on the stack and partially in registers. */
2248 if (reg != 0 && REG_P (reg))
2249 use_reg (call_fusage, reg);
2250 }
2251 }
2252
2253 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2254 assigment and the code of the expresion on the RHS is CODE. Return
2255 NULL otherwise. */
2256
2257 static gimple
2258 get_def_for_expr (tree name, enum tree_code code)
2259 {
2260 gimple def_stmt;
2261
2262 if (TREE_CODE (name) != SSA_NAME)
2263 return NULL;
2264
2265 def_stmt = get_gimple_for_ssa_name (name);
2266 if (!def_stmt
2267 || gimple_assign_rhs_code (def_stmt) != code)
2268 return NULL;
2269
2270 return def_stmt;
2271 }
2272 \f
2273
2274 /* Determine whether the LEN bytes generated by CONSTFUN can be
2275 stored to memory using several move instructions. CONSTFUNDATA is
2276 a pointer which will be passed as argument in every CONSTFUN call.
2277 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2278 a memset operation and false if it's a copy of a constant string.
2279 Return nonzero if a call to store_by_pieces should succeed. */
2280
2281 int
2282 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2283 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2284 void *constfundata, unsigned int align, bool memsetp)
2285 {
2286 unsigned HOST_WIDE_INT l;
2287 unsigned int max_size;
2288 HOST_WIDE_INT offset = 0;
2289 enum machine_mode mode, tmode;
2290 enum insn_code icode;
2291 int reverse;
2292 rtx cst;
2293
2294 if (len == 0)
2295 return 1;
2296
2297 if (! (memsetp
2298 ? SET_BY_PIECES_P (len, align)
2299 : STORE_BY_PIECES_P (len, align)))
2300 return 0;
2301
2302 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2303 if (align >= GET_MODE_ALIGNMENT (tmode))
2304 align = GET_MODE_ALIGNMENT (tmode);
2305 else
2306 {
2307 enum machine_mode xmode;
2308
2309 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2310 tmode != VOIDmode;
2311 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2312 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2313 || SLOW_UNALIGNED_ACCESS (tmode, align))
2314 break;
2315
2316 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2317 }
2318
2319 /* We would first store what we can in the largest integer mode, then go to
2320 successively smaller modes. */
2321
2322 for (reverse = 0;
2323 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2324 reverse++)
2325 {
2326 l = len;
2327 mode = VOIDmode;
2328 max_size = STORE_MAX_PIECES + 1;
2329 while (max_size > 1)
2330 {
2331 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2332 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2333 if (GET_MODE_SIZE (tmode) < max_size)
2334 mode = tmode;
2335
2336 if (mode == VOIDmode)
2337 break;
2338
2339 icode = optab_handler (mov_optab, mode)->insn_code;
2340 if (icode != CODE_FOR_nothing
2341 && align >= GET_MODE_ALIGNMENT (mode))
2342 {
2343 unsigned int size = GET_MODE_SIZE (mode);
2344
2345 while (l >= size)
2346 {
2347 if (reverse)
2348 offset -= size;
2349
2350 cst = (*constfun) (constfundata, offset, mode);
2351 if (!LEGITIMATE_CONSTANT_P (cst))
2352 return 0;
2353
2354 if (!reverse)
2355 offset += size;
2356
2357 l -= size;
2358 }
2359 }
2360
2361 max_size = GET_MODE_SIZE (mode);
2362 }
2363
2364 /* The code above should have handled everything. */
2365 gcc_assert (!l);
2366 }
2367
2368 return 1;
2369 }
2370
2371 /* Generate several move instructions to store LEN bytes generated by
2372 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2373 pointer which will be passed as argument in every CONSTFUN call.
2374 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2375 a memset operation and false if it's a copy of a constant string.
2376 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2377 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2378 stpcpy. */
2379
2380 rtx
2381 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2382 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2383 void *constfundata, unsigned int align, bool memsetp, int endp)
2384 {
2385 struct store_by_pieces_d data;
2386
2387 if (len == 0)
2388 {
2389 gcc_assert (endp != 2);
2390 return to;
2391 }
2392
2393 gcc_assert (memsetp
2394 ? SET_BY_PIECES_P (len, align)
2395 : STORE_BY_PIECES_P (len, align));
2396 data.constfun = constfun;
2397 data.constfundata = constfundata;
2398 data.len = len;
2399 data.to = to;
2400 store_by_pieces_1 (&data, align);
2401 if (endp)
2402 {
2403 rtx to1;
2404
2405 gcc_assert (!data.reverse);
2406 if (data.autinc_to)
2407 {
2408 if (endp == 2)
2409 {
2410 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2411 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2412 else
2413 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2414 -1));
2415 }
2416 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2417 data.offset);
2418 }
2419 else
2420 {
2421 if (endp == 2)
2422 --data.offset;
2423 to1 = adjust_address (data.to, QImode, data.offset);
2424 }
2425 return to1;
2426 }
2427 else
2428 return data.to;
2429 }
2430
2431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2433
2434 static void
2435 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2436 {
2437 struct store_by_pieces_d data;
2438
2439 if (len == 0)
2440 return;
2441
2442 data.constfun = clear_by_pieces_1;
2443 data.constfundata = NULL;
2444 data.len = len;
2445 data.to = to;
2446 store_by_pieces_1 (&data, align);
2447 }
2448
2449 /* Callback routine for clear_by_pieces.
2450 Return const0_rtx unconditionally. */
2451
2452 static rtx
2453 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2454 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2455 enum machine_mode mode ATTRIBUTE_UNUSED)
2456 {
2457 return const0_rtx;
2458 }
2459
2460 /* Subroutine of clear_by_pieces and store_by_pieces.
2461 Generate several move instructions to store LEN bytes of block TO. (A MEM
2462 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2463
2464 static void
2465 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2466 unsigned int align ATTRIBUTE_UNUSED)
2467 {
2468 rtx to_addr = XEXP (data->to, 0);
2469 unsigned int max_size = STORE_MAX_PIECES + 1;
2470 enum machine_mode mode = VOIDmode, tmode;
2471 enum insn_code icode;
2472
2473 data->offset = 0;
2474 data->to_addr = to_addr;
2475 data->autinc_to
2476 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2477 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2478
2479 data->explicit_inc_to = 0;
2480 data->reverse
2481 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2482 if (data->reverse)
2483 data->offset = data->len;
2484
2485 /* If storing requires more than two move insns,
2486 copy addresses to registers (to make displacements shorter)
2487 and use post-increment if available. */
2488 if (!data->autinc_to
2489 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2490 {
2491 /* Determine the main mode we'll be using. */
2492 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2493 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2494 if (GET_MODE_SIZE (tmode) < max_size)
2495 mode = tmode;
2496
2497 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2498 {
2499 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2500 data->autinc_to = 1;
2501 data->explicit_inc_to = -1;
2502 }
2503
2504 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2505 && ! data->autinc_to)
2506 {
2507 data->to_addr = copy_addr_to_reg (to_addr);
2508 data->autinc_to = 1;
2509 data->explicit_inc_to = 1;
2510 }
2511
2512 if ( !data->autinc_to && CONSTANT_P (to_addr))
2513 data->to_addr = copy_addr_to_reg (to_addr);
2514 }
2515
2516 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2517 if (align >= GET_MODE_ALIGNMENT (tmode))
2518 align = GET_MODE_ALIGNMENT (tmode);
2519 else
2520 {
2521 enum machine_mode xmode;
2522
2523 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2524 tmode != VOIDmode;
2525 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2526 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2527 || SLOW_UNALIGNED_ACCESS (tmode, align))
2528 break;
2529
2530 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2531 }
2532
2533 /* First store what we can in the largest integer mode, then go to
2534 successively smaller modes. */
2535
2536 while (max_size > 1)
2537 {
2538 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2539 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2540 if (GET_MODE_SIZE (tmode) < max_size)
2541 mode = tmode;
2542
2543 if (mode == VOIDmode)
2544 break;
2545
2546 icode = optab_handler (mov_optab, mode)->insn_code;
2547 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2548 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2549
2550 max_size = GET_MODE_SIZE (mode);
2551 }
2552
2553 /* The code above should have handled everything. */
2554 gcc_assert (!data->len);
2555 }
2556
2557 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2558 with move instructions for mode MODE. GENFUN is the gen_... function
2559 to make a move insn for that mode. DATA has all the other info. */
2560
2561 static void
2562 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2563 struct store_by_pieces_d *data)
2564 {
2565 unsigned int size = GET_MODE_SIZE (mode);
2566 rtx to1, cst;
2567
2568 while (data->len >= size)
2569 {
2570 if (data->reverse)
2571 data->offset -= size;
2572
2573 if (data->autinc_to)
2574 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2575 data->offset);
2576 else
2577 to1 = adjust_address (data->to, mode, data->offset);
2578
2579 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2580 emit_insn (gen_add2_insn (data->to_addr,
2581 GEN_INT (-(HOST_WIDE_INT) size)));
2582
2583 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2584 emit_insn ((*genfun) (to1, cst));
2585
2586 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2587 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2588
2589 if (! data->reverse)
2590 data->offset += size;
2591
2592 data->len -= size;
2593 }
2594 }
2595 \f
2596 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2597 its length in bytes. */
2598
2599 rtx
2600 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2601 unsigned int expected_align, HOST_WIDE_INT expected_size)
2602 {
2603 enum machine_mode mode = GET_MODE (object);
2604 unsigned int align;
2605
2606 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2607
2608 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2609 just move a zero. Otherwise, do this a piece at a time. */
2610 if (mode != BLKmode
2611 && CONST_INT_P (size)
2612 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2613 {
2614 rtx zero = CONST0_RTX (mode);
2615 if (zero != NULL)
2616 {
2617 emit_move_insn (object, zero);
2618 return NULL;
2619 }
2620
2621 if (COMPLEX_MODE_P (mode))
2622 {
2623 zero = CONST0_RTX (GET_MODE_INNER (mode));
2624 if (zero != NULL)
2625 {
2626 write_complex_part (object, zero, 0);
2627 write_complex_part (object, zero, 1);
2628 return NULL;
2629 }
2630 }
2631 }
2632
2633 if (size == const0_rtx)
2634 return NULL;
2635
2636 align = MEM_ALIGN (object);
2637
2638 if (CONST_INT_P (size)
2639 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2640 clear_by_pieces (object, INTVAL (size), align);
2641 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2642 expected_align, expected_size))
2643 ;
2644 else
2645 return set_storage_via_libcall (object, size, const0_rtx,
2646 method == BLOCK_OP_TAILCALL);
2647
2648 return NULL;
2649 }
2650
2651 rtx
2652 clear_storage (rtx object, rtx size, enum block_op_methods method)
2653 {
2654 return clear_storage_hints (object, size, method, 0, -1);
2655 }
2656
2657
2658 /* A subroutine of clear_storage. Expand a call to memset.
2659 Return the return value of memset, 0 otherwise. */
2660
2661 rtx
2662 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2663 {
2664 tree call_expr, fn, object_tree, size_tree, val_tree;
2665 enum machine_mode size_mode;
2666 rtx retval;
2667
2668 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2669 place those into new pseudos into a VAR_DECL and use them later. */
2670
2671 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2672
2673 size_mode = TYPE_MODE (sizetype);
2674 size = convert_to_mode (size_mode, size, 1);
2675 size = copy_to_mode_reg (size_mode, size);
2676
2677 /* It is incorrect to use the libcall calling conventions to call
2678 memset in this context. This could be a user call to memset and
2679 the user may wish to examine the return value from memset. For
2680 targets where libcalls and normal calls have different conventions
2681 for returning pointers, we could end up generating incorrect code. */
2682
2683 object_tree = make_tree (ptr_type_node, object);
2684 if (!CONST_INT_P (val))
2685 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2686 size_tree = make_tree (sizetype, size);
2687 val_tree = make_tree (integer_type_node, val);
2688
2689 fn = clear_storage_libcall_fn (true);
2690 call_expr = build_call_expr (fn, 3,
2691 object_tree, integer_zero_node, size_tree);
2692 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2693
2694 retval = expand_normal (call_expr);
2695
2696 return retval;
2697 }
2698
2699 /* A subroutine of set_storage_via_libcall. Create the tree node
2700 for the function we use for block clears. The first time FOR_CALL
2701 is true, we call assemble_external. */
2702
2703 tree block_clear_fn;
2704
2705 void
2706 init_block_clear_fn (const char *asmspec)
2707 {
2708 if (!block_clear_fn)
2709 {
2710 tree fn, args;
2711
2712 fn = get_identifier ("memset");
2713 args = build_function_type_list (ptr_type_node, ptr_type_node,
2714 integer_type_node, sizetype,
2715 NULL_TREE);
2716
2717 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2718 DECL_EXTERNAL (fn) = 1;
2719 TREE_PUBLIC (fn) = 1;
2720 DECL_ARTIFICIAL (fn) = 1;
2721 TREE_NOTHROW (fn) = 1;
2722 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2723 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2724
2725 block_clear_fn = fn;
2726 }
2727
2728 if (asmspec)
2729 set_user_assembler_name (block_clear_fn, asmspec);
2730 }
2731
2732 static tree
2733 clear_storage_libcall_fn (int for_call)
2734 {
2735 static bool emitted_extern;
2736
2737 if (!block_clear_fn)
2738 init_block_clear_fn (NULL);
2739
2740 if (for_call && !emitted_extern)
2741 {
2742 emitted_extern = true;
2743 make_decl_rtl (block_clear_fn);
2744 assemble_external (block_clear_fn);
2745 }
2746
2747 return block_clear_fn;
2748 }
2749 \f
2750 /* Expand a setmem pattern; return true if successful. */
2751
2752 bool
2753 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2754 unsigned int expected_align, HOST_WIDE_INT expected_size)
2755 {
2756 /* Try the most limited insn first, because there's no point
2757 including more than one in the machine description unless
2758 the more limited one has some advantage. */
2759
2760 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2761 enum machine_mode mode;
2762
2763 if (expected_align < align)
2764 expected_align = align;
2765
2766 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2767 mode = GET_MODE_WIDER_MODE (mode))
2768 {
2769 enum insn_code code = setmem_optab[(int) mode];
2770 insn_operand_predicate_fn pred;
2771
2772 if (code != CODE_FOR_nothing
2773 /* We don't need MODE to be narrower than
2774 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2775 the mode mask, as it is returned by the macro, it will
2776 definitely be less than the actual mode mask. */
2777 && ((CONST_INT_P (size)
2778 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2779 <= (GET_MODE_MASK (mode) >> 1)))
2780 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2781 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2782 || (*pred) (object, BLKmode))
2783 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2784 || (*pred) (opalign, VOIDmode)))
2785 {
2786 rtx opsize, opchar;
2787 enum machine_mode char_mode;
2788 rtx last = get_last_insn ();
2789 rtx pat;
2790
2791 opsize = convert_to_mode (mode, size, 1);
2792 pred = insn_data[(int) code].operand[1].predicate;
2793 if (pred != 0 && ! (*pred) (opsize, mode))
2794 opsize = copy_to_mode_reg (mode, opsize);
2795
2796 opchar = val;
2797 char_mode = insn_data[(int) code].operand[2].mode;
2798 if (char_mode != VOIDmode)
2799 {
2800 opchar = convert_to_mode (char_mode, opchar, 1);
2801 pred = insn_data[(int) code].operand[2].predicate;
2802 if (pred != 0 && ! (*pred) (opchar, char_mode))
2803 opchar = copy_to_mode_reg (char_mode, opchar);
2804 }
2805
2806 if (insn_data[(int) code].n_operands == 4)
2807 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2808 else
2809 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2810 GEN_INT (expected_align
2811 / BITS_PER_UNIT),
2812 GEN_INT (expected_size));
2813 if (pat)
2814 {
2815 emit_insn (pat);
2816 return true;
2817 }
2818 else
2819 delete_insns_since (last);
2820 }
2821 }
2822
2823 return false;
2824 }
2825
2826 \f
2827 /* Write to one of the components of the complex value CPLX. Write VAL to
2828 the real part if IMAG_P is false, and the imaginary part if its true. */
2829
2830 static void
2831 write_complex_part (rtx cplx, rtx val, bool imag_p)
2832 {
2833 enum machine_mode cmode;
2834 enum machine_mode imode;
2835 unsigned ibitsize;
2836
2837 if (GET_CODE (cplx) == CONCAT)
2838 {
2839 emit_move_insn (XEXP (cplx, imag_p), val);
2840 return;
2841 }
2842
2843 cmode = GET_MODE (cplx);
2844 imode = GET_MODE_INNER (cmode);
2845 ibitsize = GET_MODE_BITSIZE (imode);
2846
2847 /* For MEMs simplify_gen_subreg may generate an invalid new address
2848 because, e.g., the original address is considered mode-dependent
2849 by the target, which restricts simplify_subreg from invoking
2850 adjust_address_nv. Instead of preparing fallback support for an
2851 invalid address, we call adjust_address_nv directly. */
2852 if (MEM_P (cplx))
2853 {
2854 emit_move_insn (adjust_address_nv (cplx, imode,
2855 imag_p ? GET_MODE_SIZE (imode) : 0),
2856 val);
2857 return;
2858 }
2859
2860 /* If the sub-object is at least word sized, then we know that subregging
2861 will work. This special case is important, since store_bit_field
2862 wants to operate on integer modes, and there's rarely an OImode to
2863 correspond to TCmode. */
2864 if (ibitsize >= BITS_PER_WORD
2865 /* For hard regs we have exact predicates. Assume we can split
2866 the original object if it spans an even number of hard regs.
2867 This special case is important for SCmode on 64-bit platforms
2868 where the natural size of floating-point regs is 32-bit. */
2869 || (REG_P (cplx)
2870 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2871 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2872 {
2873 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2874 imag_p ? GET_MODE_SIZE (imode) : 0);
2875 if (part)
2876 {
2877 emit_move_insn (part, val);
2878 return;
2879 }
2880 else
2881 /* simplify_gen_subreg may fail for sub-word MEMs. */
2882 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2883 }
2884
2885 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2886 }
2887
2888 /* Extract one of the components of the complex value CPLX. Extract the
2889 real part if IMAG_P is false, and the imaginary part if it's true. */
2890
2891 static rtx
2892 read_complex_part (rtx cplx, bool imag_p)
2893 {
2894 enum machine_mode cmode, imode;
2895 unsigned ibitsize;
2896
2897 if (GET_CODE (cplx) == CONCAT)
2898 return XEXP (cplx, imag_p);
2899
2900 cmode = GET_MODE (cplx);
2901 imode = GET_MODE_INNER (cmode);
2902 ibitsize = GET_MODE_BITSIZE (imode);
2903
2904 /* Special case reads from complex constants that got spilled to memory. */
2905 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2906 {
2907 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2908 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2909 {
2910 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2911 if (CONSTANT_CLASS_P (part))
2912 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2913 }
2914 }
2915
2916 /* For MEMs simplify_gen_subreg may generate an invalid new address
2917 because, e.g., the original address is considered mode-dependent
2918 by the target, which restricts simplify_subreg from invoking
2919 adjust_address_nv. Instead of preparing fallback support for an
2920 invalid address, we call adjust_address_nv directly. */
2921 if (MEM_P (cplx))
2922 return adjust_address_nv (cplx, imode,
2923 imag_p ? GET_MODE_SIZE (imode) : 0);
2924
2925 /* If the sub-object is at least word sized, then we know that subregging
2926 will work. This special case is important, since extract_bit_field
2927 wants to operate on integer modes, and there's rarely an OImode to
2928 correspond to TCmode. */
2929 if (ibitsize >= BITS_PER_WORD
2930 /* For hard regs we have exact predicates. Assume we can split
2931 the original object if it spans an even number of hard regs.
2932 This special case is important for SCmode on 64-bit platforms
2933 where the natural size of floating-point regs is 32-bit. */
2934 || (REG_P (cplx)
2935 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2936 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2937 {
2938 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2939 imag_p ? GET_MODE_SIZE (imode) : 0);
2940 if (ret)
2941 return ret;
2942 else
2943 /* simplify_gen_subreg may fail for sub-word MEMs. */
2944 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2945 }
2946
2947 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2948 true, NULL_RTX, imode, imode);
2949 }
2950 \f
2951 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2952 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2953 represented in NEW_MODE. If FORCE is true, this will never happen, as
2954 we'll force-create a SUBREG if needed. */
2955
2956 static rtx
2957 emit_move_change_mode (enum machine_mode new_mode,
2958 enum machine_mode old_mode, rtx x, bool force)
2959 {
2960 rtx ret;
2961
2962 if (push_operand (x, GET_MODE (x)))
2963 {
2964 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2965 MEM_COPY_ATTRIBUTES (ret, x);
2966 }
2967 else if (MEM_P (x))
2968 {
2969 /* We don't have to worry about changing the address since the
2970 size in bytes is supposed to be the same. */
2971 if (reload_in_progress)
2972 {
2973 /* Copy the MEM to change the mode and move any
2974 substitutions from the old MEM to the new one. */
2975 ret = adjust_address_nv (x, new_mode, 0);
2976 copy_replacements (x, ret);
2977 }
2978 else
2979 ret = adjust_address (x, new_mode, 0);
2980 }
2981 else
2982 {
2983 /* Note that we do want simplify_subreg's behavior of validating
2984 that the new mode is ok for a hard register. If we were to use
2985 simplify_gen_subreg, we would create the subreg, but would
2986 probably run into the target not being able to implement it. */
2987 /* Except, of course, when FORCE is true, when this is exactly what
2988 we want. Which is needed for CCmodes on some targets. */
2989 if (force)
2990 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2991 else
2992 ret = simplify_subreg (new_mode, x, old_mode, 0);
2993 }
2994
2995 return ret;
2996 }
2997
2998 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2999 an integer mode of the same size as MODE. Returns the instruction
3000 emitted, or NULL if such a move could not be generated. */
3001
3002 static rtx
3003 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3004 {
3005 enum machine_mode imode;
3006 enum insn_code code;
3007
3008 /* There must exist a mode of the exact size we require. */
3009 imode = int_mode_for_mode (mode);
3010 if (imode == BLKmode)
3011 return NULL_RTX;
3012
3013 /* The target must support moves in this mode. */
3014 code = optab_handler (mov_optab, imode)->insn_code;
3015 if (code == CODE_FOR_nothing)
3016 return NULL_RTX;
3017
3018 x = emit_move_change_mode (imode, mode, x, force);
3019 if (x == NULL_RTX)
3020 return NULL_RTX;
3021 y = emit_move_change_mode (imode, mode, y, force);
3022 if (y == NULL_RTX)
3023 return NULL_RTX;
3024 return emit_insn (GEN_FCN (code) (x, y));
3025 }
3026
3027 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3028 Return an equivalent MEM that does not use an auto-increment. */
3029
3030 static rtx
3031 emit_move_resolve_push (enum machine_mode mode, rtx x)
3032 {
3033 enum rtx_code code = GET_CODE (XEXP (x, 0));
3034 HOST_WIDE_INT adjust;
3035 rtx temp;
3036
3037 adjust = GET_MODE_SIZE (mode);
3038 #ifdef PUSH_ROUNDING
3039 adjust = PUSH_ROUNDING (adjust);
3040 #endif
3041 if (code == PRE_DEC || code == POST_DEC)
3042 adjust = -adjust;
3043 else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 {
3045 rtx expr = XEXP (XEXP (x, 0), 1);
3046 HOST_WIDE_INT val;
3047
3048 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3049 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3050 val = INTVAL (XEXP (expr, 1));
3051 if (GET_CODE (expr) == MINUS)
3052 val = -val;
3053 gcc_assert (adjust == val || adjust == -val);
3054 adjust = val;
3055 }
3056
3057 /* Do not use anti_adjust_stack, since we don't want to update
3058 stack_pointer_delta. */
3059 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3060 GEN_INT (adjust), stack_pointer_rtx,
3061 0, OPTAB_LIB_WIDEN);
3062 if (temp != stack_pointer_rtx)
3063 emit_move_insn (stack_pointer_rtx, temp);
3064
3065 switch (code)
3066 {
3067 case PRE_INC:
3068 case PRE_DEC:
3069 case PRE_MODIFY:
3070 temp = stack_pointer_rtx;
3071 break;
3072 case POST_INC:
3073 case POST_DEC:
3074 case POST_MODIFY:
3075 temp = plus_constant (stack_pointer_rtx, -adjust);
3076 break;
3077 default:
3078 gcc_unreachable ();
3079 }
3080
3081 return replace_equiv_address (x, temp);
3082 }
3083
3084 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3085 X is known to satisfy push_operand, and MODE is known to be complex.
3086 Returns the last instruction emitted. */
3087
3088 rtx
3089 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3090 {
3091 enum machine_mode submode = GET_MODE_INNER (mode);
3092 bool imag_first;
3093
3094 #ifdef PUSH_ROUNDING
3095 unsigned int submodesize = GET_MODE_SIZE (submode);
3096
3097 /* In case we output to the stack, but the size is smaller than the
3098 machine can push exactly, we need to use move instructions. */
3099 if (PUSH_ROUNDING (submodesize) != submodesize)
3100 {
3101 x = emit_move_resolve_push (mode, x);
3102 return emit_move_insn (x, y);
3103 }
3104 #endif
3105
3106 /* Note that the real part always precedes the imag part in memory
3107 regardless of machine's endianness. */
3108 switch (GET_CODE (XEXP (x, 0)))
3109 {
3110 case PRE_DEC:
3111 case POST_DEC:
3112 imag_first = true;
3113 break;
3114 case PRE_INC:
3115 case POST_INC:
3116 imag_first = false;
3117 break;
3118 default:
3119 gcc_unreachable ();
3120 }
3121
3122 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3123 read_complex_part (y, imag_first));
3124 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3125 read_complex_part (y, !imag_first));
3126 }
3127
3128 /* A subroutine of emit_move_complex. Perform the move from Y to X
3129 via two moves of the parts. Returns the last instruction emitted. */
3130
3131 rtx
3132 emit_move_complex_parts (rtx x, rtx y)
3133 {
3134 /* Show the output dies here. This is necessary for SUBREGs
3135 of pseudos since we cannot track their lifetimes correctly;
3136 hard regs shouldn't appear here except as return values. */
3137 if (!reload_completed && !reload_in_progress
3138 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3139 emit_clobber (x);
3140
3141 write_complex_part (x, read_complex_part (y, false), false);
3142 write_complex_part (x, read_complex_part (y, true), true);
3143
3144 return get_last_insn ();
3145 }
3146
3147 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3148 MODE is known to be complex. Returns the last instruction emitted. */
3149
3150 static rtx
3151 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3152 {
3153 bool try_int;
3154
3155 /* Need to take special care for pushes, to maintain proper ordering
3156 of the data, and possibly extra padding. */
3157 if (push_operand (x, mode))
3158 return emit_move_complex_push (mode, x, y);
3159
3160 /* See if we can coerce the target into moving both values at once. */
3161
3162 /* Move floating point as parts. */
3163 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3164 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3165 try_int = false;
3166 /* Not possible if the values are inherently not adjacent. */
3167 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3168 try_int = false;
3169 /* Is possible if both are registers (or subregs of registers). */
3170 else if (register_operand (x, mode) && register_operand (y, mode))
3171 try_int = true;
3172 /* If one of the operands is a memory, and alignment constraints
3173 are friendly enough, we may be able to do combined memory operations.
3174 We do not attempt this if Y is a constant because that combination is
3175 usually better with the by-parts thing below. */
3176 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3177 && (!STRICT_ALIGNMENT
3178 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3179 try_int = true;
3180 else
3181 try_int = false;
3182
3183 if (try_int)
3184 {
3185 rtx ret;
3186
3187 /* For memory to memory moves, optimal behavior can be had with the
3188 existing block move logic. */
3189 if (MEM_P (x) && MEM_P (y))
3190 {
3191 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3192 BLOCK_OP_NO_LIBCALL);
3193 return get_last_insn ();
3194 }
3195
3196 ret = emit_move_via_integer (mode, x, y, true);
3197 if (ret)
3198 return ret;
3199 }
3200
3201 return emit_move_complex_parts (x, y);
3202 }
3203
3204 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3205 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3206
3207 static rtx
3208 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3209 {
3210 rtx ret;
3211
3212 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3213 if (mode != CCmode)
3214 {
3215 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3216 if (code != CODE_FOR_nothing)
3217 {
3218 x = emit_move_change_mode (CCmode, mode, x, true);
3219 y = emit_move_change_mode (CCmode, mode, y, true);
3220 return emit_insn (GEN_FCN (code) (x, y));
3221 }
3222 }
3223
3224 /* Otherwise, find the MODE_INT mode of the same width. */
3225 ret = emit_move_via_integer (mode, x, y, false);
3226 gcc_assert (ret != NULL);
3227 return ret;
3228 }
3229
3230 /* Return true if word I of OP lies entirely in the
3231 undefined bits of a paradoxical subreg. */
3232
3233 static bool
3234 undefined_operand_subword_p (const_rtx op, int i)
3235 {
3236 enum machine_mode innermode, innermostmode;
3237 int offset;
3238 if (GET_CODE (op) != SUBREG)
3239 return false;
3240 innermode = GET_MODE (op);
3241 innermostmode = GET_MODE (SUBREG_REG (op));
3242 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3243 /* The SUBREG_BYTE represents offset, as if the value were stored in
3244 memory, except for a paradoxical subreg where we define
3245 SUBREG_BYTE to be 0; undo this exception as in
3246 simplify_subreg. */
3247 if (SUBREG_BYTE (op) == 0
3248 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3249 {
3250 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3251 if (WORDS_BIG_ENDIAN)
3252 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3253 if (BYTES_BIG_ENDIAN)
3254 offset += difference % UNITS_PER_WORD;
3255 }
3256 if (offset >= GET_MODE_SIZE (innermostmode)
3257 || offset <= -GET_MODE_SIZE (word_mode))
3258 return true;
3259 return false;
3260 }
3261
3262 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3263 MODE is any multi-word or full-word mode that lacks a move_insn
3264 pattern. Note that you will get better code if you define such
3265 patterns, even if they must turn into multiple assembler instructions. */
3266
3267 static rtx
3268 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3269 {
3270 rtx last_insn = 0;
3271 rtx seq, inner;
3272 bool need_clobber;
3273 int i;
3274
3275 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3276
3277 /* If X is a push on the stack, do the push now and replace
3278 X with a reference to the stack pointer. */
3279 if (push_operand (x, mode))
3280 x = emit_move_resolve_push (mode, x);
3281
3282 /* If we are in reload, see if either operand is a MEM whose address
3283 is scheduled for replacement. */
3284 if (reload_in_progress && MEM_P (x)
3285 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3286 x = replace_equiv_address_nv (x, inner);
3287 if (reload_in_progress && MEM_P (y)
3288 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3289 y = replace_equiv_address_nv (y, inner);
3290
3291 start_sequence ();
3292
3293 need_clobber = false;
3294 for (i = 0;
3295 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3296 i++)
3297 {
3298 rtx xpart = operand_subword (x, i, 1, mode);
3299 rtx ypart;
3300
3301 /* Do not generate code for a move if it would come entirely
3302 from the undefined bits of a paradoxical subreg. */
3303 if (undefined_operand_subword_p (y, i))
3304 continue;
3305
3306 ypart = operand_subword (y, i, 1, mode);
3307
3308 /* If we can't get a part of Y, put Y into memory if it is a
3309 constant. Otherwise, force it into a register. Then we must
3310 be able to get a part of Y. */
3311 if (ypart == 0 && CONSTANT_P (y))
3312 {
3313 y = use_anchored_address (force_const_mem (mode, y));
3314 ypart = operand_subword (y, i, 1, mode);
3315 }
3316 else if (ypart == 0)
3317 ypart = operand_subword_force (y, i, mode);
3318
3319 gcc_assert (xpart && ypart);
3320
3321 need_clobber |= (GET_CODE (xpart) == SUBREG);
3322
3323 last_insn = emit_move_insn (xpart, ypart);
3324 }
3325
3326 seq = get_insns ();
3327 end_sequence ();
3328
3329 /* Show the output dies here. This is necessary for SUBREGs
3330 of pseudos since we cannot track their lifetimes correctly;
3331 hard regs shouldn't appear here except as return values.
3332 We never want to emit such a clobber after reload. */
3333 if (x != y
3334 && ! (reload_in_progress || reload_completed)
3335 && need_clobber != 0)
3336 emit_clobber (x);
3337
3338 emit_insn (seq);
3339
3340 return last_insn;
3341 }
3342
3343 /* Low level part of emit_move_insn.
3344 Called just like emit_move_insn, but assumes X and Y
3345 are basically valid. */
3346
3347 rtx
3348 emit_move_insn_1 (rtx x, rtx y)
3349 {
3350 enum machine_mode mode = GET_MODE (x);
3351 enum insn_code code;
3352
3353 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3354
3355 code = optab_handler (mov_optab, mode)->insn_code;
3356 if (code != CODE_FOR_nothing)
3357 return emit_insn (GEN_FCN (code) (x, y));
3358
3359 /* Expand complex moves by moving real part and imag part. */
3360 if (COMPLEX_MODE_P (mode))
3361 return emit_move_complex (mode, x, y);
3362
3363 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3364 || ALL_FIXED_POINT_MODE_P (mode))
3365 {
3366 rtx result = emit_move_via_integer (mode, x, y, true);
3367
3368 /* If we can't find an integer mode, use multi words. */
3369 if (result)
3370 return result;
3371 else
3372 return emit_move_multi_word (mode, x, y);
3373 }
3374
3375 if (GET_MODE_CLASS (mode) == MODE_CC)
3376 return emit_move_ccmode (mode, x, y);
3377
3378 /* Try using a move pattern for the corresponding integer mode. This is
3379 only safe when simplify_subreg can convert MODE constants into integer
3380 constants. At present, it can only do this reliably if the value
3381 fits within a HOST_WIDE_INT. */
3382 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3383 {
3384 rtx ret = emit_move_via_integer (mode, x, y, false);
3385 if (ret)
3386 return ret;
3387 }
3388
3389 return emit_move_multi_word (mode, x, y);
3390 }
3391
3392 /* Generate code to copy Y into X.
3393 Both Y and X must have the same mode, except that
3394 Y can be a constant with VOIDmode.
3395 This mode cannot be BLKmode; use emit_block_move for that.
3396
3397 Return the last instruction emitted. */
3398
3399 rtx
3400 emit_move_insn (rtx x, rtx y)
3401 {
3402 enum machine_mode mode = GET_MODE (x);
3403 rtx y_cst = NULL_RTX;
3404 rtx last_insn, set;
3405
3406 gcc_assert (mode != BLKmode
3407 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3408
3409 if (CONSTANT_P (y))
3410 {
3411 if (optimize
3412 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3413 && (last_insn = compress_float_constant (x, y)))
3414 return last_insn;
3415
3416 y_cst = y;
3417
3418 if (!LEGITIMATE_CONSTANT_P (y))
3419 {
3420 y = force_const_mem (mode, y);
3421
3422 /* If the target's cannot_force_const_mem prevented the spill,
3423 assume that the target's move expanders will also take care
3424 of the non-legitimate constant. */
3425 if (!y)
3426 y = y_cst;
3427 else
3428 y = use_anchored_address (y);
3429 }
3430 }
3431
3432 /* If X or Y are memory references, verify that their addresses are valid
3433 for the machine. */
3434 if (MEM_P (x)
3435 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3436 && ! push_operand (x, GET_MODE (x))))
3437 x = validize_mem (x);
3438
3439 if (MEM_P (y)
3440 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3441 y = validize_mem (y);
3442
3443 gcc_assert (mode != BLKmode);
3444
3445 last_insn = emit_move_insn_1 (x, y);
3446
3447 if (y_cst && REG_P (x)
3448 && (set = single_set (last_insn)) != NULL_RTX
3449 && SET_DEST (set) == x
3450 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3451 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3452
3453 return last_insn;
3454 }
3455
3456 /* If Y is representable exactly in a narrower mode, and the target can
3457 perform the extension directly from constant or memory, then emit the
3458 move as an extension. */
3459
3460 static rtx
3461 compress_float_constant (rtx x, rtx y)
3462 {
3463 enum machine_mode dstmode = GET_MODE (x);
3464 enum machine_mode orig_srcmode = GET_MODE (y);
3465 enum machine_mode srcmode;
3466 REAL_VALUE_TYPE r;
3467 int oldcost, newcost;
3468 bool speed = optimize_insn_for_speed_p ();
3469
3470 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3471
3472 if (LEGITIMATE_CONSTANT_P (y))
3473 oldcost = rtx_cost (y, SET, speed);
3474 else
3475 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3476
3477 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3478 srcmode != orig_srcmode;
3479 srcmode = GET_MODE_WIDER_MODE (srcmode))
3480 {
3481 enum insn_code ic;
3482 rtx trunc_y, last_insn;
3483
3484 /* Skip if the target can't extend this way. */
3485 ic = can_extend_p (dstmode, srcmode, 0);
3486 if (ic == CODE_FOR_nothing)
3487 continue;
3488
3489 /* Skip if the narrowed value isn't exact. */
3490 if (! exact_real_truncate (srcmode, &r))
3491 continue;
3492
3493 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3494
3495 if (LEGITIMATE_CONSTANT_P (trunc_y))
3496 {
3497 /* Skip if the target needs extra instructions to perform
3498 the extension. */
3499 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3500 continue;
3501 /* This is valid, but may not be cheaper than the original. */
3502 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3503 if (oldcost < newcost)
3504 continue;
3505 }
3506 else if (float_extend_from_mem[dstmode][srcmode])
3507 {
3508 trunc_y = force_const_mem (srcmode, trunc_y);
3509 /* This is valid, but may not be cheaper than the original. */
3510 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3511 if (oldcost < newcost)
3512 continue;
3513 trunc_y = validize_mem (trunc_y);
3514 }
3515 else
3516 continue;
3517
3518 /* For CSE's benefit, force the compressed constant pool entry
3519 into a new pseudo. This constant may be used in different modes,
3520 and if not, combine will put things back together for us. */
3521 trunc_y = force_reg (srcmode, trunc_y);
3522 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3523 last_insn = get_last_insn ();
3524
3525 if (REG_P (x))
3526 set_unique_reg_note (last_insn, REG_EQUAL, y);
3527
3528 return last_insn;
3529 }
3530
3531 return NULL_RTX;
3532 }
3533 \f
3534 /* Pushing data onto the stack. */
3535
3536 /* Push a block of length SIZE (perhaps variable)
3537 and return an rtx to address the beginning of the block.
3538 The value may be virtual_outgoing_args_rtx.
3539
3540 EXTRA is the number of bytes of padding to push in addition to SIZE.
3541 BELOW nonzero means this padding comes at low addresses;
3542 otherwise, the padding comes at high addresses. */
3543
3544 rtx
3545 push_block (rtx size, int extra, int below)
3546 {
3547 rtx temp;
3548
3549 size = convert_modes (Pmode, ptr_mode, size, 1);
3550 if (CONSTANT_P (size))
3551 anti_adjust_stack (plus_constant (size, extra));
3552 else if (REG_P (size) && extra == 0)
3553 anti_adjust_stack (size);
3554 else
3555 {
3556 temp = copy_to_mode_reg (Pmode, size);
3557 if (extra != 0)
3558 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3559 temp, 0, OPTAB_LIB_WIDEN);
3560 anti_adjust_stack (temp);
3561 }
3562
3563 #ifndef STACK_GROWS_DOWNWARD
3564 if (0)
3565 #else
3566 if (1)
3567 #endif
3568 {
3569 temp = virtual_outgoing_args_rtx;
3570 if (extra != 0 && below)
3571 temp = plus_constant (temp, extra);
3572 }
3573 else
3574 {
3575 if (CONST_INT_P (size))
3576 temp = plus_constant (virtual_outgoing_args_rtx,
3577 -INTVAL (size) - (below ? 0 : extra));
3578 else if (extra != 0 && !below)
3579 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3580 negate_rtx (Pmode, plus_constant (size, extra)));
3581 else
3582 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3583 negate_rtx (Pmode, size));
3584 }
3585
3586 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3587 }
3588
3589 #ifdef PUSH_ROUNDING
3590
3591 /* Emit single push insn. */
3592
3593 static void
3594 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3595 {
3596 rtx dest_addr;
3597 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3598 rtx dest;
3599 enum insn_code icode;
3600 insn_operand_predicate_fn pred;
3601
3602 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3603 /* If there is push pattern, use it. Otherwise try old way of throwing
3604 MEM representing push operation to move expander. */
3605 icode = optab_handler (push_optab, mode)->insn_code;
3606 if (icode != CODE_FOR_nothing)
3607 {
3608 if (((pred = insn_data[(int) icode].operand[0].predicate)
3609 && !((*pred) (x, mode))))
3610 x = force_reg (mode, x);
3611 emit_insn (GEN_FCN (icode) (x));
3612 return;
3613 }
3614 if (GET_MODE_SIZE (mode) == rounded_size)
3615 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3616 /* If we are to pad downward, adjust the stack pointer first and
3617 then store X into the stack location using an offset. This is
3618 because emit_move_insn does not know how to pad; it does not have
3619 access to type. */
3620 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3621 {
3622 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3623 HOST_WIDE_INT offset;
3624
3625 emit_move_insn (stack_pointer_rtx,
3626 expand_binop (Pmode,
3627 #ifdef STACK_GROWS_DOWNWARD
3628 sub_optab,
3629 #else
3630 add_optab,
3631 #endif
3632 stack_pointer_rtx,
3633 GEN_INT (rounded_size),
3634 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3635
3636 offset = (HOST_WIDE_INT) padding_size;
3637 #ifdef STACK_GROWS_DOWNWARD
3638 if (STACK_PUSH_CODE == POST_DEC)
3639 /* We have already decremented the stack pointer, so get the
3640 previous value. */
3641 offset += (HOST_WIDE_INT) rounded_size;
3642 #else
3643 if (STACK_PUSH_CODE == POST_INC)
3644 /* We have already incremented the stack pointer, so get the
3645 previous value. */
3646 offset -= (HOST_WIDE_INT) rounded_size;
3647 #endif
3648 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3649 }
3650 else
3651 {
3652 #ifdef STACK_GROWS_DOWNWARD
3653 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3654 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3655 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3656 #else
3657 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3658 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3659 GEN_INT (rounded_size));
3660 #endif
3661 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3662 }
3663
3664 dest = gen_rtx_MEM (mode, dest_addr);
3665
3666 if (type != 0)
3667 {
3668 set_mem_attributes (dest, type, 1);
3669
3670 if (flag_optimize_sibling_calls)
3671 /* Function incoming arguments may overlap with sibling call
3672 outgoing arguments and we cannot allow reordering of reads
3673 from function arguments with stores to outgoing arguments
3674 of sibling calls. */
3675 set_mem_alias_set (dest, 0);
3676 }
3677 emit_move_insn (dest, x);
3678 }
3679 #endif
3680
3681 /* Generate code to push X onto the stack, assuming it has mode MODE and
3682 type TYPE.
3683 MODE is redundant except when X is a CONST_INT (since they don't
3684 carry mode info).
3685 SIZE is an rtx for the size of data to be copied (in bytes),
3686 needed only if X is BLKmode.
3687
3688 ALIGN (in bits) is maximum alignment we can assume.
3689
3690 If PARTIAL and REG are both nonzero, then copy that many of the first
3691 bytes of X into registers starting with REG, and push the rest of X.
3692 The amount of space pushed is decreased by PARTIAL bytes.
3693 REG must be a hard register in this case.
3694 If REG is zero but PARTIAL is not, take any all others actions for an
3695 argument partially in registers, but do not actually load any
3696 registers.
3697
3698 EXTRA is the amount in bytes of extra space to leave next to this arg.
3699 This is ignored if an argument block has already been allocated.
3700
3701 On a machine that lacks real push insns, ARGS_ADDR is the address of
3702 the bottom of the argument block for this call. We use indexing off there
3703 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3704 argument block has not been preallocated.
3705
3706 ARGS_SO_FAR is the size of args previously pushed for this call.
3707
3708 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3709 for arguments passed in registers. If nonzero, it will be the number
3710 of bytes required. */
3711
3712 void
3713 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3714 unsigned int align, int partial, rtx reg, int extra,
3715 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3716 rtx alignment_pad)
3717 {
3718 rtx xinner;
3719 enum direction stack_direction
3720 #ifdef STACK_GROWS_DOWNWARD
3721 = downward;
3722 #else
3723 = upward;
3724 #endif
3725
3726 /* Decide where to pad the argument: `downward' for below,
3727 `upward' for above, or `none' for don't pad it.
3728 Default is below for small data on big-endian machines; else above. */
3729 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3730
3731 /* Invert direction if stack is post-decrement.
3732 FIXME: why? */
3733 if (STACK_PUSH_CODE == POST_DEC)
3734 if (where_pad != none)
3735 where_pad = (where_pad == downward ? upward : downward);
3736
3737 xinner = x;
3738
3739 if (mode == BLKmode
3740 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3741 {
3742 /* Copy a block into the stack, entirely or partially. */
3743
3744 rtx temp;
3745 int used;
3746 int offset;
3747 int skip;
3748
3749 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3750 used = partial - offset;
3751
3752 if (mode != BLKmode)
3753 {
3754 /* A value is to be stored in an insufficiently aligned
3755 stack slot; copy via a suitably aligned slot if
3756 necessary. */
3757 size = GEN_INT (GET_MODE_SIZE (mode));
3758 if (!MEM_P (xinner))
3759 {
3760 temp = assign_temp (type, 0, 1, 1);
3761 emit_move_insn (temp, xinner);
3762 xinner = temp;
3763 }
3764 }
3765
3766 gcc_assert (size);
3767
3768 /* USED is now the # of bytes we need not copy to the stack
3769 because registers will take care of them. */
3770
3771 if (partial != 0)
3772 xinner = adjust_address (xinner, BLKmode, used);
3773
3774 /* If the partial register-part of the arg counts in its stack size,
3775 skip the part of stack space corresponding to the registers.
3776 Otherwise, start copying to the beginning of the stack space,
3777 by setting SKIP to 0. */
3778 skip = (reg_parm_stack_space == 0) ? 0 : used;
3779
3780 #ifdef PUSH_ROUNDING
3781 /* Do it with several push insns if that doesn't take lots of insns
3782 and if there is no difficulty with push insns that skip bytes
3783 on the stack for alignment purposes. */
3784 if (args_addr == 0
3785 && PUSH_ARGS
3786 && CONST_INT_P (size)
3787 && skip == 0
3788 && MEM_ALIGN (xinner) >= align
3789 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3790 /* Here we avoid the case of a structure whose weak alignment
3791 forces many pushes of a small amount of data,
3792 and such small pushes do rounding that causes trouble. */
3793 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3794 || align >= BIGGEST_ALIGNMENT
3795 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3796 == (align / BITS_PER_UNIT)))
3797 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3798 {
3799 /* Push padding now if padding above and stack grows down,
3800 or if padding below and stack grows up.
3801 But if space already allocated, this has already been done. */
3802 if (extra && args_addr == 0
3803 && where_pad != none && where_pad != stack_direction)
3804 anti_adjust_stack (GEN_INT (extra));
3805
3806 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3807 }
3808 else
3809 #endif /* PUSH_ROUNDING */
3810 {
3811 rtx target;
3812
3813 /* Otherwise make space on the stack and copy the data
3814 to the address of that space. */
3815
3816 /* Deduct words put into registers from the size we must copy. */
3817 if (partial != 0)
3818 {
3819 if (CONST_INT_P (size))
3820 size = GEN_INT (INTVAL (size) - used);
3821 else
3822 size = expand_binop (GET_MODE (size), sub_optab, size,
3823 GEN_INT (used), NULL_RTX, 0,
3824 OPTAB_LIB_WIDEN);
3825 }
3826
3827 /* Get the address of the stack space.
3828 In this case, we do not deal with EXTRA separately.
3829 A single stack adjust will do. */
3830 if (! args_addr)
3831 {
3832 temp = push_block (size, extra, where_pad == downward);
3833 extra = 0;
3834 }
3835 else if (CONST_INT_P (args_so_far))
3836 temp = memory_address (BLKmode,
3837 plus_constant (args_addr,
3838 skip + INTVAL (args_so_far)));
3839 else
3840 temp = memory_address (BLKmode,
3841 plus_constant (gen_rtx_PLUS (Pmode,
3842 args_addr,
3843 args_so_far),
3844 skip));
3845
3846 if (!ACCUMULATE_OUTGOING_ARGS)
3847 {
3848 /* If the source is referenced relative to the stack pointer,
3849 copy it to another register to stabilize it. We do not need
3850 to do this if we know that we won't be changing sp. */
3851
3852 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3853 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3854 temp = copy_to_reg (temp);
3855 }
3856
3857 target = gen_rtx_MEM (BLKmode, temp);
3858
3859 /* We do *not* set_mem_attributes here, because incoming arguments
3860 may overlap with sibling call outgoing arguments and we cannot
3861 allow reordering of reads from function arguments with stores
3862 to outgoing arguments of sibling calls. We do, however, want
3863 to record the alignment of the stack slot. */
3864 /* ALIGN may well be better aligned than TYPE, e.g. due to
3865 PARM_BOUNDARY. Assume the caller isn't lying. */
3866 set_mem_align (target, align);
3867
3868 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3869 }
3870 }
3871 else if (partial > 0)
3872 {
3873 /* Scalar partly in registers. */
3874
3875 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3876 int i;
3877 int not_stack;
3878 /* # bytes of start of argument
3879 that we must make space for but need not store. */
3880 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3881 int args_offset = INTVAL (args_so_far);
3882 int skip;
3883
3884 /* Push padding now if padding above and stack grows down,
3885 or if padding below and stack grows up.
3886 But if space already allocated, this has already been done. */
3887 if (extra && args_addr == 0
3888 && where_pad != none && where_pad != stack_direction)
3889 anti_adjust_stack (GEN_INT (extra));
3890
3891 /* If we make space by pushing it, we might as well push
3892 the real data. Otherwise, we can leave OFFSET nonzero
3893 and leave the space uninitialized. */
3894 if (args_addr == 0)
3895 offset = 0;
3896
3897 /* Now NOT_STACK gets the number of words that we don't need to
3898 allocate on the stack. Convert OFFSET to words too. */
3899 not_stack = (partial - offset) / UNITS_PER_WORD;
3900 offset /= UNITS_PER_WORD;
3901
3902 /* If the partial register-part of the arg counts in its stack size,
3903 skip the part of stack space corresponding to the registers.
3904 Otherwise, start copying to the beginning of the stack space,
3905 by setting SKIP to 0. */
3906 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3907
3908 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3909 x = validize_mem (force_const_mem (mode, x));
3910
3911 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3912 SUBREGs of such registers are not allowed. */
3913 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3914 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3915 x = copy_to_reg (x);
3916
3917 /* Loop over all the words allocated on the stack for this arg. */
3918 /* We can do it by words, because any scalar bigger than a word
3919 has a size a multiple of a word. */
3920 #ifndef PUSH_ARGS_REVERSED
3921 for (i = not_stack; i < size; i++)
3922 #else
3923 for (i = size - 1; i >= not_stack; i--)
3924 #endif
3925 if (i >= not_stack + offset)
3926 emit_push_insn (operand_subword_force (x, i, mode),
3927 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3928 0, args_addr,
3929 GEN_INT (args_offset + ((i - not_stack + skip)
3930 * UNITS_PER_WORD)),
3931 reg_parm_stack_space, alignment_pad);
3932 }
3933 else
3934 {
3935 rtx addr;
3936 rtx dest;
3937
3938 /* Push padding now if padding above and stack grows down,
3939 or if padding below and stack grows up.
3940 But if space already allocated, this has already been done. */
3941 if (extra && args_addr == 0
3942 && where_pad != none && where_pad != stack_direction)
3943 anti_adjust_stack (GEN_INT (extra));
3944
3945 #ifdef PUSH_ROUNDING
3946 if (args_addr == 0 && PUSH_ARGS)
3947 emit_single_push_insn (mode, x, type);
3948 else
3949 #endif
3950 {
3951 if (CONST_INT_P (args_so_far))
3952 addr
3953 = memory_address (mode,
3954 plus_constant (args_addr,
3955 INTVAL (args_so_far)));
3956 else
3957 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3958 args_so_far));
3959 dest = gen_rtx_MEM (mode, addr);
3960
3961 /* We do *not* set_mem_attributes here, because incoming arguments
3962 may overlap with sibling call outgoing arguments and we cannot
3963 allow reordering of reads from function arguments with stores
3964 to outgoing arguments of sibling calls. We do, however, want
3965 to record the alignment of the stack slot. */
3966 /* ALIGN may well be better aligned than TYPE, e.g. due to
3967 PARM_BOUNDARY. Assume the caller isn't lying. */
3968 set_mem_align (dest, align);
3969
3970 emit_move_insn (dest, x);
3971 }
3972 }
3973
3974 /* If part should go in registers, copy that part
3975 into the appropriate registers. Do this now, at the end,
3976 since mem-to-mem copies above may do function calls. */
3977 if (partial > 0 && reg != 0)
3978 {
3979 /* Handle calls that pass values in multiple non-contiguous locations.
3980 The Irix 6 ABI has examples of this. */
3981 if (GET_CODE (reg) == PARALLEL)
3982 emit_group_load (reg, x, type, -1);
3983 else
3984 {
3985 gcc_assert (partial % UNITS_PER_WORD == 0);
3986 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3987 }
3988 }
3989
3990 if (extra && args_addr == 0 && where_pad == stack_direction)
3991 anti_adjust_stack (GEN_INT (extra));
3992
3993 if (alignment_pad && args_addr == 0)
3994 anti_adjust_stack (alignment_pad);
3995 }
3996 \f
3997 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3998 operations. */
3999
4000 static rtx
4001 get_subtarget (rtx x)
4002 {
4003 return (optimize
4004 || x == 0
4005 /* Only registers can be subtargets. */
4006 || !REG_P (x)
4007 /* Don't use hard regs to avoid extending their life. */
4008 || REGNO (x) < FIRST_PSEUDO_REGISTER
4009 ? 0 : x);
4010 }
4011
4012 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4013 FIELD is a bitfield. Returns true if the optimization was successful,
4014 and there's nothing else to do. */
4015
4016 static bool
4017 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4018 unsigned HOST_WIDE_INT bitpos,
4019 enum machine_mode mode1, rtx str_rtx,
4020 tree to, tree src)
4021 {
4022 enum machine_mode str_mode = GET_MODE (str_rtx);
4023 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4024 tree op0, op1;
4025 rtx value, result;
4026 optab binop;
4027
4028 if (mode1 != VOIDmode
4029 || bitsize >= BITS_PER_WORD
4030 || str_bitsize > BITS_PER_WORD
4031 || TREE_SIDE_EFFECTS (to)
4032 || TREE_THIS_VOLATILE (to))
4033 return false;
4034
4035 STRIP_NOPS (src);
4036 if (!BINARY_CLASS_P (src)
4037 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4038 return false;
4039
4040 op0 = TREE_OPERAND (src, 0);
4041 op1 = TREE_OPERAND (src, 1);
4042 STRIP_NOPS (op0);
4043
4044 if (!operand_equal_p (to, op0, 0))
4045 return false;
4046
4047 if (MEM_P (str_rtx))
4048 {
4049 unsigned HOST_WIDE_INT offset1;
4050
4051 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4052 str_mode = word_mode;
4053 str_mode = get_best_mode (bitsize, bitpos,
4054 MEM_ALIGN (str_rtx), str_mode, 0);
4055 if (str_mode == VOIDmode)
4056 return false;
4057 str_bitsize = GET_MODE_BITSIZE (str_mode);
4058
4059 offset1 = bitpos;
4060 bitpos %= str_bitsize;
4061 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4062 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4063 }
4064 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4065 return false;
4066
4067 /* If the bit field covers the whole REG/MEM, store_field
4068 will likely generate better code. */
4069 if (bitsize >= str_bitsize)
4070 return false;
4071
4072 /* We can't handle fields split across multiple entities. */
4073 if (bitpos + bitsize > str_bitsize)
4074 return false;
4075
4076 if (BYTES_BIG_ENDIAN)
4077 bitpos = str_bitsize - bitpos - bitsize;
4078
4079 switch (TREE_CODE (src))
4080 {
4081 case PLUS_EXPR:
4082 case MINUS_EXPR:
4083 /* For now, just optimize the case of the topmost bitfield
4084 where we don't need to do any masking and also
4085 1 bit bitfields where xor can be used.
4086 We might win by one instruction for the other bitfields
4087 too if insv/extv instructions aren't used, so that
4088 can be added later. */
4089 if (bitpos + bitsize != str_bitsize
4090 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4091 break;
4092
4093 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4094 value = convert_modes (str_mode,
4095 TYPE_MODE (TREE_TYPE (op1)), value,
4096 TYPE_UNSIGNED (TREE_TYPE (op1)));
4097
4098 /* We may be accessing data outside the field, which means
4099 we can alias adjacent data. */
4100 if (MEM_P (str_rtx))
4101 {
4102 str_rtx = shallow_copy_rtx (str_rtx);
4103 set_mem_alias_set (str_rtx, 0);
4104 set_mem_expr (str_rtx, 0);
4105 }
4106
4107 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4108 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4109 {
4110 value = expand_and (str_mode, value, const1_rtx, NULL);
4111 binop = xor_optab;
4112 }
4113 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4114 build_int_cst (NULL_TREE, bitpos),
4115 NULL_RTX, 1);
4116 result = expand_binop (str_mode, binop, str_rtx,
4117 value, str_rtx, 1, OPTAB_WIDEN);
4118 if (result != str_rtx)
4119 emit_move_insn (str_rtx, result);
4120 return true;
4121
4122 case BIT_IOR_EXPR:
4123 case BIT_XOR_EXPR:
4124 if (TREE_CODE (op1) != INTEGER_CST)
4125 break;
4126 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4127 value = convert_modes (GET_MODE (str_rtx),
4128 TYPE_MODE (TREE_TYPE (op1)), value,
4129 TYPE_UNSIGNED (TREE_TYPE (op1)));
4130
4131 /* We may be accessing data outside the field, which means
4132 we can alias adjacent data. */
4133 if (MEM_P (str_rtx))
4134 {
4135 str_rtx = shallow_copy_rtx (str_rtx);
4136 set_mem_alias_set (str_rtx, 0);
4137 set_mem_expr (str_rtx, 0);
4138 }
4139
4140 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4141 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4142 {
4143 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4144 - 1);
4145 value = expand_and (GET_MODE (str_rtx), value, mask,
4146 NULL_RTX);
4147 }
4148 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4149 build_int_cst (NULL_TREE, bitpos),
4150 NULL_RTX, 1);
4151 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4152 value, str_rtx, 1, OPTAB_WIDEN);
4153 if (result != str_rtx)
4154 emit_move_insn (str_rtx, result);
4155 return true;
4156
4157 default:
4158 break;
4159 }
4160
4161 return false;
4162 }
4163
4164
4165 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4166 is true, try generating a nontemporal store. */
4167
4168 void
4169 expand_assignment (tree to, tree from, bool nontemporal)
4170 {
4171 rtx to_rtx = 0;
4172 rtx result;
4173
4174 /* Don't crash if the lhs of the assignment was erroneous. */
4175 if (TREE_CODE (to) == ERROR_MARK)
4176 {
4177 result = expand_normal (from);
4178 return;
4179 }
4180
4181 /* Optimize away no-op moves without side-effects. */
4182 if (operand_equal_p (to, from, 0))
4183 return;
4184
4185 /* Assignment of a structure component needs special treatment
4186 if the structure component's rtx is not simply a MEM.
4187 Assignment of an array element at a constant index, and assignment of
4188 an array element in an unaligned packed structure field, has the same
4189 problem. */
4190 if (handled_component_p (to)
4191 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4192 {
4193 enum machine_mode mode1;
4194 HOST_WIDE_INT bitsize, bitpos;
4195 tree offset;
4196 int unsignedp;
4197 int volatilep = 0;
4198 tree tem;
4199
4200 push_temp_slots ();
4201 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4202 &unsignedp, &volatilep, true);
4203
4204 /* If we are going to use store_bit_field and extract_bit_field,
4205 make sure to_rtx will be safe for multiple use. */
4206
4207 to_rtx = expand_normal (tem);
4208
4209 if (offset != 0)
4210 {
4211 rtx offset_rtx;
4212
4213 if (!MEM_P (to_rtx))
4214 {
4215 /* We can get constant negative offsets into arrays with broken
4216 user code. Translate this to a trap instead of ICEing. */
4217 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4218 expand_builtin_trap ();
4219 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4220 }
4221
4222 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4223 #ifdef POINTERS_EXTEND_UNSIGNED
4224 if (GET_MODE (offset_rtx) != Pmode)
4225 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4226 #else
4227 if (GET_MODE (offset_rtx) != ptr_mode)
4228 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4229 #endif
4230
4231 /* A constant address in TO_RTX can have VOIDmode, we must not try
4232 to call force_reg for that case. Avoid that case. */
4233 if (MEM_P (to_rtx)
4234 && GET_MODE (to_rtx) == BLKmode
4235 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4236 && bitsize > 0
4237 && (bitpos % bitsize) == 0
4238 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4239 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4240 {
4241 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4242 bitpos = 0;
4243 }
4244
4245 to_rtx = offset_address (to_rtx, offset_rtx,
4246 highest_pow2_factor_for_target (to,
4247 offset));
4248 }
4249
4250 /* Handle expand_expr of a complex value returning a CONCAT. */
4251 if (GET_CODE (to_rtx) == CONCAT)
4252 {
4253 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4254 {
4255 gcc_assert (bitpos == 0);
4256 result = store_expr (from, to_rtx, false, nontemporal);
4257 }
4258 else
4259 {
4260 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4261 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4262 nontemporal);
4263 }
4264 }
4265 else
4266 {
4267 if (MEM_P (to_rtx))
4268 {
4269 /* If the field is at offset zero, we could have been given the
4270 DECL_RTX of the parent struct. Don't munge it. */
4271 to_rtx = shallow_copy_rtx (to_rtx);
4272
4273 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4274
4275 /* Deal with volatile and readonly fields. The former is only
4276 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4277 if (volatilep)
4278 MEM_VOLATILE_P (to_rtx) = 1;
4279 if (component_uses_parent_alias_set (to))
4280 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4281 }
4282
4283 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4284 to_rtx, to, from))
4285 result = NULL;
4286 else
4287 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4288 TREE_TYPE (tem), get_alias_set (to),
4289 nontemporal);
4290 }
4291
4292 if (result)
4293 preserve_temp_slots (result);
4294 free_temp_slots ();
4295 pop_temp_slots ();
4296 return;
4297 }
4298
4299 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4300 {
4301 enum machine_mode mode, op_mode1;
4302 enum insn_code icode;
4303 rtx reg, addr, mem, insn;
4304
4305 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4306 reg = force_not_mem (reg);
4307
4308 mode = TYPE_MODE (TREE_TYPE (to));
4309 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4310 EXPAND_SUM);
4311 addr = memory_address (mode, addr);
4312 mem = gen_rtx_MEM (mode, addr);
4313
4314 set_mem_attributes (mem, to, 0);
4315
4316 icode = movmisalign_optab->handlers[mode].insn_code;
4317 gcc_assert (icode != CODE_FOR_nothing);
4318
4319 op_mode1 = insn_data[icode].operand[1].mode;
4320 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4321 && op_mode1 != VOIDmode)
4322 reg = copy_to_mode_reg (op_mode1, reg);
4323
4324 insn = GEN_FCN (icode) (mem, reg);
4325 emit_insn (insn);
4326 return;
4327 }
4328
4329 /* If the rhs is a function call and its value is not an aggregate,
4330 call the function before we start to compute the lhs.
4331 This is needed for correct code for cases such as
4332 val = setjmp (buf) on machines where reference to val
4333 requires loading up part of an address in a separate insn.
4334
4335 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4336 since it might be a promoted variable where the zero- or sign- extension
4337 needs to be done. Handling this in the normal way is safe because no
4338 computation is done before the call. The same is true for SSA names. */
4339 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4340 && COMPLETE_TYPE_P (TREE_TYPE (from))
4341 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4342 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4343 && REG_P (DECL_RTL (to)))
4344 || TREE_CODE (to) == SSA_NAME))
4345 {
4346 rtx value;
4347
4348 push_temp_slots ();
4349 value = expand_normal (from);
4350 if (to_rtx == 0)
4351 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4352
4353 /* Handle calls that return values in multiple non-contiguous locations.
4354 The Irix 6 ABI has examples of this. */
4355 if (GET_CODE (to_rtx) == PARALLEL)
4356 emit_group_load (to_rtx, value, TREE_TYPE (from),
4357 int_size_in_bytes (TREE_TYPE (from)));
4358 else if (GET_MODE (to_rtx) == BLKmode)
4359 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4360 else
4361 {
4362 if (POINTER_TYPE_P (TREE_TYPE (to)))
4363 value = convert_memory_address (GET_MODE (to_rtx), value);
4364 emit_move_insn (to_rtx, value);
4365 }
4366 preserve_temp_slots (to_rtx);
4367 free_temp_slots ();
4368 pop_temp_slots ();
4369 return;
4370 }
4371
4372 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4373 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4374
4375 if (to_rtx == 0)
4376 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4377
4378 /* Don't move directly into a return register. */
4379 if (TREE_CODE (to) == RESULT_DECL
4380 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4381 {
4382 rtx temp;
4383
4384 push_temp_slots ();
4385 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4386
4387 if (GET_CODE (to_rtx) == PARALLEL)
4388 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4389 int_size_in_bytes (TREE_TYPE (from)));
4390 else
4391 emit_move_insn (to_rtx, temp);
4392
4393 preserve_temp_slots (to_rtx);
4394 free_temp_slots ();
4395 pop_temp_slots ();
4396 return;
4397 }
4398
4399 /* In case we are returning the contents of an object which overlaps
4400 the place the value is being stored, use a safe function when copying
4401 a value through a pointer into a structure value return block. */
4402 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4403 && cfun->returns_struct
4404 && !cfun->returns_pcc_struct)
4405 {
4406 rtx from_rtx, size;
4407
4408 push_temp_slots ();
4409 size = expr_size (from);
4410 from_rtx = expand_normal (from);
4411
4412 emit_library_call (memmove_libfunc, LCT_NORMAL,
4413 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4414 XEXP (from_rtx, 0), Pmode,
4415 convert_to_mode (TYPE_MODE (sizetype),
4416 size, TYPE_UNSIGNED (sizetype)),
4417 TYPE_MODE (sizetype));
4418
4419 preserve_temp_slots (to_rtx);
4420 free_temp_slots ();
4421 pop_temp_slots ();
4422 return;
4423 }
4424
4425 /* Compute FROM and store the value in the rtx we got. */
4426
4427 push_temp_slots ();
4428 result = store_expr (from, to_rtx, 0, nontemporal);
4429 preserve_temp_slots (result);
4430 free_temp_slots ();
4431 pop_temp_slots ();
4432 return;
4433 }
4434
4435 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4436 succeeded, false otherwise. */
4437
4438 static bool
4439 emit_storent_insn (rtx to, rtx from)
4440 {
4441 enum machine_mode mode = GET_MODE (to), imode;
4442 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4443 rtx pattern;
4444
4445 if (code == CODE_FOR_nothing)
4446 return false;
4447
4448 imode = insn_data[code].operand[0].mode;
4449 if (!insn_data[code].operand[0].predicate (to, imode))
4450 return false;
4451
4452 imode = insn_data[code].operand[1].mode;
4453 if (!insn_data[code].operand[1].predicate (from, imode))
4454 {
4455 from = copy_to_mode_reg (imode, from);
4456 if (!insn_data[code].operand[1].predicate (from, imode))
4457 return false;
4458 }
4459
4460 pattern = GEN_FCN (code) (to, from);
4461 if (pattern == NULL_RTX)
4462 return false;
4463
4464 emit_insn (pattern);
4465 return true;
4466 }
4467
4468 /* Generate code for computing expression EXP,
4469 and storing the value into TARGET.
4470
4471 If the mode is BLKmode then we may return TARGET itself.
4472 It turns out that in BLKmode it doesn't cause a problem.
4473 because C has no operators that could combine two different
4474 assignments into the same BLKmode object with different values
4475 with no sequence point. Will other languages need this to
4476 be more thorough?
4477
4478 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4479 stack, and block moves may need to be treated specially.
4480
4481 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4482
4483 rtx
4484 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4485 {
4486 rtx temp;
4487 rtx alt_rtl = NULL_RTX;
4488 int dont_return_target = 0;
4489
4490 if (VOID_TYPE_P (TREE_TYPE (exp)))
4491 {
4492 /* C++ can generate ?: expressions with a throw expression in one
4493 branch and an rvalue in the other. Here, we resolve attempts to
4494 store the throw expression's nonexistent result. */
4495 gcc_assert (!call_param_p);
4496 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4497 return NULL_RTX;
4498 }
4499 if (TREE_CODE (exp) == COMPOUND_EXPR)
4500 {
4501 /* Perform first part of compound expression, then assign from second
4502 part. */
4503 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4504 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4505 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4506 nontemporal);
4507 }
4508 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4509 {
4510 /* For conditional expression, get safe form of the target. Then
4511 test the condition, doing the appropriate assignment on either
4512 side. This avoids the creation of unnecessary temporaries.
4513 For non-BLKmode, it is more efficient not to do this. */
4514
4515 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4516
4517 do_pending_stack_adjust ();
4518 NO_DEFER_POP;
4519 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4520 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4521 nontemporal);
4522 emit_jump_insn (gen_jump (lab2));
4523 emit_barrier ();
4524 emit_label (lab1);
4525 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4526 nontemporal);
4527 emit_label (lab2);
4528 OK_DEFER_POP;
4529
4530 return NULL_RTX;
4531 }
4532 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4533 /* If this is a scalar in a register that is stored in a wider mode
4534 than the declared mode, compute the result into its declared mode
4535 and then convert to the wider mode. Our value is the computed
4536 expression. */
4537 {
4538 rtx inner_target = 0;
4539
4540 /* We can do the conversion inside EXP, which will often result
4541 in some optimizations. Do the conversion in two steps: first
4542 change the signedness, if needed, then the extend. But don't
4543 do this if the type of EXP is a subtype of something else
4544 since then the conversion might involve more than just
4545 converting modes. */
4546 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4547 && TREE_TYPE (TREE_TYPE (exp)) == 0
4548 && GET_MODE_PRECISION (GET_MODE (target))
4549 == TYPE_PRECISION (TREE_TYPE (exp)))
4550 {
4551 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4552 != SUBREG_PROMOTED_UNSIGNED_P (target))
4553 {
4554 /* Some types, e.g. Fortran's logical*4, won't have a signed
4555 version, so use the mode instead. */
4556 tree ntype
4557 = (signed_or_unsigned_type_for
4558 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4559 if (ntype == NULL)
4560 ntype = lang_hooks.types.type_for_mode
4561 (TYPE_MODE (TREE_TYPE (exp)),
4562 SUBREG_PROMOTED_UNSIGNED_P (target));
4563
4564 exp = fold_convert (ntype, exp);
4565 }
4566
4567 exp = fold_convert (lang_hooks.types.type_for_mode
4568 (GET_MODE (SUBREG_REG (target)),
4569 SUBREG_PROMOTED_UNSIGNED_P (target)),
4570 exp);
4571
4572 inner_target = SUBREG_REG (target);
4573 }
4574
4575 temp = expand_expr (exp, inner_target, VOIDmode,
4576 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4577
4578 /* If TEMP is a VOIDmode constant, use convert_modes to make
4579 sure that we properly convert it. */
4580 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4581 {
4582 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4583 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4584 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4585 GET_MODE (target), temp,
4586 SUBREG_PROMOTED_UNSIGNED_P (target));
4587 }
4588
4589 convert_move (SUBREG_REG (target), temp,
4590 SUBREG_PROMOTED_UNSIGNED_P (target));
4591
4592 return NULL_RTX;
4593 }
4594 else if (TREE_CODE (exp) == STRING_CST
4595 && !nontemporal && !call_param_p
4596 && TREE_STRING_LENGTH (exp) > 0
4597 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4598 {
4599 /* Optimize initialization of an array with a STRING_CST. */
4600 HOST_WIDE_INT exp_len, str_copy_len;
4601 rtx dest_mem;
4602
4603 exp_len = int_expr_size (exp);
4604 if (exp_len <= 0)
4605 goto normal_expr;
4606
4607 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4608 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4609 goto normal_expr;
4610
4611 str_copy_len = TREE_STRING_LENGTH (exp);
4612 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4613 {
4614 str_copy_len += STORE_MAX_PIECES - 1;
4615 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4616 }
4617 str_copy_len = MIN (str_copy_len, exp_len);
4618 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4619 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4620 MEM_ALIGN (target), false))
4621 goto normal_expr;
4622
4623 dest_mem = target;
4624
4625 dest_mem = store_by_pieces (dest_mem,
4626 str_copy_len, builtin_strncpy_read_str,
4627 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4628 MEM_ALIGN (target), false,
4629 exp_len > str_copy_len ? 1 : 0);
4630 if (exp_len > str_copy_len)
4631 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4632 GEN_INT (exp_len - str_copy_len),
4633 BLOCK_OP_NORMAL);
4634 return NULL_RTX;
4635 }
4636 else
4637 {
4638 rtx tmp_target;
4639
4640 normal_expr:
4641 /* If we want to use a nontemporal store, force the value to
4642 register first. */
4643 tmp_target = nontemporal ? NULL_RTX : target;
4644 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4645 (call_param_p
4646 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4647 &alt_rtl);
4648 /* Return TARGET if it's a specified hardware register.
4649 If TARGET is a volatile mem ref, either return TARGET
4650 or return a reg copied *from* TARGET; ANSI requires this.
4651
4652 Otherwise, if TEMP is not TARGET, return TEMP
4653 if it is constant (for efficiency),
4654 or if we really want the correct value. */
4655 if (!(target && REG_P (target)
4656 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4657 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4658 && ! rtx_equal_p (temp, target)
4659 && CONSTANT_P (temp))
4660 dont_return_target = 1;
4661 }
4662
4663 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4664 the same as that of TARGET, adjust the constant. This is needed, for
4665 example, in case it is a CONST_DOUBLE and we want only a word-sized
4666 value. */
4667 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4668 && TREE_CODE (exp) != ERROR_MARK
4669 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4670 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4671 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4672
4673 /* If value was not generated in the target, store it there.
4674 Convert the value to TARGET's type first if necessary and emit the
4675 pending incrementations that have been queued when expanding EXP.
4676 Note that we cannot emit the whole queue blindly because this will
4677 effectively disable the POST_INC optimization later.
4678
4679 If TEMP and TARGET compare equal according to rtx_equal_p, but
4680 one or both of them are volatile memory refs, we have to distinguish
4681 two cases:
4682 - expand_expr has used TARGET. In this case, we must not generate
4683 another copy. This can be detected by TARGET being equal according
4684 to == .
4685 - expand_expr has not used TARGET - that means that the source just
4686 happens to have the same RTX form. Since temp will have been created
4687 by expand_expr, it will compare unequal according to == .
4688 We must generate a copy in this case, to reach the correct number
4689 of volatile memory references. */
4690
4691 if ((! rtx_equal_p (temp, target)
4692 || (temp != target && (side_effects_p (temp)
4693 || side_effects_p (target))))
4694 && TREE_CODE (exp) != ERROR_MARK
4695 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4696 but TARGET is not valid memory reference, TEMP will differ
4697 from TARGET although it is really the same location. */
4698 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4699 /* If there's nothing to copy, don't bother. Don't call
4700 expr_size unless necessary, because some front-ends (C++)
4701 expr_size-hook must not be given objects that are not
4702 supposed to be bit-copied or bit-initialized. */
4703 && expr_size (exp) != const0_rtx)
4704 {
4705 if (GET_MODE (temp) != GET_MODE (target)
4706 && GET_MODE (temp) != VOIDmode)
4707 {
4708 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4709 if (dont_return_target)
4710 {
4711 /* In this case, we will return TEMP,
4712 so make sure it has the proper mode.
4713 But don't forget to store the value into TARGET. */
4714 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4715 emit_move_insn (target, temp);
4716 }
4717 else if (GET_MODE (target) == BLKmode
4718 || GET_MODE (temp) == BLKmode)
4719 emit_block_move (target, temp, expr_size (exp),
4720 (call_param_p
4721 ? BLOCK_OP_CALL_PARM
4722 : BLOCK_OP_NORMAL));
4723 else
4724 convert_move (target, temp, unsignedp);
4725 }
4726
4727 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4728 {
4729 /* Handle copying a string constant into an array. The string
4730 constant may be shorter than the array. So copy just the string's
4731 actual length, and clear the rest. First get the size of the data
4732 type of the string, which is actually the size of the target. */
4733 rtx size = expr_size (exp);
4734
4735 if (CONST_INT_P (size)
4736 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4737 emit_block_move (target, temp, size,
4738 (call_param_p
4739 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4740 else
4741 {
4742 /* Compute the size of the data to copy from the string. */
4743 tree copy_size
4744 = size_binop (MIN_EXPR,
4745 make_tree (sizetype, size),
4746 size_int (TREE_STRING_LENGTH (exp)));
4747 rtx copy_size_rtx
4748 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4749 (call_param_p
4750 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4751 rtx label = 0;
4752
4753 /* Copy that much. */
4754 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4755 TYPE_UNSIGNED (sizetype));
4756 emit_block_move (target, temp, copy_size_rtx,
4757 (call_param_p
4758 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4759
4760 /* Figure out how much is left in TARGET that we have to clear.
4761 Do all calculations in ptr_mode. */
4762 if (CONST_INT_P (copy_size_rtx))
4763 {
4764 size = plus_constant (size, -INTVAL (copy_size_rtx));
4765 target = adjust_address (target, BLKmode,
4766 INTVAL (copy_size_rtx));
4767 }
4768 else
4769 {
4770 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4771 copy_size_rtx, NULL_RTX, 0,
4772 OPTAB_LIB_WIDEN);
4773
4774 #ifdef POINTERS_EXTEND_UNSIGNED
4775 if (GET_MODE (copy_size_rtx) != Pmode)
4776 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4777 TYPE_UNSIGNED (sizetype));
4778 #endif
4779
4780 target = offset_address (target, copy_size_rtx,
4781 highest_pow2_factor (copy_size));
4782 label = gen_label_rtx ();
4783 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4784 GET_MODE (size), 0, label);
4785 }
4786
4787 if (size != const0_rtx)
4788 clear_storage (target, size, BLOCK_OP_NORMAL);
4789
4790 if (label)
4791 emit_label (label);
4792 }
4793 }
4794 /* Handle calls that return values in multiple non-contiguous locations.
4795 The Irix 6 ABI has examples of this. */
4796 else if (GET_CODE (target) == PARALLEL)
4797 emit_group_load (target, temp, TREE_TYPE (exp),
4798 int_size_in_bytes (TREE_TYPE (exp)));
4799 else if (GET_MODE (temp) == BLKmode)
4800 emit_block_move (target, temp, expr_size (exp),
4801 (call_param_p
4802 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4803 else if (nontemporal
4804 && emit_storent_insn (target, temp))
4805 /* If we managed to emit a nontemporal store, there is nothing else to
4806 do. */
4807 ;
4808 else
4809 {
4810 temp = force_operand (temp, target);
4811 if (temp != target)
4812 emit_move_insn (target, temp);
4813 }
4814 }
4815
4816 return NULL_RTX;
4817 }
4818 \f
4819 /* Helper for categorize_ctor_elements. Identical interface. */
4820
4821 static bool
4822 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4823 HOST_WIDE_INT *p_elt_count,
4824 bool *p_must_clear)
4825 {
4826 unsigned HOST_WIDE_INT idx;
4827 HOST_WIDE_INT nz_elts, elt_count;
4828 tree value, purpose;
4829
4830 /* Whether CTOR is a valid constant initializer, in accordance with what
4831 initializer_constant_valid_p does. If inferred from the constructor
4832 elements, true until proven otherwise. */
4833 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4834 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4835
4836 nz_elts = 0;
4837 elt_count = 0;
4838
4839 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4840 {
4841 HOST_WIDE_INT mult;
4842
4843 mult = 1;
4844 if (TREE_CODE (purpose) == RANGE_EXPR)
4845 {
4846 tree lo_index = TREE_OPERAND (purpose, 0);
4847 tree hi_index = TREE_OPERAND (purpose, 1);
4848
4849 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4850 mult = (tree_low_cst (hi_index, 1)
4851 - tree_low_cst (lo_index, 1) + 1);
4852 }
4853
4854 switch (TREE_CODE (value))
4855 {
4856 case CONSTRUCTOR:
4857 {
4858 HOST_WIDE_INT nz = 0, ic = 0;
4859
4860 bool const_elt_p
4861 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4862
4863 nz_elts += mult * nz;
4864 elt_count += mult * ic;
4865
4866 if (const_from_elts_p && const_p)
4867 const_p = const_elt_p;
4868 }
4869 break;
4870
4871 case INTEGER_CST:
4872 case REAL_CST:
4873 case FIXED_CST:
4874 if (!initializer_zerop (value))
4875 nz_elts += mult;
4876 elt_count += mult;
4877 break;
4878
4879 case STRING_CST:
4880 nz_elts += mult * TREE_STRING_LENGTH (value);
4881 elt_count += mult * TREE_STRING_LENGTH (value);
4882 break;
4883
4884 case COMPLEX_CST:
4885 if (!initializer_zerop (TREE_REALPART (value)))
4886 nz_elts += mult;
4887 if (!initializer_zerop (TREE_IMAGPART (value)))
4888 nz_elts += mult;
4889 elt_count += mult;
4890 break;
4891
4892 case VECTOR_CST:
4893 {
4894 tree v;
4895 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4896 {
4897 if (!initializer_zerop (TREE_VALUE (v)))
4898 nz_elts += mult;
4899 elt_count += mult;
4900 }
4901 }
4902 break;
4903
4904 default:
4905 nz_elts += mult;
4906 elt_count += mult;
4907
4908 if (const_from_elts_p && const_p)
4909 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4910 != NULL_TREE;
4911 break;
4912 }
4913 }
4914
4915 if (!*p_must_clear
4916 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4917 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4918 {
4919 tree init_sub_type;
4920 bool clear_this = true;
4921
4922 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4923 {
4924 /* We don't expect more than one element of the union to be
4925 initialized. Not sure what we should do otherwise... */
4926 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4927 == 1);
4928
4929 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4930 CONSTRUCTOR_ELTS (ctor),
4931 0)->value);
4932
4933 /* ??? We could look at each element of the union, and find the
4934 largest element. Which would avoid comparing the size of the
4935 initialized element against any tail padding in the union.
4936 Doesn't seem worth the effort... */
4937 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4938 TYPE_SIZE (init_sub_type)) == 1)
4939 {
4940 /* And now we have to find out if the element itself is fully
4941 constructed. E.g. for union { struct { int a, b; } s; } u
4942 = { .s = { .a = 1 } }. */
4943 if (elt_count == count_type_elements (init_sub_type, false))
4944 clear_this = false;
4945 }
4946 }
4947
4948 *p_must_clear = clear_this;
4949 }
4950
4951 *p_nz_elts += nz_elts;
4952 *p_elt_count += elt_count;
4953
4954 return const_p;
4955 }
4956
4957 /* Examine CTOR to discover:
4958 * how many scalar fields are set to nonzero values,
4959 and place it in *P_NZ_ELTS;
4960 * how many scalar fields in total are in CTOR,
4961 and place it in *P_ELT_COUNT.
4962 * if a type is a union, and the initializer from the constructor
4963 is not the largest element in the union, then set *p_must_clear.
4964
4965 Return whether or not CTOR is a valid static constant initializer, the same
4966 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4967
4968 bool
4969 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4970 HOST_WIDE_INT *p_elt_count,
4971 bool *p_must_clear)
4972 {
4973 *p_nz_elts = 0;
4974 *p_elt_count = 0;
4975 *p_must_clear = false;
4976
4977 return
4978 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4979 }
4980
4981 /* Count the number of scalars in TYPE. Return -1 on overflow or
4982 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4983 array member at the end of the structure. */
4984
4985 HOST_WIDE_INT
4986 count_type_elements (const_tree type, bool allow_flexarr)
4987 {
4988 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4989 switch (TREE_CODE (type))
4990 {
4991 case ARRAY_TYPE:
4992 {
4993 tree telts = array_type_nelts (type);
4994 if (telts && host_integerp (telts, 1))
4995 {
4996 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4997 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4998 if (n == 0)
4999 return 0;
5000 else if (max / n > m)
5001 return n * m;
5002 }
5003 return -1;
5004 }
5005
5006 case RECORD_TYPE:
5007 {
5008 HOST_WIDE_INT n = 0, t;
5009 tree f;
5010
5011 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5012 if (TREE_CODE (f) == FIELD_DECL)
5013 {
5014 t = count_type_elements (TREE_TYPE (f), false);
5015 if (t < 0)
5016 {
5017 /* Check for structures with flexible array member. */
5018 tree tf = TREE_TYPE (f);
5019 if (allow_flexarr
5020 && TREE_CHAIN (f) == NULL
5021 && TREE_CODE (tf) == ARRAY_TYPE
5022 && TYPE_DOMAIN (tf)
5023 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5024 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5025 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5026 && int_size_in_bytes (type) >= 0)
5027 break;
5028
5029 return -1;
5030 }
5031 n += t;
5032 }
5033
5034 return n;
5035 }
5036
5037 case UNION_TYPE:
5038 case QUAL_UNION_TYPE:
5039 return -1;
5040
5041 case COMPLEX_TYPE:
5042 return 2;
5043
5044 case VECTOR_TYPE:
5045 return TYPE_VECTOR_SUBPARTS (type);
5046
5047 case INTEGER_TYPE:
5048 case REAL_TYPE:
5049 case FIXED_POINT_TYPE:
5050 case ENUMERAL_TYPE:
5051 case BOOLEAN_TYPE:
5052 case POINTER_TYPE:
5053 case OFFSET_TYPE:
5054 case REFERENCE_TYPE:
5055 return 1;
5056
5057 case ERROR_MARK:
5058 return 0;
5059
5060 case VOID_TYPE:
5061 case METHOD_TYPE:
5062 case FUNCTION_TYPE:
5063 case LANG_TYPE:
5064 default:
5065 gcc_unreachable ();
5066 }
5067 }
5068
5069 /* Return 1 if EXP contains mostly (3/4) zeros. */
5070
5071 static int
5072 mostly_zeros_p (const_tree exp)
5073 {
5074 if (TREE_CODE (exp) == CONSTRUCTOR)
5075
5076 {
5077 HOST_WIDE_INT nz_elts, count, elts;
5078 bool must_clear;
5079
5080 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5081 if (must_clear)
5082 return 1;
5083
5084 elts = count_type_elements (TREE_TYPE (exp), false);
5085
5086 return nz_elts < elts / 4;
5087 }
5088
5089 return initializer_zerop (exp);
5090 }
5091
5092 /* Return 1 if EXP contains all zeros. */
5093
5094 static int
5095 all_zeros_p (const_tree exp)
5096 {
5097 if (TREE_CODE (exp) == CONSTRUCTOR)
5098
5099 {
5100 HOST_WIDE_INT nz_elts, count;
5101 bool must_clear;
5102
5103 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5104 return nz_elts == 0;
5105 }
5106
5107 return initializer_zerop (exp);
5108 }
5109 \f
5110 /* Helper function for store_constructor.
5111 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5112 TYPE is the type of the CONSTRUCTOR, not the element type.
5113 CLEARED is as for store_constructor.
5114 ALIAS_SET is the alias set to use for any stores.
5115
5116 This provides a recursive shortcut back to store_constructor when it isn't
5117 necessary to go through store_field. This is so that we can pass through
5118 the cleared field to let store_constructor know that we may not have to
5119 clear a substructure if the outer structure has already been cleared. */
5120
5121 static void
5122 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5123 HOST_WIDE_INT bitpos, enum machine_mode mode,
5124 tree exp, tree type, int cleared,
5125 alias_set_type alias_set)
5126 {
5127 if (TREE_CODE (exp) == CONSTRUCTOR
5128 /* We can only call store_constructor recursively if the size and
5129 bit position are on a byte boundary. */
5130 && bitpos % BITS_PER_UNIT == 0
5131 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5132 /* If we have a nonzero bitpos for a register target, then we just
5133 let store_field do the bitfield handling. This is unlikely to
5134 generate unnecessary clear instructions anyways. */
5135 && (bitpos == 0 || MEM_P (target)))
5136 {
5137 if (MEM_P (target))
5138 target
5139 = adjust_address (target,
5140 GET_MODE (target) == BLKmode
5141 || 0 != (bitpos
5142 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5143 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5144
5145
5146 /* Update the alias set, if required. */
5147 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5148 && MEM_ALIAS_SET (target) != 0)
5149 {
5150 target = copy_rtx (target);
5151 set_mem_alias_set (target, alias_set);
5152 }
5153
5154 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5155 }
5156 else
5157 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5158 }
5159
5160 /* Store the value of constructor EXP into the rtx TARGET.
5161 TARGET is either a REG or a MEM; we know it cannot conflict, since
5162 safe_from_p has been called.
5163 CLEARED is true if TARGET is known to have been zero'd.
5164 SIZE is the number of bytes of TARGET we are allowed to modify: this
5165 may not be the same as the size of EXP if we are assigning to a field
5166 which has been packed to exclude padding bits. */
5167
5168 static void
5169 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5170 {
5171 tree type = TREE_TYPE (exp);
5172 #ifdef WORD_REGISTER_OPERATIONS
5173 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5174 #endif
5175
5176 switch (TREE_CODE (type))
5177 {
5178 case RECORD_TYPE:
5179 case UNION_TYPE:
5180 case QUAL_UNION_TYPE:
5181 {
5182 unsigned HOST_WIDE_INT idx;
5183 tree field, value;
5184
5185 /* If size is zero or the target is already cleared, do nothing. */
5186 if (size == 0 || cleared)
5187 cleared = 1;
5188 /* We either clear the aggregate or indicate the value is dead. */
5189 else if ((TREE_CODE (type) == UNION_TYPE
5190 || TREE_CODE (type) == QUAL_UNION_TYPE)
5191 && ! CONSTRUCTOR_ELTS (exp))
5192 /* If the constructor is empty, clear the union. */
5193 {
5194 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5195 cleared = 1;
5196 }
5197
5198 /* If we are building a static constructor into a register,
5199 set the initial value as zero so we can fold the value into
5200 a constant. But if more than one register is involved,
5201 this probably loses. */
5202 else if (REG_P (target) && TREE_STATIC (exp)
5203 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5204 {
5205 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5206 cleared = 1;
5207 }
5208
5209 /* If the constructor has fewer fields than the structure or
5210 if we are initializing the structure to mostly zeros, clear
5211 the whole structure first. Don't do this if TARGET is a
5212 register whose mode size isn't equal to SIZE since
5213 clear_storage can't handle this case. */
5214 else if (size > 0
5215 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5216 != fields_length (type))
5217 || mostly_zeros_p (exp))
5218 && (!REG_P (target)
5219 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5220 == size)))
5221 {
5222 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5223 cleared = 1;
5224 }
5225
5226 if (REG_P (target) && !cleared)
5227 emit_clobber (target);
5228
5229 /* Store each element of the constructor into the
5230 corresponding field of TARGET. */
5231 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5232 {
5233 enum machine_mode mode;
5234 HOST_WIDE_INT bitsize;
5235 HOST_WIDE_INT bitpos = 0;
5236 tree offset;
5237 rtx to_rtx = target;
5238
5239 /* Just ignore missing fields. We cleared the whole
5240 structure, above, if any fields are missing. */
5241 if (field == 0)
5242 continue;
5243
5244 if (cleared && initializer_zerop (value))
5245 continue;
5246
5247 if (host_integerp (DECL_SIZE (field), 1))
5248 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5249 else
5250 bitsize = -1;
5251
5252 mode = DECL_MODE (field);
5253 if (DECL_BIT_FIELD (field))
5254 mode = VOIDmode;
5255
5256 offset = DECL_FIELD_OFFSET (field);
5257 if (host_integerp (offset, 0)
5258 && host_integerp (bit_position (field), 0))
5259 {
5260 bitpos = int_bit_position (field);
5261 offset = 0;
5262 }
5263 else
5264 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5265
5266 if (offset)
5267 {
5268 rtx offset_rtx;
5269
5270 offset
5271 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5272 make_tree (TREE_TYPE (exp),
5273 target));
5274
5275 offset_rtx = expand_normal (offset);
5276 gcc_assert (MEM_P (to_rtx));
5277
5278 #ifdef POINTERS_EXTEND_UNSIGNED
5279 if (GET_MODE (offset_rtx) != Pmode)
5280 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5281 #else
5282 if (GET_MODE (offset_rtx) != ptr_mode)
5283 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5284 #endif
5285
5286 to_rtx = offset_address (to_rtx, offset_rtx,
5287 highest_pow2_factor (offset));
5288 }
5289
5290 #ifdef WORD_REGISTER_OPERATIONS
5291 /* If this initializes a field that is smaller than a
5292 word, at the start of a word, try to widen it to a full
5293 word. This special case allows us to output C++ member
5294 function initializations in a form that the optimizers
5295 can understand. */
5296 if (REG_P (target)
5297 && bitsize < BITS_PER_WORD
5298 && bitpos % BITS_PER_WORD == 0
5299 && GET_MODE_CLASS (mode) == MODE_INT
5300 && TREE_CODE (value) == INTEGER_CST
5301 && exp_size >= 0
5302 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5303 {
5304 tree type = TREE_TYPE (value);
5305
5306 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5307 {
5308 type = lang_hooks.types.type_for_size
5309 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5310 value = fold_convert (type, value);
5311 }
5312
5313 if (BYTES_BIG_ENDIAN)
5314 value
5315 = fold_build2 (LSHIFT_EXPR, type, value,
5316 build_int_cst (type,
5317 BITS_PER_WORD - bitsize));
5318 bitsize = BITS_PER_WORD;
5319 mode = word_mode;
5320 }
5321 #endif
5322
5323 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5324 && DECL_NONADDRESSABLE_P (field))
5325 {
5326 to_rtx = copy_rtx (to_rtx);
5327 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5328 }
5329
5330 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5331 value, type, cleared,
5332 get_alias_set (TREE_TYPE (field)));
5333 }
5334 break;
5335 }
5336 case ARRAY_TYPE:
5337 {
5338 tree value, index;
5339 unsigned HOST_WIDE_INT i;
5340 int need_to_clear;
5341 tree domain;
5342 tree elttype = TREE_TYPE (type);
5343 int const_bounds_p;
5344 HOST_WIDE_INT minelt = 0;
5345 HOST_WIDE_INT maxelt = 0;
5346
5347 domain = TYPE_DOMAIN (type);
5348 const_bounds_p = (TYPE_MIN_VALUE (domain)
5349 && TYPE_MAX_VALUE (domain)
5350 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5351 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5352
5353 /* If we have constant bounds for the range of the type, get them. */
5354 if (const_bounds_p)
5355 {
5356 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5357 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5358 }
5359
5360 /* If the constructor has fewer elements than the array, clear
5361 the whole array first. Similarly if this is static
5362 constructor of a non-BLKmode object. */
5363 if (cleared)
5364 need_to_clear = 0;
5365 else if (REG_P (target) && TREE_STATIC (exp))
5366 need_to_clear = 1;
5367 else
5368 {
5369 unsigned HOST_WIDE_INT idx;
5370 tree index, value;
5371 HOST_WIDE_INT count = 0, zero_count = 0;
5372 need_to_clear = ! const_bounds_p;
5373
5374 /* This loop is a more accurate version of the loop in
5375 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5376 is also needed to check for missing elements. */
5377 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5378 {
5379 HOST_WIDE_INT this_node_count;
5380
5381 if (need_to_clear)
5382 break;
5383
5384 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5385 {
5386 tree lo_index = TREE_OPERAND (index, 0);
5387 tree hi_index = TREE_OPERAND (index, 1);
5388
5389 if (! host_integerp (lo_index, 1)
5390 || ! host_integerp (hi_index, 1))
5391 {
5392 need_to_clear = 1;
5393 break;
5394 }
5395
5396 this_node_count = (tree_low_cst (hi_index, 1)
5397 - tree_low_cst (lo_index, 1) + 1);
5398 }
5399 else
5400 this_node_count = 1;
5401
5402 count += this_node_count;
5403 if (mostly_zeros_p (value))
5404 zero_count += this_node_count;
5405 }
5406
5407 /* Clear the entire array first if there are any missing
5408 elements, or if the incidence of zero elements is >=
5409 75%. */
5410 if (! need_to_clear
5411 && (count < maxelt - minelt + 1
5412 || 4 * zero_count >= 3 * count))
5413 need_to_clear = 1;
5414 }
5415
5416 if (need_to_clear && size > 0)
5417 {
5418 if (REG_P (target))
5419 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5420 else
5421 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5422 cleared = 1;
5423 }
5424
5425 if (!cleared && REG_P (target))
5426 /* Inform later passes that the old value is dead. */
5427 emit_clobber (target);
5428
5429 /* Store each element of the constructor into the
5430 corresponding element of TARGET, determined by counting the
5431 elements. */
5432 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5433 {
5434 enum machine_mode mode;
5435 HOST_WIDE_INT bitsize;
5436 HOST_WIDE_INT bitpos;
5437 int unsignedp;
5438 rtx xtarget = target;
5439
5440 if (cleared && initializer_zerop (value))
5441 continue;
5442
5443 unsignedp = TYPE_UNSIGNED (elttype);
5444 mode = TYPE_MODE (elttype);
5445 if (mode == BLKmode)
5446 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5447 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5448 : -1);
5449 else
5450 bitsize = GET_MODE_BITSIZE (mode);
5451
5452 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5453 {
5454 tree lo_index = TREE_OPERAND (index, 0);
5455 tree hi_index = TREE_OPERAND (index, 1);
5456 rtx index_r, pos_rtx;
5457 HOST_WIDE_INT lo, hi, count;
5458 tree position;
5459
5460 /* If the range is constant and "small", unroll the loop. */
5461 if (const_bounds_p
5462 && host_integerp (lo_index, 0)
5463 && host_integerp (hi_index, 0)
5464 && (lo = tree_low_cst (lo_index, 0),
5465 hi = tree_low_cst (hi_index, 0),
5466 count = hi - lo + 1,
5467 (!MEM_P (target)
5468 || count <= 2
5469 || (host_integerp (TYPE_SIZE (elttype), 1)
5470 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5471 <= 40 * 8)))))
5472 {
5473 lo -= minelt; hi -= minelt;
5474 for (; lo <= hi; lo++)
5475 {
5476 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5477
5478 if (MEM_P (target)
5479 && !MEM_KEEP_ALIAS_SET_P (target)
5480 && TREE_CODE (type) == ARRAY_TYPE
5481 && TYPE_NONALIASED_COMPONENT (type))
5482 {
5483 target = copy_rtx (target);
5484 MEM_KEEP_ALIAS_SET_P (target) = 1;
5485 }
5486
5487 store_constructor_field
5488 (target, bitsize, bitpos, mode, value, type, cleared,
5489 get_alias_set (elttype));
5490 }
5491 }
5492 else
5493 {
5494 rtx loop_start = gen_label_rtx ();
5495 rtx loop_end = gen_label_rtx ();
5496 tree exit_cond;
5497
5498 expand_normal (hi_index);
5499 unsignedp = TYPE_UNSIGNED (domain);
5500
5501 index = build_decl (EXPR_LOCATION (exp),
5502 VAR_DECL, NULL_TREE, domain);
5503
5504 index_r
5505 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5506 &unsignedp, 0));
5507 SET_DECL_RTL (index, index_r);
5508 store_expr (lo_index, index_r, 0, false);
5509
5510 /* Build the head of the loop. */
5511 do_pending_stack_adjust ();
5512 emit_label (loop_start);
5513
5514 /* Assign value to element index. */
5515 position =
5516 fold_convert (ssizetype,
5517 fold_build2 (MINUS_EXPR,
5518 TREE_TYPE (index),
5519 index,
5520 TYPE_MIN_VALUE (domain)));
5521
5522 position =
5523 size_binop (MULT_EXPR, position,
5524 fold_convert (ssizetype,
5525 TYPE_SIZE_UNIT (elttype)));
5526
5527 pos_rtx = expand_normal (position);
5528 xtarget = offset_address (target, pos_rtx,
5529 highest_pow2_factor (position));
5530 xtarget = adjust_address (xtarget, mode, 0);
5531 if (TREE_CODE (value) == CONSTRUCTOR)
5532 store_constructor (value, xtarget, cleared,
5533 bitsize / BITS_PER_UNIT);
5534 else
5535 store_expr (value, xtarget, 0, false);
5536
5537 /* Generate a conditional jump to exit the loop. */
5538 exit_cond = build2 (LT_EXPR, integer_type_node,
5539 index, hi_index);
5540 jumpif (exit_cond, loop_end);
5541
5542 /* Update the loop counter, and jump to the head of
5543 the loop. */
5544 expand_assignment (index,
5545 build2 (PLUS_EXPR, TREE_TYPE (index),
5546 index, integer_one_node),
5547 false);
5548
5549 emit_jump (loop_start);
5550
5551 /* Build the end of the loop. */
5552 emit_label (loop_end);
5553 }
5554 }
5555 else if ((index != 0 && ! host_integerp (index, 0))
5556 || ! host_integerp (TYPE_SIZE (elttype), 1))
5557 {
5558 tree position;
5559
5560 if (index == 0)
5561 index = ssize_int (1);
5562
5563 if (minelt)
5564 index = fold_convert (ssizetype,
5565 fold_build2 (MINUS_EXPR,
5566 TREE_TYPE (index),
5567 index,
5568 TYPE_MIN_VALUE (domain)));
5569
5570 position =
5571 size_binop (MULT_EXPR, index,
5572 fold_convert (ssizetype,
5573 TYPE_SIZE_UNIT (elttype)));
5574 xtarget = offset_address (target,
5575 expand_normal (position),
5576 highest_pow2_factor (position));
5577 xtarget = adjust_address (xtarget, mode, 0);
5578 store_expr (value, xtarget, 0, false);
5579 }
5580 else
5581 {
5582 if (index != 0)
5583 bitpos = ((tree_low_cst (index, 0) - minelt)
5584 * tree_low_cst (TYPE_SIZE (elttype), 1));
5585 else
5586 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5587
5588 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5589 && TREE_CODE (type) == ARRAY_TYPE
5590 && TYPE_NONALIASED_COMPONENT (type))
5591 {
5592 target = copy_rtx (target);
5593 MEM_KEEP_ALIAS_SET_P (target) = 1;
5594 }
5595 store_constructor_field (target, bitsize, bitpos, mode, value,
5596 type, cleared, get_alias_set (elttype));
5597 }
5598 }
5599 break;
5600 }
5601
5602 case VECTOR_TYPE:
5603 {
5604 unsigned HOST_WIDE_INT idx;
5605 constructor_elt *ce;
5606 int i;
5607 int need_to_clear;
5608 int icode = 0;
5609 tree elttype = TREE_TYPE (type);
5610 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5611 enum machine_mode eltmode = TYPE_MODE (elttype);
5612 HOST_WIDE_INT bitsize;
5613 HOST_WIDE_INT bitpos;
5614 rtvec vector = NULL;
5615 unsigned n_elts;
5616 alias_set_type alias;
5617
5618 gcc_assert (eltmode != BLKmode);
5619
5620 n_elts = TYPE_VECTOR_SUBPARTS (type);
5621 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5622 {
5623 enum machine_mode mode = GET_MODE (target);
5624
5625 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5626 if (icode != CODE_FOR_nothing)
5627 {
5628 unsigned int i;
5629
5630 vector = rtvec_alloc (n_elts);
5631 for (i = 0; i < n_elts; i++)
5632 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5633 }
5634 }
5635
5636 /* If the constructor has fewer elements than the vector,
5637 clear the whole array first. Similarly if this is static
5638 constructor of a non-BLKmode object. */
5639 if (cleared)
5640 need_to_clear = 0;
5641 else if (REG_P (target) && TREE_STATIC (exp))
5642 need_to_clear = 1;
5643 else
5644 {
5645 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5646 tree value;
5647
5648 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5649 {
5650 int n_elts_here = tree_low_cst
5651 (int_const_binop (TRUNC_DIV_EXPR,
5652 TYPE_SIZE (TREE_TYPE (value)),
5653 TYPE_SIZE (elttype), 0), 1);
5654
5655 count += n_elts_here;
5656 if (mostly_zeros_p (value))
5657 zero_count += n_elts_here;
5658 }
5659
5660 /* Clear the entire vector first if there are any missing elements,
5661 or if the incidence of zero elements is >= 75%. */
5662 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5663 }
5664
5665 if (need_to_clear && size > 0 && !vector)
5666 {
5667 if (REG_P (target))
5668 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5669 else
5670 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5671 cleared = 1;
5672 }
5673
5674 /* Inform later passes that the old value is dead. */
5675 if (!cleared && !vector && REG_P (target))
5676 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5677
5678 if (MEM_P (target))
5679 alias = MEM_ALIAS_SET (target);
5680 else
5681 alias = get_alias_set (elttype);
5682
5683 /* Store each element of the constructor into the corresponding
5684 element of TARGET, determined by counting the elements. */
5685 for (idx = 0, i = 0;
5686 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5687 idx++, i += bitsize / elt_size)
5688 {
5689 HOST_WIDE_INT eltpos;
5690 tree value = ce->value;
5691
5692 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5693 if (cleared && initializer_zerop (value))
5694 continue;
5695
5696 if (ce->index)
5697 eltpos = tree_low_cst (ce->index, 1);
5698 else
5699 eltpos = i;
5700
5701 if (vector)
5702 {
5703 /* Vector CONSTRUCTORs should only be built from smaller
5704 vectors in the case of BLKmode vectors. */
5705 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5706 RTVEC_ELT (vector, eltpos)
5707 = expand_normal (value);
5708 }
5709 else
5710 {
5711 enum machine_mode value_mode =
5712 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5713 ? TYPE_MODE (TREE_TYPE (value))
5714 : eltmode;
5715 bitpos = eltpos * elt_size;
5716 store_constructor_field (target, bitsize, bitpos,
5717 value_mode, value, type,
5718 cleared, alias);
5719 }
5720 }
5721
5722 if (vector)
5723 emit_insn (GEN_FCN (icode)
5724 (target,
5725 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5726 break;
5727 }
5728
5729 default:
5730 gcc_unreachable ();
5731 }
5732 }
5733
5734 /* Store the value of EXP (an expression tree)
5735 into a subfield of TARGET which has mode MODE and occupies
5736 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5737 If MODE is VOIDmode, it means that we are storing into a bit-field.
5738
5739 Always return const0_rtx unless we have something particular to
5740 return.
5741
5742 TYPE is the type of the underlying object,
5743
5744 ALIAS_SET is the alias set for the destination. This value will
5745 (in general) be different from that for TARGET, since TARGET is a
5746 reference to the containing structure.
5747
5748 If NONTEMPORAL is true, try generating a nontemporal store. */
5749
5750 static rtx
5751 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5752 enum machine_mode mode, tree exp, tree type,
5753 alias_set_type alias_set, bool nontemporal)
5754 {
5755 HOST_WIDE_INT width_mask = 0;
5756
5757 if (TREE_CODE (exp) == ERROR_MARK)
5758 return const0_rtx;
5759
5760 /* If we have nothing to store, do nothing unless the expression has
5761 side-effects. */
5762 if (bitsize == 0)
5763 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5764 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5765 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5766
5767 /* If we are storing into an unaligned field of an aligned union that is
5768 in a register, we may have the mode of TARGET being an integer mode but
5769 MODE == BLKmode. In that case, get an aligned object whose size and
5770 alignment are the same as TARGET and store TARGET into it (we can avoid
5771 the store if the field being stored is the entire width of TARGET). Then
5772 call ourselves recursively to store the field into a BLKmode version of
5773 that object. Finally, load from the object into TARGET. This is not
5774 very efficient in general, but should only be slightly more expensive
5775 than the otherwise-required unaligned accesses. Perhaps this can be
5776 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5777 twice, once with emit_move_insn and once via store_field. */
5778
5779 if (mode == BLKmode
5780 && (REG_P (target) || GET_CODE (target) == SUBREG))
5781 {
5782 rtx object = assign_temp (type, 0, 1, 1);
5783 rtx blk_object = adjust_address (object, BLKmode, 0);
5784
5785 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5786 emit_move_insn (object, target);
5787
5788 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5789 nontemporal);
5790
5791 emit_move_insn (target, object);
5792
5793 /* We want to return the BLKmode version of the data. */
5794 return blk_object;
5795 }
5796
5797 if (GET_CODE (target) == CONCAT)
5798 {
5799 /* We're storing into a struct containing a single __complex. */
5800
5801 gcc_assert (!bitpos);
5802 return store_expr (exp, target, 0, nontemporal);
5803 }
5804
5805 /* If the structure is in a register or if the component
5806 is a bit field, we cannot use addressing to access it.
5807 Use bit-field techniques or SUBREG to store in it. */
5808
5809 if (mode == VOIDmode
5810 || (mode != BLKmode && ! direct_store[(int) mode]
5811 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5812 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5813 || REG_P (target)
5814 || GET_CODE (target) == SUBREG
5815 /* If the field isn't aligned enough to store as an ordinary memref,
5816 store it as a bit field. */
5817 || (mode != BLKmode
5818 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5819 || bitpos % GET_MODE_ALIGNMENT (mode))
5820 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5821 || (bitpos % BITS_PER_UNIT != 0)))
5822 /* If the RHS and field are a constant size and the size of the
5823 RHS isn't the same size as the bitfield, we must use bitfield
5824 operations. */
5825 || (bitsize >= 0
5826 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5827 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5828 {
5829 rtx temp;
5830 gimple nop_def;
5831
5832 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5833 implies a mask operation. If the precision is the same size as
5834 the field we're storing into, that mask is redundant. This is
5835 particularly common with bit field assignments generated by the
5836 C front end. */
5837 nop_def = get_def_for_expr (exp, NOP_EXPR);
5838 if (nop_def)
5839 {
5840 tree type = TREE_TYPE (exp);
5841 if (INTEGRAL_TYPE_P (type)
5842 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5843 && bitsize == TYPE_PRECISION (type))
5844 {
5845 tree op = gimple_assign_rhs1 (nop_def);
5846 type = TREE_TYPE (op);
5847 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5848 exp = op;
5849 }
5850 }
5851
5852 temp = expand_normal (exp);
5853
5854 /* If BITSIZE is narrower than the size of the type of EXP
5855 we will be narrowing TEMP. Normally, what's wanted are the
5856 low-order bits. However, if EXP's type is a record and this is
5857 big-endian machine, we want the upper BITSIZE bits. */
5858 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5859 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5860 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5861 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5862 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5863 - bitsize),
5864 NULL_RTX, 1);
5865
5866 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5867 MODE. */
5868 if (mode != VOIDmode && mode != BLKmode
5869 && mode != TYPE_MODE (TREE_TYPE (exp)))
5870 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5871
5872 /* If the modes of TEMP and TARGET are both BLKmode, both
5873 must be in memory and BITPOS must be aligned on a byte
5874 boundary. If so, we simply do a block copy. Likewise
5875 for a BLKmode-like TARGET. */
5876 if (GET_MODE (temp) == BLKmode
5877 && (GET_MODE (target) == BLKmode
5878 || (MEM_P (target)
5879 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5880 && (bitpos % BITS_PER_UNIT) == 0
5881 && (bitsize % BITS_PER_UNIT) == 0)))
5882 {
5883 gcc_assert (MEM_P (target) && MEM_P (temp)
5884 && (bitpos % BITS_PER_UNIT) == 0);
5885
5886 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5887 emit_block_move (target, temp,
5888 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5889 / BITS_PER_UNIT),
5890 BLOCK_OP_NORMAL);
5891
5892 return const0_rtx;
5893 }
5894
5895 /* Store the value in the bitfield. */
5896 store_bit_field (target, bitsize, bitpos, mode, temp);
5897
5898 return const0_rtx;
5899 }
5900 else
5901 {
5902 /* Now build a reference to just the desired component. */
5903 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5904
5905 if (to_rtx == target)
5906 to_rtx = copy_rtx (to_rtx);
5907
5908 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5909 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5910 set_mem_alias_set (to_rtx, alias_set);
5911
5912 return store_expr (exp, to_rtx, 0, nontemporal);
5913 }
5914 }
5915 \f
5916 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5917 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5918 codes and find the ultimate containing object, which we return.
5919
5920 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5921 bit position, and *PUNSIGNEDP to the signedness of the field.
5922 If the position of the field is variable, we store a tree
5923 giving the variable offset (in units) in *POFFSET.
5924 This offset is in addition to the bit position.
5925 If the position is not variable, we store 0 in *POFFSET.
5926
5927 If any of the extraction expressions is volatile,
5928 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5929
5930 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5931 Otherwise, it is a mode that can be used to access the field.
5932
5933 If the field describes a variable-sized object, *PMODE is set to
5934 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5935 this case, but the address of the object can be found.
5936
5937 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5938 look through nodes that serve as markers of a greater alignment than
5939 the one that can be deduced from the expression. These nodes make it
5940 possible for front-ends to prevent temporaries from being created by
5941 the middle-end on alignment considerations. For that purpose, the
5942 normal operating mode at high-level is to always pass FALSE so that
5943 the ultimate containing object is really returned; moreover, the
5944 associated predicate handled_component_p will always return TRUE
5945 on these nodes, thus indicating that they are essentially handled
5946 by get_inner_reference. TRUE should only be passed when the caller
5947 is scanning the expression in order to build another representation
5948 and specifically knows how to handle these nodes; as such, this is
5949 the normal operating mode in the RTL expanders. */
5950
5951 tree
5952 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5953 HOST_WIDE_INT *pbitpos, tree *poffset,
5954 enum machine_mode *pmode, int *punsignedp,
5955 int *pvolatilep, bool keep_aligning)
5956 {
5957 tree size_tree = 0;
5958 enum machine_mode mode = VOIDmode;
5959 bool blkmode_bitfield = false;
5960 tree offset = size_zero_node;
5961 tree bit_offset = bitsize_zero_node;
5962
5963 /* First get the mode, signedness, and size. We do this from just the
5964 outermost expression. */
5965 if (TREE_CODE (exp) == COMPONENT_REF)
5966 {
5967 tree field = TREE_OPERAND (exp, 1);
5968 size_tree = DECL_SIZE (field);
5969 if (!DECL_BIT_FIELD (field))
5970 mode = DECL_MODE (field);
5971 else if (DECL_MODE (field) == BLKmode)
5972 blkmode_bitfield = true;
5973
5974 *punsignedp = DECL_UNSIGNED (field);
5975 }
5976 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5977 {
5978 size_tree = TREE_OPERAND (exp, 1);
5979 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5980 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5981
5982 /* For vector types, with the correct size of access, use the mode of
5983 inner type. */
5984 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5985 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5986 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5987 mode = TYPE_MODE (TREE_TYPE (exp));
5988 }
5989 else
5990 {
5991 mode = TYPE_MODE (TREE_TYPE (exp));
5992 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5993
5994 if (mode == BLKmode)
5995 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5996 else
5997 *pbitsize = GET_MODE_BITSIZE (mode);
5998 }
5999
6000 if (size_tree != 0)
6001 {
6002 if (! host_integerp (size_tree, 1))
6003 mode = BLKmode, *pbitsize = -1;
6004 else
6005 *pbitsize = tree_low_cst (size_tree, 1);
6006 }
6007
6008 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6009 and find the ultimate containing object. */
6010 while (1)
6011 {
6012 switch (TREE_CODE (exp))
6013 {
6014 case BIT_FIELD_REF:
6015 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6016 TREE_OPERAND (exp, 2));
6017 break;
6018
6019 case COMPONENT_REF:
6020 {
6021 tree field = TREE_OPERAND (exp, 1);
6022 tree this_offset = component_ref_field_offset (exp);
6023
6024 /* If this field hasn't been filled in yet, don't go past it.
6025 This should only happen when folding expressions made during
6026 type construction. */
6027 if (this_offset == 0)
6028 break;
6029
6030 offset = size_binop (PLUS_EXPR, offset, this_offset);
6031 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6032 DECL_FIELD_BIT_OFFSET (field));
6033
6034 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6035 }
6036 break;
6037
6038 case ARRAY_REF:
6039 case ARRAY_RANGE_REF:
6040 {
6041 tree index = TREE_OPERAND (exp, 1);
6042 tree low_bound = array_ref_low_bound (exp);
6043 tree unit_size = array_ref_element_size (exp);
6044
6045 /* We assume all arrays have sizes that are a multiple of a byte.
6046 First subtract the lower bound, if any, in the type of the
6047 index, then convert to sizetype and multiply by the size of
6048 the array element. */
6049 if (! integer_zerop (low_bound))
6050 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6051 index, low_bound);
6052
6053 offset = size_binop (PLUS_EXPR, offset,
6054 size_binop (MULT_EXPR,
6055 fold_convert (sizetype, index),
6056 unit_size));
6057 }
6058 break;
6059
6060 case REALPART_EXPR:
6061 break;
6062
6063 case IMAGPART_EXPR:
6064 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6065 bitsize_int (*pbitsize));
6066 break;
6067
6068 case VIEW_CONVERT_EXPR:
6069 if (keep_aligning && STRICT_ALIGNMENT
6070 && (TYPE_ALIGN (TREE_TYPE (exp))
6071 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6072 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6073 < BIGGEST_ALIGNMENT)
6074 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6075 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6076 goto done;
6077 break;
6078
6079 default:
6080 goto done;
6081 }
6082
6083 /* If any reference in the chain is volatile, the effect is volatile. */
6084 if (TREE_THIS_VOLATILE (exp))
6085 *pvolatilep = 1;
6086
6087 exp = TREE_OPERAND (exp, 0);
6088 }
6089 done:
6090
6091 /* If OFFSET is constant, see if we can return the whole thing as a
6092 constant bit position. Make sure to handle overflow during
6093 this conversion. */
6094 if (host_integerp (offset, 0))
6095 {
6096 double_int tem = double_int_mul (tree_to_double_int (offset),
6097 uhwi_to_double_int (BITS_PER_UNIT));
6098 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6099 if (double_int_fits_in_shwi_p (tem))
6100 {
6101 *pbitpos = double_int_to_shwi (tem);
6102 *poffset = offset = NULL_TREE;
6103 }
6104 }
6105
6106 /* Otherwise, split it up. */
6107 if (offset)
6108 {
6109 *pbitpos = tree_low_cst (bit_offset, 0);
6110 *poffset = offset;
6111 }
6112
6113 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6114 if (mode == VOIDmode
6115 && blkmode_bitfield
6116 && (*pbitpos % BITS_PER_UNIT) == 0
6117 && (*pbitsize % BITS_PER_UNIT) == 0)
6118 *pmode = BLKmode;
6119 else
6120 *pmode = mode;
6121
6122 return exp;
6123 }
6124
6125 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6126 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6127 EXP is marked as PACKED. */
6128
6129 bool
6130 contains_packed_reference (const_tree exp)
6131 {
6132 bool packed_p = false;
6133
6134 while (1)
6135 {
6136 switch (TREE_CODE (exp))
6137 {
6138 case COMPONENT_REF:
6139 {
6140 tree field = TREE_OPERAND (exp, 1);
6141 packed_p = DECL_PACKED (field)
6142 || TYPE_PACKED (TREE_TYPE (field))
6143 || TYPE_PACKED (TREE_TYPE (exp));
6144 if (packed_p)
6145 goto done;
6146 }
6147 break;
6148
6149 case BIT_FIELD_REF:
6150 case ARRAY_REF:
6151 case ARRAY_RANGE_REF:
6152 case REALPART_EXPR:
6153 case IMAGPART_EXPR:
6154 case VIEW_CONVERT_EXPR:
6155 break;
6156
6157 default:
6158 goto done;
6159 }
6160 exp = TREE_OPERAND (exp, 0);
6161 }
6162 done:
6163 return packed_p;
6164 }
6165
6166 /* Return a tree of sizetype representing the size, in bytes, of the element
6167 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6168
6169 tree
6170 array_ref_element_size (tree exp)
6171 {
6172 tree aligned_size = TREE_OPERAND (exp, 3);
6173 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6174
6175 /* If a size was specified in the ARRAY_REF, it's the size measured
6176 in alignment units of the element type. So multiply by that value. */
6177 if (aligned_size)
6178 {
6179 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6180 sizetype from another type of the same width and signedness. */
6181 if (TREE_TYPE (aligned_size) != sizetype)
6182 aligned_size = fold_convert (sizetype, aligned_size);
6183 return size_binop (MULT_EXPR, aligned_size,
6184 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6185 }
6186
6187 /* Otherwise, take the size from that of the element type. Substitute
6188 any PLACEHOLDER_EXPR that we have. */
6189 else
6190 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6191 }
6192
6193 /* Return a tree representing the lower bound of the array mentioned in
6194 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6195
6196 tree
6197 array_ref_low_bound (tree exp)
6198 {
6199 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6200
6201 /* If a lower bound is specified in EXP, use it. */
6202 if (TREE_OPERAND (exp, 2))
6203 return TREE_OPERAND (exp, 2);
6204
6205 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6206 substituting for a PLACEHOLDER_EXPR as needed. */
6207 if (domain_type && TYPE_MIN_VALUE (domain_type))
6208 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6209
6210 /* Otherwise, return a zero of the appropriate type. */
6211 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6212 }
6213
6214 /* Return a tree representing the upper bound of the array mentioned in
6215 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6216
6217 tree
6218 array_ref_up_bound (tree exp)
6219 {
6220 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6221
6222 /* If there is a domain type and it has an upper bound, use it, substituting
6223 for a PLACEHOLDER_EXPR as needed. */
6224 if (domain_type && TYPE_MAX_VALUE (domain_type))
6225 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6226
6227 /* Otherwise fail. */
6228 return NULL_TREE;
6229 }
6230
6231 /* Return a tree representing the offset, in bytes, of the field referenced
6232 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6233
6234 tree
6235 component_ref_field_offset (tree exp)
6236 {
6237 tree aligned_offset = TREE_OPERAND (exp, 2);
6238 tree field = TREE_OPERAND (exp, 1);
6239
6240 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6241 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6242 value. */
6243 if (aligned_offset)
6244 {
6245 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6246 sizetype from another type of the same width and signedness. */
6247 if (TREE_TYPE (aligned_offset) != sizetype)
6248 aligned_offset = fold_convert (sizetype, aligned_offset);
6249 return size_binop (MULT_EXPR, aligned_offset,
6250 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6251 }
6252
6253 /* Otherwise, take the offset from that of the field. Substitute
6254 any PLACEHOLDER_EXPR that we have. */
6255 else
6256 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6257 }
6258
6259 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6260
6261 static unsigned HOST_WIDE_INT
6262 target_align (const_tree target)
6263 {
6264 /* We might have a chain of nested references with intermediate misaligning
6265 bitfields components, so need to recurse to find out. */
6266
6267 unsigned HOST_WIDE_INT this_align, outer_align;
6268
6269 switch (TREE_CODE (target))
6270 {
6271 case BIT_FIELD_REF:
6272 return 1;
6273
6274 case COMPONENT_REF:
6275 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6276 outer_align = target_align (TREE_OPERAND (target, 0));
6277 return MIN (this_align, outer_align);
6278
6279 case ARRAY_REF:
6280 case ARRAY_RANGE_REF:
6281 this_align = TYPE_ALIGN (TREE_TYPE (target));
6282 outer_align = target_align (TREE_OPERAND (target, 0));
6283 return MIN (this_align, outer_align);
6284
6285 CASE_CONVERT:
6286 case NON_LVALUE_EXPR:
6287 case VIEW_CONVERT_EXPR:
6288 this_align = TYPE_ALIGN (TREE_TYPE (target));
6289 outer_align = target_align (TREE_OPERAND (target, 0));
6290 return MAX (this_align, outer_align);
6291
6292 default:
6293 return TYPE_ALIGN (TREE_TYPE (target));
6294 }
6295 }
6296
6297 \f
6298 /* Given an rtx VALUE that may contain additions and multiplications, return
6299 an equivalent value that just refers to a register, memory, or constant.
6300 This is done by generating instructions to perform the arithmetic and
6301 returning a pseudo-register containing the value.
6302
6303 The returned value may be a REG, SUBREG, MEM or constant. */
6304
6305 rtx
6306 force_operand (rtx value, rtx target)
6307 {
6308 rtx op1, op2;
6309 /* Use subtarget as the target for operand 0 of a binary operation. */
6310 rtx subtarget = get_subtarget (target);
6311 enum rtx_code code = GET_CODE (value);
6312
6313 /* Check for subreg applied to an expression produced by loop optimizer. */
6314 if (code == SUBREG
6315 && !REG_P (SUBREG_REG (value))
6316 && !MEM_P (SUBREG_REG (value)))
6317 {
6318 value
6319 = simplify_gen_subreg (GET_MODE (value),
6320 force_reg (GET_MODE (SUBREG_REG (value)),
6321 force_operand (SUBREG_REG (value),
6322 NULL_RTX)),
6323 GET_MODE (SUBREG_REG (value)),
6324 SUBREG_BYTE (value));
6325 code = GET_CODE (value);
6326 }
6327
6328 /* Check for a PIC address load. */
6329 if ((code == PLUS || code == MINUS)
6330 && XEXP (value, 0) == pic_offset_table_rtx
6331 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6332 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6333 || GET_CODE (XEXP (value, 1)) == CONST))
6334 {
6335 if (!subtarget)
6336 subtarget = gen_reg_rtx (GET_MODE (value));
6337 emit_move_insn (subtarget, value);
6338 return subtarget;
6339 }
6340
6341 if (ARITHMETIC_P (value))
6342 {
6343 op2 = XEXP (value, 1);
6344 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6345 subtarget = 0;
6346 if (code == MINUS && CONST_INT_P (op2))
6347 {
6348 code = PLUS;
6349 op2 = negate_rtx (GET_MODE (value), op2);
6350 }
6351
6352 /* Check for an addition with OP2 a constant integer and our first
6353 operand a PLUS of a virtual register and something else. In that
6354 case, we want to emit the sum of the virtual register and the
6355 constant first and then add the other value. This allows virtual
6356 register instantiation to simply modify the constant rather than
6357 creating another one around this addition. */
6358 if (code == PLUS && CONST_INT_P (op2)
6359 && GET_CODE (XEXP (value, 0)) == PLUS
6360 && REG_P (XEXP (XEXP (value, 0), 0))
6361 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6362 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6363 {
6364 rtx temp = expand_simple_binop (GET_MODE (value), code,
6365 XEXP (XEXP (value, 0), 0), op2,
6366 subtarget, 0, OPTAB_LIB_WIDEN);
6367 return expand_simple_binop (GET_MODE (value), code, temp,
6368 force_operand (XEXP (XEXP (value,
6369 0), 1), 0),
6370 target, 0, OPTAB_LIB_WIDEN);
6371 }
6372
6373 op1 = force_operand (XEXP (value, 0), subtarget);
6374 op2 = force_operand (op2, NULL_RTX);
6375 switch (code)
6376 {
6377 case MULT:
6378 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6379 case DIV:
6380 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6381 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6382 target, 1, OPTAB_LIB_WIDEN);
6383 else
6384 return expand_divmod (0,
6385 FLOAT_MODE_P (GET_MODE (value))
6386 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6387 GET_MODE (value), op1, op2, target, 0);
6388 case MOD:
6389 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6390 target, 0);
6391 case UDIV:
6392 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6393 target, 1);
6394 case UMOD:
6395 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6396 target, 1);
6397 case ASHIFTRT:
6398 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6399 target, 0, OPTAB_LIB_WIDEN);
6400 default:
6401 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6402 target, 1, OPTAB_LIB_WIDEN);
6403 }
6404 }
6405 if (UNARY_P (value))
6406 {
6407 if (!target)
6408 target = gen_reg_rtx (GET_MODE (value));
6409 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6410 switch (code)
6411 {
6412 case ZERO_EXTEND:
6413 case SIGN_EXTEND:
6414 case TRUNCATE:
6415 case FLOAT_EXTEND:
6416 case FLOAT_TRUNCATE:
6417 convert_move (target, op1, code == ZERO_EXTEND);
6418 return target;
6419
6420 case FIX:
6421 case UNSIGNED_FIX:
6422 expand_fix (target, op1, code == UNSIGNED_FIX);
6423 return target;
6424
6425 case FLOAT:
6426 case UNSIGNED_FLOAT:
6427 expand_float (target, op1, code == UNSIGNED_FLOAT);
6428 return target;
6429
6430 default:
6431 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6432 }
6433 }
6434
6435 #ifdef INSN_SCHEDULING
6436 /* On machines that have insn scheduling, we want all memory reference to be
6437 explicit, so we need to deal with such paradoxical SUBREGs. */
6438 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6439 && (GET_MODE_SIZE (GET_MODE (value))
6440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6441 value
6442 = simplify_gen_subreg (GET_MODE (value),
6443 force_reg (GET_MODE (SUBREG_REG (value)),
6444 force_operand (SUBREG_REG (value),
6445 NULL_RTX)),
6446 GET_MODE (SUBREG_REG (value)),
6447 SUBREG_BYTE (value));
6448 #endif
6449
6450 return value;
6451 }
6452 \f
6453 /* Subroutine of expand_expr: return nonzero iff there is no way that
6454 EXP can reference X, which is being modified. TOP_P is nonzero if this
6455 call is going to be used to determine whether we need a temporary
6456 for EXP, as opposed to a recursive call to this function.
6457
6458 It is always safe for this routine to return zero since it merely
6459 searches for optimization opportunities. */
6460
6461 int
6462 safe_from_p (const_rtx x, tree exp, int top_p)
6463 {
6464 rtx exp_rtl = 0;
6465 int i, nops;
6466
6467 if (x == 0
6468 /* If EXP has varying size, we MUST use a target since we currently
6469 have no way of allocating temporaries of variable size
6470 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6471 So we assume here that something at a higher level has prevented a
6472 clash. This is somewhat bogus, but the best we can do. Only
6473 do this when X is BLKmode and when we are at the top level. */
6474 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6475 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6476 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6477 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6478 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6479 != INTEGER_CST)
6480 && GET_MODE (x) == BLKmode)
6481 /* If X is in the outgoing argument area, it is always safe. */
6482 || (MEM_P (x)
6483 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6484 || (GET_CODE (XEXP (x, 0)) == PLUS
6485 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6486 return 1;
6487
6488 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6489 find the underlying pseudo. */
6490 if (GET_CODE (x) == SUBREG)
6491 {
6492 x = SUBREG_REG (x);
6493 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6494 return 0;
6495 }
6496
6497 /* Now look at our tree code and possibly recurse. */
6498 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6499 {
6500 case tcc_declaration:
6501 exp_rtl = DECL_RTL_IF_SET (exp);
6502 break;
6503
6504 case tcc_constant:
6505 return 1;
6506
6507 case tcc_exceptional:
6508 if (TREE_CODE (exp) == TREE_LIST)
6509 {
6510 while (1)
6511 {
6512 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6513 return 0;
6514 exp = TREE_CHAIN (exp);
6515 if (!exp)
6516 return 1;
6517 if (TREE_CODE (exp) != TREE_LIST)
6518 return safe_from_p (x, exp, 0);
6519 }
6520 }
6521 else if (TREE_CODE (exp) == CONSTRUCTOR)
6522 {
6523 constructor_elt *ce;
6524 unsigned HOST_WIDE_INT idx;
6525
6526 for (idx = 0;
6527 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6528 idx++)
6529 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6530 || !safe_from_p (x, ce->value, 0))
6531 return 0;
6532 return 1;
6533 }
6534 else if (TREE_CODE (exp) == ERROR_MARK)
6535 return 1; /* An already-visited SAVE_EXPR? */
6536 else
6537 return 0;
6538
6539 case tcc_statement:
6540 /* The only case we look at here is the DECL_INITIAL inside a
6541 DECL_EXPR. */
6542 return (TREE_CODE (exp) != DECL_EXPR
6543 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6544 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6545 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6546
6547 case tcc_binary:
6548 case tcc_comparison:
6549 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6550 return 0;
6551 /* Fall through. */
6552
6553 case tcc_unary:
6554 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6555
6556 case tcc_expression:
6557 case tcc_reference:
6558 case tcc_vl_exp:
6559 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6560 the expression. If it is set, we conflict iff we are that rtx or
6561 both are in memory. Otherwise, we check all operands of the
6562 expression recursively. */
6563
6564 switch (TREE_CODE (exp))
6565 {
6566 case ADDR_EXPR:
6567 /* If the operand is static or we are static, we can't conflict.
6568 Likewise if we don't conflict with the operand at all. */
6569 if (staticp (TREE_OPERAND (exp, 0))
6570 || TREE_STATIC (exp)
6571 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6572 return 1;
6573
6574 /* Otherwise, the only way this can conflict is if we are taking
6575 the address of a DECL a that address if part of X, which is
6576 very rare. */
6577 exp = TREE_OPERAND (exp, 0);
6578 if (DECL_P (exp))
6579 {
6580 if (!DECL_RTL_SET_P (exp)
6581 || !MEM_P (DECL_RTL (exp)))
6582 return 0;
6583 else
6584 exp_rtl = XEXP (DECL_RTL (exp), 0);
6585 }
6586 break;
6587
6588 case MISALIGNED_INDIRECT_REF:
6589 case ALIGN_INDIRECT_REF:
6590 case INDIRECT_REF:
6591 if (MEM_P (x)
6592 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6593 get_alias_set (exp)))
6594 return 0;
6595 break;
6596
6597 case CALL_EXPR:
6598 /* Assume that the call will clobber all hard registers and
6599 all of memory. */
6600 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6601 || MEM_P (x))
6602 return 0;
6603 break;
6604
6605 case WITH_CLEANUP_EXPR:
6606 case CLEANUP_POINT_EXPR:
6607 /* Lowered by gimplify.c. */
6608 gcc_unreachable ();
6609
6610 case SAVE_EXPR:
6611 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6612
6613 default:
6614 break;
6615 }
6616
6617 /* If we have an rtx, we do not need to scan our operands. */
6618 if (exp_rtl)
6619 break;
6620
6621 nops = TREE_OPERAND_LENGTH (exp);
6622 for (i = 0; i < nops; i++)
6623 if (TREE_OPERAND (exp, i) != 0
6624 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6625 return 0;
6626
6627 break;
6628
6629 case tcc_type:
6630 /* Should never get a type here. */
6631 gcc_unreachable ();
6632 }
6633
6634 /* If we have an rtl, find any enclosed object. Then see if we conflict
6635 with it. */
6636 if (exp_rtl)
6637 {
6638 if (GET_CODE (exp_rtl) == SUBREG)
6639 {
6640 exp_rtl = SUBREG_REG (exp_rtl);
6641 if (REG_P (exp_rtl)
6642 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6643 return 0;
6644 }
6645
6646 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6647 are memory and they conflict. */
6648 return ! (rtx_equal_p (x, exp_rtl)
6649 || (MEM_P (x) && MEM_P (exp_rtl)
6650 && true_dependence (exp_rtl, VOIDmode, x,
6651 rtx_addr_varies_p)));
6652 }
6653
6654 /* If we reach here, it is safe. */
6655 return 1;
6656 }
6657
6658 \f
6659 /* Return the highest power of two that EXP is known to be a multiple of.
6660 This is used in updating alignment of MEMs in array references. */
6661
6662 unsigned HOST_WIDE_INT
6663 highest_pow2_factor (const_tree exp)
6664 {
6665 unsigned HOST_WIDE_INT c0, c1;
6666
6667 switch (TREE_CODE (exp))
6668 {
6669 case INTEGER_CST:
6670 /* We can find the lowest bit that's a one. If the low
6671 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6672 We need to handle this case since we can find it in a COND_EXPR,
6673 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6674 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6675 later ICE. */
6676 if (TREE_OVERFLOW (exp))
6677 return BIGGEST_ALIGNMENT;
6678 else
6679 {
6680 /* Note: tree_low_cst is intentionally not used here,
6681 we don't care about the upper bits. */
6682 c0 = TREE_INT_CST_LOW (exp);
6683 c0 &= -c0;
6684 return c0 ? c0 : BIGGEST_ALIGNMENT;
6685 }
6686 break;
6687
6688 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6689 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6690 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6691 return MIN (c0, c1);
6692
6693 case MULT_EXPR:
6694 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6695 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6696 return c0 * c1;
6697
6698 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6699 case CEIL_DIV_EXPR:
6700 if (integer_pow2p (TREE_OPERAND (exp, 1))
6701 && host_integerp (TREE_OPERAND (exp, 1), 1))
6702 {
6703 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6704 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6705 return MAX (1, c0 / c1);
6706 }
6707 break;
6708
6709 case BIT_AND_EXPR:
6710 /* The highest power of two of a bit-and expression is the maximum of
6711 that of its operands. We typically get here for a complex LHS and
6712 a constant negative power of two on the RHS to force an explicit
6713 alignment, so don't bother looking at the LHS. */
6714 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6715
6716 CASE_CONVERT:
6717 case SAVE_EXPR:
6718 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6719
6720 case COMPOUND_EXPR:
6721 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6722
6723 case COND_EXPR:
6724 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6725 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6726 return MIN (c0, c1);
6727
6728 default:
6729 break;
6730 }
6731
6732 return 1;
6733 }
6734
6735 /* Similar, except that the alignment requirements of TARGET are
6736 taken into account. Assume it is at least as aligned as its
6737 type, unless it is a COMPONENT_REF in which case the layout of
6738 the structure gives the alignment. */
6739
6740 static unsigned HOST_WIDE_INT
6741 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6742 {
6743 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6744 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6745
6746 return MAX (factor, talign);
6747 }
6748 \f
6749 /* Return &VAR expression for emulated thread local VAR. */
6750
6751 static tree
6752 emutls_var_address (tree var)
6753 {
6754 tree emuvar = emutls_decl (var);
6755 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6756 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6757 tree arglist = build_tree_list (NULL_TREE, arg);
6758 tree call = build_function_call_expr (fn, arglist);
6759 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6760 }
6761 \f
6762
6763 /* Subroutine of expand_expr. Expand the two operands of a binary
6764 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6765 The value may be stored in TARGET if TARGET is nonzero. The
6766 MODIFIER argument is as documented by expand_expr. */
6767
6768 static void
6769 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6770 enum expand_modifier modifier)
6771 {
6772 if (! safe_from_p (target, exp1, 1))
6773 target = 0;
6774 if (operand_equal_p (exp0, exp1, 0))
6775 {
6776 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6777 *op1 = copy_rtx (*op0);
6778 }
6779 else
6780 {
6781 /* If we need to preserve evaluation order, copy exp0 into its own
6782 temporary variable so that it can't be clobbered by exp1. */
6783 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6784 exp0 = save_expr (exp0);
6785 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6786 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6787 }
6788 }
6789
6790 \f
6791 /* Return a MEM that contains constant EXP. DEFER is as for
6792 output_constant_def and MODIFIER is as for expand_expr. */
6793
6794 static rtx
6795 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6796 {
6797 rtx mem;
6798
6799 mem = output_constant_def (exp, defer);
6800 if (modifier != EXPAND_INITIALIZER)
6801 mem = use_anchored_address (mem);
6802 return mem;
6803 }
6804
6805 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6806 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6807
6808 static rtx
6809 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6810 enum expand_modifier modifier)
6811 {
6812 rtx result, subtarget;
6813 tree inner, offset;
6814 HOST_WIDE_INT bitsize, bitpos;
6815 int volatilep, unsignedp;
6816 enum machine_mode mode1;
6817
6818 /* If we are taking the address of a constant and are at the top level,
6819 we have to use output_constant_def since we can't call force_const_mem
6820 at top level. */
6821 /* ??? This should be considered a front-end bug. We should not be
6822 generating ADDR_EXPR of something that isn't an LVALUE. The only
6823 exception here is STRING_CST. */
6824 if (CONSTANT_CLASS_P (exp))
6825 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6826
6827 /* Everything must be something allowed by is_gimple_addressable. */
6828 switch (TREE_CODE (exp))
6829 {
6830 case INDIRECT_REF:
6831 /* This case will happen via recursion for &a->b. */
6832 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6833
6834 case CONST_DECL:
6835 /* Recurse and make the output_constant_def clause above handle this. */
6836 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6837 tmode, modifier);
6838
6839 case REALPART_EXPR:
6840 /* The real part of the complex number is always first, therefore
6841 the address is the same as the address of the parent object. */
6842 offset = 0;
6843 bitpos = 0;
6844 inner = TREE_OPERAND (exp, 0);
6845 break;
6846
6847 case IMAGPART_EXPR:
6848 /* The imaginary part of the complex number is always second.
6849 The expression is therefore always offset by the size of the
6850 scalar type. */
6851 offset = 0;
6852 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6853 inner = TREE_OPERAND (exp, 0);
6854 break;
6855
6856 case VAR_DECL:
6857 /* TLS emulation hook - replace __thread VAR's &VAR with
6858 __emutls_get_address (&_emutls.VAR). */
6859 if (! targetm.have_tls
6860 && TREE_CODE (exp) == VAR_DECL
6861 && DECL_THREAD_LOCAL_P (exp))
6862 {
6863 exp = emutls_var_address (exp);
6864 return expand_expr (exp, target, tmode, modifier);
6865 }
6866 /* Fall through. */
6867
6868 default:
6869 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6870 expand_expr, as that can have various side effects; LABEL_DECLs for
6871 example, may not have their DECL_RTL set yet. Expand the rtl of
6872 CONSTRUCTORs too, which should yield a memory reference for the
6873 constructor's contents. Assume language specific tree nodes can
6874 be expanded in some interesting way. */
6875 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6876 if (DECL_P (exp)
6877 || TREE_CODE (exp) == CONSTRUCTOR
6878 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6879 {
6880 result = expand_expr (exp, target, tmode,
6881 modifier == EXPAND_INITIALIZER
6882 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6883
6884 /* If the DECL isn't in memory, then the DECL wasn't properly
6885 marked TREE_ADDRESSABLE, which will be either a front-end
6886 or a tree optimizer bug. */
6887 gcc_assert (MEM_P (result));
6888 result = XEXP (result, 0);
6889
6890 /* ??? Is this needed anymore? */
6891 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6892 {
6893 assemble_external (exp);
6894 TREE_USED (exp) = 1;
6895 }
6896
6897 if (modifier != EXPAND_INITIALIZER
6898 && modifier != EXPAND_CONST_ADDRESS)
6899 result = force_operand (result, target);
6900 return result;
6901 }
6902
6903 /* Pass FALSE as the last argument to get_inner_reference although
6904 we are expanding to RTL. The rationale is that we know how to
6905 handle "aligning nodes" here: we can just bypass them because
6906 they won't change the final object whose address will be returned
6907 (they actually exist only for that purpose). */
6908 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6909 &mode1, &unsignedp, &volatilep, false);
6910 break;
6911 }
6912
6913 /* We must have made progress. */
6914 gcc_assert (inner != exp);
6915
6916 subtarget = offset || bitpos ? NULL_RTX : target;
6917 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6918 inner alignment, force the inner to be sufficiently aligned. */
6919 if (CONSTANT_CLASS_P (inner)
6920 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6921 {
6922 inner = copy_node (inner);
6923 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6924 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6925 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6926 }
6927 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6928
6929 if (offset)
6930 {
6931 rtx tmp;
6932
6933 if (modifier != EXPAND_NORMAL)
6934 result = force_operand (result, NULL);
6935 tmp = expand_expr (offset, NULL_RTX, tmode,
6936 modifier == EXPAND_INITIALIZER
6937 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6938
6939 result = convert_memory_address (tmode, result);
6940 tmp = convert_memory_address (tmode, tmp);
6941
6942 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6943 result = gen_rtx_PLUS (tmode, result, tmp);
6944 else
6945 {
6946 subtarget = bitpos ? NULL_RTX : target;
6947 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6948 1, OPTAB_LIB_WIDEN);
6949 }
6950 }
6951
6952 if (bitpos)
6953 {
6954 /* Someone beforehand should have rejected taking the address
6955 of such an object. */
6956 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6957
6958 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6959 if (modifier < EXPAND_SUM)
6960 result = force_operand (result, target);
6961 }
6962
6963 return result;
6964 }
6965
6966 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6967 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6968
6969 static rtx
6970 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6971 enum expand_modifier modifier)
6972 {
6973 enum machine_mode rmode;
6974 rtx result;
6975
6976 /* Target mode of VOIDmode says "whatever's natural". */
6977 if (tmode == VOIDmode)
6978 tmode = TYPE_MODE (TREE_TYPE (exp));
6979
6980 /* We can get called with some Weird Things if the user does silliness
6981 like "(short) &a". In that case, convert_memory_address won't do
6982 the right thing, so ignore the given target mode. */
6983 if (tmode != Pmode && tmode != ptr_mode)
6984 tmode = Pmode;
6985
6986 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6987 tmode, modifier);
6988
6989 /* Despite expand_expr claims concerning ignoring TMODE when not
6990 strictly convenient, stuff breaks if we don't honor it. Note
6991 that combined with the above, we only do this for pointer modes. */
6992 rmode = GET_MODE (result);
6993 if (rmode == VOIDmode)
6994 rmode = tmode;
6995 if (rmode != tmode)
6996 result = convert_memory_address (tmode, result);
6997
6998 return result;
6999 }
7000
7001 /* Generate code for computing CONSTRUCTOR EXP.
7002 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7003 is TRUE, instead of creating a temporary variable in memory
7004 NULL is returned and the caller needs to handle it differently. */
7005
7006 static rtx
7007 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7008 bool avoid_temp_mem)
7009 {
7010 tree type = TREE_TYPE (exp);
7011 enum machine_mode mode = TYPE_MODE (type);
7012
7013 /* Try to avoid creating a temporary at all. This is possible
7014 if all of the initializer is zero.
7015 FIXME: try to handle all [0..255] initializers we can handle
7016 with memset. */
7017 if (TREE_STATIC (exp)
7018 && !TREE_ADDRESSABLE (exp)
7019 && target != 0 && mode == BLKmode
7020 && all_zeros_p (exp))
7021 {
7022 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7023 return target;
7024 }
7025
7026 /* All elts simple constants => refer to a constant in memory. But
7027 if this is a non-BLKmode mode, let it store a field at a time
7028 since that should make a CONST_INT or CONST_DOUBLE when we
7029 fold. Likewise, if we have a target we can use, it is best to
7030 store directly into the target unless the type is large enough
7031 that memcpy will be used. If we are making an initializer and
7032 all operands are constant, put it in memory as well.
7033
7034 FIXME: Avoid trying to fill vector constructors piece-meal.
7035 Output them with output_constant_def below unless we're sure
7036 they're zeros. This should go away when vector initializers
7037 are treated like VECTOR_CST instead of arrays. */
7038 if ((TREE_STATIC (exp)
7039 && ((mode == BLKmode
7040 && ! (target != 0 && safe_from_p (target, exp, 1)))
7041 || TREE_ADDRESSABLE (exp)
7042 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7043 && (! MOVE_BY_PIECES_P
7044 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7045 TYPE_ALIGN (type)))
7046 && ! mostly_zeros_p (exp))))
7047 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7048 && TREE_CONSTANT (exp)))
7049 {
7050 rtx constructor;
7051
7052 if (avoid_temp_mem)
7053 return NULL_RTX;
7054
7055 constructor = expand_expr_constant (exp, 1, modifier);
7056
7057 if (modifier != EXPAND_CONST_ADDRESS
7058 && modifier != EXPAND_INITIALIZER
7059 && modifier != EXPAND_SUM)
7060 constructor = validize_mem (constructor);
7061
7062 return constructor;
7063 }
7064
7065 /* Handle calls that pass values in multiple non-contiguous
7066 locations. The Irix 6 ABI has examples of this. */
7067 if (target == 0 || ! safe_from_p (target, exp, 1)
7068 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7069 {
7070 if (avoid_temp_mem)
7071 return NULL_RTX;
7072
7073 target
7074 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7075 | (TREE_READONLY (exp)
7076 * TYPE_QUAL_CONST))),
7077 0, TREE_ADDRESSABLE (exp), 1);
7078 }
7079
7080 store_constructor (exp, target, 0, int_expr_size (exp));
7081 return target;
7082 }
7083
7084
7085 /* expand_expr: generate code for computing expression EXP.
7086 An rtx for the computed value is returned. The value is never null.
7087 In the case of a void EXP, const0_rtx is returned.
7088
7089 The value may be stored in TARGET if TARGET is nonzero.
7090 TARGET is just a suggestion; callers must assume that
7091 the rtx returned may not be the same as TARGET.
7092
7093 If TARGET is CONST0_RTX, it means that the value will be ignored.
7094
7095 If TMODE is not VOIDmode, it suggests generating the
7096 result in mode TMODE. But this is done only when convenient.
7097 Otherwise, TMODE is ignored and the value generated in its natural mode.
7098 TMODE is just a suggestion; callers must assume that
7099 the rtx returned may not have mode TMODE.
7100
7101 Note that TARGET may have neither TMODE nor MODE. In that case, it
7102 probably will not be used.
7103
7104 If MODIFIER is EXPAND_SUM then when EXP is an addition
7105 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7106 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7107 products as above, or REG or MEM, or constant.
7108 Ordinarily in such cases we would output mul or add instructions
7109 and then return a pseudo reg containing the sum.
7110
7111 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7112 it also marks a label as absolutely required (it can't be dead).
7113 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7114 This is used for outputting expressions used in initializers.
7115
7116 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7117 with a constant address even if that address is not normally legitimate.
7118 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7119
7120 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7121 a call parameter. Such targets require special care as we haven't yet
7122 marked TARGET so that it's safe from being trashed by libcalls. We
7123 don't want to use TARGET for anything but the final result;
7124 Intermediate values must go elsewhere. Additionally, calls to
7125 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7126
7127 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7128 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7129 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7130 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7131 recursively. */
7132
7133 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7134 enum expand_modifier, rtx *);
7135
7136 rtx
7137 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7138 enum expand_modifier modifier, rtx *alt_rtl)
7139 {
7140 int rn = -1;
7141 rtx ret, last = NULL;
7142
7143 /* Handle ERROR_MARK before anybody tries to access its type. */
7144 if (TREE_CODE (exp) == ERROR_MARK
7145 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7146 {
7147 ret = CONST0_RTX (tmode);
7148 return ret ? ret : const0_rtx;
7149 }
7150
7151 if (flag_non_call_exceptions)
7152 {
7153 rn = lookup_expr_eh_region (exp);
7154
7155 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7156 if (rn >= 0)
7157 last = get_last_insn ();
7158 }
7159
7160 /* If this is an expression of some kind and it has an associated line
7161 number, then emit the line number before expanding the expression.
7162
7163 We need to save and restore the file and line information so that
7164 errors discovered during expansion are emitted with the right
7165 information. It would be better of the diagnostic routines
7166 used the file/line information embedded in the tree nodes rather
7167 than globals. */
7168 if (cfun && EXPR_HAS_LOCATION (exp))
7169 {
7170 location_t saved_location = input_location;
7171 input_location = EXPR_LOCATION (exp);
7172 set_curr_insn_source_location (input_location);
7173
7174 /* Record where the insns produced belong. */
7175 set_curr_insn_block (TREE_BLOCK (exp));
7176
7177 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7178
7179 input_location = saved_location;
7180 }
7181 else
7182 {
7183 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7184 }
7185
7186 /* If using non-call exceptions, mark all insns that may trap.
7187 expand_call() will mark CALL_INSNs before we get to this code,
7188 but it doesn't handle libcalls, and these may trap. */
7189 if (rn >= 0)
7190 {
7191 rtx insn;
7192 for (insn = next_real_insn (last); insn;
7193 insn = next_real_insn (insn))
7194 {
7195 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7196 /* If we want exceptions for non-call insns, any
7197 may_trap_p instruction may throw. */
7198 && GET_CODE (PATTERN (insn)) != CLOBBER
7199 && GET_CODE (PATTERN (insn)) != USE
7200 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7201 add_reg_note (insn, REG_EH_REGION, GEN_INT (rn));
7202 }
7203 }
7204
7205 return ret;
7206 }
7207
7208 static rtx
7209 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7210 enum expand_modifier modifier, rtx *alt_rtl)
7211 {
7212 rtx op0, op1, op2, temp, decl_rtl;
7213 tree type;
7214 int unsignedp;
7215 enum machine_mode mode;
7216 enum tree_code code = TREE_CODE (exp);
7217 optab this_optab;
7218 rtx subtarget, original_target;
7219 int ignore;
7220 tree context, subexp0, subexp1;
7221 bool reduce_bit_field;
7222 gimple subexp0_def, subexp1_def;
7223 tree top0, top1;
7224 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7225 ? reduce_to_bit_field_precision ((expr), \
7226 target, \
7227 type) \
7228 : (expr))
7229
7230 type = TREE_TYPE (exp);
7231 mode = TYPE_MODE (type);
7232 unsignedp = TYPE_UNSIGNED (type);
7233
7234 ignore = (target == const0_rtx
7235 || ((CONVERT_EXPR_CODE_P (code)
7236 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7237 && TREE_CODE (type) == VOID_TYPE));
7238
7239 /* An operation in what may be a bit-field type needs the
7240 result to be reduced to the precision of the bit-field type,
7241 which is narrower than that of the type's mode. */
7242 reduce_bit_field = (!ignore
7243 && TREE_CODE (type) == INTEGER_TYPE
7244 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7245
7246 /* If we are going to ignore this result, we need only do something
7247 if there is a side-effect somewhere in the expression. If there
7248 is, short-circuit the most common cases here. Note that we must
7249 not call expand_expr with anything but const0_rtx in case this
7250 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7251
7252 if (ignore)
7253 {
7254 if (! TREE_SIDE_EFFECTS (exp))
7255 return const0_rtx;
7256
7257 /* Ensure we reference a volatile object even if value is ignored, but
7258 don't do this if all we are doing is taking its address. */
7259 if (TREE_THIS_VOLATILE (exp)
7260 && TREE_CODE (exp) != FUNCTION_DECL
7261 && mode != VOIDmode && mode != BLKmode
7262 && modifier != EXPAND_CONST_ADDRESS)
7263 {
7264 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7265 if (MEM_P (temp))
7266 temp = copy_to_reg (temp);
7267 return const0_rtx;
7268 }
7269
7270 if (TREE_CODE_CLASS (code) == tcc_unary
7271 || code == COMPONENT_REF || code == INDIRECT_REF)
7272 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7273 modifier);
7274
7275 else if (TREE_CODE_CLASS (code) == tcc_binary
7276 || TREE_CODE_CLASS (code) == tcc_comparison
7277 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7278 {
7279 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7280 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7281 return const0_rtx;
7282 }
7283 else if (code == BIT_FIELD_REF)
7284 {
7285 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7286 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7287 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7288 return const0_rtx;
7289 }
7290
7291 target = 0;
7292 }
7293
7294 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7295 target = 0;
7296
7297 /* Use subtarget as the target for operand 0 of a binary operation. */
7298 subtarget = get_subtarget (target);
7299 original_target = target;
7300
7301 switch (code)
7302 {
7303 case LABEL_DECL:
7304 {
7305 tree function = decl_function_context (exp);
7306
7307 temp = label_rtx (exp);
7308 temp = gen_rtx_LABEL_REF (Pmode, temp);
7309
7310 if (function != current_function_decl
7311 && function != 0)
7312 LABEL_REF_NONLOCAL_P (temp) = 1;
7313
7314 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7315 return temp;
7316 }
7317
7318 case SSA_NAME:
7319 /* ??? ivopts calls expander, without any preparation from
7320 out-of-ssa. So fake instructions as if this was an access to the
7321 base variable. This unnecessarily allocates a pseudo, see how we can
7322 reuse it, if partition base vars have it set already. */
7323 if (!currently_expanding_to_rtl)
7324 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier, NULL);
7325 {
7326 gimple g = get_gimple_for_ssa_name (exp);
7327 if (g)
7328 return expand_expr_real_1 (gimple_assign_rhs_to_tree (g), target,
7329 tmode, modifier, NULL);
7330 }
7331 decl_rtl = get_rtx_for_ssa_name (exp);
7332 exp = SSA_NAME_VAR (exp);
7333 goto expand_decl_rtl;
7334
7335 case PARM_DECL:
7336 case VAR_DECL:
7337 /* If a static var's type was incomplete when the decl was written,
7338 but the type is complete now, lay out the decl now. */
7339 if (DECL_SIZE (exp) == 0
7340 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7341 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7342 layout_decl (exp, 0);
7343
7344 /* TLS emulation hook - replace __thread vars with
7345 *__emutls_get_address (&_emutls.var). */
7346 if (! targetm.have_tls
7347 && TREE_CODE (exp) == VAR_DECL
7348 && DECL_THREAD_LOCAL_P (exp))
7349 {
7350 exp = build_fold_indirect_ref (emutls_var_address (exp));
7351 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7352 }
7353
7354 /* ... fall through ... */
7355
7356 case FUNCTION_DECL:
7357 case RESULT_DECL:
7358 decl_rtl = DECL_RTL (exp);
7359 expand_decl_rtl:
7360 gcc_assert (decl_rtl);
7361 decl_rtl = copy_rtx (decl_rtl);
7362
7363 /* Ensure variable marked as used even if it doesn't go through
7364 a parser. If it hasn't be used yet, write out an external
7365 definition. */
7366 if (! TREE_USED (exp))
7367 {
7368 assemble_external (exp);
7369 TREE_USED (exp) = 1;
7370 }
7371
7372 /* Show we haven't gotten RTL for this yet. */
7373 temp = 0;
7374
7375 /* Variables inherited from containing functions should have
7376 been lowered by this point. */
7377 context = decl_function_context (exp);
7378 gcc_assert (!context
7379 || context == current_function_decl
7380 || TREE_STATIC (exp)
7381 /* ??? C++ creates functions that are not TREE_STATIC. */
7382 || TREE_CODE (exp) == FUNCTION_DECL);
7383
7384 /* This is the case of an array whose size is to be determined
7385 from its initializer, while the initializer is still being parsed.
7386 See expand_decl. */
7387
7388 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7389 temp = validize_mem (decl_rtl);
7390
7391 /* If DECL_RTL is memory, we are in the normal case and the
7392 address is not valid, get the address into a register. */
7393
7394 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7395 {
7396 if (alt_rtl)
7397 *alt_rtl = decl_rtl;
7398 decl_rtl = use_anchored_address (decl_rtl);
7399 if (modifier != EXPAND_CONST_ADDRESS
7400 && modifier != EXPAND_SUM
7401 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
7402 temp = replace_equiv_address (decl_rtl,
7403 copy_rtx (XEXP (decl_rtl, 0)));
7404 }
7405
7406 /* If we got something, return it. But first, set the alignment
7407 if the address is a register. */
7408 if (temp != 0)
7409 {
7410 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7411 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7412
7413 return temp;
7414 }
7415
7416 /* If the mode of DECL_RTL does not match that of the decl, it
7417 must be a promoted value. We return a SUBREG of the wanted mode,
7418 but mark it so that we know that it was already extended. */
7419
7420 if (REG_P (decl_rtl)
7421 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7422 {
7423 enum machine_mode pmode;
7424
7425 /* Get the signedness used for this variable. Ensure we get the
7426 same mode we got when the variable was declared. */
7427 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7428 (TREE_CODE (exp) == RESULT_DECL
7429 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7430 gcc_assert (GET_MODE (decl_rtl) == pmode);
7431
7432 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7433 SUBREG_PROMOTED_VAR_P (temp) = 1;
7434 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7435 return temp;
7436 }
7437
7438 return decl_rtl;
7439
7440 case INTEGER_CST:
7441 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7442 TREE_INT_CST_HIGH (exp), mode);
7443
7444 return temp;
7445
7446 case VECTOR_CST:
7447 {
7448 tree tmp = NULL_TREE;
7449 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7450 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7451 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7452 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7453 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7454 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7455 return const_vector_from_tree (exp);
7456 if (GET_MODE_CLASS (mode) == MODE_INT)
7457 {
7458 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7459 if (type_for_mode)
7460 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7461 }
7462 if (!tmp)
7463 tmp = build_constructor_from_list (type,
7464 TREE_VECTOR_CST_ELTS (exp));
7465 return expand_expr (tmp, ignore ? const0_rtx : target,
7466 tmode, modifier);
7467 }
7468
7469 case CONST_DECL:
7470 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7471
7472 case REAL_CST:
7473 /* If optimized, generate immediate CONST_DOUBLE
7474 which will be turned into memory by reload if necessary.
7475
7476 We used to force a register so that loop.c could see it. But
7477 this does not allow gen_* patterns to perform optimizations with
7478 the constants. It also produces two insns in cases like "x = 1.0;".
7479 On most machines, floating-point constants are not permitted in
7480 many insns, so we'd end up copying it to a register in any case.
7481
7482 Now, we do the copying in expand_binop, if appropriate. */
7483 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7484 TYPE_MODE (TREE_TYPE (exp)));
7485
7486 case FIXED_CST:
7487 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7488 TYPE_MODE (TREE_TYPE (exp)));
7489
7490 case COMPLEX_CST:
7491 /* Handle evaluating a complex constant in a CONCAT target. */
7492 if (original_target && GET_CODE (original_target) == CONCAT)
7493 {
7494 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7495 rtx rtarg, itarg;
7496
7497 rtarg = XEXP (original_target, 0);
7498 itarg = XEXP (original_target, 1);
7499
7500 /* Move the real and imaginary parts separately. */
7501 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7502 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7503
7504 if (op0 != rtarg)
7505 emit_move_insn (rtarg, op0);
7506 if (op1 != itarg)
7507 emit_move_insn (itarg, op1);
7508
7509 return original_target;
7510 }
7511
7512 /* ... fall through ... */
7513
7514 case STRING_CST:
7515 temp = expand_expr_constant (exp, 1, modifier);
7516
7517 /* temp contains a constant address.
7518 On RISC machines where a constant address isn't valid,
7519 make some insns to get that address into a register. */
7520 if (modifier != EXPAND_CONST_ADDRESS
7521 && modifier != EXPAND_INITIALIZER
7522 && modifier != EXPAND_SUM
7523 && ! memory_address_p (mode, XEXP (temp, 0)))
7524 return replace_equiv_address (temp,
7525 copy_rtx (XEXP (temp, 0)));
7526 return temp;
7527
7528 case SAVE_EXPR:
7529 {
7530 tree val = TREE_OPERAND (exp, 0);
7531 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7532
7533 if (!SAVE_EXPR_RESOLVED_P (exp))
7534 {
7535 /* We can indeed still hit this case, typically via builtin
7536 expanders calling save_expr immediately before expanding
7537 something. Assume this means that we only have to deal
7538 with non-BLKmode values. */
7539 gcc_assert (GET_MODE (ret) != BLKmode);
7540
7541 val = build_decl (EXPR_LOCATION (exp),
7542 VAR_DECL, NULL, TREE_TYPE (exp));
7543 DECL_ARTIFICIAL (val) = 1;
7544 DECL_IGNORED_P (val) = 1;
7545 TREE_OPERAND (exp, 0) = val;
7546 SAVE_EXPR_RESOLVED_P (exp) = 1;
7547
7548 if (!CONSTANT_P (ret))
7549 ret = copy_to_reg (ret);
7550 SET_DECL_RTL (val, ret);
7551 }
7552
7553 return ret;
7554 }
7555
7556 case GOTO_EXPR:
7557 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7558 expand_goto (TREE_OPERAND (exp, 0));
7559 else
7560 expand_computed_goto (TREE_OPERAND (exp, 0));
7561 return const0_rtx;
7562
7563 case CONSTRUCTOR:
7564 /* If we don't need the result, just ensure we evaluate any
7565 subexpressions. */
7566 if (ignore)
7567 {
7568 unsigned HOST_WIDE_INT idx;
7569 tree value;
7570
7571 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7572 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7573
7574 return const0_rtx;
7575 }
7576
7577 return expand_constructor (exp, target, modifier, false);
7578
7579 case MISALIGNED_INDIRECT_REF:
7580 case ALIGN_INDIRECT_REF:
7581 case INDIRECT_REF:
7582 {
7583 tree exp1 = TREE_OPERAND (exp, 0);
7584
7585 if (modifier != EXPAND_WRITE)
7586 {
7587 tree t;
7588
7589 t = fold_read_from_constant_string (exp);
7590 if (t)
7591 return expand_expr (t, target, tmode, modifier);
7592 }
7593
7594 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7595 op0 = memory_address (mode, op0);
7596
7597 if (code == ALIGN_INDIRECT_REF)
7598 {
7599 int align = TYPE_ALIGN_UNIT (type);
7600 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7601 op0 = memory_address (mode, op0);
7602 }
7603
7604 temp = gen_rtx_MEM (mode, op0);
7605
7606 set_mem_attributes (temp, exp, 0);
7607
7608 /* Resolve the misalignment now, so that we don't have to remember
7609 to resolve it later. Of course, this only works for reads. */
7610 if (code == MISALIGNED_INDIRECT_REF)
7611 {
7612 int icode;
7613 rtx reg, insn;
7614
7615 gcc_assert (modifier == EXPAND_NORMAL
7616 || modifier == EXPAND_STACK_PARM);
7617
7618 /* The vectorizer should have already checked the mode. */
7619 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7620 gcc_assert (icode != CODE_FOR_nothing);
7621
7622 /* We've already validated the memory, and we're creating a
7623 new pseudo destination. The predicates really can't fail. */
7624 reg = gen_reg_rtx (mode);
7625
7626 /* Nor can the insn generator. */
7627 insn = GEN_FCN (icode) (reg, temp);
7628 emit_insn (insn);
7629
7630 return reg;
7631 }
7632
7633 return temp;
7634 }
7635
7636 case TARGET_MEM_REF:
7637 {
7638 struct mem_address addr;
7639
7640 get_address_description (exp, &addr);
7641 op0 = addr_for_mem_ref (&addr, true);
7642 op0 = memory_address (mode, op0);
7643 temp = gen_rtx_MEM (mode, op0);
7644 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7645 }
7646 return temp;
7647
7648 case ARRAY_REF:
7649
7650 {
7651 tree array = TREE_OPERAND (exp, 0);
7652 tree index = TREE_OPERAND (exp, 1);
7653
7654 /* Fold an expression like: "foo"[2].
7655 This is not done in fold so it won't happen inside &.
7656 Don't fold if this is for wide characters since it's too
7657 difficult to do correctly and this is a very rare case. */
7658
7659 if (modifier != EXPAND_CONST_ADDRESS
7660 && modifier != EXPAND_INITIALIZER
7661 && modifier != EXPAND_MEMORY)
7662 {
7663 tree t = fold_read_from_constant_string (exp);
7664
7665 if (t)
7666 return expand_expr (t, target, tmode, modifier);
7667 }
7668
7669 /* If this is a constant index into a constant array,
7670 just get the value from the array. Handle both the cases when
7671 we have an explicit constructor and when our operand is a variable
7672 that was declared const. */
7673
7674 if (modifier != EXPAND_CONST_ADDRESS
7675 && modifier != EXPAND_INITIALIZER
7676 && modifier != EXPAND_MEMORY
7677 && TREE_CODE (array) == CONSTRUCTOR
7678 && ! TREE_SIDE_EFFECTS (array)
7679 && TREE_CODE (index) == INTEGER_CST)
7680 {
7681 unsigned HOST_WIDE_INT ix;
7682 tree field, value;
7683
7684 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7685 field, value)
7686 if (tree_int_cst_equal (field, index))
7687 {
7688 if (!TREE_SIDE_EFFECTS (value))
7689 return expand_expr (fold (value), target, tmode, modifier);
7690 break;
7691 }
7692 }
7693
7694 else if (optimize >= 1
7695 && modifier != EXPAND_CONST_ADDRESS
7696 && modifier != EXPAND_INITIALIZER
7697 && modifier != EXPAND_MEMORY
7698 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7699 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7700 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7701 && targetm.binds_local_p (array))
7702 {
7703 if (TREE_CODE (index) == INTEGER_CST)
7704 {
7705 tree init = DECL_INITIAL (array);
7706
7707 if (TREE_CODE (init) == CONSTRUCTOR)
7708 {
7709 unsigned HOST_WIDE_INT ix;
7710 tree field, value;
7711
7712 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7713 field, value)
7714 if (tree_int_cst_equal (field, index))
7715 {
7716 if (TREE_SIDE_EFFECTS (value))
7717 break;
7718
7719 if (TREE_CODE (value) == CONSTRUCTOR)
7720 {
7721 /* If VALUE is a CONSTRUCTOR, this
7722 optimization is only useful if
7723 this doesn't store the CONSTRUCTOR
7724 into memory. If it does, it is more
7725 efficient to just load the data from
7726 the array directly. */
7727 rtx ret = expand_constructor (value, target,
7728 modifier, true);
7729 if (ret == NULL_RTX)
7730 break;
7731 }
7732
7733 return expand_expr (fold (value), target, tmode,
7734 modifier);
7735 }
7736 }
7737 else if(TREE_CODE (init) == STRING_CST)
7738 {
7739 tree index1 = index;
7740 tree low_bound = array_ref_low_bound (exp);
7741 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7742
7743 /* Optimize the special-case of a zero lower bound.
7744
7745 We convert the low_bound to sizetype to avoid some problems
7746 with constant folding. (E.g. suppose the lower bound is 1,
7747 and its mode is QI. Without the conversion,l (ARRAY
7748 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7749 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7750
7751 if (! integer_zerop (low_bound))
7752 index1 = size_diffop (index1, fold_convert (sizetype,
7753 low_bound));
7754
7755 if (0 > compare_tree_int (index1,
7756 TREE_STRING_LENGTH (init)))
7757 {
7758 tree type = TREE_TYPE (TREE_TYPE (init));
7759 enum machine_mode mode = TYPE_MODE (type);
7760
7761 if (GET_MODE_CLASS (mode) == MODE_INT
7762 && GET_MODE_SIZE (mode) == 1)
7763 return gen_int_mode (TREE_STRING_POINTER (init)
7764 [TREE_INT_CST_LOW (index1)],
7765 mode);
7766 }
7767 }
7768 }
7769 }
7770 }
7771 goto normal_inner_ref;
7772
7773 case COMPONENT_REF:
7774 /* If the operand is a CONSTRUCTOR, we can just extract the
7775 appropriate field if it is present. */
7776 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7777 {
7778 unsigned HOST_WIDE_INT idx;
7779 tree field, value;
7780
7781 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7782 idx, field, value)
7783 if (field == TREE_OPERAND (exp, 1)
7784 /* We can normally use the value of the field in the
7785 CONSTRUCTOR. However, if this is a bitfield in
7786 an integral mode that we can fit in a HOST_WIDE_INT,
7787 we must mask only the number of bits in the bitfield,
7788 since this is done implicitly by the constructor. If
7789 the bitfield does not meet either of those conditions,
7790 we can't do this optimization. */
7791 && (! DECL_BIT_FIELD (field)
7792 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7793 && (GET_MODE_BITSIZE (DECL_MODE (field))
7794 <= HOST_BITS_PER_WIDE_INT))))
7795 {
7796 if (DECL_BIT_FIELD (field)
7797 && modifier == EXPAND_STACK_PARM)
7798 target = 0;
7799 op0 = expand_expr (value, target, tmode, modifier);
7800 if (DECL_BIT_FIELD (field))
7801 {
7802 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7803 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7804
7805 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7806 {
7807 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7808 op0 = expand_and (imode, op0, op1, target);
7809 }
7810 else
7811 {
7812 tree count
7813 = build_int_cst (NULL_TREE,
7814 GET_MODE_BITSIZE (imode) - bitsize);
7815
7816 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7817 target, 0);
7818 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7819 target, 0);
7820 }
7821 }
7822
7823 return op0;
7824 }
7825 }
7826 goto normal_inner_ref;
7827
7828 case BIT_FIELD_REF:
7829 case ARRAY_RANGE_REF:
7830 normal_inner_ref:
7831 {
7832 enum machine_mode mode1, mode2;
7833 HOST_WIDE_INT bitsize, bitpos;
7834 tree offset;
7835 int volatilep = 0, must_force_mem;
7836 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7837 &mode1, &unsignedp, &volatilep, true);
7838 rtx orig_op0, memloc;
7839
7840 /* If we got back the original object, something is wrong. Perhaps
7841 we are evaluating an expression too early. In any event, don't
7842 infinitely recurse. */
7843 gcc_assert (tem != exp);
7844
7845 /* If TEM's type is a union of variable size, pass TARGET to the inner
7846 computation, since it will need a temporary and TARGET is known
7847 to have to do. This occurs in unchecked conversion in Ada. */
7848 orig_op0 = op0
7849 = expand_expr (tem,
7850 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7851 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7852 != INTEGER_CST)
7853 && modifier != EXPAND_STACK_PARM
7854 ? target : NULL_RTX),
7855 VOIDmode,
7856 (modifier == EXPAND_INITIALIZER
7857 || modifier == EXPAND_CONST_ADDRESS
7858 || modifier == EXPAND_STACK_PARM)
7859 ? modifier : EXPAND_NORMAL);
7860
7861 mode2
7862 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
7863
7864 /* If we have either an offset, a BLKmode result, or a reference
7865 outside the underlying object, we must force it to memory.
7866 Such a case can occur in Ada if we have unchecked conversion
7867 of an expression from a scalar type to an aggregate type or
7868 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
7869 passed a partially uninitialized object or a view-conversion
7870 to a larger size. */
7871 must_force_mem = (offset
7872 || mode1 == BLKmode
7873 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
7874
7875 /* If this is a constant, put it in a register if it is a legitimate
7876 constant and we don't need a memory reference. */
7877 if (CONSTANT_P (op0)
7878 && mode2 != BLKmode
7879 && LEGITIMATE_CONSTANT_P (op0)
7880 && !must_force_mem)
7881 op0 = force_reg (mode2, op0);
7882
7883 /* Otherwise, if this is a constant, try to force it to the constant
7884 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
7885 is a legitimate constant. */
7886 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
7887 op0 = validize_mem (memloc);
7888
7889 /* Otherwise, if this is a constant or the object is not in memory
7890 and need be, put it there. */
7891 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
7892 {
7893 tree nt = build_qualified_type (TREE_TYPE (tem),
7894 (TYPE_QUALS (TREE_TYPE (tem))
7895 | TYPE_QUAL_CONST));
7896 memloc = assign_temp (nt, 1, 1, 1);
7897 emit_move_insn (memloc, op0);
7898 op0 = memloc;
7899 }
7900
7901 if (offset)
7902 {
7903 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7904 EXPAND_SUM);
7905
7906 gcc_assert (MEM_P (op0));
7907
7908 #ifdef POINTERS_EXTEND_UNSIGNED
7909 if (GET_MODE (offset_rtx) != Pmode)
7910 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7911 #else
7912 if (GET_MODE (offset_rtx) != ptr_mode)
7913 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7914 #endif
7915
7916 if (GET_MODE (op0) == BLKmode
7917 /* A constant address in OP0 can have VOIDmode, we must
7918 not try to call force_reg in that case. */
7919 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7920 && bitsize != 0
7921 && (bitpos % bitsize) == 0
7922 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7923 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7924 {
7925 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7926 bitpos = 0;
7927 }
7928
7929 op0 = offset_address (op0, offset_rtx,
7930 highest_pow2_factor (offset));
7931 }
7932
7933 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7934 record its alignment as BIGGEST_ALIGNMENT. */
7935 if (MEM_P (op0) && bitpos == 0 && offset != 0
7936 && is_aligning_offset (offset, tem))
7937 set_mem_align (op0, BIGGEST_ALIGNMENT);
7938
7939 /* Don't forget about volatility even if this is a bitfield. */
7940 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7941 {
7942 if (op0 == orig_op0)
7943 op0 = copy_rtx (op0);
7944
7945 MEM_VOLATILE_P (op0) = 1;
7946 }
7947
7948 /* The following code doesn't handle CONCAT.
7949 Assume only bitpos == 0 can be used for CONCAT, due to
7950 one element arrays having the same mode as its element. */
7951 if (GET_CODE (op0) == CONCAT)
7952 {
7953 gcc_assert (bitpos == 0
7954 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7955 return op0;
7956 }
7957
7958 /* In cases where an aligned union has an unaligned object
7959 as a field, we might be extracting a BLKmode value from
7960 an integer-mode (e.g., SImode) object. Handle this case
7961 by doing the extract into an object as wide as the field
7962 (which we know to be the width of a basic mode), then
7963 storing into memory, and changing the mode to BLKmode. */
7964 if (mode1 == VOIDmode
7965 || REG_P (op0) || GET_CODE (op0) == SUBREG
7966 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7967 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7968 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7969 && modifier != EXPAND_CONST_ADDRESS
7970 && modifier != EXPAND_INITIALIZER)
7971 /* If the field isn't aligned enough to fetch as a memref,
7972 fetch it as a bit field. */
7973 || (mode1 != BLKmode
7974 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7975 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7976 || (MEM_P (op0)
7977 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7978 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7979 && ((modifier == EXPAND_CONST_ADDRESS
7980 || modifier == EXPAND_INITIALIZER)
7981 ? STRICT_ALIGNMENT
7982 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7983 || (bitpos % BITS_PER_UNIT != 0)))
7984 /* If the type and the field are a constant size and the
7985 size of the type isn't the same size as the bitfield,
7986 we must use bitfield operations. */
7987 || (bitsize >= 0
7988 && TYPE_SIZE (TREE_TYPE (exp))
7989 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7990 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7991 bitsize)))
7992 {
7993 enum machine_mode ext_mode = mode;
7994
7995 if (ext_mode == BLKmode
7996 && ! (target != 0 && MEM_P (op0)
7997 && MEM_P (target)
7998 && bitpos % BITS_PER_UNIT == 0))
7999 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
8000
8001 if (ext_mode == BLKmode)
8002 {
8003 if (target == 0)
8004 target = assign_temp (type, 0, 1, 1);
8005
8006 if (bitsize == 0)
8007 return target;
8008
8009 /* In this case, BITPOS must start at a byte boundary and
8010 TARGET, if specified, must be a MEM. */
8011 gcc_assert (MEM_P (op0)
8012 && (!target || MEM_P (target))
8013 && !(bitpos % BITS_PER_UNIT));
8014
8015 emit_block_move (target,
8016 adjust_address (op0, VOIDmode,
8017 bitpos / BITS_PER_UNIT),
8018 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
8019 / BITS_PER_UNIT),
8020 (modifier == EXPAND_STACK_PARM
8021 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8022
8023 return target;
8024 }
8025
8026 op0 = validize_mem (op0);
8027
8028 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
8029 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8030
8031 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
8032 (modifier == EXPAND_STACK_PARM
8033 ? NULL_RTX : target),
8034 ext_mode, ext_mode);
8035
8036 /* If the result is a record type and BITSIZE is narrower than
8037 the mode of OP0, an integral mode, and this is a big endian
8038 machine, we must put the field into the high-order bits. */
8039 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
8040 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
8041 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
8042 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
8043 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
8044 - bitsize),
8045 op0, 1);
8046
8047 /* If the result type is BLKmode, store the data into a temporary
8048 of the appropriate type, but with the mode corresponding to the
8049 mode for the data we have (op0's mode). It's tempting to make
8050 this a constant type, since we know it's only being stored once,
8051 but that can cause problems if we are taking the address of this
8052 COMPONENT_REF because the MEM of any reference via that address
8053 will have flags corresponding to the type, which will not
8054 necessarily be constant. */
8055 if (mode == BLKmode)
8056 {
8057 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
8058 rtx new_rtx;
8059
8060 /* If the reference doesn't use the alias set of its type,
8061 we cannot create the temporary using that type. */
8062 if (component_uses_parent_alias_set (exp))
8063 {
8064 new_rtx = assign_stack_local (ext_mode, size, 0);
8065 set_mem_alias_set (new_rtx, get_alias_set (exp));
8066 }
8067 else
8068 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
8069
8070 emit_move_insn (new_rtx, op0);
8071 op0 = copy_rtx (new_rtx);
8072 PUT_MODE (op0, BLKmode);
8073 set_mem_attributes (op0, exp, 1);
8074 }
8075
8076 return op0;
8077 }
8078
8079 /* If the result is BLKmode, use that to access the object
8080 now as well. */
8081 if (mode == BLKmode)
8082 mode1 = BLKmode;
8083
8084 /* Get a reference to just this component. */
8085 if (modifier == EXPAND_CONST_ADDRESS
8086 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8087 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
8088 else
8089 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
8090
8091 if (op0 == orig_op0)
8092 op0 = copy_rtx (op0);
8093
8094 set_mem_attributes (op0, exp, 0);
8095 if (REG_P (XEXP (op0, 0)))
8096 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8097
8098 MEM_VOLATILE_P (op0) |= volatilep;
8099 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
8100 || modifier == EXPAND_CONST_ADDRESS
8101 || modifier == EXPAND_INITIALIZER)
8102 return op0;
8103 else if (target == 0)
8104 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8105
8106 convert_move (target, op0, unsignedp);
8107 return target;
8108 }
8109
8110 case OBJ_TYPE_REF:
8111 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
8112
8113 case CALL_EXPR:
8114 /* All valid uses of __builtin_va_arg_pack () are removed during
8115 inlining. */
8116 if (CALL_EXPR_VA_ARG_PACK (exp))
8117 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
8118 {
8119 tree fndecl = get_callee_fndecl (exp), attr;
8120
8121 if (fndecl
8122 && (attr = lookup_attribute ("error",
8123 DECL_ATTRIBUTES (fndecl))) != NULL)
8124 error ("%Kcall to %qs declared with attribute error: %s",
8125 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
8126 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8127 if (fndecl
8128 && (attr = lookup_attribute ("warning",
8129 DECL_ATTRIBUTES (fndecl))) != NULL)
8130 warning_at (tree_nonartificial_location (exp),
8131 0, "%Kcall to %qs declared with attribute warning: %s",
8132 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
8133 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8134
8135 /* Check for a built-in function. */
8136 if (fndecl && DECL_BUILT_IN (fndecl))
8137 {
8138 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
8139 return expand_builtin (exp, target, subtarget, tmode, ignore);
8140 }
8141 }
8142 return expand_call (exp, target, ignore);
8143
8144 case PAREN_EXPR:
8145 CASE_CONVERT:
8146 if (TREE_OPERAND (exp, 0) == error_mark_node)
8147 return const0_rtx;
8148
8149 if (TREE_CODE (type) == UNION_TYPE)
8150 {
8151 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8152
8153 /* If both input and output are BLKmode, this conversion isn't doing
8154 anything except possibly changing memory attribute. */
8155 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8156 {
8157 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8158 modifier);
8159
8160 result = copy_rtx (result);
8161 set_mem_attributes (result, exp, 0);
8162 return result;
8163 }
8164
8165 if (target == 0)
8166 {
8167 if (TYPE_MODE (type) != BLKmode)
8168 target = gen_reg_rtx (TYPE_MODE (type));
8169 else
8170 target = assign_temp (type, 0, 1, 1);
8171 }
8172
8173 if (MEM_P (target))
8174 /* Store data into beginning of memory target. */
8175 store_expr (TREE_OPERAND (exp, 0),
8176 adjust_address (target, TYPE_MODE (valtype), 0),
8177 modifier == EXPAND_STACK_PARM,
8178 false);
8179
8180 else
8181 {
8182 gcc_assert (REG_P (target));
8183
8184 /* Store this field into a union of the proper type. */
8185 store_field (target,
8186 MIN ((int_size_in_bytes (TREE_TYPE
8187 (TREE_OPERAND (exp, 0)))
8188 * BITS_PER_UNIT),
8189 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8190 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8191 type, 0, false);
8192 }
8193
8194 /* Return the entire union. */
8195 return target;
8196 }
8197
8198 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8199 {
8200 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8201 modifier);
8202
8203 /* If the signedness of the conversion differs and OP0 is
8204 a promoted SUBREG, clear that indication since we now
8205 have to do the proper extension. */
8206 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8207 && GET_CODE (op0) == SUBREG)
8208 SUBREG_PROMOTED_VAR_P (op0) = 0;
8209
8210 return REDUCE_BIT_FIELD (op0);
8211 }
8212
8213 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8214 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8215 if (GET_MODE (op0) == mode)
8216 ;
8217
8218 /* If OP0 is a constant, just convert it into the proper mode. */
8219 else if (CONSTANT_P (op0))
8220 {
8221 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8222 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8223
8224 if (modifier == EXPAND_INITIALIZER)
8225 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8226 subreg_lowpart_offset (mode,
8227 inner_mode));
8228 else
8229 op0= convert_modes (mode, inner_mode, op0,
8230 TYPE_UNSIGNED (inner_type));
8231 }
8232
8233 else if (modifier == EXPAND_INITIALIZER)
8234 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8235
8236 else if (target == 0)
8237 op0 = convert_to_mode (mode, op0,
8238 TYPE_UNSIGNED (TREE_TYPE
8239 (TREE_OPERAND (exp, 0))));
8240 else
8241 {
8242 convert_move (target, op0,
8243 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8244 op0 = target;
8245 }
8246
8247 return REDUCE_BIT_FIELD (op0);
8248
8249 case VIEW_CONVERT_EXPR:
8250 op0 = NULL_RTX;
8251
8252 /* If we are converting to BLKmode, try to avoid an intermediate
8253 temporary by fetching an inner memory reference. */
8254 if (mode == BLKmode
8255 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
8256 && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != BLKmode
8257 && handled_component_p (TREE_OPERAND (exp, 0)))
8258 {
8259 enum machine_mode mode1;
8260 HOST_WIDE_INT bitsize, bitpos;
8261 tree offset;
8262 int unsignedp;
8263 int volatilep = 0;
8264 tree tem
8265 = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, &bitpos,
8266 &offset, &mode1, &unsignedp, &volatilep,
8267 true);
8268 rtx orig_op0;
8269
8270 /* ??? We should work harder and deal with non-zero offsets. */
8271 if (!offset
8272 && (bitpos % BITS_PER_UNIT) == 0
8273 && bitsize >= 0
8274 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
8275 {
8276 /* See the normal_inner_ref case for the rationale. */
8277 orig_op0
8278 = expand_expr (tem,
8279 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8280 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8281 != INTEGER_CST)
8282 && modifier != EXPAND_STACK_PARM
8283 ? target : NULL_RTX),
8284 VOIDmode,
8285 (modifier == EXPAND_INITIALIZER
8286 || modifier == EXPAND_CONST_ADDRESS
8287 || modifier == EXPAND_STACK_PARM)
8288 ? modifier : EXPAND_NORMAL);
8289
8290 if (MEM_P (orig_op0))
8291 {
8292 op0 = orig_op0;
8293
8294 /* Get a reference to just this component. */
8295 if (modifier == EXPAND_CONST_ADDRESS
8296 || modifier == EXPAND_SUM
8297 || modifier == EXPAND_INITIALIZER)
8298 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
8299 else
8300 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
8301
8302 if (op0 == orig_op0)
8303 op0 = copy_rtx (op0);
8304
8305 set_mem_attributes (op0, TREE_OPERAND (exp, 0), 0);
8306 if (REG_P (XEXP (op0, 0)))
8307 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8308
8309 MEM_VOLATILE_P (op0) |= volatilep;
8310 }
8311 }
8312 }
8313
8314 if (!op0)
8315 op0 = expand_expr (TREE_OPERAND (exp, 0),
8316 NULL_RTX, VOIDmode, modifier);
8317
8318 /* If the input and output modes are both the same, we are done. */
8319 if (mode == GET_MODE (op0))
8320 ;
8321 /* If neither mode is BLKmode, and both modes are the same size
8322 then we can use gen_lowpart. */
8323 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
8324 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
8325 && !COMPLEX_MODE_P (GET_MODE (op0)))
8326 {
8327 if (GET_CODE (op0) == SUBREG)
8328 op0 = force_reg (GET_MODE (op0), op0);
8329 op0 = gen_lowpart (mode, op0);
8330 }
8331 /* If both modes are integral, then we can convert from one to the
8332 other. */
8333 else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
8334 op0 = convert_modes (mode, GET_MODE (op0), op0,
8335 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8336 /* As a last resort, spill op0 to memory, and reload it in a
8337 different mode. */
8338 else if (!MEM_P (op0))
8339 {
8340 /* If the operand is not a MEM, force it into memory. Since we
8341 are going to be changing the mode of the MEM, don't call
8342 force_const_mem for constants because we don't allow pool
8343 constants to change mode. */
8344 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8345
8346 gcc_assert (!TREE_ADDRESSABLE (exp));
8347
8348 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8349 target
8350 = assign_stack_temp_for_type
8351 (TYPE_MODE (inner_type),
8352 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8353
8354 emit_move_insn (target, op0);
8355 op0 = target;
8356 }
8357
8358 /* At this point, OP0 is in the correct mode. If the output type is
8359 such that the operand is known to be aligned, indicate that it is.
8360 Otherwise, we need only be concerned about alignment for non-BLKmode
8361 results. */
8362 if (MEM_P (op0))
8363 {
8364 op0 = copy_rtx (op0);
8365
8366 if (TYPE_ALIGN_OK (type))
8367 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8368 else if (STRICT_ALIGNMENT
8369 && mode != BLKmode
8370 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
8371 {
8372 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8373 HOST_WIDE_INT temp_size
8374 = MAX (int_size_in_bytes (inner_type),
8375 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
8376 rtx new_rtx
8377 = assign_stack_temp_for_type (mode, temp_size, 0, type);
8378 rtx new_with_op0_mode
8379 = adjust_address (new_rtx, GET_MODE (op0), 0);
8380
8381 gcc_assert (!TREE_ADDRESSABLE (exp));
8382
8383 if (GET_MODE (op0) == BLKmode)
8384 emit_block_move (new_with_op0_mode, op0,
8385 GEN_INT (GET_MODE_SIZE (mode)),
8386 (modifier == EXPAND_STACK_PARM
8387 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8388 else
8389 emit_move_insn (new_with_op0_mode, op0);
8390
8391 op0 = new_rtx;
8392 }
8393
8394 op0 = adjust_address (op0, mode, 0);
8395 }
8396
8397 return op0;
8398
8399 case POINTER_PLUS_EXPR:
8400 /* Even though the sizetype mode and the pointer's mode can be different
8401 expand is able to handle this correctly and get the correct result out
8402 of the PLUS_EXPR code. */
8403 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8404 if sizetype precision is smaller than pointer precision. */
8405 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8406 exp = build2 (PLUS_EXPR, type,
8407 TREE_OPERAND (exp, 0),
8408 fold_convert (type,
8409 fold_convert (ssizetype,
8410 TREE_OPERAND (exp, 1))));
8411 case PLUS_EXPR:
8412
8413 /* Check if this is a case for multiplication and addition. */
8414 if ((TREE_CODE (type) == INTEGER_TYPE
8415 || TREE_CODE (type) == FIXED_POINT_TYPE)
8416 && (subexp0_def = get_def_for_expr (TREE_OPERAND (exp, 0),
8417 MULT_EXPR)))
8418 {
8419 tree subsubexp0, subsubexp1;
8420 gimple subsubexp0_def, subsubexp1_def;
8421 enum tree_code this_code;
8422
8423 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8424 : FIXED_CONVERT_EXPR;
8425 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
8426 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
8427 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
8428 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
8429 if (subsubexp0_def && subsubexp1_def
8430 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
8431 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
8432 && (TYPE_PRECISION (TREE_TYPE (top0))
8433 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8434 && (TYPE_PRECISION (TREE_TYPE (top0))
8435 == TYPE_PRECISION (TREE_TYPE (top1)))
8436 && (TYPE_UNSIGNED (TREE_TYPE (top0))
8437 == TYPE_UNSIGNED (TREE_TYPE (top1))))
8438 {
8439 tree op0type = TREE_TYPE (top0);
8440 enum machine_mode innermode = TYPE_MODE (op0type);
8441 bool zextend_p = TYPE_UNSIGNED (op0type);
8442 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8443 if (sat_p == 0)
8444 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8445 else
8446 this_optab = zextend_p ? usmadd_widen_optab
8447 : ssmadd_widen_optab;
8448 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8449 && (optab_handler (this_optab, mode)->insn_code
8450 != CODE_FOR_nothing))
8451 {
8452 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
8453 EXPAND_NORMAL);
8454 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8455 VOIDmode, EXPAND_NORMAL);
8456 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8457 target, unsignedp);
8458 gcc_assert (temp);
8459 return REDUCE_BIT_FIELD (temp);
8460 }
8461 }
8462 }
8463
8464 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8465 something else, make sure we add the register to the constant and
8466 then to the other thing. This case can occur during strength
8467 reduction and doing it this way will produce better code if the
8468 frame pointer or argument pointer is eliminated.
8469
8470 fold-const.c will ensure that the constant is always in the inner
8471 PLUS_EXPR, so the only case we need to do anything about is if
8472 sp, ap, or fp is our second argument, in which case we must swap
8473 the innermost first argument and our second argument. */
8474
8475 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8476 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8477 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8478 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8479 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8480 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8481 {
8482 tree t = TREE_OPERAND (exp, 1);
8483
8484 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8485 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8486 }
8487
8488 /* If the result is to be ptr_mode and we are adding an integer to
8489 something, we might be forming a constant. So try to use
8490 plus_constant. If it produces a sum and we can't accept it,
8491 use force_operand. This allows P = &ARR[const] to generate
8492 efficient code on machines where a SYMBOL_REF is not a valid
8493 address.
8494
8495 If this is an EXPAND_SUM call, always return the sum. */
8496 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8497 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8498 {
8499 if (modifier == EXPAND_STACK_PARM)
8500 target = 0;
8501 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8502 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8503 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8504 {
8505 rtx constant_part;
8506
8507 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8508 EXPAND_SUM);
8509 /* Use immed_double_const to ensure that the constant is
8510 truncated according to the mode of OP1, then sign extended
8511 to a HOST_WIDE_INT. Using the constant directly can result
8512 in non-canonical RTL in a 64x32 cross compile. */
8513 constant_part
8514 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8515 (HOST_WIDE_INT) 0,
8516 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8517 op1 = plus_constant (op1, INTVAL (constant_part));
8518 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8519 op1 = force_operand (op1, target);
8520 return REDUCE_BIT_FIELD (op1);
8521 }
8522
8523 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8524 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8525 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8526 {
8527 rtx constant_part;
8528
8529 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8530 (modifier == EXPAND_INITIALIZER
8531 ? EXPAND_INITIALIZER : EXPAND_SUM));
8532 if (! CONSTANT_P (op0))
8533 {
8534 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8535 VOIDmode, modifier);
8536 /* Return a PLUS if modifier says it's OK. */
8537 if (modifier == EXPAND_SUM
8538 || modifier == EXPAND_INITIALIZER)
8539 return simplify_gen_binary (PLUS, mode, op0, op1);
8540 goto binop2;
8541 }
8542 /* Use immed_double_const to ensure that the constant is
8543 truncated according to the mode of OP1, then sign extended
8544 to a HOST_WIDE_INT. Using the constant directly can result
8545 in non-canonical RTL in a 64x32 cross compile. */
8546 constant_part
8547 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8548 (HOST_WIDE_INT) 0,
8549 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8550 op0 = plus_constant (op0, INTVAL (constant_part));
8551 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8552 op0 = force_operand (op0, target);
8553 return REDUCE_BIT_FIELD (op0);
8554 }
8555 }
8556
8557 /* No sense saving up arithmetic to be done
8558 if it's all in the wrong mode to form part of an address.
8559 And force_operand won't know whether to sign-extend or
8560 zero-extend. */
8561 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8562 || mode != ptr_mode)
8563 {
8564 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8565 subtarget, &op0, &op1, EXPAND_NORMAL);
8566 if (op0 == const0_rtx)
8567 return op1;
8568 if (op1 == const0_rtx)
8569 return op0;
8570 goto binop2;
8571 }
8572
8573 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8574 subtarget, &op0, &op1, modifier);
8575 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8576
8577 case MINUS_EXPR:
8578 /* Check if this is a case for multiplication and subtraction. */
8579 if ((TREE_CODE (type) == INTEGER_TYPE
8580 || TREE_CODE (type) == FIXED_POINT_TYPE)
8581 && (subexp1_def = get_def_for_expr (TREE_OPERAND (exp, 1),
8582 MULT_EXPR)))
8583 {
8584 tree subsubexp0, subsubexp1;
8585 gimple subsubexp0_def, subsubexp1_def;
8586 enum tree_code this_code;
8587
8588 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8589 : FIXED_CONVERT_EXPR;
8590 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
8591 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
8592 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
8593 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
8594 if (subsubexp0_def && subsubexp1_def
8595 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
8596 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
8597 && (TYPE_PRECISION (TREE_TYPE (top0))
8598 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8599 && (TYPE_PRECISION (TREE_TYPE (top0))
8600 == TYPE_PRECISION (TREE_TYPE (top1)))
8601 && (TYPE_UNSIGNED (TREE_TYPE (top0))
8602 == TYPE_UNSIGNED (TREE_TYPE (top1))))
8603 {
8604 tree op0type = TREE_TYPE (top0);
8605 enum machine_mode innermode = TYPE_MODE (op0type);
8606 bool zextend_p = TYPE_UNSIGNED (op0type);
8607 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8608 if (sat_p == 0)
8609 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8610 else
8611 this_optab = zextend_p ? usmsub_widen_optab
8612 : ssmsub_widen_optab;
8613 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8614 && (optab_handler (this_optab, mode)->insn_code
8615 != CODE_FOR_nothing))
8616 {
8617 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
8618 EXPAND_NORMAL);
8619 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8620 VOIDmode, EXPAND_NORMAL);
8621 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8622 target, unsignedp);
8623 gcc_assert (temp);
8624 return REDUCE_BIT_FIELD (temp);
8625 }
8626 }
8627 }
8628
8629 /* For initializers, we are allowed to return a MINUS of two
8630 symbolic constants. Here we handle all cases when both operands
8631 are constant. */
8632 /* Handle difference of two symbolic constants,
8633 for the sake of an initializer. */
8634 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8635 && really_constant_p (TREE_OPERAND (exp, 0))
8636 && really_constant_p (TREE_OPERAND (exp, 1)))
8637 {
8638 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8639 NULL_RTX, &op0, &op1, modifier);
8640
8641 /* If the last operand is a CONST_INT, use plus_constant of
8642 the negated constant. Else make the MINUS. */
8643 if (CONST_INT_P (op1))
8644 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8645 else
8646 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8647 }
8648
8649 /* No sense saving up arithmetic to be done
8650 if it's all in the wrong mode to form part of an address.
8651 And force_operand won't know whether to sign-extend or
8652 zero-extend. */
8653 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8654 || mode != ptr_mode)
8655 goto binop;
8656
8657 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8658 subtarget, &op0, &op1, modifier);
8659
8660 /* Convert A - const to A + (-const). */
8661 if (CONST_INT_P (op1))
8662 {
8663 op1 = negate_rtx (mode, op1);
8664 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8665 }
8666
8667 goto binop2;
8668
8669 case MULT_EXPR:
8670 /* If this is a fixed-point operation, then we cannot use the code
8671 below because "expand_mult" doesn't support sat/no-sat fixed-point
8672 multiplications. */
8673 if (ALL_FIXED_POINT_MODE_P (mode))
8674 goto binop;
8675
8676 /* If first operand is constant, swap them.
8677 Thus the following special case checks need only
8678 check the second operand. */
8679 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8680 {
8681 tree t1 = TREE_OPERAND (exp, 0);
8682 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8683 TREE_OPERAND (exp, 1) = t1;
8684 }
8685
8686 /* Attempt to return something suitable for generating an
8687 indexed address, for machines that support that. */
8688
8689 if (modifier == EXPAND_SUM && mode == ptr_mode
8690 && host_integerp (TREE_OPERAND (exp, 1), 0))
8691 {
8692 tree exp1 = TREE_OPERAND (exp, 1);
8693
8694 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8695 EXPAND_SUM);
8696
8697 if (!REG_P (op0))
8698 op0 = force_operand (op0, NULL_RTX);
8699 if (!REG_P (op0))
8700 op0 = copy_to_mode_reg (mode, op0);
8701
8702 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8703 gen_int_mode (tree_low_cst (exp1, 0),
8704 TYPE_MODE (TREE_TYPE (exp1)))));
8705 }
8706
8707 if (modifier == EXPAND_STACK_PARM)
8708 target = 0;
8709
8710 /* Check for multiplying things that have been extended
8711 from a narrower type. If this machine supports multiplying
8712 in that narrower type with a result in the desired type,
8713 do it that way, and avoid the explicit type-conversion. */
8714
8715 subexp0 = TREE_OPERAND (exp, 0);
8716 subexp1 = TREE_OPERAND (exp, 1);
8717 subexp0_def = get_def_for_expr (subexp0, NOP_EXPR);
8718 subexp1_def = get_def_for_expr (subexp1, NOP_EXPR);
8719 top0 = top1 = NULL_TREE;
8720
8721 /* First, check if we have a multiplication of one signed and one
8722 unsigned operand. */
8723 if (subexp0_def
8724 && (top0 = gimple_assign_rhs1 (subexp0_def))
8725 && subexp1_def
8726 && (top1 = gimple_assign_rhs1 (subexp1_def))
8727 && TREE_CODE (type) == INTEGER_TYPE
8728 && (TYPE_PRECISION (TREE_TYPE (top0))
8729 < TYPE_PRECISION (TREE_TYPE (subexp0)))
8730 && (TYPE_PRECISION (TREE_TYPE (top0))
8731 == TYPE_PRECISION (TREE_TYPE (top1)))
8732 && (TYPE_UNSIGNED (TREE_TYPE (top0))
8733 != TYPE_UNSIGNED (TREE_TYPE (top1))))
8734 {
8735 enum machine_mode innermode
8736 = TYPE_MODE (TREE_TYPE (top0));
8737 this_optab = usmul_widen_optab;
8738 if (mode == GET_MODE_WIDER_MODE (innermode))
8739 {
8740 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8741 {
8742 if (TYPE_UNSIGNED (TREE_TYPE (top0)))
8743 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
8744 EXPAND_NORMAL);
8745 else
8746 expand_operands (top0, top1, NULL_RTX, &op1, &op0,
8747 EXPAND_NORMAL);
8748
8749 goto binop3;
8750 }
8751 }
8752 }
8753 /* Check for a multiplication with matching signedness. If
8754 valid, TOP0 and TOP1 were set in the previous if
8755 condition. */
8756 else if (top0
8757 && TREE_CODE (type) == INTEGER_TYPE
8758 && (TYPE_PRECISION (TREE_TYPE (top0))
8759 < TYPE_PRECISION (TREE_TYPE (subexp0)))
8760 && ((TREE_CODE (subexp1) == INTEGER_CST
8761 && int_fits_type_p (subexp1, TREE_TYPE (top0))
8762 /* Don't use a widening multiply if a shift will do. */
8763 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (subexp1)))
8764 > HOST_BITS_PER_WIDE_INT)
8765 || exact_log2 (TREE_INT_CST_LOW (subexp1)) < 0))
8766 ||
8767 (top1
8768 && (TYPE_PRECISION (TREE_TYPE (top1))
8769 == TYPE_PRECISION (TREE_TYPE (top0))
8770 /* If both operands are extended, they must either both
8771 be zero-extended or both be sign-extended. */
8772 && (TYPE_UNSIGNED (TREE_TYPE (top1))
8773 == TYPE_UNSIGNED (TREE_TYPE (top0)))))))
8774 {
8775 tree op0type = TREE_TYPE (top0);
8776 enum machine_mode innermode = TYPE_MODE (op0type);
8777 bool zextend_p = TYPE_UNSIGNED (op0type);
8778 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8779 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8780
8781 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8782 {
8783 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8784 {
8785 if (TREE_CODE (subexp1) == INTEGER_CST)
8786 expand_operands (top0, subexp1, NULL_RTX, &op0, &op1,
8787 EXPAND_NORMAL);
8788 else
8789 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
8790 EXPAND_NORMAL);
8791 goto binop3;
8792 }
8793 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8794 && innermode == word_mode)
8795 {
8796 rtx htem, hipart;
8797 op0 = expand_normal (top0);
8798 if (TREE_CODE (subexp1) == INTEGER_CST)
8799 op1 = convert_modes (innermode, mode,
8800 expand_normal (subexp1), unsignedp);
8801 else
8802 op1 = expand_normal (top1);
8803 temp = expand_binop (mode, other_optab, op0, op1, target,
8804 unsignedp, OPTAB_LIB_WIDEN);
8805 hipart = gen_highpart (innermode, temp);
8806 htem = expand_mult_highpart_adjust (innermode, hipart,
8807 op0, op1, hipart,
8808 zextend_p);
8809 if (htem != hipart)
8810 emit_move_insn (hipart, htem);
8811 return REDUCE_BIT_FIELD (temp);
8812 }
8813 }
8814 }
8815 expand_operands (subexp0, subexp1, subtarget, &op0, &op1, EXPAND_NORMAL);
8816 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8817
8818 case TRUNC_DIV_EXPR:
8819 case FLOOR_DIV_EXPR:
8820 case CEIL_DIV_EXPR:
8821 case ROUND_DIV_EXPR:
8822 case EXACT_DIV_EXPR:
8823 /* If this is a fixed-point operation, then we cannot use the code
8824 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8825 divisions. */
8826 if (ALL_FIXED_POINT_MODE_P (mode))
8827 goto binop;
8828
8829 if (modifier == EXPAND_STACK_PARM)
8830 target = 0;
8831 /* Possible optimization: compute the dividend with EXPAND_SUM
8832 then if the divisor is constant can optimize the case
8833 where some terms of the dividend have coeffs divisible by it. */
8834 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8835 subtarget, &op0, &op1, EXPAND_NORMAL);
8836 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8837
8838 case RDIV_EXPR:
8839 goto binop;
8840
8841 case TRUNC_MOD_EXPR:
8842 case FLOOR_MOD_EXPR:
8843 case CEIL_MOD_EXPR:
8844 case ROUND_MOD_EXPR:
8845 if (modifier == EXPAND_STACK_PARM)
8846 target = 0;
8847 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8848 subtarget, &op0, &op1, EXPAND_NORMAL);
8849 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8850
8851 case FIXED_CONVERT_EXPR:
8852 op0 = expand_normal (TREE_OPERAND (exp, 0));
8853 if (target == 0 || modifier == EXPAND_STACK_PARM)
8854 target = gen_reg_rtx (mode);
8855
8856 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8857 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8858 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8859 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8860 else
8861 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8862 return target;
8863
8864 case FIX_TRUNC_EXPR:
8865 op0 = expand_normal (TREE_OPERAND (exp, 0));
8866 if (target == 0 || modifier == EXPAND_STACK_PARM)
8867 target = gen_reg_rtx (mode);
8868 expand_fix (target, op0, unsignedp);
8869 return target;
8870
8871 case FLOAT_EXPR:
8872 op0 = expand_normal (TREE_OPERAND (exp, 0));
8873 if (target == 0 || modifier == EXPAND_STACK_PARM)
8874 target = gen_reg_rtx (mode);
8875 /* expand_float can't figure out what to do if FROM has VOIDmode.
8876 So give it the correct mode. With -O, cse will optimize this. */
8877 if (GET_MODE (op0) == VOIDmode)
8878 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8879 op0);
8880 expand_float (target, op0,
8881 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8882 return target;
8883
8884 case NEGATE_EXPR:
8885 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8886 VOIDmode, EXPAND_NORMAL);
8887 if (modifier == EXPAND_STACK_PARM)
8888 target = 0;
8889 temp = expand_unop (mode,
8890 optab_for_tree_code (NEGATE_EXPR, type,
8891 optab_default),
8892 op0, target, 0);
8893 gcc_assert (temp);
8894 return REDUCE_BIT_FIELD (temp);
8895
8896 case ABS_EXPR:
8897 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8898 VOIDmode, EXPAND_NORMAL);
8899 if (modifier == EXPAND_STACK_PARM)
8900 target = 0;
8901
8902 /* ABS_EXPR is not valid for complex arguments. */
8903 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8904 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8905
8906 /* Unsigned abs is simply the operand. Testing here means we don't
8907 risk generating incorrect code below. */
8908 if (TYPE_UNSIGNED (type))
8909 return op0;
8910
8911 return expand_abs (mode, op0, target, unsignedp,
8912 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8913
8914 case MAX_EXPR:
8915 case MIN_EXPR:
8916 target = original_target;
8917 if (target == 0
8918 || modifier == EXPAND_STACK_PARM
8919 || (MEM_P (target) && MEM_VOLATILE_P (target))
8920 || GET_MODE (target) != mode
8921 || (REG_P (target)
8922 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8923 target = gen_reg_rtx (mode);
8924 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8925 target, &op0, &op1, EXPAND_NORMAL);
8926
8927 /* First try to do it with a special MIN or MAX instruction.
8928 If that does not win, use a conditional jump to select the proper
8929 value. */
8930 this_optab = optab_for_tree_code (code, type, optab_default);
8931 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8932 OPTAB_WIDEN);
8933 if (temp != 0)
8934 return temp;
8935
8936 /* At this point, a MEM target is no longer useful; we will get better
8937 code without it. */
8938
8939 if (! REG_P (target))
8940 target = gen_reg_rtx (mode);
8941
8942 /* If op1 was placed in target, swap op0 and op1. */
8943 if (target != op0 && target == op1)
8944 {
8945 temp = op0;
8946 op0 = op1;
8947 op1 = temp;
8948 }
8949
8950 /* We generate better code and avoid problems with op1 mentioning
8951 target by forcing op1 into a pseudo if it isn't a constant. */
8952 if (! CONSTANT_P (op1))
8953 op1 = force_reg (mode, op1);
8954
8955 {
8956 enum rtx_code comparison_code;
8957 rtx cmpop1 = op1;
8958
8959 if (code == MAX_EXPR)
8960 comparison_code = unsignedp ? GEU : GE;
8961 else
8962 comparison_code = unsignedp ? LEU : LE;
8963
8964 /* Canonicalize to comparisons against 0. */
8965 if (op1 == const1_rtx)
8966 {
8967 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8968 or (a != 0 ? a : 1) for unsigned.
8969 For MIN we are safe converting (a <= 1 ? a : 1)
8970 into (a <= 0 ? a : 1) */
8971 cmpop1 = const0_rtx;
8972 if (code == MAX_EXPR)
8973 comparison_code = unsignedp ? NE : GT;
8974 }
8975 if (op1 == constm1_rtx && !unsignedp)
8976 {
8977 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8978 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8979 cmpop1 = const0_rtx;
8980 if (code == MIN_EXPR)
8981 comparison_code = LT;
8982 }
8983 #ifdef HAVE_conditional_move
8984 /* Use a conditional move if possible. */
8985 if (can_conditionally_move_p (mode))
8986 {
8987 rtx insn;
8988
8989 /* ??? Same problem as in expmed.c: emit_conditional_move
8990 forces a stack adjustment via compare_from_rtx, and we
8991 lose the stack adjustment if the sequence we are about
8992 to create is discarded. */
8993 do_pending_stack_adjust ();
8994
8995 start_sequence ();
8996
8997 /* Try to emit the conditional move. */
8998 insn = emit_conditional_move (target, comparison_code,
8999 op0, cmpop1, mode,
9000 op0, op1, mode,
9001 unsignedp);
9002
9003 /* If we could do the conditional move, emit the sequence,
9004 and return. */
9005 if (insn)
9006 {
9007 rtx seq = get_insns ();
9008 end_sequence ();
9009 emit_insn (seq);
9010 return target;
9011 }
9012
9013 /* Otherwise discard the sequence and fall back to code with
9014 branches. */
9015 end_sequence ();
9016 }
9017 #endif
9018 if (target != op0)
9019 emit_move_insn (target, op0);
9020
9021 temp = gen_label_rtx ();
9022 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9023 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
9024 }
9025 emit_move_insn (target, op1);
9026 emit_label (temp);
9027 return target;
9028
9029 case BIT_NOT_EXPR:
9030 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
9031 VOIDmode, EXPAND_NORMAL);
9032 if (modifier == EXPAND_STACK_PARM)
9033 target = 0;
9034 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9035 gcc_assert (temp);
9036 return temp;
9037
9038 /* ??? Can optimize bitwise operations with one arg constant.
9039 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9040 and (a bitwise1 b) bitwise2 b (etc)
9041 but that is probably not worth while. */
9042
9043 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
9044 boolean values when we want in all cases to compute both of them. In
9045 general it is fastest to do TRUTH_AND_EXPR by computing both operands
9046 as actual zero-or-1 values and then bitwise anding. In cases where
9047 there cannot be any side effects, better code would be made by
9048 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
9049 how to recognize those cases. */
9050
9051 case TRUTH_AND_EXPR:
9052 code = BIT_AND_EXPR;
9053 case BIT_AND_EXPR:
9054 goto binop;
9055
9056 case TRUTH_OR_EXPR:
9057 code = BIT_IOR_EXPR;
9058 case BIT_IOR_EXPR:
9059 goto binop;
9060
9061 case TRUTH_XOR_EXPR:
9062 code = BIT_XOR_EXPR;
9063 case BIT_XOR_EXPR:
9064 goto binop;
9065
9066 case LROTATE_EXPR:
9067 case RROTATE_EXPR:
9068 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9069 || (GET_MODE_PRECISION (TYPE_MODE (type))
9070 == TYPE_PRECISION (type)));
9071 /* fall through */
9072
9073 case LSHIFT_EXPR:
9074 case RSHIFT_EXPR:
9075 /* If this is a fixed-point operation, then we cannot use the code
9076 below because "expand_shift" doesn't support sat/no-sat fixed-point
9077 shifts. */
9078 if (ALL_FIXED_POINT_MODE_P (mode))
9079 goto binop;
9080
9081 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
9082 subtarget = 0;
9083 if (modifier == EXPAND_STACK_PARM)
9084 target = 0;
9085 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
9086 VOIDmode, EXPAND_NORMAL);
9087 temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
9088 unsignedp);
9089 if (code == LSHIFT_EXPR)
9090 temp = REDUCE_BIT_FIELD (temp);
9091 return temp;
9092
9093 /* Could determine the answer when only additive constants differ. Also,
9094 the addition of one can be handled by changing the condition. */
9095 case LT_EXPR:
9096 case LE_EXPR:
9097 case GT_EXPR:
9098 case GE_EXPR:
9099 case EQ_EXPR:
9100 case NE_EXPR:
9101 case UNORDERED_EXPR:
9102 case ORDERED_EXPR:
9103 case UNLT_EXPR:
9104 case UNLE_EXPR:
9105 case UNGT_EXPR:
9106 case UNGE_EXPR:
9107 case UNEQ_EXPR:
9108 case LTGT_EXPR:
9109 temp = do_store_flag (exp,
9110 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9111 tmode != VOIDmode ? tmode : mode);
9112 if (temp != 0)
9113 return temp;
9114
9115 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
9116 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
9117 && original_target
9118 && REG_P (original_target)
9119 && (GET_MODE (original_target)
9120 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
9121 {
9122 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
9123 VOIDmode, EXPAND_NORMAL);
9124
9125 /* If temp is constant, we can just compute the result. */
9126 if (CONST_INT_P (temp))
9127 {
9128 if (INTVAL (temp) != 0)
9129 emit_move_insn (target, const1_rtx);
9130 else
9131 emit_move_insn (target, const0_rtx);
9132
9133 return target;
9134 }
9135
9136 if (temp != original_target)
9137 {
9138 enum machine_mode mode1 = GET_MODE (temp);
9139 if (mode1 == VOIDmode)
9140 mode1 = tmode != VOIDmode ? tmode : mode;
9141
9142 temp = copy_to_mode_reg (mode1, temp);
9143 }
9144
9145 op1 = gen_label_rtx ();
9146 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
9147 GET_MODE (temp), unsignedp, op1);
9148 emit_move_insn (temp, const1_rtx);
9149 emit_label (op1);
9150 return temp;
9151 }
9152
9153 /* If no set-flag instruction, must generate a conditional store
9154 into a temporary variable. Drop through and handle this
9155 like && and ||. */
9156 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9157 are occassionally created by folding during expansion. */
9158 case TRUTH_ANDIF_EXPR:
9159 case TRUTH_ORIF_EXPR:
9160 if (! ignore
9161 && (target == 0
9162 || modifier == EXPAND_STACK_PARM
9163 || ! safe_from_p (target, exp, 1)
9164 /* Make sure we don't have a hard reg (such as function's return
9165 value) live across basic blocks, if not optimizing. */
9166 || (!optimize && REG_P (target)
9167 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9168 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9169
9170 if (target)
9171 emit_move_insn (target, const0_rtx);
9172
9173 op1 = gen_label_rtx ();
9174 jumpifnot (exp, op1);
9175
9176 if (target)
9177 emit_move_insn (target, const1_rtx);
9178
9179 emit_label (op1);
9180 return ignore ? const0_rtx : target;
9181
9182 case TRUTH_NOT_EXPR:
9183 if (modifier == EXPAND_STACK_PARM)
9184 target = 0;
9185 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
9186 VOIDmode, EXPAND_NORMAL);
9187 /* The parser is careful to generate TRUTH_NOT_EXPR
9188 only with operands that are always zero or one. */
9189 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
9190 target, 1, OPTAB_LIB_WIDEN);
9191 gcc_assert (temp);
9192 return temp;
9193
9194 case STATEMENT_LIST:
9195 {
9196 tree_stmt_iterator iter;
9197
9198 gcc_assert (ignore);
9199
9200 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9201 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9202 }
9203 return const0_rtx;
9204
9205 case COND_EXPR:
9206 /* A COND_EXPR with its type being VOID_TYPE represents a
9207 conditional jump and is handled in
9208 expand_gimple_cond_expr. */
9209 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9210
9211 /* Note that COND_EXPRs whose type is a structure or union
9212 are required to be constructed to contain assignments of
9213 a temporary variable, so that we can evaluate them here
9214 for side effect only. If type is void, we must do likewise. */
9215
9216 gcc_assert (!TREE_ADDRESSABLE (type)
9217 && !ignore
9218 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9219 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9220
9221 /* If we are not to produce a result, we have no target. Otherwise,
9222 if a target was specified use it; it will not be used as an
9223 intermediate target unless it is safe. If no target, use a
9224 temporary. */
9225
9226 if (modifier != EXPAND_STACK_PARM
9227 && original_target
9228 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9229 && GET_MODE (original_target) == mode
9230 #ifdef HAVE_conditional_move
9231 && (! can_conditionally_move_p (mode)
9232 || REG_P (original_target))
9233 #endif
9234 && !MEM_P (original_target))
9235 temp = original_target;
9236 else
9237 temp = assign_temp (type, 0, 0, 1);
9238
9239 do_pending_stack_adjust ();
9240 NO_DEFER_POP;
9241 op0 = gen_label_rtx ();
9242 op1 = gen_label_rtx ();
9243 jumpifnot (TREE_OPERAND (exp, 0), op0);
9244 store_expr (TREE_OPERAND (exp, 1), temp,
9245 modifier == EXPAND_STACK_PARM,
9246 false);
9247
9248 emit_jump_insn (gen_jump (op1));
9249 emit_barrier ();
9250 emit_label (op0);
9251 store_expr (TREE_OPERAND (exp, 2), temp,
9252 modifier == EXPAND_STACK_PARM,
9253 false);
9254
9255 emit_label (op1);
9256 OK_DEFER_POP;
9257 return temp;
9258
9259 case VEC_COND_EXPR:
9260 target = expand_vec_cond_expr (exp, target);
9261 return target;
9262
9263 case MODIFY_EXPR:
9264 {
9265 tree lhs = TREE_OPERAND (exp, 0);
9266 tree rhs = TREE_OPERAND (exp, 1);
9267 gcc_assert (ignore);
9268
9269 /* Check for |= or &= of a bitfield of size one into another bitfield
9270 of size 1. In this case, (unless we need the result of the
9271 assignment) we can do this more efficiently with a
9272 test followed by an assignment, if necessary.
9273
9274 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9275 things change so we do, this code should be enhanced to
9276 support it. */
9277 if (TREE_CODE (lhs) == COMPONENT_REF
9278 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9279 || TREE_CODE (rhs) == BIT_AND_EXPR)
9280 && TREE_OPERAND (rhs, 0) == lhs
9281 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9282 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9283 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9284 {
9285 rtx label = gen_label_rtx ();
9286 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9287 do_jump (TREE_OPERAND (rhs, 1),
9288 value ? label : 0,
9289 value ? 0 : label);
9290 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9291 MOVE_NONTEMPORAL (exp));
9292 do_pending_stack_adjust ();
9293 emit_label (label);
9294 return const0_rtx;
9295 }
9296
9297 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9298 return const0_rtx;
9299 }
9300
9301 case RETURN_EXPR:
9302 if (!TREE_OPERAND (exp, 0))
9303 expand_null_return ();
9304 else
9305 expand_return (TREE_OPERAND (exp, 0));
9306 return const0_rtx;
9307
9308 case ADDR_EXPR:
9309 return expand_expr_addr_expr (exp, target, tmode, modifier);
9310
9311 case COMPLEX_EXPR:
9312 /* Get the rtx code of the operands. */
9313 op0 = expand_normal (TREE_OPERAND (exp, 0));
9314 op1 = expand_normal (TREE_OPERAND (exp, 1));
9315
9316 if (!target)
9317 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9318
9319 /* Move the real (op0) and imaginary (op1) parts to their location. */
9320 write_complex_part (target, op0, false);
9321 write_complex_part (target, op1, true);
9322
9323 return target;
9324
9325 case REALPART_EXPR:
9326 op0 = expand_normal (TREE_OPERAND (exp, 0));
9327 return read_complex_part (op0, false);
9328
9329 case IMAGPART_EXPR:
9330 op0 = expand_normal (TREE_OPERAND (exp, 0));
9331 return read_complex_part (op0, true);
9332
9333 case RESX_EXPR:
9334 expand_resx_expr (exp);
9335 return const0_rtx;
9336
9337 case TRY_CATCH_EXPR:
9338 case CATCH_EXPR:
9339 case EH_FILTER_EXPR:
9340 case TRY_FINALLY_EXPR:
9341 /* Lowered by tree-eh.c. */
9342 gcc_unreachable ();
9343
9344 case WITH_CLEANUP_EXPR:
9345 case CLEANUP_POINT_EXPR:
9346 case TARGET_EXPR:
9347 case CASE_LABEL_EXPR:
9348 case VA_ARG_EXPR:
9349 case BIND_EXPR:
9350 case INIT_EXPR:
9351 case CONJ_EXPR:
9352 case COMPOUND_EXPR:
9353 case PREINCREMENT_EXPR:
9354 case PREDECREMENT_EXPR:
9355 case POSTINCREMENT_EXPR:
9356 case POSTDECREMENT_EXPR:
9357 case LOOP_EXPR:
9358 case EXIT_EXPR:
9359 /* Lowered by gimplify.c. */
9360 gcc_unreachable ();
9361
9362 case EXC_PTR_EXPR:
9363 return get_exception_pointer ();
9364
9365 case FILTER_EXPR:
9366 return get_exception_filter ();
9367
9368 case FDESC_EXPR:
9369 /* Function descriptors are not valid except for as
9370 initialization constants, and should not be expanded. */
9371 gcc_unreachable ();
9372
9373 case SWITCH_EXPR:
9374 expand_case (exp);
9375 return const0_rtx;
9376
9377 case LABEL_EXPR:
9378 expand_label (TREE_OPERAND (exp, 0));
9379 return const0_rtx;
9380
9381 case ASM_EXPR:
9382 expand_asm_expr (exp);
9383 return const0_rtx;
9384
9385 case WITH_SIZE_EXPR:
9386 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9387 have pulled out the size to use in whatever context it needed. */
9388 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9389 modifier, alt_rtl);
9390
9391 case REALIGN_LOAD_EXPR:
9392 {
9393 tree oprnd0 = TREE_OPERAND (exp, 0);
9394 tree oprnd1 = TREE_OPERAND (exp, 1);
9395 tree oprnd2 = TREE_OPERAND (exp, 2);
9396 rtx op2;
9397
9398 this_optab = optab_for_tree_code (code, type, optab_default);
9399 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9400 op2 = expand_normal (oprnd2);
9401 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9402 target, unsignedp);
9403 gcc_assert (temp);
9404 return temp;
9405 }
9406
9407 case DOT_PROD_EXPR:
9408 {
9409 tree oprnd0 = TREE_OPERAND (exp, 0);
9410 tree oprnd1 = TREE_OPERAND (exp, 1);
9411 tree oprnd2 = TREE_OPERAND (exp, 2);
9412 rtx op2;
9413
9414 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9415 op2 = expand_normal (oprnd2);
9416 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9417 target, unsignedp);
9418 return target;
9419 }
9420
9421 case WIDEN_SUM_EXPR:
9422 {
9423 tree oprnd0 = TREE_OPERAND (exp, 0);
9424 tree oprnd1 = TREE_OPERAND (exp, 1);
9425
9426 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9427 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9428 target, unsignedp);
9429 return target;
9430 }
9431
9432 case REDUC_MAX_EXPR:
9433 case REDUC_MIN_EXPR:
9434 case REDUC_PLUS_EXPR:
9435 {
9436 op0 = expand_normal (TREE_OPERAND (exp, 0));
9437 this_optab = optab_for_tree_code (code, type, optab_default);
9438 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9439 gcc_assert (temp);
9440 return temp;
9441 }
9442
9443 case VEC_EXTRACT_EVEN_EXPR:
9444 case VEC_EXTRACT_ODD_EXPR:
9445 {
9446 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9447 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9448 this_optab = optab_for_tree_code (code, type, optab_default);
9449 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9450 OPTAB_WIDEN);
9451 gcc_assert (temp);
9452 return temp;
9453 }
9454
9455 case VEC_INTERLEAVE_HIGH_EXPR:
9456 case VEC_INTERLEAVE_LOW_EXPR:
9457 {
9458 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9459 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9460 this_optab = optab_for_tree_code (code, type, optab_default);
9461 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9462 OPTAB_WIDEN);
9463 gcc_assert (temp);
9464 return temp;
9465 }
9466
9467 case VEC_LSHIFT_EXPR:
9468 case VEC_RSHIFT_EXPR:
9469 {
9470 target = expand_vec_shift_expr (exp, target);
9471 return target;
9472 }
9473
9474 case VEC_UNPACK_HI_EXPR:
9475 case VEC_UNPACK_LO_EXPR:
9476 {
9477 op0 = expand_normal (TREE_OPERAND (exp, 0));
9478 this_optab = optab_for_tree_code (code, type, optab_default);
9479 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9480 target, unsignedp);
9481 gcc_assert (temp);
9482 return temp;
9483 }
9484
9485 case VEC_UNPACK_FLOAT_HI_EXPR:
9486 case VEC_UNPACK_FLOAT_LO_EXPR:
9487 {
9488 op0 = expand_normal (TREE_OPERAND (exp, 0));
9489 /* The signedness is determined from input operand. */
9490 this_optab = optab_for_tree_code (code,
9491 TREE_TYPE (TREE_OPERAND (exp, 0)),
9492 optab_default);
9493 temp = expand_widen_pattern_expr
9494 (exp, op0, NULL_RTX, NULL_RTX,
9495 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9496
9497 gcc_assert (temp);
9498 return temp;
9499 }
9500
9501 case VEC_WIDEN_MULT_HI_EXPR:
9502 case VEC_WIDEN_MULT_LO_EXPR:
9503 {
9504 tree oprnd0 = TREE_OPERAND (exp, 0);
9505 tree oprnd1 = TREE_OPERAND (exp, 1);
9506
9507 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9508 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9509 target, unsignedp);
9510 gcc_assert (target);
9511 return target;
9512 }
9513
9514 case VEC_PACK_TRUNC_EXPR:
9515 case VEC_PACK_SAT_EXPR:
9516 case VEC_PACK_FIX_TRUNC_EXPR:
9517 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9518 goto binop;
9519
9520 case COMPOUND_LITERAL_EXPR:
9521 {
9522 /* Initialize the anonymous variable declared in the compound
9523 literal, then return the variable. */
9524 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9525
9526 /* Create RTL for this variable. */
9527 if (!DECL_RTL_SET_P (decl))
9528 {
9529 if (DECL_HARD_REGISTER (decl))
9530 /* The user specified an assembler name for this variable.
9531 Set that up now. */
9532 rest_of_decl_compilation (decl, 0, 0);
9533 else
9534 expand_decl (decl);
9535 }
9536
9537 return expand_expr_real (decl, original_target, tmode,
9538 modifier, alt_rtl);
9539 }
9540
9541 default:
9542 gcc_unreachable ();
9543 }
9544
9545 /* Here to do an ordinary binary operator. */
9546 binop:
9547 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9548 subtarget, &op0, &op1, EXPAND_NORMAL);
9549 binop2:
9550 this_optab = optab_for_tree_code (code, type, optab_default);
9551 binop3:
9552 if (modifier == EXPAND_STACK_PARM)
9553 target = 0;
9554 temp = expand_binop (mode, this_optab, op0, op1, target,
9555 unsignedp, OPTAB_LIB_WIDEN);
9556 gcc_assert (temp);
9557 return REDUCE_BIT_FIELD (temp);
9558 }
9559 #undef REDUCE_BIT_FIELD
9560 \f
9561 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9562 signedness of TYPE), possibly returning the result in TARGET. */
9563 static rtx
9564 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9565 {
9566 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9567 if (target && GET_MODE (target) != GET_MODE (exp))
9568 target = 0;
9569 /* For constant values, reduce using build_int_cst_type. */
9570 if (CONST_INT_P (exp))
9571 {
9572 HOST_WIDE_INT value = INTVAL (exp);
9573 tree t = build_int_cst_type (type, value);
9574 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9575 }
9576 else if (TYPE_UNSIGNED (type))
9577 {
9578 rtx mask;
9579 if (prec < HOST_BITS_PER_WIDE_INT)
9580 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9581 GET_MODE (exp));
9582 else
9583 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9584 ((unsigned HOST_WIDE_INT) 1
9585 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9586 GET_MODE (exp));
9587 return expand_and (GET_MODE (exp), exp, mask, target);
9588 }
9589 else
9590 {
9591 tree count = build_int_cst (NULL_TREE,
9592 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9593 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9594 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9595 }
9596 }
9597 \f
9598 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9599 when applied to the address of EXP produces an address known to be
9600 aligned more than BIGGEST_ALIGNMENT. */
9601
9602 static int
9603 is_aligning_offset (const_tree offset, const_tree exp)
9604 {
9605 /* Strip off any conversions. */
9606 while (CONVERT_EXPR_P (offset))
9607 offset = TREE_OPERAND (offset, 0);
9608
9609 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9610 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9611 if (TREE_CODE (offset) != BIT_AND_EXPR
9612 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9613 || compare_tree_int (TREE_OPERAND (offset, 1),
9614 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9615 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9616 return 0;
9617
9618 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9619 It must be NEGATE_EXPR. Then strip any more conversions. */
9620 offset = TREE_OPERAND (offset, 0);
9621 while (CONVERT_EXPR_P (offset))
9622 offset = TREE_OPERAND (offset, 0);
9623
9624 if (TREE_CODE (offset) != NEGATE_EXPR)
9625 return 0;
9626
9627 offset = TREE_OPERAND (offset, 0);
9628 while (CONVERT_EXPR_P (offset))
9629 offset = TREE_OPERAND (offset, 0);
9630
9631 /* This must now be the address of EXP. */
9632 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9633 }
9634 \f
9635 /* Return the tree node if an ARG corresponds to a string constant or zero
9636 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9637 in bytes within the string that ARG is accessing. The type of the
9638 offset will be `sizetype'. */
9639
9640 tree
9641 string_constant (tree arg, tree *ptr_offset)
9642 {
9643 tree array, offset, lower_bound;
9644 STRIP_NOPS (arg);
9645
9646 if (TREE_CODE (arg) == ADDR_EXPR)
9647 {
9648 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9649 {
9650 *ptr_offset = size_zero_node;
9651 return TREE_OPERAND (arg, 0);
9652 }
9653 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9654 {
9655 array = TREE_OPERAND (arg, 0);
9656 offset = size_zero_node;
9657 }
9658 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9659 {
9660 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9661 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9662 if (TREE_CODE (array) != STRING_CST
9663 && TREE_CODE (array) != VAR_DECL)
9664 return 0;
9665
9666 /* Check if the array has a nonzero lower bound. */
9667 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9668 if (!integer_zerop (lower_bound))
9669 {
9670 /* If the offset and base aren't both constants, return 0. */
9671 if (TREE_CODE (lower_bound) != INTEGER_CST)
9672 return 0;
9673 if (TREE_CODE (offset) != INTEGER_CST)
9674 return 0;
9675 /* Adjust offset by the lower bound. */
9676 offset = size_diffop (fold_convert (sizetype, offset),
9677 fold_convert (sizetype, lower_bound));
9678 }
9679 }
9680 else
9681 return 0;
9682 }
9683 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9684 {
9685 tree arg0 = TREE_OPERAND (arg, 0);
9686 tree arg1 = TREE_OPERAND (arg, 1);
9687
9688 STRIP_NOPS (arg0);
9689 STRIP_NOPS (arg1);
9690
9691 if (TREE_CODE (arg0) == ADDR_EXPR
9692 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9693 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9694 {
9695 array = TREE_OPERAND (arg0, 0);
9696 offset = arg1;
9697 }
9698 else if (TREE_CODE (arg1) == ADDR_EXPR
9699 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9700 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9701 {
9702 array = TREE_OPERAND (arg1, 0);
9703 offset = arg0;
9704 }
9705 else
9706 return 0;
9707 }
9708 else
9709 return 0;
9710
9711 if (TREE_CODE (array) == STRING_CST)
9712 {
9713 *ptr_offset = fold_convert (sizetype, offset);
9714 return array;
9715 }
9716 else if (TREE_CODE (array) == VAR_DECL)
9717 {
9718 int length;
9719
9720 /* Variables initialized to string literals can be handled too. */
9721 if (DECL_INITIAL (array) == NULL_TREE
9722 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9723 return 0;
9724
9725 /* If they are read-only, non-volatile and bind locally. */
9726 if (! TREE_READONLY (array)
9727 || TREE_SIDE_EFFECTS (array)
9728 || ! targetm.binds_local_p (array))
9729 return 0;
9730
9731 /* Avoid const char foo[4] = "abcde"; */
9732 if (DECL_SIZE_UNIT (array) == NULL_TREE
9733 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9734 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9735 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9736 return 0;
9737
9738 /* If variable is bigger than the string literal, OFFSET must be constant
9739 and inside of the bounds of the string literal. */
9740 offset = fold_convert (sizetype, offset);
9741 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9742 && (! host_integerp (offset, 1)
9743 || compare_tree_int (offset, length) >= 0))
9744 return 0;
9745
9746 *ptr_offset = offset;
9747 return DECL_INITIAL (array);
9748 }
9749
9750 return 0;
9751 }
9752 \f
9753 /* Generate code to calculate EXP using a store-flag instruction
9754 and return an rtx for the result. EXP is either a comparison
9755 or a TRUTH_NOT_EXPR whose operand is a comparison.
9756
9757 If TARGET is nonzero, store the result there if convenient.
9758
9759 Return zero if there is no suitable set-flag instruction
9760 available on this machine.
9761
9762 Once expand_expr has been called on the arguments of the comparison,
9763 we are committed to doing the store flag, since it is not safe to
9764 re-evaluate the expression. We emit the store-flag insn by calling
9765 emit_store_flag, but only expand the arguments if we have a reason
9766 to believe that emit_store_flag will be successful. If we think that
9767 it will, but it isn't, we have to simulate the store-flag with a
9768 set/jump/set sequence. */
9769
9770 static rtx
9771 do_store_flag (tree exp, rtx target, enum machine_mode mode)
9772 {
9773 enum rtx_code code;
9774 tree arg0, arg1, type;
9775 tree tem;
9776 enum machine_mode operand_mode;
9777 int invert = 0;
9778 int unsignedp;
9779 rtx op0, op1;
9780 rtx subtarget = target;
9781 rtx result, label;
9782
9783 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9784 result at the end. We can't simply invert the test since it would
9785 have already been inverted if it were valid. This case occurs for
9786 some floating-point comparisons. */
9787
9788 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9789 invert = 1, exp = TREE_OPERAND (exp, 0);
9790
9791 arg0 = TREE_OPERAND (exp, 0);
9792 arg1 = TREE_OPERAND (exp, 1);
9793
9794 /* Don't crash if the comparison was erroneous. */
9795 if (arg0 == error_mark_node || arg1 == error_mark_node)
9796 return const0_rtx;
9797
9798 type = TREE_TYPE (arg0);
9799 operand_mode = TYPE_MODE (type);
9800 unsignedp = TYPE_UNSIGNED (type);
9801
9802 /* We won't bother with BLKmode store-flag operations because it would mean
9803 passing a lot of information to emit_store_flag. */
9804 if (operand_mode == BLKmode)
9805 return 0;
9806
9807 /* We won't bother with store-flag operations involving function pointers
9808 when function pointers must be canonicalized before comparisons. */
9809 #ifdef HAVE_canonicalize_funcptr_for_compare
9810 if (HAVE_canonicalize_funcptr_for_compare
9811 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9812 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9813 == FUNCTION_TYPE))
9814 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9815 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9816 == FUNCTION_TYPE))))
9817 return 0;
9818 #endif
9819
9820 STRIP_NOPS (arg0);
9821 STRIP_NOPS (arg1);
9822
9823 /* Get the rtx comparison code to use. We know that EXP is a comparison
9824 operation of some type. Some comparisons against 1 and -1 can be
9825 converted to comparisons with zero. Do so here so that the tests
9826 below will be aware that we have a comparison with zero. These
9827 tests will not catch constants in the first operand, but constants
9828 are rarely passed as the first operand. */
9829
9830 switch (TREE_CODE (exp))
9831 {
9832 case EQ_EXPR:
9833 code = EQ;
9834 break;
9835 case NE_EXPR:
9836 code = NE;
9837 break;
9838 case LT_EXPR:
9839 if (integer_onep (arg1))
9840 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9841 else
9842 code = unsignedp ? LTU : LT;
9843 break;
9844 case LE_EXPR:
9845 if (! unsignedp && integer_all_onesp (arg1))
9846 arg1 = integer_zero_node, code = LT;
9847 else
9848 code = unsignedp ? LEU : LE;
9849 break;
9850 case GT_EXPR:
9851 if (! unsignedp && integer_all_onesp (arg1))
9852 arg1 = integer_zero_node, code = GE;
9853 else
9854 code = unsignedp ? GTU : GT;
9855 break;
9856 case GE_EXPR:
9857 if (integer_onep (arg1))
9858 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9859 else
9860 code = unsignedp ? GEU : GE;
9861 break;
9862
9863 case UNORDERED_EXPR:
9864 code = UNORDERED;
9865 break;
9866 case ORDERED_EXPR:
9867 code = ORDERED;
9868 break;
9869 case UNLT_EXPR:
9870 code = UNLT;
9871 break;
9872 case UNLE_EXPR:
9873 code = UNLE;
9874 break;
9875 case UNGT_EXPR:
9876 code = UNGT;
9877 break;
9878 case UNGE_EXPR:
9879 code = UNGE;
9880 break;
9881 case UNEQ_EXPR:
9882 code = UNEQ;
9883 break;
9884 case LTGT_EXPR:
9885 code = LTGT;
9886 break;
9887
9888 default:
9889 gcc_unreachable ();
9890 }
9891
9892 /* Put a constant second. */
9893 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9894 || TREE_CODE (arg0) == FIXED_CST)
9895 {
9896 tem = arg0; arg0 = arg1; arg1 = tem;
9897 code = swap_condition (code);
9898 }
9899
9900 /* If this is an equality or inequality test of a single bit, we can
9901 do this by shifting the bit being tested to the low-order bit and
9902 masking the result with the constant 1. If the condition was EQ,
9903 we xor it with 1. This does not require an scc insn and is faster
9904 than an scc insn even if we have it.
9905
9906 The code to make this transformation was moved into fold_single_bit_test,
9907 so we just call into the folder and expand its result. */
9908
9909 if ((code == NE || code == EQ)
9910 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9911 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9912 {
9913 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9914 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9915 arg0, arg1, type),
9916 target, VOIDmode, EXPAND_NORMAL);
9917 }
9918
9919 /* Now see if we are likely to be able to do this. Return if not. */
9920 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9921 return 0;
9922
9923 if (! get_subtarget (target)
9924 || GET_MODE (subtarget) != operand_mode)
9925 subtarget = 0;
9926
9927 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
9928
9929 if (target == 0)
9930 target = gen_reg_rtx (mode);
9931
9932 result = emit_store_flag (target, code, op0, op1,
9933 operand_mode, unsignedp, 1);
9934
9935 if (result)
9936 {
9937 if (invert)
9938 result = expand_binop (mode, xor_optab, result, const1_rtx,
9939 result, 0, OPTAB_LIB_WIDEN);
9940 return result;
9941 }
9942
9943 /* If this failed, we have to do this with set/compare/jump/set code. */
9944 if (!REG_P (target)
9945 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9946 target = gen_reg_rtx (GET_MODE (target));
9947
9948 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9949 label = gen_label_rtx ();
9950 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9951 NULL_RTX, label);
9952
9953 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9954 emit_label (label);
9955
9956 return target;
9957 }
9958 \f
9959
9960 /* Stubs in case we haven't got a casesi insn. */
9961 #ifndef HAVE_casesi
9962 # define HAVE_casesi 0
9963 # define gen_casesi(a, b, c, d, e) (0)
9964 # define CODE_FOR_casesi CODE_FOR_nothing
9965 #endif
9966
9967 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9968 0 otherwise (i.e. if there is no casesi instruction). */
9969 int
9970 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9971 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
9972 rtx fallback_label ATTRIBUTE_UNUSED)
9973 {
9974 enum machine_mode index_mode = SImode;
9975 int index_bits = GET_MODE_BITSIZE (index_mode);
9976 rtx op1, op2, index;
9977 enum machine_mode op_mode;
9978
9979 if (! HAVE_casesi)
9980 return 0;
9981
9982 /* Convert the index to SImode. */
9983 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9984 {
9985 enum machine_mode omode = TYPE_MODE (index_type);
9986 rtx rangertx = expand_normal (range);
9987
9988 /* We must handle the endpoints in the original mode. */
9989 index_expr = build2 (MINUS_EXPR, index_type,
9990 index_expr, minval);
9991 minval = integer_zero_node;
9992 index = expand_normal (index_expr);
9993 if (default_label)
9994 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9995 omode, 1, default_label);
9996 /* Now we can safely truncate. */
9997 index = convert_to_mode (index_mode, index, 0);
9998 }
9999 else
10000 {
10001 if (TYPE_MODE (index_type) != index_mode)
10002 {
10003 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10004 index_expr = fold_convert (index_type, index_expr);
10005 }
10006
10007 index = expand_normal (index_expr);
10008 }
10009
10010 do_pending_stack_adjust ();
10011
10012 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10013 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10014 (index, op_mode))
10015 index = copy_to_mode_reg (op_mode, index);
10016
10017 op1 = expand_normal (minval);
10018
10019 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10020 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10021 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10022 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10023 (op1, op_mode))
10024 op1 = copy_to_mode_reg (op_mode, op1);
10025
10026 op2 = expand_normal (range);
10027
10028 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10029 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10030 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10031 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10032 (op2, op_mode))
10033 op2 = copy_to_mode_reg (op_mode, op2);
10034
10035 emit_jump_insn (gen_casesi (index, op1, op2,
10036 table_label, !default_label
10037 ? fallback_label : default_label));
10038 return 1;
10039 }
10040
10041 /* Attempt to generate a tablejump instruction; same concept. */
10042 #ifndef HAVE_tablejump
10043 #define HAVE_tablejump 0
10044 #define gen_tablejump(x, y) (0)
10045 #endif
10046
10047 /* Subroutine of the next function.
10048
10049 INDEX is the value being switched on, with the lowest value
10050 in the table already subtracted.
10051 MODE is its expected mode (needed if INDEX is constant).
10052 RANGE is the length of the jump table.
10053 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10054
10055 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10056 index value is out of range. */
10057
10058 static void
10059 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10060 rtx default_label)
10061 {
10062 rtx temp, vector;
10063
10064 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10065 cfun->cfg->max_jumptable_ents = INTVAL (range);
10066
10067 /* Do an unsigned comparison (in the proper mode) between the index
10068 expression and the value which represents the length of the range.
10069 Since we just finished subtracting the lower bound of the range
10070 from the index expression, this comparison allows us to simultaneously
10071 check that the original index expression value is both greater than
10072 or equal to the minimum value of the range and less than or equal to
10073 the maximum value of the range. */
10074
10075 if (default_label)
10076 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10077 default_label);
10078
10079 /* If index is in range, it must fit in Pmode.
10080 Convert to Pmode so we can index with it. */
10081 if (mode != Pmode)
10082 index = convert_to_mode (Pmode, index, 1);
10083
10084 /* Don't let a MEM slip through, because then INDEX that comes
10085 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10086 and break_out_memory_refs will go to work on it and mess it up. */
10087 #ifdef PIC_CASE_VECTOR_ADDRESS
10088 if (flag_pic && !REG_P (index))
10089 index = copy_to_mode_reg (Pmode, index);
10090 #endif
10091
10092 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10093 GET_MODE_SIZE, because this indicates how large insns are. The other
10094 uses should all be Pmode, because they are addresses. This code
10095 could fail if addresses and insns are not the same size. */
10096 index = gen_rtx_PLUS (Pmode,
10097 gen_rtx_MULT (Pmode, index,
10098 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10099 gen_rtx_LABEL_REF (Pmode, table_label));
10100 #ifdef PIC_CASE_VECTOR_ADDRESS
10101 if (flag_pic)
10102 index = PIC_CASE_VECTOR_ADDRESS (index);
10103 else
10104 #endif
10105 index = memory_address (CASE_VECTOR_MODE, index);
10106 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10107 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10108 convert_move (temp, vector, 0);
10109
10110 emit_jump_insn (gen_tablejump (temp, table_label));
10111
10112 /* If we are generating PIC code or if the table is PC-relative, the
10113 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10114 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10115 emit_barrier ();
10116 }
10117
10118 int
10119 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10120 rtx table_label, rtx default_label)
10121 {
10122 rtx index;
10123
10124 if (! HAVE_tablejump)
10125 return 0;
10126
10127 index_expr = fold_build2 (MINUS_EXPR, index_type,
10128 fold_convert (index_type, index_expr),
10129 fold_convert (index_type, minval));
10130 index = expand_normal (index_expr);
10131 do_pending_stack_adjust ();
10132
10133 do_tablejump (index, TYPE_MODE (index_type),
10134 convert_modes (TYPE_MODE (index_type),
10135 TYPE_MODE (TREE_TYPE (range)),
10136 expand_normal (range),
10137 TYPE_UNSIGNED (TREE_TYPE (range))),
10138 table_label, default_label);
10139 return 1;
10140 }
10141
10142 /* Nonzero if the mode is a valid vector mode for this architecture.
10143 This returns nonzero even if there is no hardware support for the
10144 vector mode, but we can emulate with narrower modes. */
10145
10146 int
10147 vector_mode_valid_p (enum machine_mode mode)
10148 {
10149 enum mode_class mclass = GET_MODE_CLASS (mode);
10150 enum machine_mode innermode;
10151
10152 /* Doh! What's going on? */
10153 if (mclass != MODE_VECTOR_INT
10154 && mclass != MODE_VECTOR_FLOAT
10155 && mclass != MODE_VECTOR_FRACT
10156 && mclass != MODE_VECTOR_UFRACT
10157 && mclass != MODE_VECTOR_ACCUM
10158 && mclass != MODE_VECTOR_UACCUM)
10159 return 0;
10160
10161 /* Hardware support. Woo hoo! */
10162 if (targetm.vector_mode_supported_p (mode))
10163 return 1;
10164
10165 innermode = GET_MODE_INNER (mode);
10166
10167 /* We should probably return 1 if requesting V4DI and we have no DI,
10168 but we have V2DI, but this is probably very unlikely. */
10169
10170 /* If we have support for the inner mode, we can safely emulate it.
10171 We may not have V2DI, but me can emulate with a pair of DIs. */
10172 return targetm.scalar_mode_supported_p (innermode);
10173 }
10174
10175 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10176 static rtx
10177 const_vector_from_tree (tree exp)
10178 {
10179 rtvec v;
10180 int units, i;
10181 tree link, elt;
10182 enum machine_mode inner, mode;
10183
10184 mode = TYPE_MODE (TREE_TYPE (exp));
10185
10186 if (initializer_zerop (exp))
10187 return CONST0_RTX (mode);
10188
10189 units = GET_MODE_NUNITS (mode);
10190 inner = GET_MODE_INNER (mode);
10191
10192 v = rtvec_alloc (units);
10193
10194 link = TREE_VECTOR_CST_ELTS (exp);
10195 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10196 {
10197 elt = TREE_VALUE (link);
10198
10199 if (TREE_CODE (elt) == REAL_CST)
10200 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10201 inner);
10202 else if (TREE_CODE (elt) == FIXED_CST)
10203 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10204 inner);
10205 else
10206 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10207 TREE_INT_CST_HIGH (elt),
10208 inner);
10209 }
10210
10211 /* Initialize remaining elements to 0. */
10212 for (; i < units; ++i)
10213 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10214
10215 return gen_rtx_CONST_VECTOR (mode, v);
10216 }
10217 #include "gt-expr.h"