target.def (supports_split_stack, [...]): Take gcc_options parameters.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces_d
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
443
444 if (to_mode == full_mode)
445 {
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
455
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
459 }
460
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
465 {
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
475 }
476
477 /* Now both modes are integers. */
478
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
482 {
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
490
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
494 {
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
503 }
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
508 {
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
511 {
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
515 }
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
519 }
520
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
523
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
526
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
529
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
535
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
537
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
540
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_insn (insns);
565 return;
566 }
567
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
571 {
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
581 }
582
583 /* Now follow all the conversions between integers
584 no more than a word long. */
585
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
590 {
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
603 }
604
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
607 {
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
611 {
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
614 }
615 else
616 {
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
620
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
650 }
651 }
652
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
656 {
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
660 }
661
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
665
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 {
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
674 }
675
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
678 }
679
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
686
687 rtx
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 {
690 return convert_modes (mode, VOIDmode, x, unsignedp);
691 }
692
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
697
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
700
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702
703 rtx
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 {
706 rtx temp;
707
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
710
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
715
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
718
719 if (mode == oldmode)
720 return x;
721
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
727
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
731 {
732 double_int val = uhwi_to_double_int (INTVAL (x));
733
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737
738 return immed_double_int_const (val, mode);
739 }
740
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 {
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 {
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* Return the largest alignment we can use for doing a move (or store)
796 of MAX_PIECES. ALIGN is the largest alignment we could use. */
797
798 static unsigned int
799 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
800 {
801 enum machine_mode tmode;
802
803 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
804 if (align >= GET_MODE_ALIGNMENT (tmode))
805 align = GET_MODE_ALIGNMENT (tmode);
806 else
807 {
808 enum machine_mode tmode, xmode;
809
810 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
811 tmode != VOIDmode;
812 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
813 if (GET_MODE_SIZE (tmode) > max_pieces
814 || SLOW_UNALIGNED_ACCESS (tmode, align))
815 break;
816
817 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
818 }
819
820 return align;
821 }
822
823 /* Return the widest integer mode no wider than SIZE. If no such mode
824 can be found, return VOIDmode. */
825
826 static enum machine_mode
827 widest_int_mode_for_size (unsigned int size)
828 {
829 enum machine_mode tmode, mode = VOIDmode;
830
831 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
832 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
833 if (GET_MODE_SIZE (tmode) < size)
834 mode = tmode;
835
836 return mode;
837 }
838
839 /* STORE_MAX_PIECES is the number of bytes at a time that we can
840 store efficiently. Due to internal GCC limitations, this is
841 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
842 for an immediate constant. */
843
844 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845
846 /* Determine whether the LEN bytes can be moved by using several move
847 instructions. Return nonzero if a call to move_by_pieces should
848 succeed. */
849
850 int
851 can_move_by_pieces (unsigned HOST_WIDE_INT len,
852 unsigned int align ATTRIBUTE_UNUSED)
853 {
854 return MOVE_BY_PIECES_P (len, align);
855 }
856
857 /* Generate several move instructions to copy LEN bytes from block FROM to
858 block TO. (These are MEM rtx's with BLKmode).
859
860 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
861 used to push FROM to the stack.
862
863 ALIGN is maximum stack alignment we can assume.
864
865 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
866 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 stpcpy. */
868
869 rtx
870 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
871 unsigned int align, int endp)
872 {
873 struct move_by_pieces_d data;
874 enum machine_mode to_addr_mode, from_addr_mode
875 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
876 rtx to_addr, from_addr = XEXP (from, 0);
877 unsigned int max_size = MOVE_MAX_PIECES + 1;
878 enum insn_code icode;
879
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
881
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
885 {
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
894 }
895 else
896 {
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
906 }
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
913
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
918
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
924 {
925 /* Find the mode of the largest move...
926 MODE might not be used depending on the definitions of the
927 USE_* macros below. */
928 enum machine_mode mode ATTRIBUTE_UNUSED
929 = widest_int_mode_for_size (max_size);
930
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
932 {
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
937 }
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
939 {
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
943 }
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
947 {
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
952 }
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
954 {
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
958 }
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
961 }
962
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
964
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
967
968 while (max_size > 1)
969 {
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
971
972 if (mode == VOIDmode)
973 break;
974
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
978
979 max_size = GET_MODE_SIZE (mode);
980 }
981
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
984
985 if (endp)
986 {
987 rtx to1;
988
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
991 {
992 if (endp == 2)
993 {
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (data.to_addr,
999 -1));
1000 }
1001 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1002 data.offset);
1003 }
1004 else
1005 {
1006 if (endp == 2)
1007 --data.offset;
1008 to1 = adjust_address (data.to, QImode, data.offset);
1009 }
1010 return to1;
1011 }
1012 else
1013 return data.to;
1014 }
1015
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1018
1019 static unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1021 unsigned int max_size)
1022 {
1023 unsigned HOST_WIDE_INT n_insns = 0;
1024
1025 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1026
1027 while (max_size > 1)
1028 {
1029 enum machine_mode mode;
1030 enum insn_code icode;
1031
1032 mode = widest_int_mode_for_size (max_size);
1033
1034 if (mode == VOIDmode)
1035 break;
1036
1037 icode = optab_handler (mov_optab, mode);
1038 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1039 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1040
1041 max_size = GET_MODE_SIZE (mode);
1042 }
1043
1044 gcc_assert (!l);
1045 return n_insns;
1046 }
1047
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1051
1052 static void
1053 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1054 struct move_by_pieces_d *data)
1055 {
1056 unsigned int size = GET_MODE_SIZE (mode);
1057 rtx to1 = NULL_RTX, from1;
1058
1059 while (data->len >= size)
1060 {
1061 if (data->reverse)
1062 data->offset -= size;
1063
1064 if (data->to)
1065 {
1066 if (data->autinc_to)
1067 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1068 data->offset);
1069 else
1070 to1 = adjust_address (data->to, mode, data->offset);
1071 }
1072
1073 if (data->autinc_from)
1074 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1075 data->offset);
1076 else
1077 from1 = adjust_address (data->from, mode, data->offset);
1078
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1080 emit_insn (gen_add2_insn (data->to_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1083 emit_insn (gen_add2_insn (data->from_addr,
1084 GEN_INT (-(HOST_WIDE_INT)size)));
1085
1086 if (data->to)
1087 emit_insn ((*genfun) (to1, from1));
1088 else
1089 {
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode, from1, NULL);
1092 #else
1093 gcc_unreachable ();
1094 #endif
1095 }
1096
1097 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1098 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1099 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1100 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1101
1102 if (! data->reverse)
1103 data->offset += size;
1104
1105 data->len -= size;
1106 }
1107 }
1108 \f
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1112
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1117
1118 Return the address of the new block, if memcpy is called and returns it,
1119 0 otherwise. */
1120
1121 rtx
1122 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1123 unsigned int expected_align, HOST_WIDE_INT expected_size)
1124 {
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1128
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1133
1134 switch (method)
1135 {
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1140
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1143
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1148
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1152
1153 default:
1154 gcc_unreachable ();
1155 }
1156
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1160
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1165
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1169 {
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, size);
1173 set_mem_size (y, size);
1174 }
1175
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size))
1180 ;
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1184 retval = emit_block_move_via_libcall (x, y, size,
1185 method == BLOCK_OP_TAILCALL);
1186 else
1187 emit_block_move_via_loop (x, y, size, align);
1188
1189 if (method == BLOCK_OP_CALL_PARM)
1190 OK_DEFER_POP;
1191
1192 return retval;
1193 }
1194
1195 rtx
1196 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1197 {
1198 return emit_block_move_hints (x, y, size, method, 0, -1);
1199 }
1200
1201 /* A subroutine of emit_block_move. Returns true if calling the
1202 block move libcall will not clobber any parameters which may have
1203 already been placed on the stack. */
1204
1205 static bool
1206 block_move_libcall_safe_for_call_parm (void)
1207 {
1208 #if defined (REG_PARM_STACK_SPACE)
1209 tree fn;
1210 #endif
1211
1212 /* If arguments are pushed on the stack, then they're safe. */
1213 if (PUSH_ARGS)
1214 return true;
1215
1216 /* If registers go on the stack anyway, any argument is sure to clobber
1217 an outgoing argument. */
1218 #if defined (REG_PARM_STACK_SPACE)
1219 fn = emit_block_move_libcall_fn (false);
1220 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1221 depend on its argument. */
1222 (void) fn;
1223 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1224 && REG_PARM_STACK_SPACE (fn) != 0)
1225 return false;
1226 #endif
1227
1228 /* If any argument goes in memory, then it might clobber an outgoing
1229 argument. */
1230 {
1231 CUMULATIVE_ARGS args_so_far;
1232 tree fn, arg;
1233
1234 fn = emit_block_move_libcall_fn (false);
1235 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1236
1237 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1238 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1239 {
1240 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1241 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1242 NULL_TREE, true);
1243 if (!tmp || !REG_P (tmp))
1244 return false;
1245 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1246 return false;
1247 targetm.calls.function_arg_advance (&args_so_far, mode,
1248 NULL_TREE, true);
1249 }
1250 }
1251 return true;
1252 }
1253
1254 /* A subroutine of emit_block_move. Expand a movmem pattern;
1255 return true if successful. */
1256
1257 static bool
1258 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1259 unsigned int expected_align, HOST_WIDE_INT expected_size)
1260 {
1261 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1262 int save_volatile_ok = volatile_ok;
1263 enum machine_mode mode;
1264
1265 if (expected_align < align)
1266 expected_align = align;
1267
1268 /* Since this is a move insn, we don't care about volatility. */
1269 volatile_ok = 1;
1270
1271 /* Try the most limited insn first, because there's no point
1272 including more than one in the machine description unless
1273 the more limited one has some advantage. */
1274
1275 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1276 mode = GET_MODE_WIDER_MODE (mode))
1277 {
1278 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1279 insn_operand_predicate_fn pred;
1280
1281 if (code != CODE_FOR_nothing
1282 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1283 here because if SIZE is less than the mode mask, as it is
1284 returned by the macro, it will definitely be less than the
1285 actual mode mask. */
1286 && ((CONST_INT_P (size)
1287 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1288 <= (GET_MODE_MASK (mode) >> 1)))
1289 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1290 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1291 || (*pred) (x, BLKmode))
1292 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1293 || (*pred) (y, BLKmode))
1294 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1295 || (*pred) (opalign, VOIDmode)))
1296 {
1297 rtx op2;
1298 rtx last = get_last_insn ();
1299 rtx pat;
1300
1301 op2 = convert_to_mode (mode, size, 1);
1302 pred = insn_data[(int) code].operand[2].predicate;
1303 if (pred != 0 && ! (*pred) (op2, mode))
1304 op2 = copy_to_mode_reg (mode, op2);
1305
1306 /* ??? When called via emit_block_move_for_call, it'd be
1307 nice if there were some way to inform the backend, so
1308 that it doesn't fail the expansion because it thinks
1309 emitting the libcall would be more efficient. */
1310
1311 if (insn_data[(int) code].n_operands == 4)
1312 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1313 else
1314 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1315 GEN_INT (expected_align
1316 / BITS_PER_UNIT),
1317 GEN_INT (expected_size));
1318 if (pat)
1319 {
1320 emit_insn (pat);
1321 volatile_ok = save_volatile_ok;
1322 return true;
1323 }
1324 else
1325 delete_insns_since (last);
1326 }
1327 }
1328
1329 volatile_ok = save_volatile_ok;
1330 return false;
1331 }
1332
1333 /* A subroutine of emit_block_move. Expand a call to memcpy.
1334 Return the return value from memcpy, 0 otherwise. */
1335
1336 rtx
1337 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1338 {
1339 rtx dst_addr, src_addr;
1340 tree call_expr, fn, src_tree, dst_tree, size_tree;
1341 enum machine_mode size_mode;
1342 rtx retval;
1343
1344 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1345 pseudos. We can then place those new pseudos into a VAR_DECL and
1346 use them later. */
1347
1348 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1349 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1350
1351 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1352 src_addr = convert_memory_address (ptr_mode, src_addr);
1353
1354 dst_tree = make_tree (ptr_type_node, dst_addr);
1355 src_tree = make_tree (ptr_type_node, src_addr);
1356
1357 size_mode = TYPE_MODE (sizetype);
1358
1359 size = convert_to_mode (size_mode, size, 1);
1360 size = copy_to_mode_reg (size_mode, size);
1361
1362 /* It is incorrect to use the libcall calling conventions to call
1363 memcpy in this context. This could be a user call to memcpy and
1364 the user may wish to examine the return value from memcpy. For
1365 targets where libcalls and normal calls have different conventions
1366 for returning pointers, we could end up generating incorrect code. */
1367
1368 size_tree = make_tree (sizetype, size);
1369
1370 fn = emit_block_move_libcall_fn (true);
1371 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1372 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1373
1374 retval = expand_normal (call_expr);
1375
1376 return retval;
1377 }
1378
1379 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1380 for the function we use for block copies. The first time FOR_CALL
1381 is true, we call assemble_external. */
1382
1383 static GTY(()) tree block_move_fn;
1384
1385 void
1386 init_block_move_fn (const char *asmspec)
1387 {
1388 if (!block_move_fn)
1389 {
1390 tree args, fn;
1391
1392 fn = get_identifier ("memcpy");
1393 args = build_function_type_list (ptr_type_node, ptr_type_node,
1394 const_ptr_type_node, sizetype,
1395 NULL_TREE);
1396
1397 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1398 DECL_EXTERNAL (fn) = 1;
1399 TREE_PUBLIC (fn) = 1;
1400 DECL_ARTIFICIAL (fn) = 1;
1401 TREE_NOTHROW (fn) = 1;
1402 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1403 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1404
1405 block_move_fn = fn;
1406 }
1407
1408 if (asmspec)
1409 set_user_assembler_name (block_move_fn, asmspec);
1410 }
1411
1412 static tree
1413 emit_block_move_libcall_fn (int for_call)
1414 {
1415 static bool emitted_extern;
1416
1417 if (!block_move_fn)
1418 init_block_move_fn (NULL);
1419
1420 if (for_call && !emitted_extern)
1421 {
1422 emitted_extern = true;
1423 make_decl_rtl (block_move_fn);
1424 assemble_external (block_move_fn);
1425 }
1426
1427 return block_move_fn;
1428 }
1429
1430 /* A subroutine of emit_block_move. Copy the data via an explicit
1431 loop. This is used only when libcalls are forbidden. */
1432 /* ??? It'd be nice to copy in hunks larger than QImode. */
1433
1434 static void
1435 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1436 unsigned int align ATTRIBUTE_UNUSED)
1437 {
1438 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1439 enum machine_mode x_addr_mode
1440 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1441 enum machine_mode y_addr_mode
1442 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1443 enum machine_mode iter_mode;
1444
1445 iter_mode = GET_MODE (size);
1446 if (iter_mode == VOIDmode)
1447 iter_mode = word_mode;
1448
1449 top_label = gen_label_rtx ();
1450 cmp_label = gen_label_rtx ();
1451 iter = gen_reg_rtx (iter_mode);
1452
1453 emit_move_insn (iter, const0_rtx);
1454
1455 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1456 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1457 do_pending_stack_adjust ();
1458
1459 emit_jump (cmp_label);
1460 emit_label (top_label);
1461
1462 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1463 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1464
1465 if (x_addr_mode != y_addr_mode)
1466 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1467 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1468
1469 x = change_address (x, QImode, x_addr);
1470 y = change_address (y, QImode, y_addr);
1471
1472 emit_move_insn (x, y);
1473
1474 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1475 true, OPTAB_LIB_WIDEN);
1476 if (tmp != iter)
1477 emit_move_insn (iter, tmp);
1478
1479 emit_label (cmp_label);
1480
1481 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1482 true, top_label);
1483 }
1484 \f
1485 /* Copy all or part of a value X into registers starting at REGNO.
1486 The number of registers to be filled is NREGS. */
1487
1488 void
1489 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1490 {
1491 int i;
1492 #ifdef HAVE_load_multiple
1493 rtx pat;
1494 rtx last;
1495 #endif
1496
1497 if (nregs == 0)
1498 return;
1499
1500 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1501 x = validize_mem (force_const_mem (mode, x));
1502
1503 /* See if the machine can do this with a load multiple insn. */
1504 #ifdef HAVE_load_multiple
1505 if (HAVE_load_multiple)
1506 {
1507 last = get_last_insn ();
1508 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1509 GEN_INT (nregs));
1510 if (pat)
1511 {
1512 emit_insn (pat);
1513 return;
1514 }
1515 else
1516 delete_insns_since (last);
1517 }
1518 #endif
1519
1520 for (i = 0; i < nregs; i++)
1521 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1522 operand_subword_force (x, i, mode));
1523 }
1524
1525 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1527
1528 void
1529 move_block_from_reg (int regno, rtx x, int nregs)
1530 {
1531 int i;
1532
1533 if (nregs == 0)
1534 return;
1535
1536 /* See if the machine can do this with a store multiple insn. */
1537 #ifdef HAVE_store_multiple
1538 if (HAVE_store_multiple)
1539 {
1540 rtx last = get_last_insn ();
1541 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1542 GEN_INT (nregs));
1543 if (pat)
1544 {
1545 emit_insn (pat);
1546 return;
1547 }
1548 else
1549 delete_insns_since (last);
1550 }
1551 #endif
1552
1553 for (i = 0; i < nregs; i++)
1554 {
1555 rtx tem = operand_subword (x, i, 1, BLKmode);
1556
1557 gcc_assert (tem);
1558
1559 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1560 }
1561 }
1562
1563 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1564 ORIG, where ORIG is a non-consecutive group of registers represented by
1565 a PARALLEL. The clone is identical to the original except in that the
1566 original set of registers is replaced by a new set of pseudo registers.
1567 The new set has the same modes as the original set. */
1568
1569 rtx
1570 gen_group_rtx (rtx orig)
1571 {
1572 int i, length;
1573 rtx *tmps;
1574
1575 gcc_assert (GET_CODE (orig) == PARALLEL);
1576
1577 length = XVECLEN (orig, 0);
1578 tmps = XALLOCAVEC (rtx, length);
1579
1580 /* Skip a NULL entry in first slot. */
1581 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1582
1583 if (i)
1584 tmps[0] = 0;
1585
1586 for (; i < length; i++)
1587 {
1588 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1589 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1590
1591 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1592 }
1593
1594 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1595 }
1596
1597 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1598 except that values are placed in TMPS[i], and must later be moved
1599 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1600
1601 static void
1602 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1603 {
1604 rtx src;
1605 int start, i;
1606 enum machine_mode m = GET_MODE (orig_src);
1607
1608 gcc_assert (GET_CODE (dst) == PARALLEL);
1609
1610 if (m != VOIDmode
1611 && !SCALAR_INT_MODE_P (m)
1612 && !MEM_P (orig_src)
1613 && GET_CODE (orig_src) != CONCAT)
1614 {
1615 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1616 if (imode == BLKmode)
1617 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1618 else
1619 src = gen_reg_rtx (imode);
1620 if (imode != BLKmode)
1621 src = gen_lowpart (GET_MODE (orig_src), src);
1622 emit_move_insn (src, orig_src);
1623 /* ...and back again. */
1624 if (imode != BLKmode)
1625 src = gen_lowpart (imode, src);
1626 emit_group_load_1 (tmps, dst, src, type, ssize);
1627 return;
1628 }
1629
1630 /* Check for a NULL entry, used to indicate that the parameter goes
1631 both on the stack and in registers. */
1632 if (XEXP (XVECEXP (dst, 0, 0), 0))
1633 start = 0;
1634 else
1635 start = 1;
1636
1637 /* Process the pieces. */
1638 for (i = start; i < XVECLEN (dst, 0); i++)
1639 {
1640 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1641 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1642 unsigned int bytelen = GET_MODE_SIZE (mode);
1643 int shift = 0;
1644
1645 /* Handle trailing fragments that run over the size of the struct. */
1646 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1647 {
1648 /* Arrange to shift the fragment to where it belongs.
1649 extract_bit_field loads to the lsb of the reg. */
1650 if (
1651 #ifdef BLOCK_REG_PADDING
1652 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1653 == (BYTES_BIG_ENDIAN ? upward : downward)
1654 #else
1655 BYTES_BIG_ENDIAN
1656 #endif
1657 )
1658 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1659 bytelen = ssize - bytepos;
1660 gcc_assert (bytelen > 0);
1661 }
1662
1663 /* If we won't be loading directly from memory, protect the real source
1664 from strange tricks we might play; but make sure that the source can
1665 be loaded directly into the destination. */
1666 src = orig_src;
1667 if (!MEM_P (orig_src)
1668 && (!CONSTANT_P (orig_src)
1669 || (GET_MODE (orig_src) != mode
1670 && GET_MODE (orig_src) != VOIDmode)))
1671 {
1672 if (GET_MODE (orig_src) == VOIDmode)
1673 src = gen_reg_rtx (mode);
1674 else
1675 src = gen_reg_rtx (GET_MODE (orig_src));
1676
1677 emit_move_insn (src, orig_src);
1678 }
1679
1680 /* Optimize the access just a bit. */
1681 if (MEM_P (src)
1682 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1683 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1684 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1685 && bytelen == GET_MODE_SIZE (mode))
1686 {
1687 tmps[i] = gen_reg_rtx (mode);
1688 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1689 }
1690 else if (COMPLEX_MODE_P (mode)
1691 && GET_MODE (src) == mode
1692 && bytelen == GET_MODE_SIZE (mode))
1693 /* Let emit_move_complex do the bulk of the work. */
1694 tmps[i] = src;
1695 else if (GET_CODE (src) == CONCAT)
1696 {
1697 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1698 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1699
1700 if ((bytepos == 0 && bytelen == slen0)
1701 || (bytepos != 0 && bytepos + bytelen <= slen))
1702 {
1703 /* The following assumes that the concatenated objects all
1704 have the same size. In this case, a simple calculation
1705 can be used to determine the object and the bit field
1706 to be extracted. */
1707 tmps[i] = XEXP (src, bytepos / slen0);
1708 if (! CONSTANT_P (tmps[i])
1709 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1710 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1711 (bytepos % slen0) * BITS_PER_UNIT,
1712 1, false, NULL_RTX, mode, mode);
1713 }
1714 else
1715 {
1716 rtx mem;
1717
1718 gcc_assert (!bytepos);
1719 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1720 emit_move_insn (mem, src);
1721 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1722 0, 1, false, NULL_RTX, mode, mode);
1723 }
1724 }
1725 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1726 SIMD register, which is currently broken. While we get GCC
1727 to emit proper RTL for these cases, let's dump to memory. */
1728 else if (VECTOR_MODE_P (GET_MODE (dst))
1729 && REG_P (src))
1730 {
1731 int slen = GET_MODE_SIZE (GET_MODE (src));
1732 rtx mem;
1733
1734 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1735 emit_move_insn (mem, src);
1736 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1737 }
1738 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1739 && XVECLEN (dst, 0) > 1)
1740 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1741 else if (CONSTANT_P (src))
1742 {
1743 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1744
1745 if (len == ssize)
1746 tmps[i] = src;
1747 else
1748 {
1749 rtx first, second;
1750
1751 gcc_assert (2 * len == ssize);
1752 split_double (src, &first, &second);
1753 if (i)
1754 tmps[i] = second;
1755 else
1756 tmps[i] = first;
1757 }
1758 }
1759 else if (REG_P (src) && GET_MODE (src) == mode)
1760 tmps[i] = src;
1761 else
1762 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1763 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1764 mode, mode);
1765
1766 if (shift)
1767 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1768 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1769 }
1770 }
1771
1772 /* Emit code to move a block SRC of type TYPE to a block DST,
1773 where DST is non-consecutive registers represented by a PARALLEL.
1774 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1775 if not known. */
1776
1777 void
1778 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1779 {
1780 rtx *tmps;
1781 int i;
1782
1783 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1784 emit_group_load_1 (tmps, dst, src, type, ssize);
1785
1786 /* Copy the extracted pieces into the proper (probable) hard regs. */
1787 for (i = 0; i < XVECLEN (dst, 0); i++)
1788 {
1789 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1790 if (d == NULL)
1791 continue;
1792 emit_move_insn (d, tmps[i]);
1793 }
1794 }
1795
1796 /* Similar, but load SRC into new pseudos in a format that looks like
1797 PARALLEL. This can later be fed to emit_group_move to get things
1798 in the right place. */
1799
1800 rtx
1801 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1802 {
1803 rtvec vec;
1804 int i;
1805
1806 vec = rtvec_alloc (XVECLEN (parallel, 0));
1807 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1808
1809 /* Convert the vector to look just like the original PARALLEL, except
1810 with the computed values. */
1811 for (i = 0; i < XVECLEN (parallel, 0); i++)
1812 {
1813 rtx e = XVECEXP (parallel, 0, i);
1814 rtx d = XEXP (e, 0);
1815
1816 if (d)
1817 {
1818 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1819 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1820 }
1821 RTVEC_ELT (vec, i) = e;
1822 }
1823
1824 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1825 }
1826
1827 /* Emit code to move a block SRC to block DST, where SRC and DST are
1828 non-consecutive groups of registers, each represented by a PARALLEL. */
1829
1830 void
1831 emit_group_move (rtx dst, rtx src)
1832 {
1833 int i;
1834
1835 gcc_assert (GET_CODE (src) == PARALLEL
1836 && GET_CODE (dst) == PARALLEL
1837 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1838
1839 /* Skip first entry if NULL. */
1840 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1841 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1842 XEXP (XVECEXP (src, 0, i), 0));
1843 }
1844
1845 /* Move a group of registers represented by a PARALLEL into pseudos. */
1846
1847 rtx
1848 emit_group_move_into_temps (rtx src)
1849 {
1850 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1851 int i;
1852
1853 for (i = 0; i < XVECLEN (src, 0); i++)
1854 {
1855 rtx e = XVECEXP (src, 0, i);
1856 rtx d = XEXP (e, 0);
1857
1858 if (d)
1859 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1860 RTVEC_ELT (vec, i) = e;
1861 }
1862
1863 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1864 }
1865
1866 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1867 where SRC is non-consecutive registers represented by a PARALLEL.
1868 SSIZE represents the total size of block ORIG_DST, or -1 if not
1869 known. */
1870
1871 void
1872 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1873 {
1874 rtx *tmps, dst;
1875 int start, finish, i;
1876 enum machine_mode m = GET_MODE (orig_dst);
1877
1878 gcc_assert (GET_CODE (src) == PARALLEL);
1879
1880 if (!SCALAR_INT_MODE_P (m)
1881 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1882 {
1883 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1884 if (imode == BLKmode)
1885 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1886 else
1887 dst = gen_reg_rtx (imode);
1888 emit_group_store (dst, src, type, ssize);
1889 if (imode != BLKmode)
1890 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1891 emit_move_insn (orig_dst, dst);
1892 return;
1893 }
1894
1895 /* Check for a NULL entry, used to indicate that the parameter goes
1896 both on the stack and in registers. */
1897 if (XEXP (XVECEXP (src, 0, 0), 0))
1898 start = 0;
1899 else
1900 start = 1;
1901 finish = XVECLEN (src, 0);
1902
1903 tmps = XALLOCAVEC (rtx, finish);
1904
1905 /* Copy the (probable) hard regs into pseudos. */
1906 for (i = start; i < finish; i++)
1907 {
1908 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1909 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1910 {
1911 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1912 emit_move_insn (tmps[i], reg);
1913 }
1914 else
1915 tmps[i] = reg;
1916 }
1917
1918 /* If we won't be storing directly into memory, protect the real destination
1919 from strange tricks we might play. */
1920 dst = orig_dst;
1921 if (GET_CODE (dst) == PARALLEL)
1922 {
1923 rtx temp;
1924
1925 /* We can get a PARALLEL dst if there is a conditional expression in
1926 a return statement. In that case, the dst and src are the same,
1927 so no action is necessary. */
1928 if (rtx_equal_p (dst, src))
1929 return;
1930
1931 /* It is unclear if we can ever reach here, but we may as well handle
1932 it. Allocate a temporary, and split this into a store/load to/from
1933 the temporary. */
1934
1935 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1936 emit_group_store (temp, src, type, ssize);
1937 emit_group_load (dst, temp, type, ssize);
1938 return;
1939 }
1940 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1941 {
1942 enum machine_mode outer = GET_MODE (dst);
1943 enum machine_mode inner;
1944 HOST_WIDE_INT bytepos;
1945 bool done = false;
1946 rtx temp;
1947
1948 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1949 dst = gen_reg_rtx (outer);
1950
1951 /* Make life a bit easier for combine. */
1952 /* If the first element of the vector is the low part
1953 of the destination mode, use a paradoxical subreg to
1954 initialize the destination. */
1955 if (start < finish)
1956 {
1957 inner = GET_MODE (tmps[start]);
1958 bytepos = subreg_lowpart_offset (inner, outer);
1959 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1960 {
1961 temp = simplify_gen_subreg (outer, tmps[start],
1962 inner, 0);
1963 if (temp)
1964 {
1965 emit_move_insn (dst, temp);
1966 done = true;
1967 start++;
1968 }
1969 }
1970 }
1971
1972 /* If the first element wasn't the low part, try the last. */
1973 if (!done
1974 && start < finish - 1)
1975 {
1976 inner = GET_MODE (tmps[finish - 1]);
1977 bytepos = subreg_lowpart_offset (inner, outer);
1978 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1979 {
1980 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1981 inner, 0);
1982 if (temp)
1983 {
1984 emit_move_insn (dst, temp);
1985 done = true;
1986 finish--;
1987 }
1988 }
1989 }
1990
1991 /* Otherwise, simply initialize the result to zero. */
1992 if (!done)
1993 emit_move_insn (dst, CONST0_RTX (outer));
1994 }
1995
1996 /* Process the pieces. */
1997 for (i = start; i < finish; i++)
1998 {
1999 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2000 enum machine_mode mode = GET_MODE (tmps[i]);
2001 unsigned int bytelen = GET_MODE_SIZE (mode);
2002 unsigned int adj_bytelen = bytelen;
2003 rtx dest = dst;
2004
2005 /* Handle trailing fragments that run over the size of the struct. */
2006 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2007 adj_bytelen = ssize - bytepos;
2008
2009 if (GET_CODE (dst) == CONCAT)
2010 {
2011 if (bytepos + adj_bytelen
2012 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2013 dest = XEXP (dst, 0);
2014 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2015 {
2016 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2017 dest = XEXP (dst, 1);
2018 }
2019 else
2020 {
2021 enum machine_mode dest_mode = GET_MODE (dest);
2022 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2023
2024 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2025
2026 if (GET_MODE_ALIGNMENT (dest_mode)
2027 >= GET_MODE_ALIGNMENT (tmp_mode))
2028 {
2029 dest = assign_stack_temp (dest_mode,
2030 GET_MODE_SIZE (dest_mode),
2031 0);
2032 emit_move_insn (adjust_address (dest,
2033 tmp_mode,
2034 bytepos),
2035 tmps[i]);
2036 dst = dest;
2037 }
2038 else
2039 {
2040 dest = assign_stack_temp (tmp_mode,
2041 GET_MODE_SIZE (tmp_mode),
2042 0);
2043 emit_move_insn (dest, tmps[i]);
2044 dst = adjust_address (dest, dest_mode, bytepos);
2045 }
2046 break;
2047 }
2048 }
2049
2050 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2051 {
2052 /* store_bit_field always takes its value from the lsb.
2053 Move the fragment to the lsb if it's not already there. */
2054 if (
2055 #ifdef BLOCK_REG_PADDING
2056 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2057 == (BYTES_BIG_ENDIAN ? upward : downward)
2058 #else
2059 BYTES_BIG_ENDIAN
2060 #endif
2061 )
2062 {
2063 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2064 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2065 build_int_cst (NULL_TREE, shift),
2066 tmps[i], 0);
2067 }
2068 bytelen = adj_bytelen;
2069 }
2070
2071 /* Optimize the access just a bit. */
2072 if (MEM_P (dest)
2073 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2074 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2075 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2076 && bytelen == GET_MODE_SIZE (mode))
2077 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2078 else
2079 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2080 mode, tmps[i]);
2081 }
2082
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst != dst)
2085 emit_move_insn (orig_dst, dst);
2086 }
2087
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2091
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2096
2097 rtx
2098 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2099 {
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 enum machine_mode copy_mode;
2105
2106 if (tgtblk == 0)
2107 {
2108 tgtblk = assign_temp (build_qualified_type (type,
2109 (TYPE_QUALS (type)
2110 | TYPE_QUAL_CONST)),
2111 0, 1, 1);
2112 preserve_temp_slots (tgtblk);
2113 }
2114
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2117
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2121
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2125
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes % UNITS_PER_WORD != 0
2132 && (targetm.calls.return_in_msb (type)
2133 ? !BYTES_BIG_ENDIAN
2134 : BYTES_BIG_ENDIAN))
2135 padding_correction
2136 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2137
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2141 how it is computed.
2142
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2145 time. */
2146
2147 copy_mode = word_mode;
2148 if (MEM_P (tgtblk))
2149 {
2150 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2151 if (mem_mode != BLKmode)
2152 copy_mode = mem_mode;
2153 }
2154
2155 for (bitpos = 0, xbitpos = padding_correction;
2156 bitpos < bytes * BITS_PER_UNIT;
2157 bitpos += bitsize, xbitpos += bitsize)
2158 {
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos % BITS_PER_WORD == 0
2163 || xbitpos == padding_correction)
2164 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2165 GET_MODE (srcreg));
2166
2167 /* We need a new destination operand each time bitpos is on
2168 a word boundary. */
2169 if (bitpos % BITS_PER_WORD == 0)
2170 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2171
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2175 extract_bit_field (src, bitsize,
2176 xbitpos % BITS_PER_WORD, 1, false,
2177 NULL_RTX, copy_mode, copy_mode));
2178 }
2179
2180 return tgtblk;
2181 }
2182
2183 /* Add a USE expression for REG to the (possibly empty) list pointed
2184 to by CALL_FUSAGE. REG must denote a hard register. */
2185
2186 void
2187 use_reg (rtx *call_fusage, rtx reg)
2188 {
2189 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2190
2191 *call_fusage
2192 = gen_rtx_EXPR_LIST (VOIDmode,
2193 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2194 }
2195
2196 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2197 starting at REGNO. All of these registers must be hard registers. */
2198
2199 void
2200 use_regs (rtx *call_fusage, int regno, int nregs)
2201 {
2202 int i;
2203
2204 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2205
2206 for (i = 0; i < nregs; i++)
2207 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2208 }
2209
2210 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2211 PARALLEL REGS. This is for calls that pass values in multiple
2212 non-contiguous locations. The Irix 6 ABI has examples of this. */
2213
2214 void
2215 use_group_regs (rtx *call_fusage, rtx regs)
2216 {
2217 int i;
2218
2219 for (i = 0; i < XVECLEN (regs, 0); i++)
2220 {
2221 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2222
2223 /* A NULL entry means the parameter goes both on the stack and in
2224 registers. This can also be a MEM for targets that pass values
2225 partially on the stack and partially in registers. */
2226 if (reg != 0 && REG_P (reg))
2227 use_reg (call_fusage, reg);
2228 }
2229 }
2230
2231 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2232 assigment and the code of the expresion on the RHS is CODE. Return
2233 NULL otherwise. */
2234
2235 static gimple
2236 get_def_for_expr (tree name, enum tree_code code)
2237 {
2238 gimple def_stmt;
2239
2240 if (TREE_CODE (name) != SSA_NAME)
2241 return NULL;
2242
2243 def_stmt = get_gimple_for_ssa_name (name);
2244 if (!def_stmt
2245 || gimple_assign_rhs_code (def_stmt) != code)
2246 return NULL;
2247
2248 return def_stmt;
2249 }
2250 \f
2251
2252 /* Determine whether the LEN bytes generated by CONSTFUN can be
2253 stored to memory using several move instructions. CONSTFUNDATA is
2254 a pointer which will be passed as argument in every CONSTFUN call.
2255 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2256 a memset operation and false if it's a copy of a constant string.
2257 Return nonzero if a call to store_by_pieces should succeed. */
2258
2259 int
2260 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2261 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2262 void *constfundata, unsigned int align, bool memsetp)
2263 {
2264 unsigned HOST_WIDE_INT l;
2265 unsigned int max_size;
2266 HOST_WIDE_INT offset = 0;
2267 enum machine_mode mode;
2268 enum insn_code icode;
2269 int reverse;
2270 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2271 rtx cst ATTRIBUTE_UNUSED;
2272
2273 if (len == 0)
2274 return 1;
2275
2276 if (! (memsetp
2277 ? SET_BY_PIECES_P (len, align)
2278 : STORE_BY_PIECES_P (len, align)))
2279 return 0;
2280
2281 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2282
2283 /* We would first store what we can in the largest integer mode, then go to
2284 successively smaller modes. */
2285
2286 for (reverse = 0;
2287 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2288 reverse++)
2289 {
2290 l = len;
2291 max_size = STORE_MAX_PIECES + 1;
2292 while (max_size > 1)
2293 {
2294 mode = widest_int_mode_for_size (max_size);
2295
2296 if (mode == VOIDmode)
2297 break;
2298
2299 icode = optab_handler (mov_optab, mode);
2300 if (icode != CODE_FOR_nothing
2301 && align >= GET_MODE_ALIGNMENT (mode))
2302 {
2303 unsigned int size = GET_MODE_SIZE (mode);
2304
2305 while (l >= size)
2306 {
2307 if (reverse)
2308 offset -= size;
2309
2310 cst = (*constfun) (constfundata, offset, mode);
2311 if (!LEGITIMATE_CONSTANT_P (cst))
2312 return 0;
2313
2314 if (!reverse)
2315 offset += size;
2316
2317 l -= size;
2318 }
2319 }
2320
2321 max_size = GET_MODE_SIZE (mode);
2322 }
2323
2324 /* The code above should have handled everything. */
2325 gcc_assert (!l);
2326 }
2327
2328 return 1;
2329 }
2330
2331 /* Generate several move instructions to store LEN bytes generated by
2332 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2333 pointer which will be passed as argument in every CONSTFUN call.
2334 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2335 a memset operation and false if it's a copy of a constant string.
2336 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2337 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2338 stpcpy. */
2339
2340 rtx
2341 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2342 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2343 void *constfundata, unsigned int align, bool memsetp, int endp)
2344 {
2345 enum machine_mode to_addr_mode
2346 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2347 struct store_by_pieces_d data;
2348
2349 if (len == 0)
2350 {
2351 gcc_assert (endp != 2);
2352 return to;
2353 }
2354
2355 gcc_assert (memsetp
2356 ? SET_BY_PIECES_P (len, align)
2357 : STORE_BY_PIECES_P (len, align));
2358 data.constfun = constfun;
2359 data.constfundata = constfundata;
2360 data.len = len;
2361 data.to = to;
2362 store_by_pieces_1 (&data, align);
2363 if (endp)
2364 {
2365 rtx to1;
2366
2367 gcc_assert (!data.reverse);
2368 if (data.autinc_to)
2369 {
2370 if (endp == 2)
2371 {
2372 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2373 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2374 else
2375 data.to_addr = copy_to_mode_reg (to_addr_mode,
2376 plus_constant (data.to_addr,
2377 -1));
2378 }
2379 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2380 data.offset);
2381 }
2382 else
2383 {
2384 if (endp == 2)
2385 --data.offset;
2386 to1 = adjust_address (data.to, QImode, data.offset);
2387 }
2388 return to1;
2389 }
2390 else
2391 return data.to;
2392 }
2393
2394 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2395 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2396
2397 static void
2398 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2399 {
2400 struct store_by_pieces_d data;
2401
2402 if (len == 0)
2403 return;
2404
2405 data.constfun = clear_by_pieces_1;
2406 data.constfundata = NULL;
2407 data.len = len;
2408 data.to = to;
2409 store_by_pieces_1 (&data, align);
2410 }
2411
2412 /* Callback routine for clear_by_pieces.
2413 Return const0_rtx unconditionally. */
2414
2415 static rtx
2416 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2417 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2418 enum machine_mode mode ATTRIBUTE_UNUSED)
2419 {
2420 return const0_rtx;
2421 }
2422
2423 /* Subroutine of clear_by_pieces and store_by_pieces.
2424 Generate several move instructions to store LEN bytes of block TO. (A MEM
2425 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2426
2427 static void
2428 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2429 unsigned int align ATTRIBUTE_UNUSED)
2430 {
2431 enum machine_mode to_addr_mode
2432 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2433 rtx to_addr = XEXP (data->to, 0);
2434 unsigned int max_size = STORE_MAX_PIECES + 1;
2435 enum insn_code icode;
2436
2437 data->offset = 0;
2438 data->to_addr = to_addr;
2439 data->autinc_to
2440 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2441 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2442
2443 data->explicit_inc_to = 0;
2444 data->reverse
2445 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2446 if (data->reverse)
2447 data->offset = data->len;
2448
2449 /* If storing requires more than two move insns,
2450 copy addresses to registers (to make displacements shorter)
2451 and use post-increment if available. */
2452 if (!data->autinc_to
2453 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2454 {
2455 /* Determine the main mode we'll be using.
2456 MODE might not be used depending on the definitions of the
2457 USE_* macros below. */
2458 enum machine_mode mode ATTRIBUTE_UNUSED
2459 = widest_int_mode_for_size (max_size);
2460
2461 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2462 {
2463 data->to_addr = copy_to_mode_reg (to_addr_mode,
2464 plus_constant (to_addr, data->len));
2465 data->autinc_to = 1;
2466 data->explicit_inc_to = -1;
2467 }
2468
2469 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2470 && ! data->autinc_to)
2471 {
2472 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2473 data->autinc_to = 1;
2474 data->explicit_inc_to = 1;
2475 }
2476
2477 if ( !data->autinc_to && CONSTANT_P (to_addr))
2478 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2479 }
2480
2481 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2482
2483 /* First store what we can in the largest integer mode, then go to
2484 successively smaller modes. */
2485
2486 while (max_size > 1)
2487 {
2488 enum machine_mode mode = widest_int_mode_for_size (max_size);
2489
2490 if (mode == VOIDmode)
2491 break;
2492
2493 icode = optab_handler (mov_optab, mode);
2494 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2495 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2496
2497 max_size = GET_MODE_SIZE (mode);
2498 }
2499
2500 /* The code above should have handled everything. */
2501 gcc_assert (!data->len);
2502 }
2503
2504 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2505 with move instructions for mode MODE. GENFUN is the gen_... function
2506 to make a move insn for that mode. DATA has all the other info. */
2507
2508 static void
2509 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2510 struct store_by_pieces_d *data)
2511 {
2512 unsigned int size = GET_MODE_SIZE (mode);
2513 rtx to1, cst;
2514
2515 while (data->len >= size)
2516 {
2517 if (data->reverse)
2518 data->offset -= size;
2519
2520 if (data->autinc_to)
2521 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2522 data->offset);
2523 else
2524 to1 = adjust_address (data->to, mode, data->offset);
2525
2526 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2527 emit_insn (gen_add2_insn (data->to_addr,
2528 GEN_INT (-(HOST_WIDE_INT) size)));
2529
2530 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2531 emit_insn ((*genfun) (to1, cst));
2532
2533 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2534 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2535
2536 if (! data->reverse)
2537 data->offset += size;
2538
2539 data->len -= size;
2540 }
2541 }
2542 \f
2543 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2544 its length in bytes. */
2545
2546 rtx
2547 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2548 unsigned int expected_align, HOST_WIDE_INT expected_size)
2549 {
2550 enum machine_mode mode = GET_MODE (object);
2551 unsigned int align;
2552
2553 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2554
2555 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2556 just move a zero. Otherwise, do this a piece at a time. */
2557 if (mode != BLKmode
2558 && CONST_INT_P (size)
2559 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2560 {
2561 rtx zero = CONST0_RTX (mode);
2562 if (zero != NULL)
2563 {
2564 emit_move_insn (object, zero);
2565 return NULL;
2566 }
2567
2568 if (COMPLEX_MODE_P (mode))
2569 {
2570 zero = CONST0_RTX (GET_MODE_INNER (mode));
2571 if (zero != NULL)
2572 {
2573 write_complex_part (object, zero, 0);
2574 write_complex_part (object, zero, 1);
2575 return NULL;
2576 }
2577 }
2578 }
2579
2580 if (size == const0_rtx)
2581 return NULL;
2582
2583 align = MEM_ALIGN (object);
2584
2585 if (CONST_INT_P (size)
2586 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2587 clear_by_pieces (object, INTVAL (size), align);
2588 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2589 expected_align, expected_size))
2590 ;
2591 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2592 return set_storage_via_libcall (object, size, const0_rtx,
2593 method == BLOCK_OP_TAILCALL);
2594 else
2595 gcc_unreachable ();
2596
2597 return NULL;
2598 }
2599
2600 rtx
2601 clear_storage (rtx object, rtx size, enum block_op_methods method)
2602 {
2603 return clear_storage_hints (object, size, method, 0, -1);
2604 }
2605
2606
2607 /* A subroutine of clear_storage. Expand a call to memset.
2608 Return the return value of memset, 0 otherwise. */
2609
2610 rtx
2611 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2612 {
2613 tree call_expr, fn, object_tree, size_tree, val_tree;
2614 enum machine_mode size_mode;
2615 rtx retval;
2616
2617 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2618 place those into new pseudos into a VAR_DECL and use them later. */
2619
2620 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2621
2622 size_mode = TYPE_MODE (sizetype);
2623 size = convert_to_mode (size_mode, size, 1);
2624 size = copy_to_mode_reg (size_mode, size);
2625
2626 /* It is incorrect to use the libcall calling conventions to call
2627 memset in this context. This could be a user call to memset and
2628 the user may wish to examine the return value from memset. For
2629 targets where libcalls and normal calls have different conventions
2630 for returning pointers, we could end up generating incorrect code. */
2631
2632 object_tree = make_tree (ptr_type_node, object);
2633 if (!CONST_INT_P (val))
2634 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2635 size_tree = make_tree (sizetype, size);
2636 val_tree = make_tree (integer_type_node, val);
2637
2638 fn = clear_storage_libcall_fn (true);
2639 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2640 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2641
2642 retval = expand_normal (call_expr);
2643
2644 return retval;
2645 }
2646
2647 /* A subroutine of set_storage_via_libcall. Create the tree node
2648 for the function we use for block clears. The first time FOR_CALL
2649 is true, we call assemble_external. */
2650
2651 tree block_clear_fn;
2652
2653 void
2654 init_block_clear_fn (const char *asmspec)
2655 {
2656 if (!block_clear_fn)
2657 {
2658 tree fn, args;
2659
2660 fn = get_identifier ("memset");
2661 args = build_function_type_list (ptr_type_node, ptr_type_node,
2662 integer_type_node, sizetype,
2663 NULL_TREE);
2664
2665 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2666 DECL_EXTERNAL (fn) = 1;
2667 TREE_PUBLIC (fn) = 1;
2668 DECL_ARTIFICIAL (fn) = 1;
2669 TREE_NOTHROW (fn) = 1;
2670 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2671 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2672
2673 block_clear_fn = fn;
2674 }
2675
2676 if (asmspec)
2677 set_user_assembler_name (block_clear_fn, asmspec);
2678 }
2679
2680 static tree
2681 clear_storage_libcall_fn (int for_call)
2682 {
2683 static bool emitted_extern;
2684
2685 if (!block_clear_fn)
2686 init_block_clear_fn (NULL);
2687
2688 if (for_call && !emitted_extern)
2689 {
2690 emitted_extern = true;
2691 make_decl_rtl (block_clear_fn);
2692 assemble_external (block_clear_fn);
2693 }
2694
2695 return block_clear_fn;
2696 }
2697 \f
2698 /* Expand a setmem pattern; return true if successful. */
2699
2700 bool
2701 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2702 unsigned int expected_align, HOST_WIDE_INT expected_size)
2703 {
2704 /* Try the most limited insn first, because there's no point
2705 including more than one in the machine description unless
2706 the more limited one has some advantage. */
2707
2708 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2709 enum machine_mode mode;
2710
2711 if (expected_align < align)
2712 expected_align = align;
2713
2714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2715 mode = GET_MODE_WIDER_MODE (mode))
2716 {
2717 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2718 insn_operand_predicate_fn pred;
2719
2720 if (code != CODE_FOR_nothing
2721 /* We don't need MODE to be narrower than
2722 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2723 the mode mask, as it is returned by the macro, it will
2724 definitely be less than the actual mode mask. */
2725 && ((CONST_INT_P (size)
2726 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2727 <= (GET_MODE_MASK (mode) >> 1)))
2728 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2729 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2730 || (*pred) (object, BLKmode))
2731 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2732 || (*pred) (opalign, VOIDmode)))
2733 {
2734 rtx opsize, opchar;
2735 enum machine_mode char_mode;
2736 rtx last = get_last_insn ();
2737 rtx pat;
2738
2739 opsize = convert_to_mode (mode, size, 1);
2740 pred = insn_data[(int) code].operand[1].predicate;
2741 if (pred != 0 && ! (*pred) (opsize, mode))
2742 opsize = copy_to_mode_reg (mode, opsize);
2743
2744 opchar = val;
2745 char_mode = insn_data[(int) code].operand[2].mode;
2746 if (char_mode != VOIDmode)
2747 {
2748 opchar = convert_to_mode (char_mode, opchar, 1);
2749 pred = insn_data[(int) code].operand[2].predicate;
2750 if (pred != 0 && ! (*pred) (opchar, char_mode))
2751 opchar = copy_to_mode_reg (char_mode, opchar);
2752 }
2753
2754 if (insn_data[(int) code].n_operands == 4)
2755 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2756 else
2757 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2758 GEN_INT (expected_align
2759 / BITS_PER_UNIT),
2760 GEN_INT (expected_size));
2761 if (pat)
2762 {
2763 emit_insn (pat);
2764 return true;
2765 }
2766 else
2767 delete_insns_since (last);
2768 }
2769 }
2770
2771 return false;
2772 }
2773
2774 \f
2775 /* Write to one of the components of the complex value CPLX. Write VAL to
2776 the real part if IMAG_P is false, and the imaginary part if its true. */
2777
2778 static void
2779 write_complex_part (rtx cplx, rtx val, bool imag_p)
2780 {
2781 enum machine_mode cmode;
2782 enum machine_mode imode;
2783 unsigned ibitsize;
2784
2785 if (GET_CODE (cplx) == CONCAT)
2786 {
2787 emit_move_insn (XEXP (cplx, imag_p), val);
2788 return;
2789 }
2790
2791 cmode = GET_MODE (cplx);
2792 imode = GET_MODE_INNER (cmode);
2793 ibitsize = GET_MODE_BITSIZE (imode);
2794
2795 /* For MEMs simplify_gen_subreg may generate an invalid new address
2796 because, e.g., the original address is considered mode-dependent
2797 by the target, which restricts simplify_subreg from invoking
2798 adjust_address_nv. Instead of preparing fallback support for an
2799 invalid address, we call adjust_address_nv directly. */
2800 if (MEM_P (cplx))
2801 {
2802 emit_move_insn (adjust_address_nv (cplx, imode,
2803 imag_p ? GET_MODE_SIZE (imode) : 0),
2804 val);
2805 return;
2806 }
2807
2808 /* If the sub-object is at least word sized, then we know that subregging
2809 will work. This special case is important, since store_bit_field
2810 wants to operate on integer modes, and there's rarely an OImode to
2811 correspond to TCmode. */
2812 if (ibitsize >= BITS_PER_WORD
2813 /* For hard regs we have exact predicates. Assume we can split
2814 the original object if it spans an even number of hard regs.
2815 This special case is important for SCmode on 64-bit platforms
2816 where the natural size of floating-point regs is 32-bit. */
2817 || (REG_P (cplx)
2818 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2819 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2820 {
2821 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2822 imag_p ? GET_MODE_SIZE (imode) : 0);
2823 if (part)
2824 {
2825 emit_move_insn (part, val);
2826 return;
2827 }
2828 else
2829 /* simplify_gen_subreg may fail for sub-word MEMs. */
2830 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2831 }
2832
2833 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2834 }
2835
2836 /* Extract one of the components of the complex value CPLX. Extract the
2837 real part if IMAG_P is false, and the imaginary part if it's true. */
2838
2839 static rtx
2840 read_complex_part (rtx cplx, bool imag_p)
2841 {
2842 enum machine_mode cmode, imode;
2843 unsigned ibitsize;
2844
2845 if (GET_CODE (cplx) == CONCAT)
2846 return XEXP (cplx, imag_p);
2847
2848 cmode = GET_MODE (cplx);
2849 imode = GET_MODE_INNER (cmode);
2850 ibitsize = GET_MODE_BITSIZE (imode);
2851
2852 /* Special case reads from complex constants that got spilled to memory. */
2853 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2854 {
2855 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2856 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2857 {
2858 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2859 if (CONSTANT_CLASS_P (part))
2860 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2861 }
2862 }
2863
2864 /* For MEMs simplify_gen_subreg may generate an invalid new address
2865 because, e.g., the original address is considered mode-dependent
2866 by the target, which restricts simplify_subreg from invoking
2867 adjust_address_nv. Instead of preparing fallback support for an
2868 invalid address, we call adjust_address_nv directly. */
2869 if (MEM_P (cplx))
2870 return adjust_address_nv (cplx, imode,
2871 imag_p ? GET_MODE_SIZE (imode) : 0);
2872
2873 /* If the sub-object is at least word sized, then we know that subregging
2874 will work. This special case is important, since extract_bit_field
2875 wants to operate on integer modes, and there's rarely an OImode to
2876 correspond to TCmode. */
2877 if (ibitsize >= BITS_PER_WORD
2878 /* For hard regs we have exact predicates. Assume we can split
2879 the original object if it spans an even number of hard regs.
2880 This special case is important for SCmode on 64-bit platforms
2881 where the natural size of floating-point regs is 32-bit. */
2882 || (REG_P (cplx)
2883 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2884 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2885 {
2886 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2887 imag_p ? GET_MODE_SIZE (imode) : 0);
2888 if (ret)
2889 return ret;
2890 else
2891 /* simplify_gen_subreg may fail for sub-word MEMs. */
2892 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2893 }
2894
2895 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2896 true, false, NULL_RTX, imode, imode);
2897 }
2898 \f
2899 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2900 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2901 represented in NEW_MODE. If FORCE is true, this will never happen, as
2902 we'll force-create a SUBREG if needed. */
2903
2904 static rtx
2905 emit_move_change_mode (enum machine_mode new_mode,
2906 enum machine_mode old_mode, rtx x, bool force)
2907 {
2908 rtx ret;
2909
2910 if (push_operand (x, GET_MODE (x)))
2911 {
2912 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2913 MEM_COPY_ATTRIBUTES (ret, x);
2914 }
2915 else if (MEM_P (x))
2916 {
2917 /* We don't have to worry about changing the address since the
2918 size in bytes is supposed to be the same. */
2919 if (reload_in_progress)
2920 {
2921 /* Copy the MEM to change the mode and move any
2922 substitutions from the old MEM to the new one. */
2923 ret = adjust_address_nv (x, new_mode, 0);
2924 copy_replacements (x, ret);
2925 }
2926 else
2927 ret = adjust_address (x, new_mode, 0);
2928 }
2929 else
2930 {
2931 /* Note that we do want simplify_subreg's behavior of validating
2932 that the new mode is ok for a hard register. If we were to use
2933 simplify_gen_subreg, we would create the subreg, but would
2934 probably run into the target not being able to implement it. */
2935 /* Except, of course, when FORCE is true, when this is exactly what
2936 we want. Which is needed for CCmodes on some targets. */
2937 if (force)
2938 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2939 else
2940 ret = simplify_subreg (new_mode, x, old_mode, 0);
2941 }
2942
2943 return ret;
2944 }
2945
2946 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2947 an integer mode of the same size as MODE. Returns the instruction
2948 emitted, or NULL if such a move could not be generated. */
2949
2950 static rtx
2951 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2952 {
2953 enum machine_mode imode;
2954 enum insn_code code;
2955
2956 /* There must exist a mode of the exact size we require. */
2957 imode = int_mode_for_mode (mode);
2958 if (imode == BLKmode)
2959 return NULL_RTX;
2960
2961 /* The target must support moves in this mode. */
2962 code = optab_handler (mov_optab, imode);
2963 if (code == CODE_FOR_nothing)
2964 return NULL_RTX;
2965
2966 x = emit_move_change_mode (imode, mode, x, force);
2967 if (x == NULL_RTX)
2968 return NULL_RTX;
2969 y = emit_move_change_mode (imode, mode, y, force);
2970 if (y == NULL_RTX)
2971 return NULL_RTX;
2972 return emit_insn (GEN_FCN (code) (x, y));
2973 }
2974
2975 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2976 Return an equivalent MEM that does not use an auto-increment. */
2977
2978 static rtx
2979 emit_move_resolve_push (enum machine_mode mode, rtx x)
2980 {
2981 enum rtx_code code = GET_CODE (XEXP (x, 0));
2982 HOST_WIDE_INT adjust;
2983 rtx temp;
2984
2985 adjust = GET_MODE_SIZE (mode);
2986 #ifdef PUSH_ROUNDING
2987 adjust = PUSH_ROUNDING (adjust);
2988 #endif
2989 if (code == PRE_DEC || code == POST_DEC)
2990 adjust = -adjust;
2991 else if (code == PRE_MODIFY || code == POST_MODIFY)
2992 {
2993 rtx expr = XEXP (XEXP (x, 0), 1);
2994 HOST_WIDE_INT val;
2995
2996 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2997 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2998 val = INTVAL (XEXP (expr, 1));
2999 if (GET_CODE (expr) == MINUS)
3000 val = -val;
3001 gcc_assert (adjust == val || adjust == -val);
3002 adjust = val;
3003 }
3004
3005 /* Do not use anti_adjust_stack, since we don't want to update
3006 stack_pointer_delta. */
3007 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3008 GEN_INT (adjust), stack_pointer_rtx,
3009 0, OPTAB_LIB_WIDEN);
3010 if (temp != stack_pointer_rtx)
3011 emit_move_insn (stack_pointer_rtx, temp);
3012
3013 switch (code)
3014 {
3015 case PRE_INC:
3016 case PRE_DEC:
3017 case PRE_MODIFY:
3018 temp = stack_pointer_rtx;
3019 break;
3020 case POST_INC:
3021 case POST_DEC:
3022 case POST_MODIFY:
3023 temp = plus_constant (stack_pointer_rtx, -adjust);
3024 break;
3025 default:
3026 gcc_unreachable ();
3027 }
3028
3029 return replace_equiv_address (x, temp);
3030 }
3031
3032 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3033 X is known to satisfy push_operand, and MODE is known to be complex.
3034 Returns the last instruction emitted. */
3035
3036 rtx
3037 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3038 {
3039 enum machine_mode submode = GET_MODE_INNER (mode);
3040 bool imag_first;
3041
3042 #ifdef PUSH_ROUNDING
3043 unsigned int submodesize = GET_MODE_SIZE (submode);
3044
3045 /* In case we output to the stack, but the size is smaller than the
3046 machine can push exactly, we need to use move instructions. */
3047 if (PUSH_ROUNDING (submodesize) != submodesize)
3048 {
3049 x = emit_move_resolve_push (mode, x);
3050 return emit_move_insn (x, y);
3051 }
3052 #endif
3053
3054 /* Note that the real part always precedes the imag part in memory
3055 regardless of machine's endianness. */
3056 switch (GET_CODE (XEXP (x, 0)))
3057 {
3058 case PRE_DEC:
3059 case POST_DEC:
3060 imag_first = true;
3061 break;
3062 case PRE_INC:
3063 case POST_INC:
3064 imag_first = false;
3065 break;
3066 default:
3067 gcc_unreachable ();
3068 }
3069
3070 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3071 read_complex_part (y, imag_first));
3072 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3073 read_complex_part (y, !imag_first));
3074 }
3075
3076 /* A subroutine of emit_move_complex. Perform the move from Y to X
3077 via two moves of the parts. Returns the last instruction emitted. */
3078
3079 rtx
3080 emit_move_complex_parts (rtx x, rtx y)
3081 {
3082 /* Show the output dies here. This is necessary for SUBREGs
3083 of pseudos since we cannot track their lifetimes correctly;
3084 hard regs shouldn't appear here except as return values. */
3085 if (!reload_completed && !reload_in_progress
3086 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3087 emit_clobber (x);
3088
3089 write_complex_part (x, read_complex_part (y, false), false);
3090 write_complex_part (x, read_complex_part (y, true), true);
3091
3092 return get_last_insn ();
3093 }
3094
3095 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3096 MODE is known to be complex. Returns the last instruction emitted. */
3097
3098 static rtx
3099 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3100 {
3101 bool try_int;
3102
3103 /* Need to take special care for pushes, to maintain proper ordering
3104 of the data, and possibly extra padding. */
3105 if (push_operand (x, mode))
3106 return emit_move_complex_push (mode, x, y);
3107
3108 /* See if we can coerce the target into moving both values at once. */
3109
3110 /* Move floating point as parts. */
3111 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3112 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3113 try_int = false;
3114 /* Not possible if the values are inherently not adjacent. */
3115 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3116 try_int = false;
3117 /* Is possible if both are registers (or subregs of registers). */
3118 else if (register_operand (x, mode) && register_operand (y, mode))
3119 try_int = true;
3120 /* If one of the operands is a memory, and alignment constraints
3121 are friendly enough, we may be able to do combined memory operations.
3122 We do not attempt this if Y is a constant because that combination is
3123 usually better with the by-parts thing below. */
3124 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3125 && (!STRICT_ALIGNMENT
3126 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3127 try_int = true;
3128 else
3129 try_int = false;
3130
3131 if (try_int)
3132 {
3133 rtx ret;
3134
3135 /* For memory to memory moves, optimal behavior can be had with the
3136 existing block move logic. */
3137 if (MEM_P (x) && MEM_P (y))
3138 {
3139 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3140 BLOCK_OP_NO_LIBCALL);
3141 return get_last_insn ();
3142 }
3143
3144 ret = emit_move_via_integer (mode, x, y, true);
3145 if (ret)
3146 return ret;
3147 }
3148
3149 return emit_move_complex_parts (x, y);
3150 }
3151
3152 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3153 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3154
3155 static rtx
3156 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3157 {
3158 rtx ret;
3159
3160 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3161 if (mode != CCmode)
3162 {
3163 enum insn_code code = optab_handler (mov_optab, CCmode);
3164 if (code != CODE_FOR_nothing)
3165 {
3166 x = emit_move_change_mode (CCmode, mode, x, true);
3167 y = emit_move_change_mode (CCmode, mode, y, true);
3168 return emit_insn (GEN_FCN (code) (x, y));
3169 }
3170 }
3171
3172 /* Otherwise, find the MODE_INT mode of the same width. */
3173 ret = emit_move_via_integer (mode, x, y, false);
3174 gcc_assert (ret != NULL);
3175 return ret;
3176 }
3177
3178 /* Return true if word I of OP lies entirely in the
3179 undefined bits of a paradoxical subreg. */
3180
3181 static bool
3182 undefined_operand_subword_p (const_rtx op, int i)
3183 {
3184 enum machine_mode innermode, innermostmode;
3185 int offset;
3186 if (GET_CODE (op) != SUBREG)
3187 return false;
3188 innermode = GET_MODE (op);
3189 innermostmode = GET_MODE (SUBREG_REG (op));
3190 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3191 /* The SUBREG_BYTE represents offset, as if the value were stored in
3192 memory, except for a paradoxical subreg where we define
3193 SUBREG_BYTE to be 0; undo this exception as in
3194 simplify_subreg. */
3195 if (SUBREG_BYTE (op) == 0
3196 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3197 {
3198 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3199 if (WORDS_BIG_ENDIAN)
3200 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3201 if (BYTES_BIG_ENDIAN)
3202 offset += difference % UNITS_PER_WORD;
3203 }
3204 if (offset >= GET_MODE_SIZE (innermostmode)
3205 || offset <= -GET_MODE_SIZE (word_mode))
3206 return true;
3207 return false;
3208 }
3209
3210 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3211 MODE is any multi-word or full-word mode that lacks a move_insn
3212 pattern. Note that you will get better code if you define such
3213 patterns, even if they must turn into multiple assembler instructions. */
3214
3215 static rtx
3216 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3217 {
3218 rtx last_insn = 0;
3219 rtx seq, inner;
3220 bool need_clobber;
3221 int i;
3222
3223 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3224
3225 /* If X is a push on the stack, do the push now and replace
3226 X with a reference to the stack pointer. */
3227 if (push_operand (x, mode))
3228 x = emit_move_resolve_push (mode, x);
3229
3230 /* If we are in reload, see if either operand is a MEM whose address
3231 is scheduled for replacement. */
3232 if (reload_in_progress && MEM_P (x)
3233 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3234 x = replace_equiv_address_nv (x, inner);
3235 if (reload_in_progress && MEM_P (y)
3236 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3237 y = replace_equiv_address_nv (y, inner);
3238
3239 start_sequence ();
3240
3241 need_clobber = false;
3242 for (i = 0;
3243 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3244 i++)
3245 {
3246 rtx xpart = operand_subword (x, i, 1, mode);
3247 rtx ypart;
3248
3249 /* Do not generate code for a move if it would come entirely
3250 from the undefined bits of a paradoxical subreg. */
3251 if (undefined_operand_subword_p (y, i))
3252 continue;
3253
3254 ypart = operand_subword (y, i, 1, mode);
3255
3256 /* If we can't get a part of Y, put Y into memory if it is a
3257 constant. Otherwise, force it into a register. Then we must
3258 be able to get a part of Y. */
3259 if (ypart == 0 && CONSTANT_P (y))
3260 {
3261 y = use_anchored_address (force_const_mem (mode, y));
3262 ypart = operand_subword (y, i, 1, mode);
3263 }
3264 else if (ypart == 0)
3265 ypart = operand_subword_force (y, i, mode);
3266
3267 gcc_assert (xpart && ypart);
3268
3269 need_clobber |= (GET_CODE (xpart) == SUBREG);
3270
3271 last_insn = emit_move_insn (xpart, ypart);
3272 }
3273
3274 seq = get_insns ();
3275 end_sequence ();
3276
3277 /* Show the output dies here. This is necessary for SUBREGs
3278 of pseudos since we cannot track their lifetimes correctly;
3279 hard regs shouldn't appear here except as return values.
3280 We never want to emit such a clobber after reload. */
3281 if (x != y
3282 && ! (reload_in_progress || reload_completed)
3283 && need_clobber != 0)
3284 emit_clobber (x);
3285
3286 emit_insn (seq);
3287
3288 return last_insn;
3289 }
3290
3291 /* Low level part of emit_move_insn.
3292 Called just like emit_move_insn, but assumes X and Y
3293 are basically valid. */
3294
3295 rtx
3296 emit_move_insn_1 (rtx x, rtx y)
3297 {
3298 enum machine_mode mode = GET_MODE (x);
3299 enum insn_code code;
3300
3301 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3302
3303 code = optab_handler (mov_optab, mode);
3304 if (code != CODE_FOR_nothing)
3305 return emit_insn (GEN_FCN (code) (x, y));
3306
3307 /* Expand complex moves by moving real part and imag part. */
3308 if (COMPLEX_MODE_P (mode))
3309 return emit_move_complex (mode, x, y);
3310
3311 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3312 || ALL_FIXED_POINT_MODE_P (mode))
3313 {
3314 rtx result = emit_move_via_integer (mode, x, y, true);
3315
3316 /* If we can't find an integer mode, use multi words. */
3317 if (result)
3318 return result;
3319 else
3320 return emit_move_multi_word (mode, x, y);
3321 }
3322
3323 if (GET_MODE_CLASS (mode) == MODE_CC)
3324 return emit_move_ccmode (mode, x, y);
3325
3326 /* Try using a move pattern for the corresponding integer mode. This is
3327 only safe when simplify_subreg can convert MODE constants into integer
3328 constants. At present, it can only do this reliably if the value
3329 fits within a HOST_WIDE_INT. */
3330 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3331 {
3332 rtx ret = emit_move_via_integer (mode, x, y, false);
3333 if (ret)
3334 return ret;
3335 }
3336
3337 return emit_move_multi_word (mode, x, y);
3338 }
3339
3340 /* Generate code to copy Y into X.
3341 Both Y and X must have the same mode, except that
3342 Y can be a constant with VOIDmode.
3343 This mode cannot be BLKmode; use emit_block_move for that.
3344
3345 Return the last instruction emitted. */
3346
3347 rtx
3348 emit_move_insn (rtx x, rtx y)
3349 {
3350 enum machine_mode mode = GET_MODE (x);
3351 rtx y_cst = NULL_RTX;
3352 rtx last_insn, set;
3353
3354 gcc_assert (mode != BLKmode
3355 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3356
3357 if (CONSTANT_P (y))
3358 {
3359 if (optimize
3360 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3361 && (last_insn = compress_float_constant (x, y)))
3362 return last_insn;
3363
3364 y_cst = y;
3365
3366 if (!LEGITIMATE_CONSTANT_P (y))
3367 {
3368 y = force_const_mem (mode, y);
3369
3370 /* If the target's cannot_force_const_mem prevented the spill,
3371 assume that the target's move expanders will also take care
3372 of the non-legitimate constant. */
3373 if (!y)
3374 y = y_cst;
3375 else
3376 y = use_anchored_address (y);
3377 }
3378 }
3379
3380 /* If X or Y are memory references, verify that their addresses are valid
3381 for the machine. */
3382 if (MEM_P (x)
3383 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3384 MEM_ADDR_SPACE (x))
3385 && ! push_operand (x, GET_MODE (x))))
3386 x = validize_mem (x);
3387
3388 if (MEM_P (y)
3389 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3390 MEM_ADDR_SPACE (y)))
3391 y = validize_mem (y);
3392
3393 gcc_assert (mode != BLKmode);
3394
3395 last_insn = emit_move_insn_1 (x, y);
3396
3397 if (y_cst && REG_P (x)
3398 && (set = single_set (last_insn)) != NULL_RTX
3399 && SET_DEST (set) == x
3400 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3401 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3402
3403 return last_insn;
3404 }
3405
3406 /* If Y is representable exactly in a narrower mode, and the target can
3407 perform the extension directly from constant or memory, then emit the
3408 move as an extension. */
3409
3410 static rtx
3411 compress_float_constant (rtx x, rtx y)
3412 {
3413 enum machine_mode dstmode = GET_MODE (x);
3414 enum machine_mode orig_srcmode = GET_MODE (y);
3415 enum machine_mode srcmode;
3416 REAL_VALUE_TYPE r;
3417 int oldcost, newcost;
3418 bool speed = optimize_insn_for_speed_p ();
3419
3420 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3421
3422 if (LEGITIMATE_CONSTANT_P (y))
3423 oldcost = rtx_cost (y, SET, speed);
3424 else
3425 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3426
3427 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3428 srcmode != orig_srcmode;
3429 srcmode = GET_MODE_WIDER_MODE (srcmode))
3430 {
3431 enum insn_code ic;
3432 rtx trunc_y, last_insn;
3433
3434 /* Skip if the target can't extend this way. */
3435 ic = can_extend_p (dstmode, srcmode, 0);
3436 if (ic == CODE_FOR_nothing)
3437 continue;
3438
3439 /* Skip if the narrowed value isn't exact. */
3440 if (! exact_real_truncate (srcmode, &r))
3441 continue;
3442
3443 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3444
3445 if (LEGITIMATE_CONSTANT_P (trunc_y))
3446 {
3447 /* Skip if the target needs extra instructions to perform
3448 the extension. */
3449 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3450 continue;
3451 /* This is valid, but may not be cheaper than the original. */
3452 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3453 if (oldcost < newcost)
3454 continue;
3455 }
3456 else if (float_extend_from_mem[dstmode][srcmode])
3457 {
3458 trunc_y = force_const_mem (srcmode, trunc_y);
3459 /* This is valid, but may not be cheaper than the original. */
3460 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3461 if (oldcost < newcost)
3462 continue;
3463 trunc_y = validize_mem (trunc_y);
3464 }
3465 else
3466 continue;
3467
3468 /* For CSE's benefit, force the compressed constant pool entry
3469 into a new pseudo. This constant may be used in different modes,
3470 and if not, combine will put things back together for us. */
3471 trunc_y = force_reg (srcmode, trunc_y);
3472 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3473 last_insn = get_last_insn ();
3474
3475 if (REG_P (x))
3476 set_unique_reg_note (last_insn, REG_EQUAL, y);
3477
3478 return last_insn;
3479 }
3480
3481 return NULL_RTX;
3482 }
3483 \f
3484 /* Pushing data onto the stack. */
3485
3486 /* Push a block of length SIZE (perhaps variable)
3487 and return an rtx to address the beginning of the block.
3488 The value may be virtual_outgoing_args_rtx.
3489
3490 EXTRA is the number of bytes of padding to push in addition to SIZE.
3491 BELOW nonzero means this padding comes at low addresses;
3492 otherwise, the padding comes at high addresses. */
3493
3494 rtx
3495 push_block (rtx size, int extra, int below)
3496 {
3497 rtx temp;
3498
3499 size = convert_modes (Pmode, ptr_mode, size, 1);
3500 if (CONSTANT_P (size))
3501 anti_adjust_stack (plus_constant (size, extra));
3502 else if (REG_P (size) && extra == 0)
3503 anti_adjust_stack (size);
3504 else
3505 {
3506 temp = copy_to_mode_reg (Pmode, size);
3507 if (extra != 0)
3508 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3509 temp, 0, OPTAB_LIB_WIDEN);
3510 anti_adjust_stack (temp);
3511 }
3512
3513 #ifndef STACK_GROWS_DOWNWARD
3514 if (0)
3515 #else
3516 if (1)
3517 #endif
3518 {
3519 temp = virtual_outgoing_args_rtx;
3520 if (extra != 0 && below)
3521 temp = plus_constant (temp, extra);
3522 }
3523 else
3524 {
3525 if (CONST_INT_P (size))
3526 temp = plus_constant (virtual_outgoing_args_rtx,
3527 -INTVAL (size) - (below ? 0 : extra));
3528 else if (extra != 0 && !below)
3529 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3530 negate_rtx (Pmode, plus_constant (size, extra)));
3531 else
3532 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3533 negate_rtx (Pmode, size));
3534 }
3535
3536 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3537 }
3538
3539 #ifdef PUSH_ROUNDING
3540
3541 /* Emit single push insn. */
3542
3543 static void
3544 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3545 {
3546 rtx dest_addr;
3547 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3548 rtx dest;
3549 enum insn_code icode;
3550 insn_operand_predicate_fn pred;
3551
3552 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3553 /* If there is push pattern, use it. Otherwise try old way of throwing
3554 MEM representing push operation to move expander. */
3555 icode = optab_handler (push_optab, mode);
3556 if (icode != CODE_FOR_nothing)
3557 {
3558 if (((pred = insn_data[(int) icode].operand[0].predicate)
3559 && !((*pred) (x, mode))))
3560 x = force_reg (mode, x);
3561 emit_insn (GEN_FCN (icode) (x));
3562 return;
3563 }
3564 if (GET_MODE_SIZE (mode) == rounded_size)
3565 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3566 /* If we are to pad downward, adjust the stack pointer first and
3567 then store X into the stack location using an offset. This is
3568 because emit_move_insn does not know how to pad; it does not have
3569 access to type. */
3570 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3571 {
3572 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3573 HOST_WIDE_INT offset;
3574
3575 emit_move_insn (stack_pointer_rtx,
3576 expand_binop (Pmode,
3577 #ifdef STACK_GROWS_DOWNWARD
3578 sub_optab,
3579 #else
3580 add_optab,
3581 #endif
3582 stack_pointer_rtx,
3583 GEN_INT (rounded_size),
3584 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3585
3586 offset = (HOST_WIDE_INT) padding_size;
3587 #ifdef STACK_GROWS_DOWNWARD
3588 if (STACK_PUSH_CODE == POST_DEC)
3589 /* We have already decremented the stack pointer, so get the
3590 previous value. */
3591 offset += (HOST_WIDE_INT) rounded_size;
3592 #else
3593 if (STACK_PUSH_CODE == POST_INC)
3594 /* We have already incremented the stack pointer, so get the
3595 previous value. */
3596 offset -= (HOST_WIDE_INT) rounded_size;
3597 #endif
3598 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3599 }
3600 else
3601 {
3602 #ifdef STACK_GROWS_DOWNWARD
3603 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3604 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3605 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3606 #else
3607 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3608 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3609 GEN_INT (rounded_size));
3610 #endif
3611 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3612 }
3613
3614 dest = gen_rtx_MEM (mode, dest_addr);
3615
3616 if (type != 0)
3617 {
3618 set_mem_attributes (dest, type, 1);
3619
3620 if (flag_optimize_sibling_calls)
3621 /* Function incoming arguments may overlap with sibling call
3622 outgoing arguments and we cannot allow reordering of reads
3623 from function arguments with stores to outgoing arguments
3624 of sibling calls. */
3625 set_mem_alias_set (dest, 0);
3626 }
3627 emit_move_insn (dest, x);
3628 }
3629 #endif
3630
3631 /* Generate code to push X onto the stack, assuming it has mode MODE and
3632 type TYPE.
3633 MODE is redundant except when X is a CONST_INT (since they don't
3634 carry mode info).
3635 SIZE is an rtx for the size of data to be copied (in bytes),
3636 needed only if X is BLKmode.
3637
3638 ALIGN (in bits) is maximum alignment we can assume.
3639
3640 If PARTIAL and REG are both nonzero, then copy that many of the first
3641 bytes of X into registers starting with REG, and push the rest of X.
3642 The amount of space pushed is decreased by PARTIAL bytes.
3643 REG must be a hard register in this case.
3644 If REG is zero but PARTIAL is not, take any all others actions for an
3645 argument partially in registers, but do not actually load any
3646 registers.
3647
3648 EXTRA is the amount in bytes of extra space to leave next to this arg.
3649 This is ignored if an argument block has already been allocated.
3650
3651 On a machine that lacks real push insns, ARGS_ADDR is the address of
3652 the bottom of the argument block for this call. We use indexing off there
3653 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3654 argument block has not been preallocated.
3655
3656 ARGS_SO_FAR is the size of args previously pushed for this call.
3657
3658 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3659 for arguments passed in registers. If nonzero, it will be the number
3660 of bytes required. */
3661
3662 void
3663 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3664 unsigned int align, int partial, rtx reg, int extra,
3665 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3666 rtx alignment_pad)
3667 {
3668 rtx xinner;
3669 enum direction stack_direction
3670 #ifdef STACK_GROWS_DOWNWARD
3671 = downward;
3672 #else
3673 = upward;
3674 #endif
3675
3676 /* Decide where to pad the argument: `downward' for below,
3677 `upward' for above, or `none' for don't pad it.
3678 Default is below for small data on big-endian machines; else above. */
3679 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3680
3681 /* Invert direction if stack is post-decrement.
3682 FIXME: why? */
3683 if (STACK_PUSH_CODE == POST_DEC)
3684 if (where_pad != none)
3685 where_pad = (where_pad == downward ? upward : downward);
3686
3687 xinner = x;
3688
3689 if (mode == BLKmode
3690 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3691 {
3692 /* Copy a block into the stack, entirely or partially. */
3693
3694 rtx temp;
3695 int used;
3696 int offset;
3697 int skip;
3698
3699 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3700 used = partial - offset;
3701
3702 if (mode != BLKmode)
3703 {
3704 /* A value is to be stored in an insufficiently aligned
3705 stack slot; copy via a suitably aligned slot if
3706 necessary. */
3707 size = GEN_INT (GET_MODE_SIZE (mode));
3708 if (!MEM_P (xinner))
3709 {
3710 temp = assign_temp (type, 0, 1, 1);
3711 emit_move_insn (temp, xinner);
3712 xinner = temp;
3713 }
3714 }
3715
3716 gcc_assert (size);
3717
3718 /* USED is now the # of bytes we need not copy to the stack
3719 because registers will take care of them. */
3720
3721 if (partial != 0)
3722 xinner = adjust_address (xinner, BLKmode, used);
3723
3724 /* If the partial register-part of the arg counts in its stack size,
3725 skip the part of stack space corresponding to the registers.
3726 Otherwise, start copying to the beginning of the stack space,
3727 by setting SKIP to 0. */
3728 skip = (reg_parm_stack_space == 0) ? 0 : used;
3729
3730 #ifdef PUSH_ROUNDING
3731 /* Do it with several push insns if that doesn't take lots of insns
3732 and if there is no difficulty with push insns that skip bytes
3733 on the stack for alignment purposes. */
3734 if (args_addr == 0
3735 && PUSH_ARGS
3736 && CONST_INT_P (size)
3737 && skip == 0
3738 && MEM_ALIGN (xinner) >= align
3739 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3740 /* Here we avoid the case of a structure whose weak alignment
3741 forces many pushes of a small amount of data,
3742 and such small pushes do rounding that causes trouble. */
3743 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3744 || align >= BIGGEST_ALIGNMENT
3745 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3746 == (align / BITS_PER_UNIT)))
3747 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3748 {
3749 /* Push padding now if padding above and stack grows down,
3750 or if padding below and stack grows up.
3751 But if space already allocated, this has already been done. */
3752 if (extra && args_addr == 0
3753 && where_pad != none && where_pad != stack_direction)
3754 anti_adjust_stack (GEN_INT (extra));
3755
3756 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3757 }
3758 else
3759 #endif /* PUSH_ROUNDING */
3760 {
3761 rtx target;
3762
3763 /* Otherwise make space on the stack and copy the data
3764 to the address of that space. */
3765
3766 /* Deduct words put into registers from the size we must copy. */
3767 if (partial != 0)
3768 {
3769 if (CONST_INT_P (size))
3770 size = GEN_INT (INTVAL (size) - used);
3771 else
3772 size = expand_binop (GET_MODE (size), sub_optab, size,
3773 GEN_INT (used), NULL_RTX, 0,
3774 OPTAB_LIB_WIDEN);
3775 }
3776
3777 /* Get the address of the stack space.
3778 In this case, we do not deal with EXTRA separately.
3779 A single stack adjust will do. */
3780 if (! args_addr)
3781 {
3782 temp = push_block (size, extra, where_pad == downward);
3783 extra = 0;
3784 }
3785 else if (CONST_INT_P (args_so_far))
3786 temp = memory_address (BLKmode,
3787 plus_constant (args_addr,
3788 skip + INTVAL (args_so_far)));
3789 else
3790 temp = memory_address (BLKmode,
3791 plus_constant (gen_rtx_PLUS (Pmode,
3792 args_addr,
3793 args_so_far),
3794 skip));
3795
3796 if (!ACCUMULATE_OUTGOING_ARGS)
3797 {
3798 /* If the source is referenced relative to the stack pointer,
3799 copy it to another register to stabilize it. We do not need
3800 to do this if we know that we won't be changing sp. */
3801
3802 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3803 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3804 temp = copy_to_reg (temp);
3805 }
3806
3807 target = gen_rtx_MEM (BLKmode, temp);
3808
3809 /* We do *not* set_mem_attributes here, because incoming arguments
3810 may overlap with sibling call outgoing arguments and we cannot
3811 allow reordering of reads from function arguments with stores
3812 to outgoing arguments of sibling calls. We do, however, want
3813 to record the alignment of the stack slot. */
3814 /* ALIGN may well be better aligned than TYPE, e.g. due to
3815 PARM_BOUNDARY. Assume the caller isn't lying. */
3816 set_mem_align (target, align);
3817
3818 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3819 }
3820 }
3821 else if (partial > 0)
3822 {
3823 /* Scalar partly in registers. */
3824
3825 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3826 int i;
3827 int not_stack;
3828 /* # bytes of start of argument
3829 that we must make space for but need not store. */
3830 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3831 int args_offset = INTVAL (args_so_far);
3832 int skip;
3833
3834 /* Push padding now if padding above and stack grows down,
3835 or if padding below and stack grows up.
3836 But if space already allocated, this has already been done. */
3837 if (extra && args_addr == 0
3838 && where_pad != none && where_pad != stack_direction)
3839 anti_adjust_stack (GEN_INT (extra));
3840
3841 /* If we make space by pushing it, we might as well push
3842 the real data. Otherwise, we can leave OFFSET nonzero
3843 and leave the space uninitialized. */
3844 if (args_addr == 0)
3845 offset = 0;
3846
3847 /* Now NOT_STACK gets the number of words that we don't need to
3848 allocate on the stack. Convert OFFSET to words too. */
3849 not_stack = (partial - offset) / UNITS_PER_WORD;
3850 offset /= UNITS_PER_WORD;
3851
3852 /* If the partial register-part of the arg counts in its stack size,
3853 skip the part of stack space corresponding to the registers.
3854 Otherwise, start copying to the beginning of the stack space,
3855 by setting SKIP to 0. */
3856 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3857
3858 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3859 x = validize_mem (force_const_mem (mode, x));
3860
3861 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3862 SUBREGs of such registers are not allowed. */
3863 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3864 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3865 x = copy_to_reg (x);
3866
3867 /* Loop over all the words allocated on the stack for this arg. */
3868 /* We can do it by words, because any scalar bigger than a word
3869 has a size a multiple of a word. */
3870 #ifndef PUSH_ARGS_REVERSED
3871 for (i = not_stack; i < size; i++)
3872 #else
3873 for (i = size - 1; i >= not_stack; i--)
3874 #endif
3875 if (i >= not_stack + offset)
3876 emit_push_insn (operand_subword_force (x, i, mode),
3877 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3878 0, args_addr,
3879 GEN_INT (args_offset + ((i - not_stack + skip)
3880 * UNITS_PER_WORD)),
3881 reg_parm_stack_space, alignment_pad);
3882 }
3883 else
3884 {
3885 rtx addr;
3886 rtx dest;
3887
3888 /* Push padding now if padding above and stack grows down,
3889 or if padding below and stack grows up.
3890 But if space already allocated, this has already been done. */
3891 if (extra && args_addr == 0
3892 && where_pad != none && where_pad != stack_direction)
3893 anti_adjust_stack (GEN_INT (extra));
3894
3895 #ifdef PUSH_ROUNDING
3896 if (args_addr == 0 && PUSH_ARGS)
3897 emit_single_push_insn (mode, x, type);
3898 else
3899 #endif
3900 {
3901 if (CONST_INT_P (args_so_far))
3902 addr
3903 = memory_address (mode,
3904 plus_constant (args_addr,
3905 INTVAL (args_so_far)));
3906 else
3907 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3908 args_so_far));
3909 dest = gen_rtx_MEM (mode, addr);
3910
3911 /* We do *not* set_mem_attributes here, because incoming arguments
3912 may overlap with sibling call outgoing arguments and we cannot
3913 allow reordering of reads from function arguments with stores
3914 to outgoing arguments of sibling calls. We do, however, want
3915 to record the alignment of the stack slot. */
3916 /* ALIGN may well be better aligned than TYPE, e.g. due to
3917 PARM_BOUNDARY. Assume the caller isn't lying. */
3918 set_mem_align (dest, align);
3919
3920 emit_move_insn (dest, x);
3921 }
3922 }
3923
3924 /* If part should go in registers, copy that part
3925 into the appropriate registers. Do this now, at the end,
3926 since mem-to-mem copies above may do function calls. */
3927 if (partial > 0 && reg != 0)
3928 {
3929 /* Handle calls that pass values in multiple non-contiguous locations.
3930 The Irix 6 ABI has examples of this. */
3931 if (GET_CODE (reg) == PARALLEL)
3932 emit_group_load (reg, x, type, -1);
3933 else
3934 {
3935 gcc_assert (partial % UNITS_PER_WORD == 0);
3936 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3937 }
3938 }
3939
3940 if (extra && args_addr == 0 && where_pad == stack_direction)
3941 anti_adjust_stack (GEN_INT (extra));
3942
3943 if (alignment_pad && args_addr == 0)
3944 anti_adjust_stack (alignment_pad);
3945 }
3946 \f
3947 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3948 operations. */
3949
3950 static rtx
3951 get_subtarget (rtx x)
3952 {
3953 return (optimize
3954 || x == 0
3955 /* Only registers can be subtargets. */
3956 || !REG_P (x)
3957 /* Don't use hard regs to avoid extending their life. */
3958 || REGNO (x) < FIRST_PSEUDO_REGISTER
3959 ? 0 : x);
3960 }
3961
3962 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3963 FIELD is a bitfield. Returns true if the optimization was successful,
3964 and there's nothing else to do. */
3965
3966 static bool
3967 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3968 unsigned HOST_WIDE_INT bitpos,
3969 enum machine_mode mode1, rtx str_rtx,
3970 tree to, tree src)
3971 {
3972 enum machine_mode str_mode = GET_MODE (str_rtx);
3973 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3974 tree op0, op1;
3975 rtx value, result;
3976 optab binop;
3977
3978 if (mode1 != VOIDmode
3979 || bitsize >= BITS_PER_WORD
3980 || str_bitsize > BITS_PER_WORD
3981 || TREE_SIDE_EFFECTS (to)
3982 || TREE_THIS_VOLATILE (to))
3983 return false;
3984
3985 STRIP_NOPS (src);
3986 if (!BINARY_CLASS_P (src)
3987 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3988 return false;
3989
3990 op0 = TREE_OPERAND (src, 0);
3991 op1 = TREE_OPERAND (src, 1);
3992 STRIP_NOPS (op0);
3993
3994 if (!operand_equal_p (to, op0, 0))
3995 return false;
3996
3997 if (MEM_P (str_rtx))
3998 {
3999 unsigned HOST_WIDE_INT offset1;
4000
4001 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4002 str_mode = word_mode;
4003 str_mode = get_best_mode (bitsize, bitpos,
4004 MEM_ALIGN (str_rtx), str_mode, 0);
4005 if (str_mode == VOIDmode)
4006 return false;
4007 str_bitsize = GET_MODE_BITSIZE (str_mode);
4008
4009 offset1 = bitpos;
4010 bitpos %= str_bitsize;
4011 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4012 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4013 }
4014 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4015 return false;
4016
4017 /* If the bit field covers the whole REG/MEM, store_field
4018 will likely generate better code. */
4019 if (bitsize >= str_bitsize)
4020 return false;
4021
4022 /* We can't handle fields split across multiple entities. */
4023 if (bitpos + bitsize > str_bitsize)
4024 return false;
4025
4026 if (BYTES_BIG_ENDIAN)
4027 bitpos = str_bitsize - bitpos - bitsize;
4028
4029 switch (TREE_CODE (src))
4030 {
4031 case PLUS_EXPR:
4032 case MINUS_EXPR:
4033 /* For now, just optimize the case of the topmost bitfield
4034 where we don't need to do any masking and also
4035 1 bit bitfields where xor can be used.
4036 We might win by one instruction for the other bitfields
4037 too if insv/extv instructions aren't used, so that
4038 can be added later. */
4039 if (bitpos + bitsize != str_bitsize
4040 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4041 break;
4042
4043 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4044 value = convert_modes (str_mode,
4045 TYPE_MODE (TREE_TYPE (op1)), value,
4046 TYPE_UNSIGNED (TREE_TYPE (op1)));
4047
4048 /* We may be accessing data outside the field, which means
4049 we can alias adjacent data. */
4050 if (MEM_P (str_rtx))
4051 {
4052 str_rtx = shallow_copy_rtx (str_rtx);
4053 set_mem_alias_set (str_rtx, 0);
4054 set_mem_expr (str_rtx, 0);
4055 }
4056
4057 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4058 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4059 {
4060 value = expand_and (str_mode, value, const1_rtx, NULL);
4061 binop = xor_optab;
4062 }
4063 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4064 build_int_cst (NULL_TREE, bitpos),
4065 NULL_RTX, 1);
4066 result = expand_binop (str_mode, binop, str_rtx,
4067 value, str_rtx, 1, OPTAB_WIDEN);
4068 if (result != str_rtx)
4069 emit_move_insn (str_rtx, result);
4070 return true;
4071
4072 case BIT_IOR_EXPR:
4073 case BIT_XOR_EXPR:
4074 if (TREE_CODE (op1) != INTEGER_CST)
4075 break;
4076 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4077 value = convert_modes (GET_MODE (str_rtx),
4078 TYPE_MODE (TREE_TYPE (op1)), value,
4079 TYPE_UNSIGNED (TREE_TYPE (op1)));
4080
4081 /* We may be accessing data outside the field, which means
4082 we can alias adjacent data. */
4083 if (MEM_P (str_rtx))
4084 {
4085 str_rtx = shallow_copy_rtx (str_rtx);
4086 set_mem_alias_set (str_rtx, 0);
4087 set_mem_expr (str_rtx, 0);
4088 }
4089
4090 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4091 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4092 {
4093 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4094 - 1);
4095 value = expand_and (GET_MODE (str_rtx), value, mask,
4096 NULL_RTX);
4097 }
4098 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4099 build_int_cst (NULL_TREE, bitpos),
4100 NULL_RTX, 1);
4101 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4102 value, str_rtx, 1, OPTAB_WIDEN);
4103 if (result != str_rtx)
4104 emit_move_insn (str_rtx, result);
4105 return true;
4106
4107 default:
4108 break;
4109 }
4110
4111 return false;
4112 }
4113
4114
4115 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4116 is true, try generating a nontemporal store. */
4117
4118 void
4119 expand_assignment (tree to, tree from, bool nontemporal)
4120 {
4121 rtx to_rtx = 0;
4122 rtx result;
4123 enum machine_mode mode;
4124 int align, icode;
4125
4126 /* Don't crash if the lhs of the assignment was erroneous. */
4127 if (TREE_CODE (to) == ERROR_MARK)
4128 {
4129 result = expand_normal (from);
4130 return;
4131 }
4132
4133 /* Optimize away no-op moves without side-effects. */
4134 if (operand_equal_p (to, from, 0))
4135 return;
4136
4137 mode = TYPE_MODE (TREE_TYPE (to));
4138 if ((TREE_CODE (to) == MEM_REF
4139 || TREE_CODE (to) == TARGET_MEM_REF)
4140 && mode != BLKmode
4141 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4142 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4143 < (signed) GET_MODE_ALIGNMENT (mode))
4144 && ((icode = optab_handler (movmisalign_optab, mode))
4145 != CODE_FOR_nothing))
4146 {
4147 enum machine_mode address_mode, op_mode1;
4148 rtx insn, reg, op0, mem;
4149
4150 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4151 reg = force_not_mem (reg);
4152
4153 if (TREE_CODE (to) == MEM_REF)
4154 {
4155 addr_space_t as
4156 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4157 tree base = TREE_OPERAND (to, 0);
4158 address_mode = targetm.addr_space.address_mode (as);
4159 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4160 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4161 if (!integer_zerop (TREE_OPERAND (to, 1)))
4162 {
4163 rtx off
4164 = immed_double_int_const (mem_ref_offset (to), address_mode);
4165 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4166 }
4167 op0 = memory_address_addr_space (mode, op0, as);
4168 mem = gen_rtx_MEM (mode, op0);
4169 set_mem_attributes (mem, to, 0);
4170 set_mem_addr_space (mem, as);
4171 }
4172 else if (TREE_CODE (to) == TARGET_MEM_REF)
4173 {
4174 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4175 struct mem_address addr;
4176
4177 get_address_description (to, &addr);
4178 op0 = addr_for_mem_ref (&addr, as, true);
4179 op0 = memory_address_addr_space (mode, op0, as);
4180 mem = gen_rtx_MEM (mode, op0);
4181 set_mem_attributes (mem, to, 0);
4182 set_mem_addr_space (mem, as);
4183 }
4184 else
4185 gcc_unreachable ();
4186 if (TREE_THIS_VOLATILE (to))
4187 MEM_VOLATILE_P (mem) = 1;
4188
4189 op_mode1 = insn_data[icode].operand[1].mode;
4190 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4191 && op_mode1 != VOIDmode)
4192 reg = copy_to_mode_reg (op_mode1, reg);
4193
4194 insn = GEN_FCN (icode) (mem, reg);
4195 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4196 silently be omitted. */
4197 gcc_assert (insn != NULL_RTX);
4198 emit_insn (insn);
4199 return;
4200 }
4201
4202 /* Assignment of a structure component needs special treatment
4203 if the structure component's rtx is not simply a MEM.
4204 Assignment of an array element at a constant index, and assignment of
4205 an array element in an unaligned packed structure field, has the same
4206 problem. */
4207 if (handled_component_p (to)
4208 /* ??? We only need to handle MEM_REF here if the access is not
4209 a full access of the base object. */
4210 || (TREE_CODE (to) == MEM_REF
4211 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4212 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4213 {
4214 enum machine_mode mode1;
4215 HOST_WIDE_INT bitsize, bitpos;
4216 tree offset;
4217 int unsignedp;
4218 int volatilep = 0;
4219 tree tem;
4220
4221 push_temp_slots ();
4222 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4223 &unsignedp, &volatilep, true);
4224
4225 /* If we are going to use store_bit_field and extract_bit_field,
4226 make sure to_rtx will be safe for multiple use. */
4227
4228 to_rtx = expand_normal (tem);
4229
4230 /* If the bitfield is volatile, we want to access it in the
4231 field's mode, not the computed mode.
4232 If a MEM has VOIDmode (external with incomplete type),
4233 use BLKmode for it instead. */
4234 if (MEM_P (to_rtx))
4235 {
4236 if (volatilep && flag_strict_volatile_bitfields > 0)
4237 to_rtx = adjust_address (to_rtx, mode1, 0);
4238 else if (GET_MODE (to_rtx) == VOIDmode)
4239 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4240 }
4241
4242 if (offset != 0)
4243 {
4244 enum machine_mode address_mode;
4245 rtx offset_rtx;
4246
4247 if (!MEM_P (to_rtx))
4248 {
4249 /* We can get constant negative offsets into arrays with broken
4250 user code. Translate this to a trap instead of ICEing. */
4251 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4252 expand_builtin_trap ();
4253 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4254 }
4255
4256 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4257 address_mode
4258 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4259 if (GET_MODE (offset_rtx) != address_mode)
4260 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4261
4262 /* A constant address in TO_RTX can have VOIDmode, we must not try
4263 to call force_reg for that case. Avoid that case. */
4264 if (MEM_P (to_rtx)
4265 && GET_MODE (to_rtx) == BLKmode
4266 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4267 && bitsize > 0
4268 && (bitpos % bitsize) == 0
4269 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4270 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4271 {
4272 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4273 bitpos = 0;
4274 }
4275
4276 to_rtx = offset_address (to_rtx, offset_rtx,
4277 highest_pow2_factor_for_target (to,
4278 offset));
4279 }
4280
4281 /* No action is needed if the target is not a memory and the field
4282 lies completely outside that target. This can occur if the source
4283 code contains an out-of-bounds access to a small array. */
4284 if (!MEM_P (to_rtx)
4285 && GET_MODE (to_rtx) != BLKmode
4286 && (unsigned HOST_WIDE_INT) bitpos
4287 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4288 {
4289 expand_normal (from);
4290 result = NULL;
4291 }
4292 /* Handle expand_expr of a complex value returning a CONCAT. */
4293 else if (GET_CODE (to_rtx) == CONCAT)
4294 {
4295 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4296 {
4297 gcc_assert (bitpos == 0);
4298 result = store_expr (from, to_rtx, false, nontemporal);
4299 }
4300 else
4301 {
4302 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4303 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4304 nontemporal);
4305 }
4306 }
4307 else
4308 {
4309 if (MEM_P (to_rtx))
4310 {
4311 /* If the field is at offset zero, we could have been given the
4312 DECL_RTX of the parent struct. Don't munge it. */
4313 to_rtx = shallow_copy_rtx (to_rtx);
4314
4315 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4316
4317 /* Deal with volatile and readonly fields. The former is only
4318 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4319 if (volatilep)
4320 MEM_VOLATILE_P (to_rtx) = 1;
4321 if (component_uses_parent_alias_set (to))
4322 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4323 }
4324
4325 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4326 to_rtx, to, from))
4327 result = NULL;
4328 else
4329 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4330 TREE_TYPE (tem), get_alias_set (to),
4331 nontemporal);
4332 }
4333
4334 if (result)
4335 preserve_temp_slots (result);
4336 free_temp_slots ();
4337 pop_temp_slots ();
4338 return;
4339 }
4340
4341 /* If the rhs is a function call and its value is not an aggregate,
4342 call the function before we start to compute the lhs.
4343 This is needed for correct code for cases such as
4344 val = setjmp (buf) on machines where reference to val
4345 requires loading up part of an address in a separate insn.
4346
4347 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4348 since it might be a promoted variable where the zero- or sign- extension
4349 needs to be done. Handling this in the normal way is safe because no
4350 computation is done before the call. The same is true for SSA names. */
4351 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4352 && COMPLETE_TYPE_P (TREE_TYPE (from))
4353 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4354 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4355 && REG_P (DECL_RTL (to)))
4356 || TREE_CODE (to) == SSA_NAME))
4357 {
4358 rtx value;
4359
4360 push_temp_slots ();
4361 value = expand_normal (from);
4362 if (to_rtx == 0)
4363 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4364
4365 /* Handle calls that return values in multiple non-contiguous locations.
4366 The Irix 6 ABI has examples of this. */
4367 if (GET_CODE (to_rtx) == PARALLEL)
4368 emit_group_load (to_rtx, value, TREE_TYPE (from),
4369 int_size_in_bytes (TREE_TYPE (from)));
4370 else if (GET_MODE (to_rtx) == BLKmode)
4371 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4372 else
4373 {
4374 if (POINTER_TYPE_P (TREE_TYPE (to)))
4375 value = convert_memory_address_addr_space
4376 (GET_MODE (to_rtx), value,
4377 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4378
4379 emit_move_insn (to_rtx, value);
4380 }
4381 preserve_temp_slots (to_rtx);
4382 free_temp_slots ();
4383 pop_temp_slots ();
4384 return;
4385 }
4386
4387 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4388 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4389
4390 if (to_rtx == 0)
4391 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4392
4393 /* Don't move directly into a return register. */
4394 if (TREE_CODE (to) == RESULT_DECL
4395 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4396 {
4397 rtx temp;
4398
4399 push_temp_slots ();
4400 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4401
4402 if (GET_CODE (to_rtx) == PARALLEL)
4403 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4404 int_size_in_bytes (TREE_TYPE (from)));
4405 else
4406 emit_move_insn (to_rtx, temp);
4407
4408 preserve_temp_slots (to_rtx);
4409 free_temp_slots ();
4410 pop_temp_slots ();
4411 return;
4412 }
4413
4414 /* In case we are returning the contents of an object which overlaps
4415 the place the value is being stored, use a safe function when copying
4416 a value through a pointer into a structure value return block. */
4417 if (TREE_CODE (to) == RESULT_DECL
4418 && TREE_CODE (from) == INDIRECT_REF
4419 && ADDR_SPACE_GENERIC_P
4420 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4421 && refs_may_alias_p (to, from)
4422 && cfun->returns_struct
4423 && !cfun->returns_pcc_struct)
4424 {
4425 rtx from_rtx, size;
4426
4427 push_temp_slots ();
4428 size = expr_size (from);
4429 from_rtx = expand_normal (from);
4430
4431 emit_library_call (memmove_libfunc, LCT_NORMAL,
4432 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4433 XEXP (from_rtx, 0), Pmode,
4434 convert_to_mode (TYPE_MODE (sizetype),
4435 size, TYPE_UNSIGNED (sizetype)),
4436 TYPE_MODE (sizetype));
4437
4438 preserve_temp_slots (to_rtx);
4439 free_temp_slots ();
4440 pop_temp_slots ();
4441 return;
4442 }
4443
4444 /* Compute FROM and store the value in the rtx we got. */
4445
4446 push_temp_slots ();
4447 result = store_expr (from, to_rtx, 0, nontemporal);
4448 preserve_temp_slots (result);
4449 free_temp_slots ();
4450 pop_temp_slots ();
4451 return;
4452 }
4453
4454 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4455 succeeded, false otherwise. */
4456
4457 bool
4458 emit_storent_insn (rtx to, rtx from)
4459 {
4460 enum machine_mode mode = GET_MODE (to), imode;
4461 enum insn_code code = optab_handler (storent_optab, mode);
4462 rtx pattern;
4463
4464 if (code == CODE_FOR_nothing)
4465 return false;
4466
4467 imode = insn_data[code].operand[0].mode;
4468 if (!insn_data[code].operand[0].predicate (to, imode))
4469 return false;
4470
4471 imode = insn_data[code].operand[1].mode;
4472 if (!insn_data[code].operand[1].predicate (from, imode))
4473 {
4474 from = copy_to_mode_reg (imode, from);
4475 if (!insn_data[code].operand[1].predicate (from, imode))
4476 return false;
4477 }
4478
4479 pattern = GEN_FCN (code) (to, from);
4480 if (pattern == NULL_RTX)
4481 return false;
4482
4483 emit_insn (pattern);
4484 return true;
4485 }
4486
4487 /* Generate code for computing expression EXP,
4488 and storing the value into TARGET.
4489
4490 If the mode is BLKmode then we may return TARGET itself.
4491 It turns out that in BLKmode it doesn't cause a problem.
4492 because C has no operators that could combine two different
4493 assignments into the same BLKmode object with different values
4494 with no sequence point. Will other languages need this to
4495 be more thorough?
4496
4497 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4498 stack, and block moves may need to be treated specially.
4499
4500 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4501
4502 rtx
4503 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4504 {
4505 rtx temp;
4506 rtx alt_rtl = NULL_RTX;
4507 location_t loc = EXPR_LOCATION (exp);
4508
4509 if (VOID_TYPE_P (TREE_TYPE (exp)))
4510 {
4511 /* C++ can generate ?: expressions with a throw expression in one
4512 branch and an rvalue in the other. Here, we resolve attempts to
4513 store the throw expression's nonexistent result. */
4514 gcc_assert (!call_param_p);
4515 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4516 return NULL_RTX;
4517 }
4518 if (TREE_CODE (exp) == COMPOUND_EXPR)
4519 {
4520 /* Perform first part of compound expression, then assign from second
4521 part. */
4522 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4523 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4524 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4525 nontemporal);
4526 }
4527 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4528 {
4529 /* For conditional expression, get safe form of the target. Then
4530 test the condition, doing the appropriate assignment on either
4531 side. This avoids the creation of unnecessary temporaries.
4532 For non-BLKmode, it is more efficient not to do this. */
4533
4534 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4535
4536 do_pending_stack_adjust ();
4537 NO_DEFER_POP;
4538 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4539 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4540 nontemporal);
4541 emit_jump_insn (gen_jump (lab2));
4542 emit_barrier ();
4543 emit_label (lab1);
4544 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4545 nontemporal);
4546 emit_label (lab2);
4547 OK_DEFER_POP;
4548
4549 return NULL_RTX;
4550 }
4551 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4552 /* If this is a scalar in a register that is stored in a wider mode
4553 than the declared mode, compute the result into its declared mode
4554 and then convert to the wider mode. Our value is the computed
4555 expression. */
4556 {
4557 rtx inner_target = 0;
4558
4559 /* We can do the conversion inside EXP, which will often result
4560 in some optimizations. Do the conversion in two steps: first
4561 change the signedness, if needed, then the extend. But don't
4562 do this if the type of EXP is a subtype of something else
4563 since then the conversion might involve more than just
4564 converting modes. */
4565 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4566 && TREE_TYPE (TREE_TYPE (exp)) == 0
4567 && GET_MODE_PRECISION (GET_MODE (target))
4568 == TYPE_PRECISION (TREE_TYPE (exp)))
4569 {
4570 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4571 != SUBREG_PROMOTED_UNSIGNED_P (target))
4572 {
4573 /* Some types, e.g. Fortran's logical*4, won't have a signed
4574 version, so use the mode instead. */
4575 tree ntype
4576 = (signed_or_unsigned_type_for
4577 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4578 if (ntype == NULL)
4579 ntype = lang_hooks.types.type_for_mode
4580 (TYPE_MODE (TREE_TYPE (exp)),
4581 SUBREG_PROMOTED_UNSIGNED_P (target));
4582
4583 exp = fold_convert_loc (loc, ntype, exp);
4584 }
4585
4586 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4587 (GET_MODE (SUBREG_REG (target)),
4588 SUBREG_PROMOTED_UNSIGNED_P (target)),
4589 exp);
4590
4591 inner_target = SUBREG_REG (target);
4592 }
4593
4594 temp = expand_expr (exp, inner_target, VOIDmode,
4595 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4596
4597 /* If TEMP is a VOIDmode constant, use convert_modes to make
4598 sure that we properly convert it. */
4599 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4600 {
4601 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4602 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4603 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4604 GET_MODE (target), temp,
4605 SUBREG_PROMOTED_UNSIGNED_P (target));
4606 }
4607
4608 convert_move (SUBREG_REG (target), temp,
4609 SUBREG_PROMOTED_UNSIGNED_P (target));
4610
4611 return NULL_RTX;
4612 }
4613 else if ((TREE_CODE (exp) == STRING_CST
4614 || (TREE_CODE (exp) == MEM_REF
4615 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4616 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4617 == STRING_CST
4618 && integer_zerop (TREE_OPERAND (exp, 1))))
4619 && !nontemporal && !call_param_p
4620 && MEM_P (target))
4621 {
4622 /* Optimize initialization of an array with a STRING_CST. */
4623 HOST_WIDE_INT exp_len, str_copy_len;
4624 rtx dest_mem;
4625 tree str = TREE_CODE (exp) == STRING_CST
4626 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4627
4628 exp_len = int_expr_size (exp);
4629 if (exp_len <= 0)
4630 goto normal_expr;
4631
4632 if (TREE_STRING_LENGTH (str) <= 0)
4633 goto normal_expr;
4634
4635 str_copy_len = strlen (TREE_STRING_POINTER (str));
4636 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4637 goto normal_expr;
4638
4639 str_copy_len = TREE_STRING_LENGTH (str);
4640 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4641 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4642 {
4643 str_copy_len += STORE_MAX_PIECES - 1;
4644 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4645 }
4646 str_copy_len = MIN (str_copy_len, exp_len);
4647 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4648 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4649 MEM_ALIGN (target), false))
4650 goto normal_expr;
4651
4652 dest_mem = target;
4653
4654 dest_mem = store_by_pieces (dest_mem,
4655 str_copy_len, builtin_strncpy_read_str,
4656 CONST_CAST (char *,
4657 TREE_STRING_POINTER (str)),
4658 MEM_ALIGN (target), false,
4659 exp_len > str_copy_len ? 1 : 0);
4660 if (exp_len > str_copy_len)
4661 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4662 GEN_INT (exp_len - str_copy_len),
4663 BLOCK_OP_NORMAL);
4664 return NULL_RTX;
4665 }
4666 else
4667 {
4668 rtx tmp_target;
4669
4670 normal_expr:
4671 /* If we want to use a nontemporal store, force the value to
4672 register first. */
4673 tmp_target = nontemporal ? NULL_RTX : target;
4674 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4675 (call_param_p
4676 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4677 &alt_rtl);
4678 }
4679
4680 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4681 the same as that of TARGET, adjust the constant. This is needed, for
4682 example, in case it is a CONST_DOUBLE and we want only a word-sized
4683 value. */
4684 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4685 && TREE_CODE (exp) != ERROR_MARK
4686 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4687 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4688 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4689
4690 /* If value was not generated in the target, store it there.
4691 Convert the value to TARGET's type first if necessary and emit the
4692 pending incrementations that have been queued when expanding EXP.
4693 Note that we cannot emit the whole queue blindly because this will
4694 effectively disable the POST_INC optimization later.
4695
4696 If TEMP and TARGET compare equal according to rtx_equal_p, but
4697 one or both of them are volatile memory refs, we have to distinguish
4698 two cases:
4699 - expand_expr has used TARGET. In this case, we must not generate
4700 another copy. This can be detected by TARGET being equal according
4701 to == .
4702 - expand_expr has not used TARGET - that means that the source just
4703 happens to have the same RTX form. Since temp will have been created
4704 by expand_expr, it will compare unequal according to == .
4705 We must generate a copy in this case, to reach the correct number
4706 of volatile memory references. */
4707
4708 if ((! rtx_equal_p (temp, target)
4709 || (temp != target && (side_effects_p (temp)
4710 || side_effects_p (target))))
4711 && TREE_CODE (exp) != ERROR_MARK
4712 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4713 but TARGET is not valid memory reference, TEMP will differ
4714 from TARGET although it is really the same location. */
4715 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4716 /* If there's nothing to copy, don't bother. Don't call
4717 expr_size unless necessary, because some front-ends (C++)
4718 expr_size-hook must not be given objects that are not
4719 supposed to be bit-copied or bit-initialized. */
4720 && expr_size (exp) != const0_rtx)
4721 {
4722 if (GET_MODE (temp) != GET_MODE (target)
4723 && GET_MODE (temp) != VOIDmode)
4724 {
4725 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4726 if (GET_MODE (target) == BLKmode
4727 && GET_MODE (temp) == BLKmode)
4728 emit_block_move (target, temp, expr_size (exp),
4729 (call_param_p
4730 ? BLOCK_OP_CALL_PARM
4731 : BLOCK_OP_NORMAL));
4732 else if (GET_MODE (target) == BLKmode)
4733 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4734 0, GET_MODE (temp), temp);
4735 else
4736 convert_move (target, temp, unsignedp);
4737 }
4738
4739 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4740 {
4741 /* Handle copying a string constant into an array. The string
4742 constant may be shorter than the array. So copy just the string's
4743 actual length, and clear the rest. First get the size of the data
4744 type of the string, which is actually the size of the target. */
4745 rtx size = expr_size (exp);
4746
4747 if (CONST_INT_P (size)
4748 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4749 emit_block_move (target, temp, size,
4750 (call_param_p
4751 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4752 else
4753 {
4754 enum machine_mode pointer_mode
4755 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4756 enum machine_mode address_mode
4757 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4758
4759 /* Compute the size of the data to copy from the string. */
4760 tree copy_size
4761 = size_binop_loc (loc, MIN_EXPR,
4762 make_tree (sizetype, size),
4763 size_int (TREE_STRING_LENGTH (exp)));
4764 rtx copy_size_rtx
4765 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4766 (call_param_p
4767 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4768 rtx label = 0;
4769
4770 /* Copy that much. */
4771 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4772 TYPE_UNSIGNED (sizetype));
4773 emit_block_move (target, temp, copy_size_rtx,
4774 (call_param_p
4775 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4776
4777 /* Figure out how much is left in TARGET that we have to clear.
4778 Do all calculations in pointer_mode. */
4779 if (CONST_INT_P (copy_size_rtx))
4780 {
4781 size = plus_constant (size, -INTVAL (copy_size_rtx));
4782 target = adjust_address (target, BLKmode,
4783 INTVAL (copy_size_rtx));
4784 }
4785 else
4786 {
4787 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4788 copy_size_rtx, NULL_RTX, 0,
4789 OPTAB_LIB_WIDEN);
4790
4791 if (GET_MODE (copy_size_rtx) != address_mode)
4792 copy_size_rtx = convert_to_mode (address_mode,
4793 copy_size_rtx,
4794 TYPE_UNSIGNED (sizetype));
4795
4796 target = offset_address (target, copy_size_rtx,
4797 highest_pow2_factor (copy_size));
4798 label = gen_label_rtx ();
4799 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4800 GET_MODE (size), 0, label);
4801 }
4802
4803 if (size != const0_rtx)
4804 clear_storage (target, size, BLOCK_OP_NORMAL);
4805
4806 if (label)
4807 emit_label (label);
4808 }
4809 }
4810 /* Handle calls that return values in multiple non-contiguous locations.
4811 The Irix 6 ABI has examples of this. */
4812 else if (GET_CODE (target) == PARALLEL)
4813 emit_group_load (target, temp, TREE_TYPE (exp),
4814 int_size_in_bytes (TREE_TYPE (exp)));
4815 else if (GET_MODE (temp) == BLKmode)
4816 emit_block_move (target, temp, expr_size (exp),
4817 (call_param_p
4818 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4819 else if (nontemporal
4820 && emit_storent_insn (target, temp))
4821 /* If we managed to emit a nontemporal store, there is nothing else to
4822 do. */
4823 ;
4824 else
4825 {
4826 temp = force_operand (temp, target);
4827 if (temp != target)
4828 emit_move_insn (target, temp);
4829 }
4830 }
4831
4832 return NULL_RTX;
4833 }
4834 \f
4835 /* Helper for categorize_ctor_elements. Identical interface. */
4836
4837 static bool
4838 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4839 HOST_WIDE_INT *p_elt_count,
4840 bool *p_must_clear)
4841 {
4842 unsigned HOST_WIDE_INT idx;
4843 HOST_WIDE_INT nz_elts, elt_count;
4844 tree value, purpose;
4845
4846 /* Whether CTOR is a valid constant initializer, in accordance with what
4847 initializer_constant_valid_p does. If inferred from the constructor
4848 elements, true until proven otherwise. */
4849 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4850 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4851
4852 nz_elts = 0;
4853 elt_count = 0;
4854
4855 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4856 {
4857 HOST_WIDE_INT mult = 1;
4858
4859 if (TREE_CODE (purpose) == RANGE_EXPR)
4860 {
4861 tree lo_index = TREE_OPERAND (purpose, 0);
4862 tree hi_index = TREE_OPERAND (purpose, 1);
4863
4864 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4865 mult = (tree_low_cst (hi_index, 1)
4866 - tree_low_cst (lo_index, 1) + 1);
4867 }
4868
4869 switch (TREE_CODE (value))
4870 {
4871 case CONSTRUCTOR:
4872 {
4873 HOST_WIDE_INT nz = 0, ic = 0;
4874
4875 bool const_elt_p
4876 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4877
4878 nz_elts += mult * nz;
4879 elt_count += mult * ic;
4880
4881 if (const_from_elts_p && const_p)
4882 const_p = const_elt_p;
4883 }
4884 break;
4885
4886 case INTEGER_CST:
4887 case REAL_CST:
4888 case FIXED_CST:
4889 if (!initializer_zerop (value))
4890 nz_elts += mult;
4891 elt_count += mult;
4892 break;
4893
4894 case STRING_CST:
4895 nz_elts += mult * TREE_STRING_LENGTH (value);
4896 elt_count += mult * TREE_STRING_LENGTH (value);
4897 break;
4898
4899 case COMPLEX_CST:
4900 if (!initializer_zerop (TREE_REALPART (value)))
4901 nz_elts += mult;
4902 if (!initializer_zerop (TREE_IMAGPART (value)))
4903 nz_elts += mult;
4904 elt_count += mult;
4905 break;
4906
4907 case VECTOR_CST:
4908 {
4909 tree v;
4910 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4911 {
4912 if (!initializer_zerop (TREE_VALUE (v)))
4913 nz_elts += mult;
4914 elt_count += mult;
4915 }
4916 }
4917 break;
4918
4919 default:
4920 {
4921 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4922 if (tc < 1)
4923 tc = 1;
4924 nz_elts += mult * tc;
4925 elt_count += mult * tc;
4926
4927 if (const_from_elts_p && const_p)
4928 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4929 != NULL_TREE;
4930 }
4931 break;
4932 }
4933 }
4934
4935 if (!*p_must_clear
4936 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4937 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4938 {
4939 tree init_sub_type;
4940 bool clear_this = true;
4941
4942 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4943 {
4944 /* We don't expect more than one element of the union to be
4945 initialized. Not sure what we should do otherwise... */
4946 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4947 == 1);
4948
4949 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4950 CONSTRUCTOR_ELTS (ctor),
4951 0)->value);
4952
4953 /* ??? We could look at each element of the union, and find the
4954 largest element. Which would avoid comparing the size of the
4955 initialized element against any tail padding in the union.
4956 Doesn't seem worth the effort... */
4957 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4958 TYPE_SIZE (init_sub_type)) == 1)
4959 {
4960 /* And now we have to find out if the element itself is fully
4961 constructed. E.g. for union { struct { int a, b; } s; } u
4962 = { .s = { .a = 1 } }. */
4963 if (elt_count == count_type_elements (init_sub_type, false))
4964 clear_this = false;
4965 }
4966 }
4967
4968 *p_must_clear = clear_this;
4969 }
4970
4971 *p_nz_elts += nz_elts;
4972 *p_elt_count += elt_count;
4973
4974 return const_p;
4975 }
4976
4977 /* Examine CTOR to discover:
4978 * how many scalar fields are set to nonzero values,
4979 and place it in *P_NZ_ELTS;
4980 * how many scalar fields in total are in CTOR,
4981 and place it in *P_ELT_COUNT.
4982 * if a type is a union, and the initializer from the constructor
4983 is not the largest element in the union, then set *p_must_clear.
4984
4985 Return whether or not CTOR is a valid static constant initializer, the same
4986 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4987
4988 bool
4989 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4990 HOST_WIDE_INT *p_elt_count,
4991 bool *p_must_clear)
4992 {
4993 *p_nz_elts = 0;
4994 *p_elt_count = 0;
4995 *p_must_clear = false;
4996
4997 return
4998 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4999 }
5000
5001 /* Count the number of scalars in TYPE. Return -1 on overflow or
5002 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5003 array member at the end of the structure. */
5004
5005 HOST_WIDE_INT
5006 count_type_elements (const_tree type, bool allow_flexarr)
5007 {
5008 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5009 switch (TREE_CODE (type))
5010 {
5011 case ARRAY_TYPE:
5012 {
5013 tree telts = array_type_nelts (type);
5014 if (telts && host_integerp (telts, 1))
5015 {
5016 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5017 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5018 if (n == 0)
5019 return 0;
5020 else if (max / n > m)
5021 return n * m;
5022 }
5023 return -1;
5024 }
5025
5026 case RECORD_TYPE:
5027 {
5028 HOST_WIDE_INT n = 0, t;
5029 tree f;
5030
5031 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5032 if (TREE_CODE (f) == FIELD_DECL)
5033 {
5034 t = count_type_elements (TREE_TYPE (f), false);
5035 if (t < 0)
5036 {
5037 /* Check for structures with flexible array member. */
5038 tree tf = TREE_TYPE (f);
5039 if (allow_flexarr
5040 && DECL_CHAIN (f) == NULL
5041 && TREE_CODE (tf) == ARRAY_TYPE
5042 && TYPE_DOMAIN (tf)
5043 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5044 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5045 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5046 && int_size_in_bytes (type) >= 0)
5047 break;
5048
5049 return -1;
5050 }
5051 n += t;
5052 }
5053
5054 return n;
5055 }
5056
5057 case UNION_TYPE:
5058 case QUAL_UNION_TYPE:
5059 return -1;
5060
5061 case COMPLEX_TYPE:
5062 return 2;
5063
5064 case VECTOR_TYPE:
5065 return TYPE_VECTOR_SUBPARTS (type);
5066
5067 case INTEGER_TYPE:
5068 case REAL_TYPE:
5069 case FIXED_POINT_TYPE:
5070 case ENUMERAL_TYPE:
5071 case BOOLEAN_TYPE:
5072 case POINTER_TYPE:
5073 case OFFSET_TYPE:
5074 case REFERENCE_TYPE:
5075 return 1;
5076
5077 case ERROR_MARK:
5078 return 0;
5079
5080 case VOID_TYPE:
5081 case METHOD_TYPE:
5082 case FUNCTION_TYPE:
5083 case LANG_TYPE:
5084 default:
5085 gcc_unreachable ();
5086 }
5087 }
5088
5089 /* Return 1 if EXP contains mostly (3/4) zeros. */
5090
5091 static int
5092 mostly_zeros_p (const_tree exp)
5093 {
5094 if (TREE_CODE (exp) == CONSTRUCTOR)
5095
5096 {
5097 HOST_WIDE_INT nz_elts, count, elts;
5098 bool must_clear;
5099
5100 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5101 if (must_clear)
5102 return 1;
5103
5104 elts = count_type_elements (TREE_TYPE (exp), false);
5105
5106 return nz_elts < elts / 4;
5107 }
5108
5109 return initializer_zerop (exp);
5110 }
5111
5112 /* Return 1 if EXP contains all zeros. */
5113
5114 static int
5115 all_zeros_p (const_tree exp)
5116 {
5117 if (TREE_CODE (exp) == CONSTRUCTOR)
5118
5119 {
5120 HOST_WIDE_INT nz_elts, count;
5121 bool must_clear;
5122
5123 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5124 return nz_elts == 0;
5125 }
5126
5127 return initializer_zerop (exp);
5128 }
5129 \f
5130 /* Helper function for store_constructor.
5131 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5132 TYPE is the type of the CONSTRUCTOR, not the element type.
5133 CLEARED is as for store_constructor.
5134 ALIAS_SET is the alias set to use for any stores.
5135
5136 This provides a recursive shortcut back to store_constructor when it isn't
5137 necessary to go through store_field. This is so that we can pass through
5138 the cleared field to let store_constructor know that we may not have to
5139 clear a substructure if the outer structure has already been cleared. */
5140
5141 static void
5142 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5143 HOST_WIDE_INT bitpos, enum machine_mode mode,
5144 tree exp, tree type, int cleared,
5145 alias_set_type alias_set)
5146 {
5147 if (TREE_CODE (exp) == CONSTRUCTOR
5148 /* We can only call store_constructor recursively if the size and
5149 bit position are on a byte boundary. */
5150 && bitpos % BITS_PER_UNIT == 0
5151 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5152 /* If we have a nonzero bitpos for a register target, then we just
5153 let store_field do the bitfield handling. This is unlikely to
5154 generate unnecessary clear instructions anyways. */
5155 && (bitpos == 0 || MEM_P (target)))
5156 {
5157 if (MEM_P (target))
5158 target
5159 = adjust_address (target,
5160 GET_MODE (target) == BLKmode
5161 || 0 != (bitpos
5162 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5163 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5164
5165
5166 /* Update the alias set, if required. */
5167 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5168 && MEM_ALIAS_SET (target) != 0)
5169 {
5170 target = copy_rtx (target);
5171 set_mem_alias_set (target, alias_set);
5172 }
5173
5174 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5175 }
5176 else
5177 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5178 }
5179
5180 /* Store the value of constructor EXP into the rtx TARGET.
5181 TARGET is either a REG or a MEM; we know it cannot conflict, since
5182 safe_from_p has been called.
5183 CLEARED is true if TARGET is known to have been zero'd.
5184 SIZE is the number of bytes of TARGET we are allowed to modify: this
5185 may not be the same as the size of EXP if we are assigning to a field
5186 which has been packed to exclude padding bits. */
5187
5188 static void
5189 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5190 {
5191 tree type = TREE_TYPE (exp);
5192 #ifdef WORD_REGISTER_OPERATIONS
5193 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5194 #endif
5195
5196 switch (TREE_CODE (type))
5197 {
5198 case RECORD_TYPE:
5199 case UNION_TYPE:
5200 case QUAL_UNION_TYPE:
5201 {
5202 unsigned HOST_WIDE_INT idx;
5203 tree field, value;
5204
5205 /* If size is zero or the target is already cleared, do nothing. */
5206 if (size == 0 || cleared)
5207 cleared = 1;
5208 /* We either clear the aggregate or indicate the value is dead. */
5209 else if ((TREE_CODE (type) == UNION_TYPE
5210 || TREE_CODE (type) == QUAL_UNION_TYPE)
5211 && ! CONSTRUCTOR_ELTS (exp))
5212 /* If the constructor is empty, clear the union. */
5213 {
5214 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5215 cleared = 1;
5216 }
5217
5218 /* If we are building a static constructor into a register,
5219 set the initial value as zero so we can fold the value into
5220 a constant. But if more than one register is involved,
5221 this probably loses. */
5222 else if (REG_P (target) && TREE_STATIC (exp)
5223 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5224 {
5225 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5226 cleared = 1;
5227 }
5228
5229 /* If the constructor has fewer fields than the structure or
5230 if we are initializing the structure to mostly zeros, clear
5231 the whole structure first. Don't do this if TARGET is a
5232 register whose mode size isn't equal to SIZE since
5233 clear_storage can't handle this case. */
5234 else if (size > 0
5235 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5236 != fields_length (type))
5237 || mostly_zeros_p (exp))
5238 && (!REG_P (target)
5239 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5240 == size)))
5241 {
5242 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5243 cleared = 1;
5244 }
5245
5246 if (REG_P (target) && !cleared)
5247 emit_clobber (target);
5248
5249 /* Store each element of the constructor into the
5250 corresponding field of TARGET. */
5251 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5252 {
5253 enum machine_mode mode;
5254 HOST_WIDE_INT bitsize;
5255 HOST_WIDE_INT bitpos = 0;
5256 tree offset;
5257 rtx to_rtx = target;
5258
5259 /* Just ignore missing fields. We cleared the whole
5260 structure, above, if any fields are missing. */
5261 if (field == 0)
5262 continue;
5263
5264 if (cleared && initializer_zerop (value))
5265 continue;
5266
5267 if (host_integerp (DECL_SIZE (field), 1))
5268 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5269 else
5270 bitsize = -1;
5271
5272 mode = DECL_MODE (field);
5273 if (DECL_BIT_FIELD (field))
5274 mode = VOIDmode;
5275
5276 offset = DECL_FIELD_OFFSET (field);
5277 if (host_integerp (offset, 0)
5278 && host_integerp (bit_position (field), 0))
5279 {
5280 bitpos = int_bit_position (field);
5281 offset = 0;
5282 }
5283 else
5284 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5285
5286 if (offset)
5287 {
5288 enum machine_mode address_mode;
5289 rtx offset_rtx;
5290
5291 offset
5292 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5293 make_tree (TREE_TYPE (exp),
5294 target));
5295
5296 offset_rtx = expand_normal (offset);
5297 gcc_assert (MEM_P (to_rtx));
5298
5299 address_mode
5300 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5301 if (GET_MODE (offset_rtx) != address_mode)
5302 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5303
5304 to_rtx = offset_address (to_rtx, offset_rtx,
5305 highest_pow2_factor (offset));
5306 }
5307
5308 #ifdef WORD_REGISTER_OPERATIONS
5309 /* If this initializes a field that is smaller than a
5310 word, at the start of a word, try to widen it to a full
5311 word. This special case allows us to output C++ member
5312 function initializations in a form that the optimizers
5313 can understand. */
5314 if (REG_P (target)
5315 && bitsize < BITS_PER_WORD
5316 && bitpos % BITS_PER_WORD == 0
5317 && GET_MODE_CLASS (mode) == MODE_INT
5318 && TREE_CODE (value) == INTEGER_CST
5319 && exp_size >= 0
5320 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5321 {
5322 tree type = TREE_TYPE (value);
5323
5324 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5325 {
5326 type = lang_hooks.types.type_for_size
5327 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5328 value = fold_convert (type, value);
5329 }
5330
5331 if (BYTES_BIG_ENDIAN)
5332 value
5333 = fold_build2 (LSHIFT_EXPR, type, value,
5334 build_int_cst (type,
5335 BITS_PER_WORD - bitsize));
5336 bitsize = BITS_PER_WORD;
5337 mode = word_mode;
5338 }
5339 #endif
5340
5341 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5342 && DECL_NONADDRESSABLE_P (field))
5343 {
5344 to_rtx = copy_rtx (to_rtx);
5345 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5346 }
5347
5348 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5349 value, type, cleared,
5350 get_alias_set (TREE_TYPE (field)));
5351 }
5352 break;
5353 }
5354 case ARRAY_TYPE:
5355 {
5356 tree value, index;
5357 unsigned HOST_WIDE_INT i;
5358 int need_to_clear;
5359 tree domain;
5360 tree elttype = TREE_TYPE (type);
5361 int const_bounds_p;
5362 HOST_WIDE_INT minelt = 0;
5363 HOST_WIDE_INT maxelt = 0;
5364
5365 domain = TYPE_DOMAIN (type);
5366 const_bounds_p = (TYPE_MIN_VALUE (domain)
5367 && TYPE_MAX_VALUE (domain)
5368 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5369 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5370
5371 /* If we have constant bounds for the range of the type, get them. */
5372 if (const_bounds_p)
5373 {
5374 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5375 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5376 }
5377
5378 /* If the constructor has fewer elements than the array, clear
5379 the whole array first. Similarly if this is static
5380 constructor of a non-BLKmode object. */
5381 if (cleared)
5382 need_to_clear = 0;
5383 else if (REG_P (target) && TREE_STATIC (exp))
5384 need_to_clear = 1;
5385 else
5386 {
5387 unsigned HOST_WIDE_INT idx;
5388 tree index, value;
5389 HOST_WIDE_INT count = 0, zero_count = 0;
5390 need_to_clear = ! const_bounds_p;
5391
5392 /* This loop is a more accurate version of the loop in
5393 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5394 is also needed to check for missing elements. */
5395 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5396 {
5397 HOST_WIDE_INT this_node_count;
5398
5399 if (need_to_clear)
5400 break;
5401
5402 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5403 {
5404 tree lo_index = TREE_OPERAND (index, 0);
5405 tree hi_index = TREE_OPERAND (index, 1);
5406
5407 if (! host_integerp (lo_index, 1)
5408 || ! host_integerp (hi_index, 1))
5409 {
5410 need_to_clear = 1;
5411 break;
5412 }
5413
5414 this_node_count = (tree_low_cst (hi_index, 1)
5415 - tree_low_cst (lo_index, 1) + 1);
5416 }
5417 else
5418 this_node_count = 1;
5419
5420 count += this_node_count;
5421 if (mostly_zeros_p (value))
5422 zero_count += this_node_count;
5423 }
5424
5425 /* Clear the entire array first if there are any missing
5426 elements, or if the incidence of zero elements is >=
5427 75%. */
5428 if (! need_to_clear
5429 && (count < maxelt - minelt + 1
5430 || 4 * zero_count >= 3 * count))
5431 need_to_clear = 1;
5432 }
5433
5434 if (need_to_clear && size > 0)
5435 {
5436 if (REG_P (target))
5437 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5438 else
5439 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5440 cleared = 1;
5441 }
5442
5443 if (!cleared && REG_P (target))
5444 /* Inform later passes that the old value is dead. */
5445 emit_clobber (target);
5446
5447 /* Store each element of the constructor into the
5448 corresponding element of TARGET, determined by counting the
5449 elements. */
5450 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5451 {
5452 enum machine_mode mode;
5453 HOST_WIDE_INT bitsize;
5454 HOST_WIDE_INT bitpos;
5455 rtx xtarget = target;
5456
5457 if (cleared && initializer_zerop (value))
5458 continue;
5459
5460 mode = TYPE_MODE (elttype);
5461 if (mode == BLKmode)
5462 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5463 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5464 : -1);
5465 else
5466 bitsize = GET_MODE_BITSIZE (mode);
5467
5468 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5469 {
5470 tree lo_index = TREE_OPERAND (index, 0);
5471 tree hi_index = TREE_OPERAND (index, 1);
5472 rtx index_r, pos_rtx;
5473 HOST_WIDE_INT lo, hi, count;
5474 tree position;
5475
5476 /* If the range is constant and "small", unroll the loop. */
5477 if (const_bounds_p
5478 && host_integerp (lo_index, 0)
5479 && host_integerp (hi_index, 0)
5480 && (lo = tree_low_cst (lo_index, 0),
5481 hi = tree_low_cst (hi_index, 0),
5482 count = hi - lo + 1,
5483 (!MEM_P (target)
5484 || count <= 2
5485 || (host_integerp (TYPE_SIZE (elttype), 1)
5486 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5487 <= 40 * 8)))))
5488 {
5489 lo -= minelt; hi -= minelt;
5490 for (; lo <= hi; lo++)
5491 {
5492 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5493
5494 if (MEM_P (target)
5495 && !MEM_KEEP_ALIAS_SET_P (target)
5496 && TREE_CODE (type) == ARRAY_TYPE
5497 && TYPE_NONALIASED_COMPONENT (type))
5498 {
5499 target = copy_rtx (target);
5500 MEM_KEEP_ALIAS_SET_P (target) = 1;
5501 }
5502
5503 store_constructor_field
5504 (target, bitsize, bitpos, mode, value, type, cleared,
5505 get_alias_set (elttype));
5506 }
5507 }
5508 else
5509 {
5510 rtx loop_start = gen_label_rtx ();
5511 rtx loop_end = gen_label_rtx ();
5512 tree exit_cond;
5513
5514 expand_normal (hi_index);
5515
5516 index = build_decl (EXPR_LOCATION (exp),
5517 VAR_DECL, NULL_TREE, domain);
5518 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5519 SET_DECL_RTL (index, index_r);
5520 store_expr (lo_index, index_r, 0, false);
5521
5522 /* Build the head of the loop. */
5523 do_pending_stack_adjust ();
5524 emit_label (loop_start);
5525
5526 /* Assign value to element index. */
5527 position =
5528 fold_convert (ssizetype,
5529 fold_build2 (MINUS_EXPR,
5530 TREE_TYPE (index),
5531 index,
5532 TYPE_MIN_VALUE (domain)));
5533
5534 position =
5535 size_binop (MULT_EXPR, position,
5536 fold_convert (ssizetype,
5537 TYPE_SIZE_UNIT (elttype)));
5538
5539 pos_rtx = expand_normal (position);
5540 xtarget = offset_address (target, pos_rtx,
5541 highest_pow2_factor (position));
5542 xtarget = adjust_address (xtarget, mode, 0);
5543 if (TREE_CODE (value) == CONSTRUCTOR)
5544 store_constructor (value, xtarget, cleared,
5545 bitsize / BITS_PER_UNIT);
5546 else
5547 store_expr (value, xtarget, 0, false);
5548
5549 /* Generate a conditional jump to exit the loop. */
5550 exit_cond = build2 (LT_EXPR, integer_type_node,
5551 index, hi_index);
5552 jumpif (exit_cond, loop_end, -1);
5553
5554 /* Update the loop counter, and jump to the head of
5555 the loop. */
5556 expand_assignment (index,
5557 build2 (PLUS_EXPR, TREE_TYPE (index),
5558 index, integer_one_node),
5559 false);
5560
5561 emit_jump (loop_start);
5562
5563 /* Build the end of the loop. */
5564 emit_label (loop_end);
5565 }
5566 }
5567 else if ((index != 0 && ! host_integerp (index, 0))
5568 || ! host_integerp (TYPE_SIZE (elttype), 1))
5569 {
5570 tree position;
5571
5572 if (index == 0)
5573 index = ssize_int (1);
5574
5575 if (minelt)
5576 index = fold_convert (ssizetype,
5577 fold_build2 (MINUS_EXPR,
5578 TREE_TYPE (index),
5579 index,
5580 TYPE_MIN_VALUE (domain)));
5581
5582 position =
5583 size_binop (MULT_EXPR, index,
5584 fold_convert (ssizetype,
5585 TYPE_SIZE_UNIT (elttype)));
5586 xtarget = offset_address (target,
5587 expand_normal (position),
5588 highest_pow2_factor (position));
5589 xtarget = adjust_address (xtarget, mode, 0);
5590 store_expr (value, xtarget, 0, false);
5591 }
5592 else
5593 {
5594 if (index != 0)
5595 bitpos = ((tree_low_cst (index, 0) - minelt)
5596 * tree_low_cst (TYPE_SIZE (elttype), 1));
5597 else
5598 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5599
5600 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5601 && TREE_CODE (type) == ARRAY_TYPE
5602 && TYPE_NONALIASED_COMPONENT (type))
5603 {
5604 target = copy_rtx (target);
5605 MEM_KEEP_ALIAS_SET_P (target) = 1;
5606 }
5607 store_constructor_field (target, bitsize, bitpos, mode, value,
5608 type, cleared, get_alias_set (elttype));
5609 }
5610 }
5611 break;
5612 }
5613
5614 case VECTOR_TYPE:
5615 {
5616 unsigned HOST_WIDE_INT idx;
5617 constructor_elt *ce;
5618 int i;
5619 int need_to_clear;
5620 int icode = 0;
5621 tree elttype = TREE_TYPE (type);
5622 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5623 enum machine_mode eltmode = TYPE_MODE (elttype);
5624 HOST_WIDE_INT bitsize;
5625 HOST_WIDE_INT bitpos;
5626 rtvec vector = NULL;
5627 unsigned n_elts;
5628 alias_set_type alias;
5629
5630 gcc_assert (eltmode != BLKmode);
5631
5632 n_elts = TYPE_VECTOR_SUBPARTS (type);
5633 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5634 {
5635 enum machine_mode mode = GET_MODE (target);
5636
5637 icode = (int) optab_handler (vec_init_optab, mode);
5638 if (icode != CODE_FOR_nothing)
5639 {
5640 unsigned int i;
5641
5642 vector = rtvec_alloc (n_elts);
5643 for (i = 0; i < n_elts; i++)
5644 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5645 }
5646 }
5647
5648 /* If the constructor has fewer elements than the vector,
5649 clear the whole array first. Similarly if this is static
5650 constructor of a non-BLKmode object. */
5651 if (cleared)
5652 need_to_clear = 0;
5653 else if (REG_P (target) && TREE_STATIC (exp))
5654 need_to_clear = 1;
5655 else
5656 {
5657 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5658 tree value;
5659
5660 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5661 {
5662 int n_elts_here = tree_low_cst
5663 (int_const_binop (TRUNC_DIV_EXPR,
5664 TYPE_SIZE (TREE_TYPE (value)),
5665 TYPE_SIZE (elttype), 0), 1);
5666
5667 count += n_elts_here;
5668 if (mostly_zeros_p (value))
5669 zero_count += n_elts_here;
5670 }
5671
5672 /* Clear the entire vector first if there are any missing elements,
5673 or if the incidence of zero elements is >= 75%. */
5674 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5675 }
5676
5677 if (need_to_clear && size > 0 && !vector)
5678 {
5679 if (REG_P (target))
5680 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5681 else
5682 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5683 cleared = 1;
5684 }
5685
5686 /* Inform later passes that the old value is dead. */
5687 if (!cleared && !vector && REG_P (target))
5688 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5689
5690 if (MEM_P (target))
5691 alias = MEM_ALIAS_SET (target);
5692 else
5693 alias = get_alias_set (elttype);
5694
5695 /* Store each element of the constructor into the corresponding
5696 element of TARGET, determined by counting the elements. */
5697 for (idx = 0, i = 0;
5698 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5699 idx++, i += bitsize / elt_size)
5700 {
5701 HOST_WIDE_INT eltpos;
5702 tree value = ce->value;
5703
5704 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5705 if (cleared && initializer_zerop (value))
5706 continue;
5707
5708 if (ce->index)
5709 eltpos = tree_low_cst (ce->index, 1);
5710 else
5711 eltpos = i;
5712
5713 if (vector)
5714 {
5715 /* Vector CONSTRUCTORs should only be built from smaller
5716 vectors in the case of BLKmode vectors. */
5717 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5718 RTVEC_ELT (vector, eltpos)
5719 = expand_normal (value);
5720 }
5721 else
5722 {
5723 enum machine_mode value_mode =
5724 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5725 ? TYPE_MODE (TREE_TYPE (value))
5726 : eltmode;
5727 bitpos = eltpos * elt_size;
5728 store_constructor_field (target, bitsize, bitpos,
5729 value_mode, value, type,
5730 cleared, alias);
5731 }
5732 }
5733
5734 if (vector)
5735 emit_insn (GEN_FCN (icode)
5736 (target,
5737 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5738 break;
5739 }
5740
5741 default:
5742 gcc_unreachable ();
5743 }
5744 }
5745
5746 /* Store the value of EXP (an expression tree)
5747 into a subfield of TARGET which has mode MODE and occupies
5748 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5749 If MODE is VOIDmode, it means that we are storing into a bit-field.
5750
5751 Always return const0_rtx unless we have something particular to
5752 return.
5753
5754 TYPE is the type of the underlying object,
5755
5756 ALIAS_SET is the alias set for the destination. This value will
5757 (in general) be different from that for TARGET, since TARGET is a
5758 reference to the containing structure.
5759
5760 If NONTEMPORAL is true, try generating a nontemporal store. */
5761
5762 static rtx
5763 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5764 enum machine_mode mode, tree exp, tree type,
5765 alias_set_type alias_set, bool nontemporal)
5766 {
5767 if (TREE_CODE (exp) == ERROR_MARK)
5768 return const0_rtx;
5769
5770 /* If we have nothing to store, do nothing unless the expression has
5771 side-effects. */
5772 if (bitsize == 0)
5773 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5774
5775 /* If we are storing into an unaligned field of an aligned union that is
5776 in a register, we may have the mode of TARGET being an integer mode but
5777 MODE == BLKmode. In that case, get an aligned object whose size and
5778 alignment are the same as TARGET and store TARGET into it (we can avoid
5779 the store if the field being stored is the entire width of TARGET). Then
5780 call ourselves recursively to store the field into a BLKmode version of
5781 that object. Finally, load from the object into TARGET. This is not
5782 very efficient in general, but should only be slightly more expensive
5783 than the otherwise-required unaligned accesses. Perhaps this can be
5784 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5785 twice, once with emit_move_insn and once via store_field. */
5786
5787 if (mode == BLKmode
5788 && (REG_P (target) || GET_CODE (target) == SUBREG))
5789 {
5790 rtx object = assign_temp (type, 0, 1, 1);
5791 rtx blk_object = adjust_address (object, BLKmode, 0);
5792
5793 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5794 emit_move_insn (object, target);
5795
5796 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5797 nontemporal);
5798
5799 emit_move_insn (target, object);
5800
5801 /* We want to return the BLKmode version of the data. */
5802 return blk_object;
5803 }
5804
5805 if (GET_CODE (target) == CONCAT)
5806 {
5807 /* We're storing into a struct containing a single __complex. */
5808
5809 gcc_assert (!bitpos);
5810 return store_expr (exp, target, 0, nontemporal);
5811 }
5812
5813 /* If the structure is in a register or if the component
5814 is a bit field, we cannot use addressing to access it.
5815 Use bit-field techniques or SUBREG to store in it. */
5816
5817 if (mode == VOIDmode
5818 || (mode != BLKmode && ! direct_store[(int) mode]
5819 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5820 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5821 || REG_P (target)
5822 || GET_CODE (target) == SUBREG
5823 /* If the field isn't aligned enough to store as an ordinary memref,
5824 store it as a bit field. */
5825 || (mode != BLKmode
5826 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5827 || bitpos % GET_MODE_ALIGNMENT (mode))
5828 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5829 || (bitpos % BITS_PER_UNIT != 0)))
5830 /* If the RHS and field are a constant size and the size of the
5831 RHS isn't the same size as the bitfield, we must use bitfield
5832 operations. */
5833 || (bitsize >= 0
5834 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5835 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5836 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5837 decl we must use bitfield operations. */
5838 || (bitsize >= 0
5839 && TREE_CODE (exp) == MEM_REF
5840 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5841 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5842 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5843 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5844 {
5845 rtx temp;
5846 gimple nop_def;
5847
5848 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5849 implies a mask operation. If the precision is the same size as
5850 the field we're storing into, that mask is redundant. This is
5851 particularly common with bit field assignments generated by the
5852 C front end. */
5853 nop_def = get_def_for_expr (exp, NOP_EXPR);
5854 if (nop_def)
5855 {
5856 tree type = TREE_TYPE (exp);
5857 if (INTEGRAL_TYPE_P (type)
5858 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5859 && bitsize == TYPE_PRECISION (type))
5860 {
5861 tree op = gimple_assign_rhs1 (nop_def);
5862 type = TREE_TYPE (op);
5863 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5864 exp = op;
5865 }
5866 }
5867
5868 temp = expand_normal (exp);
5869
5870 /* If BITSIZE is narrower than the size of the type of EXP
5871 we will be narrowing TEMP. Normally, what's wanted are the
5872 low-order bits. However, if EXP's type is a record and this is
5873 big-endian machine, we want the upper BITSIZE bits. */
5874 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5875 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5876 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5877 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5878 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5879 - bitsize),
5880 NULL_RTX, 1);
5881
5882 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5883 MODE. */
5884 if (mode != VOIDmode && mode != BLKmode
5885 && mode != TYPE_MODE (TREE_TYPE (exp)))
5886 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5887
5888 /* If the modes of TEMP and TARGET are both BLKmode, both
5889 must be in memory and BITPOS must be aligned on a byte
5890 boundary. If so, we simply do a block copy. Likewise
5891 for a BLKmode-like TARGET. */
5892 if (GET_MODE (temp) == BLKmode
5893 && (GET_MODE (target) == BLKmode
5894 || (MEM_P (target)
5895 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5896 && (bitpos % BITS_PER_UNIT) == 0
5897 && (bitsize % BITS_PER_UNIT) == 0)))
5898 {
5899 gcc_assert (MEM_P (target) && MEM_P (temp)
5900 && (bitpos % BITS_PER_UNIT) == 0);
5901
5902 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5903 emit_block_move (target, temp,
5904 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5905 / BITS_PER_UNIT),
5906 BLOCK_OP_NORMAL);
5907
5908 return const0_rtx;
5909 }
5910
5911 /* Store the value in the bitfield. */
5912 store_bit_field (target, bitsize, bitpos, mode, temp);
5913
5914 return const0_rtx;
5915 }
5916 else
5917 {
5918 /* Now build a reference to just the desired component. */
5919 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5920
5921 if (to_rtx == target)
5922 to_rtx = copy_rtx (to_rtx);
5923
5924 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5925 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5926 set_mem_alias_set (to_rtx, alias_set);
5927
5928 return store_expr (exp, to_rtx, 0, nontemporal);
5929 }
5930 }
5931 \f
5932 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5933 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5934 codes and find the ultimate containing object, which we return.
5935
5936 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5937 bit position, and *PUNSIGNEDP to the signedness of the field.
5938 If the position of the field is variable, we store a tree
5939 giving the variable offset (in units) in *POFFSET.
5940 This offset is in addition to the bit position.
5941 If the position is not variable, we store 0 in *POFFSET.
5942
5943 If any of the extraction expressions is volatile,
5944 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5945
5946 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5947 Otherwise, it is a mode that can be used to access the field.
5948
5949 If the field describes a variable-sized object, *PMODE is set to
5950 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5951 this case, but the address of the object can be found.
5952
5953 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5954 look through nodes that serve as markers of a greater alignment than
5955 the one that can be deduced from the expression. These nodes make it
5956 possible for front-ends to prevent temporaries from being created by
5957 the middle-end on alignment considerations. For that purpose, the
5958 normal operating mode at high-level is to always pass FALSE so that
5959 the ultimate containing object is really returned; moreover, the
5960 associated predicate handled_component_p will always return TRUE
5961 on these nodes, thus indicating that they are essentially handled
5962 by get_inner_reference. TRUE should only be passed when the caller
5963 is scanning the expression in order to build another representation
5964 and specifically knows how to handle these nodes; as such, this is
5965 the normal operating mode in the RTL expanders. */
5966
5967 tree
5968 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5969 HOST_WIDE_INT *pbitpos, tree *poffset,
5970 enum machine_mode *pmode, int *punsignedp,
5971 int *pvolatilep, bool keep_aligning)
5972 {
5973 tree size_tree = 0;
5974 enum machine_mode mode = VOIDmode;
5975 bool blkmode_bitfield = false;
5976 tree offset = size_zero_node;
5977 double_int bit_offset = double_int_zero;
5978
5979 /* First get the mode, signedness, and size. We do this from just the
5980 outermost expression. */
5981 *pbitsize = -1;
5982 if (TREE_CODE (exp) == COMPONENT_REF)
5983 {
5984 tree field = TREE_OPERAND (exp, 1);
5985 size_tree = DECL_SIZE (field);
5986 if (!DECL_BIT_FIELD (field))
5987 mode = DECL_MODE (field);
5988 else if (DECL_MODE (field) == BLKmode)
5989 blkmode_bitfield = true;
5990 else if (TREE_THIS_VOLATILE (exp)
5991 && flag_strict_volatile_bitfields > 0)
5992 /* Volatile bitfields should be accessed in the mode of the
5993 field's type, not the mode computed based on the bit
5994 size. */
5995 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
5996
5997 *punsignedp = DECL_UNSIGNED (field);
5998 }
5999 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6000 {
6001 size_tree = TREE_OPERAND (exp, 1);
6002 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6003 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6004
6005 /* For vector types, with the correct size of access, use the mode of
6006 inner type. */
6007 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6008 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6009 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6010 mode = TYPE_MODE (TREE_TYPE (exp));
6011 }
6012 else
6013 {
6014 mode = TYPE_MODE (TREE_TYPE (exp));
6015 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6016
6017 if (mode == BLKmode)
6018 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6019 else
6020 *pbitsize = GET_MODE_BITSIZE (mode);
6021 }
6022
6023 if (size_tree != 0)
6024 {
6025 if (! host_integerp (size_tree, 1))
6026 mode = BLKmode, *pbitsize = -1;
6027 else
6028 *pbitsize = tree_low_cst (size_tree, 1);
6029 }
6030
6031 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6032 and find the ultimate containing object. */
6033 while (1)
6034 {
6035 switch (TREE_CODE (exp))
6036 {
6037 case BIT_FIELD_REF:
6038 bit_offset
6039 = double_int_add (bit_offset,
6040 tree_to_double_int (TREE_OPERAND (exp, 2)));
6041 break;
6042
6043 case COMPONENT_REF:
6044 {
6045 tree field = TREE_OPERAND (exp, 1);
6046 tree this_offset = component_ref_field_offset (exp);
6047
6048 /* If this field hasn't been filled in yet, don't go past it.
6049 This should only happen when folding expressions made during
6050 type construction. */
6051 if (this_offset == 0)
6052 break;
6053
6054 offset = size_binop (PLUS_EXPR, offset, this_offset);
6055 bit_offset = double_int_add (bit_offset,
6056 tree_to_double_int
6057 (DECL_FIELD_BIT_OFFSET (field)));
6058
6059 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6060 }
6061 break;
6062
6063 case ARRAY_REF:
6064 case ARRAY_RANGE_REF:
6065 {
6066 tree index = TREE_OPERAND (exp, 1);
6067 tree low_bound = array_ref_low_bound (exp);
6068 tree unit_size = array_ref_element_size (exp);
6069
6070 /* We assume all arrays have sizes that are a multiple of a byte.
6071 First subtract the lower bound, if any, in the type of the
6072 index, then convert to sizetype and multiply by the size of
6073 the array element. */
6074 if (! integer_zerop (low_bound))
6075 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6076 index, low_bound);
6077
6078 offset = size_binop (PLUS_EXPR, offset,
6079 size_binop (MULT_EXPR,
6080 fold_convert (sizetype, index),
6081 unit_size));
6082 }
6083 break;
6084
6085 case REALPART_EXPR:
6086 break;
6087
6088 case IMAGPART_EXPR:
6089 bit_offset = double_int_add (bit_offset,
6090 uhwi_to_double_int (*pbitsize));
6091 break;
6092
6093 case VIEW_CONVERT_EXPR:
6094 if (keep_aligning && STRICT_ALIGNMENT
6095 && (TYPE_ALIGN (TREE_TYPE (exp))
6096 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6097 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6098 < BIGGEST_ALIGNMENT)
6099 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6100 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6101 goto done;
6102 break;
6103
6104 case MEM_REF:
6105 /* Hand back the decl for MEM[&decl, off]. */
6106 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6107 {
6108 tree off = TREE_OPERAND (exp, 1);
6109 if (!integer_zerop (off))
6110 {
6111 double_int boff, coff = mem_ref_offset (exp);
6112 boff = double_int_lshift (coff,
6113 BITS_PER_UNIT == 8
6114 ? 3 : exact_log2 (BITS_PER_UNIT),
6115 HOST_BITS_PER_DOUBLE_INT, true);
6116 bit_offset = double_int_add (bit_offset, boff);
6117 }
6118 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6119 }
6120 goto done;
6121
6122 default:
6123 goto done;
6124 }
6125
6126 /* If any reference in the chain is volatile, the effect is volatile. */
6127 if (TREE_THIS_VOLATILE (exp))
6128 *pvolatilep = 1;
6129
6130 exp = TREE_OPERAND (exp, 0);
6131 }
6132 done:
6133
6134 /* If OFFSET is constant, see if we can return the whole thing as a
6135 constant bit position. Make sure to handle overflow during
6136 this conversion. */
6137 if (host_integerp (offset, 0))
6138 {
6139 double_int tem = double_int_lshift (tree_to_double_int (offset),
6140 BITS_PER_UNIT == 8
6141 ? 3 : exact_log2 (BITS_PER_UNIT),
6142 HOST_BITS_PER_DOUBLE_INT, true);
6143 tem = double_int_add (tem, bit_offset);
6144 if (double_int_fits_in_shwi_p (tem))
6145 {
6146 *pbitpos = double_int_to_shwi (tem);
6147 *poffset = offset = NULL_TREE;
6148 }
6149 }
6150
6151 /* Otherwise, split it up. */
6152 if (offset)
6153 {
6154 *pbitpos = double_int_to_shwi (bit_offset);
6155 *poffset = offset;
6156 }
6157
6158 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6159 if (mode == VOIDmode
6160 && blkmode_bitfield
6161 && (*pbitpos % BITS_PER_UNIT) == 0
6162 && (*pbitsize % BITS_PER_UNIT) == 0)
6163 *pmode = BLKmode;
6164 else
6165 *pmode = mode;
6166
6167 return exp;
6168 }
6169
6170 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6171 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6172 EXP is marked as PACKED. */
6173
6174 bool
6175 contains_packed_reference (const_tree exp)
6176 {
6177 bool packed_p = false;
6178
6179 while (1)
6180 {
6181 switch (TREE_CODE (exp))
6182 {
6183 case COMPONENT_REF:
6184 {
6185 tree field = TREE_OPERAND (exp, 1);
6186 packed_p = DECL_PACKED (field)
6187 || TYPE_PACKED (TREE_TYPE (field))
6188 || TYPE_PACKED (TREE_TYPE (exp));
6189 if (packed_p)
6190 goto done;
6191 }
6192 break;
6193
6194 case BIT_FIELD_REF:
6195 case ARRAY_REF:
6196 case ARRAY_RANGE_REF:
6197 case REALPART_EXPR:
6198 case IMAGPART_EXPR:
6199 case VIEW_CONVERT_EXPR:
6200 break;
6201
6202 default:
6203 goto done;
6204 }
6205 exp = TREE_OPERAND (exp, 0);
6206 }
6207 done:
6208 return packed_p;
6209 }
6210
6211 /* Return a tree of sizetype representing the size, in bytes, of the element
6212 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6213
6214 tree
6215 array_ref_element_size (tree exp)
6216 {
6217 tree aligned_size = TREE_OPERAND (exp, 3);
6218 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6219 location_t loc = EXPR_LOCATION (exp);
6220
6221 /* If a size was specified in the ARRAY_REF, it's the size measured
6222 in alignment units of the element type. So multiply by that value. */
6223 if (aligned_size)
6224 {
6225 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6226 sizetype from another type of the same width and signedness. */
6227 if (TREE_TYPE (aligned_size) != sizetype)
6228 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6229 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6230 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6231 }
6232
6233 /* Otherwise, take the size from that of the element type. Substitute
6234 any PLACEHOLDER_EXPR that we have. */
6235 else
6236 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6237 }
6238
6239 /* Return a tree representing the lower bound of the array mentioned in
6240 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6241
6242 tree
6243 array_ref_low_bound (tree exp)
6244 {
6245 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6246
6247 /* If a lower bound is specified in EXP, use it. */
6248 if (TREE_OPERAND (exp, 2))
6249 return TREE_OPERAND (exp, 2);
6250
6251 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6252 substituting for a PLACEHOLDER_EXPR as needed. */
6253 if (domain_type && TYPE_MIN_VALUE (domain_type))
6254 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6255
6256 /* Otherwise, return a zero of the appropriate type. */
6257 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6258 }
6259
6260 /* Return a tree representing the upper bound of the array mentioned in
6261 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6262
6263 tree
6264 array_ref_up_bound (tree exp)
6265 {
6266 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6267
6268 /* If there is a domain type and it has an upper bound, use it, substituting
6269 for a PLACEHOLDER_EXPR as needed. */
6270 if (domain_type && TYPE_MAX_VALUE (domain_type))
6271 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6272
6273 /* Otherwise fail. */
6274 return NULL_TREE;
6275 }
6276
6277 /* Return a tree representing the offset, in bytes, of the field referenced
6278 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6279
6280 tree
6281 component_ref_field_offset (tree exp)
6282 {
6283 tree aligned_offset = TREE_OPERAND (exp, 2);
6284 tree field = TREE_OPERAND (exp, 1);
6285 location_t loc = EXPR_LOCATION (exp);
6286
6287 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6288 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6289 value. */
6290 if (aligned_offset)
6291 {
6292 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6293 sizetype from another type of the same width and signedness. */
6294 if (TREE_TYPE (aligned_offset) != sizetype)
6295 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6296 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6297 size_int (DECL_OFFSET_ALIGN (field)
6298 / BITS_PER_UNIT));
6299 }
6300
6301 /* Otherwise, take the offset from that of the field. Substitute
6302 any PLACEHOLDER_EXPR that we have. */
6303 else
6304 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6305 }
6306
6307 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6308
6309 static unsigned HOST_WIDE_INT
6310 target_align (const_tree target)
6311 {
6312 /* We might have a chain of nested references with intermediate misaligning
6313 bitfields components, so need to recurse to find out. */
6314
6315 unsigned HOST_WIDE_INT this_align, outer_align;
6316
6317 switch (TREE_CODE (target))
6318 {
6319 case BIT_FIELD_REF:
6320 return 1;
6321
6322 case COMPONENT_REF:
6323 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6324 outer_align = target_align (TREE_OPERAND (target, 0));
6325 return MIN (this_align, outer_align);
6326
6327 case ARRAY_REF:
6328 case ARRAY_RANGE_REF:
6329 this_align = TYPE_ALIGN (TREE_TYPE (target));
6330 outer_align = target_align (TREE_OPERAND (target, 0));
6331 return MIN (this_align, outer_align);
6332
6333 CASE_CONVERT:
6334 case NON_LVALUE_EXPR:
6335 case VIEW_CONVERT_EXPR:
6336 this_align = TYPE_ALIGN (TREE_TYPE (target));
6337 outer_align = target_align (TREE_OPERAND (target, 0));
6338 return MAX (this_align, outer_align);
6339
6340 default:
6341 return TYPE_ALIGN (TREE_TYPE (target));
6342 }
6343 }
6344
6345 \f
6346 /* Given an rtx VALUE that may contain additions and multiplications, return
6347 an equivalent value that just refers to a register, memory, or constant.
6348 This is done by generating instructions to perform the arithmetic and
6349 returning a pseudo-register containing the value.
6350
6351 The returned value may be a REG, SUBREG, MEM or constant. */
6352
6353 rtx
6354 force_operand (rtx value, rtx target)
6355 {
6356 rtx op1, op2;
6357 /* Use subtarget as the target for operand 0 of a binary operation. */
6358 rtx subtarget = get_subtarget (target);
6359 enum rtx_code code = GET_CODE (value);
6360
6361 /* Check for subreg applied to an expression produced by loop optimizer. */
6362 if (code == SUBREG
6363 && !REG_P (SUBREG_REG (value))
6364 && !MEM_P (SUBREG_REG (value)))
6365 {
6366 value
6367 = simplify_gen_subreg (GET_MODE (value),
6368 force_reg (GET_MODE (SUBREG_REG (value)),
6369 force_operand (SUBREG_REG (value),
6370 NULL_RTX)),
6371 GET_MODE (SUBREG_REG (value)),
6372 SUBREG_BYTE (value));
6373 code = GET_CODE (value);
6374 }
6375
6376 /* Check for a PIC address load. */
6377 if ((code == PLUS || code == MINUS)
6378 && XEXP (value, 0) == pic_offset_table_rtx
6379 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6380 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6381 || GET_CODE (XEXP (value, 1)) == CONST))
6382 {
6383 if (!subtarget)
6384 subtarget = gen_reg_rtx (GET_MODE (value));
6385 emit_move_insn (subtarget, value);
6386 return subtarget;
6387 }
6388
6389 if (ARITHMETIC_P (value))
6390 {
6391 op2 = XEXP (value, 1);
6392 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6393 subtarget = 0;
6394 if (code == MINUS && CONST_INT_P (op2))
6395 {
6396 code = PLUS;
6397 op2 = negate_rtx (GET_MODE (value), op2);
6398 }
6399
6400 /* Check for an addition with OP2 a constant integer and our first
6401 operand a PLUS of a virtual register and something else. In that
6402 case, we want to emit the sum of the virtual register and the
6403 constant first and then add the other value. This allows virtual
6404 register instantiation to simply modify the constant rather than
6405 creating another one around this addition. */
6406 if (code == PLUS && CONST_INT_P (op2)
6407 && GET_CODE (XEXP (value, 0)) == PLUS
6408 && REG_P (XEXP (XEXP (value, 0), 0))
6409 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6410 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6411 {
6412 rtx temp = expand_simple_binop (GET_MODE (value), code,
6413 XEXP (XEXP (value, 0), 0), op2,
6414 subtarget, 0, OPTAB_LIB_WIDEN);
6415 return expand_simple_binop (GET_MODE (value), code, temp,
6416 force_operand (XEXP (XEXP (value,
6417 0), 1), 0),
6418 target, 0, OPTAB_LIB_WIDEN);
6419 }
6420
6421 op1 = force_operand (XEXP (value, 0), subtarget);
6422 op2 = force_operand (op2, NULL_RTX);
6423 switch (code)
6424 {
6425 case MULT:
6426 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6427 case DIV:
6428 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6429 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6430 target, 1, OPTAB_LIB_WIDEN);
6431 else
6432 return expand_divmod (0,
6433 FLOAT_MODE_P (GET_MODE (value))
6434 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6435 GET_MODE (value), op1, op2, target, 0);
6436 case MOD:
6437 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6438 target, 0);
6439 case UDIV:
6440 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6441 target, 1);
6442 case UMOD:
6443 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6444 target, 1);
6445 case ASHIFTRT:
6446 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6447 target, 0, OPTAB_LIB_WIDEN);
6448 default:
6449 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6450 target, 1, OPTAB_LIB_WIDEN);
6451 }
6452 }
6453 if (UNARY_P (value))
6454 {
6455 if (!target)
6456 target = gen_reg_rtx (GET_MODE (value));
6457 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6458 switch (code)
6459 {
6460 case ZERO_EXTEND:
6461 case SIGN_EXTEND:
6462 case TRUNCATE:
6463 case FLOAT_EXTEND:
6464 case FLOAT_TRUNCATE:
6465 convert_move (target, op1, code == ZERO_EXTEND);
6466 return target;
6467
6468 case FIX:
6469 case UNSIGNED_FIX:
6470 expand_fix (target, op1, code == UNSIGNED_FIX);
6471 return target;
6472
6473 case FLOAT:
6474 case UNSIGNED_FLOAT:
6475 expand_float (target, op1, code == UNSIGNED_FLOAT);
6476 return target;
6477
6478 default:
6479 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6480 }
6481 }
6482
6483 #ifdef INSN_SCHEDULING
6484 /* On machines that have insn scheduling, we want all memory reference to be
6485 explicit, so we need to deal with such paradoxical SUBREGs. */
6486 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6487 && (GET_MODE_SIZE (GET_MODE (value))
6488 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6489 value
6490 = simplify_gen_subreg (GET_MODE (value),
6491 force_reg (GET_MODE (SUBREG_REG (value)),
6492 force_operand (SUBREG_REG (value),
6493 NULL_RTX)),
6494 GET_MODE (SUBREG_REG (value)),
6495 SUBREG_BYTE (value));
6496 #endif
6497
6498 return value;
6499 }
6500 \f
6501 /* Subroutine of expand_expr: return nonzero iff there is no way that
6502 EXP can reference X, which is being modified. TOP_P is nonzero if this
6503 call is going to be used to determine whether we need a temporary
6504 for EXP, as opposed to a recursive call to this function.
6505
6506 It is always safe for this routine to return zero since it merely
6507 searches for optimization opportunities. */
6508
6509 int
6510 safe_from_p (const_rtx x, tree exp, int top_p)
6511 {
6512 rtx exp_rtl = 0;
6513 int i, nops;
6514
6515 if (x == 0
6516 /* If EXP has varying size, we MUST use a target since we currently
6517 have no way of allocating temporaries of variable size
6518 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6519 So we assume here that something at a higher level has prevented a
6520 clash. This is somewhat bogus, but the best we can do. Only
6521 do this when X is BLKmode and when we are at the top level. */
6522 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6523 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6524 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6525 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6526 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6527 != INTEGER_CST)
6528 && GET_MODE (x) == BLKmode)
6529 /* If X is in the outgoing argument area, it is always safe. */
6530 || (MEM_P (x)
6531 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6532 || (GET_CODE (XEXP (x, 0)) == PLUS
6533 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6534 return 1;
6535
6536 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6537 find the underlying pseudo. */
6538 if (GET_CODE (x) == SUBREG)
6539 {
6540 x = SUBREG_REG (x);
6541 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6542 return 0;
6543 }
6544
6545 /* Now look at our tree code and possibly recurse. */
6546 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6547 {
6548 case tcc_declaration:
6549 exp_rtl = DECL_RTL_IF_SET (exp);
6550 break;
6551
6552 case tcc_constant:
6553 return 1;
6554
6555 case tcc_exceptional:
6556 if (TREE_CODE (exp) == TREE_LIST)
6557 {
6558 while (1)
6559 {
6560 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6561 return 0;
6562 exp = TREE_CHAIN (exp);
6563 if (!exp)
6564 return 1;
6565 if (TREE_CODE (exp) != TREE_LIST)
6566 return safe_from_p (x, exp, 0);
6567 }
6568 }
6569 else if (TREE_CODE (exp) == CONSTRUCTOR)
6570 {
6571 constructor_elt *ce;
6572 unsigned HOST_WIDE_INT idx;
6573
6574 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6575 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6576 || !safe_from_p (x, ce->value, 0))
6577 return 0;
6578 return 1;
6579 }
6580 else if (TREE_CODE (exp) == ERROR_MARK)
6581 return 1; /* An already-visited SAVE_EXPR? */
6582 else
6583 return 0;
6584
6585 case tcc_statement:
6586 /* The only case we look at here is the DECL_INITIAL inside a
6587 DECL_EXPR. */
6588 return (TREE_CODE (exp) != DECL_EXPR
6589 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6590 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6591 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6592
6593 case tcc_binary:
6594 case tcc_comparison:
6595 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6596 return 0;
6597 /* Fall through. */
6598
6599 case tcc_unary:
6600 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6601
6602 case tcc_expression:
6603 case tcc_reference:
6604 case tcc_vl_exp:
6605 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6606 the expression. If it is set, we conflict iff we are that rtx or
6607 both are in memory. Otherwise, we check all operands of the
6608 expression recursively. */
6609
6610 switch (TREE_CODE (exp))
6611 {
6612 case ADDR_EXPR:
6613 /* If the operand is static or we are static, we can't conflict.
6614 Likewise if we don't conflict with the operand at all. */
6615 if (staticp (TREE_OPERAND (exp, 0))
6616 || TREE_STATIC (exp)
6617 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6618 return 1;
6619
6620 /* Otherwise, the only way this can conflict is if we are taking
6621 the address of a DECL a that address if part of X, which is
6622 very rare. */
6623 exp = TREE_OPERAND (exp, 0);
6624 if (DECL_P (exp))
6625 {
6626 if (!DECL_RTL_SET_P (exp)
6627 || !MEM_P (DECL_RTL (exp)))
6628 return 0;
6629 else
6630 exp_rtl = XEXP (DECL_RTL (exp), 0);
6631 }
6632 break;
6633
6634 case MEM_REF:
6635 if (MEM_P (x)
6636 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6637 get_alias_set (exp)))
6638 return 0;
6639 break;
6640
6641 case CALL_EXPR:
6642 /* Assume that the call will clobber all hard registers and
6643 all of memory. */
6644 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6645 || MEM_P (x))
6646 return 0;
6647 break;
6648
6649 case WITH_CLEANUP_EXPR:
6650 case CLEANUP_POINT_EXPR:
6651 /* Lowered by gimplify.c. */
6652 gcc_unreachable ();
6653
6654 case SAVE_EXPR:
6655 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6656
6657 default:
6658 break;
6659 }
6660
6661 /* If we have an rtx, we do not need to scan our operands. */
6662 if (exp_rtl)
6663 break;
6664
6665 nops = TREE_OPERAND_LENGTH (exp);
6666 for (i = 0; i < nops; i++)
6667 if (TREE_OPERAND (exp, i) != 0
6668 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6669 return 0;
6670
6671 break;
6672
6673 case tcc_type:
6674 /* Should never get a type here. */
6675 gcc_unreachable ();
6676 }
6677
6678 /* If we have an rtl, find any enclosed object. Then see if we conflict
6679 with it. */
6680 if (exp_rtl)
6681 {
6682 if (GET_CODE (exp_rtl) == SUBREG)
6683 {
6684 exp_rtl = SUBREG_REG (exp_rtl);
6685 if (REG_P (exp_rtl)
6686 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6687 return 0;
6688 }
6689
6690 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6691 are memory and they conflict. */
6692 return ! (rtx_equal_p (x, exp_rtl)
6693 || (MEM_P (x) && MEM_P (exp_rtl)
6694 && true_dependence (exp_rtl, VOIDmode, x,
6695 rtx_addr_varies_p)));
6696 }
6697
6698 /* If we reach here, it is safe. */
6699 return 1;
6700 }
6701
6702 \f
6703 /* Return the highest power of two that EXP is known to be a multiple of.
6704 This is used in updating alignment of MEMs in array references. */
6705
6706 unsigned HOST_WIDE_INT
6707 highest_pow2_factor (const_tree exp)
6708 {
6709 unsigned HOST_WIDE_INT c0, c1;
6710
6711 switch (TREE_CODE (exp))
6712 {
6713 case INTEGER_CST:
6714 /* We can find the lowest bit that's a one. If the low
6715 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6716 We need to handle this case since we can find it in a COND_EXPR,
6717 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6718 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6719 later ICE. */
6720 if (TREE_OVERFLOW (exp))
6721 return BIGGEST_ALIGNMENT;
6722 else
6723 {
6724 /* Note: tree_low_cst is intentionally not used here,
6725 we don't care about the upper bits. */
6726 c0 = TREE_INT_CST_LOW (exp);
6727 c0 &= -c0;
6728 return c0 ? c0 : BIGGEST_ALIGNMENT;
6729 }
6730 break;
6731
6732 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6733 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6734 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6735 return MIN (c0, c1);
6736
6737 case MULT_EXPR:
6738 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6739 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6740 return c0 * c1;
6741
6742 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6743 case CEIL_DIV_EXPR:
6744 if (integer_pow2p (TREE_OPERAND (exp, 1))
6745 && host_integerp (TREE_OPERAND (exp, 1), 1))
6746 {
6747 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6748 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6749 return MAX (1, c0 / c1);
6750 }
6751 break;
6752
6753 case BIT_AND_EXPR:
6754 /* The highest power of two of a bit-and expression is the maximum of
6755 that of its operands. We typically get here for a complex LHS and
6756 a constant negative power of two on the RHS to force an explicit
6757 alignment, so don't bother looking at the LHS. */
6758 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6759
6760 CASE_CONVERT:
6761 case SAVE_EXPR:
6762 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6763
6764 case COMPOUND_EXPR:
6765 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6766
6767 case COND_EXPR:
6768 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6769 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6770 return MIN (c0, c1);
6771
6772 default:
6773 break;
6774 }
6775
6776 return 1;
6777 }
6778
6779 /* Similar, except that the alignment requirements of TARGET are
6780 taken into account. Assume it is at least as aligned as its
6781 type, unless it is a COMPONENT_REF in which case the layout of
6782 the structure gives the alignment. */
6783
6784 static unsigned HOST_WIDE_INT
6785 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6786 {
6787 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6788 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6789
6790 return MAX (factor, talign);
6791 }
6792 \f
6793 /* Subroutine of expand_expr. Expand the two operands of a binary
6794 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6795 The value may be stored in TARGET if TARGET is nonzero. The
6796 MODIFIER argument is as documented by expand_expr. */
6797
6798 static void
6799 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6800 enum expand_modifier modifier)
6801 {
6802 if (! safe_from_p (target, exp1, 1))
6803 target = 0;
6804 if (operand_equal_p (exp0, exp1, 0))
6805 {
6806 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6807 *op1 = copy_rtx (*op0);
6808 }
6809 else
6810 {
6811 /* If we need to preserve evaluation order, copy exp0 into its own
6812 temporary variable so that it can't be clobbered by exp1. */
6813 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6814 exp0 = save_expr (exp0);
6815 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6816 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6817 }
6818 }
6819
6820 \f
6821 /* Return a MEM that contains constant EXP. DEFER is as for
6822 output_constant_def and MODIFIER is as for expand_expr. */
6823
6824 static rtx
6825 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6826 {
6827 rtx mem;
6828
6829 mem = output_constant_def (exp, defer);
6830 if (modifier != EXPAND_INITIALIZER)
6831 mem = use_anchored_address (mem);
6832 return mem;
6833 }
6834
6835 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6836 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6837
6838 static rtx
6839 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6840 enum expand_modifier modifier, addr_space_t as)
6841 {
6842 rtx result, subtarget;
6843 tree inner, offset;
6844 HOST_WIDE_INT bitsize, bitpos;
6845 int volatilep, unsignedp;
6846 enum machine_mode mode1;
6847
6848 /* If we are taking the address of a constant and are at the top level,
6849 we have to use output_constant_def since we can't call force_const_mem
6850 at top level. */
6851 /* ??? This should be considered a front-end bug. We should not be
6852 generating ADDR_EXPR of something that isn't an LVALUE. The only
6853 exception here is STRING_CST. */
6854 if (CONSTANT_CLASS_P (exp))
6855 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6856
6857 /* Everything must be something allowed by is_gimple_addressable. */
6858 switch (TREE_CODE (exp))
6859 {
6860 case INDIRECT_REF:
6861 /* This case will happen via recursion for &a->b. */
6862 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6863
6864 case MEM_REF:
6865 {
6866 tree tem = TREE_OPERAND (exp, 0);
6867 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6868 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6869 tem,
6870 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6871 return expand_expr (tem, target, tmode, modifier);
6872 }
6873
6874 case CONST_DECL:
6875 /* Expand the initializer like constants above. */
6876 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6877
6878 case REALPART_EXPR:
6879 /* The real part of the complex number is always first, therefore
6880 the address is the same as the address of the parent object. */
6881 offset = 0;
6882 bitpos = 0;
6883 inner = TREE_OPERAND (exp, 0);
6884 break;
6885
6886 case IMAGPART_EXPR:
6887 /* The imaginary part of the complex number is always second.
6888 The expression is therefore always offset by the size of the
6889 scalar type. */
6890 offset = 0;
6891 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6892 inner = TREE_OPERAND (exp, 0);
6893 break;
6894
6895 default:
6896 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6897 expand_expr, as that can have various side effects; LABEL_DECLs for
6898 example, may not have their DECL_RTL set yet. Expand the rtl of
6899 CONSTRUCTORs too, which should yield a memory reference for the
6900 constructor's contents. Assume language specific tree nodes can
6901 be expanded in some interesting way. */
6902 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6903 if (DECL_P (exp)
6904 || TREE_CODE (exp) == CONSTRUCTOR
6905 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6906 {
6907 result = expand_expr (exp, target, tmode,
6908 modifier == EXPAND_INITIALIZER
6909 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6910
6911 /* If the DECL isn't in memory, then the DECL wasn't properly
6912 marked TREE_ADDRESSABLE, which will be either a front-end
6913 or a tree optimizer bug. */
6914 gcc_assert (MEM_P (result));
6915 result = XEXP (result, 0);
6916
6917 /* ??? Is this needed anymore? */
6918 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6919 {
6920 assemble_external (exp);
6921 TREE_USED (exp) = 1;
6922 }
6923
6924 if (modifier != EXPAND_INITIALIZER
6925 && modifier != EXPAND_CONST_ADDRESS)
6926 result = force_operand (result, target);
6927 return result;
6928 }
6929
6930 /* Pass FALSE as the last argument to get_inner_reference although
6931 we are expanding to RTL. The rationale is that we know how to
6932 handle "aligning nodes" here: we can just bypass them because
6933 they won't change the final object whose address will be returned
6934 (they actually exist only for that purpose). */
6935 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6936 &mode1, &unsignedp, &volatilep, false);
6937 break;
6938 }
6939
6940 /* We must have made progress. */
6941 gcc_assert (inner != exp);
6942
6943 subtarget = offset || bitpos ? NULL_RTX : target;
6944 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6945 inner alignment, force the inner to be sufficiently aligned. */
6946 if (CONSTANT_CLASS_P (inner)
6947 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6948 {
6949 inner = copy_node (inner);
6950 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6951 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6952 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6953 }
6954 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6955
6956 if (offset)
6957 {
6958 rtx tmp;
6959
6960 if (modifier != EXPAND_NORMAL)
6961 result = force_operand (result, NULL);
6962 tmp = expand_expr (offset, NULL_RTX, tmode,
6963 modifier == EXPAND_INITIALIZER
6964 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6965
6966 result = convert_memory_address_addr_space (tmode, result, as);
6967 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6968
6969 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6970 result = gen_rtx_PLUS (tmode, result, tmp);
6971 else
6972 {
6973 subtarget = bitpos ? NULL_RTX : target;
6974 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6975 1, OPTAB_LIB_WIDEN);
6976 }
6977 }
6978
6979 if (bitpos)
6980 {
6981 /* Someone beforehand should have rejected taking the address
6982 of such an object. */
6983 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6984
6985 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6986 if (modifier < EXPAND_SUM)
6987 result = force_operand (result, target);
6988 }
6989
6990 return result;
6991 }
6992
6993 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6994 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6995
6996 static rtx
6997 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6998 enum expand_modifier modifier)
6999 {
7000 addr_space_t as = ADDR_SPACE_GENERIC;
7001 enum machine_mode address_mode = Pmode;
7002 enum machine_mode pointer_mode = ptr_mode;
7003 enum machine_mode rmode;
7004 rtx result;
7005
7006 /* Target mode of VOIDmode says "whatever's natural". */
7007 if (tmode == VOIDmode)
7008 tmode = TYPE_MODE (TREE_TYPE (exp));
7009
7010 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7011 {
7012 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7013 address_mode = targetm.addr_space.address_mode (as);
7014 pointer_mode = targetm.addr_space.pointer_mode (as);
7015 }
7016
7017 /* We can get called with some Weird Things if the user does silliness
7018 like "(short) &a". In that case, convert_memory_address won't do
7019 the right thing, so ignore the given target mode. */
7020 if (tmode != address_mode && tmode != pointer_mode)
7021 tmode = address_mode;
7022
7023 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7024 tmode, modifier, as);
7025
7026 /* Despite expand_expr claims concerning ignoring TMODE when not
7027 strictly convenient, stuff breaks if we don't honor it. Note
7028 that combined with the above, we only do this for pointer modes. */
7029 rmode = GET_MODE (result);
7030 if (rmode == VOIDmode)
7031 rmode = tmode;
7032 if (rmode != tmode)
7033 result = convert_memory_address_addr_space (tmode, result, as);
7034
7035 return result;
7036 }
7037
7038 /* Generate code for computing CONSTRUCTOR EXP.
7039 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7040 is TRUE, instead of creating a temporary variable in memory
7041 NULL is returned and the caller needs to handle it differently. */
7042
7043 static rtx
7044 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7045 bool avoid_temp_mem)
7046 {
7047 tree type = TREE_TYPE (exp);
7048 enum machine_mode mode = TYPE_MODE (type);
7049
7050 /* Try to avoid creating a temporary at all. This is possible
7051 if all of the initializer is zero.
7052 FIXME: try to handle all [0..255] initializers we can handle
7053 with memset. */
7054 if (TREE_STATIC (exp)
7055 && !TREE_ADDRESSABLE (exp)
7056 && target != 0 && mode == BLKmode
7057 && all_zeros_p (exp))
7058 {
7059 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7060 return target;
7061 }
7062
7063 /* All elts simple constants => refer to a constant in memory. But
7064 if this is a non-BLKmode mode, let it store a field at a time
7065 since that should make a CONST_INT or CONST_DOUBLE when we
7066 fold. Likewise, if we have a target we can use, it is best to
7067 store directly into the target unless the type is large enough
7068 that memcpy will be used. If we are making an initializer and
7069 all operands are constant, put it in memory as well.
7070
7071 FIXME: Avoid trying to fill vector constructors piece-meal.
7072 Output them with output_constant_def below unless we're sure
7073 they're zeros. This should go away when vector initializers
7074 are treated like VECTOR_CST instead of arrays. */
7075 if ((TREE_STATIC (exp)
7076 && ((mode == BLKmode
7077 && ! (target != 0 && safe_from_p (target, exp, 1)))
7078 || TREE_ADDRESSABLE (exp)
7079 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7080 && (! MOVE_BY_PIECES_P
7081 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7082 TYPE_ALIGN (type)))
7083 && ! mostly_zeros_p (exp))))
7084 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7085 && TREE_CONSTANT (exp)))
7086 {
7087 rtx constructor;
7088
7089 if (avoid_temp_mem)
7090 return NULL_RTX;
7091
7092 constructor = expand_expr_constant (exp, 1, modifier);
7093
7094 if (modifier != EXPAND_CONST_ADDRESS
7095 && modifier != EXPAND_INITIALIZER
7096 && modifier != EXPAND_SUM)
7097 constructor = validize_mem (constructor);
7098
7099 return constructor;
7100 }
7101
7102 /* Handle calls that pass values in multiple non-contiguous
7103 locations. The Irix 6 ABI has examples of this. */
7104 if (target == 0 || ! safe_from_p (target, exp, 1)
7105 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7106 {
7107 if (avoid_temp_mem)
7108 return NULL_RTX;
7109
7110 target
7111 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7112 | (TREE_READONLY (exp)
7113 * TYPE_QUAL_CONST))),
7114 0, TREE_ADDRESSABLE (exp), 1);
7115 }
7116
7117 store_constructor (exp, target, 0, int_expr_size (exp));
7118 return target;
7119 }
7120
7121
7122 /* expand_expr: generate code for computing expression EXP.
7123 An rtx for the computed value is returned. The value is never null.
7124 In the case of a void EXP, const0_rtx is returned.
7125
7126 The value may be stored in TARGET if TARGET is nonzero.
7127 TARGET is just a suggestion; callers must assume that
7128 the rtx returned may not be the same as TARGET.
7129
7130 If TARGET is CONST0_RTX, it means that the value will be ignored.
7131
7132 If TMODE is not VOIDmode, it suggests generating the
7133 result in mode TMODE. But this is done only when convenient.
7134 Otherwise, TMODE is ignored and the value generated in its natural mode.
7135 TMODE is just a suggestion; callers must assume that
7136 the rtx returned may not have mode TMODE.
7137
7138 Note that TARGET may have neither TMODE nor MODE. In that case, it
7139 probably will not be used.
7140
7141 If MODIFIER is EXPAND_SUM then when EXP is an addition
7142 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7143 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7144 products as above, or REG or MEM, or constant.
7145 Ordinarily in such cases we would output mul or add instructions
7146 and then return a pseudo reg containing the sum.
7147
7148 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7149 it also marks a label as absolutely required (it can't be dead).
7150 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7151 This is used for outputting expressions used in initializers.
7152
7153 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7154 with a constant address even if that address is not normally legitimate.
7155 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7156
7157 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7158 a call parameter. Such targets require special care as we haven't yet
7159 marked TARGET so that it's safe from being trashed by libcalls. We
7160 don't want to use TARGET for anything but the final result;
7161 Intermediate values must go elsewhere. Additionally, calls to
7162 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7163
7164 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7165 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7166 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7167 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7168 recursively. */
7169
7170 rtx
7171 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7172 enum expand_modifier modifier, rtx *alt_rtl)
7173 {
7174 rtx ret;
7175
7176 /* Handle ERROR_MARK before anybody tries to access its type. */
7177 if (TREE_CODE (exp) == ERROR_MARK
7178 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7179 {
7180 ret = CONST0_RTX (tmode);
7181 return ret ? ret : const0_rtx;
7182 }
7183
7184 /* If this is an expression of some kind and it has an associated line
7185 number, then emit the line number before expanding the expression.
7186
7187 We need to save and restore the file and line information so that
7188 errors discovered during expansion are emitted with the right
7189 information. It would be better of the diagnostic routines
7190 used the file/line information embedded in the tree nodes rather
7191 than globals. */
7192 if (cfun && EXPR_HAS_LOCATION (exp))
7193 {
7194 location_t saved_location = input_location;
7195 location_t saved_curr_loc = get_curr_insn_source_location ();
7196 tree saved_block = get_curr_insn_block ();
7197 input_location = EXPR_LOCATION (exp);
7198 set_curr_insn_source_location (input_location);
7199
7200 /* Record where the insns produced belong. */
7201 set_curr_insn_block (TREE_BLOCK (exp));
7202
7203 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7204
7205 input_location = saved_location;
7206 set_curr_insn_block (saved_block);
7207 set_curr_insn_source_location (saved_curr_loc);
7208 }
7209 else
7210 {
7211 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7212 }
7213
7214 return ret;
7215 }
7216
7217 rtx
7218 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7219 enum expand_modifier modifier)
7220 {
7221 rtx op0, op1, op2, temp;
7222 tree type;
7223 int unsignedp;
7224 enum machine_mode mode;
7225 enum tree_code code = ops->code;
7226 optab this_optab;
7227 rtx subtarget, original_target;
7228 int ignore;
7229 bool reduce_bit_field;
7230 location_t loc = ops->location;
7231 tree treeop0, treeop1, treeop2;
7232 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7233 ? reduce_to_bit_field_precision ((expr), \
7234 target, \
7235 type) \
7236 : (expr))
7237
7238 type = ops->type;
7239 mode = TYPE_MODE (type);
7240 unsignedp = TYPE_UNSIGNED (type);
7241
7242 treeop0 = ops->op0;
7243 treeop1 = ops->op1;
7244 treeop2 = ops->op2;
7245
7246 /* We should be called only on simple (binary or unary) expressions,
7247 exactly those that are valid in gimple expressions that aren't
7248 GIMPLE_SINGLE_RHS (or invalid). */
7249 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7250 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7251 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7252
7253 ignore = (target == const0_rtx
7254 || ((CONVERT_EXPR_CODE_P (code)
7255 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7256 && TREE_CODE (type) == VOID_TYPE));
7257
7258 /* We should be called only if we need the result. */
7259 gcc_assert (!ignore);
7260
7261 /* An operation in what may be a bit-field type needs the
7262 result to be reduced to the precision of the bit-field type,
7263 which is narrower than that of the type's mode. */
7264 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7265 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7266
7267 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7268 target = 0;
7269
7270 /* Use subtarget as the target for operand 0 of a binary operation. */
7271 subtarget = get_subtarget (target);
7272 original_target = target;
7273
7274 switch (code)
7275 {
7276 case NON_LVALUE_EXPR:
7277 case PAREN_EXPR:
7278 CASE_CONVERT:
7279 if (treeop0 == error_mark_node)
7280 return const0_rtx;
7281
7282 if (TREE_CODE (type) == UNION_TYPE)
7283 {
7284 tree valtype = TREE_TYPE (treeop0);
7285
7286 /* If both input and output are BLKmode, this conversion isn't doing
7287 anything except possibly changing memory attribute. */
7288 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7289 {
7290 rtx result = expand_expr (treeop0, target, tmode,
7291 modifier);
7292
7293 result = copy_rtx (result);
7294 set_mem_attributes (result, type, 0);
7295 return result;
7296 }
7297
7298 if (target == 0)
7299 {
7300 if (TYPE_MODE (type) != BLKmode)
7301 target = gen_reg_rtx (TYPE_MODE (type));
7302 else
7303 target = assign_temp (type, 0, 1, 1);
7304 }
7305
7306 if (MEM_P (target))
7307 /* Store data into beginning of memory target. */
7308 store_expr (treeop0,
7309 adjust_address (target, TYPE_MODE (valtype), 0),
7310 modifier == EXPAND_STACK_PARM,
7311 false);
7312
7313 else
7314 {
7315 gcc_assert (REG_P (target));
7316
7317 /* Store this field into a union of the proper type. */
7318 store_field (target,
7319 MIN ((int_size_in_bytes (TREE_TYPE
7320 (treeop0))
7321 * BITS_PER_UNIT),
7322 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7323 0, TYPE_MODE (valtype), treeop0,
7324 type, 0, false);
7325 }
7326
7327 /* Return the entire union. */
7328 return target;
7329 }
7330
7331 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7332 {
7333 op0 = expand_expr (treeop0, target, VOIDmode,
7334 modifier);
7335
7336 /* If the signedness of the conversion differs and OP0 is
7337 a promoted SUBREG, clear that indication since we now
7338 have to do the proper extension. */
7339 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7340 && GET_CODE (op0) == SUBREG)
7341 SUBREG_PROMOTED_VAR_P (op0) = 0;
7342
7343 return REDUCE_BIT_FIELD (op0);
7344 }
7345
7346 op0 = expand_expr (treeop0, NULL_RTX, mode,
7347 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7348 if (GET_MODE (op0) == mode)
7349 ;
7350
7351 /* If OP0 is a constant, just convert it into the proper mode. */
7352 else if (CONSTANT_P (op0))
7353 {
7354 tree inner_type = TREE_TYPE (treeop0);
7355 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7356
7357 if (modifier == EXPAND_INITIALIZER)
7358 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7359 subreg_lowpart_offset (mode,
7360 inner_mode));
7361 else
7362 op0= convert_modes (mode, inner_mode, op0,
7363 TYPE_UNSIGNED (inner_type));
7364 }
7365
7366 else if (modifier == EXPAND_INITIALIZER)
7367 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7368
7369 else if (target == 0)
7370 op0 = convert_to_mode (mode, op0,
7371 TYPE_UNSIGNED (TREE_TYPE
7372 (treeop0)));
7373 else
7374 {
7375 convert_move (target, op0,
7376 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7377 op0 = target;
7378 }
7379
7380 return REDUCE_BIT_FIELD (op0);
7381
7382 case ADDR_SPACE_CONVERT_EXPR:
7383 {
7384 tree treeop0_type = TREE_TYPE (treeop0);
7385 addr_space_t as_to;
7386 addr_space_t as_from;
7387
7388 gcc_assert (POINTER_TYPE_P (type));
7389 gcc_assert (POINTER_TYPE_P (treeop0_type));
7390
7391 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7392 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7393
7394 /* Conversions between pointers to the same address space should
7395 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7396 gcc_assert (as_to != as_from);
7397
7398 /* Ask target code to handle conversion between pointers
7399 to overlapping address spaces. */
7400 if (targetm.addr_space.subset_p (as_to, as_from)
7401 || targetm.addr_space.subset_p (as_from, as_to))
7402 {
7403 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7404 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7405 gcc_assert (op0);
7406 return op0;
7407 }
7408
7409 /* For disjoint address spaces, converting anything but
7410 a null pointer invokes undefined behaviour. We simply
7411 always return a null pointer here. */
7412 return CONST0_RTX (mode);
7413 }
7414
7415 case POINTER_PLUS_EXPR:
7416 /* Even though the sizetype mode and the pointer's mode can be different
7417 expand is able to handle this correctly and get the correct result out
7418 of the PLUS_EXPR code. */
7419 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7420 if sizetype precision is smaller than pointer precision. */
7421 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7422 treeop1 = fold_convert_loc (loc, type,
7423 fold_convert_loc (loc, ssizetype,
7424 treeop1));
7425 case PLUS_EXPR:
7426 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7427 something else, make sure we add the register to the constant and
7428 then to the other thing. This case can occur during strength
7429 reduction and doing it this way will produce better code if the
7430 frame pointer or argument pointer is eliminated.
7431
7432 fold-const.c will ensure that the constant is always in the inner
7433 PLUS_EXPR, so the only case we need to do anything about is if
7434 sp, ap, or fp is our second argument, in which case we must swap
7435 the innermost first argument and our second argument. */
7436
7437 if (TREE_CODE (treeop0) == PLUS_EXPR
7438 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7439 && TREE_CODE (treeop1) == VAR_DECL
7440 && (DECL_RTL (treeop1) == frame_pointer_rtx
7441 || DECL_RTL (treeop1) == stack_pointer_rtx
7442 || DECL_RTL (treeop1) == arg_pointer_rtx))
7443 {
7444 tree t = treeop1;
7445
7446 treeop1 = TREE_OPERAND (treeop0, 0);
7447 TREE_OPERAND (treeop0, 0) = t;
7448 }
7449
7450 /* If the result is to be ptr_mode and we are adding an integer to
7451 something, we might be forming a constant. So try to use
7452 plus_constant. If it produces a sum and we can't accept it,
7453 use force_operand. This allows P = &ARR[const] to generate
7454 efficient code on machines where a SYMBOL_REF is not a valid
7455 address.
7456
7457 If this is an EXPAND_SUM call, always return the sum. */
7458 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7459 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7460 {
7461 if (modifier == EXPAND_STACK_PARM)
7462 target = 0;
7463 if (TREE_CODE (treeop0) == INTEGER_CST
7464 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7465 && TREE_CONSTANT (treeop1))
7466 {
7467 rtx constant_part;
7468
7469 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7470 EXPAND_SUM);
7471 /* Use immed_double_const to ensure that the constant is
7472 truncated according to the mode of OP1, then sign extended
7473 to a HOST_WIDE_INT. Using the constant directly can result
7474 in non-canonical RTL in a 64x32 cross compile. */
7475 constant_part
7476 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7477 (HOST_WIDE_INT) 0,
7478 TYPE_MODE (TREE_TYPE (treeop1)));
7479 op1 = plus_constant (op1, INTVAL (constant_part));
7480 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7481 op1 = force_operand (op1, target);
7482 return REDUCE_BIT_FIELD (op1);
7483 }
7484
7485 else if (TREE_CODE (treeop1) == INTEGER_CST
7486 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7487 && TREE_CONSTANT (treeop0))
7488 {
7489 rtx constant_part;
7490
7491 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7492 (modifier == EXPAND_INITIALIZER
7493 ? EXPAND_INITIALIZER : EXPAND_SUM));
7494 if (! CONSTANT_P (op0))
7495 {
7496 op1 = expand_expr (treeop1, NULL_RTX,
7497 VOIDmode, modifier);
7498 /* Return a PLUS if modifier says it's OK. */
7499 if (modifier == EXPAND_SUM
7500 || modifier == EXPAND_INITIALIZER)
7501 return simplify_gen_binary (PLUS, mode, op0, op1);
7502 goto binop2;
7503 }
7504 /* Use immed_double_const to ensure that the constant is
7505 truncated according to the mode of OP1, then sign extended
7506 to a HOST_WIDE_INT. Using the constant directly can result
7507 in non-canonical RTL in a 64x32 cross compile. */
7508 constant_part
7509 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7510 (HOST_WIDE_INT) 0,
7511 TYPE_MODE (TREE_TYPE (treeop0)));
7512 op0 = plus_constant (op0, INTVAL (constant_part));
7513 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7514 op0 = force_operand (op0, target);
7515 return REDUCE_BIT_FIELD (op0);
7516 }
7517 }
7518
7519 /* Use TER to expand pointer addition of a negated value
7520 as pointer subtraction. */
7521 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7522 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7523 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7524 && TREE_CODE (treeop1) == SSA_NAME
7525 && TYPE_MODE (TREE_TYPE (treeop0))
7526 == TYPE_MODE (TREE_TYPE (treeop1)))
7527 {
7528 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7529 if (def)
7530 {
7531 treeop1 = gimple_assign_rhs1 (def);
7532 code = MINUS_EXPR;
7533 goto do_minus;
7534 }
7535 }
7536
7537 /* No sense saving up arithmetic to be done
7538 if it's all in the wrong mode to form part of an address.
7539 And force_operand won't know whether to sign-extend or
7540 zero-extend. */
7541 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7542 || mode != ptr_mode)
7543 {
7544 expand_operands (treeop0, treeop1,
7545 subtarget, &op0, &op1, EXPAND_NORMAL);
7546 if (op0 == const0_rtx)
7547 return op1;
7548 if (op1 == const0_rtx)
7549 return op0;
7550 goto binop2;
7551 }
7552
7553 expand_operands (treeop0, treeop1,
7554 subtarget, &op0, &op1, modifier);
7555 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7556
7557 case MINUS_EXPR:
7558 do_minus:
7559 /* For initializers, we are allowed to return a MINUS of two
7560 symbolic constants. Here we handle all cases when both operands
7561 are constant. */
7562 /* Handle difference of two symbolic constants,
7563 for the sake of an initializer. */
7564 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7565 && really_constant_p (treeop0)
7566 && really_constant_p (treeop1))
7567 {
7568 expand_operands (treeop0, treeop1,
7569 NULL_RTX, &op0, &op1, modifier);
7570
7571 /* If the last operand is a CONST_INT, use plus_constant of
7572 the negated constant. Else make the MINUS. */
7573 if (CONST_INT_P (op1))
7574 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7575 else
7576 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7577 }
7578
7579 /* No sense saving up arithmetic to be done
7580 if it's all in the wrong mode to form part of an address.
7581 And force_operand won't know whether to sign-extend or
7582 zero-extend. */
7583 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7584 || mode != ptr_mode)
7585 goto binop;
7586
7587 expand_operands (treeop0, treeop1,
7588 subtarget, &op0, &op1, modifier);
7589
7590 /* Convert A - const to A + (-const). */
7591 if (CONST_INT_P (op1))
7592 {
7593 op1 = negate_rtx (mode, op1);
7594 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7595 }
7596
7597 goto binop2;
7598
7599 case WIDEN_MULT_PLUS_EXPR:
7600 case WIDEN_MULT_MINUS_EXPR:
7601 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7602 op2 = expand_normal (treeop2);
7603 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7604 target, unsignedp);
7605 return target;
7606
7607 case WIDEN_MULT_EXPR:
7608 /* If first operand is constant, swap them.
7609 Thus the following special case checks need only
7610 check the second operand. */
7611 if (TREE_CODE (treeop0) == INTEGER_CST)
7612 {
7613 tree t1 = treeop0;
7614 treeop0 = treeop1;
7615 treeop1 = t1;
7616 }
7617
7618 /* First, check if we have a multiplication of one signed and one
7619 unsigned operand. */
7620 if (TREE_CODE (treeop1) != INTEGER_CST
7621 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7622 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7623 {
7624 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7625 this_optab = usmul_widen_optab;
7626 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7627 {
7628 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7629 {
7630 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7631 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7632 EXPAND_NORMAL);
7633 else
7634 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7635 EXPAND_NORMAL);
7636 goto binop3;
7637 }
7638 }
7639 }
7640 /* Check for a multiplication with matching signedness. */
7641 else if ((TREE_CODE (treeop1) == INTEGER_CST
7642 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7643 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7644 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7645 {
7646 tree op0type = TREE_TYPE (treeop0);
7647 enum machine_mode innermode = TYPE_MODE (op0type);
7648 bool zextend_p = TYPE_UNSIGNED (op0type);
7649 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7650 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7651
7652 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7653 {
7654 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7655 {
7656 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7657 EXPAND_NORMAL);
7658 temp = expand_widening_mult (mode, op0, op1, target,
7659 unsignedp, this_optab);
7660 return REDUCE_BIT_FIELD (temp);
7661 }
7662 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7663 && innermode == word_mode)
7664 {
7665 rtx htem, hipart;
7666 op0 = expand_normal (treeop0);
7667 if (TREE_CODE (treeop1) == INTEGER_CST)
7668 op1 = convert_modes (innermode, mode,
7669 expand_normal (treeop1), unsignedp);
7670 else
7671 op1 = expand_normal (treeop1);
7672 temp = expand_binop (mode, other_optab, op0, op1, target,
7673 unsignedp, OPTAB_LIB_WIDEN);
7674 hipart = gen_highpart (innermode, temp);
7675 htem = expand_mult_highpart_adjust (innermode, hipart,
7676 op0, op1, hipart,
7677 zextend_p);
7678 if (htem != hipart)
7679 emit_move_insn (hipart, htem);
7680 return REDUCE_BIT_FIELD (temp);
7681 }
7682 }
7683 }
7684 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7685 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7686 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7687 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7688
7689 case FMA_EXPR:
7690 {
7691 optab opt = fma_optab;
7692 gimple def0, def2;
7693
7694 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7695 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7696
7697 op0 = op2 = NULL;
7698
7699 if (def0 && def2
7700 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7701 {
7702 opt = fnms_optab;
7703 op0 = expand_normal (gimple_assign_rhs1 (def0));
7704 op2 = expand_normal (gimple_assign_rhs1 (def2));
7705 }
7706 else if (def0
7707 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7708 {
7709 opt = fnma_optab;
7710 op0 = expand_normal (gimple_assign_rhs1 (def0));
7711 }
7712 else if (def2
7713 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7714 {
7715 opt = fms_optab;
7716 op2 = expand_normal (gimple_assign_rhs1 (def2));
7717 }
7718
7719 if (op0 == NULL)
7720 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7721 if (op2 == NULL)
7722 op2 = expand_normal (treeop2);
7723 op1 = expand_normal (treeop1);
7724
7725 return expand_ternary_op (TYPE_MODE (type), opt,
7726 op0, op1, op2, target, 0);
7727 }
7728
7729 case MULT_EXPR:
7730 /* If this is a fixed-point operation, then we cannot use the code
7731 below because "expand_mult" doesn't support sat/no-sat fixed-point
7732 multiplications. */
7733 if (ALL_FIXED_POINT_MODE_P (mode))
7734 goto binop;
7735
7736 /* If first operand is constant, swap them.
7737 Thus the following special case checks need only
7738 check the second operand. */
7739 if (TREE_CODE (treeop0) == INTEGER_CST)
7740 {
7741 tree t1 = treeop0;
7742 treeop0 = treeop1;
7743 treeop1 = t1;
7744 }
7745
7746 /* Attempt to return something suitable for generating an
7747 indexed address, for machines that support that. */
7748
7749 if (modifier == EXPAND_SUM && mode == ptr_mode
7750 && host_integerp (treeop1, 0))
7751 {
7752 tree exp1 = treeop1;
7753
7754 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7755 EXPAND_SUM);
7756
7757 if (!REG_P (op0))
7758 op0 = force_operand (op0, NULL_RTX);
7759 if (!REG_P (op0))
7760 op0 = copy_to_mode_reg (mode, op0);
7761
7762 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7763 gen_int_mode (tree_low_cst (exp1, 0),
7764 TYPE_MODE (TREE_TYPE (exp1)))));
7765 }
7766
7767 if (modifier == EXPAND_STACK_PARM)
7768 target = 0;
7769
7770 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7771 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7772
7773 case TRUNC_DIV_EXPR:
7774 case FLOOR_DIV_EXPR:
7775 case CEIL_DIV_EXPR:
7776 case ROUND_DIV_EXPR:
7777 case EXACT_DIV_EXPR:
7778 /* If this is a fixed-point operation, then we cannot use the code
7779 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7780 divisions. */
7781 if (ALL_FIXED_POINT_MODE_P (mode))
7782 goto binop;
7783
7784 if (modifier == EXPAND_STACK_PARM)
7785 target = 0;
7786 /* Possible optimization: compute the dividend with EXPAND_SUM
7787 then if the divisor is constant can optimize the case
7788 where some terms of the dividend have coeffs divisible by it. */
7789 expand_operands (treeop0, treeop1,
7790 subtarget, &op0, &op1, EXPAND_NORMAL);
7791 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7792
7793 case RDIV_EXPR:
7794 goto binop;
7795
7796 case TRUNC_MOD_EXPR:
7797 case FLOOR_MOD_EXPR:
7798 case CEIL_MOD_EXPR:
7799 case ROUND_MOD_EXPR:
7800 if (modifier == EXPAND_STACK_PARM)
7801 target = 0;
7802 expand_operands (treeop0, treeop1,
7803 subtarget, &op0, &op1, EXPAND_NORMAL);
7804 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7805
7806 case FIXED_CONVERT_EXPR:
7807 op0 = expand_normal (treeop0);
7808 if (target == 0 || modifier == EXPAND_STACK_PARM)
7809 target = gen_reg_rtx (mode);
7810
7811 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7812 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7813 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7814 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7815 else
7816 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7817 return target;
7818
7819 case FIX_TRUNC_EXPR:
7820 op0 = expand_normal (treeop0);
7821 if (target == 0 || modifier == EXPAND_STACK_PARM)
7822 target = gen_reg_rtx (mode);
7823 expand_fix (target, op0, unsignedp);
7824 return target;
7825
7826 case FLOAT_EXPR:
7827 op0 = expand_normal (treeop0);
7828 if (target == 0 || modifier == EXPAND_STACK_PARM)
7829 target = gen_reg_rtx (mode);
7830 /* expand_float can't figure out what to do if FROM has VOIDmode.
7831 So give it the correct mode. With -O, cse will optimize this. */
7832 if (GET_MODE (op0) == VOIDmode)
7833 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7834 op0);
7835 expand_float (target, op0,
7836 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7837 return target;
7838
7839 case NEGATE_EXPR:
7840 op0 = expand_expr (treeop0, subtarget,
7841 VOIDmode, EXPAND_NORMAL);
7842 if (modifier == EXPAND_STACK_PARM)
7843 target = 0;
7844 temp = expand_unop (mode,
7845 optab_for_tree_code (NEGATE_EXPR, type,
7846 optab_default),
7847 op0, target, 0);
7848 gcc_assert (temp);
7849 return REDUCE_BIT_FIELD (temp);
7850
7851 case ABS_EXPR:
7852 op0 = expand_expr (treeop0, subtarget,
7853 VOIDmode, EXPAND_NORMAL);
7854 if (modifier == EXPAND_STACK_PARM)
7855 target = 0;
7856
7857 /* ABS_EXPR is not valid for complex arguments. */
7858 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7859 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7860
7861 /* Unsigned abs is simply the operand. Testing here means we don't
7862 risk generating incorrect code below. */
7863 if (TYPE_UNSIGNED (type))
7864 return op0;
7865
7866 return expand_abs (mode, op0, target, unsignedp,
7867 safe_from_p (target, treeop0, 1));
7868
7869 case MAX_EXPR:
7870 case MIN_EXPR:
7871 target = original_target;
7872 if (target == 0
7873 || modifier == EXPAND_STACK_PARM
7874 || (MEM_P (target) && MEM_VOLATILE_P (target))
7875 || GET_MODE (target) != mode
7876 || (REG_P (target)
7877 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7878 target = gen_reg_rtx (mode);
7879 expand_operands (treeop0, treeop1,
7880 target, &op0, &op1, EXPAND_NORMAL);
7881
7882 /* First try to do it with a special MIN or MAX instruction.
7883 If that does not win, use a conditional jump to select the proper
7884 value. */
7885 this_optab = optab_for_tree_code (code, type, optab_default);
7886 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7887 OPTAB_WIDEN);
7888 if (temp != 0)
7889 return temp;
7890
7891 /* At this point, a MEM target is no longer useful; we will get better
7892 code without it. */
7893
7894 if (! REG_P (target))
7895 target = gen_reg_rtx (mode);
7896
7897 /* If op1 was placed in target, swap op0 and op1. */
7898 if (target != op0 && target == op1)
7899 {
7900 temp = op0;
7901 op0 = op1;
7902 op1 = temp;
7903 }
7904
7905 /* We generate better code and avoid problems with op1 mentioning
7906 target by forcing op1 into a pseudo if it isn't a constant. */
7907 if (! CONSTANT_P (op1))
7908 op1 = force_reg (mode, op1);
7909
7910 {
7911 enum rtx_code comparison_code;
7912 rtx cmpop1 = op1;
7913
7914 if (code == MAX_EXPR)
7915 comparison_code = unsignedp ? GEU : GE;
7916 else
7917 comparison_code = unsignedp ? LEU : LE;
7918
7919 /* Canonicalize to comparisons against 0. */
7920 if (op1 == const1_rtx)
7921 {
7922 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7923 or (a != 0 ? a : 1) for unsigned.
7924 For MIN we are safe converting (a <= 1 ? a : 1)
7925 into (a <= 0 ? a : 1) */
7926 cmpop1 = const0_rtx;
7927 if (code == MAX_EXPR)
7928 comparison_code = unsignedp ? NE : GT;
7929 }
7930 if (op1 == constm1_rtx && !unsignedp)
7931 {
7932 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7933 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7934 cmpop1 = const0_rtx;
7935 if (code == MIN_EXPR)
7936 comparison_code = LT;
7937 }
7938 #ifdef HAVE_conditional_move
7939 /* Use a conditional move if possible. */
7940 if (can_conditionally_move_p (mode))
7941 {
7942 rtx insn;
7943
7944 /* ??? Same problem as in expmed.c: emit_conditional_move
7945 forces a stack adjustment via compare_from_rtx, and we
7946 lose the stack adjustment if the sequence we are about
7947 to create is discarded. */
7948 do_pending_stack_adjust ();
7949
7950 start_sequence ();
7951
7952 /* Try to emit the conditional move. */
7953 insn = emit_conditional_move (target, comparison_code,
7954 op0, cmpop1, mode,
7955 op0, op1, mode,
7956 unsignedp);
7957
7958 /* If we could do the conditional move, emit the sequence,
7959 and return. */
7960 if (insn)
7961 {
7962 rtx seq = get_insns ();
7963 end_sequence ();
7964 emit_insn (seq);
7965 return target;
7966 }
7967
7968 /* Otherwise discard the sequence and fall back to code with
7969 branches. */
7970 end_sequence ();
7971 }
7972 #endif
7973 if (target != op0)
7974 emit_move_insn (target, op0);
7975
7976 temp = gen_label_rtx ();
7977 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7978 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7979 -1);
7980 }
7981 emit_move_insn (target, op1);
7982 emit_label (temp);
7983 return target;
7984
7985 case BIT_NOT_EXPR:
7986 op0 = expand_expr (treeop0, subtarget,
7987 VOIDmode, EXPAND_NORMAL);
7988 if (modifier == EXPAND_STACK_PARM)
7989 target = 0;
7990 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7991 gcc_assert (temp);
7992 return temp;
7993
7994 /* ??? Can optimize bitwise operations with one arg constant.
7995 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7996 and (a bitwise1 b) bitwise2 b (etc)
7997 but that is probably not worth while. */
7998
7999 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8000 boolean values when we want in all cases to compute both of them. In
8001 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8002 as actual zero-or-1 values and then bitwise anding. In cases where
8003 there cannot be any side effects, better code would be made by
8004 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8005 how to recognize those cases. */
8006
8007 case TRUTH_AND_EXPR:
8008 code = BIT_AND_EXPR;
8009 case BIT_AND_EXPR:
8010 goto binop;
8011
8012 case TRUTH_OR_EXPR:
8013 code = BIT_IOR_EXPR;
8014 case BIT_IOR_EXPR:
8015 goto binop;
8016
8017 case TRUTH_XOR_EXPR:
8018 code = BIT_XOR_EXPR;
8019 case BIT_XOR_EXPR:
8020 goto binop;
8021
8022 case LROTATE_EXPR:
8023 case RROTATE_EXPR:
8024 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8025 || (GET_MODE_PRECISION (TYPE_MODE (type))
8026 == TYPE_PRECISION (type)));
8027 /* fall through */
8028
8029 case LSHIFT_EXPR:
8030 case RSHIFT_EXPR:
8031 /* If this is a fixed-point operation, then we cannot use the code
8032 below because "expand_shift" doesn't support sat/no-sat fixed-point
8033 shifts. */
8034 if (ALL_FIXED_POINT_MODE_P (mode))
8035 goto binop;
8036
8037 if (! safe_from_p (subtarget, treeop1, 1))
8038 subtarget = 0;
8039 if (modifier == EXPAND_STACK_PARM)
8040 target = 0;
8041 op0 = expand_expr (treeop0, subtarget,
8042 VOIDmode, EXPAND_NORMAL);
8043 temp = expand_shift (code, mode, op0, treeop1, target,
8044 unsignedp);
8045 if (code == LSHIFT_EXPR)
8046 temp = REDUCE_BIT_FIELD (temp);
8047 return temp;
8048
8049 /* Could determine the answer when only additive constants differ. Also,
8050 the addition of one can be handled by changing the condition. */
8051 case LT_EXPR:
8052 case LE_EXPR:
8053 case GT_EXPR:
8054 case GE_EXPR:
8055 case EQ_EXPR:
8056 case NE_EXPR:
8057 case UNORDERED_EXPR:
8058 case ORDERED_EXPR:
8059 case UNLT_EXPR:
8060 case UNLE_EXPR:
8061 case UNGT_EXPR:
8062 case UNGE_EXPR:
8063 case UNEQ_EXPR:
8064 case LTGT_EXPR:
8065 temp = do_store_flag (ops,
8066 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8067 tmode != VOIDmode ? tmode : mode);
8068 if (temp)
8069 return temp;
8070
8071 /* Use a compare and a jump for BLKmode comparisons, or for function
8072 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8073
8074 if ((target == 0
8075 || modifier == EXPAND_STACK_PARM
8076 || ! safe_from_p (target, treeop0, 1)
8077 || ! safe_from_p (target, treeop1, 1)
8078 /* Make sure we don't have a hard reg (such as function's return
8079 value) live across basic blocks, if not optimizing. */
8080 || (!optimize && REG_P (target)
8081 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8082 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8083
8084 emit_move_insn (target, const0_rtx);
8085
8086 op1 = gen_label_rtx ();
8087 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8088
8089 emit_move_insn (target, const1_rtx);
8090
8091 emit_label (op1);
8092 return target;
8093
8094 case TRUTH_NOT_EXPR:
8095 if (modifier == EXPAND_STACK_PARM)
8096 target = 0;
8097 op0 = expand_expr (treeop0, target,
8098 VOIDmode, EXPAND_NORMAL);
8099 /* The parser is careful to generate TRUTH_NOT_EXPR
8100 only with operands that are always zero or one. */
8101 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8102 target, 1, OPTAB_LIB_WIDEN);
8103 gcc_assert (temp);
8104 return temp;
8105
8106 case COMPLEX_EXPR:
8107 /* Get the rtx code of the operands. */
8108 op0 = expand_normal (treeop0);
8109 op1 = expand_normal (treeop1);
8110
8111 if (!target)
8112 target = gen_reg_rtx (TYPE_MODE (type));
8113
8114 /* Move the real (op0) and imaginary (op1) parts to their location. */
8115 write_complex_part (target, op0, false);
8116 write_complex_part (target, op1, true);
8117
8118 return target;
8119
8120 case WIDEN_SUM_EXPR:
8121 {
8122 tree oprnd0 = treeop0;
8123 tree oprnd1 = treeop1;
8124
8125 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8126 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8127 target, unsignedp);
8128 return target;
8129 }
8130
8131 case REDUC_MAX_EXPR:
8132 case REDUC_MIN_EXPR:
8133 case REDUC_PLUS_EXPR:
8134 {
8135 op0 = expand_normal (treeop0);
8136 this_optab = optab_for_tree_code (code, type, optab_default);
8137 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8138 gcc_assert (temp);
8139 return temp;
8140 }
8141
8142 case VEC_EXTRACT_EVEN_EXPR:
8143 case VEC_EXTRACT_ODD_EXPR:
8144 {
8145 expand_operands (treeop0, treeop1,
8146 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8147 this_optab = optab_for_tree_code (code, type, optab_default);
8148 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8149 OPTAB_WIDEN);
8150 gcc_assert (temp);
8151 return temp;
8152 }
8153
8154 case VEC_INTERLEAVE_HIGH_EXPR:
8155 case VEC_INTERLEAVE_LOW_EXPR:
8156 {
8157 expand_operands (treeop0, treeop1,
8158 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8159 this_optab = optab_for_tree_code (code, type, optab_default);
8160 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8161 OPTAB_WIDEN);
8162 gcc_assert (temp);
8163 return temp;
8164 }
8165
8166 case VEC_LSHIFT_EXPR:
8167 case VEC_RSHIFT_EXPR:
8168 {
8169 target = expand_vec_shift_expr (ops, target);
8170 return target;
8171 }
8172
8173 case VEC_UNPACK_HI_EXPR:
8174 case VEC_UNPACK_LO_EXPR:
8175 {
8176 op0 = expand_normal (treeop0);
8177 this_optab = optab_for_tree_code (code, type, optab_default);
8178 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8179 target, unsignedp);
8180 gcc_assert (temp);
8181 return temp;
8182 }
8183
8184 case VEC_UNPACK_FLOAT_HI_EXPR:
8185 case VEC_UNPACK_FLOAT_LO_EXPR:
8186 {
8187 op0 = expand_normal (treeop0);
8188 /* The signedness is determined from input operand. */
8189 this_optab = optab_for_tree_code (code,
8190 TREE_TYPE (treeop0),
8191 optab_default);
8192 temp = expand_widen_pattern_expr
8193 (ops, op0, NULL_RTX, NULL_RTX,
8194 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8195
8196 gcc_assert (temp);
8197 return temp;
8198 }
8199
8200 case VEC_WIDEN_MULT_HI_EXPR:
8201 case VEC_WIDEN_MULT_LO_EXPR:
8202 {
8203 tree oprnd0 = treeop0;
8204 tree oprnd1 = treeop1;
8205
8206 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8207 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8208 target, unsignedp);
8209 gcc_assert (target);
8210 return target;
8211 }
8212
8213 case VEC_PACK_TRUNC_EXPR:
8214 case VEC_PACK_SAT_EXPR:
8215 case VEC_PACK_FIX_TRUNC_EXPR:
8216 mode = TYPE_MODE (TREE_TYPE (treeop0));
8217 goto binop;
8218
8219 default:
8220 gcc_unreachable ();
8221 }
8222
8223 /* Here to do an ordinary binary operator. */
8224 binop:
8225 expand_operands (treeop0, treeop1,
8226 subtarget, &op0, &op1, EXPAND_NORMAL);
8227 binop2:
8228 this_optab = optab_for_tree_code (code, type, optab_default);
8229 binop3:
8230 if (modifier == EXPAND_STACK_PARM)
8231 target = 0;
8232 temp = expand_binop (mode, this_optab, op0, op1, target,
8233 unsignedp, OPTAB_LIB_WIDEN);
8234 gcc_assert (temp);
8235 return REDUCE_BIT_FIELD (temp);
8236 }
8237 #undef REDUCE_BIT_FIELD
8238
8239 rtx
8240 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8241 enum expand_modifier modifier, rtx *alt_rtl)
8242 {
8243 rtx op0, op1, temp, decl_rtl;
8244 tree type;
8245 int unsignedp;
8246 enum machine_mode mode;
8247 enum tree_code code = TREE_CODE (exp);
8248 optab this_optab;
8249 rtx subtarget, original_target;
8250 int ignore;
8251 tree context;
8252 bool reduce_bit_field;
8253 location_t loc = EXPR_LOCATION (exp);
8254 struct separate_ops ops;
8255 tree treeop0, treeop1, treeop2;
8256 tree ssa_name = NULL_TREE;
8257 gimple g;
8258
8259 type = TREE_TYPE (exp);
8260 mode = TYPE_MODE (type);
8261 unsignedp = TYPE_UNSIGNED (type);
8262
8263 treeop0 = treeop1 = treeop2 = NULL_TREE;
8264 if (!VL_EXP_CLASS_P (exp))
8265 switch (TREE_CODE_LENGTH (code))
8266 {
8267 default:
8268 case 3: treeop2 = TREE_OPERAND (exp, 2);
8269 case 2: treeop1 = TREE_OPERAND (exp, 1);
8270 case 1: treeop0 = TREE_OPERAND (exp, 0);
8271 case 0: break;
8272 }
8273 ops.code = code;
8274 ops.type = type;
8275 ops.op0 = treeop0;
8276 ops.op1 = treeop1;
8277 ops.op2 = treeop2;
8278 ops.location = loc;
8279
8280 ignore = (target == const0_rtx
8281 || ((CONVERT_EXPR_CODE_P (code)
8282 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8283 && TREE_CODE (type) == VOID_TYPE));
8284
8285 /* An operation in what may be a bit-field type needs the
8286 result to be reduced to the precision of the bit-field type,
8287 which is narrower than that of the type's mode. */
8288 reduce_bit_field = (!ignore
8289 && TREE_CODE (type) == INTEGER_TYPE
8290 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8291
8292 /* If we are going to ignore this result, we need only do something
8293 if there is a side-effect somewhere in the expression. If there
8294 is, short-circuit the most common cases here. Note that we must
8295 not call expand_expr with anything but const0_rtx in case this
8296 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8297
8298 if (ignore)
8299 {
8300 if (! TREE_SIDE_EFFECTS (exp))
8301 return const0_rtx;
8302
8303 /* Ensure we reference a volatile object even if value is ignored, but
8304 don't do this if all we are doing is taking its address. */
8305 if (TREE_THIS_VOLATILE (exp)
8306 && TREE_CODE (exp) != FUNCTION_DECL
8307 && mode != VOIDmode && mode != BLKmode
8308 && modifier != EXPAND_CONST_ADDRESS)
8309 {
8310 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8311 if (MEM_P (temp))
8312 temp = copy_to_reg (temp);
8313 return const0_rtx;
8314 }
8315
8316 if (TREE_CODE_CLASS (code) == tcc_unary
8317 || code == COMPONENT_REF || code == INDIRECT_REF)
8318 return expand_expr (treeop0, const0_rtx, VOIDmode,
8319 modifier);
8320
8321 else if (TREE_CODE_CLASS (code) == tcc_binary
8322 || TREE_CODE_CLASS (code) == tcc_comparison
8323 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8324 {
8325 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8326 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8327 return const0_rtx;
8328 }
8329 else if (code == BIT_FIELD_REF)
8330 {
8331 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8332 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8333 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8334 return const0_rtx;
8335 }
8336
8337 target = 0;
8338 }
8339
8340 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8341 target = 0;
8342
8343 /* Use subtarget as the target for operand 0 of a binary operation. */
8344 subtarget = get_subtarget (target);
8345 original_target = target;
8346
8347 switch (code)
8348 {
8349 case LABEL_DECL:
8350 {
8351 tree function = decl_function_context (exp);
8352
8353 temp = label_rtx (exp);
8354 temp = gen_rtx_LABEL_REF (Pmode, temp);
8355
8356 if (function != current_function_decl
8357 && function != 0)
8358 LABEL_REF_NONLOCAL_P (temp) = 1;
8359
8360 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8361 return temp;
8362 }
8363
8364 case SSA_NAME:
8365 /* ??? ivopts calls expander, without any preparation from
8366 out-of-ssa. So fake instructions as if this was an access to the
8367 base variable. This unnecessarily allocates a pseudo, see how we can
8368 reuse it, if partition base vars have it set already. */
8369 if (!currently_expanding_to_rtl)
8370 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8371 NULL);
8372
8373 g = get_gimple_for_ssa_name (exp);
8374 if (g)
8375 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8376 modifier, NULL);
8377
8378 ssa_name = exp;
8379 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8380 exp = SSA_NAME_VAR (ssa_name);
8381 goto expand_decl_rtl;
8382
8383 case PARM_DECL:
8384 case VAR_DECL:
8385 /* If a static var's type was incomplete when the decl was written,
8386 but the type is complete now, lay out the decl now. */
8387 if (DECL_SIZE (exp) == 0
8388 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8389 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8390 layout_decl (exp, 0);
8391
8392 /* ... fall through ... */
8393
8394 case FUNCTION_DECL:
8395 case RESULT_DECL:
8396 decl_rtl = DECL_RTL (exp);
8397 expand_decl_rtl:
8398 gcc_assert (decl_rtl);
8399 decl_rtl = copy_rtx (decl_rtl);
8400 /* Record writes to register variables. */
8401 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8402 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8403 {
8404 int i = REGNO (decl_rtl);
8405 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8406 while (nregs)
8407 {
8408 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8409 i++;
8410 nregs--;
8411 }
8412 }
8413
8414 /* Ensure variable marked as used even if it doesn't go through
8415 a parser. If it hasn't be used yet, write out an external
8416 definition. */
8417 if (! TREE_USED (exp))
8418 {
8419 assemble_external (exp);
8420 TREE_USED (exp) = 1;
8421 }
8422
8423 /* Show we haven't gotten RTL for this yet. */
8424 temp = 0;
8425
8426 /* Variables inherited from containing functions should have
8427 been lowered by this point. */
8428 context = decl_function_context (exp);
8429 gcc_assert (!context
8430 || context == current_function_decl
8431 || TREE_STATIC (exp)
8432 || DECL_EXTERNAL (exp)
8433 /* ??? C++ creates functions that are not TREE_STATIC. */
8434 || TREE_CODE (exp) == FUNCTION_DECL);
8435
8436 /* This is the case of an array whose size is to be determined
8437 from its initializer, while the initializer is still being parsed.
8438 See expand_decl. */
8439
8440 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8441 temp = validize_mem (decl_rtl);
8442
8443 /* If DECL_RTL is memory, we are in the normal case and the
8444 address is not valid, get the address into a register. */
8445
8446 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8447 {
8448 if (alt_rtl)
8449 *alt_rtl = decl_rtl;
8450 decl_rtl = use_anchored_address (decl_rtl);
8451 if (modifier != EXPAND_CONST_ADDRESS
8452 && modifier != EXPAND_SUM
8453 && !memory_address_addr_space_p (DECL_MODE (exp),
8454 XEXP (decl_rtl, 0),
8455 MEM_ADDR_SPACE (decl_rtl)))
8456 temp = replace_equiv_address (decl_rtl,
8457 copy_rtx (XEXP (decl_rtl, 0)));
8458 }
8459
8460 /* If we got something, return it. But first, set the alignment
8461 if the address is a register. */
8462 if (temp != 0)
8463 {
8464 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8465 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8466
8467 return temp;
8468 }
8469
8470 /* If the mode of DECL_RTL does not match that of the decl, it
8471 must be a promoted value. We return a SUBREG of the wanted mode,
8472 but mark it so that we know that it was already extended. */
8473 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8474 {
8475 enum machine_mode pmode;
8476
8477 /* Get the signedness to be used for this variable. Ensure we get
8478 the same mode we got when the variable was declared. */
8479 if (code == SSA_NAME
8480 && (g = SSA_NAME_DEF_STMT (ssa_name))
8481 && gimple_code (g) == GIMPLE_CALL)
8482 pmode = promote_function_mode (type, mode, &unsignedp,
8483 TREE_TYPE
8484 (TREE_TYPE (gimple_call_fn (g))),
8485 2);
8486 else
8487 pmode = promote_decl_mode (exp, &unsignedp);
8488 gcc_assert (GET_MODE (decl_rtl) == pmode);
8489
8490 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8491 SUBREG_PROMOTED_VAR_P (temp) = 1;
8492 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8493 return temp;
8494 }
8495
8496 return decl_rtl;
8497
8498 case INTEGER_CST:
8499 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8500 TREE_INT_CST_HIGH (exp), mode);
8501
8502 return temp;
8503
8504 case VECTOR_CST:
8505 {
8506 tree tmp = NULL_TREE;
8507 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8508 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8509 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8510 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8511 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8512 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8513 return const_vector_from_tree (exp);
8514 if (GET_MODE_CLASS (mode) == MODE_INT)
8515 {
8516 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8517 if (type_for_mode)
8518 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8519 }
8520 if (!tmp)
8521 tmp = build_constructor_from_list (type,
8522 TREE_VECTOR_CST_ELTS (exp));
8523 return expand_expr (tmp, ignore ? const0_rtx : target,
8524 tmode, modifier);
8525 }
8526
8527 case CONST_DECL:
8528 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8529
8530 case REAL_CST:
8531 /* If optimized, generate immediate CONST_DOUBLE
8532 which will be turned into memory by reload if necessary.
8533
8534 We used to force a register so that loop.c could see it. But
8535 this does not allow gen_* patterns to perform optimizations with
8536 the constants. It also produces two insns in cases like "x = 1.0;".
8537 On most machines, floating-point constants are not permitted in
8538 many insns, so we'd end up copying it to a register in any case.
8539
8540 Now, we do the copying in expand_binop, if appropriate. */
8541 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8542 TYPE_MODE (TREE_TYPE (exp)));
8543
8544 case FIXED_CST:
8545 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8546 TYPE_MODE (TREE_TYPE (exp)));
8547
8548 case COMPLEX_CST:
8549 /* Handle evaluating a complex constant in a CONCAT target. */
8550 if (original_target && GET_CODE (original_target) == CONCAT)
8551 {
8552 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8553 rtx rtarg, itarg;
8554
8555 rtarg = XEXP (original_target, 0);
8556 itarg = XEXP (original_target, 1);
8557
8558 /* Move the real and imaginary parts separately. */
8559 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8560 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8561
8562 if (op0 != rtarg)
8563 emit_move_insn (rtarg, op0);
8564 if (op1 != itarg)
8565 emit_move_insn (itarg, op1);
8566
8567 return original_target;
8568 }
8569
8570 /* ... fall through ... */
8571
8572 case STRING_CST:
8573 temp = expand_expr_constant (exp, 1, modifier);
8574
8575 /* temp contains a constant address.
8576 On RISC machines where a constant address isn't valid,
8577 make some insns to get that address into a register. */
8578 if (modifier != EXPAND_CONST_ADDRESS
8579 && modifier != EXPAND_INITIALIZER
8580 && modifier != EXPAND_SUM
8581 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8582 MEM_ADDR_SPACE (temp)))
8583 return replace_equiv_address (temp,
8584 copy_rtx (XEXP (temp, 0)));
8585 return temp;
8586
8587 case SAVE_EXPR:
8588 {
8589 tree val = treeop0;
8590 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8591
8592 if (!SAVE_EXPR_RESOLVED_P (exp))
8593 {
8594 /* We can indeed still hit this case, typically via builtin
8595 expanders calling save_expr immediately before expanding
8596 something. Assume this means that we only have to deal
8597 with non-BLKmode values. */
8598 gcc_assert (GET_MODE (ret) != BLKmode);
8599
8600 val = build_decl (EXPR_LOCATION (exp),
8601 VAR_DECL, NULL, TREE_TYPE (exp));
8602 DECL_ARTIFICIAL (val) = 1;
8603 DECL_IGNORED_P (val) = 1;
8604 treeop0 = val;
8605 TREE_OPERAND (exp, 0) = treeop0;
8606 SAVE_EXPR_RESOLVED_P (exp) = 1;
8607
8608 if (!CONSTANT_P (ret))
8609 ret = copy_to_reg (ret);
8610 SET_DECL_RTL (val, ret);
8611 }
8612
8613 return ret;
8614 }
8615
8616
8617 case CONSTRUCTOR:
8618 /* If we don't need the result, just ensure we evaluate any
8619 subexpressions. */
8620 if (ignore)
8621 {
8622 unsigned HOST_WIDE_INT idx;
8623 tree value;
8624
8625 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8626 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8627
8628 return const0_rtx;
8629 }
8630
8631 return expand_constructor (exp, target, modifier, false);
8632
8633 case TARGET_MEM_REF:
8634 {
8635 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8636 struct mem_address addr;
8637 int icode, align;
8638
8639 get_address_description (exp, &addr);
8640 op0 = addr_for_mem_ref (&addr, as, true);
8641 op0 = memory_address_addr_space (mode, op0, as);
8642 temp = gen_rtx_MEM (mode, op0);
8643 set_mem_attributes (temp, exp, 0);
8644 set_mem_addr_space (temp, as);
8645 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8646 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8647 if (mode != BLKmode
8648 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8649 /* If the target does not have special handling for unaligned
8650 loads of mode then it can use regular moves for them. */
8651 && ((icode = optab_handler (movmisalign_optab, mode))
8652 != CODE_FOR_nothing))
8653 {
8654 rtx reg, insn;
8655
8656 /* We've already validated the memory, and we're creating a
8657 new pseudo destination. The predicates really can't fail. */
8658 reg = gen_reg_rtx (mode);
8659
8660 /* Nor can the insn generator. */
8661 insn = GEN_FCN (icode) (reg, temp);
8662 gcc_assert (insn != NULL_RTX);
8663 emit_insn (insn);
8664
8665 return reg;
8666 }
8667 return temp;
8668 }
8669
8670 case MEM_REF:
8671 {
8672 addr_space_t as
8673 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8674 enum machine_mode address_mode;
8675 tree base = TREE_OPERAND (exp, 0);
8676 gimple def_stmt;
8677 int icode, align;
8678 /* Handle expansion of non-aliased memory with non-BLKmode. That
8679 might end up in a register. */
8680 if (TREE_CODE (base) == ADDR_EXPR)
8681 {
8682 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8683 tree bit_offset;
8684 base = TREE_OPERAND (base, 0);
8685 if (!DECL_P (base))
8686 {
8687 HOST_WIDE_INT off;
8688 base = get_addr_base_and_unit_offset (base, &off);
8689 gcc_assert (base);
8690 offset += off;
8691 }
8692 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8693 decl we must use bitfield operations. */
8694 if (DECL_P (base)
8695 && !TREE_ADDRESSABLE (base)
8696 && DECL_MODE (base) != BLKmode
8697 && DECL_RTL_SET_P (base)
8698 && !MEM_P (DECL_RTL (base)))
8699 {
8700 tree bftype;
8701 if (offset == 0
8702 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8703 && (GET_MODE_BITSIZE (DECL_MODE (base))
8704 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8705 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8706 TREE_TYPE (exp), base),
8707 target, tmode, modifier);
8708 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8709 bftype = TREE_TYPE (base);
8710 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8711 bftype = TREE_TYPE (exp);
8712 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8713 base,
8714 TYPE_SIZE (TREE_TYPE (exp)),
8715 bit_offset),
8716 target, tmode, modifier);
8717 }
8718 }
8719 address_mode = targetm.addr_space.address_mode (as);
8720 base = TREE_OPERAND (exp, 0);
8721 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8722 {
8723 tree mask = gimple_assign_rhs2 (def_stmt);
8724 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8725 gimple_assign_rhs1 (def_stmt), mask);
8726 TREE_OPERAND (exp, 0) = base;
8727 }
8728 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8729 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8730 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
8731 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8732 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8733 {
8734 rtx off
8735 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8736 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8737 }
8738 op0 = memory_address_addr_space (mode, op0, as);
8739 temp = gen_rtx_MEM (mode, op0);
8740 set_mem_attributes (temp, exp, 0);
8741 set_mem_addr_space (temp, as);
8742 if (TREE_THIS_VOLATILE (exp))
8743 MEM_VOLATILE_P (temp) = 1;
8744 if (mode != BLKmode
8745 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8746 /* If the target does not have special handling for unaligned
8747 loads of mode then it can use regular moves for them. */
8748 && ((icode = optab_handler (movmisalign_optab, mode))
8749 != CODE_FOR_nothing))
8750 {
8751 rtx reg, insn;
8752
8753 /* We've already validated the memory, and we're creating a
8754 new pseudo destination. The predicates really can't fail. */
8755 reg = gen_reg_rtx (mode);
8756
8757 /* Nor can the insn generator. */
8758 insn = GEN_FCN (icode) (reg, temp);
8759 emit_insn (insn);
8760
8761 return reg;
8762 }
8763 return temp;
8764 }
8765
8766 case ARRAY_REF:
8767
8768 {
8769 tree array = treeop0;
8770 tree index = treeop1;
8771
8772 /* Fold an expression like: "foo"[2].
8773 This is not done in fold so it won't happen inside &.
8774 Don't fold if this is for wide characters since it's too
8775 difficult to do correctly and this is a very rare case. */
8776
8777 if (modifier != EXPAND_CONST_ADDRESS
8778 && modifier != EXPAND_INITIALIZER
8779 && modifier != EXPAND_MEMORY)
8780 {
8781 tree t = fold_read_from_constant_string (exp);
8782
8783 if (t)
8784 return expand_expr (t, target, tmode, modifier);
8785 }
8786
8787 /* If this is a constant index into a constant array,
8788 just get the value from the array. Handle both the cases when
8789 we have an explicit constructor and when our operand is a variable
8790 that was declared const. */
8791
8792 if (modifier != EXPAND_CONST_ADDRESS
8793 && modifier != EXPAND_INITIALIZER
8794 && modifier != EXPAND_MEMORY
8795 && TREE_CODE (array) == CONSTRUCTOR
8796 && ! TREE_SIDE_EFFECTS (array)
8797 && TREE_CODE (index) == INTEGER_CST)
8798 {
8799 unsigned HOST_WIDE_INT ix;
8800 tree field, value;
8801
8802 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8803 field, value)
8804 if (tree_int_cst_equal (field, index))
8805 {
8806 if (!TREE_SIDE_EFFECTS (value))
8807 return expand_expr (fold (value), target, tmode, modifier);
8808 break;
8809 }
8810 }
8811
8812 else if (optimize >= 1
8813 && modifier != EXPAND_CONST_ADDRESS
8814 && modifier != EXPAND_INITIALIZER
8815 && modifier != EXPAND_MEMORY
8816 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8817 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8818 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8819 && const_value_known_p (array))
8820 {
8821 if (TREE_CODE (index) == INTEGER_CST)
8822 {
8823 tree init = DECL_INITIAL (array);
8824
8825 if (TREE_CODE (init) == CONSTRUCTOR)
8826 {
8827 unsigned HOST_WIDE_INT ix;
8828 tree field, value;
8829
8830 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8831 field, value)
8832 if (tree_int_cst_equal (field, index))
8833 {
8834 if (TREE_SIDE_EFFECTS (value))
8835 break;
8836
8837 if (TREE_CODE (value) == CONSTRUCTOR)
8838 {
8839 /* If VALUE is a CONSTRUCTOR, this
8840 optimization is only useful if
8841 this doesn't store the CONSTRUCTOR
8842 into memory. If it does, it is more
8843 efficient to just load the data from
8844 the array directly. */
8845 rtx ret = expand_constructor (value, target,
8846 modifier, true);
8847 if (ret == NULL_RTX)
8848 break;
8849 }
8850
8851 return expand_expr (fold (value), target, tmode,
8852 modifier);
8853 }
8854 }
8855 else if(TREE_CODE (init) == STRING_CST)
8856 {
8857 tree index1 = index;
8858 tree low_bound = array_ref_low_bound (exp);
8859 index1 = fold_convert_loc (loc, sizetype,
8860 treeop1);
8861
8862 /* Optimize the special-case of a zero lower bound.
8863
8864 We convert the low_bound to sizetype to avoid some problems
8865 with constant folding. (E.g. suppose the lower bound is 1,
8866 and its mode is QI. Without the conversion,l (ARRAY
8867 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8868 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8869
8870 if (! integer_zerop (low_bound))
8871 index1 = size_diffop_loc (loc, index1,
8872 fold_convert_loc (loc, sizetype,
8873 low_bound));
8874
8875 if (0 > compare_tree_int (index1,
8876 TREE_STRING_LENGTH (init)))
8877 {
8878 tree type = TREE_TYPE (TREE_TYPE (init));
8879 enum machine_mode mode = TYPE_MODE (type);
8880
8881 if (GET_MODE_CLASS (mode) == MODE_INT
8882 && GET_MODE_SIZE (mode) == 1)
8883 return gen_int_mode (TREE_STRING_POINTER (init)
8884 [TREE_INT_CST_LOW (index1)],
8885 mode);
8886 }
8887 }
8888 }
8889 }
8890 }
8891 goto normal_inner_ref;
8892
8893 case COMPONENT_REF:
8894 /* If the operand is a CONSTRUCTOR, we can just extract the
8895 appropriate field if it is present. */
8896 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8897 {
8898 unsigned HOST_WIDE_INT idx;
8899 tree field, value;
8900
8901 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8902 idx, field, value)
8903 if (field == treeop1
8904 /* We can normally use the value of the field in the
8905 CONSTRUCTOR. However, if this is a bitfield in
8906 an integral mode that we can fit in a HOST_WIDE_INT,
8907 we must mask only the number of bits in the bitfield,
8908 since this is done implicitly by the constructor. If
8909 the bitfield does not meet either of those conditions,
8910 we can't do this optimization. */
8911 && (! DECL_BIT_FIELD (field)
8912 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8913 && (GET_MODE_BITSIZE (DECL_MODE (field))
8914 <= HOST_BITS_PER_WIDE_INT))))
8915 {
8916 if (DECL_BIT_FIELD (field)
8917 && modifier == EXPAND_STACK_PARM)
8918 target = 0;
8919 op0 = expand_expr (value, target, tmode, modifier);
8920 if (DECL_BIT_FIELD (field))
8921 {
8922 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8923 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8924
8925 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8926 {
8927 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8928 op0 = expand_and (imode, op0, op1, target);
8929 }
8930 else
8931 {
8932 tree count
8933 = build_int_cst (NULL_TREE,
8934 GET_MODE_BITSIZE (imode) - bitsize);
8935
8936 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8937 target, 0);
8938 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8939 target, 0);
8940 }
8941 }
8942
8943 return op0;
8944 }
8945 }
8946 goto normal_inner_ref;
8947
8948 case BIT_FIELD_REF:
8949 case ARRAY_RANGE_REF:
8950 normal_inner_ref:
8951 {
8952 enum machine_mode mode1, mode2;
8953 HOST_WIDE_INT bitsize, bitpos;
8954 tree offset;
8955 int volatilep = 0, must_force_mem;
8956 bool packedp = false;
8957 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8958 &mode1, &unsignedp, &volatilep, true);
8959 rtx orig_op0, memloc;
8960
8961 /* If we got back the original object, something is wrong. Perhaps
8962 we are evaluating an expression too early. In any event, don't
8963 infinitely recurse. */
8964 gcc_assert (tem != exp);
8965
8966 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
8967 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
8968 && DECL_PACKED (TREE_OPERAND (exp, 1))))
8969 packedp = true;
8970
8971 /* If TEM's type is a union of variable size, pass TARGET to the inner
8972 computation, since it will need a temporary and TARGET is known
8973 to have to do. This occurs in unchecked conversion in Ada. */
8974 orig_op0 = op0
8975 = expand_expr (tem,
8976 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8977 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8978 != INTEGER_CST)
8979 && modifier != EXPAND_STACK_PARM
8980 ? target : NULL_RTX),
8981 VOIDmode,
8982 (modifier == EXPAND_INITIALIZER
8983 || modifier == EXPAND_CONST_ADDRESS
8984 || modifier == EXPAND_STACK_PARM)
8985 ? modifier : EXPAND_NORMAL);
8986
8987
8988 /* If the bitfield is volatile, we want to access it in the
8989 field's mode, not the computed mode.
8990 If a MEM has VOIDmode (external with incomplete type),
8991 use BLKmode for it instead. */
8992 if (MEM_P (op0))
8993 {
8994 if (volatilep && flag_strict_volatile_bitfields > 0)
8995 op0 = adjust_address (op0, mode1, 0);
8996 else if (GET_MODE (op0) == VOIDmode)
8997 op0 = adjust_address (op0, BLKmode, 0);
8998 }
8999
9000 mode2
9001 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9002
9003 /* If we have either an offset, a BLKmode result, or a reference
9004 outside the underlying object, we must force it to memory.
9005 Such a case can occur in Ada if we have unchecked conversion
9006 of an expression from a scalar type to an aggregate type or
9007 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9008 passed a partially uninitialized object or a view-conversion
9009 to a larger size. */
9010 must_force_mem = (offset
9011 || mode1 == BLKmode
9012 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9013
9014 /* Handle CONCAT first. */
9015 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9016 {
9017 if (bitpos == 0
9018 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9019 return op0;
9020 if (bitpos == 0
9021 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9022 && bitsize)
9023 {
9024 op0 = XEXP (op0, 0);
9025 mode2 = GET_MODE (op0);
9026 }
9027 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9028 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9029 && bitpos
9030 && bitsize)
9031 {
9032 op0 = XEXP (op0, 1);
9033 bitpos = 0;
9034 mode2 = GET_MODE (op0);
9035 }
9036 else
9037 /* Otherwise force into memory. */
9038 must_force_mem = 1;
9039 }
9040
9041 /* If this is a constant, put it in a register if it is a legitimate
9042 constant and we don't need a memory reference. */
9043 if (CONSTANT_P (op0)
9044 && mode2 != BLKmode
9045 && LEGITIMATE_CONSTANT_P (op0)
9046 && !must_force_mem)
9047 op0 = force_reg (mode2, op0);
9048
9049 /* Otherwise, if this is a constant, try to force it to the constant
9050 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9051 is a legitimate constant. */
9052 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9053 op0 = validize_mem (memloc);
9054
9055 /* Otherwise, if this is a constant or the object is not in memory
9056 and need be, put it there. */
9057 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9058 {
9059 tree nt = build_qualified_type (TREE_TYPE (tem),
9060 (TYPE_QUALS (TREE_TYPE (tem))
9061 | TYPE_QUAL_CONST));
9062 memloc = assign_temp (nt, 1, 1, 1);
9063 emit_move_insn (memloc, op0);
9064 op0 = memloc;
9065 }
9066
9067 if (offset)
9068 {
9069 enum machine_mode address_mode;
9070 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9071 EXPAND_SUM);
9072
9073 gcc_assert (MEM_P (op0));
9074
9075 address_mode
9076 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9077 if (GET_MODE (offset_rtx) != address_mode)
9078 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9079
9080 if (GET_MODE (op0) == BLKmode
9081 /* A constant address in OP0 can have VOIDmode, we must
9082 not try to call force_reg in that case. */
9083 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9084 && bitsize != 0
9085 && (bitpos % bitsize) == 0
9086 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9087 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9088 {
9089 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9090 bitpos = 0;
9091 }
9092
9093 op0 = offset_address (op0, offset_rtx,
9094 highest_pow2_factor (offset));
9095 }
9096
9097 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9098 record its alignment as BIGGEST_ALIGNMENT. */
9099 if (MEM_P (op0) && bitpos == 0 && offset != 0
9100 && is_aligning_offset (offset, tem))
9101 set_mem_align (op0, BIGGEST_ALIGNMENT);
9102
9103 /* Don't forget about volatility even if this is a bitfield. */
9104 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9105 {
9106 if (op0 == orig_op0)
9107 op0 = copy_rtx (op0);
9108
9109 MEM_VOLATILE_P (op0) = 1;
9110 }
9111
9112 /* In cases where an aligned union has an unaligned object
9113 as a field, we might be extracting a BLKmode value from
9114 an integer-mode (e.g., SImode) object. Handle this case
9115 by doing the extract into an object as wide as the field
9116 (which we know to be the width of a basic mode), then
9117 storing into memory, and changing the mode to BLKmode. */
9118 if (mode1 == VOIDmode
9119 || REG_P (op0) || GET_CODE (op0) == SUBREG
9120 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9121 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9122 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9123 && modifier != EXPAND_CONST_ADDRESS
9124 && modifier != EXPAND_INITIALIZER)
9125 /* If the field is volatile, we always want an aligned
9126 access. */
9127 || (volatilep && flag_strict_volatile_bitfields > 0)
9128 /* If the field isn't aligned enough to fetch as a memref,
9129 fetch it as a bit field. */
9130 || (mode1 != BLKmode
9131 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9132 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9133 || (MEM_P (op0)
9134 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9135 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9136 && ((modifier == EXPAND_CONST_ADDRESS
9137 || modifier == EXPAND_INITIALIZER)
9138 ? STRICT_ALIGNMENT
9139 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9140 || (bitpos % BITS_PER_UNIT != 0)))
9141 /* If the type and the field are a constant size and the
9142 size of the type isn't the same size as the bitfield,
9143 we must use bitfield operations. */
9144 || (bitsize >= 0
9145 && TYPE_SIZE (TREE_TYPE (exp))
9146 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9147 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9148 bitsize)))
9149 {
9150 enum machine_mode ext_mode = mode;
9151
9152 if (ext_mode == BLKmode
9153 && ! (target != 0 && MEM_P (op0)
9154 && MEM_P (target)
9155 && bitpos % BITS_PER_UNIT == 0))
9156 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9157
9158 if (ext_mode == BLKmode)
9159 {
9160 if (target == 0)
9161 target = assign_temp (type, 0, 1, 1);
9162
9163 if (bitsize == 0)
9164 return target;
9165
9166 /* In this case, BITPOS must start at a byte boundary and
9167 TARGET, if specified, must be a MEM. */
9168 gcc_assert (MEM_P (op0)
9169 && (!target || MEM_P (target))
9170 && !(bitpos % BITS_PER_UNIT));
9171
9172 emit_block_move (target,
9173 adjust_address (op0, VOIDmode,
9174 bitpos / BITS_PER_UNIT),
9175 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9176 / BITS_PER_UNIT),
9177 (modifier == EXPAND_STACK_PARM
9178 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9179
9180 return target;
9181 }
9182
9183 op0 = validize_mem (op0);
9184
9185 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9186 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9187
9188 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9189 (modifier == EXPAND_STACK_PARM
9190 ? NULL_RTX : target),
9191 ext_mode, ext_mode);
9192
9193 /* If the result is a record type and BITSIZE is narrower than
9194 the mode of OP0, an integral mode, and this is a big endian
9195 machine, we must put the field into the high-order bits. */
9196 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9197 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9198 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9199 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9200 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9201 - bitsize),
9202 op0, 1);
9203
9204 /* If the result type is BLKmode, store the data into a temporary
9205 of the appropriate type, but with the mode corresponding to the
9206 mode for the data we have (op0's mode). It's tempting to make
9207 this a constant type, since we know it's only being stored once,
9208 but that can cause problems if we are taking the address of this
9209 COMPONENT_REF because the MEM of any reference via that address
9210 will have flags corresponding to the type, which will not
9211 necessarily be constant. */
9212 if (mode == BLKmode)
9213 {
9214 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9215 rtx new_rtx;
9216
9217 /* If the reference doesn't use the alias set of its type,
9218 we cannot create the temporary using that type. */
9219 if (component_uses_parent_alias_set (exp))
9220 {
9221 new_rtx = assign_stack_local (ext_mode, size, 0);
9222 set_mem_alias_set (new_rtx, get_alias_set (exp));
9223 }
9224 else
9225 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9226
9227 emit_move_insn (new_rtx, op0);
9228 op0 = copy_rtx (new_rtx);
9229 PUT_MODE (op0, BLKmode);
9230 set_mem_attributes (op0, exp, 1);
9231 }
9232
9233 return op0;
9234 }
9235
9236 /* If the result is BLKmode, use that to access the object
9237 now as well. */
9238 if (mode == BLKmode)
9239 mode1 = BLKmode;
9240
9241 /* Get a reference to just this component. */
9242 if (modifier == EXPAND_CONST_ADDRESS
9243 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9244 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9245 else
9246 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9247
9248 if (op0 == orig_op0)
9249 op0 = copy_rtx (op0);
9250
9251 set_mem_attributes (op0, exp, 0);
9252 if (REG_P (XEXP (op0, 0)))
9253 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9254
9255 MEM_VOLATILE_P (op0) |= volatilep;
9256 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9257 || modifier == EXPAND_CONST_ADDRESS
9258 || modifier == EXPAND_INITIALIZER)
9259 return op0;
9260 else if (target == 0)
9261 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9262
9263 convert_move (target, op0, unsignedp);
9264 return target;
9265 }
9266
9267 case OBJ_TYPE_REF:
9268 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9269
9270 case CALL_EXPR:
9271 /* All valid uses of __builtin_va_arg_pack () are removed during
9272 inlining. */
9273 if (CALL_EXPR_VA_ARG_PACK (exp))
9274 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9275 {
9276 tree fndecl = get_callee_fndecl (exp), attr;
9277
9278 if (fndecl
9279 && (attr = lookup_attribute ("error",
9280 DECL_ATTRIBUTES (fndecl))) != NULL)
9281 error ("%Kcall to %qs declared with attribute error: %s",
9282 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9283 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9284 if (fndecl
9285 && (attr = lookup_attribute ("warning",
9286 DECL_ATTRIBUTES (fndecl))) != NULL)
9287 warning_at (tree_nonartificial_location (exp),
9288 0, "%Kcall to %qs declared with attribute warning: %s",
9289 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9290 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9291
9292 /* Check for a built-in function. */
9293 if (fndecl && DECL_BUILT_IN (fndecl))
9294 {
9295 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9296 return expand_builtin (exp, target, subtarget, tmode, ignore);
9297 }
9298 }
9299 return expand_call (exp, target, ignore);
9300
9301 case VIEW_CONVERT_EXPR:
9302 op0 = NULL_RTX;
9303
9304 /* If we are converting to BLKmode, try to avoid an intermediate
9305 temporary by fetching an inner memory reference. */
9306 if (mode == BLKmode
9307 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9308 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9309 && handled_component_p (treeop0))
9310 {
9311 enum machine_mode mode1;
9312 HOST_WIDE_INT bitsize, bitpos;
9313 tree offset;
9314 int unsignedp;
9315 int volatilep = 0;
9316 tree tem
9317 = get_inner_reference (treeop0, &bitsize, &bitpos,
9318 &offset, &mode1, &unsignedp, &volatilep,
9319 true);
9320 rtx orig_op0;
9321
9322 /* ??? We should work harder and deal with non-zero offsets. */
9323 if (!offset
9324 && (bitpos % BITS_PER_UNIT) == 0
9325 && bitsize >= 0
9326 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9327 {
9328 /* See the normal_inner_ref case for the rationale. */
9329 orig_op0
9330 = expand_expr (tem,
9331 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9332 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9333 != INTEGER_CST)
9334 && modifier != EXPAND_STACK_PARM
9335 ? target : NULL_RTX),
9336 VOIDmode,
9337 (modifier == EXPAND_INITIALIZER
9338 || modifier == EXPAND_CONST_ADDRESS
9339 || modifier == EXPAND_STACK_PARM)
9340 ? modifier : EXPAND_NORMAL);
9341
9342 if (MEM_P (orig_op0))
9343 {
9344 op0 = orig_op0;
9345
9346 /* Get a reference to just this component. */
9347 if (modifier == EXPAND_CONST_ADDRESS
9348 || modifier == EXPAND_SUM
9349 || modifier == EXPAND_INITIALIZER)
9350 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9351 else
9352 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9353
9354 if (op0 == orig_op0)
9355 op0 = copy_rtx (op0);
9356
9357 set_mem_attributes (op0, treeop0, 0);
9358 if (REG_P (XEXP (op0, 0)))
9359 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9360
9361 MEM_VOLATILE_P (op0) |= volatilep;
9362 }
9363 }
9364 }
9365
9366 if (!op0)
9367 op0 = expand_expr (treeop0,
9368 NULL_RTX, VOIDmode, modifier);
9369
9370 /* If the input and output modes are both the same, we are done. */
9371 if (mode == GET_MODE (op0))
9372 ;
9373 /* If neither mode is BLKmode, and both modes are the same size
9374 then we can use gen_lowpart. */
9375 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9376 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9377 && !COMPLEX_MODE_P (GET_MODE (op0)))
9378 {
9379 if (GET_CODE (op0) == SUBREG)
9380 op0 = force_reg (GET_MODE (op0), op0);
9381 temp = gen_lowpart_common (mode, op0);
9382 if (temp)
9383 op0 = temp;
9384 else
9385 {
9386 if (!REG_P (op0) && !MEM_P (op0))
9387 op0 = force_reg (GET_MODE (op0), op0);
9388 op0 = gen_lowpart (mode, op0);
9389 }
9390 }
9391 /* If both types are integral, convert from one mode to the other. */
9392 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9393 op0 = convert_modes (mode, GET_MODE (op0), op0,
9394 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9395 /* As a last resort, spill op0 to memory, and reload it in a
9396 different mode. */
9397 else if (!MEM_P (op0))
9398 {
9399 /* If the operand is not a MEM, force it into memory. Since we
9400 are going to be changing the mode of the MEM, don't call
9401 force_const_mem for constants because we don't allow pool
9402 constants to change mode. */
9403 tree inner_type = TREE_TYPE (treeop0);
9404
9405 gcc_assert (!TREE_ADDRESSABLE (exp));
9406
9407 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9408 target
9409 = assign_stack_temp_for_type
9410 (TYPE_MODE (inner_type),
9411 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9412
9413 emit_move_insn (target, op0);
9414 op0 = target;
9415 }
9416
9417 /* At this point, OP0 is in the correct mode. If the output type is
9418 such that the operand is known to be aligned, indicate that it is.
9419 Otherwise, we need only be concerned about alignment for non-BLKmode
9420 results. */
9421 if (MEM_P (op0))
9422 {
9423 op0 = copy_rtx (op0);
9424
9425 if (TYPE_ALIGN_OK (type))
9426 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9427 else if (STRICT_ALIGNMENT
9428 && mode != BLKmode
9429 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9430 {
9431 tree inner_type = TREE_TYPE (treeop0);
9432 HOST_WIDE_INT temp_size
9433 = MAX (int_size_in_bytes (inner_type),
9434 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9435 rtx new_rtx
9436 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9437 rtx new_with_op0_mode
9438 = adjust_address (new_rtx, GET_MODE (op0), 0);
9439
9440 gcc_assert (!TREE_ADDRESSABLE (exp));
9441
9442 if (GET_MODE (op0) == BLKmode)
9443 emit_block_move (new_with_op0_mode, op0,
9444 GEN_INT (GET_MODE_SIZE (mode)),
9445 (modifier == EXPAND_STACK_PARM
9446 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9447 else
9448 emit_move_insn (new_with_op0_mode, op0);
9449
9450 op0 = new_rtx;
9451 }
9452
9453 op0 = adjust_address (op0, mode, 0);
9454 }
9455
9456 return op0;
9457
9458 /* Use a compare and a jump for BLKmode comparisons, or for function
9459 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9460
9461 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9462 are occassionally created by folding during expansion. */
9463 case TRUTH_ANDIF_EXPR:
9464 case TRUTH_ORIF_EXPR:
9465 if (! ignore
9466 && (target == 0
9467 || modifier == EXPAND_STACK_PARM
9468 || ! safe_from_p (target, treeop0, 1)
9469 || ! safe_from_p (target, treeop1, 1)
9470 /* Make sure we don't have a hard reg (such as function's return
9471 value) live across basic blocks, if not optimizing. */
9472 || (!optimize && REG_P (target)
9473 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9474 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9475
9476 if (target)
9477 emit_move_insn (target, const0_rtx);
9478
9479 op1 = gen_label_rtx ();
9480 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9481
9482 if (target)
9483 emit_move_insn (target, const1_rtx);
9484
9485 emit_label (op1);
9486 return ignore ? const0_rtx : target;
9487
9488 case STATEMENT_LIST:
9489 {
9490 tree_stmt_iterator iter;
9491
9492 gcc_assert (ignore);
9493
9494 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9495 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9496 }
9497 return const0_rtx;
9498
9499 case COND_EXPR:
9500 /* A COND_EXPR with its type being VOID_TYPE represents a
9501 conditional jump and is handled in
9502 expand_gimple_cond_expr. */
9503 gcc_assert (!VOID_TYPE_P (type));
9504
9505 /* Note that COND_EXPRs whose type is a structure or union
9506 are required to be constructed to contain assignments of
9507 a temporary variable, so that we can evaluate them here
9508 for side effect only. If type is void, we must do likewise. */
9509
9510 gcc_assert (!TREE_ADDRESSABLE (type)
9511 && !ignore
9512 && TREE_TYPE (treeop1) != void_type_node
9513 && TREE_TYPE (treeop2) != void_type_node);
9514
9515 /* If we are not to produce a result, we have no target. Otherwise,
9516 if a target was specified use it; it will not be used as an
9517 intermediate target unless it is safe. If no target, use a
9518 temporary. */
9519
9520 if (modifier != EXPAND_STACK_PARM
9521 && original_target
9522 && safe_from_p (original_target, treeop0, 1)
9523 && GET_MODE (original_target) == mode
9524 #ifdef HAVE_conditional_move
9525 && (! can_conditionally_move_p (mode)
9526 || REG_P (original_target))
9527 #endif
9528 && !MEM_P (original_target))
9529 temp = original_target;
9530 else
9531 temp = assign_temp (type, 0, 0, 1);
9532
9533 do_pending_stack_adjust ();
9534 NO_DEFER_POP;
9535 op0 = gen_label_rtx ();
9536 op1 = gen_label_rtx ();
9537 jumpifnot (treeop0, op0, -1);
9538 store_expr (treeop1, temp,
9539 modifier == EXPAND_STACK_PARM,
9540 false);
9541
9542 emit_jump_insn (gen_jump (op1));
9543 emit_barrier ();
9544 emit_label (op0);
9545 store_expr (treeop2, temp,
9546 modifier == EXPAND_STACK_PARM,
9547 false);
9548
9549 emit_label (op1);
9550 OK_DEFER_POP;
9551 return temp;
9552
9553 case VEC_COND_EXPR:
9554 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9555 return target;
9556
9557 case MODIFY_EXPR:
9558 {
9559 tree lhs = treeop0;
9560 tree rhs = treeop1;
9561 gcc_assert (ignore);
9562
9563 /* Check for |= or &= of a bitfield of size one into another bitfield
9564 of size 1. In this case, (unless we need the result of the
9565 assignment) we can do this more efficiently with a
9566 test followed by an assignment, if necessary.
9567
9568 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9569 things change so we do, this code should be enhanced to
9570 support it. */
9571 if (TREE_CODE (lhs) == COMPONENT_REF
9572 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9573 || TREE_CODE (rhs) == BIT_AND_EXPR)
9574 && TREE_OPERAND (rhs, 0) == lhs
9575 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9576 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9577 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9578 {
9579 rtx label = gen_label_rtx ();
9580 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9581 do_jump (TREE_OPERAND (rhs, 1),
9582 value ? label : 0,
9583 value ? 0 : label, -1);
9584 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9585 MOVE_NONTEMPORAL (exp));
9586 do_pending_stack_adjust ();
9587 emit_label (label);
9588 return const0_rtx;
9589 }
9590
9591 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9592 return const0_rtx;
9593 }
9594
9595 case ADDR_EXPR:
9596 return expand_expr_addr_expr (exp, target, tmode, modifier);
9597
9598 case REALPART_EXPR:
9599 op0 = expand_normal (treeop0);
9600 return read_complex_part (op0, false);
9601
9602 case IMAGPART_EXPR:
9603 op0 = expand_normal (treeop0);
9604 return read_complex_part (op0, true);
9605
9606 case RETURN_EXPR:
9607 case LABEL_EXPR:
9608 case GOTO_EXPR:
9609 case SWITCH_EXPR:
9610 case ASM_EXPR:
9611 /* Expanded in cfgexpand.c. */
9612 gcc_unreachable ();
9613
9614 case TRY_CATCH_EXPR:
9615 case CATCH_EXPR:
9616 case EH_FILTER_EXPR:
9617 case TRY_FINALLY_EXPR:
9618 /* Lowered by tree-eh.c. */
9619 gcc_unreachable ();
9620
9621 case WITH_CLEANUP_EXPR:
9622 case CLEANUP_POINT_EXPR:
9623 case TARGET_EXPR:
9624 case CASE_LABEL_EXPR:
9625 case VA_ARG_EXPR:
9626 case BIND_EXPR:
9627 case INIT_EXPR:
9628 case CONJ_EXPR:
9629 case COMPOUND_EXPR:
9630 case PREINCREMENT_EXPR:
9631 case PREDECREMENT_EXPR:
9632 case POSTINCREMENT_EXPR:
9633 case POSTDECREMENT_EXPR:
9634 case LOOP_EXPR:
9635 case EXIT_EXPR:
9636 /* Lowered by gimplify.c. */
9637 gcc_unreachable ();
9638
9639 case FDESC_EXPR:
9640 /* Function descriptors are not valid except for as
9641 initialization constants, and should not be expanded. */
9642 gcc_unreachable ();
9643
9644 case WITH_SIZE_EXPR:
9645 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9646 have pulled out the size to use in whatever context it needed. */
9647 return expand_expr_real (treeop0, original_target, tmode,
9648 modifier, alt_rtl);
9649
9650 case REALIGN_LOAD_EXPR:
9651 {
9652 tree oprnd0 = treeop0;
9653 tree oprnd1 = treeop1;
9654 tree oprnd2 = treeop2;
9655 rtx op2;
9656
9657 this_optab = optab_for_tree_code (code, type, optab_default);
9658 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9659 op2 = expand_normal (oprnd2);
9660 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9661 target, unsignedp);
9662 gcc_assert (temp);
9663 return temp;
9664 }
9665
9666 case DOT_PROD_EXPR:
9667 {
9668 tree oprnd0 = treeop0;
9669 tree oprnd1 = treeop1;
9670 tree oprnd2 = treeop2;
9671 rtx op2;
9672
9673 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9674 op2 = expand_normal (oprnd2);
9675 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9676 target, unsignedp);
9677 return target;
9678 }
9679
9680 case COMPOUND_LITERAL_EXPR:
9681 {
9682 /* Initialize the anonymous variable declared in the compound
9683 literal, then return the variable. */
9684 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9685
9686 /* Create RTL for this variable. */
9687 if (!DECL_RTL_SET_P (decl))
9688 {
9689 if (DECL_HARD_REGISTER (decl))
9690 /* The user specified an assembler name for this variable.
9691 Set that up now. */
9692 rest_of_decl_compilation (decl, 0, 0);
9693 else
9694 expand_decl (decl);
9695 }
9696
9697 return expand_expr_real (decl, original_target, tmode,
9698 modifier, alt_rtl);
9699 }
9700
9701 default:
9702 return expand_expr_real_2 (&ops, target, tmode, modifier);
9703 }
9704 }
9705 \f
9706 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9707 signedness of TYPE), possibly returning the result in TARGET. */
9708 static rtx
9709 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9710 {
9711 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9712 if (target && GET_MODE (target) != GET_MODE (exp))
9713 target = 0;
9714 /* For constant values, reduce using build_int_cst_type. */
9715 if (CONST_INT_P (exp))
9716 {
9717 HOST_WIDE_INT value = INTVAL (exp);
9718 tree t = build_int_cst_type (type, value);
9719 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9720 }
9721 else if (TYPE_UNSIGNED (type))
9722 {
9723 rtx mask = immed_double_int_const (double_int_mask (prec),
9724 GET_MODE (exp));
9725 return expand_and (GET_MODE (exp), exp, mask, target);
9726 }
9727 else
9728 {
9729 tree count = build_int_cst (NULL_TREE,
9730 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9731 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9732 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9733 }
9734 }
9735 \f
9736 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9737 when applied to the address of EXP produces an address known to be
9738 aligned more than BIGGEST_ALIGNMENT. */
9739
9740 static int
9741 is_aligning_offset (const_tree offset, const_tree exp)
9742 {
9743 /* Strip off any conversions. */
9744 while (CONVERT_EXPR_P (offset))
9745 offset = TREE_OPERAND (offset, 0);
9746
9747 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9748 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9749 if (TREE_CODE (offset) != BIT_AND_EXPR
9750 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9751 || compare_tree_int (TREE_OPERAND (offset, 1),
9752 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9753 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9754 return 0;
9755
9756 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9757 It must be NEGATE_EXPR. Then strip any more conversions. */
9758 offset = TREE_OPERAND (offset, 0);
9759 while (CONVERT_EXPR_P (offset))
9760 offset = TREE_OPERAND (offset, 0);
9761
9762 if (TREE_CODE (offset) != NEGATE_EXPR)
9763 return 0;
9764
9765 offset = TREE_OPERAND (offset, 0);
9766 while (CONVERT_EXPR_P (offset))
9767 offset = TREE_OPERAND (offset, 0);
9768
9769 /* This must now be the address of EXP. */
9770 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9771 }
9772 \f
9773 /* Return the tree node if an ARG corresponds to a string constant or zero
9774 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9775 in bytes within the string that ARG is accessing. The type of the
9776 offset will be `sizetype'. */
9777
9778 tree
9779 string_constant (tree arg, tree *ptr_offset)
9780 {
9781 tree array, offset, lower_bound;
9782 STRIP_NOPS (arg);
9783
9784 if (TREE_CODE (arg) == ADDR_EXPR)
9785 {
9786 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9787 {
9788 *ptr_offset = size_zero_node;
9789 return TREE_OPERAND (arg, 0);
9790 }
9791 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9792 {
9793 array = TREE_OPERAND (arg, 0);
9794 offset = size_zero_node;
9795 }
9796 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9797 {
9798 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9799 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9800 if (TREE_CODE (array) != STRING_CST
9801 && TREE_CODE (array) != VAR_DECL)
9802 return 0;
9803
9804 /* Check if the array has a nonzero lower bound. */
9805 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9806 if (!integer_zerop (lower_bound))
9807 {
9808 /* If the offset and base aren't both constants, return 0. */
9809 if (TREE_CODE (lower_bound) != INTEGER_CST)
9810 return 0;
9811 if (TREE_CODE (offset) != INTEGER_CST)
9812 return 0;
9813 /* Adjust offset by the lower bound. */
9814 offset = size_diffop (fold_convert (sizetype, offset),
9815 fold_convert (sizetype, lower_bound));
9816 }
9817 }
9818 else
9819 return 0;
9820 }
9821 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9822 {
9823 tree arg0 = TREE_OPERAND (arg, 0);
9824 tree arg1 = TREE_OPERAND (arg, 1);
9825
9826 STRIP_NOPS (arg0);
9827 STRIP_NOPS (arg1);
9828
9829 if (TREE_CODE (arg0) == ADDR_EXPR
9830 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9831 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9832 {
9833 array = TREE_OPERAND (arg0, 0);
9834 offset = arg1;
9835 }
9836 else if (TREE_CODE (arg1) == ADDR_EXPR
9837 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9838 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9839 {
9840 array = TREE_OPERAND (arg1, 0);
9841 offset = arg0;
9842 }
9843 else
9844 return 0;
9845 }
9846 else
9847 return 0;
9848
9849 if (TREE_CODE (array) == STRING_CST)
9850 {
9851 *ptr_offset = fold_convert (sizetype, offset);
9852 return array;
9853 }
9854 else if (TREE_CODE (array) == VAR_DECL
9855 || TREE_CODE (array) == CONST_DECL)
9856 {
9857 int length;
9858
9859 /* Variables initialized to string literals can be handled too. */
9860 if (!const_value_known_p (array)
9861 || !DECL_INITIAL (array)
9862 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9863 return 0;
9864
9865 /* Avoid const char foo[4] = "abcde"; */
9866 if (DECL_SIZE_UNIT (array) == NULL_TREE
9867 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9868 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9869 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9870 return 0;
9871
9872 /* If variable is bigger than the string literal, OFFSET must be constant
9873 and inside of the bounds of the string literal. */
9874 offset = fold_convert (sizetype, offset);
9875 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9876 && (! host_integerp (offset, 1)
9877 || compare_tree_int (offset, length) >= 0))
9878 return 0;
9879
9880 *ptr_offset = offset;
9881 return DECL_INITIAL (array);
9882 }
9883
9884 return 0;
9885 }
9886 \f
9887 /* Generate code to calculate OPS, and exploded expression
9888 using a store-flag instruction and return an rtx for the result.
9889 OPS reflects a comparison.
9890
9891 If TARGET is nonzero, store the result there if convenient.
9892
9893 Return zero if there is no suitable set-flag instruction
9894 available on this machine.
9895
9896 Once expand_expr has been called on the arguments of the comparison,
9897 we are committed to doing the store flag, since it is not safe to
9898 re-evaluate the expression. We emit the store-flag insn by calling
9899 emit_store_flag, but only expand the arguments if we have a reason
9900 to believe that emit_store_flag will be successful. If we think that
9901 it will, but it isn't, we have to simulate the store-flag with a
9902 set/jump/set sequence. */
9903
9904 static rtx
9905 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9906 {
9907 enum rtx_code code;
9908 tree arg0, arg1, type;
9909 tree tem;
9910 enum machine_mode operand_mode;
9911 int unsignedp;
9912 rtx op0, op1;
9913 rtx subtarget = target;
9914 location_t loc = ops->location;
9915
9916 arg0 = ops->op0;
9917 arg1 = ops->op1;
9918
9919 /* Don't crash if the comparison was erroneous. */
9920 if (arg0 == error_mark_node || arg1 == error_mark_node)
9921 return const0_rtx;
9922
9923 type = TREE_TYPE (arg0);
9924 operand_mode = TYPE_MODE (type);
9925 unsignedp = TYPE_UNSIGNED (type);
9926
9927 /* We won't bother with BLKmode store-flag operations because it would mean
9928 passing a lot of information to emit_store_flag. */
9929 if (operand_mode == BLKmode)
9930 return 0;
9931
9932 /* We won't bother with store-flag operations involving function pointers
9933 when function pointers must be canonicalized before comparisons. */
9934 #ifdef HAVE_canonicalize_funcptr_for_compare
9935 if (HAVE_canonicalize_funcptr_for_compare
9936 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9937 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9938 == FUNCTION_TYPE))
9939 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9940 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9941 == FUNCTION_TYPE))))
9942 return 0;
9943 #endif
9944
9945 STRIP_NOPS (arg0);
9946 STRIP_NOPS (arg1);
9947
9948 /* Get the rtx comparison code to use. We know that EXP is a comparison
9949 operation of some type. Some comparisons against 1 and -1 can be
9950 converted to comparisons with zero. Do so here so that the tests
9951 below will be aware that we have a comparison with zero. These
9952 tests will not catch constants in the first operand, but constants
9953 are rarely passed as the first operand. */
9954
9955 switch (ops->code)
9956 {
9957 case EQ_EXPR:
9958 code = EQ;
9959 break;
9960 case NE_EXPR:
9961 code = NE;
9962 break;
9963 case LT_EXPR:
9964 if (integer_onep (arg1))
9965 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9966 else
9967 code = unsignedp ? LTU : LT;
9968 break;
9969 case LE_EXPR:
9970 if (! unsignedp && integer_all_onesp (arg1))
9971 arg1 = integer_zero_node, code = LT;
9972 else
9973 code = unsignedp ? LEU : LE;
9974 break;
9975 case GT_EXPR:
9976 if (! unsignedp && integer_all_onesp (arg1))
9977 arg1 = integer_zero_node, code = GE;
9978 else
9979 code = unsignedp ? GTU : GT;
9980 break;
9981 case GE_EXPR:
9982 if (integer_onep (arg1))
9983 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9984 else
9985 code = unsignedp ? GEU : GE;
9986 break;
9987
9988 case UNORDERED_EXPR:
9989 code = UNORDERED;
9990 break;
9991 case ORDERED_EXPR:
9992 code = ORDERED;
9993 break;
9994 case UNLT_EXPR:
9995 code = UNLT;
9996 break;
9997 case UNLE_EXPR:
9998 code = UNLE;
9999 break;
10000 case UNGT_EXPR:
10001 code = UNGT;
10002 break;
10003 case UNGE_EXPR:
10004 code = UNGE;
10005 break;
10006 case UNEQ_EXPR:
10007 code = UNEQ;
10008 break;
10009 case LTGT_EXPR:
10010 code = LTGT;
10011 break;
10012
10013 default:
10014 gcc_unreachable ();
10015 }
10016
10017 /* Put a constant second. */
10018 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10019 || TREE_CODE (arg0) == FIXED_CST)
10020 {
10021 tem = arg0; arg0 = arg1; arg1 = tem;
10022 code = swap_condition (code);
10023 }
10024
10025 /* If this is an equality or inequality test of a single bit, we can
10026 do this by shifting the bit being tested to the low-order bit and
10027 masking the result with the constant 1. If the condition was EQ,
10028 we xor it with 1. This does not require an scc insn and is faster
10029 than an scc insn even if we have it.
10030
10031 The code to make this transformation was moved into fold_single_bit_test,
10032 so we just call into the folder and expand its result. */
10033
10034 if ((code == NE || code == EQ)
10035 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10036 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10037 {
10038 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10039 return expand_expr (fold_single_bit_test (loc,
10040 code == NE ? NE_EXPR : EQ_EXPR,
10041 arg0, arg1, type),
10042 target, VOIDmode, EXPAND_NORMAL);
10043 }
10044
10045 if (! get_subtarget (target)
10046 || GET_MODE (subtarget) != operand_mode)
10047 subtarget = 0;
10048
10049 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10050
10051 if (target == 0)
10052 target = gen_reg_rtx (mode);
10053
10054 /* Try a cstore if possible. */
10055 return emit_store_flag_force (target, code, op0, op1,
10056 operand_mode, unsignedp, 1);
10057 }
10058 \f
10059
10060 /* Stubs in case we haven't got a casesi insn. */
10061 #ifndef HAVE_casesi
10062 # define HAVE_casesi 0
10063 # define gen_casesi(a, b, c, d, e) (0)
10064 # define CODE_FOR_casesi CODE_FOR_nothing
10065 #endif
10066
10067 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10068 0 otherwise (i.e. if there is no casesi instruction). */
10069 int
10070 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10071 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10072 rtx fallback_label ATTRIBUTE_UNUSED)
10073 {
10074 enum machine_mode index_mode = SImode;
10075 int index_bits = GET_MODE_BITSIZE (index_mode);
10076 rtx op1, op2, index;
10077 enum machine_mode op_mode;
10078
10079 if (! HAVE_casesi)
10080 return 0;
10081
10082 /* Convert the index to SImode. */
10083 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10084 {
10085 enum machine_mode omode = TYPE_MODE (index_type);
10086 rtx rangertx = expand_normal (range);
10087
10088 /* We must handle the endpoints in the original mode. */
10089 index_expr = build2 (MINUS_EXPR, index_type,
10090 index_expr, minval);
10091 minval = integer_zero_node;
10092 index = expand_normal (index_expr);
10093 if (default_label)
10094 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10095 omode, 1, default_label);
10096 /* Now we can safely truncate. */
10097 index = convert_to_mode (index_mode, index, 0);
10098 }
10099 else
10100 {
10101 if (TYPE_MODE (index_type) != index_mode)
10102 {
10103 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10104 index_expr = fold_convert (index_type, index_expr);
10105 }
10106
10107 index = expand_normal (index_expr);
10108 }
10109
10110 do_pending_stack_adjust ();
10111
10112 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10113 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10114 (index, op_mode))
10115 index = copy_to_mode_reg (op_mode, index);
10116
10117 op1 = expand_normal (minval);
10118
10119 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10120 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10121 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10122 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10123 (op1, op_mode))
10124 op1 = copy_to_mode_reg (op_mode, op1);
10125
10126 op2 = expand_normal (range);
10127
10128 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10129 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10130 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10131 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10132 (op2, op_mode))
10133 op2 = copy_to_mode_reg (op_mode, op2);
10134
10135 emit_jump_insn (gen_casesi (index, op1, op2,
10136 table_label, !default_label
10137 ? fallback_label : default_label));
10138 return 1;
10139 }
10140
10141 /* Attempt to generate a tablejump instruction; same concept. */
10142 #ifndef HAVE_tablejump
10143 #define HAVE_tablejump 0
10144 #define gen_tablejump(x, y) (0)
10145 #endif
10146
10147 /* Subroutine of the next function.
10148
10149 INDEX is the value being switched on, with the lowest value
10150 in the table already subtracted.
10151 MODE is its expected mode (needed if INDEX is constant).
10152 RANGE is the length of the jump table.
10153 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10154
10155 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10156 index value is out of range. */
10157
10158 static void
10159 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10160 rtx default_label)
10161 {
10162 rtx temp, vector;
10163
10164 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10165 cfun->cfg->max_jumptable_ents = INTVAL (range);
10166
10167 /* Do an unsigned comparison (in the proper mode) between the index
10168 expression and the value which represents the length of the range.
10169 Since we just finished subtracting the lower bound of the range
10170 from the index expression, this comparison allows us to simultaneously
10171 check that the original index expression value is both greater than
10172 or equal to the minimum value of the range and less than or equal to
10173 the maximum value of the range. */
10174
10175 if (default_label)
10176 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10177 default_label);
10178
10179 /* If index is in range, it must fit in Pmode.
10180 Convert to Pmode so we can index with it. */
10181 if (mode != Pmode)
10182 index = convert_to_mode (Pmode, index, 1);
10183
10184 /* Don't let a MEM slip through, because then INDEX that comes
10185 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10186 and break_out_memory_refs will go to work on it and mess it up. */
10187 #ifdef PIC_CASE_VECTOR_ADDRESS
10188 if (flag_pic && !REG_P (index))
10189 index = copy_to_mode_reg (Pmode, index);
10190 #endif
10191
10192 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10193 GET_MODE_SIZE, because this indicates how large insns are. The other
10194 uses should all be Pmode, because they are addresses. This code
10195 could fail if addresses and insns are not the same size. */
10196 index = gen_rtx_PLUS (Pmode,
10197 gen_rtx_MULT (Pmode, index,
10198 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10199 gen_rtx_LABEL_REF (Pmode, table_label));
10200 #ifdef PIC_CASE_VECTOR_ADDRESS
10201 if (flag_pic)
10202 index = PIC_CASE_VECTOR_ADDRESS (index);
10203 else
10204 #endif
10205 index = memory_address (CASE_VECTOR_MODE, index);
10206 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10207 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10208 convert_move (temp, vector, 0);
10209
10210 emit_jump_insn (gen_tablejump (temp, table_label));
10211
10212 /* If we are generating PIC code or if the table is PC-relative, the
10213 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10214 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10215 emit_barrier ();
10216 }
10217
10218 int
10219 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10220 rtx table_label, rtx default_label)
10221 {
10222 rtx index;
10223
10224 if (! HAVE_tablejump)
10225 return 0;
10226
10227 index_expr = fold_build2 (MINUS_EXPR, index_type,
10228 fold_convert (index_type, index_expr),
10229 fold_convert (index_type, minval));
10230 index = expand_normal (index_expr);
10231 do_pending_stack_adjust ();
10232
10233 do_tablejump (index, TYPE_MODE (index_type),
10234 convert_modes (TYPE_MODE (index_type),
10235 TYPE_MODE (TREE_TYPE (range)),
10236 expand_normal (range),
10237 TYPE_UNSIGNED (TREE_TYPE (range))),
10238 table_label, default_label);
10239 return 1;
10240 }
10241
10242 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10243 static rtx
10244 const_vector_from_tree (tree exp)
10245 {
10246 rtvec v;
10247 int units, i;
10248 tree link, elt;
10249 enum machine_mode inner, mode;
10250
10251 mode = TYPE_MODE (TREE_TYPE (exp));
10252
10253 if (initializer_zerop (exp))
10254 return CONST0_RTX (mode);
10255
10256 units = GET_MODE_NUNITS (mode);
10257 inner = GET_MODE_INNER (mode);
10258
10259 v = rtvec_alloc (units);
10260
10261 link = TREE_VECTOR_CST_ELTS (exp);
10262 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10263 {
10264 elt = TREE_VALUE (link);
10265
10266 if (TREE_CODE (elt) == REAL_CST)
10267 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10268 inner);
10269 else if (TREE_CODE (elt) == FIXED_CST)
10270 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10271 inner);
10272 else
10273 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10274 inner);
10275 }
10276
10277 /* Initialize remaining elements to 0. */
10278 for (; i < units; ++i)
10279 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10280
10281 return gen_rtx_CONST_VECTOR (mode, v);
10282 }
10283
10284 /* Build a decl for a personality function given a language prefix. */
10285
10286 tree
10287 build_personality_function (const char *lang)
10288 {
10289 const char *unwind_and_version;
10290 tree decl, type;
10291 char *name;
10292
10293 switch (targetm.except_unwind_info (&global_options))
10294 {
10295 case UI_NONE:
10296 return NULL;
10297 case UI_SJLJ:
10298 unwind_and_version = "_sj0";
10299 break;
10300 case UI_DWARF2:
10301 case UI_TARGET:
10302 unwind_and_version = "_v0";
10303 break;
10304 default:
10305 gcc_unreachable ();
10306 }
10307
10308 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10309
10310 type = build_function_type_list (integer_type_node, integer_type_node,
10311 long_long_unsigned_type_node,
10312 ptr_type_node, ptr_type_node, NULL_TREE);
10313 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10314 get_identifier (name), type);
10315 DECL_ARTIFICIAL (decl) = 1;
10316 DECL_EXTERNAL (decl) = 1;
10317 TREE_PUBLIC (decl) = 1;
10318
10319 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10320 are the flags assigned by targetm.encode_section_info. */
10321 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10322
10323 return decl;
10324 }
10325
10326 /* Extracts the personality function of DECL and returns the corresponding
10327 libfunc. */
10328
10329 rtx
10330 get_personality_function (tree decl)
10331 {
10332 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10333 enum eh_personality_kind pk;
10334
10335 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10336 if (pk == eh_personality_none)
10337 return NULL;
10338
10339 if (!personality
10340 && pk == eh_personality_any)
10341 personality = lang_hooks.eh_personality ();
10342
10343 if (pk == eh_personality_lang)
10344 gcc_assert (personality != NULL_TREE);
10345
10346 return XEXP (DECL_RTL (personality), 0);
10347 }
10348
10349 #include "gt-expr.h"