intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
59
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
62
63 #ifdef PUSH_ROUNDING
64
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
70
71 #endif
72
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
80
81
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
89
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces_d
93 {
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
105 };
106
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
109
110 struct store_by_pieces_d
111 {
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
121 };
122
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces_d *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
145 tree, tree, alias_set_type, bool);
146
147 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
148
149 static int is_aligning_offset (const_tree, const_tree);
150 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
151 enum expand_modifier);
152 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
153 static rtx do_store_flag (sepops, rtx, enum machine_mode);
154 #ifdef PUSH_ROUNDING
155 static void emit_single_push_insn (enum machine_mode, rtx, tree);
156 #endif
157 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
158 static rtx const_vector_from_tree (tree);
159 static void write_complex_part (rtx, rtx, bool);
160
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
164
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
167
168 /* Record for each mode whether we can float-extend from memory. */
169
170 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
171
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
178 #endif
179
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
186 #endif
187
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero. */
190 #ifndef SET_BY_PIECES_P
191 #define SET_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
194 #endif
195
196 /* This macro is used to determine whether store_by_pieces should be
197 called to "memcpy" storage when the source is a constant string. */
198 #ifndef STORE_BY_PIECES_P
199 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
200 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
201 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
202 #endif
203
204 /* This array records the insn_code of insns to perform block moves. */
205 enum insn_code movmem_optab[NUM_MACHINE_MODES];
206
207 /* This array records the insn_code of insns to perform block sets. */
208 enum insn_code setmem_optab[NUM_MACHINE_MODES];
209
210 /* These arrays record the insn_code of three different kinds of insns
211 to perform block compares. */
212 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
213 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
215
216 /* Synchronization primitives. */
217 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
236 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
237 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
238
239 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
240
241 #ifndef SLOW_UNALIGNED_ACCESS
242 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
243 #endif
244 \f
245 /* This is run to set up which modes can be used
246 directly in memory and to initialize the block move optab. It is run
247 at the beginning of compilation and when the target is reinitialized. */
248
249 void
250 init_expr_target (void)
251 {
252 rtx insn, pat;
253 enum machine_mode mode;
254 int num_clobbers;
255 rtx mem, mem1;
256 rtx reg;
257
258 /* Try indexing by frame ptr and try by stack ptr.
259 It is known that on the Convex the stack ptr isn't a valid index.
260 With luck, one or the other is valid on any machine. */
261 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
262 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
263
264 /* A scratch register we can modify in-place below to avoid
265 useless RTL allocations. */
266 reg = gen_rtx_REG (VOIDmode, -1);
267
268 insn = rtx_alloc (INSN);
269 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
270 PATTERN (insn) = pat;
271
272 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
273 mode = (enum machine_mode) ((int) mode + 1))
274 {
275 int regno;
276
277 direct_load[(int) mode] = direct_store[(int) mode] = 0;
278 PUT_MODE (mem, mode);
279 PUT_MODE (mem1, mode);
280 PUT_MODE (reg, mode);
281
282 /* See if there is some register that can be used in this mode and
283 directly loaded or stored from memory. */
284
285 if (mode != VOIDmode && mode != BLKmode)
286 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
287 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
288 regno++)
289 {
290 if (! HARD_REGNO_MODE_OK (regno, mode))
291 continue;
292
293 SET_REGNO (reg, regno);
294
295 SET_SRC (pat) = mem;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
299
300 SET_SRC (pat) = mem1;
301 SET_DEST (pat) = reg;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_load[(int) mode] = 1;
304
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
309
310 SET_SRC (pat) = reg;
311 SET_DEST (pat) = mem1;
312 if (recog (pat, insn, &num_clobbers) >= 0)
313 direct_store[(int) mode] = 1;
314 }
315 }
316
317 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
318
319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
320 mode = GET_MODE_WIDER_MODE (mode))
321 {
322 enum machine_mode srcmode;
323 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
324 srcmode = GET_MODE_WIDER_MODE (srcmode))
325 {
326 enum insn_code ic;
327
328 ic = can_extend_p (mode, srcmode, 0);
329 if (ic == CODE_FOR_nothing)
330 continue;
331
332 PUT_MODE (mem, srcmode);
333
334 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
335 float_extend_from_mem[mode][srcmode] = true;
336 }
337 }
338 }
339
340 /* This is run at the start of compiling a function. */
341
342 void
343 init_expr (void)
344 {
345 memset (&crtl->expr, 0, sizeof (crtl->expr));
346 }
347 \f
348 /* Copy data from FROM to TO, where the machine modes are not the same.
349 Both modes may be integer, or both may be floating, or both may be
350 fixed-point.
351 UNSIGNEDP should be nonzero if FROM is an unsigned type.
352 This causes zero-extension instead of sign-extension. */
353
354 void
355 convert_move (rtx to, rtx from, int unsignedp)
356 {
357 enum machine_mode to_mode = GET_MODE (to);
358 enum machine_mode from_mode = GET_MODE (from);
359 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
360 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
361 enum insn_code code;
362 rtx libcall;
363
364 /* rtx code for making an equivalent value. */
365 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
366 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
367
368
369 gcc_assert (to_real == from_real);
370 gcc_assert (to_mode != BLKmode);
371 gcc_assert (from_mode != BLKmode);
372
373 /* If the source and destination are already the same, then there's
374 nothing to do. */
375 if (to == from)
376 return;
377
378 /* If FROM is a SUBREG that indicates that we have already done at least
379 the required extension, strip it. We don't handle such SUBREGs as
380 TO here. */
381
382 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
383 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
384 >= GET_MODE_SIZE (to_mode))
385 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
386 from = gen_lowpart (to_mode, from), from_mode = to_mode;
387
388 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
389
390 if (to_mode == from_mode
391 || (from_mode == VOIDmode && CONSTANT_P (from)))
392 {
393 emit_move_insn (to, from);
394 return;
395 }
396
397 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
398 {
399 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
400
401 if (VECTOR_MODE_P (to_mode))
402 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
403 else
404 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
405
406 emit_move_insn (to, from);
407 return;
408 }
409
410 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
411 {
412 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
413 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
414 return;
415 }
416
417 if (to_real)
418 {
419 rtx value, insns;
420 convert_optab tab;
421
422 gcc_assert ((GET_MODE_PRECISION (from_mode)
423 != GET_MODE_PRECISION (to_mode))
424 || (DECIMAL_FLOAT_MODE_P (from_mode)
425 != DECIMAL_FLOAT_MODE_P (to_mode)));
426
427 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
428 /* Conversion between decimal float and binary float, same size. */
429 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
430 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
431 tab = sext_optab;
432 else
433 tab = trunc_optab;
434
435 /* Try converting directly if the insn is supported. */
436
437 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
438 if (code != CODE_FOR_nothing)
439 {
440 emit_unop_insn (code, to, from,
441 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
442 return;
443 }
444
445 /* Otherwise use a libcall. */
446 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
447
448 /* Is this conversion implemented yet? */
449 gcc_assert (libcall);
450
451 start_sequence ();
452 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
453 1, from, from_mode);
454 insns = get_insns ();
455 end_sequence ();
456 emit_libcall_block (insns, to, value,
457 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
458 from)
459 : gen_rtx_FLOAT_EXTEND (to_mode, from));
460 return;
461 }
462
463 /* Handle pointer conversion. */ /* SPEE 900220. */
464 /* Targets are expected to provide conversion insns between PxImode and
465 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
466 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
467 {
468 enum machine_mode full_mode
469 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
470
471 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
472 != CODE_FOR_nothing);
473
474 if (full_mode != from_mode)
475 from = convert_to_mode (full_mode, from, unsignedp);
476 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
477 to, from, UNKNOWN);
478 return;
479 }
480 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
481 {
482 rtx new_from;
483 enum machine_mode full_mode
484 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
485
486 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
487 != CODE_FOR_nothing);
488
489 if (to_mode == full_mode)
490 {
491 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
492 to, from, UNKNOWN);
493 return;
494 }
495
496 new_from = gen_reg_rtx (full_mode);
497 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
498 new_from, from, UNKNOWN);
499
500 /* else proceed to integer conversions below. */
501 from_mode = full_mode;
502 from = new_from;
503 }
504
505 /* Make sure both are fixed-point modes or both are not. */
506 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
507 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
508 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
509 {
510 /* If we widen from_mode to to_mode and they are in the same class,
511 we won't saturate the result.
512 Otherwise, always saturate the result to play safe. */
513 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
514 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
515 expand_fixed_convert (to, from, 0, 0);
516 else
517 expand_fixed_convert (to, from, 0, 1);
518 return;
519 }
520
521 /* Now both modes are integers. */
522
523 /* Handle expanding beyond a word. */
524 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
525 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
526 {
527 rtx insns;
528 rtx lowpart;
529 rtx fill_value;
530 rtx lowfrom;
531 int i;
532 enum machine_mode lowpart_mode;
533 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
534
535 /* Try converting directly if the insn is supported. */
536 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
537 != CODE_FOR_nothing)
538 {
539 /* If FROM is a SUBREG, put it into a register. Do this
540 so that we always generate the same set of insns for
541 better cse'ing; if an intermediate assignment occurred,
542 we won't be doing the operation directly on the SUBREG. */
543 if (optimize > 0 && GET_CODE (from) == SUBREG)
544 from = force_reg (from_mode, from);
545 emit_unop_insn (code, to, from, equiv_code);
546 return;
547 }
548 /* Next, try converting via full word. */
549 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
550 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
551 != CODE_FOR_nothing))
552 {
553 rtx word_to = gen_reg_rtx (word_mode);
554 if (REG_P (to))
555 {
556 if (reg_overlap_mentioned_p (to, from))
557 from = force_reg (from_mode, from);
558 emit_clobber (to);
559 }
560 convert_move (word_to, from, unsignedp);
561 emit_unop_insn (code, to, word_to, equiv_code);
562 return;
563 }
564
565 /* No special multiword conversion insn; do it by hand. */
566 start_sequence ();
567
568 /* Since we will turn this into a no conflict block, we must ensure
569 that the source does not overlap the target. */
570
571 if (reg_overlap_mentioned_p (to, from))
572 from = force_reg (from_mode, from);
573
574 /* Get a copy of FROM widened to a word, if necessary. */
575 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
576 lowpart_mode = word_mode;
577 else
578 lowpart_mode = from_mode;
579
580 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
581
582 lowpart = gen_lowpart (lowpart_mode, to);
583 emit_move_insn (lowpart, lowfrom);
584
585 /* Compute the value to put in each remaining word. */
586 if (unsignedp)
587 fill_value = const0_rtx;
588 else
589 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
590 LT, lowfrom, const0_rtx,
591 VOIDmode, 0, -1);
592
593 /* Fill the remaining words. */
594 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
595 {
596 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
597 rtx subword = operand_subword (to, index, 1, to_mode);
598
599 gcc_assert (subword);
600
601 if (fill_value != subword)
602 emit_move_insn (subword, fill_value);
603 }
604
605 insns = get_insns ();
606 end_sequence ();
607
608 emit_insn (insns);
609 return;
610 }
611
612 /* Truncating multi-word to a word or less. */
613 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
614 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
615 {
616 if (!((MEM_P (from)
617 && ! MEM_VOLATILE_P (from)
618 && direct_load[(int) to_mode]
619 && ! mode_dependent_address_p (XEXP (from, 0)))
620 || REG_P (from)
621 || GET_CODE (from) == SUBREG))
622 from = force_reg (from_mode, from);
623 convert_move (to, gen_lowpart (word_mode, from), 0);
624 return;
625 }
626
627 /* Now follow all the conversions between integers
628 no more than a word long. */
629
630 /* For truncation, usually we can just refer to FROM in a narrower mode. */
631 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
633 GET_MODE_BITSIZE (from_mode)))
634 {
635 if (!((MEM_P (from)
636 && ! MEM_VOLATILE_P (from)
637 && direct_load[(int) to_mode]
638 && ! mode_dependent_address_p (XEXP (from, 0)))
639 || REG_P (from)
640 || GET_CODE (from) == SUBREG))
641 from = force_reg (from_mode, from);
642 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
643 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
644 from = copy_to_reg (from);
645 emit_move_insn (to, gen_lowpart (to_mode, from));
646 return;
647 }
648
649 /* Handle extension. */
650 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
651 {
652 /* Convert directly if that works. */
653 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
654 != CODE_FOR_nothing)
655 {
656 emit_unop_insn (code, to, from, equiv_code);
657 return;
658 }
659 else
660 {
661 enum machine_mode intermediate;
662 rtx tmp;
663 tree shift_amount;
664
665 /* Search for a mode to convert via. */
666 for (intermediate = from_mode; intermediate != VOIDmode;
667 intermediate = GET_MODE_WIDER_MODE (intermediate))
668 if (((can_extend_p (to_mode, intermediate, unsignedp)
669 != CODE_FOR_nothing)
670 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
671 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
672 GET_MODE_BITSIZE (intermediate))))
673 && (can_extend_p (intermediate, from_mode, unsignedp)
674 != CODE_FOR_nothing))
675 {
676 convert_move (to, convert_to_mode (intermediate, from,
677 unsignedp), unsignedp);
678 return;
679 }
680
681 /* No suitable intermediate mode.
682 Generate what we need with shifts. */
683 shift_amount = build_int_cst (NULL_TREE,
684 GET_MODE_BITSIZE (to_mode)
685 - GET_MODE_BITSIZE (from_mode));
686 from = gen_lowpart (to_mode, force_reg (from_mode, from));
687 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
688 to, unsignedp);
689 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
690 to, unsignedp);
691 if (tmp != to)
692 emit_move_insn (to, tmp);
693 return;
694 }
695 }
696
697 /* Support special truncate insns for certain modes. */
698 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
699 {
700 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
701 to, from, UNKNOWN);
702 return;
703 }
704
705 /* Handle truncation of volatile memrefs, and so on;
706 the things that couldn't be truncated directly,
707 and for which there was no special instruction.
708
709 ??? Code above formerly short-circuited this, for most integer
710 mode pairs, with a force_reg in from_mode followed by a recursive
711 call to this routine. Appears always to have been wrong. */
712 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
713 {
714 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
715 emit_move_insn (to, temp);
716 return;
717 }
718
719 /* Mode combination is not recognized. */
720 gcc_unreachable ();
721 }
722
723 /* Return an rtx for a value that would result
724 from converting X to mode MODE.
725 Both X and MODE may be floating, or both integer.
726 UNSIGNEDP is nonzero if X is an unsigned value.
727 This can be done by referring to a part of X in place
728 or by copying to a new temporary with conversion. */
729
730 rtx
731 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
732 {
733 return convert_modes (mode, VOIDmode, x, unsignedp);
734 }
735
736 /* Return an rtx for a value that would result
737 from converting X from mode OLDMODE to mode MODE.
738 Both modes may be floating, or both integer.
739 UNSIGNEDP is nonzero if X is an unsigned value.
740
741 This can be done by referring to a part of X in place
742 or by copying to a new temporary with conversion.
743
744 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
745
746 rtx
747 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
748 {
749 rtx temp;
750
751 /* If FROM is a SUBREG that indicates that we have already done at least
752 the required extension, strip it. */
753
754 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
755 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
756 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
757 x = gen_lowpart (mode, x);
758
759 if (GET_MODE (x) != VOIDmode)
760 oldmode = GET_MODE (x);
761
762 if (mode == oldmode)
763 return x;
764
765 /* There is one case that we must handle specially: If we are converting
766 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
767 we are to interpret the constant as unsigned, gen_lowpart will do
768 the wrong if the constant appears negative. What we want to do is
769 make the high-order word of the constant zero, not all ones. */
770
771 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
772 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
773 && CONST_INT_P (x) && INTVAL (x) < 0)
774 {
775 double_int val = uhwi_to_double_int (INTVAL (x));
776
777 /* We need to zero extend VAL. */
778 if (oldmode != VOIDmode)
779 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
780
781 return immed_double_int_const (val, mode);
782 }
783
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
788
789 if ((CONST_INT_P (x)
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
802 {
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (CONST_INT_P (x) && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
808 {
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
811
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
818
819 return gen_int_mode (val, mode);
820 }
821
822 return gen_lowpart (mode, x);
823 }
824
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
828 {
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
831 }
832
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
836 }
837 \f
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
842
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
844
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
848
849 int
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
852 {
853 return MOVE_BY_PIECES_P (len, align);
854 }
855
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
858
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
861
862 ALIGN is maximum stack alignment we can assume.
863
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
867
868 rtx
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
871 {
872 struct move_by_pieces_d data;
873 enum machine_mode to_addr_mode, from_addr_mode
874 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
875 rtx to_addr, from_addr = XEXP (from, 0);
876 unsigned int max_size = MOVE_MAX_PIECES + 1;
877 enum machine_mode mode = VOIDmode, tmode;
878 enum insn_code icode;
879
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
881
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
885 {
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
894 }
895 else
896 {
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
906 }
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
913
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
918
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
924 {
925 /* Find the mode of the largest move... */
926 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
927 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
928 if (GET_MODE_SIZE (tmode) < max_size)
929 mode = tmode;
930
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
932 {
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
937 }
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
939 {
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
943 }
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
947 {
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
952 }
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
954 {
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
958 }
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
961 }
962
963 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
964 if (align >= GET_MODE_ALIGNMENT (tmode))
965 align = GET_MODE_ALIGNMENT (tmode);
966 else
967 {
968 enum machine_mode xmode;
969
970 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
971 tmode != VOIDmode;
972 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
973 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
974 || SLOW_UNALIGNED_ACCESS (tmode, align))
975 break;
976
977 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
978 }
979
980 /* First move what we can in the largest integer mode, then go to
981 successively smaller modes. */
982
983 while (max_size > 1)
984 {
985 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
986 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
987 if (GET_MODE_SIZE (tmode) < max_size)
988 mode = tmode;
989
990 if (mode == VOIDmode)
991 break;
992
993 icode = optab_handler (mov_optab, mode)->insn_code;
994 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
995 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
996
997 max_size = GET_MODE_SIZE (mode);
998 }
999
1000 /* The code above should have handled everything. */
1001 gcc_assert (!data.len);
1002
1003 if (endp)
1004 {
1005 rtx to1;
1006
1007 gcc_assert (!data.reverse);
1008 if (data.autinc_to)
1009 {
1010 if (endp == 2)
1011 {
1012 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1013 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1014 else
1015 data.to_addr = copy_to_mode_reg (to_addr_mode,
1016 plus_constant (data.to_addr,
1017 -1));
1018 }
1019 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1020 data.offset);
1021 }
1022 else
1023 {
1024 if (endp == 2)
1025 --data.offset;
1026 to1 = adjust_address (data.to, QImode, data.offset);
1027 }
1028 return to1;
1029 }
1030 else
1031 return data.to;
1032 }
1033
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1036
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1039 unsigned int max_size)
1040 {
1041 unsigned HOST_WIDE_INT n_insns = 0;
1042 enum machine_mode tmode;
1043
1044 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1045 if (align >= GET_MODE_ALIGNMENT (tmode))
1046 align = GET_MODE_ALIGNMENT (tmode);
1047 else
1048 {
1049 enum machine_mode tmode, xmode;
1050
1051 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1052 tmode != VOIDmode;
1053 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1054 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode, align))
1056 break;
1057
1058 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1059 }
1060
1061 while (max_size > 1)
1062 {
1063 enum machine_mode mode = VOIDmode;
1064 enum insn_code icode;
1065
1066 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1067 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1068 if (GET_MODE_SIZE (tmode) < max_size)
1069 mode = tmode;
1070
1071 if (mode == VOIDmode)
1072 break;
1073
1074 icode = optab_handler (mov_optab, mode)->insn_code;
1075 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1076 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1077
1078 max_size = GET_MODE_SIZE (mode);
1079 }
1080
1081 gcc_assert (!l);
1082 return n_insns;
1083 }
1084
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1088
1089 static void
1090 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1091 struct move_by_pieces_d *data)
1092 {
1093 unsigned int size = GET_MODE_SIZE (mode);
1094 rtx to1 = NULL_RTX, from1;
1095
1096 while (data->len >= size)
1097 {
1098 if (data->reverse)
1099 data->offset -= size;
1100
1101 if (data->to)
1102 {
1103 if (data->autinc_to)
1104 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1105 data->offset);
1106 else
1107 to1 = adjust_address (data->to, mode, data->offset);
1108 }
1109
1110 if (data->autinc_from)
1111 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1112 data->offset);
1113 else
1114 from1 = adjust_address (data->from, mode, data->offset);
1115
1116 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1117 emit_insn (gen_add2_insn (data->to_addr,
1118 GEN_INT (-(HOST_WIDE_INT)size)));
1119 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1120 emit_insn (gen_add2_insn (data->from_addr,
1121 GEN_INT (-(HOST_WIDE_INT)size)));
1122
1123 if (data->to)
1124 emit_insn ((*genfun) (to1, from1));
1125 else
1126 {
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode, from1, NULL);
1129 #else
1130 gcc_unreachable ();
1131 #endif
1132 }
1133
1134 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1135 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1136 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1137 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1138
1139 if (! data->reverse)
1140 data->offset += size;
1141
1142 data->len -= size;
1143 }
1144 }
1145 \f
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1149
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1154
1155 Return the address of the new block, if memcpy is called and returns it,
1156 0 otherwise. */
1157
1158 rtx
1159 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1160 unsigned int expected_align, HOST_WIDE_INT expected_size)
1161 {
1162 bool may_use_call;
1163 rtx retval = 0;
1164 unsigned int align;
1165
1166 switch (method)
1167 {
1168 case BLOCK_OP_NORMAL:
1169 case BLOCK_OP_TAILCALL:
1170 may_use_call = true;
1171 break;
1172
1173 case BLOCK_OP_CALL_PARM:
1174 may_use_call = block_move_libcall_safe_for_call_parm ();
1175
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1178 NO_DEFER_POP;
1179 break;
1180
1181 case BLOCK_OP_NO_LIBCALL:
1182 may_use_call = false;
1183 break;
1184
1185 default:
1186 gcc_unreachable ();
1187 }
1188
1189 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1190 gcc_assert (align >= BITS_PER_UNIT);
1191
1192 gcc_assert (MEM_P (x));
1193 gcc_assert (MEM_P (y));
1194 gcc_assert (size);
1195
1196 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1197 block copy is more efficient for other large modes, e.g. DCmode. */
1198 x = adjust_address (x, BLKmode, 0);
1199 y = adjust_address (y, BLKmode, 0);
1200
1201 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1202 can be incorrect is coming from __builtin_memcpy. */
1203 if (CONST_INT_P (size))
1204 {
1205 if (INTVAL (size) == 0)
1206 return 0;
1207
1208 x = shallow_copy_rtx (x);
1209 y = shallow_copy_rtx (y);
1210 set_mem_size (x, size);
1211 set_mem_size (y, size);
1212 }
1213
1214 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1215 move_by_pieces (x, y, INTVAL (size), align, 0);
1216 else if (emit_block_move_via_movmem (x, y, size, align,
1217 expected_align, expected_size))
1218 ;
1219 else if (may_use_call
1220 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1221 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1222 retval = emit_block_move_via_libcall (x, y, size,
1223 method == BLOCK_OP_TAILCALL);
1224 else
1225 emit_block_move_via_loop (x, y, size, align);
1226
1227 if (method == BLOCK_OP_CALL_PARM)
1228 OK_DEFER_POP;
1229
1230 return retval;
1231 }
1232
1233 rtx
1234 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1235 {
1236 return emit_block_move_hints (x, y, size, method, 0, -1);
1237 }
1238
1239 /* A subroutine of emit_block_move. Returns true if calling the
1240 block move libcall will not clobber any parameters which may have
1241 already been placed on the stack. */
1242
1243 static bool
1244 block_move_libcall_safe_for_call_parm (void)
1245 {
1246 #if defined (REG_PARM_STACK_SPACE)
1247 tree fn;
1248 #endif
1249
1250 /* If arguments are pushed on the stack, then they're safe. */
1251 if (PUSH_ARGS)
1252 return true;
1253
1254 /* If registers go on the stack anyway, any argument is sure to clobber
1255 an outgoing argument. */
1256 #if defined (REG_PARM_STACK_SPACE)
1257 fn = emit_block_move_libcall_fn (false);
1258 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1259 depend on its argument. */
1260 (void) fn;
1261 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1262 && REG_PARM_STACK_SPACE (fn) != 0)
1263 return false;
1264 #endif
1265
1266 /* If any argument goes in memory, then it might clobber an outgoing
1267 argument. */
1268 {
1269 CUMULATIVE_ARGS args_so_far;
1270 tree fn, arg;
1271
1272 fn = emit_block_move_libcall_fn (false);
1273 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1274
1275 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1276 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1277 {
1278 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1279 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1280 if (!tmp || !REG_P (tmp))
1281 return false;
1282 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1283 return false;
1284 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1285 }
1286 }
1287 return true;
1288 }
1289
1290 /* A subroutine of emit_block_move. Expand a movmem pattern;
1291 return true if successful. */
1292
1293 static bool
1294 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1295 unsigned int expected_align, HOST_WIDE_INT expected_size)
1296 {
1297 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1298 int save_volatile_ok = volatile_ok;
1299 enum machine_mode mode;
1300
1301 if (expected_align < align)
1302 expected_align = align;
1303
1304 /* Since this is a move insn, we don't care about volatility. */
1305 volatile_ok = 1;
1306
1307 /* Try the most limited insn first, because there's no point
1308 including more than one in the machine description unless
1309 the more limited one has some advantage. */
1310
1311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1312 mode = GET_MODE_WIDER_MODE (mode))
1313 {
1314 enum insn_code code = movmem_optab[(int) mode];
1315 insn_operand_predicate_fn pred;
1316
1317 if (code != CODE_FOR_nothing
1318 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1319 here because if SIZE is less than the mode mask, as it is
1320 returned by the macro, it will definitely be less than the
1321 actual mode mask. */
1322 && ((CONST_INT_P (size)
1323 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1324 <= (GET_MODE_MASK (mode) >> 1)))
1325 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1326 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1327 || (*pred) (x, BLKmode))
1328 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1329 || (*pred) (y, BLKmode))
1330 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1331 || (*pred) (opalign, VOIDmode)))
1332 {
1333 rtx op2;
1334 rtx last = get_last_insn ();
1335 rtx pat;
1336
1337 op2 = convert_to_mode (mode, size, 1);
1338 pred = insn_data[(int) code].operand[2].predicate;
1339 if (pred != 0 && ! (*pred) (op2, mode))
1340 op2 = copy_to_mode_reg (mode, op2);
1341
1342 /* ??? When called via emit_block_move_for_call, it'd be
1343 nice if there were some way to inform the backend, so
1344 that it doesn't fail the expansion because it thinks
1345 emitting the libcall would be more efficient. */
1346
1347 if (insn_data[(int) code].n_operands == 4)
1348 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1349 else
1350 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1351 GEN_INT (expected_align
1352 / BITS_PER_UNIT),
1353 GEN_INT (expected_size));
1354 if (pat)
1355 {
1356 emit_insn (pat);
1357 volatile_ok = save_volatile_ok;
1358 return true;
1359 }
1360 else
1361 delete_insns_since (last);
1362 }
1363 }
1364
1365 volatile_ok = save_volatile_ok;
1366 return false;
1367 }
1368
1369 /* A subroutine of emit_block_move. Expand a call to memcpy.
1370 Return the return value from memcpy, 0 otherwise. */
1371
1372 rtx
1373 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1374 {
1375 rtx dst_addr, src_addr;
1376 tree call_expr, fn, src_tree, dst_tree, size_tree;
1377 enum machine_mode size_mode;
1378 rtx retval;
1379
1380 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1381 pseudos. We can then place those new pseudos into a VAR_DECL and
1382 use them later. */
1383
1384 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1385 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1386
1387 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1388 src_addr = convert_memory_address (ptr_mode, src_addr);
1389
1390 dst_tree = make_tree (ptr_type_node, dst_addr);
1391 src_tree = make_tree (ptr_type_node, src_addr);
1392
1393 size_mode = TYPE_MODE (sizetype);
1394
1395 size = convert_to_mode (size_mode, size, 1);
1396 size = copy_to_mode_reg (size_mode, size);
1397
1398 /* It is incorrect to use the libcall calling conventions to call
1399 memcpy in this context. This could be a user call to memcpy and
1400 the user may wish to examine the return value from memcpy. For
1401 targets where libcalls and normal calls have different conventions
1402 for returning pointers, we could end up generating incorrect code. */
1403
1404 size_tree = make_tree (sizetype, size);
1405
1406 fn = emit_block_move_libcall_fn (true);
1407 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1408 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1409
1410 retval = expand_normal (call_expr);
1411
1412 return retval;
1413 }
1414
1415 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1416 for the function we use for block copies. The first time FOR_CALL
1417 is true, we call assemble_external. */
1418
1419 static GTY(()) tree block_move_fn;
1420
1421 void
1422 init_block_move_fn (const char *asmspec)
1423 {
1424 if (!block_move_fn)
1425 {
1426 tree args, fn;
1427
1428 fn = get_identifier ("memcpy");
1429 args = build_function_type_list (ptr_type_node, ptr_type_node,
1430 const_ptr_type_node, sizetype,
1431 NULL_TREE);
1432
1433 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1434 DECL_EXTERNAL (fn) = 1;
1435 TREE_PUBLIC (fn) = 1;
1436 DECL_ARTIFICIAL (fn) = 1;
1437 TREE_NOTHROW (fn) = 1;
1438 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1439 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1440
1441 block_move_fn = fn;
1442 }
1443
1444 if (asmspec)
1445 set_user_assembler_name (block_move_fn, asmspec);
1446 }
1447
1448 static tree
1449 emit_block_move_libcall_fn (int for_call)
1450 {
1451 static bool emitted_extern;
1452
1453 if (!block_move_fn)
1454 init_block_move_fn (NULL);
1455
1456 if (for_call && !emitted_extern)
1457 {
1458 emitted_extern = true;
1459 make_decl_rtl (block_move_fn);
1460 assemble_external (block_move_fn);
1461 }
1462
1463 return block_move_fn;
1464 }
1465
1466 /* A subroutine of emit_block_move. Copy the data via an explicit
1467 loop. This is used only when libcalls are forbidden. */
1468 /* ??? It'd be nice to copy in hunks larger than QImode. */
1469
1470 static void
1471 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1472 unsigned int align ATTRIBUTE_UNUSED)
1473 {
1474 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1475 enum machine_mode x_addr_mode
1476 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1477 enum machine_mode y_addr_mode
1478 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1479 enum machine_mode iter_mode;
1480
1481 iter_mode = GET_MODE (size);
1482 if (iter_mode == VOIDmode)
1483 iter_mode = word_mode;
1484
1485 top_label = gen_label_rtx ();
1486 cmp_label = gen_label_rtx ();
1487 iter = gen_reg_rtx (iter_mode);
1488
1489 emit_move_insn (iter, const0_rtx);
1490
1491 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1492 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1493 do_pending_stack_adjust ();
1494
1495 emit_jump (cmp_label);
1496 emit_label (top_label);
1497
1498 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1499 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1500
1501 if (x_addr_mode != y_addr_mode)
1502 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1503 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1504
1505 x = change_address (x, QImode, x_addr);
1506 y = change_address (y, QImode, y_addr);
1507
1508 emit_move_insn (x, y);
1509
1510 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1511 true, OPTAB_LIB_WIDEN);
1512 if (tmp != iter)
1513 emit_move_insn (iter, tmp);
1514
1515 emit_label (cmp_label);
1516
1517 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1518 true, top_label);
1519 }
1520 \f
1521 /* Copy all or part of a value X into registers starting at REGNO.
1522 The number of registers to be filled is NREGS. */
1523
1524 void
1525 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1526 {
1527 int i;
1528 #ifdef HAVE_load_multiple
1529 rtx pat;
1530 rtx last;
1531 #endif
1532
1533 if (nregs == 0)
1534 return;
1535
1536 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1537 x = validize_mem (force_const_mem (mode, x));
1538
1539 /* See if the machine can do this with a load multiple insn. */
1540 #ifdef HAVE_load_multiple
1541 if (HAVE_load_multiple)
1542 {
1543 last = get_last_insn ();
1544 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1545 GEN_INT (nregs));
1546 if (pat)
1547 {
1548 emit_insn (pat);
1549 return;
1550 }
1551 else
1552 delete_insns_since (last);
1553 }
1554 #endif
1555
1556 for (i = 0; i < nregs; i++)
1557 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1558 operand_subword_force (x, i, mode));
1559 }
1560
1561 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1562 The number of registers to be filled is NREGS. */
1563
1564 void
1565 move_block_from_reg (int regno, rtx x, int nregs)
1566 {
1567 int i;
1568
1569 if (nregs == 0)
1570 return;
1571
1572 /* See if the machine can do this with a store multiple insn. */
1573 #ifdef HAVE_store_multiple
1574 if (HAVE_store_multiple)
1575 {
1576 rtx last = get_last_insn ();
1577 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1578 GEN_INT (nregs));
1579 if (pat)
1580 {
1581 emit_insn (pat);
1582 return;
1583 }
1584 else
1585 delete_insns_since (last);
1586 }
1587 #endif
1588
1589 for (i = 0; i < nregs; i++)
1590 {
1591 rtx tem = operand_subword (x, i, 1, BLKmode);
1592
1593 gcc_assert (tem);
1594
1595 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1596 }
1597 }
1598
1599 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1600 ORIG, where ORIG is a non-consecutive group of registers represented by
1601 a PARALLEL. The clone is identical to the original except in that the
1602 original set of registers is replaced by a new set of pseudo registers.
1603 The new set has the same modes as the original set. */
1604
1605 rtx
1606 gen_group_rtx (rtx orig)
1607 {
1608 int i, length;
1609 rtx *tmps;
1610
1611 gcc_assert (GET_CODE (orig) == PARALLEL);
1612
1613 length = XVECLEN (orig, 0);
1614 tmps = XALLOCAVEC (rtx, length);
1615
1616 /* Skip a NULL entry in first slot. */
1617 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1618
1619 if (i)
1620 tmps[0] = 0;
1621
1622 for (; i < length; i++)
1623 {
1624 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1625 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1626
1627 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1628 }
1629
1630 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1631 }
1632
1633 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1634 except that values are placed in TMPS[i], and must later be moved
1635 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1636
1637 static void
1638 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1639 {
1640 rtx src;
1641 int start, i;
1642 enum machine_mode m = GET_MODE (orig_src);
1643
1644 gcc_assert (GET_CODE (dst) == PARALLEL);
1645
1646 if (m != VOIDmode
1647 && !SCALAR_INT_MODE_P (m)
1648 && !MEM_P (orig_src)
1649 && GET_CODE (orig_src) != CONCAT)
1650 {
1651 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1652 if (imode == BLKmode)
1653 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1654 else
1655 src = gen_reg_rtx (imode);
1656 if (imode != BLKmode)
1657 src = gen_lowpart (GET_MODE (orig_src), src);
1658 emit_move_insn (src, orig_src);
1659 /* ...and back again. */
1660 if (imode != BLKmode)
1661 src = gen_lowpart (imode, src);
1662 emit_group_load_1 (tmps, dst, src, type, ssize);
1663 return;
1664 }
1665
1666 /* Check for a NULL entry, used to indicate that the parameter goes
1667 both on the stack and in registers. */
1668 if (XEXP (XVECEXP (dst, 0, 0), 0))
1669 start = 0;
1670 else
1671 start = 1;
1672
1673 /* Process the pieces. */
1674 for (i = start; i < XVECLEN (dst, 0); i++)
1675 {
1676 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1677 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1678 unsigned int bytelen = GET_MODE_SIZE (mode);
1679 int shift = 0;
1680
1681 /* Handle trailing fragments that run over the size of the struct. */
1682 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1683 {
1684 /* Arrange to shift the fragment to where it belongs.
1685 extract_bit_field loads to the lsb of the reg. */
1686 if (
1687 #ifdef BLOCK_REG_PADDING
1688 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1689 == (BYTES_BIG_ENDIAN ? upward : downward)
1690 #else
1691 BYTES_BIG_ENDIAN
1692 #endif
1693 )
1694 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1695 bytelen = ssize - bytepos;
1696 gcc_assert (bytelen > 0);
1697 }
1698
1699 /* If we won't be loading directly from memory, protect the real source
1700 from strange tricks we might play; but make sure that the source can
1701 be loaded directly into the destination. */
1702 src = orig_src;
1703 if (!MEM_P (orig_src)
1704 && (!CONSTANT_P (orig_src)
1705 || (GET_MODE (orig_src) != mode
1706 && GET_MODE (orig_src) != VOIDmode)))
1707 {
1708 if (GET_MODE (orig_src) == VOIDmode)
1709 src = gen_reg_rtx (mode);
1710 else
1711 src = gen_reg_rtx (GET_MODE (orig_src));
1712
1713 emit_move_insn (src, orig_src);
1714 }
1715
1716 /* Optimize the access just a bit. */
1717 if (MEM_P (src)
1718 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1719 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1720 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1721 && bytelen == GET_MODE_SIZE (mode))
1722 {
1723 tmps[i] = gen_reg_rtx (mode);
1724 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1725 }
1726 else if (COMPLEX_MODE_P (mode)
1727 && GET_MODE (src) == mode
1728 && bytelen == GET_MODE_SIZE (mode))
1729 /* Let emit_move_complex do the bulk of the work. */
1730 tmps[i] = src;
1731 else if (GET_CODE (src) == CONCAT)
1732 {
1733 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1734 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1735
1736 if ((bytepos == 0 && bytelen == slen0)
1737 || (bytepos != 0 && bytepos + bytelen <= slen))
1738 {
1739 /* The following assumes that the concatenated objects all
1740 have the same size. In this case, a simple calculation
1741 can be used to determine the object and the bit field
1742 to be extracted. */
1743 tmps[i] = XEXP (src, bytepos / slen0);
1744 if (! CONSTANT_P (tmps[i])
1745 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1746 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1747 (bytepos % slen0) * BITS_PER_UNIT,
1748 1, NULL_RTX, mode, mode);
1749 }
1750 else
1751 {
1752 rtx mem;
1753
1754 gcc_assert (!bytepos);
1755 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1756 emit_move_insn (mem, src);
1757 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1758 0, 1, NULL_RTX, mode, mode);
1759 }
1760 }
1761 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1762 SIMD register, which is currently broken. While we get GCC
1763 to emit proper RTL for these cases, let's dump to memory. */
1764 else if (VECTOR_MODE_P (GET_MODE (dst))
1765 && REG_P (src))
1766 {
1767 int slen = GET_MODE_SIZE (GET_MODE (src));
1768 rtx mem;
1769
1770 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1771 emit_move_insn (mem, src);
1772 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1773 }
1774 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1775 && XVECLEN (dst, 0) > 1)
1776 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1777 else if (CONSTANT_P (src))
1778 {
1779 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1780
1781 if (len == ssize)
1782 tmps[i] = src;
1783 else
1784 {
1785 rtx first, second;
1786
1787 gcc_assert (2 * len == ssize);
1788 split_double (src, &first, &second);
1789 if (i)
1790 tmps[i] = second;
1791 else
1792 tmps[i] = first;
1793 }
1794 }
1795 else if (REG_P (src) && GET_MODE (src) == mode)
1796 tmps[i] = src;
1797 else
1798 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1799 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1800 mode, mode);
1801
1802 if (shift)
1803 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1804 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1805 }
1806 }
1807
1808 /* Emit code to move a block SRC of type TYPE to a block DST,
1809 where DST is non-consecutive registers represented by a PARALLEL.
1810 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1811 if not known. */
1812
1813 void
1814 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1815 {
1816 rtx *tmps;
1817 int i;
1818
1819 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1820 emit_group_load_1 (tmps, dst, src, type, ssize);
1821
1822 /* Copy the extracted pieces into the proper (probable) hard regs. */
1823 for (i = 0; i < XVECLEN (dst, 0); i++)
1824 {
1825 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1826 if (d == NULL)
1827 continue;
1828 emit_move_insn (d, tmps[i]);
1829 }
1830 }
1831
1832 /* Similar, but load SRC into new pseudos in a format that looks like
1833 PARALLEL. This can later be fed to emit_group_move to get things
1834 in the right place. */
1835
1836 rtx
1837 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1838 {
1839 rtvec vec;
1840 int i;
1841
1842 vec = rtvec_alloc (XVECLEN (parallel, 0));
1843 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1844
1845 /* Convert the vector to look just like the original PARALLEL, except
1846 with the computed values. */
1847 for (i = 0; i < XVECLEN (parallel, 0); i++)
1848 {
1849 rtx e = XVECEXP (parallel, 0, i);
1850 rtx d = XEXP (e, 0);
1851
1852 if (d)
1853 {
1854 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1855 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1856 }
1857 RTVEC_ELT (vec, i) = e;
1858 }
1859
1860 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1861 }
1862
1863 /* Emit code to move a block SRC to block DST, where SRC and DST are
1864 non-consecutive groups of registers, each represented by a PARALLEL. */
1865
1866 void
1867 emit_group_move (rtx dst, rtx src)
1868 {
1869 int i;
1870
1871 gcc_assert (GET_CODE (src) == PARALLEL
1872 && GET_CODE (dst) == PARALLEL
1873 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1874
1875 /* Skip first entry if NULL. */
1876 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1877 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1878 XEXP (XVECEXP (src, 0, i), 0));
1879 }
1880
1881 /* Move a group of registers represented by a PARALLEL into pseudos. */
1882
1883 rtx
1884 emit_group_move_into_temps (rtx src)
1885 {
1886 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1887 int i;
1888
1889 for (i = 0; i < XVECLEN (src, 0); i++)
1890 {
1891 rtx e = XVECEXP (src, 0, i);
1892 rtx d = XEXP (e, 0);
1893
1894 if (d)
1895 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1896 RTVEC_ELT (vec, i) = e;
1897 }
1898
1899 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1900 }
1901
1902 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1903 where SRC is non-consecutive registers represented by a PARALLEL.
1904 SSIZE represents the total size of block ORIG_DST, or -1 if not
1905 known. */
1906
1907 void
1908 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1909 {
1910 rtx *tmps, dst;
1911 int start, finish, i;
1912 enum machine_mode m = GET_MODE (orig_dst);
1913
1914 gcc_assert (GET_CODE (src) == PARALLEL);
1915
1916 if (!SCALAR_INT_MODE_P (m)
1917 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1918 {
1919 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1920 if (imode == BLKmode)
1921 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1922 else
1923 dst = gen_reg_rtx (imode);
1924 emit_group_store (dst, src, type, ssize);
1925 if (imode != BLKmode)
1926 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1927 emit_move_insn (orig_dst, dst);
1928 return;
1929 }
1930
1931 /* Check for a NULL entry, used to indicate that the parameter goes
1932 both on the stack and in registers. */
1933 if (XEXP (XVECEXP (src, 0, 0), 0))
1934 start = 0;
1935 else
1936 start = 1;
1937 finish = XVECLEN (src, 0);
1938
1939 tmps = XALLOCAVEC (rtx, finish);
1940
1941 /* Copy the (probable) hard regs into pseudos. */
1942 for (i = start; i < finish; i++)
1943 {
1944 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1945 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1946 {
1947 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1948 emit_move_insn (tmps[i], reg);
1949 }
1950 else
1951 tmps[i] = reg;
1952 }
1953
1954 /* If we won't be storing directly into memory, protect the real destination
1955 from strange tricks we might play. */
1956 dst = orig_dst;
1957 if (GET_CODE (dst) == PARALLEL)
1958 {
1959 rtx temp;
1960
1961 /* We can get a PARALLEL dst if there is a conditional expression in
1962 a return statement. In that case, the dst and src are the same,
1963 so no action is necessary. */
1964 if (rtx_equal_p (dst, src))
1965 return;
1966
1967 /* It is unclear if we can ever reach here, but we may as well handle
1968 it. Allocate a temporary, and split this into a store/load to/from
1969 the temporary. */
1970
1971 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1972 emit_group_store (temp, src, type, ssize);
1973 emit_group_load (dst, temp, type, ssize);
1974 return;
1975 }
1976 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1977 {
1978 enum machine_mode outer = GET_MODE (dst);
1979 enum machine_mode inner;
1980 HOST_WIDE_INT bytepos;
1981 bool done = false;
1982 rtx temp;
1983
1984 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1985 dst = gen_reg_rtx (outer);
1986
1987 /* Make life a bit easier for combine. */
1988 /* If the first element of the vector is the low part
1989 of the destination mode, use a paradoxical subreg to
1990 initialize the destination. */
1991 if (start < finish)
1992 {
1993 inner = GET_MODE (tmps[start]);
1994 bytepos = subreg_lowpart_offset (inner, outer);
1995 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1996 {
1997 temp = simplify_gen_subreg (outer, tmps[start],
1998 inner, 0);
1999 if (temp)
2000 {
2001 emit_move_insn (dst, temp);
2002 done = true;
2003 start++;
2004 }
2005 }
2006 }
2007
2008 /* If the first element wasn't the low part, try the last. */
2009 if (!done
2010 && start < finish - 1)
2011 {
2012 inner = GET_MODE (tmps[finish - 1]);
2013 bytepos = subreg_lowpart_offset (inner, outer);
2014 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2015 {
2016 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2017 inner, 0);
2018 if (temp)
2019 {
2020 emit_move_insn (dst, temp);
2021 done = true;
2022 finish--;
2023 }
2024 }
2025 }
2026
2027 /* Otherwise, simply initialize the result to zero. */
2028 if (!done)
2029 emit_move_insn (dst, CONST0_RTX (outer));
2030 }
2031
2032 /* Process the pieces. */
2033 for (i = start; i < finish; i++)
2034 {
2035 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2036 enum machine_mode mode = GET_MODE (tmps[i]);
2037 unsigned int bytelen = GET_MODE_SIZE (mode);
2038 unsigned int adj_bytelen = bytelen;
2039 rtx dest = dst;
2040
2041 /* Handle trailing fragments that run over the size of the struct. */
2042 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2043 adj_bytelen = ssize - bytepos;
2044
2045 if (GET_CODE (dst) == CONCAT)
2046 {
2047 if (bytepos + adj_bytelen
2048 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2049 dest = XEXP (dst, 0);
2050 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2051 {
2052 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2053 dest = XEXP (dst, 1);
2054 }
2055 else
2056 {
2057 enum machine_mode dest_mode = GET_MODE (dest);
2058 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2059
2060 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2061
2062 if (GET_MODE_ALIGNMENT (dest_mode)
2063 >= GET_MODE_ALIGNMENT (tmp_mode))
2064 {
2065 dest = assign_stack_temp (dest_mode,
2066 GET_MODE_SIZE (dest_mode),
2067 0);
2068 emit_move_insn (adjust_address (dest,
2069 tmp_mode,
2070 bytepos),
2071 tmps[i]);
2072 dst = dest;
2073 }
2074 else
2075 {
2076 dest = assign_stack_temp (tmp_mode,
2077 GET_MODE_SIZE (tmp_mode),
2078 0);
2079 emit_move_insn (dest, tmps[i]);
2080 dst = adjust_address (dest, dest_mode, bytepos);
2081 }
2082 break;
2083 }
2084 }
2085
2086 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2087 {
2088 /* store_bit_field always takes its value from the lsb.
2089 Move the fragment to the lsb if it's not already there. */
2090 if (
2091 #ifdef BLOCK_REG_PADDING
2092 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2093 == (BYTES_BIG_ENDIAN ? upward : downward)
2094 #else
2095 BYTES_BIG_ENDIAN
2096 #endif
2097 )
2098 {
2099 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2100 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2101 build_int_cst (NULL_TREE, shift),
2102 tmps[i], 0);
2103 }
2104 bytelen = adj_bytelen;
2105 }
2106
2107 /* Optimize the access just a bit. */
2108 if (MEM_P (dest)
2109 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2110 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2111 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2112 && bytelen == GET_MODE_SIZE (mode))
2113 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2114 else
2115 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2116 mode, tmps[i]);
2117 }
2118
2119 /* Copy from the pseudo into the (probable) hard reg. */
2120 if (orig_dst != dst)
2121 emit_move_insn (orig_dst, dst);
2122 }
2123
2124 /* Generate code to copy a BLKmode object of TYPE out of a
2125 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2126 is null, a stack temporary is created. TGTBLK is returned.
2127
2128 The purpose of this routine is to handle functions that return
2129 BLKmode structures in registers. Some machines (the PA for example)
2130 want to return all small structures in registers regardless of the
2131 structure's alignment. */
2132
2133 rtx
2134 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2135 {
2136 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2137 rtx src = NULL, dst = NULL;
2138 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2139 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2140 enum machine_mode copy_mode;
2141
2142 if (tgtblk == 0)
2143 {
2144 tgtblk = assign_temp (build_qualified_type (type,
2145 (TYPE_QUALS (type)
2146 | TYPE_QUAL_CONST)),
2147 0, 1, 1);
2148 preserve_temp_slots (tgtblk);
2149 }
2150
2151 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2152 into a new pseudo which is a full word. */
2153
2154 if (GET_MODE (srcreg) != BLKmode
2155 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2156 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2157
2158 /* If the structure doesn't take up a whole number of words, see whether
2159 SRCREG is padded on the left or on the right. If it's on the left,
2160 set PADDING_CORRECTION to the number of bits to skip.
2161
2162 In most ABIs, the structure will be returned at the least end of
2163 the register, which translates to right padding on little-endian
2164 targets and left padding on big-endian targets. The opposite
2165 holds if the structure is returned at the most significant
2166 end of the register. */
2167 if (bytes % UNITS_PER_WORD != 0
2168 && (targetm.calls.return_in_msb (type)
2169 ? !BYTES_BIG_ENDIAN
2170 : BYTES_BIG_ENDIAN))
2171 padding_correction
2172 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2173
2174 /* Copy the structure BITSIZE bits at a time. If the target lives in
2175 memory, take care of not reading/writing past its end by selecting
2176 a copy mode suited to BITSIZE. This should always be possible given
2177 how it is computed.
2178
2179 We could probably emit more efficient code for machines which do not use
2180 strict alignment, but it doesn't seem worth the effort at the current
2181 time. */
2182
2183 copy_mode = word_mode;
2184 if (MEM_P (tgtblk))
2185 {
2186 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2187 if (mem_mode != BLKmode)
2188 copy_mode = mem_mode;
2189 }
2190
2191 for (bitpos = 0, xbitpos = padding_correction;
2192 bitpos < bytes * BITS_PER_UNIT;
2193 bitpos += bitsize, xbitpos += bitsize)
2194 {
2195 /* We need a new source operand each time xbitpos is on a
2196 word boundary and when xbitpos == padding_correction
2197 (the first time through). */
2198 if (xbitpos % BITS_PER_WORD == 0
2199 || xbitpos == padding_correction)
2200 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2201 GET_MODE (srcreg));
2202
2203 /* We need a new destination operand each time bitpos is on
2204 a word boundary. */
2205 if (bitpos % BITS_PER_WORD == 0)
2206 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2207
2208 /* Use xbitpos for the source extraction (right justified) and
2209 bitpos for the destination store (left justified). */
2210 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2211 extract_bit_field (src, bitsize,
2212 xbitpos % BITS_PER_WORD, 1,
2213 NULL_RTX, copy_mode, copy_mode));
2214 }
2215
2216 return tgtblk;
2217 }
2218
2219 /* Add a USE expression for REG to the (possibly empty) list pointed
2220 to by CALL_FUSAGE. REG must denote a hard register. */
2221
2222 void
2223 use_reg (rtx *call_fusage, rtx reg)
2224 {
2225 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2226
2227 *call_fusage
2228 = gen_rtx_EXPR_LIST (VOIDmode,
2229 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2230 }
2231
2232 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2233 starting at REGNO. All of these registers must be hard registers. */
2234
2235 void
2236 use_regs (rtx *call_fusage, int regno, int nregs)
2237 {
2238 int i;
2239
2240 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2241
2242 for (i = 0; i < nregs; i++)
2243 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2244 }
2245
2246 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2247 PARALLEL REGS. This is for calls that pass values in multiple
2248 non-contiguous locations. The Irix 6 ABI has examples of this. */
2249
2250 void
2251 use_group_regs (rtx *call_fusage, rtx regs)
2252 {
2253 int i;
2254
2255 for (i = 0; i < XVECLEN (regs, 0); i++)
2256 {
2257 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2258
2259 /* A NULL entry means the parameter goes both on the stack and in
2260 registers. This can also be a MEM for targets that pass values
2261 partially on the stack and partially in registers. */
2262 if (reg != 0 && REG_P (reg))
2263 use_reg (call_fusage, reg);
2264 }
2265 }
2266
2267 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2268 assigment and the code of the expresion on the RHS is CODE. Return
2269 NULL otherwise. */
2270
2271 static gimple
2272 get_def_for_expr (tree name, enum tree_code code)
2273 {
2274 gimple def_stmt;
2275
2276 if (TREE_CODE (name) != SSA_NAME)
2277 return NULL;
2278
2279 def_stmt = get_gimple_for_ssa_name (name);
2280 if (!def_stmt
2281 || gimple_assign_rhs_code (def_stmt) != code)
2282 return NULL;
2283
2284 return def_stmt;
2285 }
2286 \f
2287
2288 /* Determine whether the LEN bytes generated by CONSTFUN can be
2289 stored to memory using several move instructions. CONSTFUNDATA is
2290 a pointer which will be passed as argument in every CONSTFUN call.
2291 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2292 a memset operation and false if it's a copy of a constant string.
2293 Return nonzero if a call to store_by_pieces should succeed. */
2294
2295 int
2296 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2297 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2298 void *constfundata, unsigned int align, bool memsetp)
2299 {
2300 unsigned HOST_WIDE_INT l;
2301 unsigned int max_size;
2302 HOST_WIDE_INT offset = 0;
2303 enum machine_mode mode, tmode;
2304 enum insn_code icode;
2305 int reverse;
2306 rtx cst;
2307
2308 if (len == 0)
2309 return 1;
2310
2311 if (! (memsetp
2312 ? SET_BY_PIECES_P (len, align)
2313 : STORE_BY_PIECES_P (len, align)))
2314 return 0;
2315
2316 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2317 if (align >= GET_MODE_ALIGNMENT (tmode))
2318 align = GET_MODE_ALIGNMENT (tmode);
2319 else
2320 {
2321 enum machine_mode xmode;
2322
2323 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2324 tmode != VOIDmode;
2325 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2326 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2327 || SLOW_UNALIGNED_ACCESS (tmode, align))
2328 break;
2329
2330 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2331 }
2332
2333 /* We would first store what we can in the largest integer mode, then go to
2334 successively smaller modes. */
2335
2336 for (reverse = 0;
2337 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2338 reverse++)
2339 {
2340 l = len;
2341 mode = VOIDmode;
2342 max_size = STORE_MAX_PIECES + 1;
2343 while (max_size > 1)
2344 {
2345 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2346 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2347 if (GET_MODE_SIZE (tmode) < max_size)
2348 mode = tmode;
2349
2350 if (mode == VOIDmode)
2351 break;
2352
2353 icode = optab_handler (mov_optab, mode)->insn_code;
2354 if (icode != CODE_FOR_nothing
2355 && align >= GET_MODE_ALIGNMENT (mode))
2356 {
2357 unsigned int size = GET_MODE_SIZE (mode);
2358
2359 while (l >= size)
2360 {
2361 if (reverse)
2362 offset -= size;
2363
2364 cst = (*constfun) (constfundata, offset, mode);
2365 if (!LEGITIMATE_CONSTANT_P (cst))
2366 return 0;
2367
2368 if (!reverse)
2369 offset += size;
2370
2371 l -= size;
2372 }
2373 }
2374
2375 max_size = GET_MODE_SIZE (mode);
2376 }
2377
2378 /* The code above should have handled everything. */
2379 gcc_assert (!l);
2380 }
2381
2382 return 1;
2383 }
2384
2385 /* Generate several move instructions to store LEN bytes generated by
2386 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2387 pointer which will be passed as argument in every CONSTFUN call.
2388 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2389 a memset operation and false if it's a copy of a constant string.
2390 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2391 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2392 stpcpy. */
2393
2394 rtx
2395 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2396 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2397 void *constfundata, unsigned int align, bool memsetp, int endp)
2398 {
2399 enum machine_mode to_addr_mode
2400 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2401 struct store_by_pieces_d data;
2402
2403 if (len == 0)
2404 {
2405 gcc_assert (endp != 2);
2406 return to;
2407 }
2408
2409 gcc_assert (memsetp
2410 ? SET_BY_PIECES_P (len, align)
2411 : STORE_BY_PIECES_P (len, align));
2412 data.constfun = constfun;
2413 data.constfundata = constfundata;
2414 data.len = len;
2415 data.to = to;
2416 store_by_pieces_1 (&data, align);
2417 if (endp)
2418 {
2419 rtx to1;
2420
2421 gcc_assert (!data.reverse);
2422 if (data.autinc_to)
2423 {
2424 if (endp == 2)
2425 {
2426 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2427 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2428 else
2429 data.to_addr = copy_to_mode_reg (to_addr_mode,
2430 plus_constant (data.to_addr,
2431 -1));
2432 }
2433 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2434 data.offset);
2435 }
2436 else
2437 {
2438 if (endp == 2)
2439 --data.offset;
2440 to1 = adjust_address (data.to, QImode, data.offset);
2441 }
2442 return to1;
2443 }
2444 else
2445 return data.to;
2446 }
2447
2448 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2449 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2450
2451 static void
2452 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2453 {
2454 struct store_by_pieces_d data;
2455
2456 if (len == 0)
2457 return;
2458
2459 data.constfun = clear_by_pieces_1;
2460 data.constfundata = NULL;
2461 data.len = len;
2462 data.to = to;
2463 store_by_pieces_1 (&data, align);
2464 }
2465
2466 /* Callback routine for clear_by_pieces.
2467 Return const0_rtx unconditionally. */
2468
2469 static rtx
2470 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2471 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2472 enum machine_mode mode ATTRIBUTE_UNUSED)
2473 {
2474 return const0_rtx;
2475 }
2476
2477 /* Subroutine of clear_by_pieces and store_by_pieces.
2478 Generate several move instructions to store LEN bytes of block TO. (A MEM
2479 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2480
2481 static void
2482 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2483 unsigned int align ATTRIBUTE_UNUSED)
2484 {
2485 enum machine_mode to_addr_mode
2486 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2487 rtx to_addr = XEXP (data->to, 0);
2488 unsigned int max_size = STORE_MAX_PIECES + 1;
2489 enum machine_mode mode = VOIDmode, tmode;
2490 enum insn_code icode;
2491
2492 data->offset = 0;
2493 data->to_addr = to_addr;
2494 data->autinc_to
2495 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2496 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2497
2498 data->explicit_inc_to = 0;
2499 data->reverse
2500 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2501 if (data->reverse)
2502 data->offset = data->len;
2503
2504 /* If storing requires more than two move insns,
2505 copy addresses to registers (to make displacements shorter)
2506 and use post-increment if available. */
2507 if (!data->autinc_to
2508 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2509 {
2510 /* Determine the main mode we'll be using. */
2511 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2512 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2513 if (GET_MODE_SIZE (tmode) < max_size)
2514 mode = tmode;
2515
2516 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2517 {
2518 data->to_addr = copy_to_mode_reg (to_addr_mode,
2519 plus_constant (to_addr, data->len));
2520 data->autinc_to = 1;
2521 data->explicit_inc_to = -1;
2522 }
2523
2524 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2525 && ! data->autinc_to)
2526 {
2527 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2528 data->autinc_to = 1;
2529 data->explicit_inc_to = 1;
2530 }
2531
2532 if ( !data->autinc_to && CONSTANT_P (to_addr))
2533 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2534 }
2535
2536 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2537 if (align >= GET_MODE_ALIGNMENT (tmode))
2538 align = GET_MODE_ALIGNMENT (tmode);
2539 else
2540 {
2541 enum machine_mode xmode;
2542
2543 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2544 tmode != VOIDmode;
2545 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2546 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2547 || SLOW_UNALIGNED_ACCESS (tmode, align))
2548 break;
2549
2550 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2551 }
2552
2553 /* First store what we can in the largest integer mode, then go to
2554 successively smaller modes. */
2555
2556 while (max_size > 1)
2557 {
2558 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2559 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2560 if (GET_MODE_SIZE (tmode) < max_size)
2561 mode = tmode;
2562
2563 if (mode == VOIDmode)
2564 break;
2565
2566 icode = optab_handler (mov_optab, mode)->insn_code;
2567 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2568 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2569
2570 max_size = GET_MODE_SIZE (mode);
2571 }
2572
2573 /* The code above should have handled everything. */
2574 gcc_assert (!data->len);
2575 }
2576
2577 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2578 with move instructions for mode MODE. GENFUN is the gen_... function
2579 to make a move insn for that mode. DATA has all the other info. */
2580
2581 static void
2582 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2583 struct store_by_pieces_d *data)
2584 {
2585 unsigned int size = GET_MODE_SIZE (mode);
2586 rtx to1, cst;
2587
2588 while (data->len >= size)
2589 {
2590 if (data->reverse)
2591 data->offset -= size;
2592
2593 if (data->autinc_to)
2594 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2595 data->offset);
2596 else
2597 to1 = adjust_address (data->to, mode, data->offset);
2598
2599 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2600 emit_insn (gen_add2_insn (data->to_addr,
2601 GEN_INT (-(HOST_WIDE_INT) size)));
2602
2603 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2604 emit_insn ((*genfun) (to1, cst));
2605
2606 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2607 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2608
2609 if (! data->reverse)
2610 data->offset += size;
2611
2612 data->len -= size;
2613 }
2614 }
2615 \f
2616 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2617 its length in bytes. */
2618
2619 rtx
2620 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2621 unsigned int expected_align, HOST_WIDE_INT expected_size)
2622 {
2623 enum machine_mode mode = GET_MODE (object);
2624 unsigned int align;
2625
2626 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2627
2628 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2629 just move a zero. Otherwise, do this a piece at a time. */
2630 if (mode != BLKmode
2631 && CONST_INT_P (size)
2632 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2633 {
2634 rtx zero = CONST0_RTX (mode);
2635 if (zero != NULL)
2636 {
2637 emit_move_insn (object, zero);
2638 return NULL;
2639 }
2640
2641 if (COMPLEX_MODE_P (mode))
2642 {
2643 zero = CONST0_RTX (GET_MODE_INNER (mode));
2644 if (zero != NULL)
2645 {
2646 write_complex_part (object, zero, 0);
2647 write_complex_part (object, zero, 1);
2648 return NULL;
2649 }
2650 }
2651 }
2652
2653 if (size == const0_rtx)
2654 return NULL;
2655
2656 align = MEM_ALIGN (object);
2657
2658 if (CONST_INT_P (size)
2659 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2660 clear_by_pieces (object, INTVAL (size), align);
2661 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2662 expected_align, expected_size))
2663 ;
2664 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2665 return set_storage_via_libcall (object, size, const0_rtx,
2666 method == BLOCK_OP_TAILCALL);
2667 else
2668 gcc_unreachable ();
2669
2670 return NULL;
2671 }
2672
2673 rtx
2674 clear_storage (rtx object, rtx size, enum block_op_methods method)
2675 {
2676 return clear_storage_hints (object, size, method, 0, -1);
2677 }
2678
2679
2680 /* A subroutine of clear_storage. Expand a call to memset.
2681 Return the return value of memset, 0 otherwise. */
2682
2683 rtx
2684 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2685 {
2686 tree call_expr, fn, object_tree, size_tree, val_tree;
2687 enum machine_mode size_mode;
2688 rtx retval;
2689
2690 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2691 place those into new pseudos into a VAR_DECL and use them later. */
2692
2693 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2694
2695 size_mode = TYPE_MODE (sizetype);
2696 size = convert_to_mode (size_mode, size, 1);
2697 size = copy_to_mode_reg (size_mode, size);
2698
2699 /* It is incorrect to use the libcall calling conventions to call
2700 memset in this context. This could be a user call to memset and
2701 the user may wish to examine the return value from memset. For
2702 targets where libcalls and normal calls have different conventions
2703 for returning pointers, we could end up generating incorrect code. */
2704
2705 object_tree = make_tree (ptr_type_node, object);
2706 if (!CONST_INT_P (val))
2707 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2708 size_tree = make_tree (sizetype, size);
2709 val_tree = make_tree (integer_type_node, val);
2710
2711 fn = clear_storage_libcall_fn (true);
2712 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2713 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2714
2715 retval = expand_normal (call_expr);
2716
2717 return retval;
2718 }
2719
2720 /* A subroutine of set_storage_via_libcall. Create the tree node
2721 for the function we use for block clears. The first time FOR_CALL
2722 is true, we call assemble_external. */
2723
2724 tree block_clear_fn;
2725
2726 void
2727 init_block_clear_fn (const char *asmspec)
2728 {
2729 if (!block_clear_fn)
2730 {
2731 tree fn, args;
2732
2733 fn = get_identifier ("memset");
2734 args = build_function_type_list (ptr_type_node, ptr_type_node,
2735 integer_type_node, sizetype,
2736 NULL_TREE);
2737
2738 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2739 DECL_EXTERNAL (fn) = 1;
2740 TREE_PUBLIC (fn) = 1;
2741 DECL_ARTIFICIAL (fn) = 1;
2742 TREE_NOTHROW (fn) = 1;
2743 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2744 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2745
2746 block_clear_fn = fn;
2747 }
2748
2749 if (asmspec)
2750 set_user_assembler_name (block_clear_fn, asmspec);
2751 }
2752
2753 static tree
2754 clear_storage_libcall_fn (int for_call)
2755 {
2756 static bool emitted_extern;
2757
2758 if (!block_clear_fn)
2759 init_block_clear_fn (NULL);
2760
2761 if (for_call && !emitted_extern)
2762 {
2763 emitted_extern = true;
2764 make_decl_rtl (block_clear_fn);
2765 assemble_external (block_clear_fn);
2766 }
2767
2768 return block_clear_fn;
2769 }
2770 \f
2771 /* Expand a setmem pattern; return true if successful. */
2772
2773 bool
2774 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2775 unsigned int expected_align, HOST_WIDE_INT expected_size)
2776 {
2777 /* Try the most limited insn first, because there's no point
2778 including more than one in the machine description unless
2779 the more limited one has some advantage. */
2780
2781 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2782 enum machine_mode mode;
2783
2784 if (expected_align < align)
2785 expected_align = align;
2786
2787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2788 mode = GET_MODE_WIDER_MODE (mode))
2789 {
2790 enum insn_code code = setmem_optab[(int) mode];
2791 insn_operand_predicate_fn pred;
2792
2793 if (code != CODE_FOR_nothing
2794 /* We don't need MODE to be narrower than
2795 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2796 the mode mask, as it is returned by the macro, it will
2797 definitely be less than the actual mode mask. */
2798 && ((CONST_INT_P (size)
2799 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2800 <= (GET_MODE_MASK (mode) >> 1)))
2801 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2802 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2803 || (*pred) (object, BLKmode))
2804 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2805 || (*pred) (opalign, VOIDmode)))
2806 {
2807 rtx opsize, opchar;
2808 enum machine_mode char_mode;
2809 rtx last = get_last_insn ();
2810 rtx pat;
2811
2812 opsize = convert_to_mode (mode, size, 1);
2813 pred = insn_data[(int) code].operand[1].predicate;
2814 if (pred != 0 && ! (*pred) (opsize, mode))
2815 opsize = copy_to_mode_reg (mode, opsize);
2816
2817 opchar = val;
2818 char_mode = insn_data[(int) code].operand[2].mode;
2819 if (char_mode != VOIDmode)
2820 {
2821 opchar = convert_to_mode (char_mode, opchar, 1);
2822 pred = insn_data[(int) code].operand[2].predicate;
2823 if (pred != 0 && ! (*pred) (opchar, char_mode))
2824 opchar = copy_to_mode_reg (char_mode, opchar);
2825 }
2826
2827 if (insn_data[(int) code].n_operands == 4)
2828 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2829 else
2830 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2831 GEN_INT (expected_align
2832 / BITS_PER_UNIT),
2833 GEN_INT (expected_size));
2834 if (pat)
2835 {
2836 emit_insn (pat);
2837 return true;
2838 }
2839 else
2840 delete_insns_since (last);
2841 }
2842 }
2843
2844 return false;
2845 }
2846
2847 \f
2848 /* Write to one of the components of the complex value CPLX. Write VAL to
2849 the real part if IMAG_P is false, and the imaginary part if its true. */
2850
2851 static void
2852 write_complex_part (rtx cplx, rtx val, bool imag_p)
2853 {
2854 enum machine_mode cmode;
2855 enum machine_mode imode;
2856 unsigned ibitsize;
2857
2858 if (GET_CODE (cplx) == CONCAT)
2859 {
2860 emit_move_insn (XEXP (cplx, imag_p), val);
2861 return;
2862 }
2863
2864 cmode = GET_MODE (cplx);
2865 imode = GET_MODE_INNER (cmode);
2866 ibitsize = GET_MODE_BITSIZE (imode);
2867
2868 /* For MEMs simplify_gen_subreg may generate an invalid new address
2869 because, e.g., the original address is considered mode-dependent
2870 by the target, which restricts simplify_subreg from invoking
2871 adjust_address_nv. Instead of preparing fallback support for an
2872 invalid address, we call adjust_address_nv directly. */
2873 if (MEM_P (cplx))
2874 {
2875 emit_move_insn (adjust_address_nv (cplx, imode,
2876 imag_p ? GET_MODE_SIZE (imode) : 0),
2877 val);
2878 return;
2879 }
2880
2881 /* If the sub-object is at least word sized, then we know that subregging
2882 will work. This special case is important, since store_bit_field
2883 wants to operate on integer modes, and there's rarely an OImode to
2884 correspond to TCmode. */
2885 if (ibitsize >= BITS_PER_WORD
2886 /* For hard regs we have exact predicates. Assume we can split
2887 the original object if it spans an even number of hard regs.
2888 This special case is important for SCmode on 64-bit platforms
2889 where the natural size of floating-point regs is 32-bit. */
2890 || (REG_P (cplx)
2891 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2892 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2893 {
2894 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2895 imag_p ? GET_MODE_SIZE (imode) : 0);
2896 if (part)
2897 {
2898 emit_move_insn (part, val);
2899 return;
2900 }
2901 else
2902 /* simplify_gen_subreg may fail for sub-word MEMs. */
2903 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2904 }
2905
2906 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2907 }
2908
2909 /* Extract one of the components of the complex value CPLX. Extract the
2910 real part if IMAG_P is false, and the imaginary part if it's true. */
2911
2912 static rtx
2913 read_complex_part (rtx cplx, bool imag_p)
2914 {
2915 enum machine_mode cmode, imode;
2916 unsigned ibitsize;
2917
2918 if (GET_CODE (cplx) == CONCAT)
2919 return XEXP (cplx, imag_p);
2920
2921 cmode = GET_MODE (cplx);
2922 imode = GET_MODE_INNER (cmode);
2923 ibitsize = GET_MODE_BITSIZE (imode);
2924
2925 /* Special case reads from complex constants that got spilled to memory. */
2926 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2927 {
2928 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2929 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2930 {
2931 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2932 if (CONSTANT_CLASS_P (part))
2933 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2934 }
2935 }
2936
2937 /* For MEMs simplify_gen_subreg may generate an invalid new address
2938 because, e.g., the original address is considered mode-dependent
2939 by the target, which restricts simplify_subreg from invoking
2940 adjust_address_nv. Instead of preparing fallback support for an
2941 invalid address, we call adjust_address_nv directly. */
2942 if (MEM_P (cplx))
2943 return adjust_address_nv (cplx, imode,
2944 imag_p ? GET_MODE_SIZE (imode) : 0);
2945
2946 /* If the sub-object is at least word sized, then we know that subregging
2947 will work. This special case is important, since extract_bit_field
2948 wants to operate on integer modes, and there's rarely an OImode to
2949 correspond to TCmode. */
2950 if (ibitsize >= BITS_PER_WORD
2951 /* For hard regs we have exact predicates. Assume we can split
2952 the original object if it spans an even number of hard regs.
2953 This special case is important for SCmode on 64-bit platforms
2954 where the natural size of floating-point regs is 32-bit. */
2955 || (REG_P (cplx)
2956 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2957 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2958 {
2959 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2960 imag_p ? GET_MODE_SIZE (imode) : 0);
2961 if (ret)
2962 return ret;
2963 else
2964 /* simplify_gen_subreg may fail for sub-word MEMs. */
2965 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2966 }
2967
2968 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2969 true, NULL_RTX, imode, imode);
2970 }
2971 \f
2972 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2973 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2974 represented in NEW_MODE. If FORCE is true, this will never happen, as
2975 we'll force-create a SUBREG if needed. */
2976
2977 static rtx
2978 emit_move_change_mode (enum machine_mode new_mode,
2979 enum machine_mode old_mode, rtx x, bool force)
2980 {
2981 rtx ret;
2982
2983 if (push_operand (x, GET_MODE (x)))
2984 {
2985 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2986 MEM_COPY_ATTRIBUTES (ret, x);
2987 }
2988 else if (MEM_P (x))
2989 {
2990 /* We don't have to worry about changing the address since the
2991 size in bytes is supposed to be the same. */
2992 if (reload_in_progress)
2993 {
2994 /* Copy the MEM to change the mode and move any
2995 substitutions from the old MEM to the new one. */
2996 ret = adjust_address_nv (x, new_mode, 0);
2997 copy_replacements (x, ret);
2998 }
2999 else
3000 ret = adjust_address (x, new_mode, 0);
3001 }
3002 else
3003 {
3004 /* Note that we do want simplify_subreg's behavior of validating
3005 that the new mode is ok for a hard register. If we were to use
3006 simplify_gen_subreg, we would create the subreg, but would
3007 probably run into the target not being able to implement it. */
3008 /* Except, of course, when FORCE is true, when this is exactly what
3009 we want. Which is needed for CCmodes on some targets. */
3010 if (force)
3011 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3012 else
3013 ret = simplify_subreg (new_mode, x, old_mode, 0);
3014 }
3015
3016 return ret;
3017 }
3018
3019 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3020 an integer mode of the same size as MODE. Returns the instruction
3021 emitted, or NULL if such a move could not be generated. */
3022
3023 static rtx
3024 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3025 {
3026 enum machine_mode imode;
3027 enum insn_code code;
3028
3029 /* There must exist a mode of the exact size we require. */
3030 imode = int_mode_for_mode (mode);
3031 if (imode == BLKmode)
3032 return NULL_RTX;
3033
3034 /* The target must support moves in this mode. */
3035 code = optab_handler (mov_optab, imode)->insn_code;
3036 if (code == CODE_FOR_nothing)
3037 return NULL_RTX;
3038
3039 x = emit_move_change_mode (imode, mode, x, force);
3040 if (x == NULL_RTX)
3041 return NULL_RTX;
3042 y = emit_move_change_mode (imode, mode, y, force);
3043 if (y == NULL_RTX)
3044 return NULL_RTX;
3045 return emit_insn (GEN_FCN (code) (x, y));
3046 }
3047
3048 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3049 Return an equivalent MEM that does not use an auto-increment. */
3050
3051 static rtx
3052 emit_move_resolve_push (enum machine_mode mode, rtx x)
3053 {
3054 enum rtx_code code = GET_CODE (XEXP (x, 0));
3055 HOST_WIDE_INT adjust;
3056 rtx temp;
3057
3058 adjust = GET_MODE_SIZE (mode);
3059 #ifdef PUSH_ROUNDING
3060 adjust = PUSH_ROUNDING (adjust);
3061 #endif
3062 if (code == PRE_DEC || code == POST_DEC)
3063 adjust = -adjust;
3064 else if (code == PRE_MODIFY || code == POST_MODIFY)
3065 {
3066 rtx expr = XEXP (XEXP (x, 0), 1);
3067 HOST_WIDE_INT val;
3068
3069 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3070 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3071 val = INTVAL (XEXP (expr, 1));
3072 if (GET_CODE (expr) == MINUS)
3073 val = -val;
3074 gcc_assert (adjust == val || adjust == -val);
3075 adjust = val;
3076 }
3077
3078 /* Do not use anti_adjust_stack, since we don't want to update
3079 stack_pointer_delta. */
3080 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3081 GEN_INT (adjust), stack_pointer_rtx,
3082 0, OPTAB_LIB_WIDEN);
3083 if (temp != stack_pointer_rtx)
3084 emit_move_insn (stack_pointer_rtx, temp);
3085
3086 switch (code)
3087 {
3088 case PRE_INC:
3089 case PRE_DEC:
3090 case PRE_MODIFY:
3091 temp = stack_pointer_rtx;
3092 break;
3093 case POST_INC:
3094 case POST_DEC:
3095 case POST_MODIFY:
3096 temp = plus_constant (stack_pointer_rtx, -adjust);
3097 break;
3098 default:
3099 gcc_unreachable ();
3100 }
3101
3102 return replace_equiv_address (x, temp);
3103 }
3104
3105 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3106 X is known to satisfy push_operand, and MODE is known to be complex.
3107 Returns the last instruction emitted. */
3108
3109 rtx
3110 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3111 {
3112 enum machine_mode submode = GET_MODE_INNER (mode);
3113 bool imag_first;
3114
3115 #ifdef PUSH_ROUNDING
3116 unsigned int submodesize = GET_MODE_SIZE (submode);
3117
3118 /* In case we output to the stack, but the size is smaller than the
3119 machine can push exactly, we need to use move instructions. */
3120 if (PUSH_ROUNDING (submodesize) != submodesize)
3121 {
3122 x = emit_move_resolve_push (mode, x);
3123 return emit_move_insn (x, y);
3124 }
3125 #endif
3126
3127 /* Note that the real part always precedes the imag part in memory
3128 regardless of machine's endianness. */
3129 switch (GET_CODE (XEXP (x, 0)))
3130 {
3131 case PRE_DEC:
3132 case POST_DEC:
3133 imag_first = true;
3134 break;
3135 case PRE_INC:
3136 case POST_INC:
3137 imag_first = false;
3138 break;
3139 default:
3140 gcc_unreachable ();
3141 }
3142
3143 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3144 read_complex_part (y, imag_first));
3145 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3146 read_complex_part (y, !imag_first));
3147 }
3148
3149 /* A subroutine of emit_move_complex. Perform the move from Y to X
3150 via two moves of the parts. Returns the last instruction emitted. */
3151
3152 rtx
3153 emit_move_complex_parts (rtx x, rtx y)
3154 {
3155 /* Show the output dies here. This is necessary for SUBREGs
3156 of pseudos since we cannot track their lifetimes correctly;
3157 hard regs shouldn't appear here except as return values. */
3158 if (!reload_completed && !reload_in_progress
3159 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3160 emit_clobber (x);
3161
3162 write_complex_part (x, read_complex_part (y, false), false);
3163 write_complex_part (x, read_complex_part (y, true), true);
3164
3165 return get_last_insn ();
3166 }
3167
3168 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3169 MODE is known to be complex. Returns the last instruction emitted. */
3170
3171 static rtx
3172 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3173 {
3174 bool try_int;
3175
3176 /* Need to take special care for pushes, to maintain proper ordering
3177 of the data, and possibly extra padding. */
3178 if (push_operand (x, mode))
3179 return emit_move_complex_push (mode, x, y);
3180
3181 /* See if we can coerce the target into moving both values at once. */
3182
3183 /* Move floating point as parts. */
3184 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3185 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3186 try_int = false;
3187 /* Not possible if the values are inherently not adjacent. */
3188 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3189 try_int = false;
3190 /* Is possible if both are registers (or subregs of registers). */
3191 else if (register_operand (x, mode) && register_operand (y, mode))
3192 try_int = true;
3193 /* If one of the operands is a memory, and alignment constraints
3194 are friendly enough, we may be able to do combined memory operations.
3195 We do not attempt this if Y is a constant because that combination is
3196 usually better with the by-parts thing below. */
3197 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3198 && (!STRICT_ALIGNMENT
3199 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3200 try_int = true;
3201 else
3202 try_int = false;
3203
3204 if (try_int)
3205 {
3206 rtx ret;
3207
3208 /* For memory to memory moves, optimal behavior can be had with the
3209 existing block move logic. */
3210 if (MEM_P (x) && MEM_P (y))
3211 {
3212 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3213 BLOCK_OP_NO_LIBCALL);
3214 return get_last_insn ();
3215 }
3216
3217 ret = emit_move_via_integer (mode, x, y, true);
3218 if (ret)
3219 return ret;
3220 }
3221
3222 return emit_move_complex_parts (x, y);
3223 }
3224
3225 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3226 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3227
3228 static rtx
3229 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3230 {
3231 rtx ret;
3232
3233 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3234 if (mode != CCmode)
3235 {
3236 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3237 if (code != CODE_FOR_nothing)
3238 {
3239 x = emit_move_change_mode (CCmode, mode, x, true);
3240 y = emit_move_change_mode (CCmode, mode, y, true);
3241 return emit_insn (GEN_FCN (code) (x, y));
3242 }
3243 }
3244
3245 /* Otherwise, find the MODE_INT mode of the same width. */
3246 ret = emit_move_via_integer (mode, x, y, false);
3247 gcc_assert (ret != NULL);
3248 return ret;
3249 }
3250
3251 /* Return true if word I of OP lies entirely in the
3252 undefined bits of a paradoxical subreg. */
3253
3254 static bool
3255 undefined_operand_subword_p (const_rtx op, int i)
3256 {
3257 enum machine_mode innermode, innermostmode;
3258 int offset;
3259 if (GET_CODE (op) != SUBREG)
3260 return false;
3261 innermode = GET_MODE (op);
3262 innermostmode = GET_MODE (SUBREG_REG (op));
3263 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3264 /* The SUBREG_BYTE represents offset, as if the value were stored in
3265 memory, except for a paradoxical subreg where we define
3266 SUBREG_BYTE to be 0; undo this exception as in
3267 simplify_subreg. */
3268 if (SUBREG_BYTE (op) == 0
3269 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3270 {
3271 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3272 if (WORDS_BIG_ENDIAN)
3273 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3274 if (BYTES_BIG_ENDIAN)
3275 offset += difference % UNITS_PER_WORD;
3276 }
3277 if (offset >= GET_MODE_SIZE (innermostmode)
3278 || offset <= -GET_MODE_SIZE (word_mode))
3279 return true;
3280 return false;
3281 }
3282
3283 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3284 MODE is any multi-word or full-word mode that lacks a move_insn
3285 pattern. Note that you will get better code if you define such
3286 patterns, even if they must turn into multiple assembler instructions. */
3287
3288 static rtx
3289 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3290 {
3291 rtx last_insn = 0;
3292 rtx seq, inner;
3293 bool need_clobber;
3294 int i;
3295
3296 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3297
3298 /* If X is a push on the stack, do the push now and replace
3299 X with a reference to the stack pointer. */
3300 if (push_operand (x, mode))
3301 x = emit_move_resolve_push (mode, x);
3302
3303 /* If we are in reload, see if either operand is a MEM whose address
3304 is scheduled for replacement. */
3305 if (reload_in_progress && MEM_P (x)
3306 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3307 x = replace_equiv_address_nv (x, inner);
3308 if (reload_in_progress && MEM_P (y)
3309 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3310 y = replace_equiv_address_nv (y, inner);
3311
3312 start_sequence ();
3313
3314 need_clobber = false;
3315 for (i = 0;
3316 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3317 i++)
3318 {
3319 rtx xpart = operand_subword (x, i, 1, mode);
3320 rtx ypart;
3321
3322 /* Do not generate code for a move if it would come entirely
3323 from the undefined bits of a paradoxical subreg. */
3324 if (undefined_operand_subword_p (y, i))
3325 continue;
3326
3327 ypart = operand_subword (y, i, 1, mode);
3328
3329 /* If we can't get a part of Y, put Y into memory if it is a
3330 constant. Otherwise, force it into a register. Then we must
3331 be able to get a part of Y. */
3332 if (ypart == 0 && CONSTANT_P (y))
3333 {
3334 y = use_anchored_address (force_const_mem (mode, y));
3335 ypart = operand_subword (y, i, 1, mode);
3336 }
3337 else if (ypart == 0)
3338 ypart = operand_subword_force (y, i, mode);
3339
3340 gcc_assert (xpart && ypart);
3341
3342 need_clobber |= (GET_CODE (xpart) == SUBREG);
3343
3344 last_insn = emit_move_insn (xpart, ypart);
3345 }
3346
3347 seq = get_insns ();
3348 end_sequence ();
3349
3350 /* Show the output dies here. This is necessary for SUBREGs
3351 of pseudos since we cannot track their lifetimes correctly;
3352 hard regs shouldn't appear here except as return values.
3353 We never want to emit such a clobber after reload. */
3354 if (x != y
3355 && ! (reload_in_progress || reload_completed)
3356 && need_clobber != 0)
3357 emit_clobber (x);
3358
3359 emit_insn (seq);
3360
3361 return last_insn;
3362 }
3363
3364 /* Low level part of emit_move_insn.
3365 Called just like emit_move_insn, but assumes X and Y
3366 are basically valid. */
3367
3368 rtx
3369 emit_move_insn_1 (rtx x, rtx y)
3370 {
3371 enum machine_mode mode = GET_MODE (x);
3372 enum insn_code code;
3373
3374 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3375
3376 code = optab_handler (mov_optab, mode)->insn_code;
3377 if (code != CODE_FOR_nothing)
3378 return emit_insn (GEN_FCN (code) (x, y));
3379
3380 /* Expand complex moves by moving real part and imag part. */
3381 if (COMPLEX_MODE_P (mode))
3382 return emit_move_complex (mode, x, y);
3383
3384 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3385 || ALL_FIXED_POINT_MODE_P (mode))
3386 {
3387 rtx result = emit_move_via_integer (mode, x, y, true);
3388
3389 /* If we can't find an integer mode, use multi words. */
3390 if (result)
3391 return result;
3392 else
3393 return emit_move_multi_word (mode, x, y);
3394 }
3395
3396 if (GET_MODE_CLASS (mode) == MODE_CC)
3397 return emit_move_ccmode (mode, x, y);
3398
3399 /* Try using a move pattern for the corresponding integer mode. This is
3400 only safe when simplify_subreg can convert MODE constants into integer
3401 constants. At present, it can only do this reliably if the value
3402 fits within a HOST_WIDE_INT. */
3403 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3404 {
3405 rtx ret = emit_move_via_integer (mode, x, y, false);
3406 if (ret)
3407 return ret;
3408 }
3409
3410 return emit_move_multi_word (mode, x, y);
3411 }
3412
3413 /* Generate code to copy Y into X.
3414 Both Y and X must have the same mode, except that
3415 Y can be a constant with VOIDmode.
3416 This mode cannot be BLKmode; use emit_block_move for that.
3417
3418 Return the last instruction emitted. */
3419
3420 rtx
3421 emit_move_insn (rtx x, rtx y)
3422 {
3423 enum machine_mode mode = GET_MODE (x);
3424 rtx y_cst = NULL_RTX;
3425 rtx last_insn, set;
3426
3427 gcc_assert (mode != BLKmode
3428 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3429
3430 if (CONSTANT_P (y))
3431 {
3432 if (optimize
3433 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3434 && (last_insn = compress_float_constant (x, y)))
3435 return last_insn;
3436
3437 y_cst = y;
3438
3439 if (!LEGITIMATE_CONSTANT_P (y))
3440 {
3441 y = force_const_mem (mode, y);
3442
3443 /* If the target's cannot_force_const_mem prevented the spill,
3444 assume that the target's move expanders will also take care
3445 of the non-legitimate constant. */
3446 if (!y)
3447 y = y_cst;
3448 else
3449 y = use_anchored_address (y);
3450 }
3451 }
3452
3453 /* If X or Y are memory references, verify that their addresses are valid
3454 for the machine. */
3455 if (MEM_P (x)
3456 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3457 MEM_ADDR_SPACE (x))
3458 && ! push_operand (x, GET_MODE (x))))
3459 x = validize_mem (x);
3460
3461 if (MEM_P (y)
3462 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3463 MEM_ADDR_SPACE (y)))
3464 y = validize_mem (y);
3465
3466 gcc_assert (mode != BLKmode);
3467
3468 last_insn = emit_move_insn_1 (x, y);
3469
3470 if (y_cst && REG_P (x)
3471 && (set = single_set (last_insn)) != NULL_RTX
3472 && SET_DEST (set) == x
3473 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3474 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3475
3476 return last_insn;
3477 }
3478
3479 /* If Y is representable exactly in a narrower mode, and the target can
3480 perform the extension directly from constant or memory, then emit the
3481 move as an extension. */
3482
3483 static rtx
3484 compress_float_constant (rtx x, rtx y)
3485 {
3486 enum machine_mode dstmode = GET_MODE (x);
3487 enum machine_mode orig_srcmode = GET_MODE (y);
3488 enum machine_mode srcmode;
3489 REAL_VALUE_TYPE r;
3490 int oldcost, newcost;
3491 bool speed = optimize_insn_for_speed_p ();
3492
3493 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3494
3495 if (LEGITIMATE_CONSTANT_P (y))
3496 oldcost = rtx_cost (y, SET, speed);
3497 else
3498 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3499
3500 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3501 srcmode != orig_srcmode;
3502 srcmode = GET_MODE_WIDER_MODE (srcmode))
3503 {
3504 enum insn_code ic;
3505 rtx trunc_y, last_insn;
3506
3507 /* Skip if the target can't extend this way. */
3508 ic = can_extend_p (dstmode, srcmode, 0);
3509 if (ic == CODE_FOR_nothing)
3510 continue;
3511
3512 /* Skip if the narrowed value isn't exact. */
3513 if (! exact_real_truncate (srcmode, &r))
3514 continue;
3515
3516 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3517
3518 if (LEGITIMATE_CONSTANT_P (trunc_y))
3519 {
3520 /* Skip if the target needs extra instructions to perform
3521 the extension. */
3522 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3523 continue;
3524 /* This is valid, but may not be cheaper than the original. */
3525 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3526 if (oldcost < newcost)
3527 continue;
3528 }
3529 else if (float_extend_from_mem[dstmode][srcmode])
3530 {
3531 trunc_y = force_const_mem (srcmode, trunc_y);
3532 /* This is valid, but may not be cheaper than the original. */
3533 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3534 if (oldcost < newcost)
3535 continue;
3536 trunc_y = validize_mem (trunc_y);
3537 }
3538 else
3539 continue;
3540
3541 /* For CSE's benefit, force the compressed constant pool entry
3542 into a new pseudo. This constant may be used in different modes,
3543 and if not, combine will put things back together for us. */
3544 trunc_y = force_reg (srcmode, trunc_y);
3545 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3546 last_insn = get_last_insn ();
3547
3548 if (REG_P (x))
3549 set_unique_reg_note (last_insn, REG_EQUAL, y);
3550
3551 return last_insn;
3552 }
3553
3554 return NULL_RTX;
3555 }
3556 \f
3557 /* Pushing data onto the stack. */
3558
3559 /* Push a block of length SIZE (perhaps variable)
3560 and return an rtx to address the beginning of the block.
3561 The value may be virtual_outgoing_args_rtx.
3562
3563 EXTRA is the number of bytes of padding to push in addition to SIZE.
3564 BELOW nonzero means this padding comes at low addresses;
3565 otherwise, the padding comes at high addresses. */
3566
3567 rtx
3568 push_block (rtx size, int extra, int below)
3569 {
3570 rtx temp;
3571
3572 size = convert_modes (Pmode, ptr_mode, size, 1);
3573 if (CONSTANT_P (size))
3574 anti_adjust_stack (plus_constant (size, extra));
3575 else if (REG_P (size) && extra == 0)
3576 anti_adjust_stack (size);
3577 else
3578 {
3579 temp = copy_to_mode_reg (Pmode, size);
3580 if (extra != 0)
3581 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3582 temp, 0, OPTAB_LIB_WIDEN);
3583 anti_adjust_stack (temp);
3584 }
3585
3586 #ifndef STACK_GROWS_DOWNWARD
3587 if (0)
3588 #else
3589 if (1)
3590 #endif
3591 {
3592 temp = virtual_outgoing_args_rtx;
3593 if (extra != 0 && below)
3594 temp = plus_constant (temp, extra);
3595 }
3596 else
3597 {
3598 if (CONST_INT_P (size))
3599 temp = plus_constant (virtual_outgoing_args_rtx,
3600 -INTVAL (size) - (below ? 0 : extra));
3601 else if (extra != 0 && !below)
3602 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3603 negate_rtx (Pmode, plus_constant (size, extra)));
3604 else
3605 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3606 negate_rtx (Pmode, size));
3607 }
3608
3609 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3610 }
3611
3612 #ifdef PUSH_ROUNDING
3613
3614 /* Emit single push insn. */
3615
3616 static void
3617 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3618 {
3619 rtx dest_addr;
3620 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3621 rtx dest;
3622 enum insn_code icode;
3623 insn_operand_predicate_fn pred;
3624
3625 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3626 /* If there is push pattern, use it. Otherwise try old way of throwing
3627 MEM representing push operation to move expander. */
3628 icode = optab_handler (push_optab, mode)->insn_code;
3629 if (icode != CODE_FOR_nothing)
3630 {
3631 if (((pred = insn_data[(int) icode].operand[0].predicate)
3632 && !((*pred) (x, mode))))
3633 x = force_reg (mode, x);
3634 emit_insn (GEN_FCN (icode) (x));
3635 return;
3636 }
3637 if (GET_MODE_SIZE (mode) == rounded_size)
3638 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3639 /* If we are to pad downward, adjust the stack pointer first and
3640 then store X into the stack location using an offset. This is
3641 because emit_move_insn does not know how to pad; it does not have
3642 access to type. */
3643 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3644 {
3645 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3646 HOST_WIDE_INT offset;
3647
3648 emit_move_insn (stack_pointer_rtx,
3649 expand_binop (Pmode,
3650 #ifdef STACK_GROWS_DOWNWARD
3651 sub_optab,
3652 #else
3653 add_optab,
3654 #endif
3655 stack_pointer_rtx,
3656 GEN_INT (rounded_size),
3657 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3658
3659 offset = (HOST_WIDE_INT) padding_size;
3660 #ifdef STACK_GROWS_DOWNWARD
3661 if (STACK_PUSH_CODE == POST_DEC)
3662 /* We have already decremented the stack pointer, so get the
3663 previous value. */
3664 offset += (HOST_WIDE_INT) rounded_size;
3665 #else
3666 if (STACK_PUSH_CODE == POST_INC)
3667 /* We have already incremented the stack pointer, so get the
3668 previous value. */
3669 offset -= (HOST_WIDE_INT) rounded_size;
3670 #endif
3671 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3672 }
3673 else
3674 {
3675 #ifdef STACK_GROWS_DOWNWARD
3676 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3677 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3678 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3679 #else
3680 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3681 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3682 GEN_INT (rounded_size));
3683 #endif
3684 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3685 }
3686
3687 dest = gen_rtx_MEM (mode, dest_addr);
3688
3689 if (type != 0)
3690 {
3691 set_mem_attributes (dest, type, 1);
3692
3693 if (flag_optimize_sibling_calls)
3694 /* Function incoming arguments may overlap with sibling call
3695 outgoing arguments and we cannot allow reordering of reads
3696 from function arguments with stores to outgoing arguments
3697 of sibling calls. */
3698 set_mem_alias_set (dest, 0);
3699 }
3700 emit_move_insn (dest, x);
3701 }
3702 #endif
3703
3704 /* Generate code to push X onto the stack, assuming it has mode MODE and
3705 type TYPE.
3706 MODE is redundant except when X is a CONST_INT (since they don't
3707 carry mode info).
3708 SIZE is an rtx for the size of data to be copied (in bytes),
3709 needed only if X is BLKmode.
3710
3711 ALIGN (in bits) is maximum alignment we can assume.
3712
3713 If PARTIAL and REG are both nonzero, then copy that many of the first
3714 bytes of X into registers starting with REG, and push the rest of X.
3715 The amount of space pushed is decreased by PARTIAL bytes.
3716 REG must be a hard register in this case.
3717 If REG is zero but PARTIAL is not, take any all others actions for an
3718 argument partially in registers, but do not actually load any
3719 registers.
3720
3721 EXTRA is the amount in bytes of extra space to leave next to this arg.
3722 This is ignored if an argument block has already been allocated.
3723
3724 On a machine that lacks real push insns, ARGS_ADDR is the address of
3725 the bottom of the argument block for this call. We use indexing off there
3726 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3727 argument block has not been preallocated.
3728
3729 ARGS_SO_FAR is the size of args previously pushed for this call.
3730
3731 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3732 for arguments passed in registers. If nonzero, it will be the number
3733 of bytes required. */
3734
3735 void
3736 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3737 unsigned int align, int partial, rtx reg, int extra,
3738 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3739 rtx alignment_pad)
3740 {
3741 rtx xinner;
3742 enum direction stack_direction
3743 #ifdef STACK_GROWS_DOWNWARD
3744 = downward;
3745 #else
3746 = upward;
3747 #endif
3748
3749 /* Decide where to pad the argument: `downward' for below,
3750 `upward' for above, or `none' for don't pad it.
3751 Default is below for small data on big-endian machines; else above. */
3752 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3753
3754 /* Invert direction if stack is post-decrement.
3755 FIXME: why? */
3756 if (STACK_PUSH_CODE == POST_DEC)
3757 if (where_pad != none)
3758 where_pad = (where_pad == downward ? upward : downward);
3759
3760 xinner = x;
3761
3762 if (mode == BLKmode
3763 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3764 {
3765 /* Copy a block into the stack, entirely or partially. */
3766
3767 rtx temp;
3768 int used;
3769 int offset;
3770 int skip;
3771
3772 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3773 used = partial - offset;
3774
3775 if (mode != BLKmode)
3776 {
3777 /* A value is to be stored in an insufficiently aligned
3778 stack slot; copy via a suitably aligned slot if
3779 necessary. */
3780 size = GEN_INT (GET_MODE_SIZE (mode));
3781 if (!MEM_P (xinner))
3782 {
3783 temp = assign_temp (type, 0, 1, 1);
3784 emit_move_insn (temp, xinner);
3785 xinner = temp;
3786 }
3787 }
3788
3789 gcc_assert (size);
3790
3791 /* USED is now the # of bytes we need not copy to the stack
3792 because registers will take care of them. */
3793
3794 if (partial != 0)
3795 xinner = adjust_address (xinner, BLKmode, used);
3796
3797 /* If the partial register-part of the arg counts in its stack size,
3798 skip the part of stack space corresponding to the registers.
3799 Otherwise, start copying to the beginning of the stack space,
3800 by setting SKIP to 0. */
3801 skip = (reg_parm_stack_space == 0) ? 0 : used;
3802
3803 #ifdef PUSH_ROUNDING
3804 /* Do it with several push insns if that doesn't take lots of insns
3805 and if there is no difficulty with push insns that skip bytes
3806 on the stack for alignment purposes. */
3807 if (args_addr == 0
3808 && PUSH_ARGS
3809 && CONST_INT_P (size)
3810 && skip == 0
3811 && MEM_ALIGN (xinner) >= align
3812 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3813 /* Here we avoid the case of a structure whose weak alignment
3814 forces many pushes of a small amount of data,
3815 and such small pushes do rounding that causes trouble. */
3816 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3817 || align >= BIGGEST_ALIGNMENT
3818 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3819 == (align / BITS_PER_UNIT)))
3820 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3821 {
3822 /* Push padding now if padding above and stack grows down,
3823 or if padding below and stack grows up.
3824 But if space already allocated, this has already been done. */
3825 if (extra && args_addr == 0
3826 && where_pad != none && where_pad != stack_direction)
3827 anti_adjust_stack (GEN_INT (extra));
3828
3829 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3830 }
3831 else
3832 #endif /* PUSH_ROUNDING */
3833 {
3834 rtx target;
3835
3836 /* Otherwise make space on the stack and copy the data
3837 to the address of that space. */
3838
3839 /* Deduct words put into registers from the size we must copy. */
3840 if (partial != 0)
3841 {
3842 if (CONST_INT_P (size))
3843 size = GEN_INT (INTVAL (size) - used);
3844 else
3845 size = expand_binop (GET_MODE (size), sub_optab, size,
3846 GEN_INT (used), NULL_RTX, 0,
3847 OPTAB_LIB_WIDEN);
3848 }
3849
3850 /* Get the address of the stack space.
3851 In this case, we do not deal with EXTRA separately.
3852 A single stack adjust will do. */
3853 if (! args_addr)
3854 {
3855 temp = push_block (size, extra, where_pad == downward);
3856 extra = 0;
3857 }
3858 else if (CONST_INT_P (args_so_far))
3859 temp = memory_address (BLKmode,
3860 plus_constant (args_addr,
3861 skip + INTVAL (args_so_far)));
3862 else
3863 temp = memory_address (BLKmode,
3864 plus_constant (gen_rtx_PLUS (Pmode,
3865 args_addr,
3866 args_so_far),
3867 skip));
3868
3869 if (!ACCUMULATE_OUTGOING_ARGS)
3870 {
3871 /* If the source is referenced relative to the stack pointer,
3872 copy it to another register to stabilize it. We do not need
3873 to do this if we know that we won't be changing sp. */
3874
3875 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3876 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3877 temp = copy_to_reg (temp);
3878 }
3879
3880 target = gen_rtx_MEM (BLKmode, temp);
3881
3882 /* We do *not* set_mem_attributes here, because incoming arguments
3883 may overlap with sibling call outgoing arguments and we cannot
3884 allow reordering of reads from function arguments with stores
3885 to outgoing arguments of sibling calls. We do, however, want
3886 to record the alignment of the stack slot. */
3887 /* ALIGN may well be better aligned than TYPE, e.g. due to
3888 PARM_BOUNDARY. Assume the caller isn't lying. */
3889 set_mem_align (target, align);
3890
3891 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3892 }
3893 }
3894 else if (partial > 0)
3895 {
3896 /* Scalar partly in registers. */
3897
3898 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3899 int i;
3900 int not_stack;
3901 /* # bytes of start of argument
3902 that we must make space for but need not store. */
3903 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3904 int args_offset = INTVAL (args_so_far);
3905 int skip;
3906
3907 /* Push padding now if padding above and stack grows down,
3908 or if padding below and stack grows up.
3909 But if space already allocated, this has already been done. */
3910 if (extra && args_addr == 0
3911 && where_pad != none && where_pad != stack_direction)
3912 anti_adjust_stack (GEN_INT (extra));
3913
3914 /* If we make space by pushing it, we might as well push
3915 the real data. Otherwise, we can leave OFFSET nonzero
3916 and leave the space uninitialized. */
3917 if (args_addr == 0)
3918 offset = 0;
3919
3920 /* Now NOT_STACK gets the number of words that we don't need to
3921 allocate on the stack. Convert OFFSET to words too. */
3922 not_stack = (partial - offset) / UNITS_PER_WORD;
3923 offset /= UNITS_PER_WORD;
3924
3925 /* If the partial register-part of the arg counts in its stack size,
3926 skip the part of stack space corresponding to the registers.
3927 Otherwise, start copying to the beginning of the stack space,
3928 by setting SKIP to 0. */
3929 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3930
3931 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3932 x = validize_mem (force_const_mem (mode, x));
3933
3934 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3935 SUBREGs of such registers are not allowed. */
3936 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3937 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3938 x = copy_to_reg (x);
3939
3940 /* Loop over all the words allocated on the stack for this arg. */
3941 /* We can do it by words, because any scalar bigger than a word
3942 has a size a multiple of a word. */
3943 #ifndef PUSH_ARGS_REVERSED
3944 for (i = not_stack; i < size; i++)
3945 #else
3946 for (i = size - 1; i >= not_stack; i--)
3947 #endif
3948 if (i >= not_stack + offset)
3949 emit_push_insn (operand_subword_force (x, i, mode),
3950 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3951 0, args_addr,
3952 GEN_INT (args_offset + ((i - not_stack + skip)
3953 * UNITS_PER_WORD)),
3954 reg_parm_stack_space, alignment_pad);
3955 }
3956 else
3957 {
3958 rtx addr;
3959 rtx dest;
3960
3961 /* Push padding now if padding above and stack grows down,
3962 or if padding below and stack grows up.
3963 But if space already allocated, this has already been done. */
3964 if (extra && args_addr == 0
3965 && where_pad != none && where_pad != stack_direction)
3966 anti_adjust_stack (GEN_INT (extra));
3967
3968 #ifdef PUSH_ROUNDING
3969 if (args_addr == 0 && PUSH_ARGS)
3970 emit_single_push_insn (mode, x, type);
3971 else
3972 #endif
3973 {
3974 if (CONST_INT_P (args_so_far))
3975 addr
3976 = memory_address (mode,
3977 plus_constant (args_addr,
3978 INTVAL (args_so_far)));
3979 else
3980 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3981 args_so_far));
3982 dest = gen_rtx_MEM (mode, addr);
3983
3984 /* We do *not* set_mem_attributes here, because incoming arguments
3985 may overlap with sibling call outgoing arguments and we cannot
3986 allow reordering of reads from function arguments with stores
3987 to outgoing arguments of sibling calls. We do, however, want
3988 to record the alignment of the stack slot. */
3989 /* ALIGN may well be better aligned than TYPE, e.g. due to
3990 PARM_BOUNDARY. Assume the caller isn't lying. */
3991 set_mem_align (dest, align);
3992
3993 emit_move_insn (dest, x);
3994 }
3995 }
3996
3997 /* If part should go in registers, copy that part
3998 into the appropriate registers. Do this now, at the end,
3999 since mem-to-mem copies above may do function calls. */
4000 if (partial > 0 && reg != 0)
4001 {
4002 /* Handle calls that pass values in multiple non-contiguous locations.
4003 The Irix 6 ABI has examples of this. */
4004 if (GET_CODE (reg) == PARALLEL)
4005 emit_group_load (reg, x, type, -1);
4006 else
4007 {
4008 gcc_assert (partial % UNITS_PER_WORD == 0);
4009 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4010 }
4011 }
4012
4013 if (extra && args_addr == 0 && where_pad == stack_direction)
4014 anti_adjust_stack (GEN_INT (extra));
4015
4016 if (alignment_pad && args_addr == 0)
4017 anti_adjust_stack (alignment_pad);
4018 }
4019 \f
4020 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4021 operations. */
4022
4023 static rtx
4024 get_subtarget (rtx x)
4025 {
4026 return (optimize
4027 || x == 0
4028 /* Only registers can be subtargets. */
4029 || !REG_P (x)
4030 /* Don't use hard regs to avoid extending their life. */
4031 || REGNO (x) < FIRST_PSEUDO_REGISTER
4032 ? 0 : x);
4033 }
4034
4035 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4036 FIELD is a bitfield. Returns true if the optimization was successful,
4037 and there's nothing else to do. */
4038
4039 static bool
4040 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4041 unsigned HOST_WIDE_INT bitpos,
4042 enum machine_mode mode1, rtx str_rtx,
4043 tree to, tree src)
4044 {
4045 enum machine_mode str_mode = GET_MODE (str_rtx);
4046 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4047 tree op0, op1;
4048 rtx value, result;
4049 optab binop;
4050
4051 if (mode1 != VOIDmode
4052 || bitsize >= BITS_PER_WORD
4053 || str_bitsize > BITS_PER_WORD
4054 || TREE_SIDE_EFFECTS (to)
4055 || TREE_THIS_VOLATILE (to))
4056 return false;
4057
4058 STRIP_NOPS (src);
4059 if (!BINARY_CLASS_P (src)
4060 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4061 return false;
4062
4063 op0 = TREE_OPERAND (src, 0);
4064 op1 = TREE_OPERAND (src, 1);
4065 STRIP_NOPS (op0);
4066
4067 if (!operand_equal_p (to, op0, 0))
4068 return false;
4069
4070 if (MEM_P (str_rtx))
4071 {
4072 unsigned HOST_WIDE_INT offset1;
4073
4074 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4075 str_mode = word_mode;
4076 str_mode = get_best_mode (bitsize, bitpos,
4077 MEM_ALIGN (str_rtx), str_mode, 0);
4078 if (str_mode == VOIDmode)
4079 return false;
4080 str_bitsize = GET_MODE_BITSIZE (str_mode);
4081
4082 offset1 = bitpos;
4083 bitpos %= str_bitsize;
4084 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4085 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4086 }
4087 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4088 return false;
4089
4090 /* If the bit field covers the whole REG/MEM, store_field
4091 will likely generate better code. */
4092 if (bitsize >= str_bitsize)
4093 return false;
4094
4095 /* We can't handle fields split across multiple entities. */
4096 if (bitpos + bitsize > str_bitsize)
4097 return false;
4098
4099 if (BYTES_BIG_ENDIAN)
4100 bitpos = str_bitsize - bitpos - bitsize;
4101
4102 switch (TREE_CODE (src))
4103 {
4104 case PLUS_EXPR:
4105 case MINUS_EXPR:
4106 /* For now, just optimize the case of the topmost bitfield
4107 where we don't need to do any masking and also
4108 1 bit bitfields where xor can be used.
4109 We might win by one instruction for the other bitfields
4110 too if insv/extv instructions aren't used, so that
4111 can be added later. */
4112 if (bitpos + bitsize != str_bitsize
4113 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4114 break;
4115
4116 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4117 value = convert_modes (str_mode,
4118 TYPE_MODE (TREE_TYPE (op1)), value,
4119 TYPE_UNSIGNED (TREE_TYPE (op1)));
4120
4121 /* We may be accessing data outside the field, which means
4122 we can alias adjacent data. */
4123 if (MEM_P (str_rtx))
4124 {
4125 str_rtx = shallow_copy_rtx (str_rtx);
4126 set_mem_alias_set (str_rtx, 0);
4127 set_mem_expr (str_rtx, 0);
4128 }
4129
4130 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4131 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4132 {
4133 value = expand_and (str_mode, value, const1_rtx, NULL);
4134 binop = xor_optab;
4135 }
4136 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4137 build_int_cst (NULL_TREE, bitpos),
4138 NULL_RTX, 1);
4139 result = expand_binop (str_mode, binop, str_rtx,
4140 value, str_rtx, 1, OPTAB_WIDEN);
4141 if (result != str_rtx)
4142 emit_move_insn (str_rtx, result);
4143 return true;
4144
4145 case BIT_IOR_EXPR:
4146 case BIT_XOR_EXPR:
4147 if (TREE_CODE (op1) != INTEGER_CST)
4148 break;
4149 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4150 value = convert_modes (GET_MODE (str_rtx),
4151 TYPE_MODE (TREE_TYPE (op1)), value,
4152 TYPE_UNSIGNED (TREE_TYPE (op1)));
4153
4154 /* We may be accessing data outside the field, which means
4155 we can alias adjacent data. */
4156 if (MEM_P (str_rtx))
4157 {
4158 str_rtx = shallow_copy_rtx (str_rtx);
4159 set_mem_alias_set (str_rtx, 0);
4160 set_mem_expr (str_rtx, 0);
4161 }
4162
4163 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4164 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4165 {
4166 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4167 - 1);
4168 value = expand_and (GET_MODE (str_rtx), value, mask,
4169 NULL_RTX);
4170 }
4171 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4172 build_int_cst (NULL_TREE, bitpos),
4173 NULL_RTX, 1);
4174 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4175 value, str_rtx, 1, OPTAB_WIDEN);
4176 if (result != str_rtx)
4177 emit_move_insn (str_rtx, result);
4178 return true;
4179
4180 default:
4181 break;
4182 }
4183
4184 return false;
4185 }
4186
4187
4188 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4189 is true, try generating a nontemporal store. */
4190
4191 void
4192 expand_assignment (tree to, tree from, bool nontemporal)
4193 {
4194 rtx to_rtx = 0;
4195 rtx result;
4196
4197 /* Don't crash if the lhs of the assignment was erroneous. */
4198 if (TREE_CODE (to) == ERROR_MARK)
4199 {
4200 result = expand_normal (from);
4201 return;
4202 }
4203
4204 /* Optimize away no-op moves without side-effects. */
4205 if (operand_equal_p (to, from, 0))
4206 return;
4207
4208 /* Assignment of a structure component needs special treatment
4209 if the structure component's rtx is not simply a MEM.
4210 Assignment of an array element at a constant index, and assignment of
4211 an array element in an unaligned packed structure field, has the same
4212 problem. */
4213 if (handled_component_p (to)
4214 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4215 {
4216 enum machine_mode mode1;
4217 HOST_WIDE_INT bitsize, bitpos;
4218 tree offset;
4219 int unsignedp;
4220 int volatilep = 0;
4221 tree tem;
4222
4223 push_temp_slots ();
4224 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4225 &unsignedp, &volatilep, true);
4226
4227 /* If we are going to use store_bit_field and extract_bit_field,
4228 make sure to_rtx will be safe for multiple use. */
4229
4230 to_rtx = expand_normal (tem);
4231
4232 /* If the bitfield is volatile, we want to access it in the
4233 field's mode, not the computed mode. */
4234 if (volatilep
4235 && GET_CODE (to_rtx) == MEM
4236 && flag_strict_volatile_bitfields > 0)
4237 to_rtx = adjust_address (to_rtx, mode1, 0);
4238
4239 if (offset != 0)
4240 {
4241 enum machine_mode address_mode;
4242 rtx offset_rtx;
4243
4244 if (!MEM_P (to_rtx))
4245 {
4246 /* We can get constant negative offsets into arrays with broken
4247 user code. Translate this to a trap instead of ICEing. */
4248 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4249 expand_builtin_trap ();
4250 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4251 }
4252
4253 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4254 address_mode
4255 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4256 if (GET_MODE (offset_rtx) != address_mode)
4257 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4258
4259 /* A constant address in TO_RTX can have VOIDmode, we must not try
4260 to call force_reg for that case. Avoid that case. */
4261 if (MEM_P (to_rtx)
4262 && GET_MODE (to_rtx) == BLKmode
4263 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4264 && bitsize > 0
4265 && (bitpos % bitsize) == 0
4266 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4267 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4268 {
4269 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4270 bitpos = 0;
4271 }
4272
4273 to_rtx = offset_address (to_rtx, offset_rtx,
4274 highest_pow2_factor_for_target (to,
4275 offset));
4276 }
4277
4278 /* No action is needed if the target is not a memory and the field
4279 lies completely outside that target. This can occur if the source
4280 code contains an out-of-bounds access to a small array. */
4281 if (!MEM_P (to_rtx)
4282 && GET_MODE (to_rtx) != BLKmode
4283 && (unsigned HOST_WIDE_INT) bitpos
4284 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4285 {
4286 expand_normal (from);
4287 result = NULL;
4288 }
4289 /* Handle expand_expr of a complex value returning a CONCAT. */
4290 else if (GET_CODE (to_rtx) == CONCAT)
4291 {
4292 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4293 {
4294 gcc_assert (bitpos == 0);
4295 result = store_expr (from, to_rtx, false, nontemporal);
4296 }
4297 else
4298 {
4299 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4300 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4301 nontemporal);
4302 }
4303 }
4304 else
4305 {
4306 if (MEM_P (to_rtx))
4307 {
4308 /* If the field is at offset zero, we could have been given the
4309 DECL_RTX of the parent struct. Don't munge it. */
4310 to_rtx = shallow_copy_rtx (to_rtx);
4311
4312 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4313
4314 /* Deal with volatile and readonly fields. The former is only
4315 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4316 if (volatilep)
4317 MEM_VOLATILE_P (to_rtx) = 1;
4318 if (component_uses_parent_alias_set (to))
4319 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4320 }
4321
4322 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4323 to_rtx, to, from))
4324 result = NULL;
4325 else
4326 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4327 TREE_TYPE (tem), get_alias_set (to),
4328 nontemporal);
4329 }
4330
4331 if (result)
4332 preserve_temp_slots (result);
4333 free_temp_slots ();
4334 pop_temp_slots ();
4335 return;
4336 }
4337
4338 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4339 {
4340 addr_space_t as = ADDR_SPACE_GENERIC;
4341 enum machine_mode mode, op_mode1;
4342 enum insn_code icode;
4343 rtx reg, addr, mem, insn;
4344
4345 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4346 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4347
4348 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4349 reg = force_not_mem (reg);
4350
4351 mode = TYPE_MODE (TREE_TYPE (to));
4352 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4353 EXPAND_SUM);
4354 addr = memory_address_addr_space (mode, addr, as);
4355 mem = gen_rtx_MEM (mode, addr);
4356
4357 set_mem_attributes (mem, to, 0);
4358 set_mem_addr_space (mem, as);
4359
4360 icode = movmisalign_optab->handlers[mode].insn_code;
4361 gcc_assert (icode != CODE_FOR_nothing);
4362
4363 op_mode1 = insn_data[icode].operand[1].mode;
4364 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4365 && op_mode1 != VOIDmode)
4366 reg = copy_to_mode_reg (op_mode1, reg);
4367
4368 insn = GEN_FCN (icode) (mem, reg);
4369 emit_insn (insn);
4370 return;
4371 }
4372
4373 /* If the rhs is a function call and its value is not an aggregate,
4374 call the function before we start to compute the lhs.
4375 This is needed for correct code for cases such as
4376 val = setjmp (buf) on machines where reference to val
4377 requires loading up part of an address in a separate insn.
4378
4379 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4380 since it might be a promoted variable where the zero- or sign- extension
4381 needs to be done. Handling this in the normal way is safe because no
4382 computation is done before the call. The same is true for SSA names. */
4383 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4384 && COMPLETE_TYPE_P (TREE_TYPE (from))
4385 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4386 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4387 && REG_P (DECL_RTL (to)))
4388 || TREE_CODE (to) == SSA_NAME))
4389 {
4390 rtx value;
4391
4392 push_temp_slots ();
4393 value = expand_normal (from);
4394 if (to_rtx == 0)
4395 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4396
4397 /* Handle calls that return values in multiple non-contiguous locations.
4398 The Irix 6 ABI has examples of this. */
4399 if (GET_CODE (to_rtx) == PARALLEL)
4400 emit_group_load (to_rtx, value, TREE_TYPE (from),
4401 int_size_in_bytes (TREE_TYPE (from)));
4402 else if (GET_MODE (to_rtx) == BLKmode)
4403 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4404 else
4405 {
4406 if (POINTER_TYPE_P (TREE_TYPE (to)))
4407 value = convert_memory_address_addr_space
4408 (GET_MODE (to_rtx), value,
4409 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4410
4411 emit_move_insn (to_rtx, value);
4412 }
4413 preserve_temp_slots (to_rtx);
4414 free_temp_slots ();
4415 pop_temp_slots ();
4416 return;
4417 }
4418
4419 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4420 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4421
4422 if (to_rtx == 0)
4423 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4424
4425 /* Don't move directly into a return register. */
4426 if (TREE_CODE (to) == RESULT_DECL
4427 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4428 {
4429 rtx temp;
4430
4431 push_temp_slots ();
4432 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4433
4434 if (GET_CODE (to_rtx) == PARALLEL)
4435 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4436 int_size_in_bytes (TREE_TYPE (from)));
4437 else
4438 emit_move_insn (to_rtx, temp);
4439
4440 preserve_temp_slots (to_rtx);
4441 free_temp_slots ();
4442 pop_temp_slots ();
4443 return;
4444 }
4445
4446 /* In case we are returning the contents of an object which overlaps
4447 the place the value is being stored, use a safe function when copying
4448 a value through a pointer into a structure value return block. */
4449 if (TREE_CODE (to) == RESULT_DECL
4450 && TREE_CODE (from) == INDIRECT_REF
4451 && ADDR_SPACE_GENERIC_P
4452 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4453 && refs_may_alias_p (to, from)
4454 && cfun->returns_struct
4455 && !cfun->returns_pcc_struct)
4456 {
4457 rtx from_rtx, size;
4458
4459 push_temp_slots ();
4460 size = expr_size (from);
4461 from_rtx = expand_normal (from);
4462
4463 emit_library_call (memmove_libfunc, LCT_NORMAL,
4464 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4465 XEXP (from_rtx, 0), Pmode,
4466 convert_to_mode (TYPE_MODE (sizetype),
4467 size, TYPE_UNSIGNED (sizetype)),
4468 TYPE_MODE (sizetype));
4469
4470 preserve_temp_slots (to_rtx);
4471 free_temp_slots ();
4472 pop_temp_slots ();
4473 return;
4474 }
4475
4476 /* Compute FROM and store the value in the rtx we got. */
4477
4478 push_temp_slots ();
4479 result = store_expr (from, to_rtx, 0, nontemporal);
4480 preserve_temp_slots (result);
4481 free_temp_slots ();
4482 pop_temp_slots ();
4483 return;
4484 }
4485
4486 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4487 succeeded, false otherwise. */
4488
4489 bool
4490 emit_storent_insn (rtx to, rtx from)
4491 {
4492 enum machine_mode mode = GET_MODE (to), imode;
4493 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4494 rtx pattern;
4495
4496 if (code == CODE_FOR_nothing)
4497 return false;
4498
4499 imode = insn_data[code].operand[0].mode;
4500 if (!insn_data[code].operand[0].predicate (to, imode))
4501 return false;
4502
4503 imode = insn_data[code].operand[1].mode;
4504 if (!insn_data[code].operand[1].predicate (from, imode))
4505 {
4506 from = copy_to_mode_reg (imode, from);
4507 if (!insn_data[code].operand[1].predicate (from, imode))
4508 return false;
4509 }
4510
4511 pattern = GEN_FCN (code) (to, from);
4512 if (pattern == NULL_RTX)
4513 return false;
4514
4515 emit_insn (pattern);
4516 return true;
4517 }
4518
4519 /* Generate code for computing expression EXP,
4520 and storing the value into TARGET.
4521
4522 If the mode is BLKmode then we may return TARGET itself.
4523 It turns out that in BLKmode it doesn't cause a problem.
4524 because C has no operators that could combine two different
4525 assignments into the same BLKmode object with different values
4526 with no sequence point. Will other languages need this to
4527 be more thorough?
4528
4529 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4530 stack, and block moves may need to be treated specially.
4531
4532 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4533
4534 rtx
4535 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4536 {
4537 rtx temp;
4538 rtx alt_rtl = NULL_RTX;
4539 location_t loc = EXPR_LOCATION (exp);
4540
4541 if (VOID_TYPE_P (TREE_TYPE (exp)))
4542 {
4543 /* C++ can generate ?: expressions with a throw expression in one
4544 branch and an rvalue in the other. Here, we resolve attempts to
4545 store the throw expression's nonexistent result. */
4546 gcc_assert (!call_param_p);
4547 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4548 return NULL_RTX;
4549 }
4550 if (TREE_CODE (exp) == COMPOUND_EXPR)
4551 {
4552 /* Perform first part of compound expression, then assign from second
4553 part. */
4554 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4555 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4556 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4557 nontemporal);
4558 }
4559 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4560 {
4561 /* For conditional expression, get safe form of the target. Then
4562 test the condition, doing the appropriate assignment on either
4563 side. This avoids the creation of unnecessary temporaries.
4564 For non-BLKmode, it is more efficient not to do this. */
4565
4566 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4567
4568 do_pending_stack_adjust ();
4569 NO_DEFER_POP;
4570 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4571 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4572 nontemporal);
4573 emit_jump_insn (gen_jump (lab2));
4574 emit_barrier ();
4575 emit_label (lab1);
4576 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4577 nontemporal);
4578 emit_label (lab2);
4579 OK_DEFER_POP;
4580
4581 return NULL_RTX;
4582 }
4583 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4584 /* If this is a scalar in a register that is stored in a wider mode
4585 than the declared mode, compute the result into its declared mode
4586 and then convert to the wider mode. Our value is the computed
4587 expression. */
4588 {
4589 rtx inner_target = 0;
4590
4591 /* We can do the conversion inside EXP, which will often result
4592 in some optimizations. Do the conversion in two steps: first
4593 change the signedness, if needed, then the extend. But don't
4594 do this if the type of EXP is a subtype of something else
4595 since then the conversion might involve more than just
4596 converting modes. */
4597 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4598 && TREE_TYPE (TREE_TYPE (exp)) == 0
4599 && GET_MODE_PRECISION (GET_MODE (target))
4600 == TYPE_PRECISION (TREE_TYPE (exp)))
4601 {
4602 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4603 != SUBREG_PROMOTED_UNSIGNED_P (target))
4604 {
4605 /* Some types, e.g. Fortran's logical*4, won't have a signed
4606 version, so use the mode instead. */
4607 tree ntype
4608 = (signed_or_unsigned_type_for
4609 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4610 if (ntype == NULL)
4611 ntype = lang_hooks.types.type_for_mode
4612 (TYPE_MODE (TREE_TYPE (exp)),
4613 SUBREG_PROMOTED_UNSIGNED_P (target));
4614
4615 exp = fold_convert_loc (loc, ntype, exp);
4616 }
4617
4618 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4619 (GET_MODE (SUBREG_REG (target)),
4620 SUBREG_PROMOTED_UNSIGNED_P (target)),
4621 exp);
4622
4623 inner_target = SUBREG_REG (target);
4624 }
4625
4626 temp = expand_expr (exp, inner_target, VOIDmode,
4627 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4628
4629 /* If TEMP is a VOIDmode constant, use convert_modes to make
4630 sure that we properly convert it. */
4631 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4632 {
4633 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4634 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4635 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4636 GET_MODE (target), temp,
4637 SUBREG_PROMOTED_UNSIGNED_P (target));
4638 }
4639
4640 convert_move (SUBREG_REG (target), temp,
4641 SUBREG_PROMOTED_UNSIGNED_P (target));
4642
4643 return NULL_RTX;
4644 }
4645 else if (TREE_CODE (exp) == STRING_CST
4646 && !nontemporal && !call_param_p
4647 && TREE_STRING_LENGTH (exp) > 0
4648 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4649 {
4650 /* Optimize initialization of an array with a STRING_CST. */
4651 HOST_WIDE_INT exp_len, str_copy_len;
4652 rtx dest_mem;
4653
4654 exp_len = int_expr_size (exp);
4655 if (exp_len <= 0)
4656 goto normal_expr;
4657
4658 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4659 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4660 goto normal_expr;
4661
4662 str_copy_len = TREE_STRING_LENGTH (exp);
4663 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4664 {
4665 str_copy_len += STORE_MAX_PIECES - 1;
4666 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4667 }
4668 str_copy_len = MIN (str_copy_len, exp_len);
4669 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4670 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4671 MEM_ALIGN (target), false))
4672 goto normal_expr;
4673
4674 dest_mem = target;
4675
4676 dest_mem = store_by_pieces (dest_mem,
4677 str_copy_len, builtin_strncpy_read_str,
4678 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4679 MEM_ALIGN (target), false,
4680 exp_len > str_copy_len ? 1 : 0);
4681 if (exp_len > str_copy_len)
4682 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4683 GEN_INT (exp_len - str_copy_len),
4684 BLOCK_OP_NORMAL);
4685 return NULL_RTX;
4686 }
4687 else
4688 {
4689 rtx tmp_target;
4690
4691 normal_expr:
4692 /* If we want to use a nontemporal store, force the value to
4693 register first. */
4694 tmp_target = nontemporal ? NULL_RTX : target;
4695 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4696 (call_param_p
4697 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4698 &alt_rtl);
4699 }
4700
4701 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4702 the same as that of TARGET, adjust the constant. This is needed, for
4703 example, in case it is a CONST_DOUBLE and we want only a word-sized
4704 value. */
4705 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4706 && TREE_CODE (exp) != ERROR_MARK
4707 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4708 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4709 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4710
4711 /* If value was not generated in the target, store it there.
4712 Convert the value to TARGET's type first if necessary and emit the
4713 pending incrementations that have been queued when expanding EXP.
4714 Note that we cannot emit the whole queue blindly because this will
4715 effectively disable the POST_INC optimization later.
4716
4717 If TEMP and TARGET compare equal according to rtx_equal_p, but
4718 one or both of them are volatile memory refs, we have to distinguish
4719 two cases:
4720 - expand_expr has used TARGET. In this case, we must not generate
4721 another copy. This can be detected by TARGET being equal according
4722 to == .
4723 - expand_expr has not used TARGET - that means that the source just
4724 happens to have the same RTX form. Since temp will have been created
4725 by expand_expr, it will compare unequal according to == .
4726 We must generate a copy in this case, to reach the correct number
4727 of volatile memory references. */
4728
4729 if ((! rtx_equal_p (temp, target)
4730 || (temp != target && (side_effects_p (temp)
4731 || side_effects_p (target))))
4732 && TREE_CODE (exp) != ERROR_MARK
4733 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4734 but TARGET is not valid memory reference, TEMP will differ
4735 from TARGET although it is really the same location. */
4736 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4737 /* If there's nothing to copy, don't bother. Don't call
4738 expr_size unless necessary, because some front-ends (C++)
4739 expr_size-hook must not be given objects that are not
4740 supposed to be bit-copied or bit-initialized. */
4741 && expr_size (exp) != const0_rtx)
4742 {
4743 if (GET_MODE (temp) != GET_MODE (target)
4744 && GET_MODE (temp) != VOIDmode)
4745 {
4746 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4747 if (GET_MODE (target) == BLKmode
4748 || GET_MODE (temp) == BLKmode)
4749 emit_block_move (target, temp, expr_size (exp),
4750 (call_param_p
4751 ? BLOCK_OP_CALL_PARM
4752 : BLOCK_OP_NORMAL));
4753 else
4754 convert_move (target, temp, unsignedp);
4755 }
4756
4757 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4758 {
4759 /* Handle copying a string constant into an array. The string
4760 constant may be shorter than the array. So copy just the string's
4761 actual length, and clear the rest. First get the size of the data
4762 type of the string, which is actually the size of the target. */
4763 rtx size = expr_size (exp);
4764
4765 if (CONST_INT_P (size)
4766 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4767 emit_block_move (target, temp, size,
4768 (call_param_p
4769 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4770 else
4771 {
4772 enum machine_mode pointer_mode
4773 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4774 enum machine_mode address_mode
4775 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4776
4777 /* Compute the size of the data to copy from the string. */
4778 tree copy_size
4779 = size_binop_loc (loc, MIN_EXPR,
4780 make_tree (sizetype, size),
4781 size_int (TREE_STRING_LENGTH (exp)));
4782 rtx copy_size_rtx
4783 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4784 (call_param_p
4785 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4786 rtx label = 0;
4787
4788 /* Copy that much. */
4789 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4790 TYPE_UNSIGNED (sizetype));
4791 emit_block_move (target, temp, copy_size_rtx,
4792 (call_param_p
4793 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4794
4795 /* Figure out how much is left in TARGET that we have to clear.
4796 Do all calculations in pointer_mode. */
4797 if (CONST_INT_P (copy_size_rtx))
4798 {
4799 size = plus_constant (size, -INTVAL (copy_size_rtx));
4800 target = adjust_address (target, BLKmode,
4801 INTVAL (copy_size_rtx));
4802 }
4803 else
4804 {
4805 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4806 copy_size_rtx, NULL_RTX, 0,
4807 OPTAB_LIB_WIDEN);
4808
4809 if (GET_MODE (copy_size_rtx) != address_mode)
4810 copy_size_rtx = convert_to_mode (address_mode,
4811 copy_size_rtx,
4812 TYPE_UNSIGNED (sizetype));
4813
4814 target = offset_address (target, copy_size_rtx,
4815 highest_pow2_factor (copy_size));
4816 label = gen_label_rtx ();
4817 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4818 GET_MODE (size), 0, label);
4819 }
4820
4821 if (size != const0_rtx)
4822 clear_storage (target, size, BLOCK_OP_NORMAL);
4823
4824 if (label)
4825 emit_label (label);
4826 }
4827 }
4828 /* Handle calls that return values in multiple non-contiguous locations.
4829 The Irix 6 ABI has examples of this. */
4830 else if (GET_CODE (target) == PARALLEL)
4831 emit_group_load (target, temp, TREE_TYPE (exp),
4832 int_size_in_bytes (TREE_TYPE (exp)));
4833 else if (GET_MODE (temp) == BLKmode)
4834 emit_block_move (target, temp, expr_size (exp),
4835 (call_param_p
4836 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4837 else if (nontemporal
4838 && emit_storent_insn (target, temp))
4839 /* If we managed to emit a nontemporal store, there is nothing else to
4840 do. */
4841 ;
4842 else
4843 {
4844 temp = force_operand (temp, target);
4845 if (temp != target)
4846 emit_move_insn (target, temp);
4847 }
4848 }
4849
4850 return NULL_RTX;
4851 }
4852 \f
4853 /* Helper for categorize_ctor_elements. Identical interface. */
4854
4855 static bool
4856 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4857 HOST_WIDE_INT *p_elt_count,
4858 bool *p_must_clear)
4859 {
4860 unsigned HOST_WIDE_INT idx;
4861 HOST_WIDE_INT nz_elts, elt_count;
4862 tree value, purpose;
4863
4864 /* Whether CTOR is a valid constant initializer, in accordance with what
4865 initializer_constant_valid_p does. If inferred from the constructor
4866 elements, true until proven otherwise. */
4867 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4868 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4869
4870 nz_elts = 0;
4871 elt_count = 0;
4872
4873 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4874 {
4875 HOST_WIDE_INT mult = 1;
4876
4877 if (TREE_CODE (purpose) == RANGE_EXPR)
4878 {
4879 tree lo_index = TREE_OPERAND (purpose, 0);
4880 tree hi_index = TREE_OPERAND (purpose, 1);
4881
4882 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4883 mult = (tree_low_cst (hi_index, 1)
4884 - tree_low_cst (lo_index, 1) + 1);
4885 }
4886
4887 switch (TREE_CODE (value))
4888 {
4889 case CONSTRUCTOR:
4890 {
4891 HOST_WIDE_INT nz = 0, ic = 0;
4892
4893 bool const_elt_p
4894 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4895
4896 nz_elts += mult * nz;
4897 elt_count += mult * ic;
4898
4899 if (const_from_elts_p && const_p)
4900 const_p = const_elt_p;
4901 }
4902 break;
4903
4904 case INTEGER_CST:
4905 case REAL_CST:
4906 case FIXED_CST:
4907 if (!initializer_zerop (value))
4908 nz_elts += mult;
4909 elt_count += mult;
4910 break;
4911
4912 case STRING_CST:
4913 nz_elts += mult * TREE_STRING_LENGTH (value);
4914 elt_count += mult * TREE_STRING_LENGTH (value);
4915 break;
4916
4917 case COMPLEX_CST:
4918 if (!initializer_zerop (TREE_REALPART (value)))
4919 nz_elts += mult;
4920 if (!initializer_zerop (TREE_IMAGPART (value)))
4921 nz_elts += mult;
4922 elt_count += mult;
4923 break;
4924
4925 case VECTOR_CST:
4926 {
4927 tree v;
4928 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4929 {
4930 if (!initializer_zerop (TREE_VALUE (v)))
4931 nz_elts += mult;
4932 elt_count += mult;
4933 }
4934 }
4935 break;
4936
4937 default:
4938 {
4939 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4940 if (tc < 1)
4941 tc = 1;
4942 nz_elts += mult * tc;
4943 elt_count += mult * tc;
4944
4945 if (const_from_elts_p && const_p)
4946 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4947 != NULL_TREE;
4948 }
4949 break;
4950 }
4951 }
4952
4953 if (!*p_must_clear
4954 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4955 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4956 {
4957 tree init_sub_type;
4958 bool clear_this = true;
4959
4960 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4961 {
4962 /* We don't expect more than one element of the union to be
4963 initialized. Not sure what we should do otherwise... */
4964 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4965 == 1);
4966
4967 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4968 CONSTRUCTOR_ELTS (ctor),
4969 0)->value);
4970
4971 /* ??? We could look at each element of the union, and find the
4972 largest element. Which would avoid comparing the size of the
4973 initialized element against any tail padding in the union.
4974 Doesn't seem worth the effort... */
4975 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4976 TYPE_SIZE (init_sub_type)) == 1)
4977 {
4978 /* And now we have to find out if the element itself is fully
4979 constructed. E.g. for union { struct { int a, b; } s; } u
4980 = { .s = { .a = 1 } }. */
4981 if (elt_count == count_type_elements (init_sub_type, false))
4982 clear_this = false;
4983 }
4984 }
4985
4986 *p_must_clear = clear_this;
4987 }
4988
4989 *p_nz_elts += nz_elts;
4990 *p_elt_count += elt_count;
4991
4992 return const_p;
4993 }
4994
4995 /* Examine CTOR to discover:
4996 * how many scalar fields are set to nonzero values,
4997 and place it in *P_NZ_ELTS;
4998 * how many scalar fields in total are in CTOR,
4999 and place it in *P_ELT_COUNT.
5000 * if a type is a union, and the initializer from the constructor
5001 is not the largest element in the union, then set *p_must_clear.
5002
5003 Return whether or not CTOR is a valid static constant initializer, the same
5004 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5005
5006 bool
5007 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5008 HOST_WIDE_INT *p_elt_count,
5009 bool *p_must_clear)
5010 {
5011 *p_nz_elts = 0;
5012 *p_elt_count = 0;
5013 *p_must_clear = false;
5014
5015 return
5016 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5017 }
5018
5019 /* Count the number of scalars in TYPE. Return -1 on overflow or
5020 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5021 array member at the end of the structure. */
5022
5023 HOST_WIDE_INT
5024 count_type_elements (const_tree type, bool allow_flexarr)
5025 {
5026 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5027 switch (TREE_CODE (type))
5028 {
5029 case ARRAY_TYPE:
5030 {
5031 tree telts = array_type_nelts (type);
5032 if (telts && host_integerp (telts, 1))
5033 {
5034 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5035 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5036 if (n == 0)
5037 return 0;
5038 else if (max / n > m)
5039 return n * m;
5040 }
5041 return -1;
5042 }
5043
5044 case RECORD_TYPE:
5045 {
5046 HOST_WIDE_INT n = 0, t;
5047 tree f;
5048
5049 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5050 if (TREE_CODE (f) == FIELD_DECL)
5051 {
5052 t = count_type_elements (TREE_TYPE (f), false);
5053 if (t < 0)
5054 {
5055 /* Check for structures with flexible array member. */
5056 tree tf = TREE_TYPE (f);
5057 if (allow_flexarr
5058 && TREE_CHAIN (f) == NULL
5059 && TREE_CODE (tf) == ARRAY_TYPE
5060 && TYPE_DOMAIN (tf)
5061 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5062 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5063 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5064 && int_size_in_bytes (type) >= 0)
5065 break;
5066
5067 return -1;
5068 }
5069 n += t;
5070 }
5071
5072 return n;
5073 }
5074
5075 case UNION_TYPE:
5076 case QUAL_UNION_TYPE:
5077 return -1;
5078
5079 case COMPLEX_TYPE:
5080 return 2;
5081
5082 case VECTOR_TYPE:
5083 return TYPE_VECTOR_SUBPARTS (type);
5084
5085 case INTEGER_TYPE:
5086 case REAL_TYPE:
5087 case FIXED_POINT_TYPE:
5088 case ENUMERAL_TYPE:
5089 case BOOLEAN_TYPE:
5090 case POINTER_TYPE:
5091 case OFFSET_TYPE:
5092 case REFERENCE_TYPE:
5093 return 1;
5094
5095 case ERROR_MARK:
5096 return 0;
5097
5098 case VOID_TYPE:
5099 case METHOD_TYPE:
5100 case FUNCTION_TYPE:
5101 case LANG_TYPE:
5102 default:
5103 gcc_unreachable ();
5104 }
5105 }
5106
5107 /* Return 1 if EXP contains mostly (3/4) zeros. */
5108
5109 static int
5110 mostly_zeros_p (const_tree exp)
5111 {
5112 if (TREE_CODE (exp) == CONSTRUCTOR)
5113
5114 {
5115 HOST_WIDE_INT nz_elts, count, elts;
5116 bool must_clear;
5117
5118 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5119 if (must_clear)
5120 return 1;
5121
5122 elts = count_type_elements (TREE_TYPE (exp), false);
5123
5124 return nz_elts < elts / 4;
5125 }
5126
5127 return initializer_zerop (exp);
5128 }
5129
5130 /* Return 1 if EXP contains all zeros. */
5131
5132 static int
5133 all_zeros_p (const_tree exp)
5134 {
5135 if (TREE_CODE (exp) == CONSTRUCTOR)
5136
5137 {
5138 HOST_WIDE_INT nz_elts, count;
5139 bool must_clear;
5140
5141 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5142 return nz_elts == 0;
5143 }
5144
5145 return initializer_zerop (exp);
5146 }
5147 \f
5148 /* Helper function for store_constructor.
5149 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5150 TYPE is the type of the CONSTRUCTOR, not the element type.
5151 CLEARED is as for store_constructor.
5152 ALIAS_SET is the alias set to use for any stores.
5153
5154 This provides a recursive shortcut back to store_constructor when it isn't
5155 necessary to go through store_field. This is so that we can pass through
5156 the cleared field to let store_constructor know that we may not have to
5157 clear a substructure if the outer structure has already been cleared. */
5158
5159 static void
5160 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5161 HOST_WIDE_INT bitpos, enum machine_mode mode,
5162 tree exp, tree type, int cleared,
5163 alias_set_type alias_set)
5164 {
5165 if (TREE_CODE (exp) == CONSTRUCTOR
5166 /* We can only call store_constructor recursively if the size and
5167 bit position are on a byte boundary. */
5168 && bitpos % BITS_PER_UNIT == 0
5169 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5170 /* If we have a nonzero bitpos for a register target, then we just
5171 let store_field do the bitfield handling. This is unlikely to
5172 generate unnecessary clear instructions anyways. */
5173 && (bitpos == 0 || MEM_P (target)))
5174 {
5175 if (MEM_P (target))
5176 target
5177 = adjust_address (target,
5178 GET_MODE (target) == BLKmode
5179 || 0 != (bitpos
5180 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5181 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5182
5183
5184 /* Update the alias set, if required. */
5185 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5186 && MEM_ALIAS_SET (target) != 0)
5187 {
5188 target = copy_rtx (target);
5189 set_mem_alias_set (target, alias_set);
5190 }
5191
5192 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5193 }
5194 else
5195 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5196 }
5197
5198 /* Store the value of constructor EXP into the rtx TARGET.
5199 TARGET is either a REG or a MEM; we know it cannot conflict, since
5200 safe_from_p has been called.
5201 CLEARED is true if TARGET is known to have been zero'd.
5202 SIZE is the number of bytes of TARGET we are allowed to modify: this
5203 may not be the same as the size of EXP if we are assigning to a field
5204 which has been packed to exclude padding bits. */
5205
5206 static void
5207 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5208 {
5209 tree type = TREE_TYPE (exp);
5210 #ifdef WORD_REGISTER_OPERATIONS
5211 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5212 #endif
5213
5214 switch (TREE_CODE (type))
5215 {
5216 case RECORD_TYPE:
5217 case UNION_TYPE:
5218 case QUAL_UNION_TYPE:
5219 {
5220 unsigned HOST_WIDE_INT idx;
5221 tree field, value;
5222
5223 /* If size is zero or the target is already cleared, do nothing. */
5224 if (size == 0 || cleared)
5225 cleared = 1;
5226 /* We either clear the aggregate or indicate the value is dead. */
5227 else if ((TREE_CODE (type) == UNION_TYPE
5228 || TREE_CODE (type) == QUAL_UNION_TYPE)
5229 && ! CONSTRUCTOR_ELTS (exp))
5230 /* If the constructor is empty, clear the union. */
5231 {
5232 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5233 cleared = 1;
5234 }
5235
5236 /* If we are building a static constructor into a register,
5237 set the initial value as zero so we can fold the value into
5238 a constant. But if more than one register is involved,
5239 this probably loses. */
5240 else if (REG_P (target) && TREE_STATIC (exp)
5241 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5242 {
5243 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5244 cleared = 1;
5245 }
5246
5247 /* If the constructor has fewer fields than the structure or
5248 if we are initializing the structure to mostly zeros, clear
5249 the whole structure first. Don't do this if TARGET is a
5250 register whose mode size isn't equal to SIZE since
5251 clear_storage can't handle this case. */
5252 else if (size > 0
5253 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5254 != fields_length (type))
5255 || mostly_zeros_p (exp))
5256 && (!REG_P (target)
5257 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5258 == size)))
5259 {
5260 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5261 cleared = 1;
5262 }
5263
5264 if (REG_P (target) && !cleared)
5265 emit_clobber (target);
5266
5267 /* Store each element of the constructor into the
5268 corresponding field of TARGET. */
5269 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5270 {
5271 enum machine_mode mode;
5272 HOST_WIDE_INT bitsize;
5273 HOST_WIDE_INT bitpos = 0;
5274 tree offset;
5275 rtx to_rtx = target;
5276
5277 /* Just ignore missing fields. We cleared the whole
5278 structure, above, if any fields are missing. */
5279 if (field == 0)
5280 continue;
5281
5282 if (cleared && initializer_zerop (value))
5283 continue;
5284
5285 if (host_integerp (DECL_SIZE (field), 1))
5286 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5287 else
5288 bitsize = -1;
5289
5290 mode = DECL_MODE (field);
5291 if (DECL_BIT_FIELD (field))
5292 mode = VOIDmode;
5293
5294 offset = DECL_FIELD_OFFSET (field);
5295 if (host_integerp (offset, 0)
5296 && host_integerp (bit_position (field), 0))
5297 {
5298 bitpos = int_bit_position (field);
5299 offset = 0;
5300 }
5301 else
5302 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5303
5304 if (offset)
5305 {
5306 enum machine_mode address_mode;
5307 rtx offset_rtx;
5308
5309 offset
5310 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5311 make_tree (TREE_TYPE (exp),
5312 target));
5313
5314 offset_rtx = expand_normal (offset);
5315 gcc_assert (MEM_P (to_rtx));
5316
5317 address_mode
5318 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5319 if (GET_MODE (offset_rtx) != address_mode)
5320 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5321
5322 to_rtx = offset_address (to_rtx, offset_rtx,
5323 highest_pow2_factor (offset));
5324 }
5325
5326 #ifdef WORD_REGISTER_OPERATIONS
5327 /* If this initializes a field that is smaller than a
5328 word, at the start of a word, try to widen it to a full
5329 word. This special case allows us to output C++ member
5330 function initializations in a form that the optimizers
5331 can understand. */
5332 if (REG_P (target)
5333 && bitsize < BITS_PER_WORD
5334 && bitpos % BITS_PER_WORD == 0
5335 && GET_MODE_CLASS (mode) == MODE_INT
5336 && TREE_CODE (value) == INTEGER_CST
5337 && exp_size >= 0
5338 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5339 {
5340 tree type = TREE_TYPE (value);
5341
5342 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5343 {
5344 type = lang_hooks.types.type_for_size
5345 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5346 value = fold_convert (type, value);
5347 }
5348
5349 if (BYTES_BIG_ENDIAN)
5350 value
5351 = fold_build2 (LSHIFT_EXPR, type, value,
5352 build_int_cst (type,
5353 BITS_PER_WORD - bitsize));
5354 bitsize = BITS_PER_WORD;
5355 mode = word_mode;
5356 }
5357 #endif
5358
5359 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5360 && DECL_NONADDRESSABLE_P (field))
5361 {
5362 to_rtx = copy_rtx (to_rtx);
5363 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5364 }
5365
5366 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5367 value, type, cleared,
5368 get_alias_set (TREE_TYPE (field)));
5369 }
5370 break;
5371 }
5372 case ARRAY_TYPE:
5373 {
5374 tree value, index;
5375 unsigned HOST_WIDE_INT i;
5376 int need_to_clear;
5377 tree domain;
5378 tree elttype = TREE_TYPE (type);
5379 int const_bounds_p;
5380 HOST_WIDE_INT minelt = 0;
5381 HOST_WIDE_INT maxelt = 0;
5382
5383 domain = TYPE_DOMAIN (type);
5384 const_bounds_p = (TYPE_MIN_VALUE (domain)
5385 && TYPE_MAX_VALUE (domain)
5386 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5387 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5388
5389 /* If we have constant bounds for the range of the type, get them. */
5390 if (const_bounds_p)
5391 {
5392 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5393 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5394 }
5395
5396 /* If the constructor has fewer elements than the array, clear
5397 the whole array first. Similarly if this is static
5398 constructor of a non-BLKmode object. */
5399 if (cleared)
5400 need_to_clear = 0;
5401 else if (REG_P (target) && TREE_STATIC (exp))
5402 need_to_clear = 1;
5403 else
5404 {
5405 unsigned HOST_WIDE_INT idx;
5406 tree index, value;
5407 HOST_WIDE_INT count = 0, zero_count = 0;
5408 need_to_clear = ! const_bounds_p;
5409
5410 /* This loop is a more accurate version of the loop in
5411 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5412 is also needed to check for missing elements. */
5413 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5414 {
5415 HOST_WIDE_INT this_node_count;
5416
5417 if (need_to_clear)
5418 break;
5419
5420 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5421 {
5422 tree lo_index = TREE_OPERAND (index, 0);
5423 tree hi_index = TREE_OPERAND (index, 1);
5424
5425 if (! host_integerp (lo_index, 1)
5426 || ! host_integerp (hi_index, 1))
5427 {
5428 need_to_clear = 1;
5429 break;
5430 }
5431
5432 this_node_count = (tree_low_cst (hi_index, 1)
5433 - tree_low_cst (lo_index, 1) + 1);
5434 }
5435 else
5436 this_node_count = 1;
5437
5438 count += this_node_count;
5439 if (mostly_zeros_p (value))
5440 zero_count += this_node_count;
5441 }
5442
5443 /* Clear the entire array first if there are any missing
5444 elements, or if the incidence of zero elements is >=
5445 75%. */
5446 if (! need_to_clear
5447 && (count < maxelt - minelt + 1
5448 || 4 * zero_count >= 3 * count))
5449 need_to_clear = 1;
5450 }
5451
5452 if (need_to_clear && size > 0)
5453 {
5454 if (REG_P (target))
5455 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5456 else
5457 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5458 cleared = 1;
5459 }
5460
5461 if (!cleared && REG_P (target))
5462 /* Inform later passes that the old value is dead. */
5463 emit_clobber (target);
5464
5465 /* Store each element of the constructor into the
5466 corresponding element of TARGET, determined by counting the
5467 elements. */
5468 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5469 {
5470 enum machine_mode mode;
5471 HOST_WIDE_INT bitsize;
5472 HOST_WIDE_INT bitpos;
5473 rtx xtarget = target;
5474
5475 if (cleared && initializer_zerop (value))
5476 continue;
5477
5478 mode = TYPE_MODE (elttype);
5479 if (mode == BLKmode)
5480 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5481 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5482 : -1);
5483 else
5484 bitsize = GET_MODE_BITSIZE (mode);
5485
5486 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5487 {
5488 tree lo_index = TREE_OPERAND (index, 0);
5489 tree hi_index = TREE_OPERAND (index, 1);
5490 rtx index_r, pos_rtx;
5491 HOST_WIDE_INT lo, hi, count;
5492 tree position;
5493
5494 /* If the range is constant and "small", unroll the loop. */
5495 if (const_bounds_p
5496 && host_integerp (lo_index, 0)
5497 && host_integerp (hi_index, 0)
5498 && (lo = tree_low_cst (lo_index, 0),
5499 hi = tree_low_cst (hi_index, 0),
5500 count = hi - lo + 1,
5501 (!MEM_P (target)
5502 || count <= 2
5503 || (host_integerp (TYPE_SIZE (elttype), 1)
5504 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5505 <= 40 * 8)))))
5506 {
5507 lo -= minelt; hi -= minelt;
5508 for (; lo <= hi; lo++)
5509 {
5510 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5511
5512 if (MEM_P (target)
5513 && !MEM_KEEP_ALIAS_SET_P (target)
5514 && TREE_CODE (type) == ARRAY_TYPE
5515 && TYPE_NONALIASED_COMPONENT (type))
5516 {
5517 target = copy_rtx (target);
5518 MEM_KEEP_ALIAS_SET_P (target) = 1;
5519 }
5520
5521 store_constructor_field
5522 (target, bitsize, bitpos, mode, value, type, cleared,
5523 get_alias_set (elttype));
5524 }
5525 }
5526 else
5527 {
5528 rtx loop_start = gen_label_rtx ();
5529 rtx loop_end = gen_label_rtx ();
5530 tree exit_cond;
5531
5532 expand_normal (hi_index);
5533
5534 index = build_decl (EXPR_LOCATION (exp),
5535 VAR_DECL, NULL_TREE, domain);
5536 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5537 SET_DECL_RTL (index, index_r);
5538 store_expr (lo_index, index_r, 0, false);
5539
5540 /* Build the head of the loop. */
5541 do_pending_stack_adjust ();
5542 emit_label (loop_start);
5543
5544 /* Assign value to element index. */
5545 position =
5546 fold_convert (ssizetype,
5547 fold_build2 (MINUS_EXPR,
5548 TREE_TYPE (index),
5549 index,
5550 TYPE_MIN_VALUE (domain)));
5551
5552 position =
5553 size_binop (MULT_EXPR, position,
5554 fold_convert (ssizetype,
5555 TYPE_SIZE_UNIT (elttype)));
5556
5557 pos_rtx = expand_normal (position);
5558 xtarget = offset_address (target, pos_rtx,
5559 highest_pow2_factor (position));
5560 xtarget = adjust_address (xtarget, mode, 0);
5561 if (TREE_CODE (value) == CONSTRUCTOR)
5562 store_constructor (value, xtarget, cleared,
5563 bitsize / BITS_PER_UNIT);
5564 else
5565 store_expr (value, xtarget, 0, false);
5566
5567 /* Generate a conditional jump to exit the loop. */
5568 exit_cond = build2 (LT_EXPR, integer_type_node,
5569 index, hi_index);
5570 jumpif (exit_cond, loop_end, -1);
5571
5572 /* Update the loop counter, and jump to the head of
5573 the loop. */
5574 expand_assignment (index,
5575 build2 (PLUS_EXPR, TREE_TYPE (index),
5576 index, integer_one_node),
5577 false);
5578
5579 emit_jump (loop_start);
5580
5581 /* Build the end of the loop. */
5582 emit_label (loop_end);
5583 }
5584 }
5585 else if ((index != 0 && ! host_integerp (index, 0))
5586 || ! host_integerp (TYPE_SIZE (elttype), 1))
5587 {
5588 tree position;
5589
5590 if (index == 0)
5591 index = ssize_int (1);
5592
5593 if (minelt)
5594 index = fold_convert (ssizetype,
5595 fold_build2 (MINUS_EXPR,
5596 TREE_TYPE (index),
5597 index,
5598 TYPE_MIN_VALUE (domain)));
5599
5600 position =
5601 size_binop (MULT_EXPR, index,
5602 fold_convert (ssizetype,
5603 TYPE_SIZE_UNIT (elttype)));
5604 xtarget = offset_address (target,
5605 expand_normal (position),
5606 highest_pow2_factor (position));
5607 xtarget = adjust_address (xtarget, mode, 0);
5608 store_expr (value, xtarget, 0, false);
5609 }
5610 else
5611 {
5612 if (index != 0)
5613 bitpos = ((tree_low_cst (index, 0) - minelt)
5614 * tree_low_cst (TYPE_SIZE (elttype), 1));
5615 else
5616 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5617
5618 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5619 && TREE_CODE (type) == ARRAY_TYPE
5620 && TYPE_NONALIASED_COMPONENT (type))
5621 {
5622 target = copy_rtx (target);
5623 MEM_KEEP_ALIAS_SET_P (target) = 1;
5624 }
5625 store_constructor_field (target, bitsize, bitpos, mode, value,
5626 type, cleared, get_alias_set (elttype));
5627 }
5628 }
5629 break;
5630 }
5631
5632 case VECTOR_TYPE:
5633 {
5634 unsigned HOST_WIDE_INT idx;
5635 constructor_elt *ce;
5636 int i;
5637 int need_to_clear;
5638 int icode = 0;
5639 tree elttype = TREE_TYPE (type);
5640 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5641 enum machine_mode eltmode = TYPE_MODE (elttype);
5642 HOST_WIDE_INT bitsize;
5643 HOST_WIDE_INT bitpos;
5644 rtvec vector = NULL;
5645 unsigned n_elts;
5646 alias_set_type alias;
5647
5648 gcc_assert (eltmode != BLKmode);
5649
5650 n_elts = TYPE_VECTOR_SUBPARTS (type);
5651 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5652 {
5653 enum machine_mode mode = GET_MODE (target);
5654
5655 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5656 if (icode != CODE_FOR_nothing)
5657 {
5658 unsigned int i;
5659
5660 vector = rtvec_alloc (n_elts);
5661 for (i = 0; i < n_elts; i++)
5662 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5663 }
5664 }
5665
5666 /* If the constructor has fewer elements than the vector,
5667 clear the whole array first. Similarly if this is static
5668 constructor of a non-BLKmode object. */
5669 if (cleared)
5670 need_to_clear = 0;
5671 else if (REG_P (target) && TREE_STATIC (exp))
5672 need_to_clear = 1;
5673 else
5674 {
5675 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5676 tree value;
5677
5678 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5679 {
5680 int n_elts_here = tree_low_cst
5681 (int_const_binop (TRUNC_DIV_EXPR,
5682 TYPE_SIZE (TREE_TYPE (value)),
5683 TYPE_SIZE (elttype), 0), 1);
5684
5685 count += n_elts_here;
5686 if (mostly_zeros_p (value))
5687 zero_count += n_elts_here;
5688 }
5689
5690 /* Clear the entire vector first if there are any missing elements,
5691 or if the incidence of zero elements is >= 75%. */
5692 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5693 }
5694
5695 if (need_to_clear && size > 0 && !vector)
5696 {
5697 if (REG_P (target))
5698 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5699 else
5700 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5701 cleared = 1;
5702 }
5703
5704 /* Inform later passes that the old value is dead. */
5705 if (!cleared && !vector && REG_P (target))
5706 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5707
5708 if (MEM_P (target))
5709 alias = MEM_ALIAS_SET (target);
5710 else
5711 alias = get_alias_set (elttype);
5712
5713 /* Store each element of the constructor into the corresponding
5714 element of TARGET, determined by counting the elements. */
5715 for (idx = 0, i = 0;
5716 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5717 idx++, i += bitsize / elt_size)
5718 {
5719 HOST_WIDE_INT eltpos;
5720 tree value = ce->value;
5721
5722 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5723 if (cleared && initializer_zerop (value))
5724 continue;
5725
5726 if (ce->index)
5727 eltpos = tree_low_cst (ce->index, 1);
5728 else
5729 eltpos = i;
5730
5731 if (vector)
5732 {
5733 /* Vector CONSTRUCTORs should only be built from smaller
5734 vectors in the case of BLKmode vectors. */
5735 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5736 RTVEC_ELT (vector, eltpos)
5737 = expand_normal (value);
5738 }
5739 else
5740 {
5741 enum machine_mode value_mode =
5742 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5743 ? TYPE_MODE (TREE_TYPE (value))
5744 : eltmode;
5745 bitpos = eltpos * elt_size;
5746 store_constructor_field (target, bitsize, bitpos,
5747 value_mode, value, type,
5748 cleared, alias);
5749 }
5750 }
5751
5752 if (vector)
5753 emit_insn (GEN_FCN (icode)
5754 (target,
5755 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5756 break;
5757 }
5758
5759 default:
5760 gcc_unreachable ();
5761 }
5762 }
5763
5764 /* Store the value of EXP (an expression tree)
5765 into a subfield of TARGET which has mode MODE and occupies
5766 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5767 If MODE is VOIDmode, it means that we are storing into a bit-field.
5768
5769 Always return const0_rtx unless we have something particular to
5770 return.
5771
5772 TYPE is the type of the underlying object,
5773
5774 ALIAS_SET is the alias set for the destination. This value will
5775 (in general) be different from that for TARGET, since TARGET is a
5776 reference to the containing structure.
5777
5778 If NONTEMPORAL is true, try generating a nontemporal store. */
5779
5780 static rtx
5781 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5782 enum machine_mode mode, tree exp, tree type,
5783 alias_set_type alias_set, bool nontemporal)
5784 {
5785 if (TREE_CODE (exp) == ERROR_MARK)
5786 return const0_rtx;
5787
5788 /* If we have nothing to store, do nothing unless the expression has
5789 side-effects. */
5790 if (bitsize == 0)
5791 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5792
5793 /* If we are storing into an unaligned field of an aligned union that is
5794 in a register, we may have the mode of TARGET being an integer mode but
5795 MODE == BLKmode. In that case, get an aligned object whose size and
5796 alignment are the same as TARGET and store TARGET into it (we can avoid
5797 the store if the field being stored is the entire width of TARGET). Then
5798 call ourselves recursively to store the field into a BLKmode version of
5799 that object. Finally, load from the object into TARGET. This is not
5800 very efficient in general, but should only be slightly more expensive
5801 than the otherwise-required unaligned accesses. Perhaps this can be
5802 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5803 twice, once with emit_move_insn and once via store_field. */
5804
5805 if (mode == BLKmode
5806 && (REG_P (target) || GET_CODE (target) == SUBREG))
5807 {
5808 rtx object = assign_temp (type, 0, 1, 1);
5809 rtx blk_object = adjust_address (object, BLKmode, 0);
5810
5811 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5812 emit_move_insn (object, target);
5813
5814 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5815 nontemporal);
5816
5817 emit_move_insn (target, object);
5818
5819 /* We want to return the BLKmode version of the data. */
5820 return blk_object;
5821 }
5822
5823 if (GET_CODE (target) == CONCAT)
5824 {
5825 /* We're storing into a struct containing a single __complex. */
5826
5827 gcc_assert (!bitpos);
5828 return store_expr (exp, target, 0, nontemporal);
5829 }
5830
5831 /* If the structure is in a register or if the component
5832 is a bit field, we cannot use addressing to access it.
5833 Use bit-field techniques or SUBREG to store in it. */
5834
5835 if (mode == VOIDmode
5836 || (mode != BLKmode && ! direct_store[(int) mode]
5837 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5838 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5839 || REG_P (target)
5840 || GET_CODE (target) == SUBREG
5841 /* If the field isn't aligned enough to store as an ordinary memref,
5842 store it as a bit field. */
5843 || (mode != BLKmode
5844 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5845 || bitpos % GET_MODE_ALIGNMENT (mode))
5846 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5847 || (bitpos % BITS_PER_UNIT != 0)))
5848 /* If the RHS and field are a constant size and the size of the
5849 RHS isn't the same size as the bitfield, we must use bitfield
5850 operations. */
5851 || (bitsize >= 0
5852 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5853 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5854 {
5855 rtx temp;
5856 gimple nop_def;
5857
5858 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5859 implies a mask operation. If the precision is the same size as
5860 the field we're storing into, that mask is redundant. This is
5861 particularly common with bit field assignments generated by the
5862 C front end. */
5863 nop_def = get_def_for_expr (exp, NOP_EXPR);
5864 if (nop_def)
5865 {
5866 tree type = TREE_TYPE (exp);
5867 if (INTEGRAL_TYPE_P (type)
5868 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5869 && bitsize == TYPE_PRECISION (type))
5870 {
5871 tree op = gimple_assign_rhs1 (nop_def);
5872 type = TREE_TYPE (op);
5873 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5874 exp = op;
5875 }
5876 }
5877
5878 temp = expand_normal (exp);
5879
5880 /* If BITSIZE is narrower than the size of the type of EXP
5881 we will be narrowing TEMP. Normally, what's wanted are the
5882 low-order bits. However, if EXP's type is a record and this is
5883 big-endian machine, we want the upper BITSIZE bits. */
5884 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5885 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5886 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5887 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5888 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5889 - bitsize),
5890 NULL_RTX, 1);
5891
5892 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5893 MODE. */
5894 if (mode != VOIDmode && mode != BLKmode
5895 && mode != TYPE_MODE (TREE_TYPE (exp)))
5896 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5897
5898 /* If the modes of TEMP and TARGET are both BLKmode, both
5899 must be in memory and BITPOS must be aligned on a byte
5900 boundary. If so, we simply do a block copy. Likewise
5901 for a BLKmode-like TARGET. */
5902 if (GET_MODE (temp) == BLKmode
5903 && (GET_MODE (target) == BLKmode
5904 || (MEM_P (target)
5905 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5906 && (bitpos % BITS_PER_UNIT) == 0
5907 && (bitsize % BITS_PER_UNIT) == 0)))
5908 {
5909 gcc_assert (MEM_P (target) && MEM_P (temp)
5910 && (bitpos % BITS_PER_UNIT) == 0);
5911
5912 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5913 emit_block_move (target, temp,
5914 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5915 / BITS_PER_UNIT),
5916 BLOCK_OP_NORMAL);
5917
5918 return const0_rtx;
5919 }
5920
5921 /* Store the value in the bitfield. */
5922 store_bit_field (target, bitsize, bitpos, mode, temp);
5923
5924 return const0_rtx;
5925 }
5926 else
5927 {
5928 /* Now build a reference to just the desired component. */
5929 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5930
5931 if (to_rtx == target)
5932 to_rtx = copy_rtx (to_rtx);
5933
5934 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5935 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5936 set_mem_alias_set (to_rtx, alias_set);
5937
5938 return store_expr (exp, to_rtx, 0, nontemporal);
5939 }
5940 }
5941 \f
5942 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5943 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5944 codes and find the ultimate containing object, which we return.
5945
5946 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5947 bit position, and *PUNSIGNEDP to the signedness of the field.
5948 If the position of the field is variable, we store a tree
5949 giving the variable offset (in units) in *POFFSET.
5950 This offset is in addition to the bit position.
5951 If the position is not variable, we store 0 in *POFFSET.
5952
5953 If any of the extraction expressions is volatile,
5954 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5955
5956 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5957 Otherwise, it is a mode that can be used to access the field.
5958
5959 If the field describes a variable-sized object, *PMODE is set to
5960 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5961 this case, but the address of the object can be found.
5962
5963 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5964 look through nodes that serve as markers of a greater alignment than
5965 the one that can be deduced from the expression. These nodes make it
5966 possible for front-ends to prevent temporaries from being created by
5967 the middle-end on alignment considerations. For that purpose, the
5968 normal operating mode at high-level is to always pass FALSE so that
5969 the ultimate containing object is really returned; moreover, the
5970 associated predicate handled_component_p will always return TRUE
5971 on these nodes, thus indicating that they are essentially handled
5972 by get_inner_reference. TRUE should only be passed when the caller
5973 is scanning the expression in order to build another representation
5974 and specifically knows how to handle these nodes; as such, this is
5975 the normal operating mode in the RTL expanders. */
5976
5977 tree
5978 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5979 HOST_WIDE_INT *pbitpos, tree *poffset,
5980 enum machine_mode *pmode, int *punsignedp,
5981 int *pvolatilep, bool keep_aligning)
5982 {
5983 tree size_tree = 0;
5984 enum machine_mode mode = VOIDmode;
5985 bool blkmode_bitfield = false;
5986 tree offset = size_zero_node;
5987 double_int bit_offset = double_int_zero;
5988
5989 /* First get the mode, signedness, and size. We do this from just the
5990 outermost expression. */
5991 *pbitsize = -1;
5992 if (TREE_CODE (exp) == COMPONENT_REF)
5993 {
5994 tree field = TREE_OPERAND (exp, 1);
5995 size_tree = DECL_SIZE (field);
5996 if (!DECL_BIT_FIELD (field))
5997 mode = DECL_MODE (field);
5998 else if (DECL_MODE (field) == BLKmode)
5999 blkmode_bitfield = true;
6000 else if (TREE_THIS_VOLATILE (exp)
6001 && flag_strict_volatile_bitfields > 0)
6002 /* Volatile bitfields should be accessed in the mode of the
6003 field's type, not the mode computed based on the bit
6004 size. */
6005 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6006
6007 *punsignedp = DECL_UNSIGNED (field);
6008 }
6009 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6010 {
6011 size_tree = TREE_OPERAND (exp, 1);
6012 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6013 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6014
6015 /* For vector types, with the correct size of access, use the mode of
6016 inner type. */
6017 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6018 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6019 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6020 mode = TYPE_MODE (TREE_TYPE (exp));
6021 }
6022 else
6023 {
6024 mode = TYPE_MODE (TREE_TYPE (exp));
6025 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6026
6027 if (mode == BLKmode)
6028 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6029 else
6030 *pbitsize = GET_MODE_BITSIZE (mode);
6031 }
6032
6033 if (size_tree != 0)
6034 {
6035 if (! host_integerp (size_tree, 1))
6036 mode = BLKmode, *pbitsize = -1;
6037 else
6038 *pbitsize = tree_low_cst (size_tree, 1);
6039 }
6040
6041 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6042 and find the ultimate containing object. */
6043 while (1)
6044 {
6045 switch (TREE_CODE (exp))
6046 {
6047 case BIT_FIELD_REF:
6048 bit_offset
6049 = double_int_add (bit_offset,
6050 tree_to_double_int (TREE_OPERAND (exp, 2)));
6051 break;
6052
6053 case COMPONENT_REF:
6054 {
6055 tree field = TREE_OPERAND (exp, 1);
6056 tree this_offset = component_ref_field_offset (exp);
6057
6058 /* If this field hasn't been filled in yet, don't go past it.
6059 This should only happen when folding expressions made during
6060 type construction. */
6061 if (this_offset == 0)
6062 break;
6063
6064 offset = size_binop (PLUS_EXPR, offset, this_offset);
6065 bit_offset = double_int_add (bit_offset,
6066 tree_to_double_int
6067 (DECL_FIELD_BIT_OFFSET (field)));
6068
6069 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6070 }
6071 break;
6072
6073 case ARRAY_REF:
6074 case ARRAY_RANGE_REF:
6075 {
6076 tree index = TREE_OPERAND (exp, 1);
6077 tree low_bound = array_ref_low_bound (exp);
6078 tree unit_size = array_ref_element_size (exp);
6079
6080 /* We assume all arrays have sizes that are a multiple of a byte.
6081 First subtract the lower bound, if any, in the type of the
6082 index, then convert to sizetype and multiply by the size of
6083 the array element. */
6084 if (! integer_zerop (low_bound))
6085 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6086 index, low_bound);
6087
6088 offset = size_binop (PLUS_EXPR, offset,
6089 size_binop (MULT_EXPR,
6090 fold_convert (sizetype, index),
6091 unit_size));
6092 }
6093 break;
6094
6095 case REALPART_EXPR:
6096 break;
6097
6098 case IMAGPART_EXPR:
6099 bit_offset = double_int_add (bit_offset,
6100 uhwi_to_double_int (*pbitsize));
6101 break;
6102
6103 case VIEW_CONVERT_EXPR:
6104 if (keep_aligning && STRICT_ALIGNMENT
6105 && (TYPE_ALIGN (TREE_TYPE (exp))
6106 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6107 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6108 < BIGGEST_ALIGNMENT)
6109 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6110 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6111 goto done;
6112 break;
6113
6114 default:
6115 goto done;
6116 }
6117
6118 /* If any reference in the chain is volatile, the effect is volatile. */
6119 if (TREE_THIS_VOLATILE (exp))
6120 *pvolatilep = 1;
6121
6122 exp = TREE_OPERAND (exp, 0);
6123 }
6124 done:
6125
6126 /* If OFFSET is constant, see if we can return the whole thing as a
6127 constant bit position. Make sure to handle overflow during
6128 this conversion. */
6129 if (host_integerp (offset, 0))
6130 {
6131 double_int tem = double_int_lshift (tree_to_double_int (offset),
6132 BITS_PER_UNIT == 8
6133 ? 3 : exact_log2 (BITS_PER_UNIT),
6134 HOST_BITS_PER_DOUBLE_INT, true);
6135 tem = double_int_add (tem, bit_offset);
6136 if (double_int_fits_in_shwi_p (tem))
6137 {
6138 *pbitpos = double_int_to_shwi (tem);
6139 *poffset = offset = NULL_TREE;
6140 }
6141 }
6142
6143 /* Otherwise, split it up. */
6144 if (offset)
6145 {
6146 *pbitpos = double_int_to_shwi (bit_offset);
6147 *poffset = offset;
6148 }
6149
6150 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6151 if (mode == VOIDmode
6152 && blkmode_bitfield
6153 && (*pbitpos % BITS_PER_UNIT) == 0
6154 && (*pbitsize % BITS_PER_UNIT) == 0)
6155 *pmode = BLKmode;
6156 else
6157 *pmode = mode;
6158
6159 return exp;
6160 }
6161
6162 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6163 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6164 EXP is marked as PACKED. */
6165
6166 bool
6167 contains_packed_reference (const_tree exp)
6168 {
6169 bool packed_p = false;
6170
6171 while (1)
6172 {
6173 switch (TREE_CODE (exp))
6174 {
6175 case COMPONENT_REF:
6176 {
6177 tree field = TREE_OPERAND (exp, 1);
6178 packed_p = DECL_PACKED (field)
6179 || TYPE_PACKED (TREE_TYPE (field))
6180 || TYPE_PACKED (TREE_TYPE (exp));
6181 if (packed_p)
6182 goto done;
6183 }
6184 break;
6185
6186 case BIT_FIELD_REF:
6187 case ARRAY_REF:
6188 case ARRAY_RANGE_REF:
6189 case REALPART_EXPR:
6190 case IMAGPART_EXPR:
6191 case VIEW_CONVERT_EXPR:
6192 break;
6193
6194 default:
6195 goto done;
6196 }
6197 exp = TREE_OPERAND (exp, 0);
6198 }
6199 done:
6200 return packed_p;
6201 }
6202
6203 /* Return a tree of sizetype representing the size, in bytes, of the element
6204 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6205
6206 tree
6207 array_ref_element_size (tree exp)
6208 {
6209 tree aligned_size = TREE_OPERAND (exp, 3);
6210 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6211 location_t loc = EXPR_LOCATION (exp);
6212
6213 /* If a size was specified in the ARRAY_REF, it's the size measured
6214 in alignment units of the element type. So multiply by that value. */
6215 if (aligned_size)
6216 {
6217 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6218 sizetype from another type of the same width and signedness. */
6219 if (TREE_TYPE (aligned_size) != sizetype)
6220 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6221 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6222 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6223 }
6224
6225 /* Otherwise, take the size from that of the element type. Substitute
6226 any PLACEHOLDER_EXPR that we have. */
6227 else
6228 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6229 }
6230
6231 /* Return a tree representing the lower bound of the array mentioned in
6232 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6233
6234 tree
6235 array_ref_low_bound (tree exp)
6236 {
6237 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6238
6239 /* If a lower bound is specified in EXP, use it. */
6240 if (TREE_OPERAND (exp, 2))
6241 return TREE_OPERAND (exp, 2);
6242
6243 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6244 substituting for a PLACEHOLDER_EXPR as needed. */
6245 if (domain_type && TYPE_MIN_VALUE (domain_type))
6246 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6247
6248 /* Otherwise, return a zero of the appropriate type. */
6249 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6250 }
6251
6252 /* Return a tree representing the upper bound of the array mentioned in
6253 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6254
6255 tree
6256 array_ref_up_bound (tree exp)
6257 {
6258 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6259
6260 /* If there is a domain type and it has an upper bound, use it, substituting
6261 for a PLACEHOLDER_EXPR as needed. */
6262 if (domain_type && TYPE_MAX_VALUE (domain_type))
6263 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6264
6265 /* Otherwise fail. */
6266 return NULL_TREE;
6267 }
6268
6269 /* Return a tree representing the offset, in bytes, of the field referenced
6270 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6271
6272 tree
6273 component_ref_field_offset (tree exp)
6274 {
6275 tree aligned_offset = TREE_OPERAND (exp, 2);
6276 tree field = TREE_OPERAND (exp, 1);
6277 location_t loc = EXPR_LOCATION (exp);
6278
6279 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6280 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6281 value. */
6282 if (aligned_offset)
6283 {
6284 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6285 sizetype from another type of the same width and signedness. */
6286 if (TREE_TYPE (aligned_offset) != sizetype)
6287 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6288 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6289 size_int (DECL_OFFSET_ALIGN (field)
6290 / BITS_PER_UNIT));
6291 }
6292
6293 /* Otherwise, take the offset from that of the field. Substitute
6294 any PLACEHOLDER_EXPR that we have. */
6295 else
6296 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6297 }
6298
6299 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6300
6301 static unsigned HOST_WIDE_INT
6302 target_align (const_tree target)
6303 {
6304 /* We might have a chain of nested references with intermediate misaligning
6305 bitfields components, so need to recurse to find out. */
6306
6307 unsigned HOST_WIDE_INT this_align, outer_align;
6308
6309 switch (TREE_CODE (target))
6310 {
6311 case BIT_FIELD_REF:
6312 return 1;
6313
6314 case COMPONENT_REF:
6315 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6316 outer_align = target_align (TREE_OPERAND (target, 0));
6317 return MIN (this_align, outer_align);
6318
6319 case ARRAY_REF:
6320 case ARRAY_RANGE_REF:
6321 this_align = TYPE_ALIGN (TREE_TYPE (target));
6322 outer_align = target_align (TREE_OPERAND (target, 0));
6323 return MIN (this_align, outer_align);
6324
6325 CASE_CONVERT:
6326 case NON_LVALUE_EXPR:
6327 case VIEW_CONVERT_EXPR:
6328 this_align = TYPE_ALIGN (TREE_TYPE (target));
6329 outer_align = target_align (TREE_OPERAND (target, 0));
6330 return MAX (this_align, outer_align);
6331
6332 default:
6333 return TYPE_ALIGN (TREE_TYPE (target));
6334 }
6335 }
6336
6337 \f
6338 /* Given an rtx VALUE that may contain additions and multiplications, return
6339 an equivalent value that just refers to a register, memory, or constant.
6340 This is done by generating instructions to perform the arithmetic and
6341 returning a pseudo-register containing the value.
6342
6343 The returned value may be a REG, SUBREG, MEM or constant. */
6344
6345 rtx
6346 force_operand (rtx value, rtx target)
6347 {
6348 rtx op1, op2;
6349 /* Use subtarget as the target for operand 0 of a binary operation. */
6350 rtx subtarget = get_subtarget (target);
6351 enum rtx_code code = GET_CODE (value);
6352
6353 /* Check for subreg applied to an expression produced by loop optimizer. */
6354 if (code == SUBREG
6355 && !REG_P (SUBREG_REG (value))
6356 && !MEM_P (SUBREG_REG (value)))
6357 {
6358 value
6359 = simplify_gen_subreg (GET_MODE (value),
6360 force_reg (GET_MODE (SUBREG_REG (value)),
6361 force_operand (SUBREG_REG (value),
6362 NULL_RTX)),
6363 GET_MODE (SUBREG_REG (value)),
6364 SUBREG_BYTE (value));
6365 code = GET_CODE (value);
6366 }
6367
6368 /* Check for a PIC address load. */
6369 if ((code == PLUS || code == MINUS)
6370 && XEXP (value, 0) == pic_offset_table_rtx
6371 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6372 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6373 || GET_CODE (XEXP (value, 1)) == CONST))
6374 {
6375 if (!subtarget)
6376 subtarget = gen_reg_rtx (GET_MODE (value));
6377 emit_move_insn (subtarget, value);
6378 return subtarget;
6379 }
6380
6381 if (ARITHMETIC_P (value))
6382 {
6383 op2 = XEXP (value, 1);
6384 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6385 subtarget = 0;
6386 if (code == MINUS && CONST_INT_P (op2))
6387 {
6388 code = PLUS;
6389 op2 = negate_rtx (GET_MODE (value), op2);
6390 }
6391
6392 /* Check for an addition with OP2 a constant integer and our first
6393 operand a PLUS of a virtual register and something else. In that
6394 case, we want to emit the sum of the virtual register and the
6395 constant first and then add the other value. This allows virtual
6396 register instantiation to simply modify the constant rather than
6397 creating another one around this addition. */
6398 if (code == PLUS && CONST_INT_P (op2)
6399 && GET_CODE (XEXP (value, 0)) == PLUS
6400 && REG_P (XEXP (XEXP (value, 0), 0))
6401 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6402 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6403 {
6404 rtx temp = expand_simple_binop (GET_MODE (value), code,
6405 XEXP (XEXP (value, 0), 0), op2,
6406 subtarget, 0, OPTAB_LIB_WIDEN);
6407 return expand_simple_binop (GET_MODE (value), code, temp,
6408 force_operand (XEXP (XEXP (value,
6409 0), 1), 0),
6410 target, 0, OPTAB_LIB_WIDEN);
6411 }
6412
6413 op1 = force_operand (XEXP (value, 0), subtarget);
6414 op2 = force_operand (op2, NULL_RTX);
6415 switch (code)
6416 {
6417 case MULT:
6418 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6419 case DIV:
6420 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6421 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6422 target, 1, OPTAB_LIB_WIDEN);
6423 else
6424 return expand_divmod (0,
6425 FLOAT_MODE_P (GET_MODE (value))
6426 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6427 GET_MODE (value), op1, op2, target, 0);
6428 case MOD:
6429 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6430 target, 0);
6431 case UDIV:
6432 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6433 target, 1);
6434 case UMOD:
6435 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6436 target, 1);
6437 case ASHIFTRT:
6438 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6439 target, 0, OPTAB_LIB_WIDEN);
6440 default:
6441 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6442 target, 1, OPTAB_LIB_WIDEN);
6443 }
6444 }
6445 if (UNARY_P (value))
6446 {
6447 if (!target)
6448 target = gen_reg_rtx (GET_MODE (value));
6449 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6450 switch (code)
6451 {
6452 case ZERO_EXTEND:
6453 case SIGN_EXTEND:
6454 case TRUNCATE:
6455 case FLOAT_EXTEND:
6456 case FLOAT_TRUNCATE:
6457 convert_move (target, op1, code == ZERO_EXTEND);
6458 return target;
6459
6460 case FIX:
6461 case UNSIGNED_FIX:
6462 expand_fix (target, op1, code == UNSIGNED_FIX);
6463 return target;
6464
6465 case FLOAT:
6466 case UNSIGNED_FLOAT:
6467 expand_float (target, op1, code == UNSIGNED_FLOAT);
6468 return target;
6469
6470 default:
6471 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6472 }
6473 }
6474
6475 #ifdef INSN_SCHEDULING
6476 /* On machines that have insn scheduling, we want all memory reference to be
6477 explicit, so we need to deal with such paradoxical SUBREGs. */
6478 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6479 && (GET_MODE_SIZE (GET_MODE (value))
6480 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6481 value
6482 = simplify_gen_subreg (GET_MODE (value),
6483 force_reg (GET_MODE (SUBREG_REG (value)),
6484 force_operand (SUBREG_REG (value),
6485 NULL_RTX)),
6486 GET_MODE (SUBREG_REG (value)),
6487 SUBREG_BYTE (value));
6488 #endif
6489
6490 return value;
6491 }
6492 \f
6493 /* Subroutine of expand_expr: return nonzero iff there is no way that
6494 EXP can reference X, which is being modified. TOP_P is nonzero if this
6495 call is going to be used to determine whether we need a temporary
6496 for EXP, as opposed to a recursive call to this function.
6497
6498 It is always safe for this routine to return zero since it merely
6499 searches for optimization opportunities. */
6500
6501 int
6502 safe_from_p (const_rtx x, tree exp, int top_p)
6503 {
6504 rtx exp_rtl = 0;
6505 int i, nops;
6506
6507 if (x == 0
6508 /* If EXP has varying size, we MUST use a target since we currently
6509 have no way of allocating temporaries of variable size
6510 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6511 So we assume here that something at a higher level has prevented a
6512 clash. This is somewhat bogus, but the best we can do. Only
6513 do this when X is BLKmode and when we are at the top level. */
6514 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6515 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6516 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6517 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6518 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6519 != INTEGER_CST)
6520 && GET_MODE (x) == BLKmode)
6521 /* If X is in the outgoing argument area, it is always safe. */
6522 || (MEM_P (x)
6523 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6524 || (GET_CODE (XEXP (x, 0)) == PLUS
6525 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6526 return 1;
6527
6528 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6529 find the underlying pseudo. */
6530 if (GET_CODE (x) == SUBREG)
6531 {
6532 x = SUBREG_REG (x);
6533 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6534 return 0;
6535 }
6536
6537 /* Now look at our tree code and possibly recurse. */
6538 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6539 {
6540 case tcc_declaration:
6541 exp_rtl = DECL_RTL_IF_SET (exp);
6542 break;
6543
6544 case tcc_constant:
6545 return 1;
6546
6547 case tcc_exceptional:
6548 if (TREE_CODE (exp) == TREE_LIST)
6549 {
6550 while (1)
6551 {
6552 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6553 return 0;
6554 exp = TREE_CHAIN (exp);
6555 if (!exp)
6556 return 1;
6557 if (TREE_CODE (exp) != TREE_LIST)
6558 return safe_from_p (x, exp, 0);
6559 }
6560 }
6561 else if (TREE_CODE (exp) == CONSTRUCTOR)
6562 {
6563 constructor_elt *ce;
6564 unsigned HOST_WIDE_INT idx;
6565
6566 for (idx = 0;
6567 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6568 idx++)
6569 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6570 || !safe_from_p (x, ce->value, 0))
6571 return 0;
6572 return 1;
6573 }
6574 else if (TREE_CODE (exp) == ERROR_MARK)
6575 return 1; /* An already-visited SAVE_EXPR? */
6576 else
6577 return 0;
6578
6579 case tcc_statement:
6580 /* The only case we look at here is the DECL_INITIAL inside a
6581 DECL_EXPR. */
6582 return (TREE_CODE (exp) != DECL_EXPR
6583 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6584 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6585 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6586
6587 case tcc_binary:
6588 case tcc_comparison:
6589 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6590 return 0;
6591 /* Fall through. */
6592
6593 case tcc_unary:
6594 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6595
6596 case tcc_expression:
6597 case tcc_reference:
6598 case tcc_vl_exp:
6599 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6600 the expression. If it is set, we conflict iff we are that rtx or
6601 both are in memory. Otherwise, we check all operands of the
6602 expression recursively. */
6603
6604 switch (TREE_CODE (exp))
6605 {
6606 case ADDR_EXPR:
6607 /* If the operand is static or we are static, we can't conflict.
6608 Likewise if we don't conflict with the operand at all. */
6609 if (staticp (TREE_OPERAND (exp, 0))
6610 || TREE_STATIC (exp)
6611 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6612 return 1;
6613
6614 /* Otherwise, the only way this can conflict is if we are taking
6615 the address of a DECL a that address if part of X, which is
6616 very rare. */
6617 exp = TREE_OPERAND (exp, 0);
6618 if (DECL_P (exp))
6619 {
6620 if (!DECL_RTL_SET_P (exp)
6621 || !MEM_P (DECL_RTL (exp)))
6622 return 0;
6623 else
6624 exp_rtl = XEXP (DECL_RTL (exp), 0);
6625 }
6626 break;
6627
6628 case MISALIGNED_INDIRECT_REF:
6629 case ALIGN_INDIRECT_REF:
6630 case INDIRECT_REF:
6631 if (MEM_P (x)
6632 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6633 get_alias_set (exp)))
6634 return 0;
6635 break;
6636
6637 case CALL_EXPR:
6638 /* Assume that the call will clobber all hard registers and
6639 all of memory. */
6640 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6641 || MEM_P (x))
6642 return 0;
6643 break;
6644
6645 case WITH_CLEANUP_EXPR:
6646 case CLEANUP_POINT_EXPR:
6647 /* Lowered by gimplify.c. */
6648 gcc_unreachable ();
6649
6650 case SAVE_EXPR:
6651 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6652
6653 default:
6654 break;
6655 }
6656
6657 /* If we have an rtx, we do not need to scan our operands. */
6658 if (exp_rtl)
6659 break;
6660
6661 nops = TREE_OPERAND_LENGTH (exp);
6662 for (i = 0; i < nops; i++)
6663 if (TREE_OPERAND (exp, i) != 0
6664 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6665 return 0;
6666
6667 break;
6668
6669 case tcc_type:
6670 /* Should never get a type here. */
6671 gcc_unreachable ();
6672 }
6673
6674 /* If we have an rtl, find any enclosed object. Then see if we conflict
6675 with it. */
6676 if (exp_rtl)
6677 {
6678 if (GET_CODE (exp_rtl) == SUBREG)
6679 {
6680 exp_rtl = SUBREG_REG (exp_rtl);
6681 if (REG_P (exp_rtl)
6682 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6683 return 0;
6684 }
6685
6686 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6687 are memory and they conflict. */
6688 return ! (rtx_equal_p (x, exp_rtl)
6689 || (MEM_P (x) && MEM_P (exp_rtl)
6690 && true_dependence (exp_rtl, VOIDmode, x,
6691 rtx_addr_varies_p)));
6692 }
6693
6694 /* If we reach here, it is safe. */
6695 return 1;
6696 }
6697
6698 \f
6699 /* Return the highest power of two that EXP is known to be a multiple of.
6700 This is used in updating alignment of MEMs in array references. */
6701
6702 unsigned HOST_WIDE_INT
6703 highest_pow2_factor (const_tree exp)
6704 {
6705 unsigned HOST_WIDE_INT c0, c1;
6706
6707 switch (TREE_CODE (exp))
6708 {
6709 case INTEGER_CST:
6710 /* We can find the lowest bit that's a one. If the low
6711 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6712 We need to handle this case since we can find it in a COND_EXPR,
6713 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6714 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6715 later ICE. */
6716 if (TREE_OVERFLOW (exp))
6717 return BIGGEST_ALIGNMENT;
6718 else
6719 {
6720 /* Note: tree_low_cst is intentionally not used here,
6721 we don't care about the upper bits. */
6722 c0 = TREE_INT_CST_LOW (exp);
6723 c0 &= -c0;
6724 return c0 ? c0 : BIGGEST_ALIGNMENT;
6725 }
6726 break;
6727
6728 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6729 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6730 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6731 return MIN (c0, c1);
6732
6733 case MULT_EXPR:
6734 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6735 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6736 return c0 * c1;
6737
6738 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6739 case CEIL_DIV_EXPR:
6740 if (integer_pow2p (TREE_OPERAND (exp, 1))
6741 && host_integerp (TREE_OPERAND (exp, 1), 1))
6742 {
6743 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6744 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6745 return MAX (1, c0 / c1);
6746 }
6747 break;
6748
6749 case BIT_AND_EXPR:
6750 /* The highest power of two of a bit-and expression is the maximum of
6751 that of its operands. We typically get here for a complex LHS and
6752 a constant negative power of two on the RHS to force an explicit
6753 alignment, so don't bother looking at the LHS. */
6754 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6755
6756 CASE_CONVERT:
6757 case SAVE_EXPR:
6758 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6759
6760 case COMPOUND_EXPR:
6761 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6762
6763 case COND_EXPR:
6764 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6765 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6766 return MIN (c0, c1);
6767
6768 default:
6769 break;
6770 }
6771
6772 return 1;
6773 }
6774
6775 /* Similar, except that the alignment requirements of TARGET are
6776 taken into account. Assume it is at least as aligned as its
6777 type, unless it is a COMPONENT_REF in which case the layout of
6778 the structure gives the alignment. */
6779
6780 static unsigned HOST_WIDE_INT
6781 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6782 {
6783 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6784 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6785
6786 return MAX (factor, talign);
6787 }
6788 \f
6789 /* Return &VAR expression for emulated thread local VAR. */
6790
6791 static tree
6792 emutls_var_address (tree var)
6793 {
6794 tree emuvar = emutls_decl (var);
6795 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6796 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6797 tree arglist = build_tree_list (NULL_TREE, arg);
6798 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6799 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6800 }
6801 \f
6802
6803 /* Subroutine of expand_expr. Expand the two operands of a binary
6804 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6805 The value may be stored in TARGET if TARGET is nonzero. The
6806 MODIFIER argument is as documented by expand_expr. */
6807
6808 static void
6809 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6810 enum expand_modifier modifier)
6811 {
6812 if (! safe_from_p (target, exp1, 1))
6813 target = 0;
6814 if (operand_equal_p (exp0, exp1, 0))
6815 {
6816 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6817 *op1 = copy_rtx (*op0);
6818 }
6819 else
6820 {
6821 /* If we need to preserve evaluation order, copy exp0 into its own
6822 temporary variable so that it can't be clobbered by exp1. */
6823 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6824 exp0 = save_expr (exp0);
6825 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6826 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6827 }
6828 }
6829
6830 \f
6831 /* Return a MEM that contains constant EXP. DEFER is as for
6832 output_constant_def and MODIFIER is as for expand_expr. */
6833
6834 static rtx
6835 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6836 {
6837 rtx mem;
6838
6839 mem = output_constant_def (exp, defer);
6840 if (modifier != EXPAND_INITIALIZER)
6841 mem = use_anchored_address (mem);
6842 return mem;
6843 }
6844
6845 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6846 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6847
6848 static rtx
6849 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6850 enum expand_modifier modifier, addr_space_t as)
6851 {
6852 rtx result, subtarget;
6853 tree inner, offset;
6854 HOST_WIDE_INT bitsize, bitpos;
6855 int volatilep, unsignedp;
6856 enum machine_mode mode1;
6857
6858 /* If we are taking the address of a constant and are at the top level,
6859 we have to use output_constant_def since we can't call force_const_mem
6860 at top level. */
6861 /* ??? This should be considered a front-end bug. We should not be
6862 generating ADDR_EXPR of something that isn't an LVALUE. The only
6863 exception here is STRING_CST. */
6864 if (CONSTANT_CLASS_P (exp))
6865 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6866
6867 /* Everything must be something allowed by is_gimple_addressable. */
6868 switch (TREE_CODE (exp))
6869 {
6870 case INDIRECT_REF:
6871 /* This case will happen via recursion for &a->b. */
6872 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6873
6874 case CONST_DECL:
6875 /* Expand the initializer like constants above. */
6876 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6877
6878 case REALPART_EXPR:
6879 /* The real part of the complex number is always first, therefore
6880 the address is the same as the address of the parent object. */
6881 offset = 0;
6882 bitpos = 0;
6883 inner = TREE_OPERAND (exp, 0);
6884 break;
6885
6886 case IMAGPART_EXPR:
6887 /* The imaginary part of the complex number is always second.
6888 The expression is therefore always offset by the size of the
6889 scalar type. */
6890 offset = 0;
6891 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6892 inner = TREE_OPERAND (exp, 0);
6893 break;
6894
6895 case VAR_DECL:
6896 /* TLS emulation hook - replace __thread VAR's &VAR with
6897 __emutls_get_address (&_emutls.VAR). */
6898 if (! targetm.have_tls
6899 && TREE_CODE (exp) == VAR_DECL
6900 && DECL_THREAD_LOCAL_P (exp))
6901 {
6902 exp = emutls_var_address (exp);
6903 return expand_expr (exp, target, tmode, modifier);
6904 }
6905 /* Fall through. */
6906
6907 default:
6908 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6909 expand_expr, as that can have various side effects; LABEL_DECLs for
6910 example, may not have their DECL_RTL set yet. Expand the rtl of
6911 CONSTRUCTORs too, which should yield a memory reference for the
6912 constructor's contents. Assume language specific tree nodes can
6913 be expanded in some interesting way. */
6914 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6915 if (DECL_P (exp)
6916 || TREE_CODE (exp) == CONSTRUCTOR
6917 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6918 {
6919 result = expand_expr (exp, target, tmode,
6920 modifier == EXPAND_INITIALIZER
6921 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6922
6923 /* If the DECL isn't in memory, then the DECL wasn't properly
6924 marked TREE_ADDRESSABLE, which will be either a front-end
6925 or a tree optimizer bug. */
6926 gcc_assert (MEM_P (result));
6927 result = XEXP (result, 0);
6928
6929 /* ??? Is this needed anymore? */
6930 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6931 {
6932 assemble_external (exp);
6933 TREE_USED (exp) = 1;
6934 }
6935
6936 if (modifier != EXPAND_INITIALIZER
6937 && modifier != EXPAND_CONST_ADDRESS)
6938 result = force_operand (result, target);
6939 return result;
6940 }
6941
6942 /* Pass FALSE as the last argument to get_inner_reference although
6943 we are expanding to RTL. The rationale is that we know how to
6944 handle "aligning nodes" here: we can just bypass them because
6945 they won't change the final object whose address will be returned
6946 (they actually exist only for that purpose). */
6947 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6948 &mode1, &unsignedp, &volatilep, false);
6949 break;
6950 }
6951
6952 /* We must have made progress. */
6953 gcc_assert (inner != exp);
6954
6955 subtarget = offset || bitpos ? NULL_RTX : target;
6956 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6957 inner alignment, force the inner to be sufficiently aligned. */
6958 if (CONSTANT_CLASS_P (inner)
6959 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6960 {
6961 inner = copy_node (inner);
6962 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6963 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6964 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6965 }
6966 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6967
6968 if (offset)
6969 {
6970 rtx tmp;
6971
6972 if (modifier != EXPAND_NORMAL)
6973 result = force_operand (result, NULL);
6974 tmp = expand_expr (offset, NULL_RTX, tmode,
6975 modifier == EXPAND_INITIALIZER
6976 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6977
6978 result = convert_memory_address_addr_space (tmode, result, as);
6979 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6980
6981 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6982 result = gen_rtx_PLUS (tmode, result, tmp);
6983 else
6984 {
6985 subtarget = bitpos ? NULL_RTX : target;
6986 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6987 1, OPTAB_LIB_WIDEN);
6988 }
6989 }
6990
6991 if (bitpos)
6992 {
6993 /* Someone beforehand should have rejected taking the address
6994 of such an object. */
6995 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6996
6997 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6998 if (modifier < EXPAND_SUM)
6999 result = force_operand (result, target);
7000 }
7001
7002 return result;
7003 }
7004
7005 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7006 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7007
7008 static rtx
7009 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7010 enum expand_modifier modifier)
7011 {
7012 addr_space_t as = ADDR_SPACE_GENERIC;
7013 enum machine_mode address_mode = Pmode;
7014 enum machine_mode pointer_mode = ptr_mode;
7015 enum machine_mode rmode;
7016 rtx result;
7017
7018 /* Target mode of VOIDmode says "whatever's natural". */
7019 if (tmode == VOIDmode)
7020 tmode = TYPE_MODE (TREE_TYPE (exp));
7021
7022 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7023 {
7024 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7025 address_mode = targetm.addr_space.address_mode (as);
7026 pointer_mode = targetm.addr_space.pointer_mode (as);
7027 }
7028
7029 /* We can get called with some Weird Things if the user does silliness
7030 like "(short) &a". In that case, convert_memory_address won't do
7031 the right thing, so ignore the given target mode. */
7032 if (tmode != address_mode && tmode != pointer_mode)
7033 tmode = address_mode;
7034
7035 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7036 tmode, modifier, as);
7037
7038 /* Despite expand_expr claims concerning ignoring TMODE when not
7039 strictly convenient, stuff breaks if we don't honor it. Note
7040 that combined with the above, we only do this for pointer modes. */
7041 rmode = GET_MODE (result);
7042 if (rmode == VOIDmode)
7043 rmode = tmode;
7044 if (rmode != tmode)
7045 result = convert_memory_address_addr_space (tmode, result, as);
7046
7047 return result;
7048 }
7049
7050 /* Generate code for computing CONSTRUCTOR EXP.
7051 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7052 is TRUE, instead of creating a temporary variable in memory
7053 NULL is returned and the caller needs to handle it differently. */
7054
7055 static rtx
7056 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7057 bool avoid_temp_mem)
7058 {
7059 tree type = TREE_TYPE (exp);
7060 enum machine_mode mode = TYPE_MODE (type);
7061
7062 /* Try to avoid creating a temporary at all. This is possible
7063 if all of the initializer is zero.
7064 FIXME: try to handle all [0..255] initializers we can handle
7065 with memset. */
7066 if (TREE_STATIC (exp)
7067 && !TREE_ADDRESSABLE (exp)
7068 && target != 0 && mode == BLKmode
7069 && all_zeros_p (exp))
7070 {
7071 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7072 return target;
7073 }
7074
7075 /* All elts simple constants => refer to a constant in memory. But
7076 if this is a non-BLKmode mode, let it store a field at a time
7077 since that should make a CONST_INT or CONST_DOUBLE when we
7078 fold. Likewise, if we have a target we can use, it is best to
7079 store directly into the target unless the type is large enough
7080 that memcpy will be used. If we are making an initializer and
7081 all operands are constant, put it in memory as well.
7082
7083 FIXME: Avoid trying to fill vector constructors piece-meal.
7084 Output them with output_constant_def below unless we're sure
7085 they're zeros. This should go away when vector initializers
7086 are treated like VECTOR_CST instead of arrays. */
7087 if ((TREE_STATIC (exp)
7088 && ((mode == BLKmode
7089 && ! (target != 0 && safe_from_p (target, exp, 1)))
7090 || TREE_ADDRESSABLE (exp)
7091 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7092 && (! MOVE_BY_PIECES_P
7093 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7094 TYPE_ALIGN (type)))
7095 && ! mostly_zeros_p (exp))))
7096 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7097 && TREE_CONSTANT (exp)))
7098 {
7099 rtx constructor;
7100
7101 if (avoid_temp_mem)
7102 return NULL_RTX;
7103
7104 constructor = expand_expr_constant (exp, 1, modifier);
7105
7106 if (modifier != EXPAND_CONST_ADDRESS
7107 && modifier != EXPAND_INITIALIZER
7108 && modifier != EXPAND_SUM)
7109 constructor = validize_mem (constructor);
7110
7111 return constructor;
7112 }
7113
7114 /* Handle calls that pass values in multiple non-contiguous
7115 locations. The Irix 6 ABI has examples of this. */
7116 if (target == 0 || ! safe_from_p (target, exp, 1)
7117 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7118 {
7119 if (avoid_temp_mem)
7120 return NULL_RTX;
7121
7122 target
7123 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7124 | (TREE_READONLY (exp)
7125 * TYPE_QUAL_CONST))),
7126 0, TREE_ADDRESSABLE (exp), 1);
7127 }
7128
7129 store_constructor (exp, target, 0, int_expr_size (exp));
7130 return target;
7131 }
7132
7133
7134 /* expand_expr: generate code for computing expression EXP.
7135 An rtx for the computed value is returned. The value is never null.
7136 In the case of a void EXP, const0_rtx is returned.
7137
7138 The value may be stored in TARGET if TARGET is nonzero.
7139 TARGET is just a suggestion; callers must assume that
7140 the rtx returned may not be the same as TARGET.
7141
7142 If TARGET is CONST0_RTX, it means that the value will be ignored.
7143
7144 If TMODE is not VOIDmode, it suggests generating the
7145 result in mode TMODE. But this is done only when convenient.
7146 Otherwise, TMODE is ignored and the value generated in its natural mode.
7147 TMODE is just a suggestion; callers must assume that
7148 the rtx returned may not have mode TMODE.
7149
7150 Note that TARGET may have neither TMODE nor MODE. In that case, it
7151 probably will not be used.
7152
7153 If MODIFIER is EXPAND_SUM then when EXP is an addition
7154 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7155 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7156 products as above, or REG or MEM, or constant.
7157 Ordinarily in such cases we would output mul or add instructions
7158 and then return a pseudo reg containing the sum.
7159
7160 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7161 it also marks a label as absolutely required (it can't be dead).
7162 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7163 This is used for outputting expressions used in initializers.
7164
7165 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7166 with a constant address even if that address is not normally legitimate.
7167 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7168
7169 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7170 a call parameter. Such targets require special care as we haven't yet
7171 marked TARGET so that it's safe from being trashed by libcalls. We
7172 don't want to use TARGET for anything but the final result;
7173 Intermediate values must go elsewhere. Additionally, calls to
7174 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7175
7176 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7177 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7178 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7179 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7180 recursively. */
7181
7182 rtx
7183 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7184 enum expand_modifier modifier, rtx *alt_rtl)
7185 {
7186 rtx ret;
7187
7188 /* Handle ERROR_MARK before anybody tries to access its type. */
7189 if (TREE_CODE (exp) == ERROR_MARK
7190 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7191 {
7192 ret = CONST0_RTX (tmode);
7193 return ret ? ret : const0_rtx;
7194 }
7195
7196 /* If this is an expression of some kind and it has an associated line
7197 number, then emit the line number before expanding the expression.
7198
7199 We need to save and restore the file and line information so that
7200 errors discovered during expansion are emitted with the right
7201 information. It would be better of the diagnostic routines
7202 used the file/line information embedded in the tree nodes rather
7203 than globals. */
7204 if (cfun && EXPR_HAS_LOCATION (exp))
7205 {
7206 location_t saved_location = input_location;
7207 location_t saved_curr_loc = get_curr_insn_source_location ();
7208 tree saved_block = get_curr_insn_block ();
7209 input_location = EXPR_LOCATION (exp);
7210 set_curr_insn_source_location (input_location);
7211
7212 /* Record where the insns produced belong. */
7213 set_curr_insn_block (TREE_BLOCK (exp));
7214
7215 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7216
7217 input_location = saved_location;
7218 set_curr_insn_block (saved_block);
7219 set_curr_insn_source_location (saved_curr_loc);
7220 }
7221 else
7222 {
7223 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7224 }
7225
7226 return ret;
7227 }
7228
7229 rtx
7230 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7231 enum expand_modifier modifier)
7232 {
7233 rtx op0, op1, op2, temp;
7234 tree type;
7235 int unsignedp;
7236 enum machine_mode mode;
7237 enum tree_code code = ops->code;
7238 optab this_optab;
7239 rtx subtarget, original_target;
7240 int ignore;
7241 bool reduce_bit_field;
7242 location_t loc = ops->location;
7243 tree treeop0, treeop1;
7244 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7245 ? reduce_to_bit_field_precision ((expr), \
7246 target, \
7247 type) \
7248 : (expr))
7249
7250 type = ops->type;
7251 mode = TYPE_MODE (type);
7252 unsignedp = TYPE_UNSIGNED (type);
7253
7254 treeop0 = ops->op0;
7255 treeop1 = ops->op1;
7256
7257 /* We should be called only on simple (binary or unary) expressions,
7258 exactly those that are valid in gimple expressions that aren't
7259 GIMPLE_SINGLE_RHS (or invalid). */
7260 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7261 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7262 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7263
7264 ignore = (target == const0_rtx
7265 || ((CONVERT_EXPR_CODE_P (code)
7266 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7267 && TREE_CODE (type) == VOID_TYPE));
7268
7269 /* We should be called only if we need the result. */
7270 gcc_assert (!ignore);
7271
7272 /* An operation in what may be a bit-field type needs the
7273 result to be reduced to the precision of the bit-field type,
7274 which is narrower than that of the type's mode. */
7275 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7276 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7277
7278 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7279 target = 0;
7280
7281 /* Use subtarget as the target for operand 0 of a binary operation. */
7282 subtarget = get_subtarget (target);
7283 original_target = target;
7284
7285 switch (code)
7286 {
7287 case NON_LVALUE_EXPR:
7288 case PAREN_EXPR:
7289 CASE_CONVERT:
7290 if (treeop0 == error_mark_node)
7291 return const0_rtx;
7292
7293 if (TREE_CODE (type) == UNION_TYPE)
7294 {
7295 tree valtype = TREE_TYPE (treeop0);
7296
7297 /* If both input and output are BLKmode, this conversion isn't doing
7298 anything except possibly changing memory attribute. */
7299 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7300 {
7301 rtx result = expand_expr (treeop0, target, tmode,
7302 modifier);
7303
7304 result = copy_rtx (result);
7305 set_mem_attributes (result, type, 0);
7306 return result;
7307 }
7308
7309 if (target == 0)
7310 {
7311 if (TYPE_MODE (type) != BLKmode)
7312 target = gen_reg_rtx (TYPE_MODE (type));
7313 else
7314 target = assign_temp (type, 0, 1, 1);
7315 }
7316
7317 if (MEM_P (target))
7318 /* Store data into beginning of memory target. */
7319 store_expr (treeop0,
7320 adjust_address (target, TYPE_MODE (valtype), 0),
7321 modifier == EXPAND_STACK_PARM,
7322 false);
7323
7324 else
7325 {
7326 gcc_assert (REG_P (target));
7327
7328 /* Store this field into a union of the proper type. */
7329 store_field (target,
7330 MIN ((int_size_in_bytes (TREE_TYPE
7331 (treeop0))
7332 * BITS_PER_UNIT),
7333 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7334 0, TYPE_MODE (valtype), treeop0,
7335 type, 0, false);
7336 }
7337
7338 /* Return the entire union. */
7339 return target;
7340 }
7341
7342 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7343 {
7344 op0 = expand_expr (treeop0, target, VOIDmode,
7345 modifier);
7346
7347 /* If the signedness of the conversion differs and OP0 is
7348 a promoted SUBREG, clear that indication since we now
7349 have to do the proper extension. */
7350 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7351 && GET_CODE (op0) == SUBREG)
7352 SUBREG_PROMOTED_VAR_P (op0) = 0;
7353
7354 return REDUCE_BIT_FIELD (op0);
7355 }
7356
7357 op0 = expand_expr (treeop0, NULL_RTX, mode,
7358 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7359 if (GET_MODE (op0) == mode)
7360 ;
7361
7362 /* If OP0 is a constant, just convert it into the proper mode. */
7363 else if (CONSTANT_P (op0))
7364 {
7365 tree inner_type = TREE_TYPE (treeop0);
7366 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7367
7368 if (modifier == EXPAND_INITIALIZER)
7369 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7370 subreg_lowpart_offset (mode,
7371 inner_mode));
7372 else
7373 op0= convert_modes (mode, inner_mode, op0,
7374 TYPE_UNSIGNED (inner_type));
7375 }
7376
7377 else if (modifier == EXPAND_INITIALIZER)
7378 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7379
7380 else if (target == 0)
7381 op0 = convert_to_mode (mode, op0,
7382 TYPE_UNSIGNED (TREE_TYPE
7383 (treeop0)));
7384 else
7385 {
7386 convert_move (target, op0,
7387 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7388 op0 = target;
7389 }
7390
7391 return REDUCE_BIT_FIELD (op0);
7392
7393 case ADDR_SPACE_CONVERT_EXPR:
7394 {
7395 tree treeop0_type = TREE_TYPE (treeop0);
7396 addr_space_t as_to;
7397 addr_space_t as_from;
7398
7399 gcc_assert (POINTER_TYPE_P (type));
7400 gcc_assert (POINTER_TYPE_P (treeop0_type));
7401
7402 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7403 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7404
7405 /* Conversions between pointers to the same address space should
7406 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7407 gcc_assert (as_to != as_from);
7408
7409 /* Ask target code to handle conversion between pointers
7410 to overlapping address spaces. */
7411 if (targetm.addr_space.subset_p (as_to, as_from)
7412 || targetm.addr_space.subset_p (as_from, as_to))
7413 {
7414 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7415 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7416 gcc_assert (op0);
7417 return op0;
7418 }
7419
7420 /* For disjoint address spaces, converting anything but
7421 a null pointer invokes undefined behaviour. We simply
7422 always return a null pointer here. */
7423 return CONST0_RTX (mode);
7424 }
7425
7426 case POINTER_PLUS_EXPR:
7427 /* Even though the sizetype mode and the pointer's mode can be different
7428 expand is able to handle this correctly and get the correct result out
7429 of the PLUS_EXPR code. */
7430 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7431 if sizetype precision is smaller than pointer precision. */
7432 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7433 treeop1 = fold_convert_loc (loc, type,
7434 fold_convert_loc (loc, ssizetype,
7435 treeop1));
7436 case PLUS_EXPR:
7437 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7438 something else, make sure we add the register to the constant and
7439 then to the other thing. This case can occur during strength
7440 reduction and doing it this way will produce better code if the
7441 frame pointer or argument pointer is eliminated.
7442
7443 fold-const.c will ensure that the constant is always in the inner
7444 PLUS_EXPR, so the only case we need to do anything about is if
7445 sp, ap, or fp is our second argument, in which case we must swap
7446 the innermost first argument and our second argument. */
7447
7448 if (TREE_CODE (treeop0) == PLUS_EXPR
7449 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7450 && TREE_CODE (treeop1) == VAR_DECL
7451 && (DECL_RTL (treeop1) == frame_pointer_rtx
7452 || DECL_RTL (treeop1) == stack_pointer_rtx
7453 || DECL_RTL (treeop1) == arg_pointer_rtx))
7454 {
7455 tree t = treeop1;
7456
7457 treeop1 = TREE_OPERAND (treeop0, 0);
7458 TREE_OPERAND (treeop0, 0) = t;
7459 }
7460
7461 /* If the result is to be ptr_mode and we are adding an integer to
7462 something, we might be forming a constant. So try to use
7463 plus_constant. If it produces a sum and we can't accept it,
7464 use force_operand. This allows P = &ARR[const] to generate
7465 efficient code on machines where a SYMBOL_REF is not a valid
7466 address.
7467
7468 If this is an EXPAND_SUM call, always return the sum. */
7469 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7470 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7471 {
7472 if (modifier == EXPAND_STACK_PARM)
7473 target = 0;
7474 if (TREE_CODE (treeop0) == INTEGER_CST
7475 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7476 && TREE_CONSTANT (treeop1))
7477 {
7478 rtx constant_part;
7479
7480 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7481 EXPAND_SUM);
7482 /* Use immed_double_const to ensure that the constant is
7483 truncated according to the mode of OP1, then sign extended
7484 to a HOST_WIDE_INT. Using the constant directly can result
7485 in non-canonical RTL in a 64x32 cross compile. */
7486 constant_part
7487 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7488 (HOST_WIDE_INT) 0,
7489 TYPE_MODE (TREE_TYPE (treeop1)));
7490 op1 = plus_constant (op1, INTVAL (constant_part));
7491 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7492 op1 = force_operand (op1, target);
7493 return REDUCE_BIT_FIELD (op1);
7494 }
7495
7496 else if (TREE_CODE (treeop1) == INTEGER_CST
7497 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7498 && TREE_CONSTANT (treeop0))
7499 {
7500 rtx constant_part;
7501
7502 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7503 (modifier == EXPAND_INITIALIZER
7504 ? EXPAND_INITIALIZER : EXPAND_SUM));
7505 if (! CONSTANT_P (op0))
7506 {
7507 op1 = expand_expr (treeop1, NULL_RTX,
7508 VOIDmode, modifier);
7509 /* Return a PLUS if modifier says it's OK. */
7510 if (modifier == EXPAND_SUM
7511 || modifier == EXPAND_INITIALIZER)
7512 return simplify_gen_binary (PLUS, mode, op0, op1);
7513 goto binop2;
7514 }
7515 /* Use immed_double_const to ensure that the constant is
7516 truncated according to the mode of OP1, then sign extended
7517 to a HOST_WIDE_INT. Using the constant directly can result
7518 in non-canonical RTL in a 64x32 cross compile. */
7519 constant_part
7520 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7521 (HOST_WIDE_INT) 0,
7522 TYPE_MODE (TREE_TYPE (treeop0)));
7523 op0 = plus_constant (op0, INTVAL (constant_part));
7524 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7525 op0 = force_operand (op0, target);
7526 return REDUCE_BIT_FIELD (op0);
7527 }
7528 }
7529
7530 /* No sense saving up arithmetic to be done
7531 if it's all in the wrong mode to form part of an address.
7532 And force_operand won't know whether to sign-extend or
7533 zero-extend. */
7534 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7535 || mode != ptr_mode)
7536 {
7537 expand_operands (treeop0, treeop1,
7538 subtarget, &op0, &op1, EXPAND_NORMAL);
7539 if (op0 == const0_rtx)
7540 return op1;
7541 if (op1 == const0_rtx)
7542 return op0;
7543 goto binop2;
7544 }
7545
7546 expand_operands (treeop0, treeop1,
7547 subtarget, &op0, &op1, modifier);
7548 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7549
7550 case MINUS_EXPR:
7551 /* For initializers, we are allowed to return a MINUS of two
7552 symbolic constants. Here we handle all cases when both operands
7553 are constant. */
7554 /* Handle difference of two symbolic constants,
7555 for the sake of an initializer. */
7556 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7557 && really_constant_p (treeop0)
7558 && really_constant_p (treeop1))
7559 {
7560 expand_operands (treeop0, treeop1,
7561 NULL_RTX, &op0, &op1, modifier);
7562
7563 /* If the last operand is a CONST_INT, use plus_constant of
7564 the negated constant. Else make the MINUS. */
7565 if (CONST_INT_P (op1))
7566 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7567 else
7568 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7569 }
7570
7571 /* No sense saving up arithmetic to be done
7572 if it's all in the wrong mode to form part of an address.
7573 And force_operand won't know whether to sign-extend or
7574 zero-extend. */
7575 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7576 || mode != ptr_mode)
7577 goto binop;
7578
7579 expand_operands (treeop0, treeop1,
7580 subtarget, &op0, &op1, modifier);
7581
7582 /* Convert A - const to A + (-const). */
7583 if (CONST_INT_P (op1))
7584 {
7585 op1 = negate_rtx (mode, op1);
7586 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7587 }
7588
7589 goto binop2;
7590
7591 case WIDEN_MULT_PLUS_EXPR:
7592 case WIDEN_MULT_MINUS_EXPR:
7593 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7594 op2 = expand_normal (ops->op2);
7595 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7596 target, unsignedp);
7597 return target;
7598
7599 case WIDEN_MULT_EXPR:
7600 /* If first operand is constant, swap them.
7601 Thus the following special case checks need only
7602 check the second operand. */
7603 if (TREE_CODE (treeop0) == INTEGER_CST)
7604 {
7605 tree t1 = treeop0;
7606 treeop0 = treeop1;
7607 treeop1 = t1;
7608 }
7609
7610 /* First, check if we have a multiplication of one signed and one
7611 unsigned operand. */
7612 if (TREE_CODE (treeop1) != INTEGER_CST
7613 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7614 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7615 {
7616 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7617 this_optab = usmul_widen_optab;
7618 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7619 {
7620 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7621 {
7622 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7623 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7624 EXPAND_NORMAL);
7625 else
7626 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7627 EXPAND_NORMAL);
7628 goto binop3;
7629 }
7630 }
7631 }
7632 /* Check for a multiplication with matching signedness. */
7633 else if ((TREE_CODE (treeop1) == INTEGER_CST
7634 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7635 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7636 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7637 {
7638 tree op0type = TREE_TYPE (treeop0);
7639 enum machine_mode innermode = TYPE_MODE (op0type);
7640 bool zextend_p = TYPE_UNSIGNED (op0type);
7641 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7642 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7643
7644 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7645 {
7646 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7647 {
7648 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7649 EXPAND_NORMAL);
7650 temp = expand_widening_mult (mode, op0, op1, target,
7651 unsignedp, this_optab);
7652 return REDUCE_BIT_FIELD (temp);
7653 }
7654 if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7655 && innermode == word_mode)
7656 {
7657 rtx htem, hipart;
7658 op0 = expand_normal (treeop0);
7659 if (TREE_CODE (treeop1) == INTEGER_CST)
7660 op1 = convert_modes (innermode, mode,
7661 expand_normal (treeop1), unsignedp);
7662 else
7663 op1 = expand_normal (treeop1);
7664 temp = expand_binop (mode, other_optab, op0, op1, target,
7665 unsignedp, OPTAB_LIB_WIDEN);
7666 hipart = gen_highpart (innermode, temp);
7667 htem = expand_mult_highpart_adjust (innermode, hipart,
7668 op0, op1, hipart,
7669 zextend_p);
7670 if (htem != hipart)
7671 emit_move_insn (hipart, htem);
7672 return REDUCE_BIT_FIELD (temp);
7673 }
7674 }
7675 }
7676 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7677 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7678 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7679 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7680
7681 case MULT_EXPR:
7682 /* If this is a fixed-point operation, then we cannot use the code
7683 below because "expand_mult" doesn't support sat/no-sat fixed-point
7684 multiplications. */
7685 if (ALL_FIXED_POINT_MODE_P (mode))
7686 goto binop;
7687
7688 /* If first operand is constant, swap them.
7689 Thus the following special case checks need only
7690 check the second operand. */
7691 if (TREE_CODE (treeop0) == INTEGER_CST)
7692 {
7693 tree t1 = treeop0;
7694 treeop0 = treeop1;
7695 treeop1 = t1;
7696 }
7697
7698 /* Attempt to return something suitable for generating an
7699 indexed address, for machines that support that. */
7700
7701 if (modifier == EXPAND_SUM && mode == ptr_mode
7702 && host_integerp (treeop1, 0))
7703 {
7704 tree exp1 = treeop1;
7705
7706 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7707 EXPAND_SUM);
7708
7709 if (!REG_P (op0))
7710 op0 = force_operand (op0, NULL_RTX);
7711 if (!REG_P (op0))
7712 op0 = copy_to_mode_reg (mode, op0);
7713
7714 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7715 gen_int_mode (tree_low_cst (exp1, 0),
7716 TYPE_MODE (TREE_TYPE (exp1)))));
7717 }
7718
7719 if (modifier == EXPAND_STACK_PARM)
7720 target = 0;
7721
7722 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7723 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7724
7725 case TRUNC_DIV_EXPR:
7726 case FLOOR_DIV_EXPR:
7727 case CEIL_DIV_EXPR:
7728 case ROUND_DIV_EXPR:
7729 case EXACT_DIV_EXPR:
7730 /* If this is a fixed-point operation, then we cannot use the code
7731 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7732 divisions. */
7733 if (ALL_FIXED_POINT_MODE_P (mode))
7734 goto binop;
7735
7736 if (modifier == EXPAND_STACK_PARM)
7737 target = 0;
7738 /* Possible optimization: compute the dividend with EXPAND_SUM
7739 then if the divisor is constant can optimize the case
7740 where some terms of the dividend have coeffs divisible by it. */
7741 expand_operands (treeop0, treeop1,
7742 subtarget, &op0, &op1, EXPAND_NORMAL);
7743 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7744
7745 case RDIV_EXPR:
7746 goto binop;
7747
7748 case TRUNC_MOD_EXPR:
7749 case FLOOR_MOD_EXPR:
7750 case CEIL_MOD_EXPR:
7751 case ROUND_MOD_EXPR:
7752 if (modifier == EXPAND_STACK_PARM)
7753 target = 0;
7754 expand_operands (treeop0, treeop1,
7755 subtarget, &op0, &op1, EXPAND_NORMAL);
7756 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7757
7758 case FIXED_CONVERT_EXPR:
7759 op0 = expand_normal (treeop0);
7760 if (target == 0 || modifier == EXPAND_STACK_PARM)
7761 target = gen_reg_rtx (mode);
7762
7763 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7764 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7765 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7766 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7767 else
7768 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7769 return target;
7770
7771 case FIX_TRUNC_EXPR:
7772 op0 = expand_normal (treeop0);
7773 if (target == 0 || modifier == EXPAND_STACK_PARM)
7774 target = gen_reg_rtx (mode);
7775 expand_fix (target, op0, unsignedp);
7776 return target;
7777
7778 case FLOAT_EXPR:
7779 op0 = expand_normal (treeop0);
7780 if (target == 0 || modifier == EXPAND_STACK_PARM)
7781 target = gen_reg_rtx (mode);
7782 /* expand_float can't figure out what to do if FROM has VOIDmode.
7783 So give it the correct mode. With -O, cse will optimize this. */
7784 if (GET_MODE (op0) == VOIDmode)
7785 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7786 op0);
7787 expand_float (target, op0,
7788 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7789 return target;
7790
7791 case NEGATE_EXPR:
7792 op0 = expand_expr (treeop0, subtarget,
7793 VOIDmode, EXPAND_NORMAL);
7794 if (modifier == EXPAND_STACK_PARM)
7795 target = 0;
7796 temp = expand_unop (mode,
7797 optab_for_tree_code (NEGATE_EXPR, type,
7798 optab_default),
7799 op0, target, 0);
7800 gcc_assert (temp);
7801 return REDUCE_BIT_FIELD (temp);
7802
7803 case ABS_EXPR:
7804 op0 = expand_expr (treeop0, subtarget,
7805 VOIDmode, EXPAND_NORMAL);
7806 if (modifier == EXPAND_STACK_PARM)
7807 target = 0;
7808
7809 /* ABS_EXPR is not valid for complex arguments. */
7810 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7811 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7812
7813 /* Unsigned abs is simply the operand. Testing here means we don't
7814 risk generating incorrect code below. */
7815 if (TYPE_UNSIGNED (type))
7816 return op0;
7817
7818 return expand_abs (mode, op0, target, unsignedp,
7819 safe_from_p (target, treeop0, 1));
7820
7821 case MAX_EXPR:
7822 case MIN_EXPR:
7823 target = original_target;
7824 if (target == 0
7825 || modifier == EXPAND_STACK_PARM
7826 || (MEM_P (target) && MEM_VOLATILE_P (target))
7827 || GET_MODE (target) != mode
7828 || (REG_P (target)
7829 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7830 target = gen_reg_rtx (mode);
7831 expand_operands (treeop0, treeop1,
7832 target, &op0, &op1, EXPAND_NORMAL);
7833
7834 /* First try to do it with a special MIN or MAX instruction.
7835 If that does not win, use a conditional jump to select the proper
7836 value. */
7837 this_optab = optab_for_tree_code (code, type, optab_default);
7838 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7839 OPTAB_WIDEN);
7840 if (temp != 0)
7841 return temp;
7842
7843 /* At this point, a MEM target is no longer useful; we will get better
7844 code without it. */
7845
7846 if (! REG_P (target))
7847 target = gen_reg_rtx (mode);
7848
7849 /* If op1 was placed in target, swap op0 and op1. */
7850 if (target != op0 && target == op1)
7851 {
7852 temp = op0;
7853 op0 = op1;
7854 op1 = temp;
7855 }
7856
7857 /* We generate better code and avoid problems with op1 mentioning
7858 target by forcing op1 into a pseudo if it isn't a constant. */
7859 if (! CONSTANT_P (op1))
7860 op1 = force_reg (mode, op1);
7861
7862 {
7863 enum rtx_code comparison_code;
7864 rtx cmpop1 = op1;
7865
7866 if (code == MAX_EXPR)
7867 comparison_code = unsignedp ? GEU : GE;
7868 else
7869 comparison_code = unsignedp ? LEU : LE;
7870
7871 /* Canonicalize to comparisons against 0. */
7872 if (op1 == const1_rtx)
7873 {
7874 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7875 or (a != 0 ? a : 1) for unsigned.
7876 For MIN we are safe converting (a <= 1 ? a : 1)
7877 into (a <= 0 ? a : 1) */
7878 cmpop1 = const0_rtx;
7879 if (code == MAX_EXPR)
7880 comparison_code = unsignedp ? NE : GT;
7881 }
7882 if (op1 == constm1_rtx && !unsignedp)
7883 {
7884 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7885 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7886 cmpop1 = const0_rtx;
7887 if (code == MIN_EXPR)
7888 comparison_code = LT;
7889 }
7890 #ifdef HAVE_conditional_move
7891 /* Use a conditional move if possible. */
7892 if (can_conditionally_move_p (mode))
7893 {
7894 rtx insn;
7895
7896 /* ??? Same problem as in expmed.c: emit_conditional_move
7897 forces a stack adjustment via compare_from_rtx, and we
7898 lose the stack adjustment if the sequence we are about
7899 to create is discarded. */
7900 do_pending_stack_adjust ();
7901
7902 start_sequence ();
7903
7904 /* Try to emit the conditional move. */
7905 insn = emit_conditional_move (target, comparison_code,
7906 op0, cmpop1, mode,
7907 op0, op1, mode,
7908 unsignedp);
7909
7910 /* If we could do the conditional move, emit the sequence,
7911 and return. */
7912 if (insn)
7913 {
7914 rtx seq = get_insns ();
7915 end_sequence ();
7916 emit_insn (seq);
7917 return target;
7918 }
7919
7920 /* Otherwise discard the sequence and fall back to code with
7921 branches. */
7922 end_sequence ();
7923 }
7924 #endif
7925 if (target != op0)
7926 emit_move_insn (target, op0);
7927
7928 temp = gen_label_rtx ();
7929 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7930 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7931 -1);
7932 }
7933 emit_move_insn (target, op1);
7934 emit_label (temp);
7935 return target;
7936
7937 case BIT_NOT_EXPR:
7938 op0 = expand_expr (treeop0, subtarget,
7939 VOIDmode, EXPAND_NORMAL);
7940 if (modifier == EXPAND_STACK_PARM)
7941 target = 0;
7942 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7943 gcc_assert (temp);
7944 return temp;
7945
7946 /* ??? Can optimize bitwise operations with one arg constant.
7947 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7948 and (a bitwise1 b) bitwise2 b (etc)
7949 but that is probably not worth while. */
7950
7951 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7952 boolean values when we want in all cases to compute both of them. In
7953 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7954 as actual zero-or-1 values and then bitwise anding. In cases where
7955 there cannot be any side effects, better code would be made by
7956 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7957 how to recognize those cases. */
7958
7959 case TRUTH_AND_EXPR:
7960 code = BIT_AND_EXPR;
7961 case BIT_AND_EXPR:
7962 goto binop;
7963
7964 case TRUTH_OR_EXPR:
7965 code = BIT_IOR_EXPR;
7966 case BIT_IOR_EXPR:
7967 goto binop;
7968
7969 case TRUTH_XOR_EXPR:
7970 code = BIT_XOR_EXPR;
7971 case BIT_XOR_EXPR:
7972 goto binop;
7973
7974 case LROTATE_EXPR:
7975 case RROTATE_EXPR:
7976 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
7977 || (GET_MODE_PRECISION (TYPE_MODE (type))
7978 == TYPE_PRECISION (type)));
7979 /* fall through */
7980
7981 case LSHIFT_EXPR:
7982 case RSHIFT_EXPR:
7983 /* If this is a fixed-point operation, then we cannot use the code
7984 below because "expand_shift" doesn't support sat/no-sat fixed-point
7985 shifts. */
7986 if (ALL_FIXED_POINT_MODE_P (mode))
7987 goto binop;
7988
7989 if (! safe_from_p (subtarget, treeop1, 1))
7990 subtarget = 0;
7991 if (modifier == EXPAND_STACK_PARM)
7992 target = 0;
7993 op0 = expand_expr (treeop0, subtarget,
7994 VOIDmode, EXPAND_NORMAL);
7995 temp = expand_shift (code, mode, op0, treeop1, target,
7996 unsignedp);
7997 if (code == LSHIFT_EXPR)
7998 temp = REDUCE_BIT_FIELD (temp);
7999 return temp;
8000
8001 /* Could determine the answer when only additive constants differ. Also,
8002 the addition of one can be handled by changing the condition. */
8003 case LT_EXPR:
8004 case LE_EXPR:
8005 case GT_EXPR:
8006 case GE_EXPR:
8007 case EQ_EXPR:
8008 case NE_EXPR:
8009 case UNORDERED_EXPR:
8010 case ORDERED_EXPR:
8011 case UNLT_EXPR:
8012 case UNLE_EXPR:
8013 case UNGT_EXPR:
8014 case UNGE_EXPR:
8015 case UNEQ_EXPR:
8016 case LTGT_EXPR:
8017 temp = do_store_flag (ops,
8018 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8019 tmode != VOIDmode ? tmode : mode);
8020 if (temp)
8021 return temp;
8022
8023 /* Use a compare and a jump for BLKmode comparisons, or for function
8024 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8025
8026 if ((target == 0
8027 || modifier == EXPAND_STACK_PARM
8028 || ! safe_from_p (target, treeop0, 1)
8029 || ! safe_from_p (target, treeop1, 1)
8030 /* Make sure we don't have a hard reg (such as function's return
8031 value) live across basic blocks, if not optimizing. */
8032 || (!optimize && REG_P (target)
8033 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8034 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8035
8036 emit_move_insn (target, const0_rtx);
8037
8038 op1 = gen_label_rtx ();
8039 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8040
8041 emit_move_insn (target, const1_rtx);
8042
8043 emit_label (op1);
8044 return target;
8045
8046 case TRUTH_NOT_EXPR:
8047 if (modifier == EXPAND_STACK_PARM)
8048 target = 0;
8049 op0 = expand_expr (treeop0, target,
8050 VOIDmode, EXPAND_NORMAL);
8051 /* The parser is careful to generate TRUTH_NOT_EXPR
8052 only with operands that are always zero or one. */
8053 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8054 target, 1, OPTAB_LIB_WIDEN);
8055 gcc_assert (temp);
8056 return temp;
8057
8058 case COMPLEX_EXPR:
8059 /* Get the rtx code of the operands. */
8060 op0 = expand_normal (treeop0);
8061 op1 = expand_normal (treeop1);
8062
8063 if (!target)
8064 target = gen_reg_rtx (TYPE_MODE (type));
8065
8066 /* Move the real (op0) and imaginary (op1) parts to their location. */
8067 write_complex_part (target, op0, false);
8068 write_complex_part (target, op1, true);
8069
8070 return target;
8071
8072 case WIDEN_SUM_EXPR:
8073 {
8074 tree oprnd0 = treeop0;
8075 tree oprnd1 = treeop1;
8076
8077 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8078 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8079 target, unsignedp);
8080 return target;
8081 }
8082
8083 case REDUC_MAX_EXPR:
8084 case REDUC_MIN_EXPR:
8085 case REDUC_PLUS_EXPR:
8086 {
8087 op0 = expand_normal (treeop0);
8088 this_optab = optab_for_tree_code (code, type, optab_default);
8089 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8090 gcc_assert (temp);
8091 return temp;
8092 }
8093
8094 case VEC_EXTRACT_EVEN_EXPR:
8095 case VEC_EXTRACT_ODD_EXPR:
8096 {
8097 expand_operands (treeop0, treeop1,
8098 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8099 this_optab = optab_for_tree_code (code, type, optab_default);
8100 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8101 OPTAB_WIDEN);
8102 gcc_assert (temp);
8103 return temp;
8104 }
8105
8106 case VEC_INTERLEAVE_HIGH_EXPR:
8107 case VEC_INTERLEAVE_LOW_EXPR:
8108 {
8109 expand_operands (treeop0, treeop1,
8110 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8111 this_optab = optab_for_tree_code (code, type, optab_default);
8112 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8113 OPTAB_WIDEN);
8114 gcc_assert (temp);
8115 return temp;
8116 }
8117
8118 case VEC_LSHIFT_EXPR:
8119 case VEC_RSHIFT_EXPR:
8120 {
8121 target = expand_vec_shift_expr (ops, target);
8122 return target;
8123 }
8124
8125 case VEC_UNPACK_HI_EXPR:
8126 case VEC_UNPACK_LO_EXPR:
8127 {
8128 op0 = expand_normal (treeop0);
8129 this_optab = optab_for_tree_code (code, type, optab_default);
8130 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8131 target, unsignedp);
8132 gcc_assert (temp);
8133 return temp;
8134 }
8135
8136 case VEC_UNPACK_FLOAT_HI_EXPR:
8137 case VEC_UNPACK_FLOAT_LO_EXPR:
8138 {
8139 op0 = expand_normal (treeop0);
8140 /* The signedness is determined from input operand. */
8141 this_optab = optab_for_tree_code (code,
8142 TREE_TYPE (treeop0),
8143 optab_default);
8144 temp = expand_widen_pattern_expr
8145 (ops, op0, NULL_RTX, NULL_RTX,
8146 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8147
8148 gcc_assert (temp);
8149 return temp;
8150 }
8151
8152 case VEC_WIDEN_MULT_HI_EXPR:
8153 case VEC_WIDEN_MULT_LO_EXPR:
8154 {
8155 tree oprnd0 = treeop0;
8156 tree oprnd1 = treeop1;
8157
8158 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8159 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8160 target, unsignedp);
8161 gcc_assert (target);
8162 return target;
8163 }
8164
8165 case VEC_PACK_TRUNC_EXPR:
8166 case VEC_PACK_SAT_EXPR:
8167 case VEC_PACK_FIX_TRUNC_EXPR:
8168 mode = TYPE_MODE (TREE_TYPE (treeop0));
8169 goto binop;
8170
8171 default:
8172 gcc_unreachable ();
8173 }
8174
8175 /* Here to do an ordinary binary operator. */
8176 binop:
8177 expand_operands (treeop0, treeop1,
8178 subtarget, &op0, &op1, EXPAND_NORMAL);
8179 binop2:
8180 this_optab = optab_for_tree_code (code, type, optab_default);
8181 binop3:
8182 if (modifier == EXPAND_STACK_PARM)
8183 target = 0;
8184 temp = expand_binop (mode, this_optab, op0, op1, target,
8185 unsignedp, OPTAB_LIB_WIDEN);
8186 gcc_assert (temp);
8187 return REDUCE_BIT_FIELD (temp);
8188 }
8189 #undef REDUCE_BIT_FIELD
8190
8191 rtx
8192 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8193 enum expand_modifier modifier, rtx *alt_rtl)
8194 {
8195 rtx op0, op1, temp, decl_rtl;
8196 tree type;
8197 int unsignedp;
8198 enum machine_mode mode;
8199 enum tree_code code = TREE_CODE (exp);
8200 optab this_optab;
8201 rtx subtarget, original_target;
8202 int ignore;
8203 tree context;
8204 bool reduce_bit_field;
8205 location_t loc = EXPR_LOCATION (exp);
8206 struct separate_ops ops;
8207 tree treeop0, treeop1, treeop2;
8208 tree ssa_name = NULL_TREE;
8209 gimple g;
8210
8211 type = TREE_TYPE (exp);
8212 mode = TYPE_MODE (type);
8213 unsignedp = TYPE_UNSIGNED (type);
8214
8215 treeop0 = treeop1 = treeop2 = NULL_TREE;
8216 if (!VL_EXP_CLASS_P (exp))
8217 switch (TREE_CODE_LENGTH (code))
8218 {
8219 default:
8220 case 3: treeop2 = TREE_OPERAND (exp, 2);
8221 case 2: treeop1 = TREE_OPERAND (exp, 1);
8222 case 1: treeop0 = TREE_OPERAND (exp, 0);
8223 case 0: break;
8224 }
8225 ops.code = code;
8226 ops.type = type;
8227 ops.op0 = treeop0;
8228 ops.op1 = treeop1;
8229 ops.op2 = treeop2;
8230 ops.location = loc;
8231
8232 ignore = (target == const0_rtx
8233 || ((CONVERT_EXPR_CODE_P (code)
8234 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8235 && TREE_CODE (type) == VOID_TYPE));
8236
8237 /* An operation in what may be a bit-field type needs the
8238 result to be reduced to the precision of the bit-field type,
8239 which is narrower than that of the type's mode. */
8240 reduce_bit_field = (!ignore
8241 && TREE_CODE (type) == INTEGER_TYPE
8242 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8243
8244 /* If we are going to ignore this result, we need only do something
8245 if there is a side-effect somewhere in the expression. If there
8246 is, short-circuit the most common cases here. Note that we must
8247 not call expand_expr with anything but const0_rtx in case this
8248 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8249
8250 if (ignore)
8251 {
8252 if (! TREE_SIDE_EFFECTS (exp))
8253 return const0_rtx;
8254
8255 /* Ensure we reference a volatile object even if value is ignored, but
8256 don't do this if all we are doing is taking its address. */
8257 if (TREE_THIS_VOLATILE (exp)
8258 && TREE_CODE (exp) != FUNCTION_DECL
8259 && mode != VOIDmode && mode != BLKmode
8260 && modifier != EXPAND_CONST_ADDRESS)
8261 {
8262 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8263 if (MEM_P (temp))
8264 temp = copy_to_reg (temp);
8265 return const0_rtx;
8266 }
8267
8268 if (TREE_CODE_CLASS (code) == tcc_unary
8269 || code == COMPONENT_REF || code == INDIRECT_REF)
8270 return expand_expr (treeop0, const0_rtx, VOIDmode,
8271 modifier);
8272
8273 else if (TREE_CODE_CLASS (code) == tcc_binary
8274 || TREE_CODE_CLASS (code) == tcc_comparison
8275 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8276 {
8277 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8278 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8279 return const0_rtx;
8280 }
8281 else if (code == BIT_FIELD_REF)
8282 {
8283 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8284 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8285 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8286 return const0_rtx;
8287 }
8288
8289 target = 0;
8290 }
8291
8292 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8293 target = 0;
8294
8295 /* Use subtarget as the target for operand 0 of a binary operation. */
8296 subtarget = get_subtarget (target);
8297 original_target = target;
8298
8299 switch (code)
8300 {
8301 case LABEL_DECL:
8302 {
8303 tree function = decl_function_context (exp);
8304
8305 temp = label_rtx (exp);
8306 temp = gen_rtx_LABEL_REF (Pmode, temp);
8307
8308 if (function != current_function_decl
8309 && function != 0)
8310 LABEL_REF_NONLOCAL_P (temp) = 1;
8311
8312 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8313 return temp;
8314 }
8315
8316 case SSA_NAME:
8317 /* ??? ivopts calls expander, without any preparation from
8318 out-of-ssa. So fake instructions as if this was an access to the
8319 base variable. This unnecessarily allocates a pseudo, see how we can
8320 reuse it, if partition base vars have it set already. */
8321 if (!currently_expanding_to_rtl)
8322 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8323 NULL);
8324
8325 g = get_gimple_for_ssa_name (exp);
8326 if (g)
8327 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8328 modifier, NULL);
8329
8330 ssa_name = exp;
8331 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8332 exp = SSA_NAME_VAR (ssa_name);
8333 goto expand_decl_rtl;
8334
8335 case PARM_DECL:
8336 case VAR_DECL:
8337 /* If a static var's type was incomplete when the decl was written,
8338 but the type is complete now, lay out the decl now. */
8339 if (DECL_SIZE (exp) == 0
8340 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8341 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8342 layout_decl (exp, 0);
8343
8344 /* TLS emulation hook - replace __thread vars with
8345 *__emutls_get_address (&_emutls.var). */
8346 if (! targetm.have_tls
8347 && TREE_CODE (exp) == VAR_DECL
8348 && DECL_THREAD_LOCAL_P (exp))
8349 {
8350 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8351 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8352 }
8353
8354 /* ... fall through ... */
8355
8356 case FUNCTION_DECL:
8357 case RESULT_DECL:
8358 decl_rtl = DECL_RTL (exp);
8359 expand_decl_rtl:
8360 gcc_assert (decl_rtl);
8361 decl_rtl = copy_rtx (decl_rtl);
8362 /* Record writes to register variables. */
8363 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8364 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8365 {
8366 int i = REGNO (decl_rtl);
8367 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8368 while (nregs)
8369 {
8370 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8371 i++;
8372 nregs--;
8373 }
8374 }
8375
8376 /* Ensure variable marked as used even if it doesn't go through
8377 a parser. If it hasn't be used yet, write out an external
8378 definition. */
8379 if (! TREE_USED (exp))
8380 {
8381 assemble_external (exp);
8382 TREE_USED (exp) = 1;
8383 }
8384
8385 /* Show we haven't gotten RTL for this yet. */
8386 temp = 0;
8387
8388 /* Variables inherited from containing functions should have
8389 been lowered by this point. */
8390 context = decl_function_context (exp);
8391 gcc_assert (!context
8392 || context == current_function_decl
8393 || TREE_STATIC (exp)
8394 /* ??? C++ creates functions that are not TREE_STATIC. */
8395 || TREE_CODE (exp) == FUNCTION_DECL);
8396
8397 /* This is the case of an array whose size is to be determined
8398 from its initializer, while the initializer is still being parsed.
8399 See expand_decl. */
8400
8401 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8402 temp = validize_mem (decl_rtl);
8403
8404 /* If DECL_RTL is memory, we are in the normal case and the
8405 address is not valid, get the address into a register. */
8406
8407 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8408 {
8409 if (alt_rtl)
8410 *alt_rtl = decl_rtl;
8411 decl_rtl = use_anchored_address (decl_rtl);
8412 if (modifier != EXPAND_CONST_ADDRESS
8413 && modifier != EXPAND_SUM
8414 && !memory_address_addr_space_p (DECL_MODE (exp),
8415 XEXP (decl_rtl, 0),
8416 MEM_ADDR_SPACE (decl_rtl)))
8417 temp = replace_equiv_address (decl_rtl,
8418 copy_rtx (XEXP (decl_rtl, 0)));
8419 }
8420
8421 /* If we got something, return it. But first, set the alignment
8422 if the address is a register. */
8423 if (temp != 0)
8424 {
8425 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8426 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8427
8428 return temp;
8429 }
8430
8431 /* If the mode of DECL_RTL does not match that of the decl, it
8432 must be a promoted value. We return a SUBREG of the wanted mode,
8433 but mark it so that we know that it was already extended. */
8434 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8435 {
8436 enum machine_mode pmode;
8437
8438 /* Get the signedness to be used for this variable. Ensure we get
8439 the same mode we got when the variable was declared. */
8440 if (code == SSA_NAME
8441 && (g = SSA_NAME_DEF_STMT (ssa_name))
8442 && gimple_code (g) == GIMPLE_CALL)
8443 pmode = promote_function_mode (type, mode, &unsignedp,
8444 TREE_TYPE
8445 (TREE_TYPE (gimple_call_fn (g))),
8446 2);
8447 else
8448 pmode = promote_decl_mode (exp, &unsignedp);
8449 gcc_assert (GET_MODE (decl_rtl) == pmode);
8450
8451 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8452 SUBREG_PROMOTED_VAR_P (temp) = 1;
8453 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8454 return temp;
8455 }
8456
8457 return decl_rtl;
8458
8459 case INTEGER_CST:
8460 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8461 TREE_INT_CST_HIGH (exp), mode);
8462
8463 return temp;
8464
8465 case VECTOR_CST:
8466 {
8467 tree tmp = NULL_TREE;
8468 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8469 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8470 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8471 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8472 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8473 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8474 return const_vector_from_tree (exp);
8475 if (GET_MODE_CLASS (mode) == MODE_INT)
8476 {
8477 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8478 if (type_for_mode)
8479 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8480 }
8481 if (!tmp)
8482 tmp = build_constructor_from_list (type,
8483 TREE_VECTOR_CST_ELTS (exp));
8484 return expand_expr (tmp, ignore ? const0_rtx : target,
8485 tmode, modifier);
8486 }
8487
8488 case CONST_DECL:
8489 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8490
8491 case REAL_CST:
8492 /* If optimized, generate immediate CONST_DOUBLE
8493 which will be turned into memory by reload if necessary.
8494
8495 We used to force a register so that loop.c could see it. But
8496 this does not allow gen_* patterns to perform optimizations with
8497 the constants. It also produces two insns in cases like "x = 1.0;".
8498 On most machines, floating-point constants are not permitted in
8499 many insns, so we'd end up copying it to a register in any case.
8500
8501 Now, we do the copying in expand_binop, if appropriate. */
8502 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8503 TYPE_MODE (TREE_TYPE (exp)));
8504
8505 case FIXED_CST:
8506 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8507 TYPE_MODE (TREE_TYPE (exp)));
8508
8509 case COMPLEX_CST:
8510 /* Handle evaluating a complex constant in a CONCAT target. */
8511 if (original_target && GET_CODE (original_target) == CONCAT)
8512 {
8513 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8514 rtx rtarg, itarg;
8515
8516 rtarg = XEXP (original_target, 0);
8517 itarg = XEXP (original_target, 1);
8518
8519 /* Move the real and imaginary parts separately. */
8520 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8521 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8522
8523 if (op0 != rtarg)
8524 emit_move_insn (rtarg, op0);
8525 if (op1 != itarg)
8526 emit_move_insn (itarg, op1);
8527
8528 return original_target;
8529 }
8530
8531 /* ... fall through ... */
8532
8533 case STRING_CST:
8534 temp = expand_expr_constant (exp, 1, modifier);
8535
8536 /* temp contains a constant address.
8537 On RISC machines where a constant address isn't valid,
8538 make some insns to get that address into a register. */
8539 if (modifier != EXPAND_CONST_ADDRESS
8540 && modifier != EXPAND_INITIALIZER
8541 && modifier != EXPAND_SUM
8542 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8543 MEM_ADDR_SPACE (temp)))
8544 return replace_equiv_address (temp,
8545 copy_rtx (XEXP (temp, 0)));
8546 return temp;
8547
8548 case SAVE_EXPR:
8549 {
8550 tree val = treeop0;
8551 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8552
8553 if (!SAVE_EXPR_RESOLVED_P (exp))
8554 {
8555 /* We can indeed still hit this case, typically via builtin
8556 expanders calling save_expr immediately before expanding
8557 something. Assume this means that we only have to deal
8558 with non-BLKmode values. */
8559 gcc_assert (GET_MODE (ret) != BLKmode);
8560
8561 val = build_decl (EXPR_LOCATION (exp),
8562 VAR_DECL, NULL, TREE_TYPE (exp));
8563 DECL_ARTIFICIAL (val) = 1;
8564 DECL_IGNORED_P (val) = 1;
8565 treeop0 = val;
8566 TREE_OPERAND (exp, 0) = treeop0;
8567 SAVE_EXPR_RESOLVED_P (exp) = 1;
8568
8569 if (!CONSTANT_P (ret))
8570 ret = copy_to_reg (ret);
8571 SET_DECL_RTL (val, ret);
8572 }
8573
8574 return ret;
8575 }
8576
8577
8578 case CONSTRUCTOR:
8579 /* If we don't need the result, just ensure we evaluate any
8580 subexpressions. */
8581 if (ignore)
8582 {
8583 unsigned HOST_WIDE_INT idx;
8584 tree value;
8585
8586 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8587 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8588
8589 return const0_rtx;
8590 }
8591
8592 return expand_constructor (exp, target, modifier, false);
8593
8594 case MISALIGNED_INDIRECT_REF:
8595 case ALIGN_INDIRECT_REF:
8596 case INDIRECT_REF:
8597 {
8598 tree exp1 = treeop0;
8599 addr_space_t as = ADDR_SPACE_GENERIC;
8600 enum machine_mode address_mode = Pmode;
8601
8602 if (modifier != EXPAND_WRITE)
8603 {
8604 tree t;
8605
8606 t = fold_read_from_constant_string (exp);
8607 if (t)
8608 return expand_expr (t, target, tmode, modifier);
8609 }
8610
8611 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8612 {
8613 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8614 address_mode = targetm.addr_space.address_mode (as);
8615 }
8616
8617 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8618 op0 = memory_address_addr_space (mode, op0, as);
8619
8620 if (code == ALIGN_INDIRECT_REF)
8621 {
8622 int align = TYPE_ALIGN_UNIT (type);
8623 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8624 op0 = memory_address_addr_space (mode, op0, as);
8625 }
8626
8627 temp = gen_rtx_MEM (mode, op0);
8628
8629 set_mem_attributes (temp, exp, 0);
8630 set_mem_addr_space (temp, as);
8631
8632 /* Resolve the misalignment now, so that we don't have to remember
8633 to resolve it later. Of course, this only works for reads. */
8634 if (code == MISALIGNED_INDIRECT_REF)
8635 {
8636 int icode;
8637 rtx reg, insn;
8638
8639 gcc_assert (modifier == EXPAND_NORMAL
8640 || modifier == EXPAND_STACK_PARM);
8641
8642 /* The vectorizer should have already checked the mode. */
8643 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8644 gcc_assert (icode != CODE_FOR_nothing);
8645
8646 /* We've already validated the memory, and we're creating a
8647 new pseudo destination. The predicates really can't fail. */
8648 reg = gen_reg_rtx (mode);
8649
8650 /* Nor can the insn generator. */
8651 insn = GEN_FCN (icode) (reg, temp);
8652 emit_insn (insn);
8653
8654 return reg;
8655 }
8656
8657 return temp;
8658 }
8659
8660 case TARGET_MEM_REF:
8661 {
8662 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8663 struct mem_address addr;
8664 tree base;
8665
8666 get_address_description (exp, &addr);
8667 op0 = addr_for_mem_ref (&addr, as, true);
8668 op0 = memory_address_addr_space (mode, op0, as);
8669 temp = gen_rtx_MEM (mode, op0);
8670 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8671 set_mem_addr_space (temp, as);
8672 base = get_base_address (TMR_ORIGINAL (exp));
8673 if (INDIRECT_REF_P (base)
8674 && TMR_BASE (exp)
8675 && TREE_CODE (TMR_BASE (exp)) == SSA_NAME
8676 && POINTER_TYPE_P (TREE_TYPE (TMR_BASE (exp))))
8677 {
8678 set_mem_expr (temp, build1 (INDIRECT_REF,
8679 TREE_TYPE (exp), TMR_BASE (exp)));
8680 set_mem_offset (temp, NULL_RTX);
8681 }
8682 }
8683 return temp;
8684
8685 case ARRAY_REF:
8686
8687 {
8688 tree array = treeop0;
8689 tree index = treeop1;
8690
8691 /* Fold an expression like: "foo"[2].
8692 This is not done in fold so it won't happen inside &.
8693 Don't fold if this is for wide characters since it's too
8694 difficult to do correctly and this is a very rare case. */
8695
8696 if (modifier != EXPAND_CONST_ADDRESS
8697 && modifier != EXPAND_INITIALIZER
8698 && modifier != EXPAND_MEMORY)
8699 {
8700 tree t = fold_read_from_constant_string (exp);
8701
8702 if (t)
8703 return expand_expr (t, target, tmode, modifier);
8704 }
8705
8706 /* If this is a constant index into a constant array,
8707 just get the value from the array. Handle both the cases when
8708 we have an explicit constructor and when our operand is a variable
8709 that was declared const. */
8710
8711 if (modifier != EXPAND_CONST_ADDRESS
8712 && modifier != EXPAND_INITIALIZER
8713 && modifier != EXPAND_MEMORY
8714 && TREE_CODE (array) == CONSTRUCTOR
8715 && ! TREE_SIDE_EFFECTS (array)
8716 && TREE_CODE (index) == INTEGER_CST)
8717 {
8718 unsigned HOST_WIDE_INT ix;
8719 tree field, value;
8720
8721 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8722 field, value)
8723 if (tree_int_cst_equal (field, index))
8724 {
8725 if (!TREE_SIDE_EFFECTS (value))
8726 return expand_expr (fold (value), target, tmode, modifier);
8727 break;
8728 }
8729 }
8730
8731 else if (optimize >= 1
8732 && modifier != EXPAND_CONST_ADDRESS
8733 && modifier != EXPAND_INITIALIZER
8734 && modifier != EXPAND_MEMORY
8735 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8736 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8737 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8738 && targetm.binds_local_p (array))
8739 {
8740 if (TREE_CODE (index) == INTEGER_CST)
8741 {
8742 tree init = DECL_INITIAL (array);
8743
8744 if (TREE_CODE (init) == CONSTRUCTOR)
8745 {
8746 unsigned HOST_WIDE_INT ix;
8747 tree field, value;
8748
8749 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8750 field, value)
8751 if (tree_int_cst_equal (field, index))
8752 {
8753 if (TREE_SIDE_EFFECTS (value))
8754 break;
8755
8756 if (TREE_CODE (value) == CONSTRUCTOR)
8757 {
8758 /* If VALUE is a CONSTRUCTOR, this
8759 optimization is only useful if
8760 this doesn't store the CONSTRUCTOR
8761 into memory. If it does, it is more
8762 efficient to just load the data from
8763 the array directly. */
8764 rtx ret = expand_constructor (value, target,
8765 modifier, true);
8766 if (ret == NULL_RTX)
8767 break;
8768 }
8769
8770 return expand_expr (fold (value), target, tmode,
8771 modifier);
8772 }
8773 }
8774 else if(TREE_CODE (init) == STRING_CST)
8775 {
8776 tree index1 = index;
8777 tree low_bound = array_ref_low_bound (exp);
8778 index1 = fold_convert_loc (loc, sizetype,
8779 treeop1);
8780
8781 /* Optimize the special-case of a zero lower bound.
8782
8783 We convert the low_bound to sizetype to avoid some problems
8784 with constant folding. (E.g. suppose the lower bound is 1,
8785 and its mode is QI. Without the conversion,l (ARRAY
8786 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8787 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8788
8789 if (! integer_zerop (low_bound))
8790 index1 = size_diffop_loc (loc, index1,
8791 fold_convert_loc (loc, sizetype,
8792 low_bound));
8793
8794 if (0 > compare_tree_int (index1,
8795 TREE_STRING_LENGTH (init)))
8796 {
8797 tree type = TREE_TYPE (TREE_TYPE (init));
8798 enum machine_mode mode = TYPE_MODE (type);
8799
8800 if (GET_MODE_CLASS (mode) == MODE_INT
8801 && GET_MODE_SIZE (mode) == 1)
8802 return gen_int_mode (TREE_STRING_POINTER (init)
8803 [TREE_INT_CST_LOW (index1)],
8804 mode);
8805 }
8806 }
8807 }
8808 }
8809 }
8810 goto normal_inner_ref;
8811
8812 case COMPONENT_REF:
8813 /* If the operand is a CONSTRUCTOR, we can just extract the
8814 appropriate field if it is present. */
8815 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8816 {
8817 unsigned HOST_WIDE_INT idx;
8818 tree field, value;
8819
8820 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8821 idx, field, value)
8822 if (field == treeop1
8823 /* We can normally use the value of the field in the
8824 CONSTRUCTOR. However, if this is a bitfield in
8825 an integral mode that we can fit in a HOST_WIDE_INT,
8826 we must mask only the number of bits in the bitfield,
8827 since this is done implicitly by the constructor. If
8828 the bitfield does not meet either of those conditions,
8829 we can't do this optimization. */
8830 && (! DECL_BIT_FIELD (field)
8831 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8832 && (GET_MODE_BITSIZE (DECL_MODE (field))
8833 <= HOST_BITS_PER_WIDE_INT))))
8834 {
8835 if (DECL_BIT_FIELD (field)
8836 && modifier == EXPAND_STACK_PARM)
8837 target = 0;
8838 op0 = expand_expr (value, target, tmode, modifier);
8839 if (DECL_BIT_FIELD (field))
8840 {
8841 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8842 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8843
8844 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8845 {
8846 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8847 op0 = expand_and (imode, op0, op1, target);
8848 }
8849 else
8850 {
8851 tree count
8852 = build_int_cst (NULL_TREE,
8853 GET_MODE_BITSIZE (imode) - bitsize);
8854
8855 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8856 target, 0);
8857 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8858 target, 0);
8859 }
8860 }
8861
8862 return op0;
8863 }
8864 }
8865 goto normal_inner_ref;
8866
8867 case BIT_FIELD_REF:
8868 case ARRAY_RANGE_REF:
8869 normal_inner_ref:
8870 {
8871 enum machine_mode mode1, mode2;
8872 HOST_WIDE_INT bitsize, bitpos;
8873 tree offset;
8874 int volatilep = 0, must_force_mem;
8875 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8876 &mode1, &unsignedp, &volatilep, true);
8877 rtx orig_op0, memloc;
8878
8879 /* If we got back the original object, something is wrong. Perhaps
8880 we are evaluating an expression too early. In any event, don't
8881 infinitely recurse. */
8882 gcc_assert (tem != exp);
8883
8884 /* If TEM's type is a union of variable size, pass TARGET to the inner
8885 computation, since it will need a temporary and TARGET is known
8886 to have to do. This occurs in unchecked conversion in Ada. */
8887 orig_op0 = op0
8888 = expand_expr (tem,
8889 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8890 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8891 != INTEGER_CST)
8892 && modifier != EXPAND_STACK_PARM
8893 ? target : NULL_RTX),
8894 VOIDmode,
8895 (modifier == EXPAND_INITIALIZER
8896 || modifier == EXPAND_CONST_ADDRESS
8897 || modifier == EXPAND_STACK_PARM)
8898 ? modifier : EXPAND_NORMAL);
8899
8900
8901 /* If the bitfield is volatile, we want to access it in the
8902 field's mode, not the computed mode. */
8903 if (volatilep
8904 && GET_CODE (op0) == MEM
8905 && flag_strict_volatile_bitfields > 0)
8906 op0 = adjust_address (op0, mode1, 0);
8907
8908 mode2
8909 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8910
8911 /* If we have either an offset, a BLKmode result, or a reference
8912 outside the underlying object, we must force it to memory.
8913 Such a case can occur in Ada if we have unchecked conversion
8914 of an expression from a scalar type to an aggregate type or
8915 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8916 passed a partially uninitialized object or a view-conversion
8917 to a larger size. */
8918 must_force_mem = (offset
8919 || mode1 == BLKmode
8920 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8921
8922 /* Handle CONCAT first. */
8923 if (GET_CODE (op0) == CONCAT && !must_force_mem)
8924 {
8925 if (bitpos == 0
8926 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
8927 return op0;
8928 if (bitpos == 0
8929 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8930 && bitsize)
8931 {
8932 op0 = XEXP (op0, 0);
8933 mode2 = GET_MODE (op0);
8934 }
8935 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8936 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
8937 && bitpos
8938 && bitsize)
8939 {
8940 op0 = XEXP (op0, 1);
8941 bitpos = 0;
8942 mode2 = GET_MODE (op0);
8943 }
8944 else
8945 /* Otherwise force into memory. */
8946 must_force_mem = 1;
8947 }
8948
8949 /* If this is a constant, put it in a register if it is a legitimate
8950 constant and we don't need a memory reference. */
8951 if (CONSTANT_P (op0)
8952 && mode2 != BLKmode
8953 && LEGITIMATE_CONSTANT_P (op0)
8954 && !must_force_mem)
8955 op0 = force_reg (mode2, op0);
8956
8957 /* Otherwise, if this is a constant, try to force it to the constant
8958 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
8959 is a legitimate constant. */
8960 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
8961 op0 = validize_mem (memloc);
8962
8963 /* Otherwise, if this is a constant or the object is not in memory
8964 and need be, put it there. */
8965 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
8966 {
8967 tree nt = build_qualified_type (TREE_TYPE (tem),
8968 (TYPE_QUALS (TREE_TYPE (tem))
8969 | TYPE_QUAL_CONST));
8970 memloc = assign_temp (nt, 1, 1, 1);
8971 emit_move_insn (memloc, op0);
8972 op0 = memloc;
8973 }
8974
8975 if (offset)
8976 {
8977 enum machine_mode address_mode;
8978 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
8979 EXPAND_SUM);
8980
8981 gcc_assert (MEM_P (op0));
8982
8983 address_mode
8984 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
8985 if (GET_MODE (offset_rtx) != address_mode)
8986 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
8987
8988 if (GET_MODE (op0) == BLKmode
8989 /* A constant address in OP0 can have VOIDmode, we must
8990 not try to call force_reg in that case. */
8991 && GET_MODE (XEXP (op0, 0)) != VOIDmode
8992 && bitsize != 0
8993 && (bitpos % bitsize) == 0
8994 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
8995 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
8996 {
8997 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
8998 bitpos = 0;
8999 }
9000
9001 op0 = offset_address (op0, offset_rtx,
9002 highest_pow2_factor (offset));
9003 }
9004
9005 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9006 record its alignment as BIGGEST_ALIGNMENT. */
9007 if (MEM_P (op0) && bitpos == 0 && offset != 0
9008 && is_aligning_offset (offset, tem))
9009 set_mem_align (op0, BIGGEST_ALIGNMENT);
9010
9011 /* Don't forget about volatility even if this is a bitfield. */
9012 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9013 {
9014 if (op0 == orig_op0)
9015 op0 = copy_rtx (op0);
9016
9017 MEM_VOLATILE_P (op0) = 1;
9018 }
9019
9020 /* In cases where an aligned union has an unaligned object
9021 as a field, we might be extracting a BLKmode value from
9022 an integer-mode (e.g., SImode) object. Handle this case
9023 by doing the extract into an object as wide as the field
9024 (which we know to be the width of a basic mode), then
9025 storing into memory, and changing the mode to BLKmode. */
9026 if (mode1 == VOIDmode
9027 || REG_P (op0) || GET_CODE (op0) == SUBREG
9028 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9029 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9030 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9031 && modifier != EXPAND_CONST_ADDRESS
9032 && modifier != EXPAND_INITIALIZER)
9033 /* If the field is volatile, we always want an aligned
9034 access. */
9035 || (volatilep && flag_strict_volatile_bitfields > 0)
9036 /* If the field isn't aligned enough to fetch as a memref,
9037 fetch it as a bit field. */
9038 || (mode1 != BLKmode
9039 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9040 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9041 || (MEM_P (op0)
9042 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9043 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9044 && ((modifier == EXPAND_CONST_ADDRESS
9045 || modifier == EXPAND_INITIALIZER)
9046 ? STRICT_ALIGNMENT
9047 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9048 || (bitpos % BITS_PER_UNIT != 0)))
9049 /* If the type and the field are a constant size and the
9050 size of the type isn't the same size as the bitfield,
9051 we must use bitfield operations. */
9052 || (bitsize >= 0
9053 && TYPE_SIZE (TREE_TYPE (exp))
9054 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9055 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9056 bitsize)))
9057 {
9058 enum machine_mode ext_mode = mode;
9059
9060 if (ext_mode == BLKmode
9061 && ! (target != 0 && MEM_P (op0)
9062 && MEM_P (target)
9063 && bitpos % BITS_PER_UNIT == 0))
9064 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9065
9066 if (ext_mode == BLKmode)
9067 {
9068 if (target == 0)
9069 target = assign_temp (type, 0, 1, 1);
9070
9071 if (bitsize == 0)
9072 return target;
9073
9074 /* In this case, BITPOS must start at a byte boundary and
9075 TARGET, if specified, must be a MEM. */
9076 gcc_assert (MEM_P (op0)
9077 && (!target || MEM_P (target))
9078 && !(bitpos % BITS_PER_UNIT));
9079
9080 emit_block_move (target,
9081 adjust_address (op0, VOIDmode,
9082 bitpos / BITS_PER_UNIT),
9083 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9084 / BITS_PER_UNIT),
9085 (modifier == EXPAND_STACK_PARM
9086 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9087
9088 return target;
9089 }
9090
9091 op0 = validize_mem (op0);
9092
9093 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9094 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9095
9096 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9097 (modifier == EXPAND_STACK_PARM
9098 ? NULL_RTX : target),
9099 ext_mode, ext_mode);
9100
9101 /* If the result is a record type and BITSIZE is narrower than
9102 the mode of OP0, an integral mode, and this is a big endian
9103 machine, we must put the field into the high-order bits. */
9104 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9105 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9106 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9107 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9108 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9109 - bitsize),
9110 op0, 1);
9111
9112 /* If the result type is BLKmode, store the data into a temporary
9113 of the appropriate type, but with the mode corresponding to the
9114 mode for the data we have (op0's mode). It's tempting to make
9115 this a constant type, since we know it's only being stored once,
9116 but that can cause problems if we are taking the address of this
9117 COMPONENT_REF because the MEM of any reference via that address
9118 will have flags corresponding to the type, which will not
9119 necessarily be constant. */
9120 if (mode == BLKmode)
9121 {
9122 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9123 rtx new_rtx;
9124
9125 /* If the reference doesn't use the alias set of its type,
9126 we cannot create the temporary using that type. */
9127 if (component_uses_parent_alias_set (exp))
9128 {
9129 new_rtx = assign_stack_local (ext_mode, size, 0);
9130 set_mem_alias_set (new_rtx, get_alias_set (exp));
9131 }
9132 else
9133 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9134
9135 emit_move_insn (new_rtx, op0);
9136 op0 = copy_rtx (new_rtx);
9137 PUT_MODE (op0, BLKmode);
9138 set_mem_attributes (op0, exp, 1);
9139 }
9140
9141 return op0;
9142 }
9143
9144 /* If the result is BLKmode, use that to access the object
9145 now as well. */
9146 if (mode == BLKmode)
9147 mode1 = BLKmode;
9148
9149 /* Get a reference to just this component. */
9150 if (modifier == EXPAND_CONST_ADDRESS
9151 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9152 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9153 else
9154 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9155
9156 if (op0 == orig_op0)
9157 op0 = copy_rtx (op0);
9158
9159 set_mem_attributes (op0, exp, 0);
9160 if (REG_P (XEXP (op0, 0)))
9161 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9162
9163 MEM_VOLATILE_P (op0) |= volatilep;
9164 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9165 || modifier == EXPAND_CONST_ADDRESS
9166 || modifier == EXPAND_INITIALIZER)
9167 return op0;
9168 else if (target == 0)
9169 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9170
9171 convert_move (target, op0, unsignedp);
9172 return target;
9173 }
9174
9175 case OBJ_TYPE_REF:
9176 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9177
9178 case CALL_EXPR:
9179 /* All valid uses of __builtin_va_arg_pack () are removed during
9180 inlining. */
9181 if (CALL_EXPR_VA_ARG_PACK (exp))
9182 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9183 {
9184 tree fndecl = get_callee_fndecl (exp), attr;
9185
9186 if (fndecl
9187 && (attr = lookup_attribute ("error",
9188 DECL_ATTRIBUTES (fndecl))) != NULL)
9189 error ("%Kcall to %qs declared with attribute error: %s",
9190 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9191 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9192 if (fndecl
9193 && (attr = lookup_attribute ("warning",
9194 DECL_ATTRIBUTES (fndecl))) != NULL)
9195 warning_at (tree_nonartificial_location (exp),
9196 0, "%Kcall to %qs declared with attribute warning: %s",
9197 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9198 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9199
9200 /* Check for a built-in function. */
9201 if (fndecl && DECL_BUILT_IN (fndecl))
9202 {
9203 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9204 return expand_builtin (exp, target, subtarget, tmode, ignore);
9205 }
9206 }
9207 return expand_call (exp, target, ignore);
9208
9209 case VIEW_CONVERT_EXPR:
9210 op0 = NULL_RTX;
9211
9212 /* If we are converting to BLKmode, try to avoid an intermediate
9213 temporary by fetching an inner memory reference. */
9214 if (mode == BLKmode
9215 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9216 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9217 && handled_component_p (treeop0))
9218 {
9219 enum machine_mode mode1;
9220 HOST_WIDE_INT bitsize, bitpos;
9221 tree offset;
9222 int unsignedp;
9223 int volatilep = 0;
9224 tree tem
9225 = get_inner_reference (treeop0, &bitsize, &bitpos,
9226 &offset, &mode1, &unsignedp, &volatilep,
9227 true);
9228 rtx orig_op0;
9229
9230 /* ??? We should work harder and deal with non-zero offsets. */
9231 if (!offset
9232 && (bitpos % BITS_PER_UNIT) == 0
9233 && bitsize >= 0
9234 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9235 {
9236 /* See the normal_inner_ref case for the rationale. */
9237 orig_op0
9238 = expand_expr (tem,
9239 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9240 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9241 != INTEGER_CST)
9242 && modifier != EXPAND_STACK_PARM
9243 ? target : NULL_RTX),
9244 VOIDmode,
9245 (modifier == EXPAND_INITIALIZER
9246 || modifier == EXPAND_CONST_ADDRESS
9247 || modifier == EXPAND_STACK_PARM)
9248 ? modifier : EXPAND_NORMAL);
9249
9250 if (MEM_P (orig_op0))
9251 {
9252 op0 = orig_op0;
9253
9254 /* Get a reference to just this component. */
9255 if (modifier == EXPAND_CONST_ADDRESS
9256 || modifier == EXPAND_SUM
9257 || modifier == EXPAND_INITIALIZER)
9258 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9259 else
9260 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9261
9262 if (op0 == orig_op0)
9263 op0 = copy_rtx (op0);
9264
9265 set_mem_attributes (op0, treeop0, 0);
9266 if (REG_P (XEXP (op0, 0)))
9267 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9268
9269 MEM_VOLATILE_P (op0) |= volatilep;
9270 }
9271 }
9272 }
9273
9274 if (!op0)
9275 op0 = expand_expr (treeop0,
9276 NULL_RTX, VOIDmode, modifier);
9277
9278 /* If the input and output modes are both the same, we are done. */
9279 if (mode == GET_MODE (op0))
9280 ;
9281 /* If neither mode is BLKmode, and both modes are the same size
9282 then we can use gen_lowpart. */
9283 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9284 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9285 && !COMPLEX_MODE_P (GET_MODE (op0)))
9286 {
9287 if (GET_CODE (op0) == SUBREG)
9288 op0 = force_reg (GET_MODE (op0), op0);
9289 op0 = gen_lowpart (mode, op0);
9290 }
9291 /* If both types are integral, convert from one mode to the other. */
9292 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9293 op0 = convert_modes (mode, GET_MODE (op0), op0,
9294 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9295 /* As a last resort, spill op0 to memory, and reload it in a
9296 different mode. */
9297 else if (!MEM_P (op0))
9298 {
9299 /* If the operand is not a MEM, force it into memory. Since we
9300 are going to be changing the mode of the MEM, don't call
9301 force_const_mem for constants because we don't allow pool
9302 constants to change mode. */
9303 tree inner_type = TREE_TYPE (treeop0);
9304
9305 gcc_assert (!TREE_ADDRESSABLE (exp));
9306
9307 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9308 target
9309 = assign_stack_temp_for_type
9310 (TYPE_MODE (inner_type),
9311 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9312
9313 emit_move_insn (target, op0);
9314 op0 = target;
9315 }
9316
9317 /* At this point, OP0 is in the correct mode. If the output type is
9318 such that the operand is known to be aligned, indicate that it is.
9319 Otherwise, we need only be concerned about alignment for non-BLKmode
9320 results. */
9321 if (MEM_P (op0))
9322 {
9323 op0 = copy_rtx (op0);
9324
9325 if (TYPE_ALIGN_OK (type))
9326 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9327 else if (STRICT_ALIGNMENT
9328 && mode != BLKmode
9329 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9330 {
9331 tree inner_type = TREE_TYPE (treeop0);
9332 HOST_WIDE_INT temp_size
9333 = MAX (int_size_in_bytes (inner_type),
9334 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9335 rtx new_rtx
9336 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9337 rtx new_with_op0_mode
9338 = adjust_address (new_rtx, GET_MODE (op0), 0);
9339
9340 gcc_assert (!TREE_ADDRESSABLE (exp));
9341
9342 if (GET_MODE (op0) == BLKmode)
9343 emit_block_move (new_with_op0_mode, op0,
9344 GEN_INT (GET_MODE_SIZE (mode)),
9345 (modifier == EXPAND_STACK_PARM
9346 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9347 else
9348 emit_move_insn (new_with_op0_mode, op0);
9349
9350 op0 = new_rtx;
9351 }
9352
9353 op0 = adjust_address (op0, mode, 0);
9354 }
9355
9356 return op0;
9357
9358 /* Use a compare and a jump for BLKmode comparisons, or for function
9359 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9360
9361 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9362 are occassionally created by folding during expansion. */
9363 case TRUTH_ANDIF_EXPR:
9364 case TRUTH_ORIF_EXPR:
9365 if (! ignore
9366 && (target == 0
9367 || modifier == EXPAND_STACK_PARM
9368 || ! safe_from_p (target, treeop0, 1)
9369 || ! safe_from_p (target, treeop1, 1)
9370 /* Make sure we don't have a hard reg (such as function's return
9371 value) live across basic blocks, if not optimizing. */
9372 || (!optimize && REG_P (target)
9373 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9374 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9375
9376 if (target)
9377 emit_move_insn (target, const0_rtx);
9378
9379 op1 = gen_label_rtx ();
9380 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9381
9382 if (target)
9383 emit_move_insn (target, const1_rtx);
9384
9385 emit_label (op1);
9386 return ignore ? const0_rtx : target;
9387
9388 case STATEMENT_LIST:
9389 {
9390 tree_stmt_iterator iter;
9391
9392 gcc_assert (ignore);
9393
9394 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9395 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9396 }
9397 return const0_rtx;
9398
9399 case COND_EXPR:
9400 /* A COND_EXPR with its type being VOID_TYPE represents a
9401 conditional jump and is handled in
9402 expand_gimple_cond_expr. */
9403 gcc_assert (!VOID_TYPE_P (type));
9404
9405 /* Note that COND_EXPRs whose type is a structure or union
9406 are required to be constructed to contain assignments of
9407 a temporary variable, so that we can evaluate them here
9408 for side effect only. If type is void, we must do likewise. */
9409
9410 gcc_assert (!TREE_ADDRESSABLE (type)
9411 && !ignore
9412 && TREE_TYPE (treeop1) != void_type_node
9413 && TREE_TYPE (treeop2) != void_type_node);
9414
9415 /* If we are not to produce a result, we have no target. Otherwise,
9416 if a target was specified use it; it will not be used as an
9417 intermediate target unless it is safe. If no target, use a
9418 temporary. */
9419
9420 if (modifier != EXPAND_STACK_PARM
9421 && original_target
9422 && safe_from_p (original_target, treeop0, 1)
9423 && GET_MODE (original_target) == mode
9424 #ifdef HAVE_conditional_move
9425 && (! can_conditionally_move_p (mode)
9426 || REG_P (original_target))
9427 #endif
9428 && !MEM_P (original_target))
9429 temp = original_target;
9430 else
9431 temp = assign_temp (type, 0, 0, 1);
9432
9433 do_pending_stack_adjust ();
9434 NO_DEFER_POP;
9435 op0 = gen_label_rtx ();
9436 op1 = gen_label_rtx ();
9437 jumpifnot (treeop0, op0, -1);
9438 store_expr (treeop1, temp,
9439 modifier == EXPAND_STACK_PARM,
9440 false);
9441
9442 emit_jump_insn (gen_jump (op1));
9443 emit_barrier ();
9444 emit_label (op0);
9445 store_expr (treeop2, temp,
9446 modifier == EXPAND_STACK_PARM,
9447 false);
9448
9449 emit_label (op1);
9450 OK_DEFER_POP;
9451 return temp;
9452
9453 case VEC_COND_EXPR:
9454 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9455 return target;
9456
9457 case MODIFY_EXPR:
9458 {
9459 tree lhs = treeop0;
9460 tree rhs = treeop1;
9461 gcc_assert (ignore);
9462
9463 /* Check for |= or &= of a bitfield of size one into another bitfield
9464 of size 1. In this case, (unless we need the result of the
9465 assignment) we can do this more efficiently with a
9466 test followed by an assignment, if necessary.
9467
9468 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9469 things change so we do, this code should be enhanced to
9470 support it. */
9471 if (TREE_CODE (lhs) == COMPONENT_REF
9472 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9473 || TREE_CODE (rhs) == BIT_AND_EXPR)
9474 && TREE_OPERAND (rhs, 0) == lhs
9475 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9476 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9477 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9478 {
9479 rtx label = gen_label_rtx ();
9480 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9481 do_jump (TREE_OPERAND (rhs, 1),
9482 value ? label : 0,
9483 value ? 0 : label, -1);
9484 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9485 MOVE_NONTEMPORAL (exp));
9486 do_pending_stack_adjust ();
9487 emit_label (label);
9488 return const0_rtx;
9489 }
9490
9491 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9492 return const0_rtx;
9493 }
9494
9495 case ADDR_EXPR:
9496 return expand_expr_addr_expr (exp, target, tmode, modifier);
9497
9498 case REALPART_EXPR:
9499 op0 = expand_normal (treeop0);
9500 return read_complex_part (op0, false);
9501
9502 case IMAGPART_EXPR:
9503 op0 = expand_normal (treeop0);
9504 return read_complex_part (op0, true);
9505
9506 case RETURN_EXPR:
9507 case LABEL_EXPR:
9508 case GOTO_EXPR:
9509 case SWITCH_EXPR:
9510 case ASM_EXPR:
9511 /* Expanded in cfgexpand.c. */
9512 gcc_unreachable ();
9513
9514 case TRY_CATCH_EXPR:
9515 case CATCH_EXPR:
9516 case EH_FILTER_EXPR:
9517 case TRY_FINALLY_EXPR:
9518 /* Lowered by tree-eh.c. */
9519 gcc_unreachable ();
9520
9521 case WITH_CLEANUP_EXPR:
9522 case CLEANUP_POINT_EXPR:
9523 case TARGET_EXPR:
9524 case CASE_LABEL_EXPR:
9525 case VA_ARG_EXPR:
9526 case BIND_EXPR:
9527 case INIT_EXPR:
9528 case CONJ_EXPR:
9529 case COMPOUND_EXPR:
9530 case PREINCREMENT_EXPR:
9531 case PREDECREMENT_EXPR:
9532 case POSTINCREMENT_EXPR:
9533 case POSTDECREMENT_EXPR:
9534 case LOOP_EXPR:
9535 case EXIT_EXPR:
9536 /* Lowered by gimplify.c. */
9537 gcc_unreachable ();
9538
9539 case FDESC_EXPR:
9540 /* Function descriptors are not valid except for as
9541 initialization constants, and should not be expanded. */
9542 gcc_unreachable ();
9543
9544 case WITH_SIZE_EXPR:
9545 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9546 have pulled out the size to use in whatever context it needed. */
9547 return expand_expr_real (treeop0, original_target, tmode,
9548 modifier, alt_rtl);
9549
9550 case REALIGN_LOAD_EXPR:
9551 {
9552 tree oprnd0 = treeop0;
9553 tree oprnd1 = treeop1;
9554 tree oprnd2 = treeop2;
9555 rtx op2;
9556
9557 this_optab = optab_for_tree_code (code, type, optab_default);
9558 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9559 op2 = expand_normal (oprnd2);
9560 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9561 target, unsignedp);
9562 gcc_assert (temp);
9563 return temp;
9564 }
9565
9566 case DOT_PROD_EXPR:
9567 {
9568 tree oprnd0 = treeop0;
9569 tree oprnd1 = treeop1;
9570 tree oprnd2 = treeop2;
9571 rtx op2;
9572
9573 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9574 op2 = expand_normal (oprnd2);
9575 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9576 target, unsignedp);
9577 return target;
9578 }
9579
9580 case COMPOUND_LITERAL_EXPR:
9581 {
9582 /* Initialize the anonymous variable declared in the compound
9583 literal, then return the variable. */
9584 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9585
9586 /* Create RTL for this variable. */
9587 if (!DECL_RTL_SET_P (decl))
9588 {
9589 if (DECL_HARD_REGISTER (decl))
9590 /* The user specified an assembler name for this variable.
9591 Set that up now. */
9592 rest_of_decl_compilation (decl, 0, 0);
9593 else
9594 expand_decl (decl);
9595 }
9596
9597 return expand_expr_real (decl, original_target, tmode,
9598 modifier, alt_rtl);
9599 }
9600
9601 default:
9602 return expand_expr_real_2 (&ops, target, tmode, modifier);
9603 }
9604 }
9605 \f
9606 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9607 signedness of TYPE), possibly returning the result in TARGET. */
9608 static rtx
9609 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9610 {
9611 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9612 if (target && GET_MODE (target) != GET_MODE (exp))
9613 target = 0;
9614 /* For constant values, reduce using build_int_cst_type. */
9615 if (CONST_INT_P (exp))
9616 {
9617 HOST_WIDE_INT value = INTVAL (exp);
9618 tree t = build_int_cst_type (type, value);
9619 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9620 }
9621 else if (TYPE_UNSIGNED (type))
9622 {
9623 rtx mask = immed_double_int_const (double_int_mask (prec),
9624 GET_MODE (exp));
9625 return expand_and (GET_MODE (exp), exp, mask, target);
9626 }
9627 else
9628 {
9629 tree count = build_int_cst (NULL_TREE,
9630 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9631 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9632 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9633 }
9634 }
9635 \f
9636 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9637 when applied to the address of EXP produces an address known to be
9638 aligned more than BIGGEST_ALIGNMENT. */
9639
9640 static int
9641 is_aligning_offset (const_tree offset, const_tree exp)
9642 {
9643 /* Strip off any conversions. */
9644 while (CONVERT_EXPR_P (offset))
9645 offset = TREE_OPERAND (offset, 0);
9646
9647 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9648 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9649 if (TREE_CODE (offset) != BIT_AND_EXPR
9650 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9651 || compare_tree_int (TREE_OPERAND (offset, 1),
9652 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9653 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9654 return 0;
9655
9656 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9657 It must be NEGATE_EXPR. Then strip any more conversions. */
9658 offset = TREE_OPERAND (offset, 0);
9659 while (CONVERT_EXPR_P (offset))
9660 offset = TREE_OPERAND (offset, 0);
9661
9662 if (TREE_CODE (offset) != NEGATE_EXPR)
9663 return 0;
9664
9665 offset = TREE_OPERAND (offset, 0);
9666 while (CONVERT_EXPR_P (offset))
9667 offset = TREE_OPERAND (offset, 0);
9668
9669 /* This must now be the address of EXP. */
9670 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9671 }
9672 \f
9673 /* Return the tree node if an ARG corresponds to a string constant or zero
9674 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9675 in bytes within the string that ARG is accessing. The type of the
9676 offset will be `sizetype'. */
9677
9678 tree
9679 string_constant (tree arg, tree *ptr_offset)
9680 {
9681 tree array, offset, lower_bound;
9682 STRIP_NOPS (arg);
9683
9684 if (TREE_CODE (arg) == ADDR_EXPR)
9685 {
9686 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9687 {
9688 *ptr_offset = size_zero_node;
9689 return TREE_OPERAND (arg, 0);
9690 }
9691 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9692 {
9693 array = TREE_OPERAND (arg, 0);
9694 offset = size_zero_node;
9695 }
9696 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9697 {
9698 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9699 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9700 if (TREE_CODE (array) != STRING_CST
9701 && TREE_CODE (array) != VAR_DECL)
9702 return 0;
9703
9704 /* Check if the array has a nonzero lower bound. */
9705 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9706 if (!integer_zerop (lower_bound))
9707 {
9708 /* If the offset and base aren't both constants, return 0. */
9709 if (TREE_CODE (lower_bound) != INTEGER_CST)
9710 return 0;
9711 if (TREE_CODE (offset) != INTEGER_CST)
9712 return 0;
9713 /* Adjust offset by the lower bound. */
9714 offset = size_diffop (fold_convert (sizetype, offset),
9715 fold_convert (sizetype, lower_bound));
9716 }
9717 }
9718 else
9719 return 0;
9720 }
9721 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9722 {
9723 tree arg0 = TREE_OPERAND (arg, 0);
9724 tree arg1 = TREE_OPERAND (arg, 1);
9725
9726 STRIP_NOPS (arg0);
9727 STRIP_NOPS (arg1);
9728
9729 if (TREE_CODE (arg0) == ADDR_EXPR
9730 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9731 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9732 {
9733 array = TREE_OPERAND (arg0, 0);
9734 offset = arg1;
9735 }
9736 else if (TREE_CODE (arg1) == ADDR_EXPR
9737 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9738 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9739 {
9740 array = TREE_OPERAND (arg1, 0);
9741 offset = arg0;
9742 }
9743 else
9744 return 0;
9745 }
9746 else
9747 return 0;
9748
9749 if (TREE_CODE (array) == STRING_CST)
9750 {
9751 *ptr_offset = fold_convert (sizetype, offset);
9752 return array;
9753 }
9754 else if (TREE_CODE (array) == VAR_DECL)
9755 {
9756 int length;
9757
9758 /* Variables initialized to string literals can be handled too. */
9759 if (DECL_INITIAL (array) == NULL_TREE
9760 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9761 return 0;
9762
9763 /* If they are read-only, non-volatile and bind locally. */
9764 if (! TREE_READONLY (array)
9765 || TREE_SIDE_EFFECTS (array)
9766 || ! targetm.binds_local_p (array))
9767 return 0;
9768
9769 /* Avoid const char foo[4] = "abcde"; */
9770 if (DECL_SIZE_UNIT (array) == NULL_TREE
9771 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9772 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9773 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9774 return 0;
9775
9776 /* If variable is bigger than the string literal, OFFSET must be constant
9777 and inside of the bounds of the string literal. */
9778 offset = fold_convert (sizetype, offset);
9779 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9780 && (! host_integerp (offset, 1)
9781 || compare_tree_int (offset, length) >= 0))
9782 return 0;
9783
9784 *ptr_offset = offset;
9785 return DECL_INITIAL (array);
9786 }
9787
9788 return 0;
9789 }
9790 \f
9791 /* Generate code to calculate OPS, and exploded expression
9792 using a store-flag instruction and return an rtx for the result.
9793 OPS reflects a comparison.
9794
9795 If TARGET is nonzero, store the result there if convenient.
9796
9797 Return zero if there is no suitable set-flag instruction
9798 available on this machine.
9799
9800 Once expand_expr has been called on the arguments of the comparison,
9801 we are committed to doing the store flag, since it is not safe to
9802 re-evaluate the expression. We emit the store-flag insn by calling
9803 emit_store_flag, but only expand the arguments if we have a reason
9804 to believe that emit_store_flag will be successful. If we think that
9805 it will, but it isn't, we have to simulate the store-flag with a
9806 set/jump/set sequence. */
9807
9808 static rtx
9809 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9810 {
9811 enum rtx_code code;
9812 tree arg0, arg1, type;
9813 tree tem;
9814 enum machine_mode operand_mode;
9815 int unsignedp;
9816 rtx op0, op1;
9817 rtx subtarget = target;
9818 location_t loc = ops->location;
9819
9820 arg0 = ops->op0;
9821 arg1 = ops->op1;
9822
9823 /* Don't crash if the comparison was erroneous. */
9824 if (arg0 == error_mark_node || arg1 == error_mark_node)
9825 return const0_rtx;
9826
9827 type = TREE_TYPE (arg0);
9828 operand_mode = TYPE_MODE (type);
9829 unsignedp = TYPE_UNSIGNED (type);
9830
9831 /* We won't bother with BLKmode store-flag operations because it would mean
9832 passing a lot of information to emit_store_flag. */
9833 if (operand_mode == BLKmode)
9834 return 0;
9835
9836 /* We won't bother with store-flag operations involving function pointers
9837 when function pointers must be canonicalized before comparisons. */
9838 #ifdef HAVE_canonicalize_funcptr_for_compare
9839 if (HAVE_canonicalize_funcptr_for_compare
9840 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9841 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9842 == FUNCTION_TYPE))
9843 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9844 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9845 == FUNCTION_TYPE))))
9846 return 0;
9847 #endif
9848
9849 STRIP_NOPS (arg0);
9850 STRIP_NOPS (arg1);
9851
9852 /* Get the rtx comparison code to use. We know that EXP is a comparison
9853 operation of some type. Some comparisons against 1 and -1 can be
9854 converted to comparisons with zero. Do so here so that the tests
9855 below will be aware that we have a comparison with zero. These
9856 tests will not catch constants in the first operand, but constants
9857 are rarely passed as the first operand. */
9858
9859 switch (ops->code)
9860 {
9861 case EQ_EXPR:
9862 code = EQ;
9863 break;
9864 case NE_EXPR:
9865 code = NE;
9866 break;
9867 case LT_EXPR:
9868 if (integer_onep (arg1))
9869 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9870 else
9871 code = unsignedp ? LTU : LT;
9872 break;
9873 case LE_EXPR:
9874 if (! unsignedp && integer_all_onesp (arg1))
9875 arg1 = integer_zero_node, code = LT;
9876 else
9877 code = unsignedp ? LEU : LE;
9878 break;
9879 case GT_EXPR:
9880 if (! unsignedp && integer_all_onesp (arg1))
9881 arg1 = integer_zero_node, code = GE;
9882 else
9883 code = unsignedp ? GTU : GT;
9884 break;
9885 case GE_EXPR:
9886 if (integer_onep (arg1))
9887 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9888 else
9889 code = unsignedp ? GEU : GE;
9890 break;
9891
9892 case UNORDERED_EXPR:
9893 code = UNORDERED;
9894 break;
9895 case ORDERED_EXPR:
9896 code = ORDERED;
9897 break;
9898 case UNLT_EXPR:
9899 code = UNLT;
9900 break;
9901 case UNLE_EXPR:
9902 code = UNLE;
9903 break;
9904 case UNGT_EXPR:
9905 code = UNGT;
9906 break;
9907 case UNGE_EXPR:
9908 code = UNGE;
9909 break;
9910 case UNEQ_EXPR:
9911 code = UNEQ;
9912 break;
9913 case LTGT_EXPR:
9914 code = LTGT;
9915 break;
9916
9917 default:
9918 gcc_unreachable ();
9919 }
9920
9921 /* Put a constant second. */
9922 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9923 || TREE_CODE (arg0) == FIXED_CST)
9924 {
9925 tem = arg0; arg0 = arg1; arg1 = tem;
9926 code = swap_condition (code);
9927 }
9928
9929 /* If this is an equality or inequality test of a single bit, we can
9930 do this by shifting the bit being tested to the low-order bit and
9931 masking the result with the constant 1. If the condition was EQ,
9932 we xor it with 1. This does not require an scc insn and is faster
9933 than an scc insn even if we have it.
9934
9935 The code to make this transformation was moved into fold_single_bit_test,
9936 so we just call into the folder and expand its result. */
9937
9938 if ((code == NE || code == EQ)
9939 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9940 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9941 {
9942 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9943 return expand_expr (fold_single_bit_test (loc,
9944 code == NE ? NE_EXPR : EQ_EXPR,
9945 arg0, arg1, type),
9946 target, VOIDmode, EXPAND_NORMAL);
9947 }
9948
9949 if (! get_subtarget (target)
9950 || GET_MODE (subtarget) != operand_mode)
9951 subtarget = 0;
9952
9953 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
9954
9955 if (target == 0)
9956 target = gen_reg_rtx (mode);
9957
9958 /* Try a cstore if possible. */
9959 return emit_store_flag_force (target, code, op0, op1,
9960 operand_mode, unsignedp, 1);
9961 }
9962 \f
9963
9964 /* Stubs in case we haven't got a casesi insn. */
9965 #ifndef HAVE_casesi
9966 # define HAVE_casesi 0
9967 # define gen_casesi(a, b, c, d, e) (0)
9968 # define CODE_FOR_casesi CODE_FOR_nothing
9969 #endif
9970
9971 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9972 0 otherwise (i.e. if there is no casesi instruction). */
9973 int
9974 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9975 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
9976 rtx fallback_label ATTRIBUTE_UNUSED)
9977 {
9978 enum machine_mode index_mode = SImode;
9979 int index_bits = GET_MODE_BITSIZE (index_mode);
9980 rtx op1, op2, index;
9981 enum machine_mode op_mode;
9982
9983 if (! HAVE_casesi)
9984 return 0;
9985
9986 /* Convert the index to SImode. */
9987 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9988 {
9989 enum machine_mode omode = TYPE_MODE (index_type);
9990 rtx rangertx = expand_normal (range);
9991
9992 /* We must handle the endpoints in the original mode. */
9993 index_expr = build2 (MINUS_EXPR, index_type,
9994 index_expr, minval);
9995 minval = integer_zero_node;
9996 index = expand_normal (index_expr);
9997 if (default_label)
9998 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9999 omode, 1, default_label);
10000 /* Now we can safely truncate. */
10001 index = convert_to_mode (index_mode, index, 0);
10002 }
10003 else
10004 {
10005 if (TYPE_MODE (index_type) != index_mode)
10006 {
10007 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10008 index_expr = fold_convert (index_type, index_expr);
10009 }
10010
10011 index = expand_normal (index_expr);
10012 }
10013
10014 do_pending_stack_adjust ();
10015
10016 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10017 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10018 (index, op_mode))
10019 index = copy_to_mode_reg (op_mode, index);
10020
10021 op1 = expand_normal (minval);
10022
10023 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10024 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10025 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10026 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10027 (op1, op_mode))
10028 op1 = copy_to_mode_reg (op_mode, op1);
10029
10030 op2 = expand_normal (range);
10031
10032 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10033 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10034 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10035 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10036 (op2, op_mode))
10037 op2 = copy_to_mode_reg (op_mode, op2);
10038
10039 emit_jump_insn (gen_casesi (index, op1, op2,
10040 table_label, !default_label
10041 ? fallback_label : default_label));
10042 return 1;
10043 }
10044
10045 /* Attempt to generate a tablejump instruction; same concept. */
10046 #ifndef HAVE_tablejump
10047 #define HAVE_tablejump 0
10048 #define gen_tablejump(x, y) (0)
10049 #endif
10050
10051 /* Subroutine of the next function.
10052
10053 INDEX is the value being switched on, with the lowest value
10054 in the table already subtracted.
10055 MODE is its expected mode (needed if INDEX is constant).
10056 RANGE is the length of the jump table.
10057 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10058
10059 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10060 index value is out of range. */
10061
10062 static void
10063 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10064 rtx default_label)
10065 {
10066 rtx temp, vector;
10067
10068 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10069 cfun->cfg->max_jumptable_ents = INTVAL (range);
10070
10071 /* Do an unsigned comparison (in the proper mode) between the index
10072 expression and the value which represents the length of the range.
10073 Since we just finished subtracting the lower bound of the range
10074 from the index expression, this comparison allows us to simultaneously
10075 check that the original index expression value is both greater than
10076 or equal to the minimum value of the range and less than or equal to
10077 the maximum value of the range. */
10078
10079 if (default_label)
10080 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10081 default_label);
10082
10083 /* If index is in range, it must fit in Pmode.
10084 Convert to Pmode so we can index with it. */
10085 if (mode != Pmode)
10086 index = convert_to_mode (Pmode, index, 1);
10087
10088 /* Don't let a MEM slip through, because then INDEX that comes
10089 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10090 and break_out_memory_refs will go to work on it and mess it up. */
10091 #ifdef PIC_CASE_VECTOR_ADDRESS
10092 if (flag_pic && !REG_P (index))
10093 index = copy_to_mode_reg (Pmode, index);
10094 #endif
10095
10096 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10097 GET_MODE_SIZE, because this indicates how large insns are. The other
10098 uses should all be Pmode, because they are addresses. This code
10099 could fail if addresses and insns are not the same size. */
10100 index = gen_rtx_PLUS (Pmode,
10101 gen_rtx_MULT (Pmode, index,
10102 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10103 gen_rtx_LABEL_REF (Pmode, table_label));
10104 #ifdef PIC_CASE_VECTOR_ADDRESS
10105 if (flag_pic)
10106 index = PIC_CASE_VECTOR_ADDRESS (index);
10107 else
10108 #endif
10109 index = memory_address (CASE_VECTOR_MODE, index);
10110 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10111 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10112 convert_move (temp, vector, 0);
10113
10114 emit_jump_insn (gen_tablejump (temp, table_label));
10115
10116 /* If we are generating PIC code or if the table is PC-relative, the
10117 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10118 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10119 emit_barrier ();
10120 }
10121
10122 int
10123 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10124 rtx table_label, rtx default_label)
10125 {
10126 rtx index;
10127
10128 if (! HAVE_tablejump)
10129 return 0;
10130
10131 index_expr = fold_build2 (MINUS_EXPR, index_type,
10132 fold_convert (index_type, index_expr),
10133 fold_convert (index_type, minval));
10134 index = expand_normal (index_expr);
10135 do_pending_stack_adjust ();
10136
10137 do_tablejump (index, TYPE_MODE (index_type),
10138 convert_modes (TYPE_MODE (index_type),
10139 TYPE_MODE (TREE_TYPE (range)),
10140 expand_normal (range),
10141 TYPE_UNSIGNED (TREE_TYPE (range))),
10142 table_label, default_label);
10143 return 1;
10144 }
10145
10146 /* Nonzero if the mode is a valid vector mode for this architecture.
10147 This returns nonzero even if there is no hardware support for the
10148 vector mode, but we can emulate with narrower modes. */
10149
10150 int
10151 vector_mode_valid_p (enum machine_mode mode)
10152 {
10153 enum mode_class mclass = GET_MODE_CLASS (mode);
10154 enum machine_mode innermode;
10155
10156 /* Doh! What's going on? */
10157 if (mclass != MODE_VECTOR_INT
10158 && mclass != MODE_VECTOR_FLOAT
10159 && mclass != MODE_VECTOR_FRACT
10160 && mclass != MODE_VECTOR_UFRACT
10161 && mclass != MODE_VECTOR_ACCUM
10162 && mclass != MODE_VECTOR_UACCUM)
10163 return 0;
10164
10165 /* Hardware support. Woo hoo! */
10166 if (targetm.vector_mode_supported_p (mode))
10167 return 1;
10168
10169 innermode = GET_MODE_INNER (mode);
10170
10171 /* We should probably return 1 if requesting V4DI and we have no DI,
10172 but we have V2DI, but this is probably very unlikely. */
10173
10174 /* If we have support for the inner mode, we can safely emulate it.
10175 We may not have V2DI, but me can emulate with a pair of DIs. */
10176 return targetm.scalar_mode_supported_p (innermode);
10177 }
10178
10179 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10180 static rtx
10181 const_vector_from_tree (tree exp)
10182 {
10183 rtvec v;
10184 int units, i;
10185 tree link, elt;
10186 enum machine_mode inner, mode;
10187
10188 mode = TYPE_MODE (TREE_TYPE (exp));
10189
10190 if (initializer_zerop (exp))
10191 return CONST0_RTX (mode);
10192
10193 units = GET_MODE_NUNITS (mode);
10194 inner = GET_MODE_INNER (mode);
10195
10196 v = rtvec_alloc (units);
10197
10198 link = TREE_VECTOR_CST_ELTS (exp);
10199 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10200 {
10201 elt = TREE_VALUE (link);
10202
10203 if (TREE_CODE (elt) == REAL_CST)
10204 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10205 inner);
10206 else if (TREE_CODE (elt) == FIXED_CST)
10207 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10208 inner);
10209 else
10210 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10211 inner);
10212 }
10213
10214 /* Initialize remaining elements to 0. */
10215 for (; i < units; ++i)
10216 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10217
10218 return gen_rtx_CONST_VECTOR (mode, v);
10219 }
10220
10221
10222 /* Build a decl for a EH personality function named NAME. */
10223
10224 tree
10225 build_personality_function (const char *name)
10226 {
10227 tree decl, type;
10228
10229 type = build_function_type_list (integer_type_node, integer_type_node,
10230 long_long_unsigned_type_node,
10231 ptr_type_node, ptr_type_node, NULL_TREE);
10232 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10233 get_identifier (name), type);
10234 DECL_ARTIFICIAL (decl) = 1;
10235 DECL_EXTERNAL (decl) = 1;
10236 TREE_PUBLIC (decl) = 1;
10237
10238 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10239 are the flags assigned by targetm.encode_section_info. */
10240 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10241
10242 return decl;
10243 }
10244
10245 /* Extracts the personality function of DECL and returns the corresponding
10246 libfunc. */
10247
10248 rtx
10249 get_personality_function (tree decl)
10250 {
10251 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10252 enum eh_personality_kind pk;
10253
10254 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10255 if (pk == eh_personality_none)
10256 return NULL;
10257
10258 if (!personality
10259 && pk == eh_personality_any)
10260 personality = lang_hooks.eh_personality ();
10261
10262 if (pk == eh_personality_lang)
10263 gcc_assert (personality != NULL_TREE);
10264
10265 return XEXP (DECL_RTL (personality), 0);
10266 }
10267
10268 #include "gt-expr.h"