i386-common.c (processor_names): Add cascadelake.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
65
66
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
74
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT);
79 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
80 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
81 static rtx_insn *compress_float_constant (rtx, rtx);
82 static rtx get_subtarget (rtx);
83 static void store_constructor (tree, rtx, int, poly_int64, bool);
84 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
85 machine_mode, tree, alias_set_type, bool, bool);
86
87 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
88
89 static int is_aligning_offset (const_tree, const_tree);
90 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
91 static rtx do_store_flag (sepops, rtx, machine_mode);
92 #ifdef PUSH_ROUNDING
93 static void emit_single_push_insn (machine_mode, rtx, tree);
94 #endif
95 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
96 profile_probability);
97 static rtx const_vector_from_tree (tree);
98 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
99 static tree tree_expr_size (const_tree);
100 static HOST_WIDE_INT int_expr_size (tree);
101 static void convert_mode_scalar (rtx, rtx, int);
102
103 \f
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
107
108 void
109 init_expr_target (void)
110 {
111 rtx pat;
112 int num_clobbers;
113 rtx mem, mem1;
114 rtx reg;
115
116 /* Try indexing by frame ptr and try by stack ptr.
117 It is known that on the Convex the stack ptr isn't a valid index.
118 With luck, one or the other is valid on any machine. */
119 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
120 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
121
122 /* A scratch register we can modify in-place below to avoid
123 useless RTL allocations. */
124 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
125
126 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
127 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
128 PATTERN (insn) = pat;
129
130 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
131 mode = (machine_mode) ((int) mode + 1))
132 {
133 int regno;
134
135 direct_load[(int) mode] = direct_store[(int) mode] = 0;
136 PUT_MODE (mem, mode);
137 PUT_MODE (mem1, mode);
138
139 /* See if there is some register that can be used in this mode and
140 directly loaded or stored from memory. */
141
142 if (mode != VOIDmode && mode != BLKmode)
143 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
144 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
145 regno++)
146 {
147 if (!targetm.hard_regno_mode_ok (regno, mode))
148 continue;
149
150 set_mode_and_regno (reg, mode, regno);
151
152 SET_SRC (pat) = mem;
153 SET_DEST (pat) = reg;
154 if (recog (pat, insn, &num_clobbers) >= 0)
155 direct_load[(int) mode] = 1;
156
157 SET_SRC (pat) = mem1;
158 SET_DEST (pat) = reg;
159 if (recog (pat, insn, &num_clobbers) >= 0)
160 direct_load[(int) mode] = 1;
161
162 SET_SRC (pat) = reg;
163 SET_DEST (pat) = mem;
164 if (recog (pat, insn, &num_clobbers) >= 0)
165 direct_store[(int) mode] = 1;
166
167 SET_SRC (pat) = reg;
168 SET_DEST (pat) = mem1;
169 if (recog (pat, insn, &num_clobbers) >= 0)
170 direct_store[(int) mode] = 1;
171 }
172 }
173
174 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
175
176 opt_scalar_float_mode mode_iter;
177 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
178 {
179 scalar_float_mode mode = mode_iter.require ();
180 scalar_float_mode srcmode;
181 FOR_EACH_MODE_UNTIL (srcmode, mode)
182 {
183 enum insn_code ic;
184
185 ic = can_extend_p (mode, srcmode, 0);
186 if (ic == CODE_FOR_nothing)
187 continue;
188
189 PUT_MODE (mem, srcmode);
190
191 if (insn_operand_matches (ic, 1, mem))
192 float_extend_from_mem[mode][srcmode] = true;
193 }
194 }
195 }
196
197 /* This is run at the start of compiling a function. */
198
199 void
200 init_expr (void)
201 {
202 memset (&crtl->expr, 0, sizeof (crtl->expr));
203 }
204 \f
205 /* Copy data from FROM to TO, where the machine modes are not the same.
206 Both modes may be integer, or both may be floating, or both may be
207 fixed-point.
208 UNSIGNEDP should be nonzero if FROM is an unsigned type.
209 This causes zero-extension instead of sign-extension. */
210
211 void
212 convert_move (rtx to, rtx from, int unsignedp)
213 {
214 machine_mode to_mode = GET_MODE (to);
215 machine_mode from_mode = GET_MODE (from);
216
217 gcc_assert (to_mode != BLKmode);
218 gcc_assert (from_mode != BLKmode);
219
220 /* If the source and destination are already the same, then there's
221 nothing to do. */
222 if (to == from)
223 return;
224
225 /* If FROM is a SUBREG that indicates that we have already done at least
226 the required extension, strip it. We don't handle such SUBREGs as
227 TO here. */
228
229 scalar_int_mode to_int_mode;
230 if (GET_CODE (from) == SUBREG
231 && SUBREG_PROMOTED_VAR_P (from)
232 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
233 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
234 >= GET_MODE_PRECISION (to_int_mode))
235 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
236 {
237 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
238 from_mode = to_int_mode;
239 }
240
241 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
242
243 if (to_mode == from_mode
244 || (from_mode == VOIDmode && CONSTANT_P (from)))
245 {
246 emit_move_insn (to, from);
247 return;
248 }
249
250 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
251 {
252 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
253 GET_MODE_BITSIZE (to_mode)));
254
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
259
260 emit_move_insn (to, from);
261 return;
262 }
263
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
265 {
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
269 }
270
271 convert_mode_scalar (to, from, unsignedp);
272 }
273
274 /* Like convert_move, but deals only with scalar modes. */
275
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
278 {
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
286
287 gcc_assert (to_real == from_real);
288
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
292
293 if (to_real)
294 {
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
298
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
303
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
311
312 /* Try converting directly if the insn is supported. */
313
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
316 {
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
320 }
321
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
324
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
327
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
338 }
339
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
342 {
343 convert_optab ctab;
344
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
351
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
354 {
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
358 }
359 }
360
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
364 {
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
367
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
370
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
376 }
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
378 {
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
384
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
387
388 if (to_mode == full_mode)
389 {
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
392 }
393
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
396
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
400 }
401
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
406 {
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
416 }
417
418 /* Now both modes are integers. */
419
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
423 {
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
431
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
435 {
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
444 }
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
449 {
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
452 {
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
456 }
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
460 }
461
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
464
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
470
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
473
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
479
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
481
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
484
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
492
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
495 {
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
498
499 gcc_assert (subword);
500
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
503 }
504
505 insns = get_insns ();
506 end_sequence ();
507
508 emit_insn (insns);
509 return;
510 }
511
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
515 {
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
526 }
527
528 /* Now follow all the conversions between integers
529 no more than a word long. */
530
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
534 {
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
548 }
549
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
552 {
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
556 {
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
559 }
560 else
561 {
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
565
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
569 {
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
578 {
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
582 }
583 }
584
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
597 }
598 }
599
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
603 {
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
607 }
608
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
612
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
617 {
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
621 }
622
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
625 }
626
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
633
634 rtx
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
636 {
637 return convert_modes (mode, VOIDmode, x, unsignedp);
638 }
639
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
644
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
647
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
649
650 rtx
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
652 {
653 rtx temp;
654 scalar_int_mode int_mode;
655
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
658
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
666
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
669
670 if (mode == oldmode)
671 return x;
672
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
675 {
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
685 }
686
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || CONST_POLY_INT_P (x)
696 || (REG_P (x)
697 && (!HARD_REGISTER_P (x)
698 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
699 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
700 return gen_lowpart (int_mode, x);
701
702 /* Converting from integer constant into mode is always equivalent to an
703 subreg operation. */
704 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
705 {
706 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
707 GET_MODE_BITSIZE (oldmode)));
708 return simplify_gen_subreg (mode, x, oldmode, 0);
709 }
710
711 temp = gen_reg_rtx (mode);
712 convert_move (temp, x, unsignedp);
713 return temp;
714 }
715 \f
716 /* Return the largest alignment we can use for doing a move (or store)
717 of MAX_PIECES. ALIGN is the largest alignment we could use. */
718
719 static unsigned int
720 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
721 {
722 scalar_int_mode tmode
723 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
724
725 if (align >= GET_MODE_ALIGNMENT (tmode))
726 align = GET_MODE_ALIGNMENT (tmode);
727 else
728 {
729 scalar_int_mode xmode = NARROWEST_INT_MODE;
730 opt_scalar_int_mode mode_iter;
731 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
732 {
733 tmode = mode_iter.require ();
734 if (GET_MODE_SIZE (tmode) > max_pieces
735 || targetm.slow_unaligned_access (tmode, align))
736 break;
737 xmode = tmode;
738 }
739
740 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
741 }
742
743 return align;
744 }
745
746 /* Return the widest integer mode that is narrower than SIZE bytes. */
747
748 static scalar_int_mode
749 widest_int_mode_for_size (unsigned int size)
750 {
751 scalar_int_mode result = NARROWEST_INT_MODE;
752
753 gcc_checking_assert (size > 1);
754
755 opt_scalar_int_mode tmode;
756 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
757 if (GET_MODE_SIZE (tmode.require ()) < size)
758 result = tmode.require ();
759
760 return result;
761 }
762
763 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
764 and should be performed piecewise. */
765
766 static bool
767 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
768 enum by_pieces_operation op)
769 {
770 return targetm.use_by_pieces_infrastructure_p (len, align, op,
771 optimize_insn_for_speed_p ());
772 }
773
774 /* Determine whether the LEN bytes can be moved by using several move
775 instructions. Return nonzero if a call to move_by_pieces should
776 succeed. */
777
778 bool
779 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
780 {
781 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
782 }
783
784 /* Return number of insns required to perform operation OP by pieces
785 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
786
787 unsigned HOST_WIDE_INT
788 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
789 unsigned int max_size, by_pieces_operation op)
790 {
791 unsigned HOST_WIDE_INT n_insns = 0;
792
793 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
794
795 while (max_size > 1 && l > 0)
796 {
797 scalar_int_mode mode = widest_int_mode_for_size (max_size);
798 enum insn_code icode;
799
800 unsigned int modesize = GET_MODE_SIZE (mode);
801
802 icode = optab_handler (mov_optab, mode);
803 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
804 {
805 unsigned HOST_WIDE_INT n_pieces = l / modesize;
806 l %= modesize;
807 switch (op)
808 {
809 default:
810 n_insns += n_pieces;
811 break;
812
813 case COMPARE_BY_PIECES:
814 int batch = targetm.compare_by_pieces_branch_ratio (mode);
815 int batch_ops = 4 * batch - 1;
816 unsigned HOST_WIDE_INT full = n_pieces / batch;
817 n_insns += full * batch_ops;
818 if (n_pieces % batch != 0)
819 n_insns++;
820 break;
821
822 }
823 }
824 max_size = modesize;
825 }
826
827 gcc_assert (!l);
828 return n_insns;
829 }
830
831 /* Used when performing piecewise block operations, holds information
832 about one of the memory objects involved. The member functions
833 can be used to generate code for loading from the object and
834 updating the address when iterating. */
835
836 class pieces_addr
837 {
838 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
839 stack pushes. */
840 rtx m_obj;
841 /* The address of the object. Can differ from that seen in the
842 MEM rtx if we copied the address to a register. */
843 rtx m_addr;
844 /* Nonzero if the address on the object has an autoincrement already,
845 signifies whether that was an increment or decrement. */
846 signed char m_addr_inc;
847 /* Nonzero if we intend to use autoinc without the address already
848 having autoinc form. We will insert add insns around each memory
849 reference, expecting later passes to form autoinc addressing modes.
850 The only supported options are predecrement and postincrement. */
851 signed char m_explicit_inc;
852 /* True if we have either of the two possible cases of using
853 autoincrement. */
854 bool m_auto;
855 /* True if this is an address to be used for load operations rather
856 than stores. */
857 bool m_is_load;
858
859 /* Optionally, a function to obtain constants for any given offset into
860 the objects, and data associated with it. */
861 by_pieces_constfn m_constfn;
862 void *m_cfndata;
863 public:
864 pieces_addr (rtx, bool, by_pieces_constfn, void *);
865 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
866 void increment_address (HOST_WIDE_INT);
867 void maybe_predec (HOST_WIDE_INT);
868 void maybe_postinc (HOST_WIDE_INT);
869 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
870 int get_addr_inc ()
871 {
872 return m_addr_inc;
873 }
874 };
875
876 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
877 true if the operation to be performed on this object is a load
878 rather than a store. For stores, OBJ can be NULL, in which case we
879 assume the operation is a stack push. For loads, the optional
880 CONSTFN and its associated CFNDATA can be used in place of the
881 memory load. */
882
883 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
884 void *cfndata)
885 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
886 {
887 m_addr_inc = 0;
888 m_auto = false;
889 if (obj)
890 {
891 rtx addr = XEXP (obj, 0);
892 rtx_code code = GET_CODE (addr);
893 m_addr = addr;
894 bool dec = code == PRE_DEC || code == POST_DEC;
895 bool inc = code == PRE_INC || code == POST_INC;
896 m_auto = inc || dec;
897 if (m_auto)
898 m_addr_inc = dec ? -1 : 1;
899
900 /* While we have always looked for these codes here, the code
901 implementing the memory operation has never handled them.
902 Support could be added later if necessary or beneficial. */
903 gcc_assert (code != PRE_INC && code != POST_DEC);
904 }
905 else
906 {
907 m_addr = NULL_RTX;
908 if (!is_load)
909 {
910 m_auto = true;
911 if (STACK_GROWS_DOWNWARD)
912 m_addr_inc = -1;
913 else
914 m_addr_inc = 1;
915 }
916 else
917 gcc_assert (constfn != NULL);
918 }
919 m_explicit_inc = 0;
920 if (constfn)
921 gcc_assert (is_load);
922 }
923
924 /* Decide whether to use autoinc for an address involved in a memory op.
925 MODE is the mode of the accesses, REVERSE is true if we've decided to
926 perform the operation starting from the end, and LEN is the length of
927 the operation. Don't override an earlier decision to set m_auto. */
928
929 void
930 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
931 HOST_WIDE_INT len)
932 {
933 if (m_auto || m_obj == NULL_RTX)
934 return;
935
936 bool use_predec = (m_is_load
937 ? USE_LOAD_PRE_DECREMENT (mode)
938 : USE_STORE_PRE_DECREMENT (mode));
939 bool use_postinc = (m_is_load
940 ? USE_LOAD_POST_INCREMENT (mode)
941 : USE_STORE_POST_INCREMENT (mode));
942 machine_mode addr_mode = get_address_mode (m_obj);
943
944 if (use_predec && reverse)
945 {
946 m_addr = copy_to_mode_reg (addr_mode,
947 plus_constant (addr_mode,
948 m_addr, len));
949 m_auto = true;
950 m_explicit_inc = -1;
951 }
952 else if (use_postinc && !reverse)
953 {
954 m_addr = copy_to_mode_reg (addr_mode, m_addr);
955 m_auto = true;
956 m_explicit_inc = 1;
957 }
958 else if (CONSTANT_P (m_addr))
959 m_addr = copy_to_mode_reg (addr_mode, m_addr);
960 }
961
962 /* Adjust the address to refer to the data at OFFSET in MODE. If we
963 are using autoincrement for this address, we don't add the offset,
964 but we still modify the MEM's properties. */
965
966 rtx
967 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
968 {
969 if (m_constfn)
970 return m_constfn (m_cfndata, offset, mode);
971 if (m_obj == NULL_RTX)
972 return NULL_RTX;
973 if (m_auto)
974 return adjust_automodify_address (m_obj, mode, m_addr, offset);
975 else
976 return adjust_address (m_obj, mode, offset);
977 }
978
979 /* Emit an add instruction to increment the address by SIZE. */
980
981 void
982 pieces_addr::increment_address (HOST_WIDE_INT size)
983 {
984 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
985 emit_insn (gen_add2_insn (m_addr, amount));
986 }
987
988 /* If we are supposed to decrement the address after each access, emit code
989 to do so now. Increment by SIZE (which has should have the correct sign
990 already). */
991
992 void
993 pieces_addr::maybe_predec (HOST_WIDE_INT size)
994 {
995 if (m_explicit_inc >= 0)
996 return;
997 gcc_assert (HAVE_PRE_DECREMENT);
998 increment_address (size);
999 }
1000
1001 /* If we are supposed to decrement the address after each access, emit code
1002 to do so now. Increment by SIZE. */
1003
1004 void
1005 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1006 {
1007 if (m_explicit_inc <= 0)
1008 return;
1009 gcc_assert (HAVE_POST_INCREMENT);
1010 increment_address (size);
1011 }
1012
1013 /* This structure is used by do_op_by_pieces to describe the operation
1014 to be performed. */
1015
1016 class op_by_pieces_d
1017 {
1018 protected:
1019 pieces_addr m_to, m_from;
1020 unsigned HOST_WIDE_INT m_len;
1021 HOST_WIDE_INT m_offset;
1022 unsigned int m_align;
1023 unsigned int m_max_size;
1024 bool m_reverse;
1025
1026 /* Virtual functions, overriden by derived classes for the specific
1027 operation. */
1028 virtual void generate (rtx, rtx, machine_mode) = 0;
1029 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1030 virtual void finish_mode (machine_mode)
1031 {
1032 }
1033
1034 public:
1035 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1036 unsigned HOST_WIDE_INT, unsigned int);
1037 void run ();
1038 };
1039
1040 /* The constructor for an op_by_pieces_d structure. We require two
1041 objects named TO and FROM, which are identified as loads or stores
1042 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1043 and its associated FROM_CFN_DATA can be used to replace loads with
1044 constant values. LEN describes the length of the operation. */
1045
1046 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1047 rtx from, bool from_load,
1048 by_pieces_constfn from_cfn,
1049 void *from_cfn_data,
1050 unsigned HOST_WIDE_INT len,
1051 unsigned int align)
1052 : m_to (to, to_load, NULL, NULL),
1053 m_from (from, from_load, from_cfn, from_cfn_data),
1054 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1055 {
1056 int toi = m_to.get_addr_inc ();
1057 int fromi = m_from.get_addr_inc ();
1058 if (toi >= 0 && fromi >= 0)
1059 m_reverse = false;
1060 else if (toi <= 0 && fromi <= 0)
1061 m_reverse = true;
1062 else
1063 gcc_unreachable ();
1064
1065 m_offset = m_reverse ? len : 0;
1066 align = MIN (to ? MEM_ALIGN (to) : align,
1067 from ? MEM_ALIGN (from) : align);
1068
1069 /* If copying requires more than two move insns,
1070 copy addresses to registers (to make displacements shorter)
1071 and use post-increment if available. */
1072 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1073 {
1074 /* Find the mode of the largest comparison. */
1075 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1076
1077 m_from.decide_autoinc (mode, m_reverse, len);
1078 m_to.decide_autoinc (mode, m_reverse, len);
1079 }
1080
1081 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1082 m_align = align;
1083 }
1084
1085 /* This function contains the main loop used for expanding a block
1086 operation. First move what we can in the largest integer mode,
1087 then go to successively smaller modes. For every access, call
1088 GENFUN with the two operands and the EXTRA_DATA. */
1089
1090 void
1091 op_by_pieces_d::run ()
1092 {
1093 while (m_max_size > 1 && m_len > 0)
1094 {
1095 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1096
1097 if (prepare_mode (mode, m_align))
1098 {
1099 unsigned int size = GET_MODE_SIZE (mode);
1100 rtx to1 = NULL_RTX, from1;
1101
1102 while (m_len >= size)
1103 {
1104 if (m_reverse)
1105 m_offset -= size;
1106
1107 to1 = m_to.adjust (mode, m_offset);
1108 from1 = m_from.adjust (mode, m_offset);
1109
1110 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1111 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1112
1113 generate (to1, from1, mode);
1114
1115 m_to.maybe_postinc (size);
1116 m_from.maybe_postinc (size);
1117
1118 if (!m_reverse)
1119 m_offset += size;
1120
1121 m_len -= size;
1122 }
1123
1124 finish_mode (mode);
1125 }
1126
1127 m_max_size = GET_MODE_SIZE (mode);
1128 }
1129
1130 /* The code above should have handled everything. */
1131 gcc_assert (!m_len);
1132 }
1133
1134 /* Derived class from op_by_pieces_d, providing support for block move
1135 operations. */
1136
1137 class move_by_pieces_d : public op_by_pieces_d
1138 {
1139 insn_gen_fn m_gen_fun;
1140 void generate (rtx, rtx, machine_mode);
1141 bool prepare_mode (machine_mode, unsigned int);
1142
1143 public:
1144 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1145 unsigned int align)
1146 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1147 {
1148 }
1149 rtx finish_retmode (memop_ret);
1150 };
1151
1152 /* Return true if MODE can be used for a set of copies, given an
1153 alignment ALIGN. Prepare whatever data is necessary for later
1154 calls to generate. */
1155
1156 bool
1157 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1158 {
1159 insn_code icode = optab_handler (mov_optab, mode);
1160 m_gen_fun = GEN_FCN (icode);
1161 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1162 }
1163
1164 /* A callback used when iterating for a compare_by_pieces_operation.
1165 OP0 and OP1 are the values that have been loaded and should be
1166 compared in MODE. If OP0 is NULL, this means we should generate a
1167 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1168 gen function that should be used to generate the mode. */
1169
1170 void
1171 move_by_pieces_d::generate (rtx op0, rtx op1,
1172 machine_mode mode ATTRIBUTE_UNUSED)
1173 {
1174 #ifdef PUSH_ROUNDING
1175 if (op0 == NULL_RTX)
1176 {
1177 emit_single_push_insn (mode, op1, NULL);
1178 return;
1179 }
1180 #endif
1181 emit_insn (m_gen_fun (op0, op1));
1182 }
1183
1184 /* Perform the final adjustment at the end of a string to obtain the
1185 correct return value for the block operation.
1186 Return value is based on RETMODE argument. */
1187
1188 rtx
1189 move_by_pieces_d::finish_retmode (memop_ret retmode)
1190 {
1191 gcc_assert (!m_reverse);
1192 if (retmode == RETURN_END_MINUS_ONE)
1193 {
1194 m_to.maybe_postinc (-1);
1195 --m_offset;
1196 }
1197 return m_to.adjust (QImode, m_offset);
1198 }
1199
1200 /* Generate several move instructions to copy LEN bytes from block FROM to
1201 block TO. (These are MEM rtx's with BLKmode).
1202
1203 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1204 used to push FROM to the stack.
1205
1206 ALIGN is maximum stack alignment we can assume.
1207
1208 Return value is based on RETMODE argument. */
1209
1210 rtx
1211 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1212 unsigned int align, memop_ret retmode)
1213 {
1214 #ifndef PUSH_ROUNDING
1215 if (to == NULL)
1216 gcc_unreachable ();
1217 #endif
1218
1219 move_by_pieces_d data (to, from, len, align);
1220
1221 data.run ();
1222
1223 if (retmode)
1224 return data.finish_retmode (retmode);
1225 else
1226 return to;
1227 }
1228
1229 /* Derived class from op_by_pieces_d, providing support for block move
1230 operations. */
1231
1232 class store_by_pieces_d : public op_by_pieces_d
1233 {
1234 insn_gen_fn m_gen_fun;
1235 void generate (rtx, rtx, machine_mode);
1236 bool prepare_mode (machine_mode, unsigned int);
1237
1238 public:
1239 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1240 unsigned HOST_WIDE_INT len, unsigned int align)
1241 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1242 {
1243 }
1244 rtx finish_retmode (memop_ret);
1245 };
1246
1247 /* Return true if MODE can be used for a set of stores, given an
1248 alignment ALIGN. Prepare whatever data is necessary for later
1249 calls to generate. */
1250
1251 bool
1252 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1253 {
1254 insn_code icode = optab_handler (mov_optab, mode);
1255 m_gen_fun = GEN_FCN (icode);
1256 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1257 }
1258
1259 /* A callback used when iterating for a store_by_pieces_operation.
1260 OP0 and OP1 are the values that have been loaded and should be
1261 compared in MODE. If OP0 is NULL, this means we should generate a
1262 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1263 gen function that should be used to generate the mode. */
1264
1265 void
1266 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1267 {
1268 emit_insn (m_gen_fun (op0, op1));
1269 }
1270
1271 /* Perform the final adjustment at the end of a string to obtain the
1272 correct return value for the block operation.
1273 Return value is based on RETMODE argument. */
1274
1275 rtx
1276 store_by_pieces_d::finish_retmode (memop_ret retmode)
1277 {
1278 gcc_assert (!m_reverse);
1279 if (retmode == RETURN_END_MINUS_ONE)
1280 {
1281 m_to.maybe_postinc (-1);
1282 --m_offset;
1283 }
1284 return m_to.adjust (QImode, m_offset);
1285 }
1286
1287 /* Determine whether the LEN bytes generated by CONSTFUN can be
1288 stored to memory using several move instructions. CONSTFUNDATA is
1289 a pointer which will be passed as argument in every CONSTFUN call.
1290 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1291 a memset operation and false if it's a copy of a constant string.
1292 Return nonzero if a call to store_by_pieces should succeed. */
1293
1294 int
1295 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1296 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1297 void *constfundata, unsigned int align, bool memsetp)
1298 {
1299 unsigned HOST_WIDE_INT l;
1300 unsigned int max_size;
1301 HOST_WIDE_INT offset = 0;
1302 enum insn_code icode;
1303 int reverse;
1304 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1305 rtx cst ATTRIBUTE_UNUSED;
1306
1307 if (len == 0)
1308 return 1;
1309
1310 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1311 memsetp
1312 ? SET_BY_PIECES
1313 : STORE_BY_PIECES,
1314 optimize_insn_for_speed_p ()))
1315 return 0;
1316
1317 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1318
1319 /* We would first store what we can in the largest integer mode, then go to
1320 successively smaller modes. */
1321
1322 for (reverse = 0;
1323 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1324 reverse++)
1325 {
1326 l = len;
1327 max_size = STORE_MAX_PIECES + 1;
1328 while (max_size > 1 && l > 0)
1329 {
1330 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1331
1332 icode = optab_handler (mov_optab, mode);
1333 if (icode != CODE_FOR_nothing
1334 && align >= GET_MODE_ALIGNMENT (mode))
1335 {
1336 unsigned int size = GET_MODE_SIZE (mode);
1337
1338 while (l >= size)
1339 {
1340 if (reverse)
1341 offset -= size;
1342
1343 cst = (*constfun) (constfundata, offset, mode);
1344 if (!targetm.legitimate_constant_p (mode, cst))
1345 return 0;
1346
1347 if (!reverse)
1348 offset += size;
1349
1350 l -= size;
1351 }
1352 }
1353
1354 max_size = GET_MODE_SIZE (mode);
1355 }
1356
1357 /* The code above should have handled everything. */
1358 gcc_assert (!l);
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* Generate several move instructions to store LEN bytes generated by
1365 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1366 pointer which will be passed as argument in every CONSTFUN call.
1367 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1368 a memset operation and false if it's a copy of a constant string.
1369 Return value is based on RETMODE argument. */
1370
1371 rtx
1372 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1373 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1374 void *constfundata, unsigned int align, bool memsetp,
1375 memop_ret retmode)
1376 {
1377 if (len == 0)
1378 {
1379 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1380 return to;
1381 }
1382
1383 gcc_assert (targetm.use_by_pieces_infrastructure_p
1384 (len, align,
1385 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1386 optimize_insn_for_speed_p ()));
1387
1388 store_by_pieces_d data (to, constfun, constfundata, len, align);
1389 data.run ();
1390
1391 if (retmode)
1392 return data.finish_retmode (retmode);
1393 else
1394 return to;
1395 }
1396
1397 /* Callback routine for clear_by_pieces.
1398 Return const0_rtx unconditionally. */
1399
1400 static rtx
1401 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1402 {
1403 return const0_rtx;
1404 }
1405
1406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1408
1409 static void
1410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1411 {
1412 if (len == 0)
1413 return;
1414
1415 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1416 data.run ();
1417 }
1418
1419 /* Context used by compare_by_pieces_genfn. It stores the fail label
1420 to jump to in case of miscomparison, and for branch ratios greater than 1,
1421 it stores an accumulator and the current and maximum counts before
1422 emitting another branch. */
1423
1424 class compare_by_pieces_d : public op_by_pieces_d
1425 {
1426 rtx_code_label *m_fail_label;
1427 rtx m_accumulator;
1428 int m_count, m_batch;
1429
1430 void generate (rtx, rtx, machine_mode);
1431 bool prepare_mode (machine_mode, unsigned int);
1432 void finish_mode (machine_mode);
1433 public:
1434 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1435 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1436 rtx_code_label *fail_label)
1437 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1438 {
1439 m_fail_label = fail_label;
1440 }
1441 };
1442
1443 /* A callback used when iterating for a compare_by_pieces_operation.
1444 OP0 and OP1 are the values that have been loaded and should be
1445 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1446 context structure. */
1447
1448 void
1449 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1450 {
1451 if (m_batch > 1)
1452 {
1453 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1454 true, OPTAB_LIB_WIDEN);
1455 if (m_count != 0)
1456 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1457 true, OPTAB_LIB_WIDEN);
1458 m_accumulator = temp;
1459
1460 if (++m_count < m_batch)
1461 return;
1462
1463 m_count = 0;
1464 op0 = m_accumulator;
1465 op1 = const0_rtx;
1466 m_accumulator = NULL_RTX;
1467 }
1468 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1469 m_fail_label, profile_probability::uninitialized ());
1470 }
1471
1472 /* Return true if MODE can be used for a set of moves and comparisons,
1473 given an alignment ALIGN. Prepare whatever data is necessary for
1474 later calls to generate. */
1475
1476 bool
1477 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1478 {
1479 insn_code icode = optab_handler (mov_optab, mode);
1480 if (icode == CODE_FOR_nothing
1481 || align < GET_MODE_ALIGNMENT (mode)
1482 || !can_compare_p (EQ, mode, ccp_jump))
1483 return false;
1484 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1485 if (m_batch < 0)
1486 return false;
1487 m_accumulator = NULL_RTX;
1488 m_count = 0;
1489 return true;
1490 }
1491
1492 /* Called after expanding a series of comparisons in MODE. If we have
1493 accumulated results for which we haven't emitted a branch yet, do
1494 so now. */
1495
1496 void
1497 compare_by_pieces_d::finish_mode (machine_mode mode)
1498 {
1499 if (m_accumulator != NULL_RTX)
1500 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1501 NULL_RTX, NULL, m_fail_label,
1502 profile_probability::uninitialized ());
1503 }
1504
1505 /* Generate several move instructions to compare LEN bytes from blocks
1506 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1507
1508 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1509 used to push FROM to the stack.
1510
1511 ALIGN is maximum stack alignment we can assume.
1512
1513 Optionally, the caller can pass a constfn and associated data in A1_CFN
1514 and A1_CFN_DATA. describing that the second operand being compared is a
1515 known constant and how to obtain its data. */
1516
1517 static rtx
1518 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1519 rtx target, unsigned int align,
1520 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1521 {
1522 rtx_code_label *fail_label = gen_label_rtx ();
1523 rtx_code_label *end_label = gen_label_rtx ();
1524
1525 if (target == NULL_RTX
1526 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1527 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1528
1529 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1530 fail_label);
1531
1532 data.run ();
1533
1534 emit_move_insn (target, const0_rtx);
1535 emit_jump (end_label);
1536 emit_barrier ();
1537 emit_label (fail_label);
1538 emit_move_insn (target, const1_rtx);
1539 emit_label (end_label);
1540
1541 return target;
1542 }
1543 \f
1544 /* Emit code to move a block Y to a block X. This may be done with
1545 string-move instructions, with multiple scalar move instructions,
1546 or with a library call.
1547
1548 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1549 SIZE is an rtx that says how long they are.
1550 ALIGN is the maximum alignment we can assume they have.
1551 METHOD describes what kind of copy this is, and what mechanisms may be used.
1552 MIN_SIZE is the minimal size of block to move
1553 MAX_SIZE is the maximal size of block to move, if it can not be represented
1554 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1555
1556 Return the address of the new block, if memcpy is called and returns it,
1557 0 otherwise. */
1558
1559 rtx
1560 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1561 unsigned int expected_align, HOST_WIDE_INT expected_size,
1562 unsigned HOST_WIDE_INT min_size,
1563 unsigned HOST_WIDE_INT max_size,
1564 unsigned HOST_WIDE_INT probable_max_size)
1565 {
1566 int may_use_call;
1567 rtx retval = 0;
1568 unsigned int align;
1569
1570 gcc_assert (size);
1571 if (CONST_INT_P (size) && INTVAL (size) == 0)
1572 return 0;
1573
1574 switch (method)
1575 {
1576 case BLOCK_OP_NORMAL:
1577 case BLOCK_OP_TAILCALL:
1578 may_use_call = 1;
1579 break;
1580
1581 case BLOCK_OP_CALL_PARM:
1582 may_use_call = block_move_libcall_safe_for_call_parm ();
1583
1584 /* Make inhibit_defer_pop nonzero around the library call
1585 to force it to pop the arguments right away. */
1586 NO_DEFER_POP;
1587 break;
1588
1589 case BLOCK_OP_NO_LIBCALL:
1590 may_use_call = 0;
1591 break;
1592
1593 case BLOCK_OP_NO_LIBCALL_RET:
1594 may_use_call = -1;
1595 break;
1596
1597 default:
1598 gcc_unreachable ();
1599 }
1600
1601 gcc_assert (MEM_P (x) && MEM_P (y));
1602 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1603 gcc_assert (align >= BITS_PER_UNIT);
1604
1605 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1606 block copy is more efficient for other large modes, e.g. DCmode. */
1607 x = adjust_address (x, BLKmode, 0);
1608 y = adjust_address (y, BLKmode, 0);
1609
1610 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1611 can be incorrect is coming from __builtin_memcpy. */
1612 poly_int64 const_size;
1613 if (poly_int_rtx_p (size, &const_size))
1614 {
1615 x = shallow_copy_rtx (x);
1616 y = shallow_copy_rtx (y);
1617 set_mem_size (x, const_size);
1618 set_mem_size (y, const_size);
1619 }
1620
1621 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1622 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1623 else if (emit_block_move_via_movmem (x, y, size, align,
1624 expected_align, expected_size,
1625 min_size, max_size, probable_max_size))
1626 ;
1627 else if (may_use_call
1628 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1629 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1630 {
1631 if (may_use_call < 0)
1632 return pc_rtx;
1633
1634 /* Since x and y are passed to a libcall, mark the corresponding
1635 tree EXPR as addressable. */
1636 tree y_expr = MEM_EXPR (y);
1637 tree x_expr = MEM_EXPR (x);
1638 if (y_expr)
1639 mark_addressable (y_expr);
1640 if (x_expr)
1641 mark_addressable (x_expr);
1642 retval = emit_block_copy_via_libcall (x, y, size,
1643 method == BLOCK_OP_TAILCALL);
1644 }
1645
1646 else
1647 emit_block_move_via_loop (x, y, size, align);
1648
1649 if (method == BLOCK_OP_CALL_PARM)
1650 OK_DEFER_POP;
1651
1652 return retval;
1653 }
1654
1655 rtx
1656 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1657 {
1658 unsigned HOST_WIDE_INT max, min = 0;
1659 if (GET_CODE (size) == CONST_INT)
1660 min = max = UINTVAL (size);
1661 else
1662 max = GET_MODE_MASK (GET_MODE (size));
1663 return emit_block_move_hints (x, y, size, method, 0, -1,
1664 min, max, max);
1665 }
1666
1667 /* A subroutine of emit_block_move. Returns true if calling the
1668 block move libcall will not clobber any parameters which may have
1669 already been placed on the stack. */
1670
1671 static bool
1672 block_move_libcall_safe_for_call_parm (void)
1673 {
1674 #if defined (REG_PARM_STACK_SPACE)
1675 tree fn;
1676 #endif
1677
1678 /* If arguments are pushed on the stack, then they're safe. */
1679 if (PUSH_ARGS)
1680 return true;
1681
1682 /* If registers go on the stack anyway, any argument is sure to clobber
1683 an outgoing argument. */
1684 #if defined (REG_PARM_STACK_SPACE)
1685 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1686 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1687 depend on its argument. */
1688 (void) fn;
1689 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1690 && REG_PARM_STACK_SPACE (fn) != 0)
1691 return false;
1692 #endif
1693
1694 /* If any argument goes in memory, then it might clobber an outgoing
1695 argument. */
1696 {
1697 CUMULATIVE_ARGS args_so_far_v;
1698 cumulative_args_t args_so_far;
1699 tree fn, arg;
1700
1701 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1702 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1703 args_so_far = pack_cumulative_args (&args_so_far_v);
1704
1705 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1706 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1707 {
1708 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1709 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1710 NULL_TREE, true);
1711 if (!tmp || !REG_P (tmp))
1712 return false;
1713 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1714 return false;
1715 targetm.calls.function_arg_advance (args_so_far, mode,
1716 NULL_TREE, true);
1717 }
1718 }
1719 return true;
1720 }
1721
1722 /* A subroutine of emit_block_move. Expand a movmem pattern;
1723 return true if successful. */
1724
1725 static bool
1726 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1727 unsigned int expected_align, HOST_WIDE_INT expected_size,
1728 unsigned HOST_WIDE_INT min_size,
1729 unsigned HOST_WIDE_INT max_size,
1730 unsigned HOST_WIDE_INT probable_max_size)
1731 {
1732 int save_volatile_ok = volatile_ok;
1733
1734 if (expected_align < align)
1735 expected_align = align;
1736 if (expected_size != -1)
1737 {
1738 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1739 expected_size = probable_max_size;
1740 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1741 expected_size = min_size;
1742 }
1743
1744 /* Since this is a move insn, we don't care about volatility. */
1745 volatile_ok = 1;
1746
1747 /* Try the most limited insn first, because there's no point
1748 including more than one in the machine description unless
1749 the more limited one has some advantage. */
1750
1751 opt_scalar_int_mode mode_iter;
1752 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1753 {
1754 scalar_int_mode mode = mode_iter.require ();
1755 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1756
1757 if (code != CODE_FOR_nothing
1758 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1759 here because if SIZE is less than the mode mask, as it is
1760 returned by the macro, it will definitely be less than the
1761 actual mode mask. Since SIZE is within the Pmode address
1762 space, we limit MODE to Pmode. */
1763 && ((CONST_INT_P (size)
1764 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1765 <= (GET_MODE_MASK (mode) >> 1)))
1766 || max_size <= (GET_MODE_MASK (mode) >> 1)
1767 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1768 {
1769 struct expand_operand ops[9];
1770 unsigned int nops;
1771
1772 /* ??? When called via emit_block_move_for_call, it'd be
1773 nice if there were some way to inform the backend, so
1774 that it doesn't fail the expansion because it thinks
1775 emitting the libcall would be more efficient. */
1776 nops = insn_data[(int) code].n_generator_args;
1777 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1778
1779 create_fixed_operand (&ops[0], x);
1780 create_fixed_operand (&ops[1], y);
1781 /* The check above guarantees that this size conversion is valid. */
1782 create_convert_operand_to (&ops[2], size, mode, true);
1783 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1784 if (nops >= 6)
1785 {
1786 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1787 create_integer_operand (&ops[5], expected_size);
1788 }
1789 if (nops >= 8)
1790 {
1791 create_integer_operand (&ops[6], min_size);
1792 /* If we can not represent the maximal size,
1793 make parameter NULL. */
1794 if ((HOST_WIDE_INT) max_size != -1)
1795 create_integer_operand (&ops[7], max_size);
1796 else
1797 create_fixed_operand (&ops[7], NULL);
1798 }
1799 if (nops == 9)
1800 {
1801 /* If we can not represent the maximal size,
1802 make parameter NULL. */
1803 if ((HOST_WIDE_INT) probable_max_size != -1)
1804 create_integer_operand (&ops[8], probable_max_size);
1805 else
1806 create_fixed_operand (&ops[8], NULL);
1807 }
1808 if (maybe_expand_insn (code, nops, ops))
1809 {
1810 volatile_ok = save_volatile_ok;
1811 return true;
1812 }
1813 }
1814 }
1815
1816 volatile_ok = save_volatile_ok;
1817 return false;
1818 }
1819
1820 /* A subroutine of emit_block_move. Copy the data via an explicit
1821 loop. This is used only when libcalls are forbidden. */
1822 /* ??? It'd be nice to copy in hunks larger than QImode. */
1823
1824 static void
1825 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1826 unsigned int align ATTRIBUTE_UNUSED)
1827 {
1828 rtx_code_label *cmp_label, *top_label;
1829 rtx iter, x_addr, y_addr, tmp;
1830 machine_mode x_addr_mode = get_address_mode (x);
1831 machine_mode y_addr_mode = get_address_mode (y);
1832 machine_mode iter_mode;
1833
1834 iter_mode = GET_MODE (size);
1835 if (iter_mode == VOIDmode)
1836 iter_mode = word_mode;
1837
1838 top_label = gen_label_rtx ();
1839 cmp_label = gen_label_rtx ();
1840 iter = gen_reg_rtx (iter_mode);
1841
1842 emit_move_insn (iter, const0_rtx);
1843
1844 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1845 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1846 do_pending_stack_adjust ();
1847
1848 emit_jump (cmp_label);
1849 emit_label (top_label);
1850
1851 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1852 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1853
1854 if (x_addr_mode != y_addr_mode)
1855 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1856 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1857
1858 x = change_address (x, QImode, x_addr);
1859 y = change_address (y, QImode, y_addr);
1860
1861 emit_move_insn (x, y);
1862
1863 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1864 true, OPTAB_LIB_WIDEN);
1865 if (tmp != iter)
1866 emit_move_insn (iter, tmp);
1867
1868 emit_label (cmp_label);
1869
1870 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1871 true, top_label,
1872 profile_probability::guessed_always ()
1873 .apply_scale (9, 10));
1874 }
1875 \f
1876 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1877 TAILCALL is true if this is a tail call. */
1878
1879 rtx
1880 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1881 rtx size, bool tailcall)
1882 {
1883 rtx dst_addr, src_addr;
1884 tree call_expr, dst_tree, src_tree, size_tree;
1885 machine_mode size_mode;
1886
1887 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1888 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1889 dst_tree = make_tree (ptr_type_node, dst_addr);
1890
1891 src_addr = copy_addr_to_reg (XEXP (src, 0));
1892 src_addr = convert_memory_address (ptr_mode, src_addr);
1893 src_tree = make_tree (ptr_type_node, src_addr);
1894
1895 size_mode = TYPE_MODE (sizetype);
1896 size = convert_to_mode (size_mode, size, 1);
1897 size = copy_to_mode_reg (size_mode, size);
1898 size_tree = make_tree (sizetype, size);
1899
1900 /* It is incorrect to use the libcall calling conventions for calls to
1901 memcpy/memmove/memcmp because they can be provided by the user. */
1902 tree fn = builtin_decl_implicit (fncode);
1903 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1904 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1905
1906 return expand_call (call_expr, NULL_RTX, false);
1907 }
1908
1909 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1910 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1911 otherwise return null. */
1912
1913 rtx
1914 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1915 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1916 HOST_WIDE_INT align)
1917 {
1918 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1919
1920 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1921 target = NULL_RTX;
1922
1923 struct expand_operand ops[5];
1924 create_output_operand (&ops[0], target, insn_mode);
1925 create_fixed_operand (&ops[1], arg1_rtx);
1926 create_fixed_operand (&ops[2], arg2_rtx);
1927 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1928 TYPE_UNSIGNED (arg3_type));
1929 create_integer_operand (&ops[4], align);
1930 if (maybe_expand_insn (icode, 5, ops))
1931 return ops[0].value;
1932 return NULL_RTX;
1933 }
1934
1935 /* Expand a block compare between X and Y with length LEN using the
1936 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1937 of the expression that was used to calculate the length. ALIGN
1938 gives the known minimum common alignment. */
1939
1940 static rtx
1941 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1942 unsigned align)
1943 {
1944 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1945 implementing memcmp because it will stop if it encounters two
1946 zero bytes. */
1947 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1948
1949 if (icode == CODE_FOR_nothing)
1950 return NULL_RTX;
1951
1952 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1953 }
1954
1955 /* Emit code to compare a block Y to a block X. This may be done with
1956 string-compare instructions, with multiple scalar instructions,
1957 or with a library call.
1958
1959 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1960 they are. LEN_TYPE is the type of the expression that was used to
1961 calculate it.
1962
1963 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1964 value of a normal memcmp call, instead we can just compare for equality.
1965 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1966 returning NULL_RTX.
1967
1968 Optionally, the caller can pass a constfn and associated data in Y_CFN
1969 and Y_CFN_DATA. describing that the second operand being compared is a
1970 known constant and how to obtain its data.
1971 Return the result of the comparison, or NULL_RTX if we failed to
1972 perform the operation. */
1973
1974 rtx
1975 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1976 bool equality_only, by_pieces_constfn y_cfn,
1977 void *y_cfndata)
1978 {
1979 rtx result = 0;
1980
1981 if (CONST_INT_P (len) && INTVAL (len) == 0)
1982 return const0_rtx;
1983
1984 gcc_assert (MEM_P (x) && MEM_P (y));
1985 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1986 gcc_assert (align >= BITS_PER_UNIT);
1987
1988 x = adjust_address (x, BLKmode, 0);
1989 y = adjust_address (y, BLKmode, 0);
1990
1991 if (equality_only
1992 && CONST_INT_P (len)
1993 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1994 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1995 y_cfn, y_cfndata);
1996 else
1997 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1998
1999 return result;
2000 }
2001 \f
2002 /* Copy all or part of a value X into registers starting at REGNO.
2003 The number of registers to be filled is NREGS. */
2004
2005 void
2006 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2007 {
2008 if (nregs == 0)
2009 return;
2010
2011 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2012 x = validize_mem (force_const_mem (mode, x));
2013
2014 /* See if the machine can do this with a load multiple insn. */
2015 if (targetm.have_load_multiple ())
2016 {
2017 rtx_insn *last = get_last_insn ();
2018 rtx first = gen_rtx_REG (word_mode, regno);
2019 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2020 GEN_INT (nregs)))
2021 {
2022 emit_insn (pat);
2023 return;
2024 }
2025 else
2026 delete_insns_since (last);
2027 }
2028
2029 for (int i = 0; i < nregs; i++)
2030 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2031 operand_subword_force (x, i, mode));
2032 }
2033
2034 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2035 The number of registers to be filled is NREGS. */
2036
2037 void
2038 move_block_from_reg (int regno, rtx x, int nregs)
2039 {
2040 if (nregs == 0)
2041 return;
2042
2043 /* See if the machine can do this with a store multiple insn. */
2044 if (targetm.have_store_multiple ())
2045 {
2046 rtx_insn *last = get_last_insn ();
2047 rtx first = gen_rtx_REG (word_mode, regno);
2048 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2049 GEN_INT (nregs)))
2050 {
2051 emit_insn (pat);
2052 return;
2053 }
2054 else
2055 delete_insns_since (last);
2056 }
2057
2058 for (int i = 0; i < nregs; i++)
2059 {
2060 rtx tem = operand_subword (x, i, 1, BLKmode);
2061
2062 gcc_assert (tem);
2063
2064 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2065 }
2066 }
2067
2068 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2069 ORIG, where ORIG is a non-consecutive group of registers represented by
2070 a PARALLEL. The clone is identical to the original except in that the
2071 original set of registers is replaced by a new set of pseudo registers.
2072 The new set has the same modes as the original set. */
2073
2074 rtx
2075 gen_group_rtx (rtx orig)
2076 {
2077 int i, length;
2078 rtx *tmps;
2079
2080 gcc_assert (GET_CODE (orig) == PARALLEL);
2081
2082 length = XVECLEN (orig, 0);
2083 tmps = XALLOCAVEC (rtx, length);
2084
2085 /* Skip a NULL entry in first slot. */
2086 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2087
2088 if (i)
2089 tmps[0] = 0;
2090
2091 for (; i < length; i++)
2092 {
2093 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2094 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2095
2096 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2097 }
2098
2099 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2100 }
2101
2102 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2103 except that values are placed in TMPS[i], and must later be moved
2104 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2105
2106 static void
2107 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2108 poly_int64 ssize)
2109 {
2110 rtx src;
2111 int start, i;
2112 machine_mode m = GET_MODE (orig_src);
2113
2114 gcc_assert (GET_CODE (dst) == PARALLEL);
2115
2116 if (m != VOIDmode
2117 && !SCALAR_INT_MODE_P (m)
2118 && !MEM_P (orig_src)
2119 && GET_CODE (orig_src) != CONCAT)
2120 {
2121 scalar_int_mode imode;
2122 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2123 {
2124 src = gen_reg_rtx (imode);
2125 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2126 }
2127 else
2128 {
2129 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2130 emit_move_insn (src, orig_src);
2131 }
2132 emit_group_load_1 (tmps, dst, src, type, ssize);
2133 return;
2134 }
2135
2136 /* Check for a NULL entry, used to indicate that the parameter goes
2137 both on the stack and in registers. */
2138 if (XEXP (XVECEXP (dst, 0, 0), 0))
2139 start = 0;
2140 else
2141 start = 1;
2142
2143 /* Process the pieces. */
2144 for (i = start; i < XVECLEN (dst, 0); i++)
2145 {
2146 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2147 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2148 poly_int64 bytelen = GET_MODE_SIZE (mode);
2149 poly_int64 shift = 0;
2150
2151 /* Handle trailing fragments that run over the size of the struct.
2152 It's the target's responsibility to make sure that the fragment
2153 cannot be strictly smaller in some cases and strictly larger
2154 in others. */
2155 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2156 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2157 {
2158 /* Arrange to shift the fragment to where it belongs.
2159 extract_bit_field loads to the lsb of the reg. */
2160 if (
2161 #ifdef BLOCK_REG_PADDING
2162 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2163 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2164 #else
2165 BYTES_BIG_ENDIAN
2166 #endif
2167 )
2168 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2169 bytelen = ssize - bytepos;
2170 gcc_assert (maybe_gt (bytelen, 0));
2171 }
2172
2173 /* If we won't be loading directly from memory, protect the real source
2174 from strange tricks we might play; but make sure that the source can
2175 be loaded directly into the destination. */
2176 src = orig_src;
2177 if (!MEM_P (orig_src)
2178 && (!CONSTANT_P (orig_src)
2179 || (GET_MODE (orig_src) != mode
2180 && GET_MODE (orig_src) != VOIDmode)))
2181 {
2182 if (GET_MODE (orig_src) == VOIDmode)
2183 src = gen_reg_rtx (mode);
2184 else
2185 src = gen_reg_rtx (GET_MODE (orig_src));
2186
2187 emit_move_insn (src, orig_src);
2188 }
2189
2190 /* Optimize the access just a bit. */
2191 if (MEM_P (src)
2192 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2193 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2194 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2195 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2196 {
2197 tmps[i] = gen_reg_rtx (mode);
2198 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2199 }
2200 else if (COMPLEX_MODE_P (mode)
2201 && GET_MODE (src) == mode
2202 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2203 /* Let emit_move_complex do the bulk of the work. */
2204 tmps[i] = src;
2205 else if (GET_CODE (src) == CONCAT)
2206 {
2207 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2208 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2209 unsigned int elt;
2210 poly_int64 subpos;
2211
2212 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2213 && known_le (subpos + bytelen, slen0))
2214 {
2215 /* The following assumes that the concatenated objects all
2216 have the same size. In this case, a simple calculation
2217 can be used to determine the object and the bit field
2218 to be extracted. */
2219 tmps[i] = XEXP (src, elt);
2220 if (maybe_ne (subpos, 0)
2221 || maybe_ne (subpos + bytelen, slen0)
2222 || (!CONSTANT_P (tmps[i])
2223 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2224 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2225 subpos * BITS_PER_UNIT,
2226 1, NULL_RTX, mode, mode, false,
2227 NULL);
2228 }
2229 else
2230 {
2231 rtx mem;
2232
2233 gcc_assert (known_eq (bytepos, 0));
2234 mem = assign_stack_temp (GET_MODE (src), slen);
2235 emit_move_insn (mem, src);
2236 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2237 0, 1, NULL_RTX, mode, mode, false,
2238 NULL);
2239 }
2240 }
2241 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2242 SIMD register, which is currently broken. While we get GCC
2243 to emit proper RTL for these cases, let's dump to memory. */
2244 else if (VECTOR_MODE_P (GET_MODE (dst))
2245 && REG_P (src))
2246 {
2247 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2248 rtx mem;
2249
2250 mem = assign_stack_temp (GET_MODE (src), slen);
2251 emit_move_insn (mem, src);
2252 tmps[i] = adjust_address (mem, mode, bytepos);
2253 }
2254 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2255 && XVECLEN (dst, 0) > 1)
2256 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2257 else if (CONSTANT_P (src))
2258 {
2259 if (known_eq (bytelen, ssize))
2260 tmps[i] = src;
2261 else
2262 {
2263 rtx first, second;
2264
2265 /* TODO: const_wide_int can have sizes other than this... */
2266 gcc_assert (known_eq (2 * bytelen, ssize));
2267 split_double (src, &first, &second);
2268 if (i)
2269 tmps[i] = second;
2270 else
2271 tmps[i] = first;
2272 }
2273 }
2274 else if (REG_P (src) && GET_MODE (src) == mode)
2275 tmps[i] = src;
2276 else
2277 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2278 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2279 mode, mode, false, NULL);
2280
2281 if (maybe_ne (shift, 0))
2282 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2283 shift, tmps[i], 0);
2284 }
2285 }
2286
2287 /* Emit code to move a block SRC of type TYPE to a block DST,
2288 where DST is non-consecutive registers represented by a PARALLEL.
2289 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2290 if not known. */
2291
2292 void
2293 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2294 {
2295 rtx *tmps;
2296 int i;
2297
2298 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2299 emit_group_load_1 (tmps, dst, src, type, ssize);
2300
2301 /* Copy the extracted pieces into the proper (probable) hard regs. */
2302 for (i = 0; i < XVECLEN (dst, 0); i++)
2303 {
2304 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2305 if (d == NULL)
2306 continue;
2307 emit_move_insn (d, tmps[i]);
2308 }
2309 }
2310
2311 /* Similar, but load SRC into new pseudos in a format that looks like
2312 PARALLEL. This can later be fed to emit_group_move to get things
2313 in the right place. */
2314
2315 rtx
2316 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2317 {
2318 rtvec vec;
2319 int i;
2320
2321 vec = rtvec_alloc (XVECLEN (parallel, 0));
2322 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2323
2324 /* Convert the vector to look just like the original PARALLEL, except
2325 with the computed values. */
2326 for (i = 0; i < XVECLEN (parallel, 0); i++)
2327 {
2328 rtx e = XVECEXP (parallel, 0, i);
2329 rtx d = XEXP (e, 0);
2330
2331 if (d)
2332 {
2333 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2334 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2335 }
2336 RTVEC_ELT (vec, i) = e;
2337 }
2338
2339 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2340 }
2341
2342 /* Emit code to move a block SRC to block DST, where SRC and DST are
2343 non-consecutive groups of registers, each represented by a PARALLEL. */
2344
2345 void
2346 emit_group_move (rtx dst, rtx src)
2347 {
2348 int i;
2349
2350 gcc_assert (GET_CODE (src) == PARALLEL
2351 && GET_CODE (dst) == PARALLEL
2352 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2353
2354 /* Skip first entry if NULL. */
2355 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2356 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2357 XEXP (XVECEXP (src, 0, i), 0));
2358 }
2359
2360 /* Move a group of registers represented by a PARALLEL into pseudos. */
2361
2362 rtx
2363 emit_group_move_into_temps (rtx src)
2364 {
2365 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2366 int i;
2367
2368 for (i = 0; i < XVECLEN (src, 0); i++)
2369 {
2370 rtx e = XVECEXP (src, 0, i);
2371 rtx d = XEXP (e, 0);
2372
2373 if (d)
2374 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2375 RTVEC_ELT (vec, i) = e;
2376 }
2377
2378 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2379 }
2380
2381 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2382 where SRC is non-consecutive registers represented by a PARALLEL.
2383 SSIZE represents the total size of block ORIG_DST, or -1 if not
2384 known. */
2385
2386 void
2387 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2388 poly_int64 ssize)
2389 {
2390 rtx *tmps, dst;
2391 int start, finish, i;
2392 machine_mode m = GET_MODE (orig_dst);
2393
2394 gcc_assert (GET_CODE (src) == PARALLEL);
2395
2396 if (!SCALAR_INT_MODE_P (m)
2397 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2398 {
2399 scalar_int_mode imode;
2400 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2401 {
2402 dst = gen_reg_rtx (imode);
2403 emit_group_store (dst, src, type, ssize);
2404 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2405 }
2406 else
2407 {
2408 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2409 emit_group_store (dst, src, type, ssize);
2410 }
2411 emit_move_insn (orig_dst, dst);
2412 return;
2413 }
2414
2415 /* Check for a NULL entry, used to indicate that the parameter goes
2416 both on the stack and in registers. */
2417 if (XEXP (XVECEXP (src, 0, 0), 0))
2418 start = 0;
2419 else
2420 start = 1;
2421 finish = XVECLEN (src, 0);
2422
2423 tmps = XALLOCAVEC (rtx, finish);
2424
2425 /* Copy the (probable) hard regs into pseudos. */
2426 for (i = start; i < finish; i++)
2427 {
2428 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2429 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2430 {
2431 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2432 emit_move_insn (tmps[i], reg);
2433 }
2434 else
2435 tmps[i] = reg;
2436 }
2437
2438 /* If we won't be storing directly into memory, protect the real destination
2439 from strange tricks we might play. */
2440 dst = orig_dst;
2441 if (GET_CODE (dst) == PARALLEL)
2442 {
2443 rtx temp;
2444
2445 /* We can get a PARALLEL dst if there is a conditional expression in
2446 a return statement. In that case, the dst and src are the same,
2447 so no action is necessary. */
2448 if (rtx_equal_p (dst, src))
2449 return;
2450
2451 /* It is unclear if we can ever reach here, but we may as well handle
2452 it. Allocate a temporary, and split this into a store/load to/from
2453 the temporary. */
2454 temp = assign_stack_temp (GET_MODE (dst), ssize);
2455 emit_group_store (temp, src, type, ssize);
2456 emit_group_load (dst, temp, type, ssize);
2457 return;
2458 }
2459 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2460 {
2461 machine_mode outer = GET_MODE (dst);
2462 machine_mode inner;
2463 poly_int64 bytepos;
2464 bool done = false;
2465 rtx temp;
2466
2467 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2468 dst = gen_reg_rtx (outer);
2469
2470 /* Make life a bit easier for combine. */
2471 /* If the first element of the vector is the low part
2472 of the destination mode, use a paradoxical subreg to
2473 initialize the destination. */
2474 if (start < finish)
2475 {
2476 inner = GET_MODE (tmps[start]);
2477 bytepos = subreg_lowpart_offset (inner, outer);
2478 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2479 bytepos))
2480 {
2481 temp = simplify_gen_subreg (outer, tmps[start],
2482 inner, 0);
2483 if (temp)
2484 {
2485 emit_move_insn (dst, temp);
2486 done = true;
2487 start++;
2488 }
2489 }
2490 }
2491
2492 /* If the first element wasn't the low part, try the last. */
2493 if (!done
2494 && start < finish - 1)
2495 {
2496 inner = GET_MODE (tmps[finish - 1]);
2497 bytepos = subreg_lowpart_offset (inner, outer);
2498 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2499 finish - 1), 1)),
2500 bytepos))
2501 {
2502 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2503 inner, 0);
2504 if (temp)
2505 {
2506 emit_move_insn (dst, temp);
2507 done = true;
2508 finish--;
2509 }
2510 }
2511 }
2512
2513 /* Otherwise, simply initialize the result to zero. */
2514 if (!done)
2515 emit_move_insn (dst, CONST0_RTX (outer));
2516 }
2517
2518 /* Process the pieces. */
2519 for (i = start; i < finish; i++)
2520 {
2521 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2522 machine_mode mode = GET_MODE (tmps[i]);
2523 poly_int64 bytelen = GET_MODE_SIZE (mode);
2524 poly_uint64 adj_bytelen;
2525 rtx dest = dst;
2526
2527 /* Handle trailing fragments that run over the size of the struct.
2528 It's the target's responsibility to make sure that the fragment
2529 cannot be strictly smaller in some cases and strictly larger
2530 in others. */
2531 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2532 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2533 adj_bytelen = ssize - bytepos;
2534 else
2535 adj_bytelen = bytelen;
2536
2537 if (GET_CODE (dst) == CONCAT)
2538 {
2539 if (known_le (bytepos + adj_bytelen,
2540 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2541 dest = XEXP (dst, 0);
2542 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2543 {
2544 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2545 dest = XEXP (dst, 1);
2546 }
2547 else
2548 {
2549 machine_mode dest_mode = GET_MODE (dest);
2550 machine_mode tmp_mode = GET_MODE (tmps[i]);
2551
2552 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2553
2554 if (GET_MODE_ALIGNMENT (dest_mode)
2555 >= GET_MODE_ALIGNMENT (tmp_mode))
2556 {
2557 dest = assign_stack_temp (dest_mode,
2558 GET_MODE_SIZE (dest_mode));
2559 emit_move_insn (adjust_address (dest,
2560 tmp_mode,
2561 bytepos),
2562 tmps[i]);
2563 dst = dest;
2564 }
2565 else
2566 {
2567 dest = assign_stack_temp (tmp_mode,
2568 GET_MODE_SIZE (tmp_mode));
2569 emit_move_insn (dest, tmps[i]);
2570 dst = adjust_address (dest, dest_mode, bytepos);
2571 }
2572 break;
2573 }
2574 }
2575
2576 /* Handle trailing fragments that run over the size of the struct. */
2577 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2578 {
2579 /* store_bit_field always takes its value from the lsb.
2580 Move the fragment to the lsb if it's not already there. */
2581 if (
2582 #ifdef BLOCK_REG_PADDING
2583 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2584 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2585 #else
2586 BYTES_BIG_ENDIAN
2587 #endif
2588 )
2589 {
2590 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2591 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2592 shift, tmps[i], 0);
2593 }
2594
2595 /* Make sure not to write past the end of the struct. */
2596 store_bit_field (dest,
2597 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2598 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2599 VOIDmode, tmps[i], false);
2600 }
2601
2602 /* Optimize the access just a bit. */
2603 else if (MEM_P (dest)
2604 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2605 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2606 && multiple_p (bytepos * BITS_PER_UNIT,
2607 GET_MODE_ALIGNMENT (mode))
2608 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2609 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2610
2611 else
2612 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2613 0, 0, mode, tmps[i], false);
2614 }
2615
2616 /* Copy from the pseudo into the (probable) hard reg. */
2617 if (orig_dst != dst)
2618 emit_move_insn (orig_dst, dst);
2619 }
2620
2621 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2622 of the value stored in X. */
2623
2624 rtx
2625 maybe_emit_group_store (rtx x, tree type)
2626 {
2627 machine_mode mode = TYPE_MODE (type);
2628 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2629 if (GET_CODE (x) == PARALLEL)
2630 {
2631 rtx result = gen_reg_rtx (mode);
2632 emit_group_store (result, x, type, int_size_in_bytes (type));
2633 return result;
2634 }
2635 return x;
2636 }
2637
2638 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2639
2640 This is used on targets that return BLKmode values in registers. */
2641
2642 static void
2643 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2644 {
2645 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2646 rtx src = NULL, dst = NULL;
2647 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2648 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2649 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2650 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2651 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2652 fixed_size_mode copy_mode;
2653
2654 /* BLKmode registers created in the back-end shouldn't have survived. */
2655 gcc_assert (mode != BLKmode);
2656
2657 /* If the structure doesn't take up a whole number of words, see whether
2658 SRCREG is padded on the left or on the right. If it's on the left,
2659 set PADDING_CORRECTION to the number of bits to skip.
2660
2661 In most ABIs, the structure will be returned at the least end of
2662 the register, which translates to right padding on little-endian
2663 targets and left padding on big-endian targets. The opposite
2664 holds if the structure is returned at the most significant
2665 end of the register. */
2666 if (bytes % UNITS_PER_WORD != 0
2667 && (targetm.calls.return_in_msb (type)
2668 ? !BYTES_BIG_ENDIAN
2669 : BYTES_BIG_ENDIAN))
2670 padding_correction
2671 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2672
2673 /* We can use a single move if we have an exact mode for the size. */
2674 else if (MEM_P (target)
2675 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2676 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2677 && bytes == GET_MODE_SIZE (mode))
2678 {
2679 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2680 return;
2681 }
2682
2683 /* And if we additionally have the same mode for a register. */
2684 else if (REG_P (target)
2685 && GET_MODE (target) == mode
2686 && bytes == GET_MODE_SIZE (mode))
2687 {
2688 emit_move_insn (target, srcreg);
2689 return;
2690 }
2691
2692 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2693 into a new pseudo which is a full word. */
2694 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2695 {
2696 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2697 mode = word_mode;
2698 }
2699
2700 /* Copy the structure BITSIZE bits at a time. If the target lives in
2701 memory, take care of not reading/writing past its end by selecting
2702 a copy mode suited to BITSIZE. This should always be possible given
2703 how it is computed.
2704
2705 If the target lives in register, make sure not to select a copy mode
2706 larger than the mode of the register.
2707
2708 We could probably emit more efficient code for machines which do not use
2709 strict alignment, but it doesn't seem worth the effort at the current
2710 time. */
2711
2712 copy_mode = word_mode;
2713 if (MEM_P (target))
2714 {
2715 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2716 if (mem_mode.exists ())
2717 copy_mode = mem_mode.require ();
2718 }
2719 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2720 copy_mode = tmode;
2721
2722 for (bitpos = 0, xbitpos = padding_correction;
2723 bitpos < bytes * BITS_PER_UNIT;
2724 bitpos += bitsize, xbitpos += bitsize)
2725 {
2726 /* We need a new source operand each time xbitpos is on a
2727 word boundary and when xbitpos == padding_correction
2728 (the first time through). */
2729 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2730 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2731
2732 /* We need a new destination operand each time bitpos is on
2733 a word boundary. */
2734 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2735 dst = target;
2736 else if (bitpos % BITS_PER_WORD == 0)
2737 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2738
2739 /* Use xbitpos for the source extraction (right justified) and
2740 bitpos for the destination store (left justified). */
2741 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2742 extract_bit_field (src, bitsize,
2743 xbitpos % BITS_PER_WORD, 1,
2744 NULL_RTX, copy_mode, copy_mode,
2745 false, NULL),
2746 false);
2747 }
2748 }
2749
2750 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2751 register if it contains any data, otherwise return null.
2752
2753 This is used on targets that return BLKmode values in registers. */
2754
2755 rtx
2756 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2757 {
2758 int i, n_regs;
2759 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2760 unsigned int bitsize;
2761 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2762 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2763 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2764 fixed_size_mode dst_mode;
2765 scalar_int_mode min_mode;
2766
2767 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2768
2769 x = expand_normal (src);
2770
2771 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2772 if (bytes == 0)
2773 return NULL_RTX;
2774
2775 /* If the structure doesn't take up a whole number of words, see
2776 whether the register value should be padded on the left or on
2777 the right. Set PADDING_CORRECTION to the number of padding
2778 bits needed on the left side.
2779
2780 In most ABIs, the structure will be returned at the least end of
2781 the register, which translates to right padding on little-endian
2782 targets and left padding on big-endian targets. The opposite
2783 holds if the structure is returned at the most significant
2784 end of the register. */
2785 if (bytes % UNITS_PER_WORD != 0
2786 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2787 ? !BYTES_BIG_ENDIAN
2788 : BYTES_BIG_ENDIAN))
2789 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2790 * BITS_PER_UNIT));
2791
2792 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2793 dst_words = XALLOCAVEC (rtx, n_regs);
2794 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2795 min_mode = smallest_int_mode_for_size (bitsize);
2796
2797 /* Copy the structure BITSIZE bits at a time. */
2798 for (bitpos = 0, xbitpos = padding_correction;
2799 bitpos < bytes * BITS_PER_UNIT;
2800 bitpos += bitsize, xbitpos += bitsize)
2801 {
2802 /* We need a new destination pseudo each time xbitpos is
2803 on a word boundary and when xbitpos == padding_correction
2804 (the first time through). */
2805 if (xbitpos % BITS_PER_WORD == 0
2806 || xbitpos == padding_correction)
2807 {
2808 /* Generate an appropriate register. */
2809 dst_word = gen_reg_rtx (word_mode);
2810 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2811
2812 /* Clear the destination before we move anything into it. */
2813 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2814 }
2815
2816 /* Find the largest integer mode that can be used to copy all or as
2817 many bits as possible of the structure if the target supports larger
2818 copies. There are too many corner cases here w.r.t to alignments on
2819 the read/writes. So if there is any padding just use single byte
2820 operations. */
2821 opt_scalar_int_mode mode_iter;
2822 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2823 {
2824 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2825 {
2826 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2827 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2828 && msize <= BITS_PER_WORD)
2829 bitsize = msize;
2830 else
2831 break;
2832 }
2833 }
2834
2835 /* We need a new source operand each time bitpos is on a word
2836 boundary. */
2837 if (bitpos % BITS_PER_WORD == 0)
2838 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2839
2840 /* Use bitpos for the source extraction (left justified) and
2841 xbitpos for the destination store (right justified). */
2842 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2843 0, 0, word_mode,
2844 extract_bit_field (src_word, bitsize,
2845 bitpos % BITS_PER_WORD, 1,
2846 NULL_RTX, word_mode, word_mode,
2847 false, NULL),
2848 false);
2849 }
2850
2851 if (mode == BLKmode)
2852 {
2853 /* Find the smallest integer mode large enough to hold the
2854 entire structure. */
2855 opt_scalar_int_mode mode_iter;
2856 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2857 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2858 break;
2859
2860 /* A suitable mode should have been found. */
2861 mode = mode_iter.require ();
2862 }
2863
2864 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2865 dst_mode = word_mode;
2866 else
2867 dst_mode = mode;
2868 dst = gen_reg_rtx (dst_mode);
2869
2870 for (i = 0; i < n_regs; i++)
2871 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2872
2873 if (mode != dst_mode)
2874 dst = gen_lowpart (mode, dst);
2875
2876 return dst;
2877 }
2878
2879 /* Add a USE expression for REG to the (possibly empty) list pointed
2880 to by CALL_FUSAGE. REG must denote a hard register. */
2881
2882 void
2883 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2884 {
2885 gcc_assert (REG_P (reg));
2886
2887 if (!HARD_REGISTER_P (reg))
2888 return;
2889
2890 *call_fusage
2891 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2892 }
2893
2894 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2895 to by CALL_FUSAGE. REG must denote a hard register. */
2896
2897 void
2898 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2899 {
2900 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2901
2902 *call_fusage
2903 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2904 }
2905
2906 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2907 starting at REGNO. All of these registers must be hard registers. */
2908
2909 void
2910 use_regs (rtx *call_fusage, int regno, int nregs)
2911 {
2912 int i;
2913
2914 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2915
2916 for (i = 0; i < nregs; i++)
2917 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2918 }
2919
2920 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2921 PARALLEL REGS. This is for calls that pass values in multiple
2922 non-contiguous locations. The Irix 6 ABI has examples of this. */
2923
2924 void
2925 use_group_regs (rtx *call_fusage, rtx regs)
2926 {
2927 int i;
2928
2929 for (i = 0; i < XVECLEN (regs, 0); i++)
2930 {
2931 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2932
2933 /* A NULL entry means the parameter goes both on the stack and in
2934 registers. This can also be a MEM for targets that pass values
2935 partially on the stack and partially in registers. */
2936 if (reg != 0 && REG_P (reg))
2937 use_reg (call_fusage, reg);
2938 }
2939 }
2940
2941 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2942 assigment and the code of the expresion on the RHS is CODE. Return
2943 NULL otherwise. */
2944
2945 static gimple *
2946 get_def_for_expr (tree name, enum tree_code code)
2947 {
2948 gimple *def_stmt;
2949
2950 if (TREE_CODE (name) != SSA_NAME)
2951 return NULL;
2952
2953 def_stmt = get_gimple_for_ssa_name (name);
2954 if (!def_stmt
2955 || gimple_assign_rhs_code (def_stmt) != code)
2956 return NULL;
2957
2958 return def_stmt;
2959 }
2960
2961 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2962 assigment and the class of the expresion on the RHS is CLASS. Return
2963 NULL otherwise. */
2964
2965 static gimple *
2966 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2967 {
2968 gimple *def_stmt;
2969
2970 if (TREE_CODE (name) != SSA_NAME)
2971 return NULL;
2972
2973 def_stmt = get_gimple_for_ssa_name (name);
2974 if (!def_stmt
2975 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2976 return NULL;
2977
2978 return def_stmt;
2979 }
2980 \f
2981 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2982 its length in bytes. */
2983
2984 rtx
2985 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2986 unsigned int expected_align, HOST_WIDE_INT expected_size,
2987 unsigned HOST_WIDE_INT min_size,
2988 unsigned HOST_WIDE_INT max_size,
2989 unsigned HOST_WIDE_INT probable_max_size)
2990 {
2991 machine_mode mode = GET_MODE (object);
2992 unsigned int align;
2993
2994 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2995
2996 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2997 just move a zero. Otherwise, do this a piece at a time. */
2998 poly_int64 size_val;
2999 if (mode != BLKmode
3000 && poly_int_rtx_p (size, &size_val)
3001 && known_eq (size_val, GET_MODE_SIZE (mode)))
3002 {
3003 rtx zero = CONST0_RTX (mode);
3004 if (zero != NULL)
3005 {
3006 emit_move_insn (object, zero);
3007 return NULL;
3008 }
3009
3010 if (COMPLEX_MODE_P (mode))
3011 {
3012 zero = CONST0_RTX (GET_MODE_INNER (mode));
3013 if (zero != NULL)
3014 {
3015 write_complex_part (object, zero, 0);
3016 write_complex_part (object, zero, 1);
3017 return NULL;
3018 }
3019 }
3020 }
3021
3022 if (size == const0_rtx)
3023 return NULL;
3024
3025 align = MEM_ALIGN (object);
3026
3027 if (CONST_INT_P (size)
3028 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3029 CLEAR_BY_PIECES,
3030 optimize_insn_for_speed_p ()))
3031 clear_by_pieces (object, INTVAL (size), align);
3032 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3033 expected_align, expected_size,
3034 min_size, max_size, probable_max_size))
3035 ;
3036 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3037 return set_storage_via_libcall (object, size, const0_rtx,
3038 method == BLOCK_OP_TAILCALL);
3039 else
3040 gcc_unreachable ();
3041
3042 return NULL;
3043 }
3044
3045 rtx
3046 clear_storage (rtx object, rtx size, enum block_op_methods method)
3047 {
3048 unsigned HOST_WIDE_INT max, min = 0;
3049 if (GET_CODE (size) == CONST_INT)
3050 min = max = UINTVAL (size);
3051 else
3052 max = GET_MODE_MASK (GET_MODE (size));
3053 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3054 }
3055
3056
3057 /* A subroutine of clear_storage. Expand a call to memset.
3058 Return the return value of memset, 0 otherwise. */
3059
3060 rtx
3061 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3062 {
3063 tree call_expr, fn, object_tree, size_tree, val_tree;
3064 machine_mode size_mode;
3065
3066 object = copy_addr_to_reg (XEXP (object, 0));
3067 object_tree = make_tree (ptr_type_node, object);
3068
3069 if (!CONST_INT_P (val))
3070 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3071 val_tree = make_tree (integer_type_node, val);
3072
3073 size_mode = TYPE_MODE (sizetype);
3074 size = convert_to_mode (size_mode, size, 1);
3075 size = copy_to_mode_reg (size_mode, size);
3076 size_tree = make_tree (sizetype, size);
3077
3078 /* It is incorrect to use the libcall calling conventions for calls to
3079 memset because it can be provided by the user. */
3080 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3081 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3082 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3083
3084 return expand_call (call_expr, NULL_RTX, false);
3085 }
3086 \f
3087 /* Expand a setmem pattern; return true if successful. */
3088
3089 bool
3090 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3091 unsigned int expected_align, HOST_WIDE_INT expected_size,
3092 unsigned HOST_WIDE_INT min_size,
3093 unsigned HOST_WIDE_INT max_size,
3094 unsigned HOST_WIDE_INT probable_max_size)
3095 {
3096 /* Try the most limited insn first, because there's no point
3097 including more than one in the machine description unless
3098 the more limited one has some advantage. */
3099
3100 if (expected_align < align)
3101 expected_align = align;
3102 if (expected_size != -1)
3103 {
3104 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3105 expected_size = max_size;
3106 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3107 expected_size = min_size;
3108 }
3109
3110 opt_scalar_int_mode mode_iter;
3111 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3112 {
3113 scalar_int_mode mode = mode_iter.require ();
3114 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3115
3116 if (code != CODE_FOR_nothing
3117 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3118 here because if SIZE is less than the mode mask, as it is
3119 returned by the macro, it will definitely be less than the
3120 actual mode mask. Since SIZE is within the Pmode address
3121 space, we limit MODE to Pmode. */
3122 && ((CONST_INT_P (size)
3123 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3124 <= (GET_MODE_MASK (mode) >> 1)))
3125 || max_size <= (GET_MODE_MASK (mode) >> 1)
3126 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3127 {
3128 struct expand_operand ops[9];
3129 unsigned int nops;
3130
3131 nops = insn_data[(int) code].n_generator_args;
3132 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3133
3134 create_fixed_operand (&ops[0], object);
3135 /* The check above guarantees that this size conversion is valid. */
3136 create_convert_operand_to (&ops[1], size, mode, true);
3137 create_convert_operand_from (&ops[2], val, byte_mode, true);
3138 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3139 if (nops >= 6)
3140 {
3141 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3142 create_integer_operand (&ops[5], expected_size);
3143 }
3144 if (nops >= 8)
3145 {
3146 create_integer_operand (&ops[6], min_size);
3147 /* If we can not represent the maximal size,
3148 make parameter NULL. */
3149 if ((HOST_WIDE_INT) max_size != -1)
3150 create_integer_operand (&ops[7], max_size);
3151 else
3152 create_fixed_operand (&ops[7], NULL);
3153 }
3154 if (nops == 9)
3155 {
3156 /* If we can not represent the maximal size,
3157 make parameter NULL. */
3158 if ((HOST_WIDE_INT) probable_max_size != -1)
3159 create_integer_operand (&ops[8], probable_max_size);
3160 else
3161 create_fixed_operand (&ops[8], NULL);
3162 }
3163 if (maybe_expand_insn (code, nops, ops))
3164 return true;
3165 }
3166 }
3167
3168 return false;
3169 }
3170
3171 \f
3172 /* Write to one of the components of the complex value CPLX. Write VAL to
3173 the real part if IMAG_P is false, and the imaginary part if its true. */
3174
3175 void
3176 write_complex_part (rtx cplx, rtx val, bool imag_p)
3177 {
3178 machine_mode cmode;
3179 scalar_mode imode;
3180 unsigned ibitsize;
3181
3182 if (GET_CODE (cplx) == CONCAT)
3183 {
3184 emit_move_insn (XEXP (cplx, imag_p), val);
3185 return;
3186 }
3187
3188 cmode = GET_MODE (cplx);
3189 imode = GET_MODE_INNER (cmode);
3190 ibitsize = GET_MODE_BITSIZE (imode);
3191
3192 /* For MEMs simplify_gen_subreg may generate an invalid new address
3193 because, e.g., the original address is considered mode-dependent
3194 by the target, which restricts simplify_subreg from invoking
3195 adjust_address_nv. Instead of preparing fallback support for an
3196 invalid address, we call adjust_address_nv directly. */
3197 if (MEM_P (cplx))
3198 {
3199 emit_move_insn (adjust_address_nv (cplx, imode,
3200 imag_p ? GET_MODE_SIZE (imode) : 0),
3201 val);
3202 return;
3203 }
3204
3205 /* If the sub-object is at least word sized, then we know that subregging
3206 will work. This special case is important, since store_bit_field
3207 wants to operate on integer modes, and there's rarely an OImode to
3208 correspond to TCmode. */
3209 if (ibitsize >= BITS_PER_WORD
3210 /* For hard regs we have exact predicates. Assume we can split
3211 the original object if it spans an even number of hard regs.
3212 This special case is important for SCmode on 64-bit platforms
3213 where the natural size of floating-point regs is 32-bit. */
3214 || (REG_P (cplx)
3215 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3216 && REG_NREGS (cplx) % 2 == 0))
3217 {
3218 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3219 imag_p ? GET_MODE_SIZE (imode) : 0);
3220 if (part)
3221 {
3222 emit_move_insn (part, val);
3223 return;
3224 }
3225 else
3226 /* simplify_gen_subreg may fail for sub-word MEMs. */
3227 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3228 }
3229
3230 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3231 false);
3232 }
3233
3234 /* Extract one of the components of the complex value CPLX. Extract the
3235 real part if IMAG_P is false, and the imaginary part if it's true. */
3236
3237 rtx
3238 read_complex_part (rtx cplx, bool imag_p)
3239 {
3240 machine_mode cmode;
3241 scalar_mode imode;
3242 unsigned ibitsize;
3243
3244 if (GET_CODE (cplx) == CONCAT)
3245 return XEXP (cplx, imag_p);
3246
3247 cmode = GET_MODE (cplx);
3248 imode = GET_MODE_INNER (cmode);
3249 ibitsize = GET_MODE_BITSIZE (imode);
3250
3251 /* Special case reads from complex constants that got spilled to memory. */
3252 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3253 {
3254 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3255 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3256 {
3257 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3258 if (CONSTANT_CLASS_P (part))
3259 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3260 }
3261 }
3262
3263 /* For MEMs simplify_gen_subreg may generate an invalid new address
3264 because, e.g., the original address is considered mode-dependent
3265 by the target, which restricts simplify_subreg from invoking
3266 adjust_address_nv. Instead of preparing fallback support for an
3267 invalid address, we call adjust_address_nv directly. */
3268 if (MEM_P (cplx))
3269 return adjust_address_nv (cplx, imode,
3270 imag_p ? GET_MODE_SIZE (imode) : 0);
3271
3272 /* If the sub-object is at least word sized, then we know that subregging
3273 will work. This special case is important, since extract_bit_field
3274 wants to operate on integer modes, and there's rarely an OImode to
3275 correspond to TCmode. */
3276 if (ibitsize >= BITS_PER_WORD
3277 /* For hard regs we have exact predicates. Assume we can split
3278 the original object if it spans an even number of hard regs.
3279 This special case is important for SCmode on 64-bit platforms
3280 where the natural size of floating-point regs is 32-bit. */
3281 || (REG_P (cplx)
3282 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3283 && REG_NREGS (cplx) % 2 == 0))
3284 {
3285 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3286 imag_p ? GET_MODE_SIZE (imode) : 0);
3287 if (ret)
3288 return ret;
3289 else
3290 /* simplify_gen_subreg may fail for sub-word MEMs. */
3291 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3292 }
3293
3294 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3295 true, NULL_RTX, imode, imode, false, NULL);
3296 }
3297 \f
3298 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3299 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3300 represented in NEW_MODE. If FORCE is true, this will never happen, as
3301 we'll force-create a SUBREG if needed. */
3302
3303 static rtx
3304 emit_move_change_mode (machine_mode new_mode,
3305 machine_mode old_mode, rtx x, bool force)
3306 {
3307 rtx ret;
3308
3309 if (push_operand (x, GET_MODE (x)))
3310 {
3311 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3312 MEM_COPY_ATTRIBUTES (ret, x);
3313 }
3314 else if (MEM_P (x))
3315 {
3316 /* We don't have to worry about changing the address since the
3317 size in bytes is supposed to be the same. */
3318 if (reload_in_progress)
3319 {
3320 /* Copy the MEM to change the mode and move any
3321 substitutions from the old MEM to the new one. */
3322 ret = adjust_address_nv (x, new_mode, 0);
3323 copy_replacements (x, ret);
3324 }
3325 else
3326 ret = adjust_address (x, new_mode, 0);
3327 }
3328 else
3329 {
3330 /* Note that we do want simplify_subreg's behavior of validating
3331 that the new mode is ok for a hard register. If we were to use
3332 simplify_gen_subreg, we would create the subreg, but would
3333 probably run into the target not being able to implement it. */
3334 /* Except, of course, when FORCE is true, when this is exactly what
3335 we want. Which is needed for CCmodes on some targets. */
3336 if (force)
3337 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3338 else
3339 ret = simplify_subreg (new_mode, x, old_mode, 0);
3340 }
3341
3342 return ret;
3343 }
3344
3345 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3346 an integer mode of the same size as MODE. Returns the instruction
3347 emitted, or NULL if such a move could not be generated. */
3348
3349 static rtx_insn *
3350 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3351 {
3352 scalar_int_mode imode;
3353 enum insn_code code;
3354
3355 /* There must exist a mode of the exact size we require. */
3356 if (!int_mode_for_mode (mode).exists (&imode))
3357 return NULL;
3358
3359 /* The target must support moves in this mode. */
3360 code = optab_handler (mov_optab, imode);
3361 if (code == CODE_FOR_nothing)
3362 return NULL;
3363
3364 x = emit_move_change_mode (imode, mode, x, force);
3365 if (x == NULL_RTX)
3366 return NULL;
3367 y = emit_move_change_mode (imode, mode, y, force);
3368 if (y == NULL_RTX)
3369 return NULL;
3370 return emit_insn (GEN_FCN (code) (x, y));
3371 }
3372
3373 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3374 Return an equivalent MEM that does not use an auto-increment. */
3375
3376 rtx
3377 emit_move_resolve_push (machine_mode mode, rtx x)
3378 {
3379 enum rtx_code code = GET_CODE (XEXP (x, 0));
3380 rtx temp;
3381
3382 poly_int64 adjust = GET_MODE_SIZE (mode);
3383 #ifdef PUSH_ROUNDING
3384 adjust = PUSH_ROUNDING (adjust);
3385 #endif
3386 if (code == PRE_DEC || code == POST_DEC)
3387 adjust = -adjust;
3388 else if (code == PRE_MODIFY || code == POST_MODIFY)
3389 {
3390 rtx expr = XEXP (XEXP (x, 0), 1);
3391
3392 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3393 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3394 if (GET_CODE (expr) == MINUS)
3395 val = -val;
3396 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3397 adjust = val;
3398 }
3399
3400 /* Do not use anti_adjust_stack, since we don't want to update
3401 stack_pointer_delta. */
3402 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3403 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3404 0, OPTAB_LIB_WIDEN);
3405 if (temp != stack_pointer_rtx)
3406 emit_move_insn (stack_pointer_rtx, temp);
3407
3408 switch (code)
3409 {
3410 case PRE_INC:
3411 case PRE_DEC:
3412 case PRE_MODIFY:
3413 temp = stack_pointer_rtx;
3414 break;
3415 case POST_INC:
3416 case POST_DEC:
3417 case POST_MODIFY:
3418 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3419 break;
3420 default:
3421 gcc_unreachable ();
3422 }
3423
3424 return replace_equiv_address (x, temp);
3425 }
3426
3427 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3428 X is known to satisfy push_operand, and MODE is known to be complex.
3429 Returns the last instruction emitted. */
3430
3431 rtx_insn *
3432 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3433 {
3434 scalar_mode submode = GET_MODE_INNER (mode);
3435 bool imag_first;
3436
3437 #ifdef PUSH_ROUNDING
3438 poly_int64 submodesize = GET_MODE_SIZE (submode);
3439
3440 /* In case we output to the stack, but the size is smaller than the
3441 machine can push exactly, we need to use move instructions. */
3442 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3443 {
3444 x = emit_move_resolve_push (mode, x);
3445 return emit_move_insn (x, y);
3446 }
3447 #endif
3448
3449 /* Note that the real part always precedes the imag part in memory
3450 regardless of machine's endianness. */
3451 switch (GET_CODE (XEXP (x, 0)))
3452 {
3453 case PRE_DEC:
3454 case POST_DEC:
3455 imag_first = true;
3456 break;
3457 case PRE_INC:
3458 case POST_INC:
3459 imag_first = false;
3460 break;
3461 default:
3462 gcc_unreachable ();
3463 }
3464
3465 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3466 read_complex_part (y, imag_first));
3467 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3468 read_complex_part (y, !imag_first));
3469 }
3470
3471 /* A subroutine of emit_move_complex. Perform the move from Y to X
3472 via two moves of the parts. Returns the last instruction emitted. */
3473
3474 rtx_insn *
3475 emit_move_complex_parts (rtx x, rtx y)
3476 {
3477 /* Show the output dies here. This is necessary for SUBREGs
3478 of pseudos since we cannot track their lifetimes correctly;
3479 hard regs shouldn't appear here except as return values. */
3480 if (!reload_completed && !reload_in_progress
3481 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3482 emit_clobber (x);
3483
3484 write_complex_part (x, read_complex_part (y, false), false);
3485 write_complex_part (x, read_complex_part (y, true), true);
3486
3487 return get_last_insn ();
3488 }
3489
3490 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3491 MODE is known to be complex. Returns the last instruction emitted. */
3492
3493 static rtx_insn *
3494 emit_move_complex (machine_mode mode, rtx x, rtx y)
3495 {
3496 bool try_int;
3497
3498 /* Need to take special care for pushes, to maintain proper ordering
3499 of the data, and possibly extra padding. */
3500 if (push_operand (x, mode))
3501 return emit_move_complex_push (mode, x, y);
3502
3503 /* See if we can coerce the target into moving both values at once, except
3504 for floating point where we favor moving as parts if this is easy. */
3505 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3506 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3507 && !(REG_P (x)
3508 && HARD_REGISTER_P (x)
3509 && REG_NREGS (x) == 1)
3510 && !(REG_P (y)
3511 && HARD_REGISTER_P (y)
3512 && REG_NREGS (y) == 1))
3513 try_int = false;
3514 /* Not possible if the values are inherently not adjacent. */
3515 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3516 try_int = false;
3517 /* Is possible if both are registers (or subregs of registers). */
3518 else if (register_operand (x, mode) && register_operand (y, mode))
3519 try_int = true;
3520 /* If one of the operands is a memory, and alignment constraints
3521 are friendly enough, we may be able to do combined memory operations.
3522 We do not attempt this if Y is a constant because that combination is
3523 usually better with the by-parts thing below. */
3524 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3525 && (!STRICT_ALIGNMENT
3526 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3527 try_int = true;
3528 else
3529 try_int = false;
3530
3531 if (try_int)
3532 {
3533 rtx_insn *ret;
3534
3535 /* For memory to memory moves, optimal behavior can be had with the
3536 existing block move logic. */
3537 if (MEM_P (x) && MEM_P (y))
3538 {
3539 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3540 BLOCK_OP_NO_LIBCALL);
3541 return get_last_insn ();
3542 }
3543
3544 ret = emit_move_via_integer (mode, x, y, true);
3545 if (ret)
3546 return ret;
3547 }
3548
3549 return emit_move_complex_parts (x, y);
3550 }
3551
3552 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3553 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3554
3555 static rtx_insn *
3556 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3557 {
3558 rtx_insn *ret;
3559
3560 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3561 if (mode != CCmode)
3562 {
3563 enum insn_code code = optab_handler (mov_optab, CCmode);
3564 if (code != CODE_FOR_nothing)
3565 {
3566 x = emit_move_change_mode (CCmode, mode, x, true);
3567 y = emit_move_change_mode (CCmode, mode, y, true);
3568 return emit_insn (GEN_FCN (code) (x, y));
3569 }
3570 }
3571
3572 /* Otherwise, find the MODE_INT mode of the same width. */
3573 ret = emit_move_via_integer (mode, x, y, false);
3574 gcc_assert (ret != NULL);
3575 return ret;
3576 }
3577
3578 /* Return true if word I of OP lies entirely in the
3579 undefined bits of a paradoxical subreg. */
3580
3581 static bool
3582 undefined_operand_subword_p (const_rtx op, int i)
3583 {
3584 if (GET_CODE (op) != SUBREG)
3585 return false;
3586 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3587 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3588 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3589 || known_le (offset, -UNITS_PER_WORD));
3590 }
3591
3592 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3593 MODE is any multi-word or full-word mode that lacks a move_insn
3594 pattern. Note that you will get better code if you define such
3595 patterns, even if they must turn into multiple assembler instructions. */
3596
3597 static rtx_insn *
3598 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3599 {
3600 rtx_insn *last_insn = 0;
3601 rtx_insn *seq;
3602 rtx inner;
3603 bool need_clobber;
3604 int i, mode_size;
3605
3606 /* This function can only handle cases where the number of words is
3607 known at compile time. */
3608 mode_size = GET_MODE_SIZE (mode).to_constant ();
3609 gcc_assert (mode_size >= UNITS_PER_WORD);
3610
3611 /* If X is a push on the stack, do the push now and replace
3612 X with a reference to the stack pointer. */
3613 if (push_operand (x, mode))
3614 x = emit_move_resolve_push (mode, x);
3615
3616 /* If we are in reload, see if either operand is a MEM whose address
3617 is scheduled for replacement. */
3618 if (reload_in_progress && MEM_P (x)
3619 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3620 x = replace_equiv_address_nv (x, inner);
3621 if (reload_in_progress && MEM_P (y)
3622 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3623 y = replace_equiv_address_nv (y, inner);
3624
3625 start_sequence ();
3626
3627 need_clobber = false;
3628 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3629 {
3630 rtx xpart = operand_subword (x, i, 1, mode);
3631 rtx ypart;
3632
3633 /* Do not generate code for a move if it would come entirely
3634 from the undefined bits of a paradoxical subreg. */
3635 if (undefined_operand_subword_p (y, i))
3636 continue;
3637
3638 ypart = operand_subword (y, i, 1, mode);
3639
3640 /* If we can't get a part of Y, put Y into memory if it is a
3641 constant. Otherwise, force it into a register. Then we must
3642 be able to get a part of Y. */
3643 if (ypart == 0 && CONSTANT_P (y))
3644 {
3645 y = use_anchored_address (force_const_mem (mode, y));
3646 ypart = operand_subword (y, i, 1, mode);
3647 }
3648 else if (ypart == 0)
3649 ypart = operand_subword_force (y, i, mode);
3650
3651 gcc_assert (xpart && ypart);
3652
3653 need_clobber |= (GET_CODE (xpart) == SUBREG);
3654
3655 last_insn = emit_move_insn (xpart, ypart);
3656 }
3657
3658 seq = get_insns ();
3659 end_sequence ();
3660
3661 /* Show the output dies here. This is necessary for SUBREGs
3662 of pseudos since we cannot track their lifetimes correctly;
3663 hard regs shouldn't appear here except as return values.
3664 We never want to emit such a clobber after reload. */
3665 if (x != y
3666 && ! (reload_in_progress || reload_completed)
3667 && need_clobber != 0)
3668 emit_clobber (x);
3669
3670 emit_insn (seq);
3671
3672 return last_insn;
3673 }
3674
3675 /* Low level part of emit_move_insn.
3676 Called just like emit_move_insn, but assumes X and Y
3677 are basically valid. */
3678
3679 rtx_insn *
3680 emit_move_insn_1 (rtx x, rtx y)
3681 {
3682 machine_mode mode = GET_MODE (x);
3683 enum insn_code code;
3684
3685 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3686
3687 code = optab_handler (mov_optab, mode);
3688 if (code != CODE_FOR_nothing)
3689 return emit_insn (GEN_FCN (code) (x, y));
3690
3691 /* Expand complex moves by moving real part and imag part. */
3692 if (COMPLEX_MODE_P (mode))
3693 return emit_move_complex (mode, x, y);
3694
3695 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3696 || ALL_FIXED_POINT_MODE_P (mode))
3697 {
3698 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3699
3700 /* If we can't find an integer mode, use multi words. */
3701 if (result)
3702 return result;
3703 else
3704 return emit_move_multi_word (mode, x, y);
3705 }
3706
3707 if (GET_MODE_CLASS (mode) == MODE_CC)
3708 return emit_move_ccmode (mode, x, y);
3709
3710 /* Try using a move pattern for the corresponding integer mode. This is
3711 only safe when simplify_subreg can convert MODE constants into integer
3712 constants. At present, it can only do this reliably if the value
3713 fits within a HOST_WIDE_INT. */
3714 if (!CONSTANT_P (y)
3715 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3716 {
3717 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3718
3719 if (ret)
3720 {
3721 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3722 return ret;
3723 }
3724 }
3725
3726 return emit_move_multi_word (mode, x, y);
3727 }
3728
3729 /* Generate code to copy Y into X.
3730 Both Y and X must have the same mode, except that
3731 Y can be a constant with VOIDmode.
3732 This mode cannot be BLKmode; use emit_block_move for that.
3733
3734 Return the last instruction emitted. */
3735
3736 rtx_insn *
3737 emit_move_insn (rtx x, rtx y)
3738 {
3739 machine_mode mode = GET_MODE (x);
3740 rtx y_cst = NULL_RTX;
3741 rtx_insn *last_insn;
3742 rtx set;
3743
3744 gcc_assert (mode != BLKmode
3745 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3746
3747 if (CONSTANT_P (y))
3748 {
3749 if (optimize
3750 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3751 && (last_insn = compress_float_constant (x, y)))
3752 return last_insn;
3753
3754 y_cst = y;
3755
3756 if (!targetm.legitimate_constant_p (mode, y))
3757 {
3758 y = force_const_mem (mode, y);
3759
3760 /* If the target's cannot_force_const_mem prevented the spill,
3761 assume that the target's move expanders will also take care
3762 of the non-legitimate constant. */
3763 if (!y)
3764 y = y_cst;
3765 else
3766 y = use_anchored_address (y);
3767 }
3768 }
3769
3770 /* If X or Y are memory references, verify that their addresses are valid
3771 for the machine. */
3772 if (MEM_P (x)
3773 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3774 MEM_ADDR_SPACE (x))
3775 && ! push_operand (x, GET_MODE (x))))
3776 x = validize_mem (x);
3777
3778 if (MEM_P (y)
3779 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3780 MEM_ADDR_SPACE (y)))
3781 y = validize_mem (y);
3782
3783 gcc_assert (mode != BLKmode);
3784
3785 last_insn = emit_move_insn_1 (x, y);
3786
3787 if (y_cst && REG_P (x)
3788 && (set = single_set (last_insn)) != NULL_RTX
3789 && SET_DEST (set) == x
3790 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3791 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3792
3793 return last_insn;
3794 }
3795
3796 /* Generate the body of an instruction to copy Y into X.
3797 It may be a list of insns, if one insn isn't enough. */
3798
3799 rtx_insn *
3800 gen_move_insn (rtx x, rtx y)
3801 {
3802 rtx_insn *seq;
3803
3804 start_sequence ();
3805 emit_move_insn_1 (x, y);
3806 seq = get_insns ();
3807 end_sequence ();
3808 return seq;
3809 }
3810
3811 /* If Y is representable exactly in a narrower mode, and the target can
3812 perform the extension directly from constant or memory, then emit the
3813 move as an extension. */
3814
3815 static rtx_insn *
3816 compress_float_constant (rtx x, rtx y)
3817 {
3818 machine_mode dstmode = GET_MODE (x);
3819 machine_mode orig_srcmode = GET_MODE (y);
3820 machine_mode srcmode;
3821 const REAL_VALUE_TYPE *r;
3822 int oldcost, newcost;
3823 bool speed = optimize_insn_for_speed_p ();
3824
3825 r = CONST_DOUBLE_REAL_VALUE (y);
3826
3827 if (targetm.legitimate_constant_p (dstmode, y))
3828 oldcost = set_src_cost (y, orig_srcmode, speed);
3829 else
3830 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3831
3832 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3833 {
3834 enum insn_code ic;
3835 rtx trunc_y;
3836 rtx_insn *last_insn;
3837
3838 /* Skip if the target can't extend this way. */
3839 ic = can_extend_p (dstmode, srcmode, 0);
3840 if (ic == CODE_FOR_nothing)
3841 continue;
3842
3843 /* Skip if the narrowed value isn't exact. */
3844 if (! exact_real_truncate (srcmode, r))
3845 continue;
3846
3847 trunc_y = const_double_from_real_value (*r, srcmode);
3848
3849 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3850 {
3851 /* Skip if the target needs extra instructions to perform
3852 the extension. */
3853 if (!insn_operand_matches (ic, 1, trunc_y))
3854 continue;
3855 /* This is valid, but may not be cheaper than the original. */
3856 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3857 dstmode, speed);
3858 if (oldcost < newcost)
3859 continue;
3860 }
3861 else if (float_extend_from_mem[dstmode][srcmode])
3862 {
3863 trunc_y = force_const_mem (srcmode, trunc_y);
3864 /* This is valid, but may not be cheaper than the original. */
3865 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3866 dstmode, speed);
3867 if (oldcost < newcost)
3868 continue;
3869 trunc_y = validize_mem (trunc_y);
3870 }
3871 else
3872 continue;
3873
3874 /* For CSE's benefit, force the compressed constant pool entry
3875 into a new pseudo. This constant may be used in different modes,
3876 and if not, combine will put things back together for us. */
3877 trunc_y = force_reg (srcmode, trunc_y);
3878
3879 /* If x is a hard register, perform the extension into a pseudo,
3880 so that e.g. stack realignment code is aware of it. */
3881 rtx target = x;
3882 if (REG_P (x) && HARD_REGISTER_P (x))
3883 target = gen_reg_rtx (dstmode);
3884
3885 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3886 last_insn = get_last_insn ();
3887
3888 if (REG_P (target))
3889 set_unique_reg_note (last_insn, REG_EQUAL, y);
3890
3891 if (target != x)
3892 return emit_move_insn (x, target);
3893 return last_insn;
3894 }
3895
3896 return NULL;
3897 }
3898 \f
3899 /* Pushing data onto the stack. */
3900
3901 /* Push a block of length SIZE (perhaps variable)
3902 and return an rtx to address the beginning of the block.
3903 The value may be virtual_outgoing_args_rtx.
3904
3905 EXTRA is the number of bytes of padding to push in addition to SIZE.
3906 BELOW nonzero means this padding comes at low addresses;
3907 otherwise, the padding comes at high addresses. */
3908
3909 rtx
3910 push_block (rtx size, poly_int64 extra, int below)
3911 {
3912 rtx temp;
3913
3914 size = convert_modes (Pmode, ptr_mode, size, 1);
3915 if (CONSTANT_P (size))
3916 anti_adjust_stack (plus_constant (Pmode, size, extra));
3917 else if (REG_P (size) && known_eq (extra, 0))
3918 anti_adjust_stack (size);
3919 else
3920 {
3921 temp = copy_to_mode_reg (Pmode, size);
3922 if (maybe_ne (extra, 0))
3923 temp = expand_binop (Pmode, add_optab, temp,
3924 gen_int_mode (extra, Pmode),
3925 temp, 0, OPTAB_LIB_WIDEN);
3926 anti_adjust_stack (temp);
3927 }
3928
3929 if (STACK_GROWS_DOWNWARD)
3930 {
3931 temp = virtual_outgoing_args_rtx;
3932 if (maybe_ne (extra, 0) && below)
3933 temp = plus_constant (Pmode, temp, extra);
3934 }
3935 else
3936 {
3937 poly_int64 csize;
3938 if (poly_int_rtx_p (size, &csize))
3939 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3940 -csize - (below ? 0 : extra));
3941 else if (maybe_ne (extra, 0) && !below)
3942 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3943 negate_rtx (Pmode, plus_constant (Pmode, size,
3944 extra)));
3945 else
3946 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3947 negate_rtx (Pmode, size));
3948 }
3949
3950 return memory_address (NARROWEST_INT_MODE, temp);
3951 }
3952
3953 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3954
3955 static rtx
3956 mem_autoinc_base (rtx mem)
3957 {
3958 if (MEM_P (mem))
3959 {
3960 rtx addr = XEXP (mem, 0);
3961 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3962 return XEXP (addr, 0);
3963 }
3964 return NULL;
3965 }
3966
3967 /* A utility routine used here, in reload, and in try_split. The insns
3968 after PREV up to and including LAST are known to adjust the stack,
3969 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3970 placing notes as appropriate. PREV may be NULL, indicating the
3971 entire insn sequence prior to LAST should be scanned.
3972
3973 The set of allowed stack pointer modifications is small:
3974 (1) One or more auto-inc style memory references (aka pushes),
3975 (2) One or more addition/subtraction with the SP as destination,
3976 (3) A single move insn with the SP as destination,
3977 (4) A call_pop insn,
3978 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3979
3980 Insns in the sequence that do not modify the SP are ignored,
3981 except for noreturn calls.
3982
3983 The return value is the amount of adjustment that can be trivially
3984 verified, via immediate operand or auto-inc. If the adjustment
3985 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
3986
3987 poly_int64
3988 find_args_size_adjust (rtx_insn *insn)
3989 {
3990 rtx dest, set, pat;
3991 int i;
3992
3993 pat = PATTERN (insn);
3994 set = NULL;
3995
3996 /* Look for a call_pop pattern. */
3997 if (CALL_P (insn))
3998 {
3999 /* We have to allow non-call_pop patterns for the case
4000 of emit_single_push_insn of a TLS address. */
4001 if (GET_CODE (pat) != PARALLEL)
4002 return 0;
4003
4004 /* All call_pop have a stack pointer adjust in the parallel.
4005 The call itself is always first, and the stack adjust is
4006 usually last, so search from the end. */
4007 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4008 {
4009 set = XVECEXP (pat, 0, i);
4010 if (GET_CODE (set) != SET)
4011 continue;
4012 dest = SET_DEST (set);
4013 if (dest == stack_pointer_rtx)
4014 break;
4015 }
4016 /* We'd better have found the stack pointer adjust. */
4017 if (i == 0)
4018 return 0;
4019 /* Fall through to process the extracted SET and DEST
4020 as if it was a standalone insn. */
4021 }
4022 else if (GET_CODE (pat) == SET)
4023 set = pat;
4024 else if ((set = single_set (insn)) != NULL)
4025 ;
4026 else if (GET_CODE (pat) == PARALLEL)
4027 {
4028 /* ??? Some older ports use a parallel with a stack adjust
4029 and a store for a PUSH_ROUNDING pattern, rather than a
4030 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4031 /* ??? See h8300 and m68k, pushqi1. */
4032 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4033 {
4034 set = XVECEXP (pat, 0, i);
4035 if (GET_CODE (set) != SET)
4036 continue;
4037 dest = SET_DEST (set);
4038 if (dest == stack_pointer_rtx)
4039 break;
4040
4041 /* We do not expect an auto-inc of the sp in the parallel. */
4042 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4043 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4044 != stack_pointer_rtx);
4045 }
4046 if (i < 0)
4047 return 0;
4048 }
4049 else
4050 return 0;
4051
4052 dest = SET_DEST (set);
4053
4054 /* Look for direct modifications of the stack pointer. */
4055 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4056 {
4057 /* Look for a trivial adjustment, otherwise assume nothing. */
4058 /* Note that the SPU restore_stack_block pattern refers to
4059 the stack pointer in V4SImode. Consider that non-trivial. */
4060 poly_int64 offset;
4061 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4062 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4063 return offset;
4064 /* ??? Reload can generate no-op moves, which will be cleaned
4065 up later. Recognize it and continue searching. */
4066 else if (rtx_equal_p (dest, SET_SRC (set)))
4067 return 0;
4068 else
4069 return HOST_WIDE_INT_MIN;
4070 }
4071 else
4072 {
4073 rtx mem, addr;
4074
4075 /* Otherwise only think about autoinc patterns. */
4076 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4077 {
4078 mem = dest;
4079 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4080 != stack_pointer_rtx);
4081 }
4082 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4083 mem = SET_SRC (set);
4084 else
4085 return 0;
4086
4087 addr = XEXP (mem, 0);
4088 switch (GET_CODE (addr))
4089 {
4090 case PRE_INC:
4091 case POST_INC:
4092 return GET_MODE_SIZE (GET_MODE (mem));
4093 case PRE_DEC:
4094 case POST_DEC:
4095 return -GET_MODE_SIZE (GET_MODE (mem));
4096 case PRE_MODIFY:
4097 case POST_MODIFY:
4098 addr = XEXP (addr, 1);
4099 gcc_assert (GET_CODE (addr) == PLUS);
4100 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4101 return rtx_to_poly_int64 (XEXP (addr, 1));
4102 default:
4103 gcc_unreachable ();
4104 }
4105 }
4106 }
4107
4108 poly_int64
4109 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4110 poly_int64 end_args_size)
4111 {
4112 poly_int64 args_size = end_args_size;
4113 bool saw_unknown = false;
4114 rtx_insn *insn;
4115
4116 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4117 {
4118 if (!NONDEBUG_INSN_P (insn))
4119 continue;
4120
4121 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4122 a call argument containing a TLS address that itself requires
4123 a call to __tls_get_addr. The handling of stack_pointer_delta
4124 in emit_single_push_insn is supposed to ensure that any such
4125 notes are already correct. */
4126 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4127 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4128
4129 poly_int64 this_delta = find_args_size_adjust (insn);
4130 if (known_eq (this_delta, 0))
4131 {
4132 if (!CALL_P (insn)
4133 || ACCUMULATE_OUTGOING_ARGS
4134 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4135 continue;
4136 }
4137
4138 gcc_assert (!saw_unknown);
4139 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4140 saw_unknown = true;
4141
4142 if (!note)
4143 add_args_size_note (insn, args_size);
4144 if (STACK_GROWS_DOWNWARD)
4145 this_delta = -poly_uint64 (this_delta);
4146
4147 if (saw_unknown)
4148 args_size = HOST_WIDE_INT_MIN;
4149 else
4150 args_size -= this_delta;
4151 }
4152
4153 return args_size;
4154 }
4155
4156 #ifdef PUSH_ROUNDING
4157 /* Emit single push insn. */
4158
4159 static void
4160 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4161 {
4162 rtx dest_addr;
4163 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4164 rtx dest;
4165 enum insn_code icode;
4166
4167 /* If there is push pattern, use it. Otherwise try old way of throwing
4168 MEM representing push operation to move expander. */
4169 icode = optab_handler (push_optab, mode);
4170 if (icode != CODE_FOR_nothing)
4171 {
4172 struct expand_operand ops[1];
4173
4174 create_input_operand (&ops[0], x, mode);
4175 if (maybe_expand_insn (icode, 1, ops))
4176 return;
4177 }
4178 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4179 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4180 /* If we are to pad downward, adjust the stack pointer first and
4181 then store X into the stack location using an offset. This is
4182 because emit_move_insn does not know how to pad; it does not have
4183 access to type. */
4184 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4185 {
4186 emit_move_insn (stack_pointer_rtx,
4187 expand_binop (Pmode,
4188 STACK_GROWS_DOWNWARD ? sub_optab
4189 : add_optab,
4190 stack_pointer_rtx,
4191 gen_int_mode (rounded_size, Pmode),
4192 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4193
4194 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4195 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4196 /* We have already decremented the stack pointer, so get the
4197 previous value. */
4198 offset += rounded_size;
4199
4200 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4201 /* We have already incremented the stack pointer, so get the
4202 previous value. */
4203 offset -= rounded_size;
4204
4205 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4206 }
4207 else
4208 {
4209 if (STACK_GROWS_DOWNWARD)
4210 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4211 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4212 else
4213 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4214 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4215
4216 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4217 }
4218
4219 dest = gen_rtx_MEM (mode, dest_addr);
4220
4221 if (type != 0)
4222 {
4223 set_mem_attributes (dest, type, 1);
4224
4225 if (cfun->tail_call_marked)
4226 /* Function incoming arguments may overlap with sibling call
4227 outgoing arguments and we cannot allow reordering of reads
4228 from function arguments with stores to outgoing arguments
4229 of sibling calls. */
4230 set_mem_alias_set (dest, 0);
4231 }
4232 emit_move_insn (dest, x);
4233 }
4234
4235 /* Emit and annotate a single push insn. */
4236
4237 static void
4238 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4239 {
4240 poly_int64 delta, old_delta = stack_pointer_delta;
4241 rtx_insn *prev = get_last_insn ();
4242 rtx_insn *last;
4243
4244 emit_single_push_insn_1 (mode, x, type);
4245
4246 /* Adjust stack_pointer_delta to describe the situation after the push
4247 we just performed. Note that we must do this after the push rather
4248 than before the push in case calculating X needs pushes and pops of
4249 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4250 for such pushes and pops must not include the effect of the future
4251 push of X. */
4252 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4253
4254 last = get_last_insn ();
4255
4256 /* Notice the common case where we emitted exactly one insn. */
4257 if (PREV_INSN (last) == prev)
4258 {
4259 add_args_size_note (last, stack_pointer_delta);
4260 return;
4261 }
4262
4263 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4264 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4265 || known_eq (delta, old_delta));
4266 }
4267 #endif
4268
4269 /* If reading SIZE bytes from X will end up reading from
4270 Y return the number of bytes that overlap. Return -1
4271 if there is no overlap or -2 if we can't determine
4272 (for example when X and Y have different base registers). */
4273
4274 static int
4275 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4276 {
4277 rtx tmp = plus_constant (Pmode, x, size);
4278 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4279
4280 if (!CONST_INT_P (sub))
4281 return -2;
4282
4283 HOST_WIDE_INT val = INTVAL (sub);
4284
4285 return IN_RANGE (val, 1, size) ? val : -1;
4286 }
4287
4288 /* Generate code to push X onto the stack, assuming it has mode MODE and
4289 type TYPE.
4290 MODE is redundant except when X is a CONST_INT (since they don't
4291 carry mode info).
4292 SIZE is an rtx for the size of data to be copied (in bytes),
4293 needed only if X is BLKmode.
4294 Return true if successful. May return false if asked to push a
4295 partial argument during a sibcall optimization (as specified by
4296 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4297 to not overlap.
4298
4299 ALIGN (in bits) is maximum alignment we can assume.
4300
4301 If PARTIAL and REG are both nonzero, then copy that many of the first
4302 bytes of X into registers starting with REG, and push the rest of X.
4303 The amount of space pushed is decreased by PARTIAL bytes.
4304 REG must be a hard register in this case.
4305 If REG is zero but PARTIAL is not, take any all others actions for an
4306 argument partially in registers, but do not actually load any
4307 registers.
4308
4309 EXTRA is the amount in bytes of extra space to leave next to this arg.
4310 This is ignored if an argument block has already been allocated.
4311
4312 On a machine that lacks real push insns, ARGS_ADDR is the address of
4313 the bottom of the argument block for this call. We use indexing off there
4314 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4315 argument block has not been preallocated.
4316
4317 ARGS_SO_FAR is the size of args previously pushed for this call.
4318
4319 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4320 for arguments passed in registers. If nonzero, it will be the number
4321 of bytes required. */
4322
4323 bool
4324 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4325 unsigned int align, int partial, rtx reg, poly_int64 extra,
4326 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4327 rtx alignment_pad, bool sibcall_p)
4328 {
4329 rtx xinner;
4330 pad_direction stack_direction
4331 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4332
4333 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4334 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4335 Default is below for small data on big-endian machines; else above. */
4336 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4337
4338 /* Invert direction if stack is post-decrement.
4339 FIXME: why? */
4340 if (STACK_PUSH_CODE == POST_DEC)
4341 if (where_pad != PAD_NONE)
4342 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4343
4344 xinner = x;
4345
4346 int nregs = partial / UNITS_PER_WORD;
4347 rtx *tmp_regs = NULL;
4348 int overlapping = 0;
4349
4350 if (mode == BLKmode
4351 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4352 {
4353 /* Copy a block into the stack, entirely or partially. */
4354
4355 rtx temp;
4356 int used;
4357 int offset;
4358 int skip;
4359
4360 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4361 used = partial - offset;
4362
4363 if (mode != BLKmode)
4364 {
4365 /* A value is to be stored in an insufficiently aligned
4366 stack slot; copy via a suitably aligned slot if
4367 necessary. */
4368 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4369 if (!MEM_P (xinner))
4370 {
4371 temp = assign_temp (type, 1, 1);
4372 emit_move_insn (temp, xinner);
4373 xinner = temp;
4374 }
4375 }
4376
4377 gcc_assert (size);
4378
4379 /* USED is now the # of bytes we need not copy to the stack
4380 because registers will take care of them. */
4381
4382 if (partial != 0)
4383 xinner = adjust_address (xinner, BLKmode, used);
4384
4385 /* If the partial register-part of the arg counts in its stack size,
4386 skip the part of stack space corresponding to the registers.
4387 Otherwise, start copying to the beginning of the stack space,
4388 by setting SKIP to 0. */
4389 skip = (reg_parm_stack_space == 0) ? 0 : used;
4390
4391 #ifdef PUSH_ROUNDING
4392 /* Do it with several push insns if that doesn't take lots of insns
4393 and if there is no difficulty with push insns that skip bytes
4394 on the stack for alignment purposes. */
4395 if (args_addr == 0
4396 && PUSH_ARGS
4397 && CONST_INT_P (size)
4398 && skip == 0
4399 && MEM_ALIGN (xinner) >= align
4400 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4401 /* Here we avoid the case of a structure whose weak alignment
4402 forces many pushes of a small amount of data,
4403 and such small pushes do rounding that causes trouble. */
4404 && ((!targetm.slow_unaligned_access (word_mode, align))
4405 || align >= BIGGEST_ALIGNMENT
4406 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4407 align / BITS_PER_UNIT))
4408 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4409 {
4410 /* Push padding now if padding above and stack grows down,
4411 or if padding below and stack grows up.
4412 But if space already allocated, this has already been done. */
4413 if (maybe_ne (extra, 0)
4414 && args_addr == 0
4415 && where_pad != PAD_NONE
4416 && where_pad != stack_direction)
4417 anti_adjust_stack (gen_int_mode (extra, Pmode));
4418
4419 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4420 RETURN_BEGIN);
4421 }
4422 else
4423 #endif /* PUSH_ROUNDING */
4424 {
4425 rtx target;
4426
4427 /* Otherwise make space on the stack and copy the data
4428 to the address of that space. */
4429
4430 /* Deduct words put into registers from the size we must copy. */
4431 if (partial != 0)
4432 {
4433 if (CONST_INT_P (size))
4434 size = GEN_INT (INTVAL (size) - used);
4435 else
4436 size = expand_binop (GET_MODE (size), sub_optab, size,
4437 gen_int_mode (used, GET_MODE (size)),
4438 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4439 }
4440
4441 /* Get the address of the stack space.
4442 In this case, we do not deal with EXTRA separately.
4443 A single stack adjust will do. */
4444 poly_int64 offset;
4445 if (! args_addr)
4446 {
4447 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4448 extra = 0;
4449 }
4450 else if (poly_int_rtx_p (args_so_far, &offset))
4451 temp = memory_address (BLKmode,
4452 plus_constant (Pmode, args_addr,
4453 skip + offset));
4454 else
4455 temp = memory_address (BLKmode,
4456 plus_constant (Pmode,
4457 gen_rtx_PLUS (Pmode,
4458 args_addr,
4459 args_so_far),
4460 skip));
4461
4462 if (!ACCUMULATE_OUTGOING_ARGS)
4463 {
4464 /* If the source is referenced relative to the stack pointer,
4465 copy it to another register to stabilize it. We do not need
4466 to do this if we know that we won't be changing sp. */
4467
4468 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4469 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4470 temp = copy_to_reg (temp);
4471 }
4472
4473 target = gen_rtx_MEM (BLKmode, temp);
4474
4475 /* We do *not* set_mem_attributes here, because incoming arguments
4476 may overlap with sibling call outgoing arguments and we cannot
4477 allow reordering of reads from function arguments with stores
4478 to outgoing arguments of sibling calls. We do, however, want
4479 to record the alignment of the stack slot. */
4480 /* ALIGN may well be better aligned than TYPE, e.g. due to
4481 PARM_BOUNDARY. Assume the caller isn't lying. */
4482 set_mem_align (target, align);
4483
4484 /* If part should go in registers and pushing to that part would
4485 overwrite some of the values that need to go into regs, load the
4486 overlapping values into temporary pseudos to be moved into the hard
4487 regs at the end after the stack pushing has completed.
4488 We cannot load them directly into the hard regs here because
4489 they can be clobbered by the block move expansions.
4490 See PR 65358. */
4491
4492 if (partial > 0 && reg != 0 && mode == BLKmode
4493 && GET_CODE (reg) != PARALLEL)
4494 {
4495 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4496 if (overlapping > 0)
4497 {
4498 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4499 overlapping /= UNITS_PER_WORD;
4500
4501 tmp_regs = XALLOCAVEC (rtx, overlapping);
4502
4503 for (int i = 0; i < overlapping; i++)
4504 tmp_regs[i] = gen_reg_rtx (word_mode);
4505
4506 for (int i = 0; i < overlapping; i++)
4507 emit_move_insn (tmp_regs[i],
4508 operand_subword_force (target, i, mode));
4509 }
4510 else if (overlapping == -1)
4511 overlapping = 0;
4512 /* Could not determine whether there is overlap.
4513 Fail the sibcall. */
4514 else
4515 {
4516 overlapping = 0;
4517 if (sibcall_p)
4518 return false;
4519 }
4520 }
4521 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4522 }
4523 }
4524 else if (partial > 0)
4525 {
4526 /* Scalar partly in registers. This case is only supported
4527 for fixed-wdth modes. */
4528 int size = GET_MODE_SIZE (mode).to_constant ();
4529 size /= UNITS_PER_WORD;
4530 int i;
4531 int not_stack;
4532 /* # bytes of start of argument
4533 that we must make space for but need not store. */
4534 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4535 int args_offset = INTVAL (args_so_far);
4536 int skip;
4537
4538 /* Push padding now if padding above and stack grows down,
4539 or if padding below and stack grows up.
4540 But if space already allocated, this has already been done. */
4541 if (maybe_ne (extra, 0)
4542 && args_addr == 0
4543 && where_pad != PAD_NONE
4544 && where_pad != stack_direction)
4545 anti_adjust_stack (gen_int_mode (extra, Pmode));
4546
4547 /* If we make space by pushing it, we might as well push
4548 the real data. Otherwise, we can leave OFFSET nonzero
4549 and leave the space uninitialized. */
4550 if (args_addr == 0)
4551 offset = 0;
4552
4553 /* Now NOT_STACK gets the number of words that we don't need to
4554 allocate on the stack. Convert OFFSET to words too. */
4555 not_stack = (partial - offset) / UNITS_PER_WORD;
4556 offset /= UNITS_PER_WORD;
4557
4558 /* If the partial register-part of the arg counts in its stack size,
4559 skip the part of stack space corresponding to the registers.
4560 Otherwise, start copying to the beginning of the stack space,
4561 by setting SKIP to 0. */
4562 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4563
4564 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4565 x = validize_mem (force_const_mem (mode, x));
4566
4567 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4568 SUBREGs of such registers are not allowed. */
4569 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4570 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4571 x = copy_to_reg (x);
4572
4573 /* Loop over all the words allocated on the stack for this arg. */
4574 /* We can do it by words, because any scalar bigger than a word
4575 has a size a multiple of a word. */
4576 for (i = size - 1; i >= not_stack; i--)
4577 if (i >= not_stack + offset)
4578 if (!emit_push_insn (operand_subword_force (x, i, mode),
4579 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4580 0, args_addr,
4581 GEN_INT (args_offset + ((i - not_stack + skip)
4582 * UNITS_PER_WORD)),
4583 reg_parm_stack_space, alignment_pad, sibcall_p))
4584 return false;
4585 }
4586 else
4587 {
4588 rtx addr;
4589 rtx dest;
4590
4591 /* Push padding now if padding above and stack grows down,
4592 or if padding below and stack grows up.
4593 But if space already allocated, this has already been done. */
4594 if (maybe_ne (extra, 0)
4595 && args_addr == 0
4596 && where_pad != PAD_NONE
4597 && where_pad != stack_direction)
4598 anti_adjust_stack (gen_int_mode (extra, Pmode));
4599
4600 #ifdef PUSH_ROUNDING
4601 if (args_addr == 0 && PUSH_ARGS)
4602 emit_single_push_insn (mode, x, type);
4603 else
4604 #endif
4605 {
4606 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4607 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4608
4609 /* We do *not* set_mem_attributes here, because incoming arguments
4610 may overlap with sibling call outgoing arguments and we cannot
4611 allow reordering of reads from function arguments with stores
4612 to outgoing arguments of sibling calls. We do, however, want
4613 to record the alignment of the stack slot. */
4614 /* ALIGN may well be better aligned than TYPE, e.g. due to
4615 PARM_BOUNDARY. Assume the caller isn't lying. */
4616 set_mem_align (dest, align);
4617
4618 emit_move_insn (dest, x);
4619 }
4620 }
4621
4622 /* Move the partial arguments into the registers and any overlapping
4623 values that we moved into the pseudos in tmp_regs. */
4624 if (partial > 0 && reg != 0)
4625 {
4626 /* Handle calls that pass values in multiple non-contiguous locations.
4627 The Irix 6 ABI has examples of this. */
4628 if (GET_CODE (reg) == PARALLEL)
4629 emit_group_load (reg, x, type, -1);
4630 else
4631 {
4632 gcc_assert (partial % UNITS_PER_WORD == 0);
4633 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4634
4635 for (int i = 0; i < overlapping; i++)
4636 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4637 + nregs - overlapping + i),
4638 tmp_regs[i]);
4639
4640 }
4641 }
4642
4643 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4644 anti_adjust_stack (gen_int_mode (extra, Pmode));
4645
4646 if (alignment_pad && args_addr == 0)
4647 anti_adjust_stack (alignment_pad);
4648
4649 return true;
4650 }
4651 \f
4652 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4653 operations. */
4654
4655 static rtx
4656 get_subtarget (rtx x)
4657 {
4658 return (optimize
4659 || x == 0
4660 /* Only registers can be subtargets. */
4661 || !REG_P (x)
4662 /* Don't use hard regs to avoid extending their life. */
4663 || REGNO (x) < FIRST_PSEUDO_REGISTER
4664 ? 0 : x);
4665 }
4666
4667 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4668 FIELD is a bitfield. Returns true if the optimization was successful,
4669 and there's nothing else to do. */
4670
4671 static bool
4672 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4673 poly_uint64 pbitpos,
4674 poly_uint64 pbitregion_start,
4675 poly_uint64 pbitregion_end,
4676 machine_mode mode1, rtx str_rtx,
4677 tree to, tree src, bool reverse)
4678 {
4679 /* str_mode is not guaranteed to be a scalar type. */
4680 machine_mode str_mode = GET_MODE (str_rtx);
4681 unsigned int str_bitsize;
4682 tree op0, op1;
4683 rtx value, result;
4684 optab binop;
4685 gimple *srcstmt;
4686 enum tree_code code;
4687
4688 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4689 if (mode1 != VOIDmode
4690 || !pbitsize.is_constant (&bitsize)
4691 || !pbitpos.is_constant (&bitpos)
4692 || !pbitregion_start.is_constant (&bitregion_start)
4693 || !pbitregion_end.is_constant (&bitregion_end)
4694 || bitsize >= BITS_PER_WORD
4695 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4696 || str_bitsize > BITS_PER_WORD
4697 || TREE_SIDE_EFFECTS (to)
4698 || TREE_THIS_VOLATILE (to))
4699 return false;
4700
4701 STRIP_NOPS (src);
4702 if (TREE_CODE (src) != SSA_NAME)
4703 return false;
4704 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4705 return false;
4706
4707 srcstmt = get_gimple_for_ssa_name (src);
4708 if (!srcstmt
4709 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4710 return false;
4711
4712 code = gimple_assign_rhs_code (srcstmt);
4713
4714 op0 = gimple_assign_rhs1 (srcstmt);
4715
4716 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4717 to find its initialization. Hopefully the initialization will
4718 be from a bitfield load. */
4719 if (TREE_CODE (op0) == SSA_NAME)
4720 {
4721 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4722
4723 /* We want to eventually have OP0 be the same as TO, which
4724 should be a bitfield. */
4725 if (!op0stmt
4726 || !is_gimple_assign (op0stmt)
4727 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4728 return false;
4729 op0 = gimple_assign_rhs1 (op0stmt);
4730 }
4731
4732 op1 = gimple_assign_rhs2 (srcstmt);
4733
4734 if (!operand_equal_p (to, op0, 0))
4735 return false;
4736
4737 if (MEM_P (str_rtx))
4738 {
4739 unsigned HOST_WIDE_INT offset1;
4740
4741 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4742 str_bitsize = BITS_PER_WORD;
4743
4744 scalar_int_mode best_mode;
4745 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4746 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4747 return false;
4748 str_mode = best_mode;
4749 str_bitsize = GET_MODE_BITSIZE (best_mode);
4750
4751 offset1 = bitpos;
4752 bitpos %= str_bitsize;
4753 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4754 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4755 }
4756 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4757 return false;
4758
4759 /* If the bit field covers the whole REG/MEM, store_field
4760 will likely generate better code. */
4761 if (bitsize >= str_bitsize)
4762 return false;
4763
4764 /* We can't handle fields split across multiple entities. */
4765 if (bitpos + bitsize > str_bitsize)
4766 return false;
4767
4768 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4769 bitpos = str_bitsize - bitpos - bitsize;
4770
4771 switch (code)
4772 {
4773 case PLUS_EXPR:
4774 case MINUS_EXPR:
4775 /* For now, just optimize the case of the topmost bitfield
4776 where we don't need to do any masking and also
4777 1 bit bitfields where xor can be used.
4778 We might win by one instruction for the other bitfields
4779 too if insv/extv instructions aren't used, so that
4780 can be added later. */
4781 if ((reverse || bitpos + bitsize != str_bitsize)
4782 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4783 break;
4784
4785 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4786 value = convert_modes (str_mode,
4787 TYPE_MODE (TREE_TYPE (op1)), value,
4788 TYPE_UNSIGNED (TREE_TYPE (op1)));
4789
4790 /* We may be accessing data outside the field, which means
4791 we can alias adjacent data. */
4792 if (MEM_P (str_rtx))
4793 {
4794 str_rtx = shallow_copy_rtx (str_rtx);
4795 set_mem_alias_set (str_rtx, 0);
4796 set_mem_expr (str_rtx, 0);
4797 }
4798
4799 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4800 {
4801 value = expand_and (str_mode, value, const1_rtx, NULL);
4802 binop = xor_optab;
4803 }
4804 else
4805 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4806
4807 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4808 if (reverse)
4809 value = flip_storage_order (str_mode, value);
4810 result = expand_binop (str_mode, binop, str_rtx,
4811 value, str_rtx, 1, OPTAB_WIDEN);
4812 if (result != str_rtx)
4813 emit_move_insn (str_rtx, result);
4814 return true;
4815
4816 case BIT_IOR_EXPR:
4817 case BIT_XOR_EXPR:
4818 if (TREE_CODE (op1) != INTEGER_CST)
4819 break;
4820 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4821 value = convert_modes (str_mode,
4822 TYPE_MODE (TREE_TYPE (op1)), value,
4823 TYPE_UNSIGNED (TREE_TYPE (op1)));
4824
4825 /* We may be accessing data outside the field, which means
4826 we can alias adjacent data. */
4827 if (MEM_P (str_rtx))
4828 {
4829 str_rtx = shallow_copy_rtx (str_rtx);
4830 set_mem_alias_set (str_rtx, 0);
4831 set_mem_expr (str_rtx, 0);
4832 }
4833
4834 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4835 if (bitpos + bitsize != str_bitsize)
4836 {
4837 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4838 str_mode);
4839 value = expand_and (str_mode, value, mask, NULL_RTX);
4840 }
4841 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4842 if (reverse)
4843 value = flip_storage_order (str_mode, value);
4844 result = expand_binop (str_mode, binop, str_rtx,
4845 value, str_rtx, 1, OPTAB_WIDEN);
4846 if (result != str_rtx)
4847 emit_move_insn (str_rtx, result);
4848 return true;
4849
4850 default:
4851 break;
4852 }
4853
4854 return false;
4855 }
4856
4857 /* In the C++ memory model, consecutive bit fields in a structure are
4858 considered one memory location.
4859
4860 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4861 returns the bit range of consecutive bits in which this COMPONENT_REF
4862 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4863 and *OFFSET may be adjusted in the process.
4864
4865 If the access does not need to be restricted, 0 is returned in both
4866 *BITSTART and *BITEND. */
4867
4868 void
4869 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
4870 poly_int64_pod *bitpos, tree *offset)
4871 {
4872 poly_int64 bitoffset;
4873 tree field, repr;
4874
4875 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4876
4877 field = TREE_OPERAND (exp, 1);
4878 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4879 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4880 need to limit the range we can access. */
4881 if (!repr)
4882 {
4883 *bitstart = *bitend = 0;
4884 return;
4885 }
4886
4887 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4888 part of a larger bit field, then the representative does not serve any
4889 useful purpose. This can occur in Ada. */
4890 if (handled_component_p (TREE_OPERAND (exp, 0)))
4891 {
4892 machine_mode rmode;
4893 poly_int64 rbitsize, rbitpos;
4894 tree roffset;
4895 int unsignedp, reversep, volatilep = 0;
4896 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4897 &roffset, &rmode, &unsignedp, &reversep,
4898 &volatilep);
4899 if (!multiple_p (rbitpos, BITS_PER_UNIT))
4900 {
4901 *bitstart = *bitend = 0;
4902 return;
4903 }
4904 }
4905
4906 /* Compute the adjustment to bitpos from the offset of the field
4907 relative to the representative. DECL_FIELD_OFFSET of field and
4908 repr are the same by construction if they are not constants,
4909 see finish_bitfield_layout. */
4910 poly_uint64 field_offset, repr_offset;
4911 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
4912 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
4913 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
4914 else
4915 bitoffset = 0;
4916 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4917 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4918
4919 /* If the adjustment is larger than bitpos, we would have a negative bit
4920 position for the lower bound and this may wreak havoc later. Adjust
4921 offset and bitpos to make the lower bound non-negative in that case. */
4922 if (maybe_gt (bitoffset, *bitpos))
4923 {
4924 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
4925 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
4926
4927 *bitpos += adjust_bits;
4928 if (*offset == NULL_TREE)
4929 *offset = size_int (-adjust_bytes);
4930 else
4931 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
4932 *bitstart = 0;
4933 }
4934 else
4935 *bitstart = *bitpos - bitoffset;
4936
4937 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
4938 }
4939
4940 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4941 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4942 DECL_RTL was not set yet, return NORTL. */
4943
4944 static inline bool
4945 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4946 {
4947 if (TREE_CODE (addr) != ADDR_EXPR)
4948 return false;
4949
4950 tree base = TREE_OPERAND (addr, 0);
4951
4952 if (!DECL_P (base)
4953 || TREE_ADDRESSABLE (base)
4954 || DECL_MODE (base) == BLKmode)
4955 return false;
4956
4957 if (!DECL_RTL_SET_P (base))
4958 return nortl;
4959
4960 return (!MEM_P (DECL_RTL (base)));
4961 }
4962
4963 /* Returns true if the MEM_REF REF refers to an object that does not
4964 reside in memory and has non-BLKmode. */
4965
4966 static inline bool
4967 mem_ref_refers_to_non_mem_p (tree ref)
4968 {
4969 tree base = TREE_OPERAND (ref, 0);
4970 return addr_expr_of_non_mem_decl_p_1 (base, false);
4971 }
4972
4973 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4974 is true, try generating a nontemporal store. */
4975
4976 void
4977 expand_assignment (tree to, tree from, bool nontemporal)
4978 {
4979 rtx to_rtx = 0;
4980 rtx result;
4981 machine_mode mode;
4982 unsigned int align;
4983 enum insn_code icode;
4984
4985 /* Don't crash if the lhs of the assignment was erroneous. */
4986 if (TREE_CODE (to) == ERROR_MARK)
4987 {
4988 expand_normal (from);
4989 return;
4990 }
4991
4992 /* Optimize away no-op moves without side-effects. */
4993 if (operand_equal_p (to, from, 0))
4994 return;
4995
4996 /* Handle misaligned stores. */
4997 mode = TYPE_MODE (TREE_TYPE (to));
4998 if ((TREE_CODE (to) == MEM_REF
4999 || TREE_CODE (to) == TARGET_MEM_REF)
5000 && mode != BLKmode
5001 && !mem_ref_refers_to_non_mem_p (to)
5002 && ((align = get_object_alignment (to))
5003 < GET_MODE_ALIGNMENT (mode))
5004 && (((icode = optab_handler (movmisalign_optab, mode))
5005 != CODE_FOR_nothing)
5006 || targetm.slow_unaligned_access (mode, align)))
5007 {
5008 rtx reg, mem;
5009
5010 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5011 reg = force_not_mem (reg);
5012 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5013 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5014 reg = flip_storage_order (mode, reg);
5015
5016 if (icode != CODE_FOR_nothing)
5017 {
5018 struct expand_operand ops[2];
5019
5020 create_fixed_operand (&ops[0], mem);
5021 create_input_operand (&ops[1], reg, mode);
5022 /* The movmisalign<mode> pattern cannot fail, else the assignment
5023 would silently be omitted. */
5024 expand_insn (icode, 2, ops);
5025 }
5026 else
5027 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5028 false);
5029 return;
5030 }
5031
5032 /* Assignment of a structure component needs special treatment
5033 if the structure component's rtx is not simply a MEM.
5034 Assignment of an array element at a constant index, and assignment of
5035 an array element in an unaligned packed structure field, has the same
5036 problem. Same for (partially) storing into a non-memory object. */
5037 if (handled_component_p (to)
5038 || (TREE_CODE (to) == MEM_REF
5039 && (REF_REVERSE_STORAGE_ORDER (to)
5040 || mem_ref_refers_to_non_mem_p (to)))
5041 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5042 {
5043 machine_mode mode1;
5044 poly_int64 bitsize, bitpos;
5045 poly_uint64 bitregion_start = 0;
5046 poly_uint64 bitregion_end = 0;
5047 tree offset;
5048 int unsignedp, reversep, volatilep = 0;
5049 tree tem;
5050
5051 push_temp_slots ();
5052 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5053 &unsignedp, &reversep, &volatilep);
5054
5055 /* Make sure bitpos is not negative, it can wreak havoc later. */
5056 if (maybe_lt (bitpos, 0))
5057 {
5058 gcc_assert (offset == NULL_TREE);
5059 offset = size_int (bits_to_bytes_round_down (bitpos));
5060 bitpos = num_trailing_bits (bitpos);
5061 }
5062
5063 if (TREE_CODE (to) == COMPONENT_REF
5064 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5065 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5066 /* The C++ memory model naturally applies to byte-aligned fields.
5067 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5068 BITSIZE are not byte-aligned, there is no need to limit the range
5069 we can access. This can occur with packed structures in Ada. */
5070 else if (maybe_gt (bitsize, 0)
5071 && multiple_p (bitsize, BITS_PER_UNIT)
5072 && multiple_p (bitpos, BITS_PER_UNIT))
5073 {
5074 bitregion_start = bitpos;
5075 bitregion_end = bitpos + bitsize - 1;
5076 }
5077
5078 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5079
5080 /* If the field has a mode, we want to access it in the
5081 field's mode, not the computed mode.
5082 If a MEM has VOIDmode (external with incomplete type),
5083 use BLKmode for it instead. */
5084 if (MEM_P (to_rtx))
5085 {
5086 if (mode1 != VOIDmode)
5087 to_rtx = adjust_address (to_rtx, mode1, 0);
5088 else if (GET_MODE (to_rtx) == VOIDmode)
5089 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5090 }
5091
5092 if (offset != 0)
5093 {
5094 machine_mode address_mode;
5095 rtx offset_rtx;
5096
5097 if (!MEM_P (to_rtx))
5098 {
5099 /* We can get constant negative offsets into arrays with broken
5100 user code. Translate this to a trap instead of ICEing. */
5101 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5102 expand_builtin_trap ();
5103 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5104 }
5105
5106 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5107 address_mode = get_address_mode (to_rtx);
5108 if (GET_MODE (offset_rtx) != address_mode)
5109 {
5110 /* We cannot be sure that the RTL in offset_rtx is valid outside
5111 of a memory address context, so force it into a register
5112 before attempting to convert it to the desired mode. */
5113 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5114 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5115 }
5116
5117 /* If we have an expression in OFFSET_RTX and a non-zero
5118 byte offset in BITPOS, adding the byte offset before the
5119 OFFSET_RTX results in better intermediate code, which makes
5120 later rtl optimization passes perform better.
5121
5122 We prefer intermediate code like this:
5123
5124 r124:DI=r123:DI+0x18
5125 [r124:DI]=r121:DI
5126
5127 ... instead of ...
5128
5129 r124:DI=r123:DI+0x10
5130 [r124:DI+0x8]=r121:DI
5131
5132 This is only done for aligned data values, as these can
5133 be expected to result in single move instructions. */
5134 poly_int64 bytepos;
5135 if (mode1 != VOIDmode
5136 && maybe_ne (bitpos, 0)
5137 && maybe_gt (bitsize, 0)
5138 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5139 && multiple_p (bitpos, bitsize)
5140 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5141 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5142 {
5143 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5144 bitregion_start = 0;
5145 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5146 bitregion_end -= bitpos;
5147 bitpos = 0;
5148 }
5149
5150 to_rtx = offset_address (to_rtx, offset_rtx,
5151 highest_pow2_factor_for_target (to,
5152 offset));
5153 }
5154
5155 /* No action is needed if the target is not a memory and the field
5156 lies completely outside that target. This can occur if the source
5157 code contains an out-of-bounds access to a small array. */
5158 if (!MEM_P (to_rtx)
5159 && GET_MODE (to_rtx) != BLKmode
5160 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5161 {
5162 expand_normal (from);
5163 result = NULL;
5164 }
5165 /* Handle expand_expr of a complex value returning a CONCAT. */
5166 else if (GET_CODE (to_rtx) == CONCAT)
5167 {
5168 machine_mode to_mode = GET_MODE (to_rtx);
5169 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5170 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5171 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5172 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5173 && known_eq (bitpos, 0)
5174 && known_eq (bitsize, mode_bitsize))
5175 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5176 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5177 && known_eq (bitsize, inner_bitsize)
5178 && (known_eq (bitpos, 0)
5179 || known_eq (bitpos, inner_bitsize)))
5180 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5181 false, nontemporal, reversep);
5182 else if (known_le (bitpos + bitsize, inner_bitsize))
5183 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5184 bitregion_start, bitregion_end,
5185 mode1, from, get_alias_set (to),
5186 nontemporal, reversep);
5187 else if (known_ge (bitpos, inner_bitsize))
5188 result = store_field (XEXP (to_rtx, 1), bitsize,
5189 bitpos - inner_bitsize,
5190 bitregion_start, bitregion_end,
5191 mode1, from, get_alias_set (to),
5192 nontemporal, reversep);
5193 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5194 {
5195 result = expand_normal (from);
5196 if (GET_CODE (result) == CONCAT)
5197 {
5198 to_mode = GET_MODE_INNER (to_mode);
5199 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5200 rtx from_real
5201 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5202 from_mode, 0);
5203 rtx from_imag
5204 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5205 from_mode, 0);
5206 if (!from_real || !from_imag)
5207 goto concat_store_slow;
5208 emit_move_insn (XEXP (to_rtx, 0), from_real);
5209 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5210 }
5211 else
5212 {
5213 rtx from_rtx
5214 = simplify_gen_subreg (to_mode, result,
5215 TYPE_MODE (TREE_TYPE (from)), 0);
5216 if (from_rtx)
5217 {
5218 emit_move_insn (XEXP (to_rtx, 0),
5219 read_complex_part (from_rtx, false));
5220 emit_move_insn (XEXP (to_rtx, 1),
5221 read_complex_part (from_rtx, true));
5222 }
5223 else
5224 {
5225 machine_mode to_mode
5226 = GET_MODE_INNER (GET_MODE (to_rtx));
5227 rtx from_real
5228 = simplify_gen_subreg (to_mode, result,
5229 TYPE_MODE (TREE_TYPE (from)),
5230 0);
5231 rtx from_imag
5232 = simplify_gen_subreg (to_mode, result,
5233 TYPE_MODE (TREE_TYPE (from)),
5234 GET_MODE_SIZE (to_mode));
5235 if (!from_real || !from_imag)
5236 goto concat_store_slow;
5237 emit_move_insn (XEXP (to_rtx, 0), from_real);
5238 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5239 }
5240 }
5241 }
5242 else
5243 {
5244 concat_store_slow:;
5245 rtx temp = assign_stack_temp (to_mode,
5246 GET_MODE_SIZE (GET_MODE (to_rtx)));
5247 write_complex_part (temp, XEXP (to_rtx, 0), false);
5248 write_complex_part (temp, XEXP (to_rtx, 1), true);
5249 result = store_field (temp, bitsize, bitpos,
5250 bitregion_start, bitregion_end,
5251 mode1, from, get_alias_set (to),
5252 nontemporal, reversep);
5253 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5254 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5255 }
5256 }
5257 else
5258 {
5259 if (MEM_P (to_rtx))
5260 {
5261 /* If the field is at offset zero, we could have been given the
5262 DECL_RTX of the parent struct. Don't munge it. */
5263 to_rtx = shallow_copy_rtx (to_rtx);
5264 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5265 if (volatilep)
5266 MEM_VOLATILE_P (to_rtx) = 1;
5267 }
5268
5269 gcc_checking_assert (known_ge (bitpos, 0));
5270 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5271 bitregion_start, bitregion_end,
5272 mode1, to_rtx, to, from,
5273 reversep))
5274 result = NULL;
5275 else
5276 result = store_field (to_rtx, bitsize, bitpos,
5277 bitregion_start, bitregion_end,
5278 mode1, from, get_alias_set (to),
5279 nontemporal, reversep);
5280 }
5281
5282 if (result)
5283 preserve_temp_slots (result);
5284 pop_temp_slots ();
5285 return;
5286 }
5287
5288 /* If the rhs is a function call and its value is not an aggregate,
5289 call the function before we start to compute the lhs.
5290 This is needed for correct code for cases such as
5291 val = setjmp (buf) on machines where reference to val
5292 requires loading up part of an address in a separate insn.
5293
5294 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5295 since it might be a promoted variable where the zero- or sign- extension
5296 needs to be done. Handling this in the normal way is safe because no
5297 computation is done before the call. The same is true for SSA names. */
5298 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5299 && COMPLETE_TYPE_P (TREE_TYPE (from))
5300 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5301 && ! (((VAR_P (to)
5302 || TREE_CODE (to) == PARM_DECL
5303 || TREE_CODE (to) == RESULT_DECL)
5304 && REG_P (DECL_RTL (to)))
5305 || TREE_CODE (to) == SSA_NAME))
5306 {
5307 rtx value;
5308
5309 push_temp_slots ();
5310 value = expand_normal (from);
5311
5312 if (to_rtx == 0)
5313 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5314
5315 /* Handle calls that return values in multiple non-contiguous locations.
5316 The Irix 6 ABI has examples of this. */
5317 if (GET_CODE (to_rtx) == PARALLEL)
5318 {
5319 if (GET_CODE (value) == PARALLEL)
5320 emit_group_move (to_rtx, value);
5321 else
5322 emit_group_load (to_rtx, value, TREE_TYPE (from),
5323 int_size_in_bytes (TREE_TYPE (from)));
5324 }
5325 else if (GET_CODE (value) == PARALLEL)
5326 emit_group_store (to_rtx, value, TREE_TYPE (from),
5327 int_size_in_bytes (TREE_TYPE (from)));
5328 else if (GET_MODE (to_rtx) == BLKmode)
5329 {
5330 /* Handle calls that return BLKmode values in registers. */
5331 if (REG_P (value))
5332 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5333 else
5334 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5335 }
5336 else
5337 {
5338 if (POINTER_TYPE_P (TREE_TYPE (to)))
5339 value = convert_memory_address_addr_space
5340 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5341 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5342
5343 emit_move_insn (to_rtx, value);
5344 }
5345
5346 preserve_temp_slots (to_rtx);
5347 pop_temp_slots ();
5348 return;
5349 }
5350
5351 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5352 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5353
5354 /* Don't move directly into a return register. */
5355 if (TREE_CODE (to) == RESULT_DECL
5356 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5357 {
5358 rtx temp;
5359
5360 push_temp_slots ();
5361
5362 /* If the source is itself a return value, it still is in a pseudo at
5363 this point so we can move it back to the return register directly. */
5364 if (REG_P (to_rtx)
5365 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5366 && TREE_CODE (from) != CALL_EXPR)
5367 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5368 else
5369 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5370
5371 /* Handle calls that return values in multiple non-contiguous locations.
5372 The Irix 6 ABI has examples of this. */
5373 if (GET_CODE (to_rtx) == PARALLEL)
5374 {
5375 if (GET_CODE (temp) == PARALLEL)
5376 emit_group_move (to_rtx, temp);
5377 else
5378 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5379 int_size_in_bytes (TREE_TYPE (from)));
5380 }
5381 else if (temp)
5382 emit_move_insn (to_rtx, temp);
5383
5384 preserve_temp_slots (to_rtx);
5385 pop_temp_slots ();
5386 return;
5387 }
5388
5389 /* In case we are returning the contents of an object which overlaps
5390 the place the value is being stored, use a safe function when copying
5391 a value through a pointer into a structure value return block. */
5392 if (TREE_CODE (to) == RESULT_DECL
5393 && TREE_CODE (from) == INDIRECT_REF
5394 && ADDR_SPACE_GENERIC_P
5395 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5396 && refs_may_alias_p (to, from)
5397 && cfun->returns_struct
5398 && !cfun->returns_pcc_struct)
5399 {
5400 rtx from_rtx, size;
5401
5402 push_temp_slots ();
5403 size = expr_size (from);
5404 from_rtx = expand_normal (from);
5405
5406 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5407
5408 preserve_temp_slots (to_rtx);
5409 pop_temp_slots ();
5410 return;
5411 }
5412
5413 /* Compute FROM and store the value in the rtx we got. */
5414
5415 push_temp_slots ();
5416 result = store_expr (from, to_rtx, 0, nontemporal, false);
5417 preserve_temp_slots (result);
5418 pop_temp_slots ();
5419 return;
5420 }
5421
5422 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5423 succeeded, false otherwise. */
5424
5425 bool
5426 emit_storent_insn (rtx to, rtx from)
5427 {
5428 struct expand_operand ops[2];
5429 machine_mode mode = GET_MODE (to);
5430 enum insn_code code = optab_handler (storent_optab, mode);
5431
5432 if (code == CODE_FOR_nothing)
5433 return false;
5434
5435 create_fixed_operand (&ops[0], to);
5436 create_input_operand (&ops[1], from, mode);
5437 return maybe_expand_insn (code, 2, ops);
5438 }
5439
5440 /* Generate code for computing expression EXP,
5441 and storing the value into TARGET.
5442
5443 If the mode is BLKmode then we may return TARGET itself.
5444 It turns out that in BLKmode it doesn't cause a problem.
5445 because C has no operators that could combine two different
5446 assignments into the same BLKmode object with different values
5447 with no sequence point. Will other languages need this to
5448 be more thorough?
5449
5450 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5451 stack, and block moves may need to be treated specially.
5452
5453 If NONTEMPORAL is true, try using a nontemporal store instruction.
5454
5455 If REVERSE is true, the store is to be done in reverse order. */
5456
5457 rtx
5458 store_expr (tree exp, rtx target, int call_param_p,
5459 bool nontemporal, bool reverse)
5460 {
5461 rtx temp;
5462 rtx alt_rtl = NULL_RTX;
5463 location_t loc = curr_insn_location ();
5464
5465 if (VOID_TYPE_P (TREE_TYPE (exp)))
5466 {
5467 /* C++ can generate ?: expressions with a throw expression in one
5468 branch and an rvalue in the other. Here, we resolve attempts to
5469 store the throw expression's nonexistent result. */
5470 gcc_assert (!call_param_p);
5471 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5472 return NULL_RTX;
5473 }
5474 if (TREE_CODE (exp) == COMPOUND_EXPR)
5475 {
5476 /* Perform first part of compound expression, then assign from second
5477 part. */
5478 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5479 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5480 return store_expr (TREE_OPERAND (exp, 1), target,
5481 call_param_p, nontemporal, reverse);
5482 }
5483 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5484 {
5485 /* For conditional expression, get safe form of the target. Then
5486 test the condition, doing the appropriate assignment on either
5487 side. This avoids the creation of unnecessary temporaries.
5488 For non-BLKmode, it is more efficient not to do this. */
5489
5490 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5491
5492 do_pending_stack_adjust ();
5493 NO_DEFER_POP;
5494 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5495 profile_probability::uninitialized ());
5496 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5497 nontemporal, reverse);
5498 emit_jump_insn (targetm.gen_jump (lab2));
5499 emit_barrier ();
5500 emit_label (lab1);
5501 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5502 nontemporal, reverse);
5503 emit_label (lab2);
5504 OK_DEFER_POP;
5505
5506 return NULL_RTX;
5507 }
5508 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5509 /* If this is a scalar in a register that is stored in a wider mode
5510 than the declared mode, compute the result into its declared mode
5511 and then convert to the wider mode. Our value is the computed
5512 expression. */
5513 {
5514 rtx inner_target = 0;
5515 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5516 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5517
5518 /* We can do the conversion inside EXP, which will often result
5519 in some optimizations. Do the conversion in two steps: first
5520 change the signedness, if needed, then the extend. But don't
5521 do this if the type of EXP is a subtype of something else
5522 since then the conversion might involve more than just
5523 converting modes. */
5524 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5525 && TREE_TYPE (TREE_TYPE (exp)) == 0
5526 && GET_MODE_PRECISION (outer_mode)
5527 == TYPE_PRECISION (TREE_TYPE (exp)))
5528 {
5529 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5530 TYPE_UNSIGNED (TREE_TYPE (exp))))
5531 {
5532 /* Some types, e.g. Fortran's logical*4, won't have a signed
5533 version, so use the mode instead. */
5534 tree ntype
5535 = (signed_or_unsigned_type_for
5536 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5537 if (ntype == NULL)
5538 ntype = lang_hooks.types.type_for_mode
5539 (TYPE_MODE (TREE_TYPE (exp)),
5540 SUBREG_PROMOTED_SIGN (target));
5541
5542 exp = fold_convert_loc (loc, ntype, exp);
5543 }
5544
5545 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5546 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5547 exp);
5548
5549 inner_target = SUBREG_REG (target);
5550 }
5551
5552 temp = expand_expr (exp, inner_target, VOIDmode,
5553 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5554
5555
5556 /* If TEMP is a VOIDmode constant, use convert_modes to make
5557 sure that we properly convert it. */
5558 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5559 {
5560 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5561 temp, SUBREG_PROMOTED_SIGN (target));
5562 temp = convert_modes (inner_mode, outer_mode, temp,
5563 SUBREG_PROMOTED_SIGN (target));
5564 }
5565
5566 convert_move (SUBREG_REG (target), temp,
5567 SUBREG_PROMOTED_SIGN (target));
5568
5569 return NULL_RTX;
5570 }
5571 else if ((TREE_CODE (exp) == STRING_CST
5572 || (TREE_CODE (exp) == MEM_REF
5573 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5574 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5575 == STRING_CST
5576 && integer_zerop (TREE_OPERAND (exp, 1))))
5577 && !nontemporal && !call_param_p
5578 && MEM_P (target))
5579 {
5580 /* Optimize initialization of an array with a STRING_CST. */
5581 HOST_WIDE_INT exp_len, str_copy_len;
5582 rtx dest_mem;
5583 tree str = TREE_CODE (exp) == STRING_CST
5584 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5585
5586 exp_len = int_expr_size (exp);
5587 if (exp_len <= 0)
5588 goto normal_expr;
5589
5590 if (TREE_STRING_LENGTH (str) <= 0)
5591 goto normal_expr;
5592
5593 str_copy_len = strlen (TREE_STRING_POINTER (str));
5594 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5595 goto normal_expr;
5596
5597 str_copy_len = TREE_STRING_LENGTH (str);
5598 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5599 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5600 {
5601 str_copy_len += STORE_MAX_PIECES - 1;
5602 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5603 }
5604 str_copy_len = MIN (str_copy_len, exp_len);
5605 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5606 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5607 MEM_ALIGN (target), false))
5608 goto normal_expr;
5609
5610 dest_mem = target;
5611
5612 dest_mem = store_by_pieces (dest_mem,
5613 str_copy_len, builtin_strncpy_read_str,
5614 CONST_CAST (char *,
5615 TREE_STRING_POINTER (str)),
5616 MEM_ALIGN (target), false,
5617 (exp_len > str_copy_len ? RETURN_END :
5618 RETURN_BEGIN));
5619 if (exp_len > str_copy_len)
5620 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5621 GEN_INT (exp_len - str_copy_len),
5622 BLOCK_OP_NORMAL);
5623 return NULL_RTX;
5624 }
5625 else
5626 {
5627 rtx tmp_target;
5628
5629 normal_expr:
5630 /* If we want to use a nontemporal or a reverse order store, force the
5631 value into a register first. */
5632 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5633 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5634 (call_param_p
5635 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5636 &alt_rtl, false);
5637 }
5638
5639 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5640 the same as that of TARGET, adjust the constant. This is needed, for
5641 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5642 only a word-sized value. */
5643 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5644 && TREE_CODE (exp) != ERROR_MARK
5645 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5646 {
5647 if (GET_MODE_CLASS (GET_MODE (target))
5648 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5649 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5650 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5651 {
5652 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5653 TYPE_MODE (TREE_TYPE (exp)), 0);
5654 if (t)
5655 temp = t;
5656 }
5657 if (GET_MODE (temp) == VOIDmode)
5658 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5659 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5660 }
5661
5662 /* If value was not generated in the target, store it there.
5663 Convert the value to TARGET's type first if necessary and emit the
5664 pending incrementations that have been queued when expanding EXP.
5665 Note that we cannot emit the whole queue blindly because this will
5666 effectively disable the POST_INC optimization later.
5667
5668 If TEMP and TARGET compare equal according to rtx_equal_p, but
5669 one or both of them are volatile memory refs, we have to distinguish
5670 two cases:
5671 - expand_expr has used TARGET. In this case, we must not generate
5672 another copy. This can be detected by TARGET being equal according
5673 to == .
5674 - expand_expr has not used TARGET - that means that the source just
5675 happens to have the same RTX form. Since temp will have been created
5676 by expand_expr, it will compare unequal according to == .
5677 We must generate a copy in this case, to reach the correct number
5678 of volatile memory references. */
5679
5680 if ((! rtx_equal_p (temp, target)
5681 || (temp != target && (side_effects_p (temp)
5682 || side_effects_p (target))))
5683 && TREE_CODE (exp) != ERROR_MARK
5684 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5685 but TARGET is not valid memory reference, TEMP will differ
5686 from TARGET although it is really the same location. */
5687 && !(alt_rtl
5688 && rtx_equal_p (alt_rtl, target)
5689 && !side_effects_p (alt_rtl)
5690 && !side_effects_p (target))
5691 /* If there's nothing to copy, don't bother. Don't call
5692 expr_size unless necessary, because some front-ends (C++)
5693 expr_size-hook must not be given objects that are not
5694 supposed to be bit-copied or bit-initialized. */
5695 && expr_size (exp) != const0_rtx)
5696 {
5697 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5698 {
5699 if (GET_MODE (target) == BLKmode)
5700 {
5701 /* Handle calls that return BLKmode values in registers. */
5702 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5703 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5704 else
5705 store_bit_field (target,
5706 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5707 0, 0, 0, GET_MODE (temp), temp, reverse);
5708 }
5709 else
5710 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5711 }
5712
5713 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5714 {
5715 /* Handle copying a string constant into an array. The string
5716 constant may be shorter than the array. So copy just the string's
5717 actual length, and clear the rest. First get the size of the data
5718 type of the string, which is actually the size of the target. */
5719 rtx size = expr_size (exp);
5720
5721 if (CONST_INT_P (size)
5722 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5723 emit_block_move (target, temp, size,
5724 (call_param_p
5725 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5726 else
5727 {
5728 machine_mode pointer_mode
5729 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5730 machine_mode address_mode = get_address_mode (target);
5731
5732 /* Compute the size of the data to copy from the string. */
5733 tree copy_size
5734 = size_binop_loc (loc, MIN_EXPR,
5735 make_tree (sizetype, size),
5736 size_int (TREE_STRING_LENGTH (exp)));
5737 rtx copy_size_rtx
5738 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5739 (call_param_p
5740 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5741 rtx_code_label *label = 0;
5742
5743 /* Copy that much. */
5744 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5745 TYPE_UNSIGNED (sizetype));
5746 emit_block_move (target, temp, copy_size_rtx,
5747 (call_param_p
5748 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5749
5750 /* Figure out how much is left in TARGET that we have to clear.
5751 Do all calculations in pointer_mode. */
5752 poly_int64 const_copy_size;
5753 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5754 {
5755 size = plus_constant (address_mode, size, -const_copy_size);
5756 target = adjust_address (target, BLKmode, const_copy_size);
5757 }
5758 else
5759 {
5760 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5761 copy_size_rtx, NULL_RTX, 0,
5762 OPTAB_LIB_WIDEN);
5763
5764 if (GET_MODE (copy_size_rtx) != address_mode)
5765 copy_size_rtx = convert_to_mode (address_mode,
5766 copy_size_rtx,
5767 TYPE_UNSIGNED (sizetype));
5768
5769 target = offset_address (target, copy_size_rtx,
5770 highest_pow2_factor (copy_size));
5771 label = gen_label_rtx ();
5772 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5773 GET_MODE (size), 0, label);
5774 }
5775
5776 if (size != const0_rtx)
5777 clear_storage (target, size, BLOCK_OP_NORMAL);
5778
5779 if (label)
5780 emit_label (label);
5781 }
5782 }
5783 /* Handle calls that return values in multiple non-contiguous locations.
5784 The Irix 6 ABI has examples of this. */
5785 else if (GET_CODE (target) == PARALLEL)
5786 {
5787 if (GET_CODE (temp) == PARALLEL)
5788 emit_group_move (target, temp);
5789 else
5790 emit_group_load (target, temp, TREE_TYPE (exp),
5791 int_size_in_bytes (TREE_TYPE (exp)));
5792 }
5793 else if (GET_CODE (temp) == PARALLEL)
5794 emit_group_store (target, temp, TREE_TYPE (exp),
5795 int_size_in_bytes (TREE_TYPE (exp)));
5796 else if (GET_MODE (temp) == BLKmode)
5797 emit_block_move (target, temp, expr_size (exp),
5798 (call_param_p
5799 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5800 /* If we emit a nontemporal store, there is nothing else to do. */
5801 else if (nontemporal && emit_storent_insn (target, temp))
5802 ;
5803 else
5804 {
5805 if (reverse)
5806 temp = flip_storage_order (GET_MODE (target), temp);
5807 temp = force_operand (temp, target);
5808 if (temp != target)
5809 emit_move_insn (target, temp);
5810 }
5811 }
5812
5813 return NULL_RTX;
5814 }
5815 \f
5816 /* Return true if field F of structure TYPE is a flexible array. */
5817
5818 static bool
5819 flexible_array_member_p (const_tree f, const_tree type)
5820 {
5821 const_tree tf;
5822
5823 tf = TREE_TYPE (f);
5824 return (DECL_CHAIN (f) == NULL
5825 && TREE_CODE (tf) == ARRAY_TYPE
5826 && TYPE_DOMAIN (tf)
5827 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5828 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5829 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5830 && int_size_in_bytes (type) >= 0);
5831 }
5832
5833 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5834 must have in order for it to completely initialize a value of type TYPE.
5835 Return -1 if the number isn't known.
5836
5837 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5838
5839 static HOST_WIDE_INT
5840 count_type_elements (const_tree type, bool for_ctor_p)
5841 {
5842 switch (TREE_CODE (type))
5843 {
5844 case ARRAY_TYPE:
5845 {
5846 tree nelts;
5847
5848 nelts = array_type_nelts (type);
5849 if (nelts && tree_fits_uhwi_p (nelts))
5850 {
5851 unsigned HOST_WIDE_INT n;
5852
5853 n = tree_to_uhwi (nelts) + 1;
5854 if (n == 0 || for_ctor_p)
5855 return n;
5856 else
5857 return n * count_type_elements (TREE_TYPE (type), false);
5858 }
5859 return for_ctor_p ? -1 : 1;
5860 }
5861
5862 case RECORD_TYPE:
5863 {
5864 unsigned HOST_WIDE_INT n;
5865 tree f;
5866
5867 n = 0;
5868 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5869 if (TREE_CODE (f) == FIELD_DECL)
5870 {
5871 if (!for_ctor_p)
5872 n += count_type_elements (TREE_TYPE (f), false);
5873 else if (!flexible_array_member_p (f, type))
5874 /* Don't count flexible arrays, which are not supposed
5875 to be initialized. */
5876 n += 1;
5877 }
5878
5879 return n;
5880 }
5881
5882 case UNION_TYPE:
5883 case QUAL_UNION_TYPE:
5884 {
5885 tree f;
5886 HOST_WIDE_INT n, m;
5887
5888 gcc_assert (!for_ctor_p);
5889 /* Estimate the number of scalars in each field and pick the
5890 maximum. Other estimates would do instead; the idea is simply
5891 to make sure that the estimate is not sensitive to the ordering
5892 of the fields. */
5893 n = 1;
5894 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5895 if (TREE_CODE (f) == FIELD_DECL)
5896 {
5897 m = count_type_elements (TREE_TYPE (f), false);
5898 /* If the field doesn't span the whole union, add an extra
5899 scalar for the rest. */
5900 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5901 TYPE_SIZE (type)) != 1)
5902 m++;
5903 if (n < m)
5904 n = m;
5905 }
5906 return n;
5907 }
5908
5909 case COMPLEX_TYPE:
5910 return 2;
5911
5912 case VECTOR_TYPE:
5913 {
5914 unsigned HOST_WIDE_INT nelts;
5915 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
5916 return nelts;
5917 else
5918 return -1;
5919 }
5920
5921 case INTEGER_TYPE:
5922 case REAL_TYPE:
5923 case FIXED_POINT_TYPE:
5924 case ENUMERAL_TYPE:
5925 case BOOLEAN_TYPE:
5926 case POINTER_TYPE:
5927 case OFFSET_TYPE:
5928 case REFERENCE_TYPE:
5929 case NULLPTR_TYPE:
5930 return 1;
5931
5932 case ERROR_MARK:
5933 return 0;
5934
5935 case VOID_TYPE:
5936 case METHOD_TYPE:
5937 case FUNCTION_TYPE:
5938 case LANG_TYPE:
5939 default:
5940 gcc_unreachable ();
5941 }
5942 }
5943
5944 /* Helper for categorize_ctor_elements. Identical interface. */
5945
5946 static bool
5947 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5948 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5949 {
5950 unsigned HOST_WIDE_INT idx;
5951 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5952 tree value, purpose, elt_type;
5953
5954 /* Whether CTOR is a valid constant initializer, in accordance with what
5955 initializer_constant_valid_p does. If inferred from the constructor
5956 elements, true until proven otherwise. */
5957 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5958 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5959
5960 nz_elts = 0;
5961 init_elts = 0;
5962 num_fields = 0;
5963 elt_type = NULL_TREE;
5964
5965 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5966 {
5967 HOST_WIDE_INT mult = 1;
5968
5969 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5970 {
5971 tree lo_index = TREE_OPERAND (purpose, 0);
5972 tree hi_index = TREE_OPERAND (purpose, 1);
5973
5974 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5975 mult = (tree_to_uhwi (hi_index)
5976 - tree_to_uhwi (lo_index) + 1);
5977 }
5978 num_fields += mult;
5979 elt_type = TREE_TYPE (value);
5980
5981 switch (TREE_CODE (value))
5982 {
5983 case CONSTRUCTOR:
5984 {
5985 HOST_WIDE_INT nz = 0, ic = 0;
5986
5987 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5988 p_complete);
5989
5990 nz_elts += mult * nz;
5991 init_elts += mult * ic;
5992
5993 if (const_from_elts_p && const_p)
5994 const_p = const_elt_p;
5995 }
5996 break;
5997
5998 case INTEGER_CST:
5999 case REAL_CST:
6000 case FIXED_CST:
6001 if (!initializer_zerop (value))
6002 nz_elts += mult;
6003 init_elts += mult;
6004 break;
6005
6006 case STRING_CST:
6007 nz_elts += mult * TREE_STRING_LENGTH (value);
6008 init_elts += mult * TREE_STRING_LENGTH (value);
6009 break;
6010
6011 case COMPLEX_CST:
6012 if (!initializer_zerop (TREE_REALPART (value)))
6013 nz_elts += mult;
6014 if (!initializer_zerop (TREE_IMAGPART (value)))
6015 nz_elts += mult;
6016 init_elts += mult;
6017 break;
6018
6019 case VECTOR_CST:
6020 {
6021 /* We can only construct constant-length vectors using
6022 CONSTRUCTOR. */
6023 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6024 for (unsigned int i = 0; i < nunits; ++i)
6025 {
6026 tree v = VECTOR_CST_ELT (value, i);
6027 if (!initializer_zerop (v))
6028 nz_elts += mult;
6029 init_elts += mult;
6030 }
6031 }
6032 break;
6033
6034 default:
6035 {
6036 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6037 nz_elts += mult * tc;
6038 init_elts += mult * tc;
6039
6040 if (const_from_elts_p && const_p)
6041 const_p
6042 = initializer_constant_valid_p (value,
6043 elt_type,
6044 TYPE_REVERSE_STORAGE_ORDER
6045 (TREE_TYPE (ctor)))
6046 != NULL_TREE;
6047 }
6048 break;
6049 }
6050 }
6051
6052 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6053 num_fields, elt_type))
6054 *p_complete = false;
6055
6056 *p_nz_elts += nz_elts;
6057 *p_init_elts += init_elts;
6058
6059 return const_p;
6060 }
6061
6062 /* Examine CTOR to discover:
6063 * how many scalar fields are set to nonzero values,
6064 and place it in *P_NZ_ELTS;
6065 * how many scalar fields in total are in CTOR,
6066 and place it in *P_ELT_COUNT.
6067 * whether the constructor is complete -- in the sense that every
6068 meaningful byte is explicitly given a value --
6069 and place it in *P_COMPLETE.
6070
6071 Return whether or not CTOR is a valid static constant initializer, the same
6072 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6073
6074 bool
6075 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6076 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6077 {
6078 *p_nz_elts = 0;
6079 *p_init_elts = 0;
6080 *p_complete = true;
6081
6082 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6083 }
6084
6085 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6086 of which had type LAST_TYPE. Each element was itself a complete
6087 initializer, in the sense that every meaningful byte was explicitly
6088 given a value. Return true if the same is true for the constructor
6089 as a whole. */
6090
6091 bool
6092 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6093 const_tree last_type)
6094 {
6095 if (TREE_CODE (type) == UNION_TYPE
6096 || TREE_CODE (type) == QUAL_UNION_TYPE)
6097 {
6098 if (num_elts == 0)
6099 return false;
6100
6101 gcc_assert (num_elts == 1 && last_type);
6102
6103 /* ??? We could look at each element of the union, and find the
6104 largest element. Which would avoid comparing the size of the
6105 initialized element against any tail padding in the union.
6106 Doesn't seem worth the effort... */
6107 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6108 }
6109
6110 return count_type_elements (type, true) == num_elts;
6111 }
6112
6113 /* Return 1 if EXP contains mostly (3/4) zeros. */
6114
6115 static int
6116 mostly_zeros_p (const_tree exp)
6117 {
6118 if (TREE_CODE (exp) == CONSTRUCTOR)
6119 {
6120 HOST_WIDE_INT nz_elts, init_elts;
6121 bool complete_p;
6122
6123 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6124 return !complete_p || nz_elts < init_elts / 4;
6125 }
6126
6127 return initializer_zerop (exp);
6128 }
6129
6130 /* Return 1 if EXP contains all zeros. */
6131
6132 static int
6133 all_zeros_p (const_tree exp)
6134 {
6135 if (TREE_CODE (exp) == CONSTRUCTOR)
6136 {
6137 HOST_WIDE_INT nz_elts, init_elts;
6138 bool complete_p;
6139
6140 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6141 return nz_elts == 0;
6142 }
6143
6144 return initializer_zerop (exp);
6145 }
6146 \f
6147 /* Helper function for store_constructor.
6148 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6149 CLEARED is as for store_constructor.
6150 ALIAS_SET is the alias set to use for any stores.
6151 If REVERSE is true, the store is to be done in reverse order.
6152
6153 This provides a recursive shortcut back to store_constructor when it isn't
6154 necessary to go through store_field. This is so that we can pass through
6155 the cleared field to let store_constructor know that we may not have to
6156 clear a substructure if the outer structure has already been cleared. */
6157
6158 static void
6159 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6160 poly_uint64 bitregion_start,
6161 poly_uint64 bitregion_end,
6162 machine_mode mode,
6163 tree exp, int cleared,
6164 alias_set_type alias_set, bool reverse)
6165 {
6166 poly_int64 bytepos;
6167 poly_uint64 bytesize;
6168 if (TREE_CODE (exp) == CONSTRUCTOR
6169 /* We can only call store_constructor recursively if the size and
6170 bit position are on a byte boundary. */
6171 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6172 && maybe_ne (bitsize, 0U)
6173 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6174 /* If we have a nonzero bitpos for a register target, then we just
6175 let store_field do the bitfield handling. This is unlikely to
6176 generate unnecessary clear instructions anyways. */
6177 && (known_eq (bitpos, 0) || MEM_P (target)))
6178 {
6179 if (MEM_P (target))
6180 {
6181 machine_mode target_mode = GET_MODE (target);
6182 if (target_mode != BLKmode
6183 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6184 target_mode = BLKmode;
6185 target = adjust_address (target, target_mode, bytepos);
6186 }
6187
6188
6189 /* Update the alias set, if required. */
6190 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6191 && MEM_ALIAS_SET (target) != 0)
6192 {
6193 target = copy_rtx (target);
6194 set_mem_alias_set (target, alias_set);
6195 }
6196
6197 store_constructor (exp, target, cleared, bytesize, reverse);
6198 }
6199 else
6200 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6201 exp, alias_set, false, reverse);
6202 }
6203
6204
6205 /* Returns the number of FIELD_DECLs in TYPE. */
6206
6207 static int
6208 fields_length (const_tree type)
6209 {
6210 tree t = TYPE_FIELDS (type);
6211 int count = 0;
6212
6213 for (; t; t = DECL_CHAIN (t))
6214 if (TREE_CODE (t) == FIELD_DECL)
6215 ++count;
6216
6217 return count;
6218 }
6219
6220
6221 /* Store the value of constructor EXP into the rtx TARGET.
6222 TARGET is either a REG or a MEM; we know it cannot conflict, since
6223 safe_from_p has been called.
6224 CLEARED is true if TARGET is known to have been zero'd.
6225 SIZE is the number of bytes of TARGET we are allowed to modify: this
6226 may not be the same as the size of EXP if we are assigning to a field
6227 which has been packed to exclude padding bits.
6228 If REVERSE is true, the store is to be done in reverse order. */
6229
6230 static void
6231 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6232 bool reverse)
6233 {
6234 tree type = TREE_TYPE (exp);
6235 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6236 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6237
6238 switch (TREE_CODE (type))
6239 {
6240 case RECORD_TYPE:
6241 case UNION_TYPE:
6242 case QUAL_UNION_TYPE:
6243 {
6244 unsigned HOST_WIDE_INT idx;
6245 tree field, value;
6246
6247 /* The storage order is specified for every aggregate type. */
6248 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6249
6250 /* If size is zero or the target is already cleared, do nothing. */
6251 if (known_eq (size, 0) || cleared)
6252 cleared = 1;
6253 /* We either clear the aggregate or indicate the value is dead. */
6254 else if ((TREE_CODE (type) == UNION_TYPE
6255 || TREE_CODE (type) == QUAL_UNION_TYPE)
6256 && ! CONSTRUCTOR_ELTS (exp))
6257 /* If the constructor is empty, clear the union. */
6258 {
6259 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6260 cleared = 1;
6261 }
6262
6263 /* If we are building a static constructor into a register,
6264 set the initial value as zero so we can fold the value into
6265 a constant. But if more than one register is involved,
6266 this probably loses. */
6267 else if (REG_P (target) && TREE_STATIC (exp)
6268 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6269 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6270 {
6271 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6272 cleared = 1;
6273 }
6274
6275 /* If the constructor has fewer fields than the structure or
6276 if we are initializing the structure to mostly zeros, clear
6277 the whole structure first. Don't do this if TARGET is a
6278 register whose mode size isn't equal to SIZE since
6279 clear_storage can't handle this case. */
6280 else if (known_size_p (size)
6281 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6282 || mostly_zeros_p (exp))
6283 && (!REG_P (target)
6284 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6285 {
6286 clear_storage (target, gen_int_mode (size, Pmode),
6287 BLOCK_OP_NORMAL);
6288 cleared = 1;
6289 }
6290
6291 if (REG_P (target) && !cleared)
6292 emit_clobber (target);
6293
6294 /* Store each element of the constructor into the
6295 corresponding field of TARGET. */
6296 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6297 {
6298 machine_mode mode;
6299 HOST_WIDE_INT bitsize;
6300 HOST_WIDE_INT bitpos = 0;
6301 tree offset;
6302 rtx to_rtx = target;
6303
6304 /* Just ignore missing fields. We cleared the whole
6305 structure, above, if any fields are missing. */
6306 if (field == 0)
6307 continue;
6308
6309 if (cleared && initializer_zerop (value))
6310 continue;
6311
6312 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6313 bitsize = tree_to_uhwi (DECL_SIZE (field));
6314 else
6315 gcc_unreachable ();
6316
6317 mode = DECL_MODE (field);
6318 if (DECL_BIT_FIELD (field))
6319 mode = VOIDmode;
6320
6321 offset = DECL_FIELD_OFFSET (field);
6322 if (tree_fits_shwi_p (offset)
6323 && tree_fits_shwi_p (bit_position (field)))
6324 {
6325 bitpos = int_bit_position (field);
6326 offset = NULL_TREE;
6327 }
6328 else
6329 gcc_unreachable ();
6330
6331 /* If this initializes a field that is smaller than a
6332 word, at the start of a word, try to widen it to a full
6333 word. This special case allows us to output C++ member
6334 function initializations in a form that the optimizers
6335 can understand. */
6336 if (WORD_REGISTER_OPERATIONS
6337 && REG_P (target)
6338 && bitsize < BITS_PER_WORD
6339 && bitpos % BITS_PER_WORD == 0
6340 && GET_MODE_CLASS (mode) == MODE_INT
6341 && TREE_CODE (value) == INTEGER_CST
6342 && exp_size >= 0
6343 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6344 {
6345 tree type = TREE_TYPE (value);
6346
6347 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6348 {
6349 type = lang_hooks.types.type_for_mode
6350 (word_mode, TYPE_UNSIGNED (type));
6351 value = fold_convert (type, value);
6352 /* Make sure the bits beyond the original bitsize are zero
6353 so that we can correctly avoid extra zeroing stores in
6354 later constructor elements. */
6355 tree bitsize_mask
6356 = wide_int_to_tree (type, wi::mask (bitsize, false,
6357 BITS_PER_WORD));
6358 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6359 }
6360
6361 if (BYTES_BIG_ENDIAN)
6362 value
6363 = fold_build2 (LSHIFT_EXPR, type, value,
6364 build_int_cst (type,
6365 BITS_PER_WORD - bitsize));
6366 bitsize = BITS_PER_WORD;
6367 mode = word_mode;
6368 }
6369
6370 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6371 && DECL_NONADDRESSABLE_P (field))
6372 {
6373 to_rtx = copy_rtx (to_rtx);
6374 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6375 }
6376
6377 store_constructor_field (to_rtx, bitsize, bitpos,
6378 0, bitregion_end, mode,
6379 value, cleared,
6380 get_alias_set (TREE_TYPE (field)),
6381 reverse);
6382 }
6383 break;
6384 }
6385 case ARRAY_TYPE:
6386 {
6387 tree value, index;
6388 unsigned HOST_WIDE_INT i;
6389 int need_to_clear;
6390 tree domain;
6391 tree elttype = TREE_TYPE (type);
6392 int const_bounds_p;
6393 HOST_WIDE_INT minelt = 0;
6394 HOST_WIDE_INT maxelt = 0;
6395
6396 /* The storage order is specified for every aggregate type. */
6397 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6398
6399 domain = TYPE_DOMAIN (type);
6400 const_bounds_p = (TYPE_MIN_VALUE (domain)
6401 && TYPE_MAX_VALUE (domain)
6402 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6403 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6404
6405 /* If we have constant bounds for the range of the type, get them. */
6406 if (const_bounds_p)
6407 {
6408 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6409 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6410 }
6411
6412 /* If the constructor has fewer elements than the array, clear
6413 the whole array first. Similarly if this is static
6414 constructor of a non-BLKmode object. */
6415 if (cleared)
6416 need_to_clear = 0;
6417 else if (REG_P (target) && TREE_STATIC (exp))
6418 need_to_clear = 1;
6419 else
6420 {
6421 unsigned HOST_WIDE_INT idx;
6422 tree index, value;
6423 HOST_WIDE_INT count = 0, zero_count = 0;
6424 need_to_clear = ! const_bounds_p;
6425
6426 /* This loop is a more accurate version of the loop in
6427 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6428 is also needed to check for missing elements. */
6429 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6430 {
6431 HOST_WIDE_INT this_node_count;
6432
6433 if (need_to_clear)
6434 break;
6435
6436 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6437 {
6438 tree lo_index = TREE_OPERAND (index, 0);
6439 tree hi_index = TREE_OPERAND (index, 1);
6440
6441 if (! tree_fits_uhwi_p (lo_index)
6442 || ! tree_fits_uhwi_p (hi_index))
6443 {
6444 need_to_clear = 1;
6445 break;
6446 }
6447
6448 this_node_count = (tree_to_uhwi (hi_index)
6449 - tree_to_uhwi (lo_index) + 1);
6450 }
6451 else
6452 this_node_count = 1;
6453
6454 count += this_node_count;
6455 if (mostly_zeros_p (value))
6456 zero_count += this_node_count;
6457 }
6458
6459 /* Clear the entire array first if there are any missing
6460 elements, or if the incidence of zero elements is >=
6461 75%. */
6462 if (! need_to_clear
6463 && (count < maxelt - minelt + 1
6464 || 4 * zero_count >= 3 * count))
6465 need_to_clear = 1;
6466 }
6467
6468 if (need_to_clear && maybe_gt (size, 0))
6469 {
6470 if (REG_P (target))
6471 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6472 else
6473 clear_storage (target, gen_int_mode (size, Pmode),
6474 BLOCK_OP_NORMAL);
6475 cleared = 1;
6476 }
6477
6478 if (!cleared && REG_P (target))
6479 /* Inform later passes that the old value is dead. */
6480 emit_clobber (target);
6481
6482 /* Store each element of the constructor into the
6483 corresponding element of TARGET, determined by counting the
6484 elements. */
6485 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6486 {
6487 machine_mode mode;
6488 poly_int64 bitsize;
6489 HOST_WIDE_INT bitpos;
6490 rtx xtarget = target;
6491
6492 if (cleared && initializer_zerop (value))
6493 continue;
6494
6495 mode = TYPE_MODE (elttype);
6496 if (mode != BLKmode)
6497 bitsize = GET_MODE_BITSIZE (mode);
6498 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6499 bitsize = -1;
6500
6501 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6502 {
6503 tree lo_index = TREE_OPERAND (index, 0);
6504 tree hi_index = TREE_OPERAND (index, 1);
6505 rtx index_r, pos_rtx;
6506 HOST_WIDE_INT lo, hi, count;
6507 tree position;
6508
6509 /* If the range is constant and "small", unroll the loop. */
6510 if (const_bounds_p
6511 && tree_fits_shwi_p (lo_index)
6512 && tree_fits_shwi_p (hi_index)
6513 && (lo = tree_to_shwi (lo_index),
6514 hi = tree_to_shwi (hi_index),
6515 count = hi - lo + 1,
6516 (!MEM_P (target)
6517 || count <= 2
6518 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6519 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6520 <= 40 * 8)))))
6521 {
6522 lo -= minelt; hi -= minelt;
6523 for (; lo <= hi; lo++)
6524 {
6525 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6526
6527 if (MEM_P (target)
6528 && !MEM_KEEP_ALIAS_SET_P (target)
6529 && TREE_CODE (type) == ARRAY_TYPE
6530 && TYPE_NONALIASED_COMPONENT (type))
6531 {
6532 target = copy_rtx (target);
6533 MEM_KEEP_ALIAS_SET_P (target) = 1;
6534 }
6535
6536 store_constructor_field
6537 (target, bitsize, bitpos, 0, bitregion_end,
6538 mode, value, cleared,
6539 get_alias_set (elttype), reverse);
6540 }
6541 }
6542 else
6543 {
6544 rtx_code_label *loop_start = gen_label_rtx ();
6545 rtx_code_label *loop_end = gen_label_rtx ();
6546 tree exit_cond;
6547
6548 expand_normal (hi_index);
6549
6550 index = build_decl (EXPR_LOCATION (exp),
6551 VAR_DECL, NULL_TREE, domain);
6552 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6553 SET_DECL_RTL (index, index_r);
6554 store_expr (lo_index, index_r, 0, false, reverse);
6555
6556 /* Build the head of the loop. */
6557 do_pending_stack_adjust ();
6558 emit_label (loop_start);
6559
6560 /* Assign value to element index. */
6561 position =
6562 fold_convert (ssizetype,
6563 fold_build2 (MINUS_EXPR,
6564 TREE_TYPE (index),
6565 index,
6566 TYPE_MIN_VALUE (domain)));
6567
6568 position =
6569 size_binop (MULT_EXPR, position,
6570 fold_convert (ssizetype,
6571 TYPE_SIZE_UNIT (elttype)));
6572
6573 pos_rtx = expand_normal (position);
6574 xtarget = offset_address (target, pos_rtx,
6575 highest_pow2_factor (position));
6576 xtarget = adjust_address (xtarget, mode, 0);
6577 if (TREE_CODE (value) == CONSTRUCTOR)
6578 store_constructor (value, xtarget, cleared,
6579 exact_div (bitsize, BITS_PER_UNIT),
6580 reverse);
6581 else
6582 store_expr (value, xtarget, 0, false, reverse);
6583
6584 /* Generate a conditional jump to exit the loop. */
6585 exit_cond = build2 (LT_EXPR, integer_type_node,
6586 index, hi_index);
6587 jumpif (exit_cond, loop_end,
6588 profile_probability::uninitialized ());
6589
6590 /* Update the loop counter, and jump to the head of
6591 the loop. */
6592 expand_assignment (index,
6593 build2 (PLUS_EXPR, TREE_TYPE (index),
6594 index, integer_one_node),
6595 false);
6596
6597 emit_jump (loop_start);
6598
6599 /* Build the end of the loop. */
6600 emit_label (loop_end);
6601 }
6602 }
6603 else if ((index != 0 && ! tree_fits_shwi_p (index))
6604 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6605 {
6606 tree position;
6607
6608 if (index == 0)
6609 index = ssize_int (1);
6610
6611 if (minelt)
6612 index = fold_convert (ssizetype,
6613 fold_build2 (MINUS_EXPR,
6614 TREE_TYPE (index),
6615 index,
6616 TYPE_MIN_VALUE (domain)));
6617
6618 position =
6619 size_binop (MULT_EXPR, index,
6620 fold_convert (ssizetype,
6621 TYPE_SIZE_UNIT (elttype)));
6622 xtarget = offset_address (target,
6623 expand_normal (position),
6624 highest_pow2_factor (position));
6625 xtarget = adjust_address (xtarget, mode, 0);
6626 store_expr (value, xtarget, 0, false, reverse);
6627 }
6628 else
6629 {
6630 if (index != 0)
6631 bitpos = ((tree_to_shwi (index) - minelt)
6632 * tree_to_uhwi (TYPE_SIZE (elttype)));
6633 else
6634 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6635
6636 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6637 && TREE_CODE (type) == ARRAY_TYPE
6638 && TYPE_NONALIASED_COMPONENT (type))
6639 {
6640 target = copy_rtx (target);
6641 MEM_KEEP_ALIAS_SET_P (target) = 1;
6642 }
6643 store_constructor_field (target, bitsize, bitpos, 0,
6644 bitregion_end, mode, value,
6645 cleared, get_alias_set (elttype),
6646 reverse);
6647 }
6648 }
6649 break;
6650 }
6651
6652 case VECTOR_TYPE:
6653 {
6654 unsigned HOST_WIDE_INT idx;
6655 constructor_elt *ce;
6656 int i;
6657 int need_to_clear;
6658 insn_code icode = CODE_FOR_nothing;
6659 tree elt;
6660 tree elttype = TREE_TYPE (type);
6661 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6662 machine_mode eltmode = TYPE_MODE (elttype);
6663 HOST_WIDE_INT bitsize;
6664 HOST_WIDE_INT bitpos;
6665 rtvec vector = NULL;
6666 poly_uint64 n_elts;
6667 unsigned HOST_WIDE_INT const_n_elts;
6668 alias_set_type alias;
6669 bool vec_vec_init_p = false;
6670 machine_mode mode = GET_MODE (target);
6671
6672 gcc_assert (eltmode != BLKmode);
6673
6674 /* Try using vec_duplicate_optab for uniform vectors. */
6675 if (!TREE_SIDE_EFFECTS (exp)
6676 && VECTOR_MODE_P (mode)
6677 && eltmode == GET_MODE_INNER (mode)
6678 && ((icode = optab_handler (vec_duplicate_optab, mode))
6679 != CODE_FOR_nothing)
6680 && (elt = uniform_vector_p (exp)))
6681 {
6682 struct expand_operand ops[2];
6683 create_output_operand (&ops[0], target, mode);
6684 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6685 expand_insn (icode, 2, ops);
6686 if (!rtx_equal_p (target, ops[0].value))
6687 emit_move_insn (target, ops[0].value);
6688 break;
6689 }
6690
6691 n_elts = TYPE_VECTOR_SUBPARTS (type);
6692 if (REG_P (target)
6693 && VECTOR_MODE_P (mode)
6694 && n_elts.is_constant (&const_n_elts))
6695 {
6696 machine_mode emode = eltmode;
6697
6698 if (CONSTRUCTOR_NELTS (exp)
6699 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6700 == VECTOR_TYPE))
6701 {
6702 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6703 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6704 * TYPE_VECTOR_SUBPARTS (etype),
6705 n_elts));
6706 emode = TYPE_MODE (etype);
6707 }
6708 icode = convert_optab_handler (vec_init_optab, mode, emode);
6709 if (icode != CODE_FOR_nothing)
6710 {
6711 unsigned int i, n = const_n_elts;
6712
6713 if (emode != eltmode)
6714 {
6715 n = CONSTRUCTOR_NELTS (exp);
6716 vec_vec_init_p = true;
6717 }
6718 vector = rtvec_alloc (n);
6719 for (i = 0; i < n; i++)
6720 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6721 }
6722 }
6723
6724 /* If the constructor has fewer elements than the vector,
6725 clear the whole array first. Similarly if this is static
6726 constructor of a non-BLKmode object. */
6727 if (cleared)
6728 need_to_clear = 0;
6729 else if (REG_P (target) && TREE_STATIC (exp))
6730 need_to_clear = 1;
6731 else
6732 {
6733 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6734 tree value;
6735
6736 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6737 {
6738 tree sz = TYPE_SIZE (TREE_TYPE (value));
6739 int n_elts_here
6740 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6741 TYPE_SIZE (elttype)));
6742
6743 count += n_elts_here;
6744 if (mostly_zeros_p (value))
6745 zero_count += n_elts_here;
6746 }
6747
6748 /* Clear the entire vector first if there are any missing elements,
6749 or if the incidence of zero elements is >= 75%. */
6750 need_to_clear = (maybe_lt (count, n_elts)
6751 || 4 * zero_count >= 3 * count);
6752 }
6753
6754 if (need_to_clear && maybe_gt (size, 0) && !vector)
6755 {
6756 if (REG_P (target))
6757 emit_move_insn (target, CONST0_RTX (mode));
6758 else
6759 clear_storage (target, gen_int_mode (size, Pmode),
6760 BLOCK_OP_NORMAL);
6761 cleared = 1;
6762 }
6763
6764 /* Inform later passes that the old value is dead. */
6765 if (!cleared && !vector && REG_P (target))
6766 emit_move_insn (target, CONST0_RTX (mode));
6767
6768 if (MEM_P (target))
6769 alias = MEM_ALIAS_SET (target);
6770 else
6771 alias = get_alias_set (elttype);
6772
6773 /* Store each element of the constructor into the corresponding
6774 element of TARGET, determined by counting the elements. */
6775 for (idx = 0, i = 0;
6776 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6777 idx++, i += bitsize / elt_size)
6778 {
6779 HOST_WIDE_INT eltpos;
6780 tree value = ce->value;
6781
6782 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6783 if (cleared && initializer_zerop (value))
6784 continue;
6785
6786 if (ce->index)
6787 eltpos = tree_to_uhwi (ce->index);
6788 else
6789 eltpos = i;
6790
6791 if (vector)
6792 {
6793 if (vec_vec_init_p)
6794 {
6795 gcc_assert (ce->index == NULL_TREE);
6796 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6797 eltpos = idx;
6798 }
6799 else
6800 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6801 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6802 }
6803 else
6804 {
6805 machine_mode value_mode
6806 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6807 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6808 bitpos = eltpos * elt_size;
6809 store_constructor_field (target, bitsize, bitpos, 0,
6810 bitregion_end, value_mode,
6811 value, cleared, alias, reverse);
6812 }
6813 }
6814
6815 if (vector)
6816 emit_insn (GEN_FCN (icode) (target,
6817 gen_rtx_PARALLEL (mode, vector)));
6818 break;
6819 }
6820
6821 default:
6822 gcc_unreachable ();
6823 }
6824 }
6825
6826 /* Store the value of EXP (an expression tree)
6827 into a subfield of TARGET which has mode MODE and occupies
6828 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6829 If MODE is VOIDmode, it means that we are storing into a bit-field.
6830
6831 BITREGION_START is bitpos of the first bitfield in this region.
6832 BITREGION_END is the bitpos of the ending bitfield in this region.
6833 These two fields are 0, if the C++ memory model does not apply,
6834 or we are not interested in keeping track of bitfield regions.
6835
6836 Always return const0_rtx unless we have something particular to
6837 return.
6838
6839 ALIAS_SET is the alias set for the destination. This value will
6840 (in general) be different from that for TARGET, since TARGET is a
6841 reference to the containing structure.
6842
6843 If NONTEMPORAL is true, try generating a nontemporal store.
6844
6845 If REVERSE is true, the store is to be done in reverse order. */
6846
6847 static rtx
6848 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
6849 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
6850 machine_mode mode, tree exp,
6851 alias_set_type alias_set, bool nontemporal, bool reverse)
6852 {
6853 if (TREE_CODE (exp) == ERROR_MARK)
6854 return const0_rtx;
6855
6856 /* If we have nothing to store, do nothing unless the expression has
6857 side-effects. Don't do that for zero sized addressable lhs of
6858 calls. */
6859 if (known_eq (bitsize, 0)
6860 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6861 || TREE_CODE (exp) != CALL_EXPR))
6862 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6863
6864 if (GET_CODE (target) == CONCAT)
6865 {
6866 /* We're storing into a struct containing a single __complex. */
6867
6868 gcc_assert (known_eq (bitpos, 0));
6869 return store_expr (exp, target, 0, nontemporal, reverse);
6870 }
6871
6872 /* If the structure is in a register or if the component
6873 is a bit field, we cannot use addressing to access it.
6874 Use bit-field techniques or SUBREG to store in it. */
6875
6876 poly_int64 decl_bitsize;
6877 if (mode == VOIDmode
6878 || (mode != BLKmode && ! direct_store[(int) mode]
6879 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6880 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6881 || REG_P (target)
6882 || GET_CODE (target) == SUBREG
6883 /* If the field isn't aligned enough to store as an ordinary memref,
6884 store it as a bit field. */
6885 || (mode != BLKmode
6886 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6887 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
6888 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6889 || !multiple_p (bitpos, BITS_PER_UNIT)))
6890 || (known_size_p (bitsize)
6891 && mode != BLKmode
6892 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
6893 /* If the RHS and field are a constant size and the size of the
6894 RHS isn't the same size as the bitfield, we must use bitfield
6895 operations. */
6896 || (known_size_p (bitsize)
6897 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
6898 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
6899 bitsize)
6900 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6901 we will handle specially below. */
6902 && !(TREE_CODE (exp) == CONSTRUCTOR
6903 && multiple_p (bitsize, BITS_PER_UNIT))
6904 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6905 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6906 includes some extra padding. store_expr / expand_expr will in
6907 that case call get_inner_reference that will have the bitsize
6908 we check here and thus the block move will not clobber the
6909 padding that shouldn't be clobbered. In the future we could
6910 replace the TREE_ADDRESSABLE check with a check that
6911 get_base_address needs to live in memory. */
6912 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6913 || TREE_CODE (exp) != COMPONENT_REF
6914 || !multiple_p (bitsize, BITS_PER_UNIT)
6915 || !multiple_p (bitpos, BITS_PER_UNIT)
6916 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
6917 &decl_bitsize)
6918 || maybe_ne (decl_bitsize, bitsize)))
6919 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6920 decl we must use bitfield operations. */
6921 || (known_size_p (bitsize)
6922 && TREE_CODE (exp) == MEM_REF
6923 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6924 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6925 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6926 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6927 {
6928 rtx temp;
6929 gimple *nop_def;
6930
6931 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6932 implies a mask operation. If the precision is the same size as
6933 the field we're storing into, that mask is redundant. This is
6934 particularly common with bit field assignments generated by the
6935 C front end. */
6936 nop_def = get_def_for_expr (exp, NOP_EXPR);
6937 if (nop_def)
6938 {
6939 tree type = TREE_TYPE (exp);
6940 if (INTEGRAL_TYPE_P (type)
6941 && maybe_ne (TYPE_PRECISION (type),
6942 GET_MODE_BITSIZE (TYPE_MODE (type)))
6943 && known_eq (bitsize, TYPE_PRECISION (type)))
6944 {
6945 tree op = gimple_assign_rhs1 (nop_def);
6946 type = TREE_TYPE (op);
6947 if (INTEGRAL_TYPE_P (type)
6948 && known_ge (TYPE_PRECISION (type), bitsize))
6949 exp = op;
6950 }
6951 }
6952
6953 temp = expand_normal (exp);
6954
6955 /* We don't support variable-sized BLKmode bitfields, since our
6956 handling of BLKmode is bound up with the ability to break
6957 things into words. */
6958 gcc_assert (mode != BLKmode || bitsize.is_constant ());
6959
6960 /* Handle calls that return values in multiple non-contiguous locations.
6961 The Irix 6 ABI has examples of this. */
6962 if (GET_CODE (temp) == PARALLEL)
6963 {
6964 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6965 machine_mode temp_mode = GET_MODE (temp);
6966 if (temp_mode == BLKmode || temp_mode == VOIDmode)
6967 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
6968 rtx temp_target = gen_reg_rtx (temp_mode);
6969 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6970 temp = temp_target;
6971 }
6972
6973 /* Handle calls that return BLKmode values in registers. */
6974 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6975 {
6976 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6977 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6978 temp = temp_target;
6979 }
6980
6981 /* If the value has aggregate type and an integral mode then, if BITSIZE
6982 is narrower than this mode and this is for big-endian data, we first
6983 need to put the value into the low-order bits for store_bit_field,
6984 except when MODE is BLKmode and BITSIZE larger than the word size
6985 (see the handling of fields larger than a word in store_bit_field).
6986 Moreover, the field may be not aligned on a byte boundary; in this
6987 case, if it has reverse storage order, it needs to be accessed as a
6988 scalar field with reverse storage order and we must first put the
6989 value into target order. */
6990 scalar_int_mode temp_mode;
6991 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
6992 && is_int_mode (GET_MODE (temp), &temp_mode))
6993 {
6994 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
6995
6996 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6997
6998 if (reverse)
6999 temp = flip_storage_order (temp_mode, temp);
7000
7001 gcc_checking_assert (known_le (bitsize, size));
7002 if (maybe_lt (bitsize, size)
7003 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7004 /* Use of to_constant for BLKmode was checked above. */
7005 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7006 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7007 size - bitsize, NULL_RTX, 1);
7008 }
7009
7010 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7011 if (mode != VOIDmode && mode != BLKmode
7012 && mode != TYPE_MODE (TREE_TYPE (exp)))
7013 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7014
7015 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7016 and BITPOS must be aligned on a byte boundary. If so, we simply do
7017 a block copy. Likewise for a BLKmode-like TARGET. */
7018 if (GET_MODE (temp) == BLKmode
7019 && (GET_MODE (target) == BLKmode
7020 || (MEM_P (target)
7021 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7022 && multiple_p (bitpos, BITS_PER_UNIT)
7023 && multiple_p (bitsize, BITS_PER_UNIT))))
7024 {
7025 gcc_assert (MEM_P (target) && MEM_P (temp));
7026 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7027 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7028
7029 target = adjust_address (target, VOIDmode, bytepos);
7030 emit_block_move (target, temp,
7031 gen_int_mode (bytesize, Pmode),
7032 BLOCK_OP_NORMAL);
7033
7034 return const0_rtx;
7035 }
7036
7037 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7038 word size, we need to load the value (see again store_bit_field). */
7039 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7040 {
7041 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
7042 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7043 temp_mode, false, NULL);
7044 }
7045
7046 /* Store the value in the bitfield. */
7047 gcc_checking_assert (known_ge (bitpos, 0));
7048 store_bit_field (target, bitsize, bitpos,
7049 bitregion_start, bitregion_end,
7050 mode, temp, reverse);
7051
7052 return const0_rtx;
7053 }
7054 else
7055 {
7056 /* Now build a reference to just the desired component. */
7057 rtx to_rtx = adjust_address (target, mode,
7058 exact_div (bitpos, BITS_PER_UNIT));
7059
7060 if (to_rtx == target)
7061 to_rtx = copy_rtx (to_rtx);
7062
7063 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7064 set_mem_alias_set (to_rtx, alias_set);
7065
7066 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7067 into a target smaller than its type; handle that case now. */
7068 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7069 {
7070 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7071 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7072 return to_rtx;
7073 }
7074
7075 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7076 }
7077 }
7078 \f
7079 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7080 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7081 codes and find the ultimate containing object, which we return.
7082
7083 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7084 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7085 storage order of the field.
7086 If the position of the field is variable, we store a tree
7087 giving the variable offset (in units) in *POFFSET.
7088 This offset is in addition to the bit position.
7089 If the position is not variable, we store 0 in *POFFSET.
7090
7091 If any of the extraction expressions is volatile,
7092 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7093
7094 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7095 Otherwise, it is a mode that can be used to access the field.
7096
7097 If the field describes a variable-sized object, *PMODE is set to
7098 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7099 this case, but the address of the object can be found. */
7100
7101 tree
7102 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7103 poly_int64_pod *pbitpos, tree *poffset,
7104 machine_mode *pmode, int *punsignedp,
7105 int *preversep, int *pvolatilep)
7106 {
7107 tree size_tree = 0;
7108 machine_mode mode = VOIDmode;
7109 bool blkmode_bitfield = false;
7110 tree offset = size_zero_node;
7111 poly_offset_int bit_offset = 0;
7112
7113 /* First get the mode, signedness, storage order and size. We do this from
7114 just the outermost expression. */
7115 *pbitsize = -1;
7116 if (TREE_CODE (exp) == COMPONENT_REF)
7117 {
7118 tree field = TREE_OPERAND (exp, 1);
7119 size_tree = DECL_SIZE (field);
7120 if (flag_strict_volatile_bitfields > 0
7121 && TREE_THIS_VOLATILE (exp)
7122 && DECL_BIT_FIELD_TYPE (field)
7123 && DECL_MODE (field) != BLKmode)
7124 /* Volatile bitfields should be accessed in the mode of the
7125 field's type, not the mode computed based on the bit
7126 size. */
7127 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7128 else if (!DECL_BIT_FIELD (field))
7129 {
7130 mode = DECL_MODE (field);
7131 /* For vector fields re-check the target flags, as DECL_MODE
7132 could have been set with different target flags than
7133 the current function has. */
7134 if (mode == BLKmode
7135 && VECTOR_TYPE_P (TREE_TYPE (field))
7136 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7137 mode = TYPE_MODE (TREE_TYPE (field));
7138 }
7139 else if (DECL_MODE (field) == BLKmode)
7140 blkmode_bitfield = true;
7141
7142 *punsignedp = DECL_UNSIGNED (field);
7143 }
7144 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7145 {
7146 size_tree = TREE_OPERAND (exp, 1);
7147 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7148 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7149
7150 /* For vector types, with the correct size of access, use the mode of
7151 inner type. */
7152 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7153 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7154 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7155 mode = TYPE_MODE (TREE_TYPE (exp));
7156 }
7157 else
7158 {
7159 mode = TYPE_MODE (TREE_TYPE (exp));
7160 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7161
7162 if (mode == BLKmode)
7163 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7164 else
7165 *pbitsize = GET_MODE_BITSIZE (mode);
7166 }
7167
7168 if (size_tree != 0)
7169 {
7170 if (! tree_fits_uhwi_p (size_tree))
7171 mode = BLKmode, *pbitsize = -1;
7172 else
7173 *pbitsize = tree_to_uhwi (size_tree);
7174 }
7175
7176 *preversep = reverse_storage_order_for_component_p (exp);
7177
7178 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7179 and find the ultimate containing object. */
7180 while (1)
7181 {
7182 switch (TREE_CODE (exp))
7183 {
7184 case BIT_FIELD_REF:
7185 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7186 break;
7187
7188 case COMPONENT_REF:
7189 {
7190 tree field = TREE_OPERAND (exp, 1);
7191 tree this_offset = component_ref_field_offset (exp);
7192
7193 /* If this field hasn't been filled in yet, don't go past it.
7194 This should only happen when folding expressions made during
7195 type construction. */
7196 if (this_offset == 0)
7197 break;
7198
7199 offset = size_binop (PLUS_EXPR, offset, this_offset);
7200 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7201
7202 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7203 }
7204 break;
7205
7206 case ARRAY_REF:
7207 case ARRAY_RANGE_REF:
7208 {
7209 tree index = TREE_OPERAND (exp, 1);
7210 tree low_bound = array_ref_low_bound (exp);
7211 tree unit_size = array_ref_element_size (exp);
7212
7213 /* We assume all arrays have sizes that are a multiple of a byte.
7214 First subtract the lower bound, if any, in the type of the
7215 index, then convert to sizetype and multiply by the size of
7216 the array element. */
7217 if (! integer_zerop (low_bound))
7218 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7219 index, low_bound);
7220
7221 offset = size_binop (PLUS_EXPR, offset,
7222 size_binop (MULT_EXPR,
7223 fold_convert (sizetype, index),
7224 unit_size));
7225 }
7226 break;
7227
7228 case REALPART_EXPR:
7229 break;
7230
7231 case IMAGPART_EXPR:
7232 bit_offset += *pbitsize;
7233 break;
7234
7235 case VIEW_CONVERT_EXPR:
7236 break;
7237
7238 case MEM_REF:
7239 /* Hand back the decl for MEM[&decl, off]. */
7240 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7241 {
7242 tree off = TREE_OPERAND (exp, 1);
7243 if (!integer_zerop (off))
7244 {
7245 poly_offset_int boff = mem_ref_offset (exp);
7246 boff <<= LOG2_BITS_PER_UNIT;
7247 bit_offset += boff;
7248 }
7249 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7250 }
7251 goto done;
7252
7253 default:
7254 goto done;
7255 }
7256
7257 /* If any reference in the chain is volatile, the effect is volatile. */
7258 if (TREE_THIS_VOLATILE (exp))
7259 *pvolatilep = 1;
7260
7261 exp = TREE_OPERAND (exp, 0);
7262 }
7263 done:
7264
7265 /* If OFFSET is constant, see if we can return the whole thing as a
7266 constant bit position. Make sure to handle overflow during
7267 this conversion. */
7268 if (poly_int_tree_p (offset))
7269 {
7270 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7271 TYPE_PRECISION (sizetype));
7272 tem <<= LOG2_BITS_PER_UNIT;
7273 tem += bit_offset;
7274 if (tem.to_shwi (pbitpos))
7275 *poffset = offset = NULL_TREE;
7276 }
7277
7278 /* Otherwise, split it up. */
7279 if (offset)
7280 {
7281 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7282 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7283 {
7284 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7285 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7286 offset = size_binop (PLUS_EXPR, offset,
7287 build_int_cst (sizetype, bytes.force_shwi ()));
7288 }
7289
7290 *poffset = offset;
7291 }
7292
7293 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7294 if (mode == VOIDmode
7295 && blkmode_bitfield
7296 && multiple_p (*pbitpos, BITS_PER_UNIT)
7297 && multiple_p (*pbitsize, BITS_PER_UNIT))
7298 *pmode = BLKmode;
7299 else
7300 *pmode = mode;
7301
7302 return exp;
7303 }
7304
7305 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7306
7307 static unsigned HOST_WIDE_INT
7308 target_align (const_tree target)
7309 {
7310 /* We might have a chain of nested references with intermediate misaligning
7311 bitfields components, so need to recurse to find out. */
7312
7313 unsigned HOST_WIDE_INT this_align, outer_align;
7314
7315 switch (TREE_CODE (target))
7316 {
7317 case BIT_FIELD_REF:
7318 return 1;
7319
7320 case COMPONENT_REF:
7321 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7322 outer_align = target_align (TREE_OPERAND (target, 0));
7323 return MIN (this_align, outer_align);
7324
7325 case ARRAY_REF:
7326 case ARRAY_RANGE_REF:
7327 this_align = TYPE_ALIGN (TREE_TYPE (target));
7328 outer_align = target_align (TREE_OPERAND (target, 0));
7329 return MIN (this_align, outer_align);
7330
7331 CASE_CONVERT:
7332 case NON_LVALUE_EXPR:
7333 case VIEW_CONVERT_EXPR:
7334 this_align = TYPE_ALIGN (TREE_TYPE (target));
7335 outer_align = target_align (TREE_OPERAND (target, 0));
7336 return MAX (this_align, outer_align);
7337
7338 default:
7339 return TYPE_ALIGN (TREE_TYPE (target));
7340 }
7341 }
7342
7343 \f
7344 /* Given an rtx VALUE that may contain additions and multiplications, return
7345 an equivalent value that just refers to a register, memory, or constant.
7346 This is done by generating instructions to perform the arithmetic and
7347 returning a pseudo-register containing the value.
7348
7349 The returned value may be a REG, SUBREG, MEM or constant. */
7350
7351 rtx
7352 force_operand (rtx value, rtx target)
7353 {
7354 rtx op1, op2;
7355 /* Use subtarget as the target for operand 0 of a binary operation. */
7356 rtx subtarget = get_subtarget (target);
7357 enum rtx_code code = GET_CODE (value);
7358
7359 /* Check for subreg applied to an expression produced by loop optimizer. */
7360 if (code == SUBREG
7361 && !REG_P (SUBREG_REG (value))
7362 && !MEM_P (SUBREG_REG (value)))
7363 {
7364 value
7365 = simplify_gen_subreg (GET_MODE (value),
7366 force_reg (GET_MODE (SUBREG_REG (value)),
7367 force_operand (SUBREG_REG (value),
7368 NULL_RTX)),
7369 GET_MODE (SUBREG_REG (value)),
7370 SUBREG_BYTE (value));
7371 code = GET_CODE (value);
7372 }
7373
7374 /* Check for a PIC address load. */
7375 if ((code == PLUS || code == MINUS)
7376 && XEXP (value, 0) == pic_offset_table_rtx
7377 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7378 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7379 || GET_CODE (XEXP (value, 1)) == CONST))
7380 {
7381 if (!subtarget)
7382 subtarget = gen_reg_rtx (GET_MODE (value));
7383 emit_move_insn (subtarget, value);
7384 return subtarget;
7385 }
7386
7387 if (ARITHMETIC_P (value))
7388 {
7389 op2 = XEXP (value, 1);
7390 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7391 subtarget = 0;
7392 if (code == MINUS && CONST_INT_P (op2))
7393 {
7394 code = PLUS;
7395 op2 = negate_rtx (GET_MODE (value), op2);
7396 }
7397
7398 /* Check for an addition with OP2 a constant integer and our first
7399 operand a PLUS of a virtual register and something else. In that
7400 case, we want to emit the sum of the virtual register and the
7401 constant first and then add the other value. This allows virtual
7402 register instantiation to simply modify the constant rather than
7403 creating another one around this addition. */
7404 if (code == PLUS && CONST_INT_P (op2)
7405 && GET_CODE (XEXP (value, 0)) == PLUS
7406 && REG_P (XEXP (XEXP (value, 0), 0))
7407 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7408 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7409 {
7410 rtx temp = expand_simple_binop (GET_MODE (value), code,
7411 XEXP (XEXP (value, 0), 0), op2,
7412 subtarget, 0, OPTAB_LIB_WIDEN);
7413 return expand_simple_binop (GET_MODE (value), code, temp,
7414 force_operand (XEXP (XEXP (value,
7415 0), 1), 0),
7416 target, 0, OPTAB_LIB_WIDEN);
7417 }
7418
7419 op1 = force_operand (XEXP (value, 0), subtarget);
7420 op2 = force_operand (op2, NULL_RTX);
7421 switch (code)
7422 {
7423 case MULT:
7424 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7425 case DIV:
7426 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7427 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7428 target, 1, OPTAB_LIB_WIDEN);
7429 else
7430 return expand_divmod (0,
7431 FLOAT_MODE_P (GET_MODE (value))
7432 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7433 GET_MODE (value), op1, op2, target, 0);
7434 case MOD:
7435 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7436 target, 0);
7437 case UDIV:
7438 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7439 target, 1);
7440 case UMOD:
7441 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7442 target, 1);
7443 case ASHIFTRT:
7444 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7445 target, 0, OPTAB_LIB_WIDEN);
7446 default:
7447 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7448 target, 1, OPTAB_LIB_WIDEN);
7449 }
7450 }
7451 if (UNARY_P (value))
7452 {
7453 if (!target)
7454 target = gen_reg_rtx (GET_MODE (value));
7455 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7456 switch (code)
7457 {
7458 case ZERO_EXTEND:
7459 case SIGN_EXTEND:
7460 case TRUNCATE:
7461 case FLOAT_EXTEND:
7462 case FLOAT_TRUNCATE:
7463 convert_move (target, op1, code == ZERO_EXTEND);
7464 return target;
7465
7466 case FIX:
7467 case UNSIGNED_FIX:
7468 expand_fix (target, op1, code == UNSIGNED_FIX);
7469 return target;
7470
7471 case FLOAT:
7472 case UNSIGNED_FLOAT:
7473 expand_float (target, op1, code == UNSIGNED_FLOAT);
7474 return target;
7475
7476 default:
7477 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7478 }
7479 }
7480
7481 #ifdef INSN_SCHEDULING
7482 /* On machines that have insn scheduling, we want all memory reference to be
7483 explicit, so we need to deal with such paradoxical SUBREGs. */
7484 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7485 value
7486 = simplify_gen_subreg (GET_MODE (value),
7487 force_reg (GET_MODE (SUBREG_REG (value)),
7488 force_operand (SUBREG_REG (value),
7489 NULL_RTX)),
7490 GET_MODE (SUBREG_REG (value)),
7491 SUBREG_BYTE (value));
7492 #endif
7493
7494 return value;
7495 }
7496 \f
7497 /* Subroutine of expand_expr: return nonzero iff there is no way that
7498 EXP can reference X, which is being modified. TOP_P is nonzero if this
7499 call is going to be used to determine whether we need a temporary
7500 for EXP, as opposed to a recursive call to this function.
7501
7502 It is always safe for this routine to return zero since it merely
7503 searches for optimization opportunities. */
7504
7505 int
7506 safe_from_p (const_rtx x, tree exp, int top_p)
7507 {
7508 rtx exp_rtl = 0;
7509 int i, nops;
7510
7511 if (x == 0
7512 /* If EXP has varying size, we MUST use a target since we currently
7513 have no way of allocating temporaries of variable size
7514 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7515 So we assume here that something at a higher level has prevented a
7516 clash. This is somewhat bogus, but the best we can do. Only
7517 do this when X is BLKmode and when we are at the top level. */
7518 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7519 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7520 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7521 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7522 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7523 != INTEGER_CST)
7524 && GET_MODE (x) == BLKmode)
7525 /* If X is in the outgoing argument area, it is always safe. */
7526 || (MEM_P (x)
7527 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7528 || (GET_CODE (XEXP (x, 0)) == PLUS
7529 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7530 return 1;
7531
7532 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7533 find the underlying pseudo. */
7534 if (GET_CODE (x) == SUBREG)
7535 {
7536 x = SUBREG_REG (x);
7537 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7538 return 0;
7539 }
7540
7541 /* Now look at our tree code and possibly recurse. */
7542 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7543 {
7544 case tcc_declaration:
7545 exp_rtl = DECL_RTL_IF_SET (exp);
7546 break;
7547
7548 case tcc_constant:
7549 return 1;
7550
7551 case tcc_exceptional:
7552 if (TREE_CODE (exp) == TREE_LIST)
7553 {
7554 while (1)
7555 {
7556 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7557 return 0;
7558 exp = TREE_CHAIN (exp);
7559 if (!exp)
7560 return 1;
7561 if (TREE_CODE (exp) != TREE_LIST)
7562 return safe_from_p (x, exp, 0);
7563 }
7564 }
7565 else if (TREE_CODE (exp) == CONSTRUCTOR)
7566 {
7567 constructor_elt *ce;
7568 unsigned HOST_WIDE_INT idx;
7569
7570 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7571 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7572 || !safe_from_p (x, ce->value, 0))
7573 return 0;
7574 return 1;
7575 }
7576 else if (TREE_CODE (exp) == ERROR_MARK)
7577 return 1; /* An already-visited SAVE_EXPR? */
7578 else
7579 return 0;
7580
7581 case tcc_statement:
7582 /* The only case we look at here is the DECL_INITIAL inside a
7583 DECL_EXPR. */
7584 return (TREE_CODE (exp) != DECL_EXPR
7585 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7586 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7587 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7588
7589 case tcc_binary:
7590 case tcc_comparison:
7591 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7592 return 0;
7593 /* Fall through. */
7594
7595 case tcc_unary:
7596 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7597
7598 case tcc_expression:
7599 case tcc_reference:
7600 case tcc_vl_exp:
7601 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7602 the expression. If it is set, we conflict iff we are that rtx or
7603 both are in memory. Otherwise, we check all operands of the
7604 expression recursively. */
7605
7606 switch (TREE_CODE (exp))
7607 {
7608 case ADDR_EXPR:
7609 /* If the operand is static or we are static, we can't conflict.
7610 Likewise if we don't conflict with the operand at all. */
7611 if (staticp (TREE_OPERAND (exp, 0))
7612 || TREE_STATIC (exp)
7613 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7614 return 1;
7615
7616 /* Otherwise, the only way this can conflict is if we are taking
7617 the address of a DECL a that address if part of X, which is
7618 very rare. */
7619 exp = TREE_OPERAND (exp, 0);
7620 if (DECL_P (exp))
7621 {
7622 if (!DECL_RTL_SET_P (exp)
7623 || !MEM_P (DECL_RTL (exp)))
7624 return 0;
7625 else
7626 exp_rtl = XEXP (DECL_RTL (exp), 0);
7627 }
7628 break;
7629
7630 case MEM_REF:
7631 if (MEM_P (x)
7632 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7633 get_alias_set (exp)))
7634 return 0;
7635 break;
7636
7637 case CALL_EXPR:
7638 /* Assume that the call will clobber all hard registers and
7639 all of memory. */
7640 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7641 || MEM_P (x))
7642 return 0;
7643 break;
7644
7645 case WITH_CLEANUP_EXPR:
7646 case CLEANUP_POINT_EXPR:
7647 /* Lowered by gimplify.c. */
7648 gcc_unreachable ();
7649
7650 case SAVE_EXPR:
7651 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7652
7653 default:
7654 break;
7655 }
7656
7657 /* If we have an rtx, we do not need to scan our operands. */
7658 if (exp_rtl)
7659 break;
7660
7661 nops = TREE_OPERAND_LENGTH (exp);
7662 for (i = 0; i < nops; i++)
7663 if (TREE_OPERAND (exp, i) != 0
7664 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7665 return 0;
7666
7667 break;
7668
7669 case tcc_type:
7670 /* Should never get a type here. */
7671 gcc_unreachable ();
7672 }
7673
7674 /* If we have an rtl, find any enclosed object. Then see if we conflict
7675 with it. */
7676 if (exp_rtl)
7677 {
7678 if (GET_CODE (exp_rtl) == SUBREG)
7679 {
7680 exp_rtl = SUBREG_REG (exp_rtl);
7681 if (REG_P (exp_rtl)
7682 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7683 return 0;
7684 }
7685
7686 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7687 are memory and they conflict. */
7688 return ! (rtx_equal_p (x, exp_rtl)
7689 || (MEM_P (x) && MEM_P (exp_rtl)
7690 && true_dependence (exp_rtl, VOIDmode, x)));
7691 }
7692
7693 /* If we reach here, it is safe. */
7694 return 1;
7695 }
7696
7697 \f
7698 /* Return the highest power of two that EXP is known to be a multiple of.
7699 This is used in updating alignment of MEMs in array references. */
7700
7701 unsigned HOST_WIDE_INT
7702 highest_pow2_factor (const_tree exp)
7703 {
7704 unsigned HOST_WIDE_INT ret;
7705 int trailing_zeros = tree_ctz (exp);
7706 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7707 return BIGGEST_ALIGNMENT;
7708 ret = HOST_WIDE_INT_1U << trailing_zeros;
7709 if (ret > BIGGEST_ALIGNMENT)
7710 return BIGGEST_ALIGNMENT;
7711 return ret;
7712 }
7713
7714 /* Similar, except that the alignment requirements of TARGET are
7715 taken into account. Assume it is at least as aligned as its
7716 type, unless it is a COMPONENT_REF in which case the layout of
7717 the structure gives the alignment. */
7718
7719 static unsigned HOST_WIDE_INT
7720 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7721 {
7722 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7723 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7724
7725 return MAX (factor, talign);
7726 }
7727 \f
7728 /* Convert the tree comparison code TCODE to the rtl one where the
7729 signedness is UNSIGNEDP. */
7730
7731 static enum rtx_code
7732 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7733 {
7734 enum rtx_code code;
7735 switch (tcode)
7736 {
7737 case EQ_EXPR:
7738 code = EQ;
7739 break;
7740 case NE_EXPR:
7741 code = NE;
7742 break;
7743 case LT_EXPR:
7744 code = unsignedp ? LTU : LT;
7745 break;
7746 case LE_EXPR:
7747 code = unsignedp ? LEU : LE;
7748 break;
7749 case GT_EXPR:
7750 code = unsignedp ? GTU : GT;
7751 break;
7752 case GE_EXPR:
7753 code = unsignedp ? GEU : GE;
7754 break;
7755 case UNORDERED_EXPR:
7756 code = UNORDERED;
7757 break;
7758 case ORDERED_EXPR:
7759 code = ORDERED;
7760 break;
7761 case UNLT_EXPR:
7762 code = UNLT;
7763 break;
7764 case UNLE_EXPR:
7765 code = UNLE;
7766 break;
7767 case UNGT_EXPR:
7768 code = UNGT;
7769 break;
7770 case UNGE_EXPR:
7771 code = UNGE;
7772 break;
7773 case UNEQ_EXPR:
7774 code = UNEQ;
7775 break;
7776 case LTGT_EXPR:
7777 code = LTGT;
7778 break;
7779
7780 default:
7781 gcc_unreachable ();
7782 }
7783 return code;
7784 }
7785
7786 /* Subroutine of expand_expr. Expand the two operands of a binary
7787 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7788 The value may be stored in TARGET if TARGET is nonzero. The
7789 MODIFIER argument is as documented by expand_expr. */
7790
7791 void
7792 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7793 enum expand_modifier modifier)
7794 {
7795 if (! safe_from_p (target, exp1, 1))
7796 target = 0;
7797 if (operand_equal_p (exp0, exp1, 0))
7798 {
7799 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7800 *op1 = copy_rtx (*op0);
7801 }
7802 else
7803 {
7804 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7805 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7806 }
7807 }
7808
7809 \f
7810 /* Return a MEM that contains constant EXP. DEFER is as for
7811 output_constant_def and MODIFIER is as for expand_expr. */
7812
7813 static rtx
7814 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7815 {
7816 rtx mem;
7817
7818 mem = output_constant_def (exp, defer);
7819 if (modifier != EXPAND_INITIALIZER)
7820 mem = use_anchored_address (mem);
7821 return mem;
7822 }
7823
7824 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7825 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7826
7827 static rtx
7828 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7829 enum expand_modifier modifier, addr_space_t as)
7830 {
7831 rtx result, subtarget;
7832 tree inner, offset;
7833 poly_int64 bitsize, bitpos;
7834 int unsignedp, reversep, volatilep = 0;
7835 machine_mode mode1;
7836
7837 /* If we are taking the address of a constant and are at the top level,
7838 we have to use output_constant_def since we can't call force_const_mem
7839 at top level. */
7840 /* ??? This should be considered a front-end bug. We should not be
7841 generating ADDR_EXPR of something that isn't an LVALUE. The only
7842 exception here is STRING_CST. */
7843 if (CONSTANT_CLASS_P (exp))
7844 {
7845 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7846 if (modifier < EXPAND_SUM)
7847 result = force_operand (result, target);
7848 return result;
7849 }
7850
7851 /* Everything must be something allowed by is_gimple_addressable. */
7852 switch (TREE_CODE (exp))
7853 {
7854 case INDIRECT_REF:
7855 /* This case will happen via recursion for &a->b. */
7856 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7857
7858 case MEM_REF:
7859 {
7860 tree tem = TREE_OPERAND (exp, 0);
7861 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7862 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7863 return expand_expr (tem, target, tmode, modifier);
7864 }
7865
7866 case TARGET_MEM_REF:
7867 return addr_for_mem_ref (exp, as, true);
7868
7869 case CONST_DECL:
7870 /* Expand the initializer like constants above. */
7871 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7872 0, modifier), 0);
7873 if (modifier < EXPAND_SUM)
7874 result = force_operand (result, target);
7875 return result;
7876
7877 case REALPART_EXPR:
7878 /* The real part of the complex number is always first, therefore
7879 the address is the same as the address of the parent object. */
7880 offset = 0;
7881 bitpos = 0;
7882 inner = TREE_OPERAND (exp, 0);
7883 break;
7884
7885 case IMAGPART_EXPR:
7886 /* The imaginary part of the complex number is always second.
7887 The expression is therefore always offset by the size of the
7888 scalar type. */
7889 offset = 0;
7890 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7891 inner = TREE_OPERAND (exp, 0);
7892 break;
7893
7894 case COMPOUND_LITERAL_EXPR:
7895 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7896 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7897 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7898 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7899 the initializers aren't gimplified. */
7900 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7901 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7902 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7903 target, tmode, modifier, as);
7904 /* FALLTHRU */
7905 default:
7906 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7907 expand_expr, as that can have various side effects; LABEL_DECLs for
7908 example, may not have their DECL_RTL set yet. Expand the rtl of
7909 CONSTRUCTORs too, which should yield a memory reference for the
7910 constructor's contents. Assume language specific tree nodes can
7911 be expanded in some interesting way. */
7912 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7913 if (DECL_P (exp)
7914 || TREE_CODE (exp) == CONSTRUCTOR
7915 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7916 {
7917 result = expand_expr (exp, target, tmode,
7918 modifier == EXPAND_INITIALIZER
7919 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7920
7921 /* If the DECL isn't in memory, then the DECL wasn't properly
7922 marked TREE_ADDRESSABLE, which will be either a front-end
7923 or a tree optimizer bug. */
7924
7925 gcc_assert (MEM_P (result));
7926 result = XEXP (result, 0);
7927
7928 /* ??? Is this needed anymore? */
7929 if (DECL_P (exp))
7930 TREE_USED (exp) = 1;
7931
7932 if (modifier != EXPAND_INITIALIZER
7933 && modifier != EXPAND_CONST_ADDRESS
7934 && modifier != EXPAND_SUM)
7935 result = force_operand (result, target);
7936 return result;
7937 }
7938
7939 /* Pass FALSE as the last argument to get_inner_reference although
7940 we are expanding to RTL. The rationale is that we know how to
7941 handle "aligning nodes" here: we can just bypass them because
7942 they won't change the final object whose address will be returned
7943 (they actually exist only for that purpose). */
7944 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7945 &unsignedp, &reversep, &volatilep);
7946 break;
7947 }
7948
7949 /* We must have made progress. */
7950 gcc_assert (inner != exp);
7951
7952 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
7953 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7954 inner alignment, force the inner to be sufficiently aligned. */
7955 if (CONSTANT_CLASS_P (inner)
7956 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7957 {
7958 inner = copy_node (inner);
7959 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7960 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7961 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7962 }
7963 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7964
7965 if (offset)
7966 {
7967 rtx tmp;
7968
7969 if (modifier != EXPAND_NORMAL)
7970 result = force_operand (result, NULL);
7971 tmp = expand_expr (offset, NULL_RTX, tmode,
7972 modifier == EXPAND_INITIALIZER
7973 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7974
7975 /* expand_expr is allowed to return an object in a mode other
7976 than TMODE. If it did, we need to convert. */
7977 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7978 tmp = convert_modes (tmode, GET_MODE (tmp),
7979 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7980 result = convert_memory_address_addr_space (tmode, result, as);
7981 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7982
7983 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7984 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7985 else
7986 {
7987 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
7988 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7989 1, OPTAB_LIB_WIDEN);
7990 }
7991 }
7992
7993 if (maybe_ne (bitpos, 0))
7994 {
7995 /* Someone beforehand should have rejected taking the address
7996 of an object that isn't byte-aligned. */
7997 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7998 result = convert_memory_address_addr_space (tmode, result, as);
7999 result = plus_constant (tmode, result, bytepos);
8000 if (modifier < EXPAND_SUM)
8001 result = force_operand (result, target);
8002 }
8003
8004 return result;
8005 }
8006
8007 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8008 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8009
8010 static rtx
8011 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8012 enum expand_modifier modifier)
8013 {
8014 addr_space_t as = ADDR_SPACE_GENERIC;
8015 scalar_int_mode address_mode = Pmode;
8016 scalar_int_mode pointer_mode = ptr_mode;
8017 machine_mode rmode;
8018 rtx result;
8019
8020 /* Target mode of VOIDmode says "whatever's natural". */
8021 if (tmode == VOIDmode)
8022 tmode = TYPE_MODE (TREE_TYPE (exp));
8023
8024 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8025 {
8026 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8027 address_mode = targetm.addr_space.address_mode (as);
8028 pointer_mode = targetm.addr_space.pointer_mode (as);
8029 }
8030
8031 /* We can get called with some Weird Things if the user does silliness
8032 like "(short) &a". In that case, convert_memory_address won't do
8033 the right thing, so ignore the given target mode. */
8034 scalar_int_mode new_tmode = (tmode == pointer_mode
8035 ? pointer_mode
8036 : address_mode);
8037
8038 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8039 new_tmode, modifier, as);
8040
8041 /* Despite expand_expr claims concerning ignoring TMODE when not
8042 strictly convenient, stuff breaks if we don't honor it. Note
8043 that combined with the above, we only do this for pointer modes. */
8044 rmode = GET_MODE (result);
8045 if (rmode == VOIDmode)
8046 rmode = new_tmode;
8047 if (rmode != new_tmode)
8048 result = convert_memory_address_addr_space (new_tmode, result, as);
8049
8050 return result;
8051 }
8052
8053 /* Generate code for computing CONSTRUCTOR EXP.
8054 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8055 is TRUE, instead of creating a temporary variable in memory
8056 NULL is returned and the caller needs to handle it differently. */
8057
8058 static rtx
8059 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8060 bool avoid_temp_mem)
8061 {
8062 tree type = TREE_TYPE (exp);
8063 machine_mode mode = TYPE_MODE (type);
8064
8065 /* Try to avoid creating a temporary at all. This is possible
8066 if all of the initializer is zero.
8067 FIXME: try to handle all [0..255] initializers we can handle
8068 with memset. */
8069 if (TREE_STATIC (exp)
8070 && !TREE_ADDRESSABLE (exp)
8071 && target != 0 && mode == BLKmode
8072 && all_zeros_p (exp))
8073 {
8074 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8075 return target;
8076 }
8077
8078 /* All elts simple constants => refer to a constant in memory. But
8079 if this is a non-BLKmode mode, let it store a field at a time
8080 since that should make a CONST_INT, CONST_WIDE_INT or
8081 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8082 use, it is best to store directly into the target unless the type
8083 is large enough that memcpy will be used. If we are making an
8084 initializer and all operands are constant, put it in memory as
8085 well.
8086
8087 FIXME: Avoid trying to fill vector constructors piece-meal.
8088 Output them with output_constant_def below unless we're sure
8089 they're zeros. This should go away when vector initializers
8090 are treated like VECTOR_CST instead of arrays. */
8091 if ((TREE_STATIC (exp)
8092 && ((mode == BLKmode
8093 && ! (target != 0 && safe_from_p (target, exp, 1)))
8094 || TREE_ADDRESSABLE (exp)
8095 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8096 && (! can_move_by_pieces
8097 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8098 TYPE_ALIGN (type)))
8099 && ! mostly_zeros_p (exp))))
8100 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8101 && TREE_CONSTANT (exp)))
8102 {
8103 rtx constructor;
8104
8105 if (avoid_temp_mem)
8106 return NULL_RTX;
8107
8108 constructor = expand_expr_constant (exp, 1, modifier);
8109
8110 if (modifier != EXPAND_CONST_ADDRESS
8111 && modifier != EXPAND_INITIALIZER
8112 && modifier != EXPAND_SUM)
8113 constructor = validize_mem (constructor);
8114
8115 return constructor;
8116 }
8117
8118 /* Handle calls that pass values in multiple non-contiguous
8119 locations. The Irix 6 ABI has examples of this. */
8120 if (target == 0 || ! safe_from_p (target, exp, 1)
8121 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8122 {
8123 if (avoid_temp_mem)
8124 return NULL_RTX;
8125
8126 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8127 }
8128
8129 store_constructor (exp, target, 0, int_expr_size (exp), false);
8130 return target;
8131 }
8132
8133
8134 /* expand_expr: generate code for computing expression EXP.
8135 An rtx for the computed value is returned. The value is never null.
8136 In the case of a void EXP, const0_rtx is returned.
8137
8138 The value may be stored in TARGET if TARGET is nonzero.
8139 TARGET is just a suggestion; callers must assume that
8140 the rtx returned may not be the same as TARGET.
8141
8142 If TARGET is CONST0_RTX, it means that the value will be ignored.
8143
8144 If TMODE is not VOIDmode, it suggests generating the
8145 result in mode TMODE. But this is done only when convenient.
8146 Otherwise, TMODE is ignored and the value generated in its natural mode.
8147 TMODE is just a suggestion; callers must assume that
8148 the rtx returned may not have mode TMODE.
8149
8150 Note that TARGET may have neither TMODE nor MODE. In that case, it
8151 probably will not be used.
8152
8153 If MODIFIER is EXPAND_SUM then when EXP is an addition
8154 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8155 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8156 products as above, or REG or MEM, or constant.
8157 Ordinarily in such cases we would output mul or add instructions
8158 and then return a pseudo reg containing the sum.
8159
8160 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8161 it also marks a label as absolutely required (it can't be dead).
8162 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8163 This is used for outputting expressions used in initializers.
8164
8165 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8166 with a constant address even if that address is not normally legitimate.
8167 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8168
8169 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8170 a call parameter. Such targets require special care as we haven't yet
8171 marked TARGET so that it's safe from being trashed by libcalls. We
8172 don't want to use TARGET for anything but the final result;
8173 Intermediate values must go elsewhere. Additionally, calls to
8174 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8175
8176 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8177 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8178 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8179 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8180 recursively.
8181
8182 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8183 In this case, we don't adjust a returned MEM rtx that wouldn't be
8184 sufficiently aligned for its mode; instead, it's up to the caller
8185 to deal with it afterwards. This is used to make sure that unaligned
8186 base objects for which out-of-bounds accesses are supported, for
8187 example record types with trailing arrays, aren't realigned behind
8188 the back of the caller.
8189 The normal operating mode is to pass FALSE for this parameter. */
8190
8191 rtx
8192 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8193 enum expand_modifier modifier, rtx *alt_rtl,
8194 bool inner_reference_p)
8195 {
8196 rtx ret;
8197
8198 /* Handle ERROR_MARK before anybody tries to access its type. */
8199 if (TREE_CODE (exp) == ERROR_MARK
8200 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8201 {
8202 ret = CONST0_RTX (tmode);
8203 return ret ? ret : const0_rtx;
8204 }
8205
8206 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8207 inner_reference_p);
8208 return ret;
8209 }
8210
8211 /* Try to expand the conditional expression which is represented by
8212 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8213 return the rtl reg which represents the result. Otherwise return
8214 NULL_RTX. */
8215
8216 static rtx
8217 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8218 tree treeop1 ATTRIBUTE_UNUSED,
8219 tree treeop2 ATTRIBUTE_UNUSED)
8220 {
8221 rtx insn;
8222 rtx op00, op01, op1, op2;
8223 enum rtx_code comparison_code;
8224 machine_mode comparison_mode;
8225 gimple *srcstmt;
8226 rtx temp;
8227 tree type = TREE_TYPE (treeop1);
8228 int unsignedp = TYPE_UNSIGNED (type);
8229 machine_mode mode = TYPE_MODE (type);
8230 machine_mode orig_mode = mode;
8231 static bool expanding_cond_expr_using_cmove = false;
8232
8233 /* Conditional move expansion can end up TERing two operands which,
8234 when recursively hitting conditional expressions can result in
8235 exponential behavior if the cmove expansion ultimatively fails.
8236 It's hardly profitable to TER a cmove into a cmove so avoid doing
8237 that by failing early if we end up recursing. */
8238 if (expanding_cond_expr_using_cmove)
8239 return NULL_RTX;
8240
8241 /* If we cannot do a conditional move on the mode, try doing it
8242 with the promoted mode. */
8243 if (!can_conditionally_move_p (mode))
8244 {
8245 mode = promote_mode (type, mode, &unsignedp);
8246 if (!can_conditionally_move_p (mode))
8247 return NULL_RTX;
8248 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8249 }
8250 else
8251 temp = assign_temp (type, 0, 1);
8252
8253 expanding_cond_expr_using_cmove = true;
8254 start_sequence ();
8255 expand_operands (treeop1, treeop2,
8256 temp, &op1, &op2, EXPAND_NORMAL);
8257
8258 if (TREE_CODE (treeop0) == SSA_NAME
8259 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8260 {
8261 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8262 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8263 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8264 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8265 comparison_mode = TYPE_MODE (type);
8266 unsignedp = TYPE_UNSIGNED (type);
8267 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8268 }
8269 else if (COMPARISON_CLASS_P (treeop0))
8270 {
8271 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8272 enum tree_code cmpcode = TREE_CODE (treeop0);
8273 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8274 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8275 unsignedp = TYPE_UNSIGNED (type);
8276 comparison_mode = TYPE_MODE (type);
8277 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8278 }
8279 else
8280 {
8281 op00 = expand_normal (treeop0);
8282 op01 = const0_rtx;
8283 comparison_code = NE;
8284 comparison_mode = GET_MODE (op00);
8285 if (comparison_mode == VOIDmode)
8286 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8287 }
8288 expanding_cond_expr_using_cmove = false;
8289
8290 if (GET_MODE (op1) != mode)
8291 op1 = gen_lowpart (mode, op1);
8292
8293 if (GET_MODE (op2) != mode)
8294 op2 = gen_lowpart (mode, op2);
8295
8296 /* Try to emit the conditional move. */
8297 insn = emit_conditional_move (temp, comparison_code,
8298 op00, op01, comparison_mode,
8299 op1, op2, mode,
8300 unsignedp);
8301
8302 /* If we could do the conditional move, emit the sequence,
8303 and return. */
8304 if (insn)
8305 {
8306 rtx_insn *seq = get_insns ();
8307 end_sequence ();
8308 emit_insn (seq);
8309 return convert_modes (orig_mode, mode, temp, 0);
8310 }
8311
8312 /* Otherwise discard the sequence and fall back to code with
8313 branches. */
8314 end_sequence ();
8315 return NULL_RTX;
8316 }
8317
8318 rtx
8319 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8320 enum expand_modifier modifier)
8321 {
8322 rtx op0, op1, op2, temp;
8323 rtx_code_label *lab;
8324 tree type;
8325 int unsignedp;
8326 machine_mode mode;
8327 scalar_int_mode int_mode;
8328 enum tree_code code = ops->code;
8329 optab this_optab;
8330 rtx subtarget, original_target;
8331 int ignore;
8332 bool reduce_bit_field;
8333 location_t loc = ops->location;
8334 tree treeop0, treeop1, treeop2;
8335 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8336 ? reduce_to_bit_field_precision ((expr), \
8337 target, \
8338 type) \
8339 : (expr))
8340
8341 type = ops->type;
8342 mode = TYPE_MODE (type);
8343 unsignedp = TYPE_UNSIGNED (type);
8344
8345 treeop0 = ops->op0;
8346 treeop1 = ops->op1;
8347 treeop2 = ops->op2;
8348
8349 /* We should be called only on simple (binary or unary) expressions,
8350 exactly those that are valid in gimple expressions that aren't
8351 GIMPLE_SINGLE_RHS (or invalid). */
8352 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8353 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8354 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8355
8356 ignore = (target == const0_rtx
8357 || ((CONVERT_EXPR_CODE_P (code)
8358 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8359 && TREE_CODE (type) == VOID_TYPE));
8360
8361 /* We should be called only if we need the result. */
8362 gcc_assert (!ignore);
8363
8364 /* An operation in what may be a bit-field type needs the
8365 result to be reduced to the precision of the bit-field type,
8366 which is narrower than that of the type's mode. */
8367 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8368 && !type_has_mode_precision_p (type));
8369
8370 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8371 target = 0;
8372
8373 /* Use subtarget as the target for operand 0 of a binary operation. */
8374 subtarget = get_subtarget (target);
8375 original_target = target;
8376
8377 switch (code)
8378 {
8379 case NON_LVALUE_EXPR:
8380 case PAREN_EXPR:
8381 CASE_CONVERT:
8382 if (treeop0 == error_mark_node)
8383 return const0_rtx;
8384
8385 if (TREE_CODE (type) == UNION_TYPE)
8386 {
8387 tree valtype = TREE_TYPE (treeop0);
8388
8389 /* If both input and output are BLKmode, this conversion isn't doing
8390 anything except possibly changing memory attribute. */
8391 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8392 {
8393 rtx result = expand_expr (treeop0, target, tmode,
8394 modifier);
8395
8396 result = copy_rtx (result);
8397 set_mem_attributes (result, type, 0);
8398 return result;
8399 }
8400
8401 if (target == 0)
8402 {
8403 if (TYPE_MODE (type) != BLKmode)
8404 target = gen_reg_rtx (TYPE_MODE (type));
8405 else
8406 target = assign_temp (type, 1, 1);
8407 }
8408
8409 if (MEM_P (target))
8410 /* Store data into beginning of memory target. */
8411 store_expr (treeop0,
8412 adjust_address (target, TYPE_MODE (valtype), 0),
8413 modifier == EXPAND_STACK_PARM,
8414 false, TYPE_REVERSE_STORAGE_ORDER (type));
8415
8416 else
8417 {
8418 gcc_assert (REG_P (target)
8419 && !TYPE_REVERSE_STORAGE_ORDER (type));
8420
8421 /* Store this field into a union of the proper type. */
8422 poly_uint64 op0_size
8423 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8424 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8425 store_field (target,
8426 /* The conversion must be constructed so that
8427 we know at compile time how many bits
8428 to preserve. */
8429 ordered_min (op0_size, union_size),
8430 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8431 false, false);
8432 }
8433
8434 /* Return the entire union. */
8435 return target;
8436 }
8437
8438 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8439 {
8440 op0 = expand_expr (treeop0, target, VOIDmode,
8441 modifier);
8442
8443 /* If the signedness of the conversion differs and OP0 is
8444 a promoted SUBREG, clear that indication since we now
8445 have to do the proper extension. */
8446 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8447 && GET_CODE (op0) == SUBREG)
8448 SUBREG_PROMOTED_VAR_P (op0) = 0;
8449
8450 return REDUCE_BIT_FIELD (op0);
8451 }
8452
8453 op0 = expand_expr (treeop0, NULL_RTX, mode,
8454 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8455 if (GET_MODE (op0) == mode)
8456 ;
8457
8458 /* If OP0 is a constant, just convert it into the proper mode. */
8459 else if (CONSTANT_P (op0))
8460 {
8461 tree inner_type = TREE_TYPE (treeop0);
8462 machine_mode inner_mode = GET_MODE (op0);
8463
8464 if (inner_mode == VOIDmode)
8465 inner_mode = TYPE_MODE (inner_type);
8466
8467 if (modifier == EXPAND_INITIALIZER)
8468 op0 = lowpart_subreg (mode, op0, inner_mode);
8469 else
8470 op0= convert_modes (mode, inner_mode, op0,
8471 TYPE_UNSIGNED (inner_type));
8472 }
8473
8474 else if (modifier == EXPAND_INITIALIZER)
8475 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8476 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8477
8478 else if (target == 0)
8479 op0 = convert_to_mode (mode, op0,
8480 TYPE_UNSIGNED (TREE_TYPE
8481 (treeop0)));
8482 else
8483 {
8484 convert_move (target, op0,
8485 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8486 op0 = target;
8487 }
8488
8489 return REDUCE_BIT_FIELD (op0);
8490
8491 case ADDR_SPACE_CONVERT_EXPR:
8492 {
8493 tree treeop0_type = TREE_TYPE (treeop0);
8494
8495 gcc_assert (POINTER_TYPE_P (type));
8496 gcc_assert (POINTER_TYPE_P (treeop0_type));
8497
8498 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8499 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8500
8501 /* Conversions between pointers to the same address space should
8502 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8503 gcc_assert (as_to != as_from);
8504
8505 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8506
8507 /* Ask target code to handle conversion between pointers
8508 to overlapping address spaces. */
8509 if (targetm.addr_space.subset_p (as_to, as_from)
8510 || targetm.addr_space.subset_p (as_from, as_to))
8511 {
8512 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8513 }
8514 else
8515 {
8516 /* For disjoint address spaces, converting anything but a null
8517 pointer invokes undefined behavior. We truncate or extend the
8518 value as if we'd converted via integers, which handles 0 as
8519 required, and all others as the programmer likely expects. */
8520 #ifndef POINTERS_EXTEND_UNSIGNED
8521 const int POINTERS_EXTEND_UNSIGNED = 1;
8522 #endif
8523 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8524 op0, POINTERS_EXTEND_UNSIGNED);
8525 }
8526 gcc_assert (op0);
8527 return op0;
8528 }
8529
8530 case POINTER_PLUS_EXPR:
8531 /* Even though the sizetype mode and the pointer's mode can be different
8532 expand is able to handle this correctly and get the correct result out
8533 of the PLUS_EXPR code. */
8534 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8535 if sizetype precision is smaller than pointer precision. */
8536 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8537 treeop1 = fold_convert_loc (loc, type,
8538 fold_convert_loc (loc, ssizetype,
8539 treeop1));
8540 /* If sizetype precision is larger than pointer precision, truncate the
8541 offset to have matching modes. */
8542 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8543 treeop1 = fold_convert_loc (loc, type, treeop1);
8544 /* FALLTHRU */
8545
8546 case PLUS_EXPR:
8547 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8548 something else, make sure we add the register to the constant and
8549 then to the other thing. This case can occur during strength
8550 reduction and doing it this way will produce better code if the
8551 frame pointer or argument pointer is eliminated.
8552
8553 fold-const.c will ensure that the constant is always in the inner
8554 PLUS_EXPR, so the only case we need to do anything about is if
8555 sp, ap, or fp is our second argument, in which case we must swap
8556 the innermost first argument and our second argument. */
8557
8558 if (TREE_CODE (treeop0) == PLUS_EXPR
8559 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8560 && VAR_P (treeop1)
8561 && (DECL_RTL (treeop1) == frame_pointer_rtx
8562 || DECL_RTL (treeop1) == stack_pointer_rtx
8563 || DECL_RTL (treeop1) == arg_pointer_rtx))
8564 {
8565 gcc_unreachable ();
8566 }
8567
8568 /* If the result is to be ptr_mode and we are adding an integer to
8569 something, we might be forming a constant. So try to use
8570 plus_constant. If it produces a sum and we can't accept it,
8571 use force_operand. This allows P = &ARR[const] to generate
8572 efficient code on machines where a SYMBOL_REF is not a valid
8573 address.
8574
8575 If this is an EXPAND_SUM call, always return the sum. */
8576 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8577 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8578 {
8579 if (modifier == EXPAND_STACK_PARM)
8580 target = 0;
8581 if (TREE_CODE (treeop0) == INTEGER_CST
8582 && HWI_COMPUTABLE_MODE_P (mode)
8583 && TREE_CONSTANT (treeop1))
8584 {
8585 rtx constant_part;
8586 HOST_WIDE_INT wc;
8587 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8588
8589 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8590 EXPAND_SUM);
8591 /* Use wi::shwi to ensure that the constant is
8592 truncated according to the mode of OP1, then sign extended
8593 to a HOST_WIDE_INT. Using the constant directly can result
8594 in non-canonical RTL in a 64x32 cross compile. */
8595 wc = TREE_INT_CST_LOW (treeop0);
8596 constant_part =
8597 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8598 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8599 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8600 op1 = force_operand (op1, target);
8601 return REDUCE_BIT_FIELD (op1);
8602 }
8603
8604 else if (TREE_CODE (treeop1) == INTEGER_CST
8605 && HWI_COMPUTABLE_MODE_P (mode)
8606 && TREE_CONSTANT (treeop0))
8607 {
8608 rtx constant_part;
8609 HOST_WIDE_INT wc;
8610 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8611
8612 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8613 (modifier == EXPAND_INITIALIZER
8614 ? EXPAND_INITIALIZER : EXPAND_SUM));
8615 if (! CONSTANT_P (op0))
8616 {
8617 op1 = expand_expr (treeop1, NULL_RTX,
8618 VOIDmode, modifier);
8619 /* Return a PLUS if modifier says it's OK. */
8620 if (modifier == EXPAND_SUM
8621 || modifier == EXPAND_INITIALIZER)
8622 return simplify_gen_binary (PLUS, mode, op0, op1);
8623 goto binop2;
8624 }
8625 /* Use wi::shwi to ensure that the constant is
8626 truncated according to the mode of OP1, then sign extended
8627 to a HOST_WIDE_INT. Using the constant directly can result
8628 in non-canonical RTL in a 64x32 cross compile. */
8629 wc = TREE_INT_CST_LOW (treeop1);
8630 constant_part
8631 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8632 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8633 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8634 op0 = force_operand (op0, target);
8635 return REDUCE_BIT_FIELD (op0);
8636 }
8637 }
8638
8639 /* Use TER to expand pointer addition of a negated value
8640 as pointer subtraction. */
8641 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8642 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8643 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8644 && TREE_CODE (treeop1) == SSA_NAME
8645 && TYPE_MODE (TREE_TYPE (treeop0))
8646 == TYPE_MODE (TREE_TYPE (treeop1)))
8647 {
8648 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8649 if (def)
8650 {
8651 treeop1 = gimple_assign_rhs1 (def);
8652 code = MINUS_EXPR;
8653 goto do_minus;
8654 }
8655 }
8656
8657 /* No sense saving up arithmetic to be done
8658 if it's all in the wrong mode to form part of an address.
8659 And force_operand won't know whether to sign-extend or
8660 zero-extend. */
8661 if (modifier != EXPAND_INITIALIZER
8662 && (modifier != EXPAND_SUM || mode != ptr_mode))
8663 {
8664 expand_operands (treeop0, treeop1,
8665 subtarget, &op0, &op1, modifier);
8666 if (op0 == const0_rtx)
8667 return op1;
8668 if (op1 == const0_rtx)
8669 return op0;
8670 goto binop2;
8671 }
8672
8673 expand_operands (treeop0, treeop1,
8674 subtarget, &op0, &op1, modifier);
8675 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8676
8677 case MINUS_EXPR:
8678 case POINTER_DIFF_EXPR:
8679 do_minus:
8680 /* For initializers, we are allowed to return a MINUS of two
8681 symbolic constants. Here we handle all cases when both operands
8682 are constant. */
8683 /* Handle difference of two symbolic constants,
8684 for the sake of an initializer. */
8685 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8686 && really_constant_p (treeop0)
8687 && really_constant_p (treeop1))
8688 {
8689 expand_operands (treeop0, treeop1,
8690 NULL_RTX, &op0, &op1, modifier);
8691 return simplify_gen_binary (MINUS, mode, op0, op1);
8692 }
8693
8694 /* No sense saving up arithmetic to be done
8695 if it's all in the wrong mode to form part of an address.
8696 And force_operand won't know whether to sign-extend or
8697 zero-extend. */
8698 if (modifier != EXPAND_INITIALIZER
8699 && (modifier != EXPAND_SUM || mode != ptr_mode))
8700 goto binop;
8701
8702 expand_operands (treeop0, treeop1,
8703 subtarget, &op0, &op1, modifier);
8704
8705 /* Convert A - const to A + (-const). */
8706 if (CONST_INT_P (op1))
8707 {
8708 op1 = negate_rtx (mode, op1);
8709 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8710 }
8711
8712 goto binop2;
8713
8714 case WIDEN_MULT_PLUS_EXPR:
8715 case WIDEN_MULT_MINUS_EXPR:
8716 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8717 op2 = expand_normal (treeop2);
8718 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8719 target, unsignedp);
8720 return target;
8721
8722 case WIDEN_MULT_EXPR:
8723 /* If first operand is constant, swap them.
8724 Thus the following special case checks need only
8725 check the second operand. */
8726 if (TREE_CODE (treeop0) == INTEGER_CST)
8727 std::swap (treeop0, treeop1);
8728
8729 /* First, check if we have a multiplication of one signed and one
8730 unsigned operand. */
8731 if (TREE_CODE (treeop1) != INTEGER_CST
8732 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8733 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8734 {
8735 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8736 this_optab = usmul_widen_optab;
8737 if (find_widening_optab_handler (this_optab, mode, innermode)
8738 != CODE_FOR_nothing)
8739 {
8740 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8741 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8742 EXPAND_NORMAL);
8743 else
8744 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8745 EXPAND_NORMAL);
8746 /* op0 and op1 might still be constant, despite the above
8747 != INTEGER_CST check. Handle it. */
8748 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8749 {
8750 op0 = convert_modes (innermode, mode, op0, true);
8751 op1 = convert_modes (innermode, mode, op1, false);
8752 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8753 target, unsignedp));
8754 }
8755 goto binop3;
8756 }
8757 }
8758 /* Check for a multiplication with matching signedness. */
8759 else if ((TREE_CODE (treeop1) == INTEGER_CST
8760 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8761 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8762 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8763 {
8764 tree op0type = TREE_TYPE (treeop0);
8765 machine_mode innermode = TYPE_MODE (op0type);
8766 bool zextend_p = TYPE_UNSIGNED (op0type);
8767 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8768 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8769
8770 if (TREE_CODE (treeop0) != INTEGER_CST)
8771 {
8772 if (find_widening_optab_handler (this_optab, mode, innermode)
8773 != CODE_FOR_nothing)
8774 {
8775 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8776 EXPAND_NORMAL);
8777 /* op0 and op1 might still be constant, despite the above
8778 != INTEGER_CST check. Handle it. */
8779 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8780 {
8781 widen_mult_const:
8782 op0 = convert_modes (innermode, mode, op0, zextend_p);
8783 op1
8784 = convert_modes (innermode, mode, op1,
8785 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8786 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8787 target,
8788 unsignedp));
8789 }
8790 temp = expand_widening_mult (mode, op0, op1, target,
8791 unsignedp, this_optab);
8792 return REDUCE_BIT_FIELD (temp);
8793 }
8794 if (find_widening_optab_handler (other_optab, mode, innermode)
8795 != CODE_FOR_nothing
8796 && innermode == word_mode)
8797 {
8798 rtx htem, hipart;
8799 op0 = expand_normal (treeop0);
8800 if (TREE_CODE (treeop1) == INTEGER_CST)
8801 op1 = convert_modes (word_mode, mode,
8802 expand_normal (treeop1),
8803 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8804 else
8805 op1 = expand_normal (treeop1);
8806 /* op0 and op1 might still be constant, despite the above
8807 != INTEGER_CST check. Handle it. */
8808 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8809 goto widen_mult_const;
8810 temp = expand_binop (mode, other_optab, op0, op1, target,
8811 unsignedp, OPTAB_LIB_WIDEN);
8812 hipart = gen_highpart (word_mode, temp);
8813 htem = expand_mult_highpart_adjust (word_mode, hipart,
8814 op0, op1, hipart,
8815 zextend_p);
8816 if (htem != hipart)
8817 emit_move_insn (hipart, htem);
8818 return REDUCE_BIT_FIELD (temp);
8819 }
8820 }
8821 }
8822 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8823 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8824 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8825 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8826
8827 case MULT_EXPR:
8828 /* If this is a fixed-point operation, then we cannot use the code
8829 below because "expand_mult" doesn't support sat/no-sat fixed-point
8830 multiplications. */
8831 if (ALL_FIXED_POINT_MODE_P (mode))
8832 goto binop;
8833
8834 /* If first operand is constant, swap them.
8835 Thus the following special case checks need only
8836 check the second operand. */
8837 if (TREE_CODE (treeop0) == INTEGER_CST)
8838 std::swap (treeop0, treeop1);
8839
8840 /* Attempt to return something suitable for generating an
8841 indexed address, for machines that support that. */
8842
8843 if (modifier == EXPAND_SUM && mode == ptr_mode
8844 && tree_fits_shwi_p (treeop1))
8845 {
8846 tree exp1 = treeop1;
8847
8848 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8849 EXPAND_SUM);
8850
8851 if (!REG_P (op0))
8852 op0 = force_operand (op0, NULL_RTX);
8853 if (!REG_P (op0))
8854 op0 = copy_to_mode_reg (mode, op0);
8855
8856 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8857 gen_int_mode (tree_to_shwi (exp1),
8858 TYPE_MODE (TREE_TYPE (exp1)))));
8859 }
8860
8861 if (modifier == EXPAND_STACK_PARM)
8862 target = 0;
8863
8864 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8865 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8866
8867 case TRUNC_MOD_EXPR:
8868 case FLOOR_MOD_EXPR:
8869 case CEIL_MOD_EXPR:
8870 case ROUND_MOD_EXPR:
8871
8872 case TRUNC_DIV_EXPR:
8873 case FLOOR_DIV_EXPR:
8874 case CEIL_DIV_EXPR:
8875 case ROUND_DIV_EXPR:
8876 case EXACT_DIV_EXPR:
8877 {
8878 /* If this is a fixed-point operation, then we cannot use the code
8879 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8880 divisions. */
8881 if (ALL_FIXED_POINT_MODE_P (mode))
8882 goto binop;
8883
8884 if (modifier == EXPAND_STACK_PARM)
8885 target = 0;
8886 /* Possible optimization: compute the dividend with EXPAND_SUM
8887 then if the divisor is constant can optimize the case
8888 where some terms of the dividend have coeffs divisible by it. */
8889 expand_operands (treeop0, treeop1,
8890 subtarget, &op0, &op1, EXPAND_NORMAL);
8891 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8892 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8893 if (SCALAR_INT_MODE_P (mode)
8894 && optimize >= 2
8895 && get_range_pos_neg (treeop0) == 1
8896 && get_range_pos_neg (treeop1) == 1)
8897 {
8898 /* If both arguments are known to be positive when interpreted
8899 as signed, we can expand it as both signed and unsigned
8900 division or modulo. Choose the cheaper sequence in that case. */
8901 bool speed_p = optimize_insn_for_speed_p ();
8902 do_pending_stack_adjust ();
8903 start_sequence ();
8904 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8905 rtx_insn *uns_insns = get_insns ();
8906 end_sequence ();
8907 start_sequence ();
8908 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8909 rtx_insn *sgn_insns = get_insns ();
8910 end_sequence ();
8911 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8912 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8913
8914 /* If costs are the same then use as tie breaker the other
8915 other factor. */
8916 if (uns_cost == sgn_cost)
8917 {
8918 uns_cost = seq_cost (uns_insns, !speed_p);
8919 sgn_cost = seq_cost (sgn_insns, !speed_p);
8920 }
8921
8922 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8923 {
8924 emit_insn (uns_insns);
8925 return uns_ret;
8926 }
8927 emit_insn (sgn_insns);
8928 return sgn_ret;
8929 }
8930 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8931 }
8932 case RDIV_EXPR:
8933 goto binop;
8934
8935 case MULT_HIGHPART_EXPR:
8936 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8937 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8938 gcc_assert (temp);
8939 return temp;
8940
8941 case FIXED_CONVERT_EXPR:
8942 op0 = expand_normal (treeop0);
8943 if (target == 0 || modifier == EXPAND_STACK_PARM)
8944 target = gen_reg_rtx (mode);
8945
8946 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8947 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8948 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8949 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8950 else
8951 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8952 return target;
8953
8954 case FIX_TRUNC_EXPR:
8955 op0 = expand_normal (treeop0);
8956 if (target == 0 || modifier == EXPAND_STACK_PARM)
8957 target = gen_reg_rtx (mode);
8958 expand_fix (target, op0, unsignedp);
8959 return target;
8960
8961 case FLOAT_EXPR:
8962 op0 = expand_normal (treeop0);
8963 if (target == 0 || modifier == EXPAND_STACK_PARM)
8964 target = gen_reg_rtx (mode);
8965 /* expand_float can't figure out what to do if FROM has VOIDmode.
8966 So give it the correct mode. With -O, cse will optimize this. */
8967 if (GET_MODE (op0) == VOIDmode)
8968 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8969 op0);
8970 expand_float (target, op0,
8971 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8972 return target;
8973
8974 case NEGATE_EXPR:
8975 op0 = expand_expr (treeop0, subtarget,
8976 VOIDmode, EXPAND_NORMAL);
8977 if (modifier == EXPAND_STACK_PARM)
8978 target = 0;
8979 temp = expand_unop (mode,
8980 optab_for_tree_code (NEGATE_EXPR, type,
8981 optab_default),
8982 op0, target, 0);
8983 gcc_assert (temp);
8984 return REDUCE_BIT_FIELD (temp);
8985
8986 case ABS_EXPR:
8987 case ABSU_EXPR:
8988 op0 = expand_expr (treeop0, subtarget,
8989 VOIDmode, EXPAND_NORMAL);
8990 if (modifier == EXPAND_STACK_PARM)
8991 target = 0;
8992
8993 /* ABS_EXPR is not valid for complex arguments. */
8994 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8995 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8996
8997 /* Unsigned abs is simply the operand. Testing here means we don't
8998 risk generating incorrect code below. */
8999 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9000 return op0;
9001
9002 return expand_abs (mode, op0, target, unsignedp,
9003 safe_from_p (target, treeop0, 1));
9004
9005 case MAX_EXPR:
9006 case MIN_EXPR:
9007 target = original_target;
9008 if (target == 0
9009 || modifier == EXPAND_STACK_PARM
9010 || (MEM_P (target) && MEM_VOLATILE_P (target))
9011 || GET_MODE (target) != mode
9012 || (REG_P (target)
9013 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9014 target = gen_reg_rtx (mode);
9015 expand_operands (treeop0, treeop1,
9016 target, &op0, &op1, EXPAND_NORMAL);
9017
9018 /* First try to do it with a special MIN or MAX instruction.
9019 If that does not win, use a conditional jump to select the proper
9020 value. */
9021 this_optab = optab_for_tree_code (code, type, optab_default);
9022 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9023 OPTAB_WIDEN);
9024 if (temp != 0)
9025 return temp;
9026
9027 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9028 and similarly for MAX <x, y>. */
9029 if (VECTOR_TYPE_P (type))
9030 {
9031 tree t0 = make_tree (type, op0);
9032 tree t1 = make_tree (type, op1);
9033 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9034 type, t0, t1);
9035 return expand_vec_cond_expr (type, comparison, t0, t1,
9036 original_target);
9037 }
9038
9039 /* At this point, a MEM target is no longer useful; we will get better
9040 code without it. */
9041
9042 if (! REG_P (target))
9043 target = gen_reg_rtx (mode);
9044
9045 /* If op1 was placed in target, swap op0 and op1. */
9046 if (target != op0 && target == op1)
9047 std::swap (op0, op1);
9048
9049 /* We generate better code and avoid problems with op1 mentioning
9050 target by forcing op1 into a pseudo if it isn't a constant. */
9051 if (! CONSTANT_P (op1))
9052 op1 = force_reg (mode, op1);
9053
9054 {
9055 enum rtx_code comparison_code;
9056 rtx cmpop1 = op1;
9057
9058 if (code == MAX_EXPR)
9059 comparison_code = unsignedp ? GEU : GE;
9060 else
9061 comparison_code = unsignedp ? LEU : LE;
9062
9063 /* Canonicalize to comparisons against 0. */
9064 if (op1 == const1_rtx)
9065 {
9066 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9067 or (a != 0 ? a : 1) for unsigned.
9068 For MIN we are safe converting (a <= 1 ? a : 1)
9069 into (a <= 0 ? a : 1) */
9070 cmpop1 = const0_rtx;
9071 if (code == MAX_EXPR)
9072 comparison_code = unsignedp ? NE : GT;
9073 }
9074 if (op1 == constm1_rtx && !unsignedp)
9075 {
9076 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9077 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9078 cmpop1 = const0_rtx;
9079 if (code == MIN_EXPR)
9080 comparison_code = LT;
9081 }
9082
9083 /* Use a conditional move if possible. */
9084 if (can_conditionally_move_p (mode))
9085 {
9086 rtx insn;
9087
9088 start_sequence ();
9089
9090 /* Try to emit the conditional move. */
9091 insn = emit_conditional_move (target, comparison_code,
9092 op0, cmpop1, mode,
9093 op0, op1, mode,
9094 unsignedp);
9095
9096 /* If we could do the conditional move, emit the sequence,
9097 and return. */
9098 if (insn)
9099 {
9100 rtx_insn *seq = get_insns ();
9101 end_sequence ();
9102 emit_insn (seq);
9103 return target;
9104 }
9105
9106 /* Otherwise discard the sequence and fall back to code with
9107 branches. */
9108 end_sequence ();
9109 }
9110
9111 if (target != op0)
9112 emit_move_insn (target, op0);
9113
9114 lab = gen_label_rtx ();
9115 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9116 unsignedp, mode, NULL_RTX, NULL, lab,
9117 profile_probability::uninitialized ());
9118 }
9119 emit_move_insn (target, op1);
9120 emit_label (lab);
9121 return target;
9122
9123 case BIT_NOT_EXPR:
9124 op0 = expand_expr (treeop0, subtarget,
9125 VOIDmode, EXPAND_NORMAL);
9126 if (modifier == EXPAND_STACK_PARM)
9127 target = 0;
9128 /* In case we have to reduce the result to bitfield precision
9129 for unsigned bitfield expand this as XOR with a proper constant
9130 instead. */
9131 if (reduce_bit_field && TYPE_UNSIGNED (type))
9132 {
9133 int_mode = SCALAR_INT_TYPE_MODE (type);
9134 wide_int mask = wi::mask (TYPE_PRECISION (type),
9135 false, GET_MODE_PRECISION (int_mode));
9136
9137 temp = expand_binop (int_mode, xor_optab, op0,
9138 immed_wide_int_const (mask, int_mode),
9139 target, 1, OPTAB_LIB_WIDEN);
9140 }
9141 else
9142 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9143 gcc_assert (temp);
9144 return temp;
9145
9146 /* ??? Can optimize bitwise operations with one arg constant.
9147 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9148 and (a bitwise1 b) bitwise2 b (etc)
9149 but that is probably not worth while. */
9150
9151 case BIT_AND_EXPR:
9152 case BIT_IOR_EXPR:
9153 case BIT_XOR_EXPR:
9154 goto binop;
9155
9156 case LROTATE_EXPR:
9157 case RROTATE_EXPR:
9158 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9159 || type_has_mode_precision_p (type));
9160 /* fall through */
9161
9162 case LSHIFT_EXPR:
9163 case RSHIFT_EXPR:
9164 {
9165 /* If this is a fixed-point operation, then we cannot use the code
9166 below because "expand_shift" doesn't support sat/no-sat fixed-point
9167 shifts. */
9168 if (ALL_FIXED_POINT_MODE_P (mode))
9169 goto binop;
9170
9171 if (! safe_from_p (subtarget, treeop1, 1))
9172 subtarget = 0;
9173 if (modifier == EXPAND_STACK_PARM)
9174 target = 0;
9175 op0 = expand_expr (treeop0, subtarget,
9176 VOIDmode, EXPAND_NORMAL);
9177
9178 /* Left shift optimization when shifting across word_size boundary.
9179
9180 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9181 there isn't native instruction to support this wide mode
9182 left shift. Given below scenario:
9183
9184 Type A = (Type) B << C
9185
9186 |< T >|
9187 | dest_high | dest_low |
9188
9189 | word_size |
9190
9191 If the shift amount C caused we shift B to across the word
9192 size boundary, i.e part of B shifted into high half of
9193 destination register, and part of B remains in the low
9194 half, then GCC will use the following left shift expand
9195 logic:
9196
9197 1. Initialize dest_low to B.
9198 2. Initialize every bit of dest_high to the sign bit of B.
9199 3. Logic left shift dest_low by C bit to finalize dest_low.
9200 The value of dest_low before this shift is kept in a temp D.
9201 4. Logic left shift dest_high by C.
9202 5. Logic right shift D by (word_size - C).
9203 6. Or the result of 4 and 5 to finalize dest_high.
9204
9205 While, by checking gimple statements, if operand B is
9206 coming from signed extension, then we can simplify above
9207 expand logic into:
9208
9209 1. dest_high = src_low >> (word_size - C).
9210 2. dest_low = src_low << C.
9211
9212 We can use one arithmetic right shift to finish all the
9213 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9214 needed from 6 into 2.
9215
9216 The case is similar for zero extension, except that we
9217 initialize dest_high to zero rather than copies of the sign
9218 bit from B. Furthermore, we need to use a logical right shift
9219 in this case.
9220
9221 The choice of sign-extension versus zero-extension is
9222 determined entirely by whether or not B is signed and is
9223 independent of the current setting of unsignedp. */
9224
9225 temp = NULL_RTX;
9226 if (code == LSHIFT_EXPR
9227 && target
9228 && REG_P (target)
9229 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9230 && mode == int_mode
9231 && TREE_CONSTANT (treeop1)
9232 && TREE_CODE (treeop0) == SSA_NAME)
9233 {
9234 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9235 if (is_gimple_assign (def)
9236 && gimple_assign_rhs_code (def) == NOP_EXPR)
9237 {
9238 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9239 (TREE_TYPE (gimple_assign_rhs1 (def)));
9240
9241 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9242 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9243 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9244 >= GET_MODE_BITSIZE (word_mode)))
9245 {
9246 rtx_insn *seq, *seq_old;
9247 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9248 int_mode);
9249 bool extend_unsigned
9250 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9251 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9252 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9253 rtx dest_high = simplify_gen_subreg (word_mode, target,
9254 int_mode, high_off);
9255 HOST_WIDE_INT ramount = (BITS_PER_WORD
9256 - TREE_INT_CST_LOW (treeop1));
9257 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9258
9259 start_sequence ();
9260 /* dest_high = src_low >> (word_size - C). */
9261 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9262 rshift, dest_high,
9263 extend_unsigned);
9264 if (temp != dest_high)
9265 emit_move_insn (dest_high, temp);
9266
9267 /* dest_low = src_low << C. */
9268 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9269 treeop1, dest_low, unsignedp);
9270 if (temp != dest_low)
9271 emit_move_insn (dest_low, temp);
9272
9273 seq = get_insns ();
9274 end_sequence ();
9275 temp = target ;
9276
9277 if (have_insn_for (ASHIFT, int_mode))
9278 {
9279 bool speed_p = optimize_insn_for_speed_p ();
9280 start_sequence ();
9281 rtx ret_old = expand_variable_shift (code, int_mode,
9282 op0, treeop1,
9283 target,
9284 unsignedp);
9285
9286 seq_old = get_insns ();
9287 end_sequence ();
9288 if (seq_cost (seq, speed_p)
9289 >= seq_cost (seq_old, speed_p))
9290 {
9291 seq = seq_old;
9292 temp = ret_old;
9293 }
9294 }
9295 emit_insn (seq);
9296 }
9297 }
9298 }
9299
9300 if (temp == NULL_RTX)
9301 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9302 unsignedp);
9303 if (code == LSHIFT_EXPR)
9304 temp = REDUCE_BIT_FIELD (temp);
9305 return temp;
9306 }
9307
9308 /* Could determine the answer when only additive constants differ. Also,
9309 the addition of one can be handled by changing the condition. */
9310 case LT_EXPR:
9311 case LE_EXPR:
9312 case GT_EXPR:
9313 case GE_EXPR:
9314 case EQ_EXPR:
9315 case NE_EXPR:
9316 case UNORDERED_EXPR:
9317 case ORDERED_EXPR:
9318 case UNLT_EXPR:
9319 case UNLE_EXPR:
9320 case UNGT_EXPR:
9321 case UNGE_EXPR:
9322 case UNEQ_EXPR:
9323 case LTGT_EXPR:
9324 {
9325 temp = do_store_flag (ops,
9326 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9327 tmode != VOIDmode ? tmode : mode);
9328 if (temp)
9329 return temp;
9330
9331 /* Use a compare and a jump for BLKmode comparisons, or for function
9332 type comparisons is have_canonicalize_funcptr_for_compare. */
9333
9334 if ((target == 0
9335 || modifier == EXPAND_STACK_PARM
9336 || ! safe_from_p (target, treeop0, 1)
9337 || ! safe_from_p (target, treeop1, 1)
9338 /* Make sure we don't have a hard reg (such as function's return
9339 value) live across basic blocks, if not optimizing. */
9340 || (!optimize && REG_P (target)
9341 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9342 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9343
9344 emit_move_insn (target, const0_rtx);
9345
9346 rtx_code_label *lab1 = gen_label_rtx ();
9347 jumpifnot_1 (code, treeop0, treeop1, lab1,
9348 profile_probability::uninitialized ());
9349
9350 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9351 emit_move_insn (target, constm1_rtx);
9352 else
9353 emit_move_insn (target, const1_rtx);
9354
9355 emit_label (lab1);
9356 return target;
9357 }
9358 case COMPLEX_EXPR:
9359 /* Get the rtx code of the operands. */
9360 op0 = expand_normal (treeop0);
9361 op1 = expand_normal (treeop1);
9362
9363 if (!target)
9364 target = gen_reg_rtx (TYPE_MODE (type));
9365 else
9366 /* If target overlaps with op1, then either we need to force
9367 op1 into a pseudo (if target also overlaps with op0),
9368 or write the complex parts in reverse order. */
9369 switch (GET_CODE (target))
9370 {
9371 case CONCAT:
9372 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9373 {
9374 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9375 {
9376 complex_expr_force_op1:
9377 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9378 emit_move_insn (temp, op1);
9379 op1 = temp;
9380 break;
9381 }
9382 complex_expr_swap_order:
9383 /* Move the imaginary (op1) and real (op0) parts to their
9384 location. */
9385 write_complex_part (target, op1, true);
9386 write_complex_part (target, op0, false);
9387
9388 return target;
9389 }
9390 break;
9391 case MEM:
9392 temp = adjust_address_nv (target,
9393 GET_MODE_INNER (GET_MODE (target)), 0);
9394 if (reg_overlap_mentioned_p (temp, op1))
9395 {
9396 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9397 temp = adjust_address_nv (target, imode,
9398 GET_MODE_SIZE (imode));
9399 if (reg_overlap_mentioned_p (temp, op0))
9400 goto complex_expr_force_op1;
9401 goto complex_expr_swap_order;
9402 }
9403 break;
9404 default:
9405 if (reg_overlap_mentioned_p (target, op1))
9406 {
9407 if (reg_overlap_mentioned_p (target, op0))
9408 goto complex_expr_force_op1;
9409 goto complex_expr_swap_order;
9410 }
9411 break;
9412 }
9413
9414 /* Move the real (op0) and imaginary (op1) parts to their location. */
9415 write_complex_part (target, op0, false);
9416 write_complex_part (target, op1, true);
9417
9418 return target;
9419
9420 case WIDEN_SUM_EXPR:
9421 {
9422 tree oprnd0 = treeop0;
9423 tree oprnd1 = treeop1;
9424
9425 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9426 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9427 target, unsignedp);
9428 return target;
9429 }
9430
9431 case VEC_UNPACK_HI_EXPR:
9432 case VEC_UNPACK_LO_EXPR:
9433 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9434 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9435 {
9436 op0 = expand_normal (treeop0);
9437 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9438 target, unsignedp);
9439 gcc_assert (temp);
9440 return temp;
9441 }
9442
9443 case VEC_UNPACK_FLOAT_HI_EXPR:
9444 case VEC_UNPACK_FLOAT_LO_EXPR:
9445 {
9446 op0 = expand_normal (treeop0);
9447 /* The signedness is determined from input operand. */
9448 temp = expand_widen_pattern_expr
9449 (ops, op0, NULL_RTX, NULL_RTX,
9450 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9451
9452 gcc_assert (temp);
9453 return temp;
9454 }
9455
9456 case VEC_WIDEN_MULT_HI_EXPR:
9457 case VEC_WIDEN_MULT_LO_EXPR:
9458 case VEC_WIDEN_MULT_EVEN_EXPR:
9459 case VEC_WIDEN_MULT_ODD_EXPR:
9460 case VEC_WIDEN_LSHIFT_HI_EXPR:
9461 case VEC_WIDEN_LSHIFT_LO_EXPR:
9462 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9463 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9464 target, unsignedp);
9465 gcc_assert (target);
9466 return target;
9467
9468 case VEC_PACK_TRUNC_EXPR:
9469 case VEC_PACK_SAT_EXPR:
9470 case VEC_PACK_FIX_TRUNC_EXPR:
9471 mode = TYPE_MODE (TREE_TYPE (treeop0));
9472 goto binop;
9473
9474 case VEC_PACK_FLOAT_EXPR:
9475 mode = TYPE_MODE (TREE_TYPE (treeop0));
9476 expand_operands (treeop0, treeop1,
9477 subtarget, &op0, &op1, EXPAND_NORMAL);
9478 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9479 optab_default);
9480 target = expand_binop (mode, this_optab, op0, op1, target,
9481 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9482 OPTAB_LIB_WIDEN);
9483 gcc_assert (target);
9484 return target;
9485
9486 case VEC_PERM_EXPR:
9487 {
9488 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9489 vec_perm_builder sel;
9490 if (TREE_CODE (treeop2) == VECTOR_CST
9491 && tree_to_vec_perm_builder (&sel, treeop2))
9492 {
9493 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9494 temp = expand_vec_perm_const (mode, op0, op1, sel,
9495 sel_mode, target);
9496 }
9497 else
9498 {
9499 op2 = expand_normal (treeop2);
9500 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9501 }
9502 gcc_assert (temp);
9503 return temp;
9504 }
9505
9506 case DOT_PROD_EXPR:
9507 {
9508 tree oprnd0 = treeop0;
9509 tree oprnd1 = treeop1;
9510 tree oprnd2 = treeop2;
9511 rtx op2;
9512
9513 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9514 op2 = expand_normal (oprnd2);
9515 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9516 target, unsignedp);
9517 return target;
9518 }
9519
9520 case SAD_EXPR:
9521 {
9522 tree oprnd0 = treeop0;
9523 tree oprnd1 = treeop1;
9524 tree oprnd2 = treeop2;
9525 rtx op2;
9526
9527 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9528 op2 = expand_normal (oprnd2);
9529 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9530 target, unsignedp);
9531 return target;
9532 }
9533
9534 case REALIGN_LOAD_EXPR:
9535 {
9536 tree oprnd0 = treeop0;
9537 tree oprnd1 = treeop1;
9538 tree oprnd2 = treeop2;
9539 rtx op2;
9540
9541 this_optab = optab_for_tree_code (code, type, optab_default);
9542 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9543 op2 = expand_normal (oprnd2);
9544 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9545 target, unsignedp);
9546 gcc_assert (temp);
9547 return temp;
9548 }
9549
9550 case COND_EXPR:
9551 {
9552 /* A COND_EXPR with its type being VOID_TYPE represents a
9553 conditional jump and is handled in
9554 expand_gimple_cond_expr. */
9555 gcc_assert (!VOID_TYPE_P (type));
9556
9557 /* Note that COND_EXPRs whose type is a structure or union
9558 are required to be constructed to contain assignments of
9559 a temporary variable, so that we can evaluate them here
9560 for side effect only. If type is void, we must do likewise. */
9561
9562 gcc_assert (!TREE_ADDRESSABLE (type)
9563 && !ignore
9564 && TREE_TYPE (treeop1) != void_type_node
9565 && TREE_TYPE (treeop2) != void_type_node);
9566
9567 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9568 if (temp)
9569 return temp;
9570
9571 /* If we are not to produce a result, we have no target. Otherwise,
9572 if a target was specified use it; it will not be used as an
9573 intermediate target unless it is safe. If no target, use a
9574 temporary. */
9575
9576 if (modifier != EXPAND_STACK_PARM
9577 && original_target
9578 && safe_from_p (original_target, treeop0, 1)
9579 && GET_MODE (original_target) == mode
9580 && !MEM_P (original_target))
9581 temp = original_target;
9582 else
9583 temp = assign_temp (type, 0, 1);
9584
9585 do_pending_stack_adjust ();
9586 NO_DEFER_POP;
9587 rtx_code_label *lab0 = gen_label_rtx ();
9588 rtx_code_label *lab1 = gen_label_rtx ();
9589 jumpifnot (treeop0, lab0,
9590 profile_probability::uninitialized ());
9591 store_expr (treeop1, temp,
9592 modifier == EXPAND_STACK_PARM,
9593 false, false);
9594
9595 emit_jump_insn (targetm.gen_jump (lab1));
9596 emit_barrier ();
9597 emit_label (lab0);
9598 store_expr (treeop2, temp,
9599 modifier == EXPAND_STACK_PARM,
9600 false, false);
9601
9602 emit_label (lab1);
9603 OK_DEFER_POP;
9604 return temp;
9605 }
9606
9607 case VEC_COND_EXPR:
9608 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9609 return target;
9610
9611 case VEC_DUPLICATE_EXPR:
9612 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9613 target = expand_vector_broadcast (mode, op0);
9614 gcc_assert (target);
9615 return target;
9616
9617 case VEC_SERIES_EXPR:
9618 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9619 return expand_vec_series_expr (mode, op0, op1, target);
9620
9621 case BIT_INSERT_EXPR:
9622 {
9623 unsigned bitpos = tree_to_uhwi (treeop2);
9624 unsigned bitsize;
9625 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9626 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9627 else
9628 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9629 rtx op0 = expand_normal (treeop0);
9630 rtx op1 = expand_normal (treeop1);
9631 rtx dst = gen_reg_rtx (mode);
9632 emit_move_insn (dst, op0);
9633 store_bit_field (dst, bitsize, bitpos, 0, 0,
9634 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9635 return dst;
9636 }
9637
9638 default:
9639 gcc_unreachable ();
9640 }
9641
9642 /* Here to do an ordinary binary operator. */
9643 binop:
9644 expand_operands (treeop0, treeop1,
9645 subtarget, &op0, &op1, EXPAND_NORMAL);
9646 binop2:
9647 this_optab = optab_for_tree_code (code, type, optab_default);
9648 binop3:
9649 if (modifier == EXPAND_STACK_PARM)
9650 target = 0;
9651 temp = expand_binop (mode, this_optab, op0, op1, target,
9652 unsignedp, OPTAB_LIB_WIDEN);
9653 gcc_assert (temp);
9654 /* Bitwise operations do not need bitfield reduction as we expect their
9655 operands being properly truncated. */
9656 if (code == BIT_XOR_EXPR
9657 || code == BIT_AND_EXPR
9658 || code == BIT_IOR_EXPR)
9659 return temp;
9660 return REDUCE_BIT_FIELD (temp);
9661 }
9662 #undef REDUCE_BIT_FIELD
9663
9664
9665 /* Return TRUE if expression STMT is suitable for replacement.
9666 Never consider memory loads as replaceable, because those don't ever lead
9667 into constant expressions. */
9668
9669 static bool
9670 stmt_is_replaceable_p (gimple *stmt)
9671 {
9672 if (ssa_is_replaceable_p (stmt))
9673 {
9674 /* Don't move around loads. */
9675 if (!gimple_assign_single_p (stmt)
9676 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9677 return true;
9678 }
9679 return false;
9680 }
9681
9682 rtx
9683 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9684 enum expand_modifier modifier, rtx *alt_rtl,
9685 bool inner_reference_p)
9686 {
9687 rtx op0, op1, temp, decl_rtl;
9688 tree type;
9689 int unsignedp;
9690 machine_mode mode, dmode;
9691 enum tree_code code = TREE_CODE (exp);
9692 rtx subtarget, original_target;
9693 int ignore;
9694 tree context;
9695 bool reduce_bit_field;
9696 location_t loc = EXPR_LOCATION (exp);
9697 struct separate_ops ops;
9698 tree treeop0, treeop1, treeop2;
9699 tree ssa_name = NULL_TREE;
9700 gimple *g;
9701
9702 type = TREE_TYPE (exp);
9703 mode = TYPE_MODE (type);
9704 unsignedp = TYPE_UNSIGNED (type);
9705
9706 treeop0 = treeop1 = treeop2 = NULL_TREE;
9707 if (!VL_EXP_CLASS_P (exp))
9708 switch (TREE_CODE_LENGTH (code))
9709 {
9710 default:
9711 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9712 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9713 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9714 case 0: break;
9715 }
9716 ops.code = code;
9717 ops.type = type;
9718 ops.op0 = treeop0;
9719 ops.op1 = treeop1;
9720 ops.op2 = treeop2;
9721 ops.location = loc;
9722
9723 ignore = (target == const0_rtx
9724 || ((CONVERT_EXPR_CODE_P (code)
9725 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9726 && TREE_CODE (type) == VOID_TYPE));
9727
9728 /* An operation in what may be a bit-field type needs the
9729 result to be reduced to the precision of the bit-field type,
9730 which is narrower than that of the type's mode. */
9731 reduce_bit_field = (!ignore
9732 && INTEGRAL_TYPE_P (type)
9733 && !type_has_mode_precision_p (type));
9734
9735 /* If we are going to ignore this result, we need only do something
9736 if there is a side-effect somewhere in the expression. If there
9737 is, short-circuit the most common cases here. Note that we must
9738 not call expand_expr with anything but const0_rtx in case this
9739 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9740
9741 if (ignore)
9742 {
9743 if (! TREE_SIDE_EFFECTS (exp))
9744 return const0_rtx;
9745
9746 /* Ensure we reference a volatile object even if value is ignored, but
9747 don't do this if all we are doing is taking its address. */
9748 if (TREE_THIS_VOLATILE (exp)
9749 && TREE_CODE (exp) != FUNCTION_DECL
9750 && mode != VOIDmode && mode != BLKmode
9751 && modifier != EXPAND_CONST_ADDRESS)
9752 {
9753 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9754 if (MEM_P (temp))
9755 copy_to_reg (temp);
9756 return const0_rtx;
9757 }
9758
9759 if (TREE_CODE_CLASS (code) == tcc_unary
9760 || code == BIT_FIELD_REF
9761 || code == COMPONENT_REF
9762 || code == INDIRECT_REF)
9763 return expand_expr (treeop0, const0_rtx, VOIDmode,
9764 modifier);
9765
9766 else if (TREE_CODE_CLASS (code) == tcc_binary
9767 || TREE_CODE_CLASS (code) == tcc_comparison
9768 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9769 {
9770 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9771 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9772 return const0_rtx;
9773 }
9774
9775 target = 0;
9776 }
9777
9778 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9779 target = 0;
9780
9781 /* Use subtarget as the target for operand 0 of a binary operation. */
9782 subtarget = get_subtarget (target);
9783 original_target = target;
9784
9785 switch (code)
9786 {
9787 case LABEL_DECL:
9788 {
9789 tree function = decl_function_context (exp);
9790
9791 temp = label_rtx (exp);
9792 temp = gen_rtx_LABEL_REF (Pmode, temp);
9793
9794 if (function != current_function_decl
9795 && function != 0)
9796 LABEL_REF_NONLOCAL_P (temp) = 1;
9797
9798 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9799 return temp;
9800 }
9801
9802 case SSA_NAME:
9803 /* ??? ivopts calls expander, without any preparation from
9804 out-of-ssa. So fake instructions as if this was an access to the
9805 base variable. This unnecessarily allocates a pseudo, see how we can
9806 reuse it, if partition base vars have it set already. */
9807 if (!currently_expanding_to_rtl)
9808 {
9809 tree var = SSA_NAME_VAR (exp);
9810 if (var && DECL_RTL_SET_P (var))
9811 return DECL_RTL (var);
9812 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9813 LAST_VIRTUAL_REGISTER + 1);
9814 }
9815
9816 g = get_gimple_for_ssa_name (exp);
9817 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9818 if (g == NULL
9819 && modifier == EXPAND_INITIALIZER
9820 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9821 && (optimize || !SSA_NAME_VAR (exp)
9822 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9823 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9824 g = SSA_NAME_DEF_STMT (exp);
9825 if (g)
9826 {
9827 rtx r;
9828 location_t saved_loc = curr_insn_location ();
9829 location_t loc = gimple_location (g);
9830 if (loc != UNKNOWN_LOCATION)
9831 set_curr_insn_location (loc);
9832 ops.code = gimple_assign_rhs_code (g);
9833 switch (get_gimple_rhs_class (ops.code))
9834 {
9835 case GIMPLE_TERNARY_RHS:
9836 ops.op2 = gimple_assign_rhs3 (g);
9837 /* Fallthru */
9838 case GIMPLE_BINARY_RHS:
9839 ops.op1 = gimple_assign_rhs2 (g);
9840
9841 /* Try to expand conditonal compare. */
9842 if (targetm.gen_ccmp_first)
9843 {
9844 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9845 r = expand_ccmp_expr (g, mode);
9846 if (r)
9847 break;
9848 }
9849 /* Fallthru */
9850 case GIMPLE_UNARY_RHS:
9851 ops.op0 = gimple_assign_rhs1 (g);
9852 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9853 ops.location = loc;
9854 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9855 break;
9856 case GIMPLE_SINGLE_RHS:
9857 {
9858 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9859 tmode, modifier, alt_rtl,
9860 inner_reference_p);
9861 break;
9862 }
9863 default:
9864 gcc_unreachable ();
9865 }
9866 set_curr_insn_location (saved_loc);
9867 if (REG_P (r) && !REG_EXPR (r))
9868 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9869 return r;
9870 }
9871
9872 ssa_name = exp;
9873 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9874 exp = SSA_NAME_VAR (ssa_name);
9875 goto expand_decl_rtl;
9876
9877 case PARM_DECL:
9878 case VAR_DECL:
9879 /* If a static var's type was incomplete when the decl was written,
9880 but the type is complete now, lay out the decl now. */
9881 if (DECL_SIZE (exp) == 0
9882 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9883 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9884 layout_decl (exp, 0);
9885
9886 /* fall through */
9887
9888 case FUNCTION_DECL:
9889 case RESULT_DECL:
9890 decl_rtl = DECL_RTL (exp);
9891 expand_decl_rtl:
9892 gcc_assert (decl_rtl);
9893
9894 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9895 settings for VECTOR_TYPE_P that might switch for the function. */
9896 if (currently_expanding_to_rtl
9897 && code == VAR_DECL && MEM_P (decl_rtl)
9898 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9899 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9900 else
9901 decl_rtl = copy_rtx (decl_rtl);
9902
9903 /* Record writes to register variables. */
9904 if (modifier == EXPAND_WRITE
9905 && REG_P (decl_rtl)
9906 && HARD_REGISTER_P (decl_rtl))
9907 add_to_hard_reg_set (&crtl->asm_clobbers,
9908 GET_MODE (decl_rtl), REGNO (decl_rtl));
9909
9910 /* Ensure variable marked as used even if it doesn't go through
9911 a parser. If it hasn't be used yet, write out an external
9912 definition. */
9913 if (exp)
9914 TREE_USED (exp) = 1;
9915
9916 /* Show we haven't gotten RTL for this yet. */
9917 temp = 0;
9918
9919 /* Variables inherited from containing functions should have
9920 been lowered by this point. */
9921 if (exp)
9922 context = decl_function_context (exp);
9923 gcc_assert (!exp
9924 || SCOPE_FILE_SCOPE_P (context)
9925 || context == current_function_decl
9926 || TREE_STATIC (exp)
9927 || DECL_EXTERNAL (exp)
9928 /* ??? C++ creates functions that are not TREE_STATIC. */
9929 || TREE_CODE (exp) == FUNCTION_DECL);
9930
9931 /* This is the case of an array whose size is to be determined
9932 from its initializer, while the initializer is still being parsed.
9933 ??? We aren't parsing while expanding anymore. */
9934
9935 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9936 temp = validize_mem (decl_rtl);
9937
9938 /* If DECL_RTL is memory, we are in the normal case and the
9939 address is not valid, get the address into a register. */
9940
9941 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9942 {
9943 if (alt_rtl)
9944 *alt_rtl = decl_rtl;
9945 decl_rtl = use_anchored_address (decl_rtl);
9946 if (modifier != EXPAND_CONST_ADDRESS
9947 && modifier != EXPAND_SUM
9948 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9949 : GET_MODE (decl_rtl),
9950 XEXP (decl_rtl, 0),
9951 MEM_ADDR_SPACE (decl_rtl)))
9952 temp = replace_equiv_address (decl_rtl,
9953 copy_rtx (XEXP (decl_rtl, 0)));
9954 }
9955
9956 /* If we got something, return it. But first, set the alignment
9957 if the address is a register. */
9958 if (temp != 0)
9959 {
9960 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9961 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9962
9963 return temp;
9964 }
9965
9966 if (exp)
9967 dmode = DECL_MODE (exp);
9968 else
9969 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9970
9971 /* If the mode of DECL_RTL does not match that of the decl,
9972 there are two cases: we are dealing with a BLKmode value
9973 that is returned in a register, or we are dealing with
9974 a promoted value. In the latter case, return a SUBREG
9975 of the wanted mode, but mark it so that we know that it
9976 was already extended. */
9977 if (REG_P (decl_rtl)
9978 && dmode != BLKmode
9979 && GET_MODE (decl_rtl) != dmode)
9980 {
9981 machine_mode pmode;
9982
9983 /* Get the signedness to be used for this variable. Ensure we get
9984 the same mode we got when the variable was declared. */
9985 if (code != SSA_NAME)
9986 pmode = promote_decl_mode (exp, &unsignedp);
9987 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9988 && gimple_code (g) == GIMPLE_CALL
9989 && !gimple_call_internal_p (g))
9990 pmode = promote_function_mode (type, mode, &unsignedp,
9991 gimple_call_fntype (g),
9992 2);
9993 else
9994 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9995 gcc_assert (GET_MODE (decl_rtl) == pmode);
9996
9997 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9998 SUBREG_PROMOTED_VAR_P (temp) = 1;
9999 SUBREG_PROMOTED_SET (temp, unsignedp);
10000 return temp;
10001 }
10002
10003 return decl_rtl;
10004
10005 case INTEGER_CST:
10006 {
10007 /* Given that TYPE_PRECISION (type) is not always equal to
10008 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10009 the former to the latter according to the signedness of the
10010 type. */
10011 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
10012 temp = immed_wide_int_const
10013 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
10014 return temp;
10015 }
10016
10017 case VECTOR_CST:
10018 {
10019 tree tmp = NULL_TREE;
10020 if (VECTOR_MODE_P (mode))
10021 return const_vector_from_tree (exp);
10022 scalar_int_mode int_mode;
10023 if (is_int_mode (mode, &int_mode))
10024 {
10025 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10026 return const_scalar_mask_from_tree (int_mode, exp);
10027 else
10028 {
10029 tree type_for_mode
10030 = lang_hooks.types.type_for_mode (int_mode, 1);
10031 if (type_for_mode)
10032 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10033 type_for_mode, exp);
10034 }
10035 }
10036 if (!tmp)
10037 {
10038 vec<constructor_elt, va_gc> *v;
10039 /* Constructors need to be fixed-length. FIXME. */
10040 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10041 vec_alloc (v, nunits);
10042 for (unsigned int i = 0; i < nunits; ++i)
10043 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10044 tmp = build_constructor (type, v);
10045 }
10046 return expand_expr (tmp, ignore ? const0_rtx : target,
10047 tmode, modifier);
10048 }
10049
10050 case CONST_DECL:
10051 if (modifier == EXPAND_WRITE)
10052 {
10053 /* Writing into CONST_DECL is always invalid, but handle it
10054 gracefully. */
10055 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10056 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10057 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10058 EXPAND_NORMAL, as);
10059 op0 = memory_address_addr_space (mode, op0, as);
10060 temp = gen_rtx_MEM (mode, op0);
10061 set_mem_addr_space (temp, as);
10062 return temp;
10063 }
10064 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10065
10066 case REAL_CST:
10067 /* If optimized, generate immediate CONST_DOUBLE
10068 which will be turned into memory by reload if necessary.
10069
10070 We used to force a register so that loop.c could see it. But
10071 this does not allow gen_* patterns to perform optimizations with
10072 the constants. It also produces two insns in cases like "x = 1.0;".
10073 On most machines, floating-point constants are not permitted in
10074 many insns, so we'd end up copying it to a register in any case.
10075
10076 Now, we do the copying in expand_binop, if appropriate. */
10077 return const_double_from_real_value (TREE_REAL_CST (exp),
10078 TYPE_MODE (TREE_TYPE (exp)));
10079
10080 case FIXED_CST:
10081 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10082 TYPE_MODE (TREE_TYPE (exp)));
10083
10084 case COMPLEX_CST:
10085 /* Handle evaluating a complex constant in a CONCAT target. */
10086 if (original_target && GET_CODE (original_target) == CONCAT)
10087 {
10088 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10089 rtx rtarg, itarg;
10090
10091 rtarg = XEXP (original_target, 0);
10092 itarg = XEXP (original_target, 1);
10093
10094 /* Move the real and imaginary parts separately. */
10095 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10096 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10097
10098 if (op0 != rtarg)
10099 emit_move_insn (rtarg, op0);
10100 if (op1 != itarg)
10101 emit_move_insn (itarg, op1);
10102
10103 return original_target;
10104 }
10105
10106 /* fall through */
10107
10108 case STRING_CST:
10109 temp = expand_expr_constant (exp, 1, modifier);
10110
10111 /* temp contains a constant address.
10112 On RISC machines where a constant address isn't valid,
10113 make some insns to get that address into a register. */
10114 if (modifier != EXPAND_CONST_ADDRESS
10115 && modifier != EXPAND_INITIALIZER
10116 && modifier != EXPAND_SUM
10117 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10118 MEM_ADDR_SPACE (temp)))
10119 return replace_equiv_address (temp,
10120 copy_rtx (XEXP (temp, 0)));
10121 return temp;
10122
10123 case POLY_INT_CST:
10124 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10125
10126 case SAVE_EXPR:
10127 {
10128 tree val = treeop0;
10129 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10130 inner_reference_p);
10131
10132 if (!SAVE_EXPR_RESOLVED_P (exp))
10133 {
10134 /* We can indeed still hit this case, typically via builtin
10135 expanders calling save_expr immediately before expanding
10136 something. Assume this means that we only have to deal
10137 with non-BLKmode values. */
10138 gcc_assert (GET_MODE (ret) != BLKmode);
10139
10140 val = build_decl (curr_insn_location (),
10141 VAR_DECL, NULL, TREE_TYPE (exp));
10142 DECL_ARTIFICIAL (val) = 1;
10143 DECL_IGNORED_P (val) = 1;
10144 treeop0 = val;
10145 TREE_OPERAND (exp, 0) = treeop0;
10146 SAVE_EXPR_RESOLVED_P (exp) = 1;
10147
10148 if (!CONSTANT_P (ret))
10149 ret = copy_to_reg (ret);
10150 SET_DECL_RTL (val, ret);
10151 }
10152
10153 return ret;
10154 }
10155
10156
10157 case CONSTRUCTOR:
10158 /* If we don't need the result, just ensure we evaluate any
10159 subexpressions. */
10160 if (ignore)
10161 {
10162 unsigned HOST_WIDE_INT idx;
10163 tree value;
10164
10165 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10166 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10167
10168 return const0_rtx;
10169 }
10170
10171 return expand_constructor (exp, target, modifier, false);
10172
10173 case TARGET_MEM_REF:
10174 {
10175 addr_space_t as
10176 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10177 enum insn_code icode;
10178 unsigned int align;
10179
10180 op0 = addr_for_mem_ref (exp, as, true);
10181 op0 = memory_address_addr_space (mode, op0, as);
10182 temp = gen_rtx_MEM (mode, op0);
10183 set_mem_attributes (temp, exp, 0);
10184 set_mem_addr_space (temp, as);
10185 align = get_object_alignment (exp);
10186 if (modifier != EXPAND_WRITE
10187 && modifier != EXPAND_MEMORY
10188 && mode != BLKmode
10189 && align < GET_MODE_ALIGNMENT (mode)
10190 /* If the target does not have special handling for unaligned
10191 loads of mode then it can use regular moves for them. */
10192 && ((icode = optab_handler (movmisalign_optab, mode))
10193 != CODE_FOR_nothing))
10194 {
10195 struct expand_operand ops[2];
10196
10197 /* We've already validated the memory, and we're creating a
10198 new pseudo destination. The predicates really can't fail,
10199 nor can the generator. */
10200 create_output_operand (&ops[0], NULL_RTX, mode);
10201 create_fixed_operand (&ops[1], temp);
10202 expand_insn (icode, 2, ops);
10203 temp = ops[0].value;
10204 }
10205 return temp;
10206 }
10207
10208 case MEM_REF:
10209 {
10210 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10211 addr_space_t as
10212 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10213 machine_mode address_mode;
10214 tree base = TREE_OPERAND (exp, 0);
10215 gimple *def_stmt;
10216 enum insn_code icode;
10217 unsigned align;
10218 /* Handle expansion of non-aliased memory with non-BLKmode. That
10219 might end up in a register. */
10220 if (mem_ref_refers_to_non_mem_p (exp))
10221 {
10222 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10223 base = TREE_OPERAND (base, 0);
10224 poly_uint64 type_size;
10225 if (known_eq (offset, 0)
10226 && !reverse
10227 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10228 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10229 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10230 target, tmode, modifier);
10231 if (TYPE_MODE (type) == BLKmode)
10232 {
10233 temp = assign_stack_temp (DECL_MODE (base),
10234 GET_MODE_SIZE (DECL_MODE (base)));
10235 store_expr (base, temp, 0, false, false);
10236 temp = adjust_address (temp, BLKmode, offset);
10237 set_mem_size (temp, int_size_in_bytes (type));
10238 return temp;
10239 }
10240 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10241 bitsize_int (offset * BITS_PER_UNIT));
10242 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10243 return expand_expr (exp, target, tmode, modifier);
10244 }
10245 address_mode = targetm.addr_space.address_mode (as);
10246 base = TREE_OPERAND (exp, 0);
10247 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10248 {
10249 tree mask = gimple_assign_rhs2 (def_stmt);
10250 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10251 gimple_assign_rhs1 (def_stmt), mask);
10252 TREE_OPERAND (exp, 0) = base;
10253 }
10254 align = get_object_alignment (exp);
10255 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10256 op0 = memory_address_addr_space (mode, op0, as);
10257 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10258 {
10259 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10260 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10261 op0 = memory_address_addr_space (mode, op0, as);
10262 }
10263 temp = gen_rtx_MEM (mode, op0);
10264 set_mem_attributes (temp, exp, 0);
10265 set_mem_addr_space (temp, as);
10266 if (TREE_THIS_VOLATILE (exp))
10267 MEM_VOLATILE_P (temp) = 1;
10268 if (modifier != EXPAND_WRITE
10269 && modifier != EXPAND_MEMORY
10270 && !inner_reference_p
10271 && mode != BLKmode
10272 && align < GET_MODE_ALIGNMENT (mode))
10273 {
10274 if ((icode = optab_handler (movmisalign_optab, mode))
10275 != CODE_FOR_nothing)
10276 {
10277 struct expand_operand ops[2];
10278
10279 /* We've already validated the memory, and we're creating a
10280 new pseudo destination. The predicates really can't fail,
10281 nor can the generator. */
10282 create_output_operand (&ops[0], NULL_RTX, mode);
10283 create_fixed_operand (&ops[1], temp);
10284 expand_insn (icode, 2, ops);
10285 temp = ops[0].value;
10286 }
10287 else if (targetm.slow_unaligned_access (mode, align))
10288 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10289 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10290 (modifier == EXPAND_STACK_PARM
10291 ? NULL_RTX : target),
10292 mode, mode, false, alt_rtl);
10293 }
10294 if (reverse
10295 && modifier != EXPAND_MEMORY
10296 && modifier != EXPAND_WRITE)
10297 temp = flip_storage_order (mode, temp);
10298 return temp;
10299 }
10300
10301 case ARRAY_REF:
10302
10303 {
10304 tree array = treeop0;
10305 tree index = treeop1;
10306 tree init;
10307
10308 /* Fold an expression like: "foo"[2].
10309 This is not done in fold so it won't happen inside &.
10310 Don't fold if this is for wide characters since it's too
10311 difficult to do correctly and this is a very rare case. */
10312
10313 if (modifier != EXPAND_CONST_ADDRESS
10314 && modifier != EXPAND_INITIALIZER
10315 && modifier != EXPAND_MEMORY)
10316 {
10317 tree t = fold_read_from_constant_string (exp);
10318
10319 if (t)
10320 return expand_expr (t, target, tmode, modifier);
10321 }
10322
10323 /* If this is a constant index into a constant array,
10324 just get the value from the array. Handle both the cases when
10325 we have an explicit constructor and when our operand is a variable
10326 that was declared const. */
10327
10328 if (modifier != EXPAND_CONST_ADDRESS
10329 && modifier != EXPAND_INITIALIZER
10330 && modifier != EXPAND_MEMORY
10331 && TREE_CODE (array) == CONSTRUCTOR
10332 && ! TREE_SIDE_EFFECTS (array)
10333 && TREE_CODE (index) == INTEGER_CST)
10334 {
10335 unsigned HOST_WIDE_INT ix;
10336 tree field, value;
10337
10338 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10339 field, value)
10340 if (tree_int_cst_equal (field, index))
10341 {
10342 if (!TREE_SIDE_EFFECTS (value))
10343 return expand_expr (fold (value), target, tmode, modifier);
10344 break;
10345 }
10346 }
10347
10348 else if (optimize >= 1
10349 && modifier != EXPAND_CONST_ADDRESS
10350 && modifier != EXPAND_INITIALIZER
10351 && modifier != EXPAND_MEMORY
10352 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10353 && TREE_CODE (index) == INTEGER_CST
10354 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10355 && (init = ctor_for_folding (array)) != error_mark_node)
10356 {
10357 if (init == NULL_TREE)
10358 {
10359 tree value = build_zero_cst (type);
10360 if (TREE_CODE (value) == CONSTRUCTOR)
10361 {
10362 /* If VALUE is a CONSTRUCTOR, this optimization is only
10363 useful if this doesn't store the CONSTRUCTOR into
10364 memory. If it does, it is more efficient to just
10365 load the data from the array directly. */
10366 rtx ret = expand_constructor (value, target,
10367 modifier, true);
10368 if (ret == NULL_RTX)
10369 value = NULL_TREE;
10370 }
10371
10372 if (value)
10373 return expand_expr (value, target, tmode, modifier);
10374 }
10375 else if (TREE_CODE (init) == CONSTRUCTOR)
10376 {
10377 unsigned HOST_WIDE_INT ix;
10378 tree field, value;
10379
10380 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10381 field, value)
10382 if (tree_int_cst_equal (field, index))
10383 {
10384 if (TREE_SIDE_EFFECTS (value))
10385 break;
10386
10387 if (TREE_CODE (value) == CONSTRUCTOR)
10388 {
10389 /* If VALUE is a CONSTRUCTOR, this
10390 optimization is only useful if
10391 this doesn't store the CONSTRUCTOR
10392 into memory. If it does, it is more
10393 efficient to just load the data from
10394 the array directly. */
10395 rtx ret = expand_constructor (value, target,
10396 modifier, true);
10397 if (ret == NULL_RTX)
10398 break;
10399 }
10400
10401 return
10402 expand_expr (fold (value), target, tmode, modifier);
10403 }
10404 }
10405 else if (TREE_CODE (init) == STRING_CST)
10406 {
10407 tree low_bound = array_ref_low_bound (exp);
10408 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10409
10410 /* Optimize the special case of a zero lower bound.
10411
10412 We convert the lower bound to sizetype to avoid problems
10413 with constant folding. E.g. suppose the lower bound is
10414 1 and its mode is QI. Without the conversion
10415 (ARRAY + (INDEX - (unsigned char)1))
10416 becomes
10417 (ARRAY + (-(unsigned char)1) + INDEX)
10418 which becomes
10419 (ARRAY + 255 + INDEX). Oops! */
10420 if (!integer_zerop (low_bound))
10421 index1 = size_diffop_loc (loc, index1,
10422 fold_convert_loc (loc, sizetype,
10423 low_bound));
10424
10425 if (tree_fits_uhwi_p (index1)
10426 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10427 {
10428 tree type = TREE_TYPE (TREE_TYPE (init));
10429 scalar_int_mode mode;
10430
10431 if (is_int_mode (TYPE_MODE (type), &mode)
10432 && GET_MODE_SIZE (mode) == 1)
10433 return gen_int_mode (TREE_STRING_POINTER (init)
10434 [TREE_INT_CST_LOW (index1)],
10435 mode);
10436 }
10437 }
10438 }
10439 }
10440 goto normal_inner_ref;
10441
10442 case COMPONENT_REF:
10443 /* If the operand is a CONSTRUCTOR, we can just extract the
10444 appropriate field if it is present. */
10445 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10446 {
10447 unsigned HOST_WIDE_INT idx;
10448 tree field, value;
10449 scalar_int_mode field_mode;
10450
10451 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10452 idx, field, value)
10453 if (field == treeop1
10454 /* We can normally use the value of the field in the
10455 CONSTRUCTOR. However, if this is a bitfield in
10456 an integral mode that we can fit in a HOST_WIDE_INT,
10457 we must mask only the number of bits in the bitfield,
10458 since this is done implicitly by the constructor. If
10459 the bitfield does not meet either of those conditions,
10460 we can't do this optimization. */
10461 && (! DECL_BIT_FIELD (field)
10462 || (is_int_mode (DECL_MODE (field), &field_mode)
10463 && (GET_MODE_PRECISION (field_mode)
10464 <= HOST_BITS_PER_WIDE_INT))))
10465 {
10466 if (DECL_BIT_FIELD (field)
10467 && modifier == EXPAND_STACK_PARM)
10468 target = 0;
10469 op0 = expand_expr (value, target, tmode, modifier);
10470 if (DECL_BIT_FIELD (field))
10471 {
10472 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10473 scalar_int_mode imode
10474 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10475
10476 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10477 {
10478 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10479 imode);
10480 op0 = expand_and (imode, op0, op1, target);
10481 }
10482 else
10483 {
10484 int count = GET_MODE_PRECISION (imode) - bitsize;
10485
10486 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10487 target, 0);
10488 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10489 target, 0);
10490 }
10491 }
10492
10493 return op0;
10494 }
10495 }
10496 goto normal_inner_ref;
10497
10498 case BIT_FIELD_REF:
10499 case ARRAY_RANGE_REF:
10500 normal_inner_ref:
10501 {
10502 machine_mode mode1, mode2;
10503 poly_int64 bitsize, bitpos, bytepos;
10504 tree offset;
10505 int reversep, volatilep = 0, must_force_mem;
10506 tree tem
10507 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10508 &unsignedp, &reversep, &volatilep);
10509 rtx orig_op0, memloc;
10510 bool clear_mem_expr = false;
10511
10512 /* If we got back the original object, something is wrong. Perhaps
10513 we are evaluating an expression too early. In any event, don't
10514 infinitely recurse. */
10515 gcc_assert (tem != exp);
10516
10517 /* If TEM's type is a union of variable size, pass TARGET to the inner
10518 computation, since it will need a temporary and TARGET is known
10519 to have to do. This occurs in unchecked conversion in Ada. */
10520 orig_op0 = op0
10521 = expand_expr_real (tem,
10522 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10523 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10524 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10525 != INTEGER_CST)
10526 && modifier != EXPAND_STACK_PARM
10527 ? target : NULL_RTX),
10528 VOIDmode,
10529 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10530 NULL, true);
10531
10532 /* If the field has a mode, we want to access it in the
10533 field's mode, not the computed mode.
10534 If a MEM has VOIDmode (external with incomplete type),
10535 use BLKmode for it instead. */
10536 if (MEM_P (op0))
10537 {
10538 if (mode1 != VOIDmode)
10539 op0 = adjust_address (op0, mode1, 0);
10540 else if (GET_MODE (op0) == VOIDmode)
10541 op0 = adjust_address (op0, BLKmode, 0);
10542 }
10543
10544 mode2
10545 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10546
10547 /* Make sure bitpos is not negative, it can wreak havoc later. */
10548 if (maybe_lt (bitpos, 0))
10549 {
10550 gcc_checking_assert (offset == NULL_TREE);
10551 offset = size_int (bits_to_bytes_round_down (bitpos));
10552 bitpos = num_trailing_bits (bitpos);
10553 }
10554
10555 /* If we have either an offset, a BLKmode result, or a reference
10556 outside the underlying object, we must force it to memory.
10557 Such a case can occur in Ada if we have unchecked conversion
10558 of an expression from a scalar type to an aggregate type or
10559 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10560 passed a partially uninitialized object or a view-conversion
10561 to a larger size. */
10562 must_force_mem = (offset
10563 || mode1 == BLKmode
10564 || (mode == BLKmode
10565 && !int_mode_for_size (bitsize, 1).exists ())
10566 || maybe_gt (bitpos + bitsize,
10567 GET_MODE_BITSIZE (mode2)));
10568
10569 /* Handle CONCAT first. */
10570 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10571 {
10572 if (known_eq (bitpos, 0)
10573 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10574 && COMPLEX_MODE_P (mode1)
10575 && COMPLEX_MODE_P (GET_MODE (op0))
10576 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10577 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10578 {
10579 if (reversep)
10580 op0 = flip_storage_order (GET_MODE (op0), op0);
10581 if (mode1 != GET_MODE (op0))
10582 {
10583 rtx parts[2];
10584 for (int i = 0; i < 2; i++)
10585 {
10586 rtx op = read_complex_part (op0, i != 0);
10587 if (GET_CODE (op) == SUBREG)
10588 op = force_reg (GET_MODE (op), op);
10589 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10590 op);
10591 if (temp)
10592 op = temp;
10593 else
10594 {
10595 if (!REG_P (op) && !MEM_P (op))
10596 op = force_reg (GET_MODE (op), op);
10597 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10598 }
10599 parts[i] = op;
10600 }
10601 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10602 }
10603 return op0;
10604 }
10605 if (known_eq (bitpos, 0)
10606 && known_eq (bitsize,
10607 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10608 && maybe_ne (bitsize, 0))
10609 {
10610 op0 = XEXP (op0, 0);
10611 mode2 = GET_MODE (op0);
10612 }
10613 else if (known_eq (bitpos,
10614 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10615 && known_eq (bitsize,
10616 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10617 && maybe_ne (bitpos, 0)
10618 && maybe_ne (bitsize, 0))
10619 {
10620 op0 = XEXP (op0, 1);
10621 bitpos = 0;
10622 mode2 = GET_MODE (op0);
10623 }
10624 else
10625 /* Otherwise force into memory. */
10626 must_force_mem = 1;
10627 }
10628
10629 /* If this is a constant, put it in a register if it is a legitimate
10630 constant and we don't need a memory reference. */
10631 if (CONSTANT_P (op0)
10632 && mode2 != BLKmode
10633 && targetm.legitimate_constant_p (mode2, op0)
10634 && !must_force_mem)
10635 op0 = force_reg (mode2, op0);
10636
10637 /* Otherwise, if this is a constant, try to force it to the constant
10638 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10639 is a legitimate constant. */
10640 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10641 op0 = validize_mem (memloc);
10642
10643 /* Otherwise, if this is a constant or the object is not in memory
10644 and need be, put it there. */
10645 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10646 {
10647 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10648 emit_move_insn (memloc, op0);
10649 op0 = memloc;
10650 clear_mem_expr = true;
10651 }
10652
10653 if (offset)
10654 {
10655 machine_mode address_mode;
10656 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10657 EXPAND_SUM);
10658
10659 gcc_assert (MEM_P (op0));
10660
10661 address_mode = get_address_mode (op0);
10662 if (GET_MODE (offset_rtx) != address_mode)
10663 {
10664 /* We cannot be sure that the RTL in offset_rtx is valid outside
10665 of a memory address context, so force it into a register
10666 before attempting to convert it to the desired mode. */
10667 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10668 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10669 }
10670
10671 /* See the comment in expand_assignment for the rationale. */
10672 if (mode1 != VOIDmode
10673 && maybe_ne (bitpos, 0)
10674 && maybe_gt (bitsize, 0)
10675 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10676 && multiple_p (bitpos, bitsize)
10677 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10678 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10679 {
10680 op0 = adjust_address (op0, mode1, bytepos);
10681 bitpos = 0;
10682 }
10683
10684 op0 = offset_address (op0, offset_rtx,
10685 highest_pow2_factor (offset));
10686 }
10687
10688 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10689 record its alignment as BIGGEST_ALIGNMENT. */
10690 if (MEM_P (op0)
10691 && known_eq (bitpos, 0)
10692 && offset != 0
10693 && is_aligning_offset (offset, tem))
10694 set_mem_align (op0, BIGGEST_ALIGNMENT);
10695
10696 /* Don't forget about volatility even if this is a bitfield. */
10697 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10698 {
10699 if (op0 == orig_op0)
10700 op0 = copy_rtx (op0);
10701
10702 MEM_VOLATILE_P (op0) = 1;
10703 }
10704
10705 /* In cases where an aligned union has an unaligned object
10706 as a field, we might be extracting a BLKmode value from
10707 an integer-mode (e.g., SImode) object. Handle this case
10708 by doing the extract into an object as wide as the field
10709 (which we know to be the width of a basic mode), then
10710 storing into memory, and changing the mode to BLKmode. */
10711 if (mode1 == VOIDmode
10712 || REG_P (op0) || GET_CODE (op0) == SUBREG
10713 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10714 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10715 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10716 && modifier != EXPAND_CONST_ADDRESS
10717 && modifier != EXPAND_INITIALIZER
10718 && modifier != EXPAND_MEMORY)
10719 /* If the bitfield is volatile and the bitsize
10720 is narrower than the access size of the bitfield,
10721 we need to extract bitfields from the access. */
10722 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10723 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10724 && mode1 != BLKmode
10725 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
10726 /* If the field isn't aligned enough to fetch as a memref,
10727 fetch it as a bit field. */
10728 || (mode1 != BLKmode
10729 && (((MEM_P (op0)
10730 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10731 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
10732 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10733 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
10734 && modifier != EXPAND_MEMORY
10735 && ((modifier == EXPAND_CONST_ADDRESS
10736 || modifier == EXPAND_INITIALIZER)
10737 ? STRICT_ALIGNMENT
10738 : targetm.slow_unaligned_access (mode1,
10739 MEM_ALIGN (op0))))
10740 || !multiple_p (bitpos, BITS_PER_UNIT)))
10741 /* If the type and the field are a constant size and the
10742 size of the type isn't the same size as the bitfield,
10743 we must use bitfield operations. */
10744 || (known_size_p (bitsize)
10745 && TYPE_SIZE (TREE_TYPE (exp))
10746 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
10747 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
10748 bitsize)))
10749 {
10750 machine_mode ext_mode = mode;
10751
10752 if (ext_mode == BLKmode
10753 && ! (target != 0 && MEM_P (op0)
10754 && MEM_P (target)
10755 && multiple_p (bitpos, BITS_PER_UNIT)))
10756 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10757
10758 if (ext_mode == BLKmode)
10759 {
10760 if (target == 0)
10761 target = assign_temp (type, 1, 1);
10762
10763 /* ??? Unlike the similar test a few lines below, this one is
10764 very likely obsolete. */
10765 if (known_eq (bitsize, 0))
10766 return target;
10767
10768 /* In this case, BITPOS must start at a byte boundary and
10769 TARGET, if specified, must be a MEM. */
10770 gcc_assert (MEM_P (op0)
10771 && (!target || MEM_P (target)));
10772
10773 bytepos = exact_div (bitpos, BITS_PER_UNIT);
10774 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
10775 emit_block_move (target,
10776 adjust_address (op0, VOIDmode, bytepos),
10777 gen_int_mode (bytesize, Pmode),
10778 (modifier == EXPAND_STACK_PARM
10779 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10780
10781 return target;
10782 }
10783
10784 /* If we have nothing to extract, the result will be 0 for targets
10785 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10786 return 0 for the sake of consistency, as reading a zero-sized
10787 bitfield is valid in Ada and the value is fully specified. */
10788 if (known_eq (bitsize, 0))
10789 return const0_rtx;
10790
10791 op0 = validize_mem (op0);
10792
10793 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10794 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10795
10796 /* If the result has a record type and the extraction is done in
10797 an integral mode, then the field may be not aligned on a byte
10798 boundary; in this case, if it has reverse storage order, it
10799 needs to be extracted as a scalar field with reverse storage
10800 order and put back into memory order afterwards. */
10801 if (TREE_CODE (type) == RECORD_TYPE
10802 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10803 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10804
10805 gcc_checking_assert (known_ge (bitpos, 0));
10806 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10807 (modifier == EXPAND_STACK_PARM
10808 ? NULL_RTX : target),
10809 ext_mode, ext_mode, reversep, alt_rtl);
10810
10811 /* If the result has a record type and the mode of OP0 is an
10812 integral mode then, if BITSIZE is narrower than this mode
10813 and this is for big-endian data, we must put the field
10814 into the high-order bits. And we must also put it back
10815 into memory order if it has been previously reversed. */
10816 scalar_int_mode op0_mode;
10817 if (TREE_CODE (type) == RECORD_TYPE
10818 && is_int_mode (GET_MODE (op0), &op0_mode))
10819 {
10820 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10821
10822 gcc_checking_assert (known_le (bitsize, size));
10823 if (maybe_lt (bitsize, size)
10824 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10825 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10826 size - bitsize, op0, 1);
10827
10828 if (reversep)
10829 op0 = flip_storage_order (op0_mode, op0);
10830 }
10831
10832 /* If the result type is BLKmode, store the data into a temporary
10833 of the appropriate type, but with the mode corresponding to the
10834 mode for the data we have (op0's mode). */
10835 if (mode == BLKmode)
10836 {
10837 rtx new_rtx
10838 = assign_stack_temp_for_type (ext_mode,
10839 GET_MODE_BITSIZE (ext_mode),
10840 type);
10841 emit_move_insn (new_rtx, op0);
10842 op0 = copy_rtx (new_rtx);
10843 PUT_MODE (op0, BLKmode);
10844 }
10845
10846 return op0;
10847 }
10848
10849 /* If the result is BLKmode, use that to access the object
10850 now as well. */
10851 if (mode == BLKmode)
10852 mode1 = BLKmode;
10853
10854 /* Get a reference to just this component. */
10855 bytepos = bits_to_bytes_round_down (bitpos);
10856 if (modifier == EXPAND_CONST_ADDRESS
10857 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10858 op0 = adjust_address_nv (op0, mode1, bytepos);
10859 else
10860 op0 = adjust_address (op0, mode1, bytepos);
10861
10862 if (op0 == orig_op0)
10863 op0 = copy_rtx (op0);
10864
10865 /* Don't set memory attributes if the base expression is
10866 SSA_NAME that got expanded as a MEM. In that case, we should
10867 just honor its original memory attributes. */
10868 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10869 set_mem_attributes (op0, exp, 0);
10870
10871 if (REG_P (XEXP (op0, 0)))
10872 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10873
10874 /* If op0 is a temporary because the original expressions was forced
10875 to memory, clear MEM_EXPR so that the original expression cannot
10876 be marked as addressable through MEM_EXPR of the temporary. */
10877 if (clear_mem_expr)
10878 set_mem_expr (op0, NULL_TREE);
10879
10880 MEM_VOLATILE_P (op0) |= volatilep;
10881
10882 if (reversep
10883 && modifier != EXPAND_MEMORY
10884 && modifier != EXPAND_WRITE)
10885 op0 = flip_storage_order (mode1, op0);
10886
10887 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10888 || modifier == EXPAND_CONST_ADDRESS
10889 || modifier == EXPAND_INITIALIZER)
10890 return op0;
10891
10892 if (target == 0)
10893 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10894
10895 convert_move (target, op0, unsignedp);
10896 return target;
10897 }
10898
10899 case OBJ_TYPE_REF:
10900 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10901
10902 case CALL_EXPR:
10903 /* All valid uses of __builtin_va_arg_pack () are removed during
10904 inlining. */
10905 if (CALL_EXPR_VA_ARG_PACK (exp))
10906 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10907 {
10908 tree fndecl = get_callee_fndecl (exp), attr;
10909
10910 if (fndecl
10911 /* Don't diagnose the error attribute in thunks, those are
10912 artificially created. */
10913 && !CALL_FROM_THUNK_P (exp)
10914 && (attr = lookup_attribute ("error",
10915 DECL_ATTRIBUTES (fndecl))) != NULL)
10916 {
10917 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
10918 error ("%Kcall to %qs declared with attribute error: %s", exp,
10919 identifier_to_locale (ident),
10920 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10921 }
10922 if (fndecl
10923 /* Don't diagnose the warning attribute in thunks, those are
10924 artificially created. */
10925 && !CALL_FROM_THUNK_P (exp)
10926 && (attr = lookup_attribute ("warning",
10927 DECL_ATTRIBUTES (fndecl))) != NULL)
10928 {
10929 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
10930 warning_at (tree_nonartificial_location (exp),
10931 OPT_Wattribute_warning,
10932 "%Kcall to %qs declared with attribute warning: %s",
10933 exp, identifier_to_locale (ident),
10934 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10935 }
10936
10937 /* Check for a built-in function. */
10938 if (fndecl && fndecl_built_in_p (fndecl))
10939 {
10940 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10941 return expand_builtin (exp, target, subtarget, tmode, ignore);
10942 }
10943 }
10944 return expand_call (exp, target, ignore);
10945
10946 case VIEW_CONVERT_EXPR:
10947 op0 = NULL_RTX;
10948
10949 /* If we are converting to BLKmode, try to avoid an intermediate
10950 temporary by fetching an inner memory reference. */
10951 if (mode == BLKmode
10952 && poly_int_tree_p (TYPE_SIZE (type))
10953 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10954 && handled_component_p (treeop0))
10955 {
10956 machine_mode mode1;
10957 poly_int64 bitsize, bitpos, bytepos;
10958 tree offset;
10959 int unsignedp, reversep, volatilep = 0;
10960 tree tem
10961 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10962 &unsignedp, &reversep, &volatilep);
10963 rtx orig_op0;
10964
10965 /* ??? We should work harder and deal with non-zero offsets. */
10966 if (!offset
10967 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10968 && !reversep
10969 && known_size_p (bitsize)
10970 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
10971 {
10972 /* See the normal_inner_ref case for the rationale. */
10973 orig_op0
10974 = expand_expr_real (tem,
10975 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10976 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10977 != INTEGER_CST)
10978 && modifier != EXPAND_STACK_PARM
10979 ? target : NULL_RTX),
10980 VOIDmode,
10981 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10982 NULL, true);
10983
10984 if (MEM_P (orig_op0))
10985 {
10986 op0 = orig_op0;
10987
10988 /* Get a reference to just this component. */
10989 if (modifier == EXPAND_CONST_ADDRESS
10990 || modifier == EXPAND_SUM
10991 || modifier == EXPAND_INITIALIZER)
10992 op0 = adjust_address_nv (op0, mode, bytepos);
10993 else
10994 op0 = adjust_address (op0, mode, bytepos);
10995
10996 if (op0 == orig_op0)
10997 op0 = copy_rtx (op0);
10998
10999 set_mem_attributes (op0, treeop0, 0);
11000 if (REG_P (XEXP (op0, 0)))
11001 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11002
11003 MEM_VOLATILE_P (op0) |= volatilep;
11004 }
11005 }
11006 }
11007
11008 if (!op0)
11009 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11010 NULL, inner_reference_p);
11011
11012 /* If the input and output modes are both the same, we are done. */
11013 if (mode == GET_MODE (op0))
11014 ;
11015 /* If neither mode is BLKmode, and both modes are the same size
11016 then we can use gen_lowpart. */
11017 else if (mode != BLKmode
11018 && GET_MODE (op0) != BLKmode
11019 && known_eq (GET_MODE_PRECISION (mode),
11020 GET_MODE_PRECISION (GET_MODE (op0)))
11021 && !COMPLEX_MODE_P (GET_MODE (op0)))
11022 {
11023 if (GET_CODE (op0) == SUBREG)
11024 op0 = force_reg (GET_MODE (op0), op0);
11025 temp = gen_lowpart_common (mode, op0);
11026 if (temp)
11027 op0 = temp;
11028 else
11029 {
11030 if (!REG_P (op0) && !MEM_P (op0))
11031 op0 = force_reg (GET_MODE (op0), op0);
11032 op0 = gen_lowpart (mode, op0);
11033 }
11034 }
11035 /* If both types are integral, convert from one mode to the other. */
11036 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11037 op0 = convert_modes (mode, GET_MODE (op0), op0,
11038 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11039 /* If the output type is a bit-field type, do an extraction. */
11040 else if (reduce_bit_field)
11041 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11042 TYPE_UNSIGNED (type), NULL_RTX,
11043 mode, mode, false, NULL);
11044 /* As a last resort, spill op0 to memory, and reload it in a
11045 different mode. */
11046 else if (!MEM_P (op0))
11047 {
11048 /* If the operand is not a MEM, force it into memory. Since we
11049 are going to be changing the mode of the MEM, don't call
11050 force_const_mem for constants because we don't allow pool
11051 constants to change mode. */
11052 tree inner_type = TREE_TYPE (treeop0);
11053
11054 gcc_assert (!TREE_ADDRESSABLE (exp));
11055
11056 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11057 target
11058 = assign_stack_temp_for_type
11059 (TYPE_MODE (inner_type),
11060 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11061
11062 emit_move_insn (target, op0);
11063 op0 = target;
11064 }
11065
11066 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11067 output type is such that the operand is known to be aligned, indicate
11068 that it is. Otherwise, we need only be concerned about alignment for
11069 non-BLKmode results. */
11070 if (MEM_P (op0))
11071 {
11072 enum insn_code icode;
11073
11074 if (modifier != EXPAND_WRITE
11075 && modifier != EXPAND_MEMORY
11076 && !inner_reference_p
11077 && mode != BLKmode
11078 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11079 {
11080 /* If the target does have special handling for unaligned
11081 loads of mode then use them. */
11082 if ((icode = optab_handler (movmisalign_optab, mode))
11083 != CODE_FOR_nothing)
11084 {
11085 rtx reg;
11086
11087 op0 = adjust_address (op0, mode, 0);
11088 /* We've already validated the memory, and we're creating a
11089 new pseudo destination. The predicates really can't
11090 fail. */
11091 reg = gen_reg_rtx (mode);
11092
11093 /* Nor can the insn generator. */
11094 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11095 emit_insn (insn);
11096 return reg;
11097 }
11098 else if (STRICT_ALIGNMENT)
11099 {
11100 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11101 poly_uint64 temp_size = mode_size;
11102 if (GET_MODE (op0) != BLKmode)
11103 temp_size = upper_bound (temp_size,
11104 GET_MODE_SIZE (GET_MODE (op0)));
11105 rtx new_rtx
11106 = assign_stack_temp_for_type (mode, temp_size, type);
11107 rtx new_with_op0_mode
11108 = adjust_address (new_rtx, GET_MODE (op0), 0);
11109
11110 gcc_assert (!TREE_ADDRESSABLE (exp));
11111
11112 if (GET_MODE (op0) == BLKmode)
11113 {
11114 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11115 emit_block_move (new_with_op0_mode, op0, size_rtx,
11116 (modifier == EXPAND_STACK_PARM
11117 ? BLOCK_OP_CALL_PARM
11118 : BLOCK_OP_NORMAL));
11119 }
11120 else
11121 emit_move_insn (new_with_op0_mode, op0);
11122
11123 op0 = new_rtx;
11124 }
11125 }
11126
11127 op0 = adjust_address (op0, mode, 0);
11128 }
11129
11130 return op0;
11131
11132 case MODIFY_EXPR:
11133 {
11134 tree lhs = treeop0;
11135 tree rhs = treeop1;
11136 gcc_assert (ignore);
11137
11138 /* Check for |= or &= of a bitfield of size one into another bitfield
11139 of size 1. In this case, (unless we need the result of the
11140 assignment) we can do this more efficiently with a
11141 test followed by an assignment, if necessary.
11142
11143 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11144 things change so we do, this code should be enhanced to
11145 support it. */
11146 if (TREE_CODE (lhs) == COMPONENT_REF
11147 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11148 || TREE_CODE (rhs) == BIT_AND_EXPR)
11149 && TREE_OPERAND (rhs, 0) == lhs
11150 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11151 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11152 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11153 {
11154 rtx_code_label *label = gen_label_rtx ();
11155 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11156 profile_probability prob = profile_probability::uninitialized ();
11157 if (value)
11158 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11159 else
11160 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11161 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11162 false);
11163 do_pending_stack_adjust ();
11164 emit_label (label);
11165 return const0_rtx;
11166 }
11167
11168 expand_assignment (lhs, rhs, false);
11169 return const0_rtx;
11170 }
11171
11172 case ADDR_EXPR:
11173 return expand_expr_addr_expr (exp, target, tmode, modifier);
11174
11175 case REALPART_EXPR:
11176 op0 = expand_normal (treeop0);
11177 return read_complex_part (op0, false);
11178
11179 case IMAGPART_EXPR:
11180 op0 = expand_normal (treeop0);
11181 return read_complex_part (op0, true);
11182
11183 case RETURN_EXPR:
11184 case LABEL_EXPR:
11185 case GOTO_EXPR:
11186 case SWITCH_EXPR:
11187 case ASM_EXPR:
11188 /* Expanded in cfgexpand.c. */
11189 gcc_unreachable ();
11190
11191 case TRY_CATCH_EXPR:
11192 case CATCH_EXPR:
11193 case EH_FILTER_EXPR:
11194 case TRY_FINALLY_EXPR:
11195 /* Lowered by tree-eh.c. */
11196 gcc_unreachable ();
11197
11198 case WITH_CLEANUP_EXPR:
11199 case CLEANUP_POINT_EXPR:
11200 case TARGET_EXPR:
11201 case CASE_LABEL_EXPR:
11202 case VA_ARG_EXPR:
11203 case BIND_EXPR:
11204 case INIT_EXPR:
11205 case CONJ_EXPR:
11206 case COMPOUND_EXPR:
11207 case PREINCREMENT_EXPR:
11208 case PREDECREMENT_EXPR:
11209 case POSTINCREMENT_EXPR:
11210 case POSTDECREMENT_EXPR:
11211 case LOOP_EXPR:
11212 case EXIT_EXPR:
11213 case COMPOUND_LITERAL_EXPR:
11214 /* Lowered by gimplify.c. */
11215 gcc_unreachable ();
11216
11217 case FDESC_EXPR:
11218 /* Function descriptors are not valid except for as
11219 initialization constants, and should not be expanded. */
11220 gcc_unreachable ();
11221
11222 case WITH_SIZE_EXPR:
11223 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11224 have pulled out the size to use in whatever context it needed. */
11225 return expand_expr_real (treeop0, original_target, tmode,
11226 modifier, alt_rtl, inner_reference_p);
11227
11228 default:
11229 return expand_expr_real_2 (&ops, target, tmode, modifier);
11230 }
11231 }
11232 \f
11233 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11234 signedness of TYPE), possibly returning the result in TARGET.
11235 TYPE is known to be a partial integer type. */
11236 static rtx
11237 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11238 {
11239 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11240 if (target && GET_MODE (target) != GET_MODE (exp))
11241 target = 0;
11242 /* For constant values, reduce using build_int_cst_type. */
11243 poly_int64 const_exp;
11244 if (poly_int_rtx_p (exp, &const_exp))
11245 {
11246 tree t = build_int_cst_type (type, const_exp);
11247 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11248 }
11249 else if (TYPE_UNSIGNED (type))
11250 {
11251 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11252 rtx mask = immed_wide_int_const
11253 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11254 return expand_and (mode, exp, mask, target);
11255 }
11256 else
11257 {
11258 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11259 int count = GET_MODE_PRECISION (mode) - prec;
11260 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11261 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11262 }
11263 }
11264 \f
11265 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11266 when applied to the address of EXP produces an address known to be
11267 aligned more than BIGGEST_ALIGNMENT. */
11268
11269 static int
11270 is_aligning_offset (const_tree offset, const_tree exp)
11271 {
11272 /* Strip off any conversions. */
11273 while (CONVERT_EXPR_P (offset))
11274 offset = TREE_OPERAND (offset, 0);
11275
11276 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11277 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11278 if (TREE_CODE (offset) != BIT_AND_EXPR
11279 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11280 || compare_tree_int (TREE_OPERAND (offset, 1),
11281 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11282 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11283 return 0;
11284
11285 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11286 It must be NEGATE_EXPR. Then strip any more conversions. */
11287 offset = TREE_OPERAND (offset, 0);
11288 while (CONVERT_EXPR_P (offset))
11289 offset = TREE_OPERAND (offset, 0);
11290
11291 if (TREE_CODE (offset) != NEGATE_EXPR)
11292 return 0;
11293
11294 offset = TREE_OPERAND (offset, 0);
11295 while (CONVERT_EXPR_P (offset))
11296 offset = TREE_OPERAND (offset, 0);
11297
11298 /* This must now be the address of EXP. */
11299 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11300 }
11301 \f
11302 /* Return the tree node if an ARG corresponds to a string constant or zero
11303 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11304 non-constant) offset in bytes within the string that ARG is accessing.
11305 If MEM_SIZE is non-zero the storage size of the memory is returned.
11306 If DECL is non-zero the constant declaration is returned if available. */
11307
11308 tree
11309 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11310 {
11311 tree array;
11312 STRIP_NOPS (arg);
11313
11314 /* Non-constant index into the character array in an ARRAY_REF
11315 expression or null. */
11316 tree varidx = NULL_TREE;
11317
11318 poly_int64 base_off = 0;
11319
11320 if (TREE_CODE (arg) == ADDR_EXPR)
11321 {
11322 arg = TREE_OPERAND (arg, 0);
11323 tree ref = arg;
11324 if (TREE_CODE (arg) == ARRAY_REF)
11325 {
11326 tree idx = TREE_OPERAND (arg, 1);
11327 if (TREE_CODE (idx) != INTEGER_CST)
11328 {
11329 /* From a pointer (but not array) argument extract the variable
11330 index to prevent get_addr_base_and_unit_offset() from failing
11331 due to it. Use it later to compute the non-constant offset
11332 into the string and return it to the caller. */
11333 varidx = idx;
11334 ref = TREE_OPERAND (arg, 0);
11335
11336 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11337 return NULL_TREE;
11338
11339 if (!integer_zerop (array_ref_low_bound (arg)))
11340 return NULL_TREE;
11341
11342 if (!integer_onep (array_ref_element_size (arg)))
11343 return NULL_TREE;
11344 }
11345 }
11346 array = get_addr_base_and_unit_offset (ref, &base_off);
11347 if (!array
11348 || (TREE_CODE (array) != VAR_DECL
11349 && TREE_CODE (array) != CONST_DECL
11350 && TREE_CODE (array) != STRING_CST))
11351 return NULL_TREE;
11352 }
11353 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11354 {
11355 tree arg0 = TREE_OPERAND (arg, 0);
11356 tree arg1 = TREE_OPERAND (arg, 1);
11357
11358 tree offset;
11359 tree str = string_constant (arg0, &offset, mem_size, decl);
11360 if (!str)
11361 {
11362 str = string_constant (arg1, &offset, mem_size, decl);
11363 arg1 = arg0;
11364 }
11365
11366 if (str)
11367 {
11368 /* Avoid pointers to arrays (see bug 86622). */
11369 if (POINTER_TYPE_P (TREE_TYPE (arg))
11370 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11371 && !(decl && !*decl)
11372 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11373 && mem_size && tree_fits_uhwi_p (*mem_size)
11374 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11375 return NULL_TREE;
11376
11377 tree type = TREE_TYPE (offset);
11378 arg1 = fold_convert (type, arg1);
11379 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11380 return str;
11381 }
11382 return NULL_TREE;
11383 }
11384 else if (TREE_CODE (arg) == SSA_NAME)
11385 {
11386 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11387 if (!is_gimple_assign (stmt))
11388 return NULL_TREE;
11389
11390 tree rhs1 = gimple_assign_rhs1 (stmt);
11391 tree_code code = gimple_assign_rhs_code (stmt);
11392 if (code == ADDR_EXPR)
11393 return string_constant (rhs1, ptr_offset, mem_size, decl);
11394 else if (code != POINTER_PLUS_EXPR)
11395 return NULL_TREE;
11396
11397 tree offset;
11398 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11399 {
11400 /* Avoid pointers to arrays (see bug 86622). */
11401 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11402 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11403 && !(decl && !*decl)
11404 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11405 && mem_size && tree_fits_uhwi_p (*mem_size)
11406 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11407 return NULL_TREE;
11408
11409 tree rhs2 = gimple_assign_rhs2 (stmt);
11410 tree type = TREE_TYPE (offset);
11411 rhs2 = fold_convert (type, rhs2);
11412 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11413 return str;
11414 }
11415 return NULL_TREE;
11416 }
11417 else if (DECL_P (arg))
11418 array = arg;
11419 else
11420 return NULL_TREE;
11421
11422 tree offset = wide_int_to_tree (sizetype, base_off);
11423 if (varidx)
11424 {
11425 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11426 return NULL_TREE;
11427
11428 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11429 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11430 if (TREE_CODE (chartype) != INTEGER_TYPE)
11431 return NULL;
11432
11433 offset = fold_convert (sizetype, varidx);
11434 }
11435
11436 if (TREE_CODE (array) == STRING_CST)
11437 {
11438 *ptr_offset = fold_convert (sizetype, offset);
11439 if (mem_size)
11440 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11441 if (decl)
11442 *decl = NULL_TREE;
11443 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11444 >= TREE_STRING_LENGTH (array));
11445 return array;
11446 }
11447
11448 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11449 return NULL_TREE;
11450
11451 tree init = ctor_for_folding (array);
11452
11453 /* Handle variables initialized with string literals. */
11454 if (!init || init == error_mark_node)
11455 return NULL_TREE;
11456 if (TREE_CODE (init) == CONSTRUCTOR)
11457 {
11458 /* Convert the 64-bit constant offset to a wider type to avoid
11459 overflow. */
11460 offset_int wioff;
11461 if (!base_off.is_constant (&wioff))
11462 return NULL_TREE;
11463
11464 wioff *= BITS_PER_UNIT;
11465 if (!wi::fits_uhwi_p (wioff))
11466 return NULL_TREE;
11467
11468 base_off = wioff.to_uhwi ();
11469 unsigned HOST_WIDE_INT fieldoff = 0;
11470 init = fold_ctor_reference (NULL_TREE, init, base_off, 0, array,
11471 &fieldoff);
11472 HOST_WIDE_INT cstoff;
11473 if (!base_off.is_constant (&cstoff))
11474 return NULL_TREE;
11475
11476 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11477 tree off = build_int_cst (sizetype, cstoff);
11478 if (varidx)
11479 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11480 else
11481 offset = off;
11482 }
11483
11484 if (!init)
11485 return NULL_TREE;
11486
11487 *ptr_offset = offset;
11488
11489 tree eltype = TREE_TYPE (init);
11490 tree initsize = TYPE_SIZE_UNIT (eltype);
11491 if (mem_size)
11492 *mem_size = initsize;
11493
11494 if (decl)
11495 *decl = array;
11496
11497 if (TREE_CODE (init) == INTEGER_CST
11498 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11499 || TYPE_MAIN_VARIANT (eltype) == char_type_node))
11500 {
11501 /* For a reference to (address of) a single constant character,
11502 store the native representation of the character in CHARBUF.
11503 If the reference is to an element of an array or a member
11504 of a struct, only consider narrow characters until ctors
11505 for wide character arrays are transformed to STRING_CSTs
11506 like those for narrow arrays. */
11507 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11508 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11509 if (len > 0)
11510 {
11511 /* Construct a string literal with elements of ELTYPE and
11512 the representation above. Then strip
11513 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11514 init = build_string_literal (len, (char *)charbuf, eltype);
11515 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11516 }
11517 }
11518
11519 if (TREE_CODE (init) != STRING_CST)
11520 return NULL_TREE;
11521
11522 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11523
11524 return init;
11525 }
11526 \f
11527 /* Compute the modular multiplicative inverse of A modulo M
11528 using extended Euclid's algorithm. Assumes A and M are coprime. */
11529 static wide_int
11530 mod_inv (const wide_int &a, const wide_int &b)
11531 {
11532 /* Verify the assumption. */
11533 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11534
11535 unsigned int p = a.get_precision () + 1;
11536 gcc_checking_assert (b.get_precision () + 1 == p);
11537 wide_int c = wide_int::from (a, p, UNSIGNED);
11538 wide_int d = wide_int::from (b, p, UNSIGNED);
11539 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11540 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11541
11542 if (wi::eq_p (b, 1))
11543 return wide_int::from (1, p, UNSIGNED);
11544
11545 while (wi::gt_p (c, 1, UNSIGNED))
11546 {
11547 wide_int t = d;
11548 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11549 c = t;
11550 wide_int s = x0;
11551 x0 = wi::sub (x1, wi::mul (q, x0));
11552 x1 = s;
11553 }
11554 if (wi::lt_p (x1, 0, SIGNED))
11555 x1 += d;
11556 return x1;
11557 }
11558
11559 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11560 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11561 for C2 > 0 to x & C3 == C2
11562 for C2 < 0 to x & C3 == (C2 & C3). */
11563 enum tree_code
11564 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11565 {
11566 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11567 tree treeop0 = gimple_assign_rhs1 (stmt);
11568 tree treeop1 = gimple_assign_rhs2 (stmt);
11569 tree type = TREE_TYPE (*arg0);
11570 scalar_int_mode mode;
11571 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11572 return code;
11573 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11574 || TYPE_PRECISION (type) <= 1
11575 || TYPE_UNSIGNED (type)
11576 /* Signed x % c == 0 should have been optimized into unsigned modulo
11577 earlier. */
11578 || integer_zerop (*arg1)
11579 /* If c is known to be non-negative, modulo will be expanded as unsigned
11580 modulo. */
11581 || get_range_pos_neg (treeop0) == 1)
11582 return code;
11583
11584 /* x % c == d where d < 0 && d <= -c should be always false. */
11585 if (tree_int_cst_sgn (*arg1) == -1
11586 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11587 return code;
11588
11589 int prec = TYPE_PRECISION (type);
11590 wide_int w = wi::to_wide (treeop1) - 1;
11591 w |= wi::shifted_mask (0, prec - 1, true, prec);
11592 tree c3 = wide_int_to_tree (type, w);
11593 tree c4 = *arg1;
11594 if (tree_int_cst_sgn (*arg1) == -1)
11595 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11596
11597 rtx op0 = expand_normal (treeop0);
11598 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11599
11600 bool speed_p = optimize_insn_for_speed_p ();
11601
11602 do_pending_stack_adjust ();
11603
11604 location_t loc = gimple_location (stmt);
11605 struct separate_ops ops;
11606 ops.code = TRUNC_MOD_EXPR;
11607 ops.location = loc;
11608 ops.type = TREE_TYPE (treeop0);
11609 ops.op0 = treeop0;
11610 ops.op1 = treeop1;
11611 ops.op2 = NULL_TREE;
11612 start_sequence ();
11613 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11614 EXPAND_NORMAL);
11615 rtx_insn *moinsns = get_insns ();
11616 end_sequence ();
11617
11618 unsigned mocost = seq_cost (moinsns, speed_p);
11619 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11620 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11621
11622 ops.code = BIT_AND_EXPR;
11623 ops.location = loc;
11624 ops.type = TREE_TYPE (treeop0);
11625 ops.op0 = treeop0;
11626 ops.op1 = c3;
11627 ops.op2 = NULL_TREE;
11628 start_sequence ();
11629 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11630 EXPAND_NORMAL);
11631 rtx_insn *muinsns = get_insns ();
11632 end_sequence ();
11633
11634 unsigned mucost = seq_cost (muinsns, speed_p);
11635 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11636 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11637
11638 if (mocost <= mucost)
11639 {
11640 emit_insn (moinsns);
11641 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11642 return code;
11643 }
11644
11645 emit_insn (muinsns);
11646 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11647 *arg1 = c4;
11648 return code;
11649 }
11650
11651 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11652 If C1 is odd to:
11653 (X - C2) * C3 <= C4 (or >), where
11654 C3 is modular multiplicative inverse of C1 and 1<<prec and
11655 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11656 if C2 > ((1<<prec) - 1) % C1).
11657 If C1 is even, S = ctz (C1) and C2 is 0, use
11658 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11659 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11660
11661 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11662 unsigned):
11663 (X * C3) + C4 <= 2 * C4, where
11664 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11665 C4 is ((1<<(prec - 1) - 1) / C1).
11666 If C1 is even, S = ctz(C1), use
11667 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11668 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11669 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11670
11671 See the Hacker's Delight book, section 10-17. */
11672 enum tree_code
11673 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11674 {
11675 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
11676 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
11677
11678 if (optimize < 2)
11679 return code;
11680
11681 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11682 if (stmt == NULL)
11683 return code;
11684
11685 tree treeop0 = gimple_assign_rhs1 (stmt);
11686 tree treeop1 = gimple_assign_rhs2 (stmt);
11687 if (TREE_CODE (treeop0) != SSA_NAME
11688 || TREE_CODE (treeop1) != INTEGER_CST
11689 /* Don't optimize the undefined behavior case x % 0;
11690 x % 1 should have been optimized into zero, punt if
11691 it makes it here for whatever reason;
11692 x % -c should have been optimized into x % c. */
11693 || compare_tree_int (treeop1, 2) <= 0
11694 /* Likewise x % c == d where d >= c should be always false. */
11695 || tree_int_cst_le (treeop1, *arg1))
11696 return code;
11697
11698 /* Unsigned x % pow2 is handled right already, for signed
11699 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11700 if (integer_pow2p (treeop1))
11701 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
11702
11703 tree type = TREE_TYPE (*arg0);
11704 scalar_int_mode mode;
11705 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11706 return code;
11707 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11708 || TYPE_PRECISION (type) <= 1)
11709 return code;
11710
11711 signop sgn = UNSIGNED;
11712 /* If both operands are known to have the sign bit clear, handle
11713 even the signed modulo case as unsigned. treeop1 is always
11714 positive >= 2, checked above. */
11715 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
11716 sgn = SIGNED;
11717
11718 if (!TYPE_UNSIGNED (type))
11719 {
11720 if (tree_int_cst_sgn (*arg1) == -1)
11721 return code;
11722 type = unsigned_type_for (type);
11723 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
11724 return code;
11725 }
11726
11727 int prec = TYPE_PRECISION (type);
11728 wide_int w = wi::to_wide (treeop1);
11729 int shift = wi::ctz (w);
11730 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11731 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11732 If C1 is odd, we can handle all cases by subtracting
11733 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11734 e.g. by testing for overflow on the subtraction, punt on that for now
11735 though. */
11736 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
11737 {
11738 if (sgn == SIGNED)
11739 return code;
11740 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
11741 if (wi::gtu_p (wi::to_wide (*arg1), x))
11742 return code;
11743 }
11744
11745 imm_use_iterator imm_iter;
11746 use_operand_p use_p;
11747 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
11748 {
11749 gimple *use_stmt = USE_STMT (use_p);
11750 /* Punt if treeop0 is used in the same bb in a division
11751 or another modulo with the same divisor. We should expect
11752 the division and modulo combined together. */
11753 if (use_stmt == stmt
11754 || gimple_bb (use_stmt) != gimple_bb (stmt))
11755 continue;
11756 if (!is_gimple_assign (use_stmt)
11757 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
11758 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
11759 continue;
11760 if (gimple_assign_rhs1 (use_stmt) != treeop0
11761 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
11762 continue;
11763 return code;
11764 }
11765
11766 w = wi::lrshift (w, shift);
11767 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
11768 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
11769 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
11770 tree c3 = wide_int_to_tree (type, m);
11771 tree c5 = NULL_TREE;
11772 wide_int d, e;
11773 if (sgn == UNSIGNED)
11774 {
11775 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
11776 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
11777 otherwise use < or subtract one from C4. E.g. for
11778 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
11779 x % 3U == 1 already needs to be
11780 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
11781 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
11782 d -= 1;
11783 if (shift)
11784 d = wi::lrshift (d, shift);
11785 }
11786 else
11787 {
11788 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
11789 if (!shift)
11790 d = wi::lshift (e, 1);
11791 else
11792 {
11793 e = wi::bit_and (e, wi::mask (shift, true, prec));
11794 d = wi::lrshift (e, shift - 1);
11795 }
11796 c5 = wide_int_to_tree (type, e);
11797 }
11798 tree c4 = wide_int_to_tree (type, d);
11799
11800 rtx op0 = expand_normal (treeop0);
11801 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11802
11803 bool speed_p = optimize_insn_for_speed_p ();
11804
11805 do_pending_stack_adjust ();
11806
11807 location_t loc = gimple_location (stmt);
11808 struct separate_ops ops;
11809 ops.code = TRUNC_MOD_EXPR;
11810 ops.location = loc;
11811 ops.type = TREE_TYPE (treeop0);
11812 ops.op0 = treeop0;
11813 ops.op1 = treeop1;
11814 ops.op2 = NULL_TREE;
11815 start_sequence ();
11816 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11817 EXPAND_NORMAL);
11818 rtx_insn *moinsns = get_insns ();
11819 end_sequence ();
11820
11821 unsigned mocost = seq_cost (moinsns, speed_p);
11822 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11823 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11824
11825 tree t = fold_convert_loc (loc, type, treeop0);
11826 if (!integer_zerop (*arg1))
11827 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
11828 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
11829 if (sgn == SIGNED)
11830 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
11831 if (shift)
11832 {
11833 tree s = build_int_cst (NULL_TREE, shift);
11834 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
11835 }
11836
11837 start_sequence ();
11838 rtx mur = expand_normal (t);
11839 rtx_insn *muinsns = get_insns ();
11840 end_sequence ();
11841
11842 unsigned mucost = seq_cost (muinsns, speed_p);
11843 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
11844 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
11845
11846 if (mocost <= mucost)
11847 {
11848 emit_insn (moinsns);
11849 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11850 return code;
11851 }
11852
11853 emit_insn (muinsns);
11854 *arg0 = make_tree (type, mur);
11855 *arg1 = c4;
11856 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
11857 }
11858 \f
11859 /* Generate code to calculate OPS, and exploded expression
11860 using a store-flag instruction and return an rtx for the result.
11861 OPS reflects a comparison.
11862
11863 If TARGET is nonzero, store the result there if convenient.
11864
11865 Return zero if there is no suitable set-flag instruction
11866 available on this machine.
11867
11868 Once expand_expr has been called on the arguments of the comparison,
11869 we are committed to doing the store flag, since it is not safe to
11870 re-evaluate the expression. We emit the store-flag insn by calling
11871 emit_store_flag, but only expand the arguments if we have a reason
11872 to believe that emit_store_flag will be successful. If we think that
11873 it will, but it isn't, we have to simulate the store-flag with a
11874 set/jump/set sequence. */
11875
11876 static rtx
11877 do_store_flag (sepops ops, rtx target, machine_mode mode)
11878 {
11879 enum rtx_code code;
11880 tree arg0, arg1, type;
11881 machine_mode operand_mode;
11882 int unsignedp;
11883 rtx op0, op1;
11884 rtx subtarget = target;
11885 location_t loc = ops->location;
11886
11887 arg0 = ops->op0;
11888 arg1 = ops->op1;
11889
11890 /* Don't crash if the comparison was erroneous. */
11891 if (arg0 == error_mark_node || arg1 == error_mark_node)
11892 return const0_rtx;
11893
11894 type = TREE_TYPE (arg0);
11895 operand_mode = TYPE_MODE (type);
11896 unsignedp = TYPE_UNSIGNED (type);
11897
11898 /* We won't bother with BLKmode store-flag operations because it would mean
11899 passing a lot of information to emit_store_flag. */
11900 if (operand_mode == BLKmode)
11901 return 0;
11902
11903 /* We won't bother with store-flag operations involving function pointers
11904 when function pointers must be canonicalized before comparisons. */
11905 if (targetm.have_canonicalize_funcptr_for_compare ()
11906 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
11907 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
11908 || (POINTER_TYPE_P (TREE_TYPE (arg1))
11909 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
11910 return 0;
11911
11912 STRIP_NOPS (arg0);
11913 STRIP_NOPS (arg1);
11914
11915 /* For vector typed comparisons emit code to generate the desired
11916 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11917 expander for this. */
11918 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11919 {
11920 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11921 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11922 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11923 return expand_vec_cmp_expr (ops->type, ifexp, target);
11924 else
11925 {
11926 tree if_true = constant_boolean_node (true, ops->type);
11927 tree if_false = constant_boolean_node (false, ops->type);
11928 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11929 if_false, target);
11930 }
11931 }
11932
11933 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
11934 into (x - C2) * C3 < C4. */
11935 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
11936 && TREE_CODE (arg0) == SSA_NAME
11937 && TREE_CODE (arg1) == INTEGER_CST)
11938 {
11939 enum tree_code code = maybe_optimize_mod_cmp (ops->code, &arg0, &arg1);
11940 if (code != ops->code)
11941 {
11942 struct separate_ops nops = *ops;
11943 nops.code = ops->code = code;
11944 nops.op0 = arg0;
11945 nops.op1 = arg1;
11946 nops.type = TREE_TYPE (arg0);
11947 return do_store_flag (&nops, target, mode);
11948 }
11949 }
11950
11951 /* Get the rtx comparison code to use. We know that EXP is a comparison
11952 operation of some type. Some comparisons against 1 and -1 can be
11953 converted to comparisons with zero. Do so here so that the tests
11954 below will be aware that we have a comparison with zero. These
11955 tests will not catch constants in the first operand, but constants
11956 are rarely passed as the first operand. */
11957
11958 switch (ops->code)
11959 {
11960 case EQ_EXPR:
11961 code = EQ;
11962 break;
11963 case NE_EXPR:
11964 code = NE;
11965 break;
11966 case LT_EXPR:
11967 if (integer_onep (arg1))
11968 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11969 else
11970 code = unsignedp ? LTU : LT;
11971 break;
11972 case LE_EXPR:
11973 if (! unsignedp && integer_all_onesp (arg1))
11974 arg1 = integer_zero_node, code = LT;
11975 else
11976 code = unsignedp ? LEU : LE;
11977 break;
11978 case GT_EXPR:
11979 if (! unsignedp && integer_all_onesp (arg1))
11980 arg1 = integer_zero_node, code = GE;
11981 else
11982 code = unsignedp ? GTU : GT;
11983 break;
11984 case GE_EXPR:
11985 if (integer_onep (arg1))
11986 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11987 else
11988 code = unsignedp ? GEU : GE;
11989 break;
11990
11991 case UNORDERED_EXPR:
11992 code = UNORDERED;
11993 break;
11994 case ORDERED_EXPR:
11995 code = ORDERED;
11996 break;
11997 case UNLT_EXPR:
11998 code = UNLT;
11999 break;
12000 case UNLE_EXPR:
12001 code = UNLE;
12002 break;
12003 case UNGT_EXPR:
12004 code = UNGT;
12005 break;
12006 case UNGE_EXPR:
12007 code = UNGE;
12008 break;
12009 case UNEQ_EXPR:
12010 code = UNEQ;
12011 break;
12012 case LTGT_EXPR:
12013 code = LTGT;
12014 break;
12015
12016 default:
12017 gcc_unreachable ();
12018 }
12019
12020 /* Put a constant second. */
12021 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12022 || TREE_CODE (arg0) == FIXED_CST)
12023 {
12024 std::swap (arg0, arg1);
12025 code = swap_condition (code);
12026 }
12027
12028 /* If this is an equality or inequality test of a single bit, we can
12029 do this by shifting the bit being tested to the low-order bit and
12030 masking the result with the constant 1. If the condition was EQ,
12031 we xor it with 1. This does not require an scc insn and is faster
12032 than an scc insn even if we have it.
12033
12034 The code to make this transformation was moved into fold_single_bit_test,
12035 so we just call into the folder and expand its result. */
12036
12037 if ((code == NE || code == EQ)
12038 && integer_zerop (arg1)
12039 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12040 {
12041 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12042 if (srcstmt
12043 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12044 {
12045 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12046 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
12047 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12048 gimple_assign_rhs1 (srcstmt),
12049 gimple_assign_rhs2 (srcstmt));
12050 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12051 if (temp)
12052 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12053 }
12054 }
12055
12056 if (! get_subtarget (target)
12057 || GET_MODE (subtarget) != operand_mode)
12058 subtarget = 0;
12059
12060 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12061
12062 if (target == 0)
12063 target = gen_reg_rtx (mode);
12064
12065 /* Try a cstore if possible. */
12066 return emit_store_flag_force (target, code, op0, op1,
12067 operand_mode, unsignedp,
12068 (TYPE_PRECISION (ops->type) == 1
12069 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12070 }
12071 \f
12072 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12073 0 otherwise (i.e. if there is no casesi instruction).
12074
12075 DEFAULT_PROBABILITY is the probability of jumping to the default
12076 label. */
12077 int
12078 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12079 rtx table_label, rtx default_label, rtx fallback_label,
12080 profile_probability default_probability)
12081 {
12082 struct expand_operand ops[5];
12083 scalar_int_mode index_mode = SImode;
12084 rtx op1, op2, index;
12085
12086 if (! targetm.have_casesi ())
12087 return 0;
12088
12089 /* The index must be some form of integer. Convert it to SImode. */
12090 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12091 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12092 {
12093 rtx rangertx = expand_normal (range);
12094
12095 /* We must handle the endpoints in the original mode. */
12096 index_expr = build2 (MINUS_EXPR, index_type,
12097 index_expr, minval);
12098 minval = integer_zero_node;
12099 index = expand_normal (index_expr);
12100 if (default_label)
12101 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12102 omode, 1, default_label,
12103 default_probability);
12104 /* Now we can safely truncate. */
12105 index = convert_to_mode (index_mode, index, 0);
12106 }
12107 else
12108 {
12109 if (omode != index_mode)
12110 {
12111 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12112 index_expr = fold_convert (index_type, index_expr);
12113 }
12114
12115 index = expand_normal (index_expr);
12116 }
12117
12118 do_pending_stack_adjust ();
12119
12120 op1 = expand_normal (minval);
12121 op2 = expand_normal (range);
12122
12123 create_input_operand (&ops[0], index, index_mode);
12124 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12125 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12126 create_fixed_operand (&ops[3], table_label);
12127 create_fixed_operand (&ops[4], (default_label
12128 ? default_label
12129 : fallback_label));
12130 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12131 return 1;
12132 }
12133
12134 /* Attempt to generate a tablejump instruction; same concept. */
12135 /* Subroutine of the next function.
12136
12137 INDEX is the value being switched on, with the lowest value
12138 in the table already subtracted.
12139 MODE is its expected mode (needed if INDEX is constant).
12140 RANGE is the length of the jump table.
12141 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12142
12143 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12144 index value is out of range.
12145 DEFAULT_PROBABILITY is the probability of jumping to
12146 the default label. */
12147
12148 static void
12149 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12150 rtx default_label, profile_probability default_probability)
12151 {
12152 rtx temp, vector;
12153
12154 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12155 cfun->cfg->max_jumptable_ents = INTVAL (range);
12156
12157 /* Do an unsigned comparison (in the proper mode) between the index
12158 expression and the value which represents the length of the range.
12159 Since we just finished subtracting the lower bound of the range
12160 from the index expression, this comparison allows us to simultaneously
12161 check that the original index expression value is both greater than
12162 or equal to the minimum value of the range and less than or equal to
12163 the maximum value of the range. */
12164
12165 if (default_label)
12166 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12167 default_label, default_probability);
12168
12169 /* If index is in range, it must fit in Pmode.
12170 Convert to Pmode so we can index with it. */
12171 if (mode != Pmode)
12172 {
12173 unsigned int width;
12174
12175 /* We know the value of INDEX is between 0 and RANGE. If we have a
12176 sign-extended subreg, and RANGE does not have the sign bit set, then
12177 we have a value that is valid for both sign and zero extension. In
12178 this case, we get better code if we sign extend. */
12179 if (GET_CODE (index) == SUBREG
12180 && SUBREG_PROMOTED_VAR_P (index)
12181 && SUBREG_PROMOTED_SIGNED_P (index)
12182 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12183 <= HOST_BITS_PER_WIDE_INT)
12184 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12185 index = convert_to_mode (Pmode, index, 0);
12186 else
12187 index = convert_to_mode (Pmode, index, 1);
12188 }
12189
12190 /* Don't let a MEM slip through, because then INDEX that comes
12191 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12192 and break_out_memory_refs will go to work on it and mess it up. */
12193 #ifdef PIC_CASE_VECTOR_ADDRESS
12194 if (flag_pic && !REG_P (index))
12195 index = copy_to_mode_reg (Pmode, index);
12196 #endif
12197
12198 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12199 GET_MODE_SIZE, because this indicates how large insns are. The other
12200 uses should all be Pmode, because they are addresses. This code
12201 could fail if addresses and insns are not the same size. */
12202 index = simplify_gen_binary (MULT, Pmode, index,
12203 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12204 Pmode));
12205 index = simplify_gen_binary (PLUS, Pmode, index,
12206 gen_rtx_LABEL_REF (Pmode, table_label));
12207
12208 #ifdef PIC_CASE_VECTOR_ADDRESS
12209 if (flag_pic)
12210 index = PIC_CASE_VECTOR_ADDRESS (index);
12211 else
12212 #endif
12213 index = memory_address (CASE_VECTOR_MODE, index);
12214 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12215 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12216 convert_move (temp, vector, 0);
12217
12218 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12219
12220 /* If we are generating PIC code or if the table is PC-relative, the
12221 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12222 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12223 emit_barrier ();
12224 }
12225
12226 int
12227 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12228 rtx table_label, rtx default_label,
12229 profile_probability default_probability)
12230 {
12231 rtx index;
12232
12233 if (! targetm.have_tablejump ())
12234 return 0;
12235
12236 index_expr = fold_build2 (MINUS_EXPR, index_type,
12237 fold_convert (index_type, index_expr),
12238 fold_convert (index_type, minval));
12239 index = expand_normal (index_expr);
12240 do_pending_stack_adjust ();
12241
12242 do_tablejump (index, TYPE_MODE (index_type),
12243 convert_modes (TYPE_MODE (index_type),
12244 TYPE_MODE (TREE_TYPE (range)),
12245 expand_normal (range),
12246 TYPE_UNSIGNED (TREE_TYPE (range))),
12247 table_label, default_label, default_probability);
12248 return 1;
12249 }
12250
12251 /* Return a CONST_VECTOR rtx representing vector mask for
12252 a VECTOR_CST of booleans. */
12253 static rtx
12254 const_vector_mask_from_tree (tree exp)
12255 {
12256 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12257 machine_mode inner = GET_MODE_INNER (mode);
12258
12259 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12260 VECTOR_CST_NELTS_PER_PATTERN (exp));
12261 unsigned int count = builder.encoded_nelts ();
12262 for (unsigned int i = 0; i < count; ++i)
12263 {
12264 tree elt = VECTOR_CST_ELT (exp, i);
12265 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12266 if (integer_zerop (elt))
12267 builder.quick_push (CONST0_RTX (inner));
12268 else if (integer_onep (elt)
12269 || integer_minus_onep (elt))
12270 builder.quick_push (CONSTM1_RTX (inner));
12271 else
12272 gcc_unreachable ();
12273 }
12274 return builder.build ();
12275 }
12276
12277 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12278 Return a constant scalar rtx of mode MODE in which bit X is set if element
12279 X of EXP is nonzero. */
12280 static rtx
12281 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12282 {
12283 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12284 tree elt;
12285
12286 /* The result has a fixed number of bits so the input must too. */
12287 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12288 for (unsigned int i = 0; i < nunits; ++i)
12289 {
12290 elt = VECTOR_CST_ELT (exp, i);
12291 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12292 if (integer_all_onesp (elt))
12293 res = wi::set_bit (res, i);
12294 else
12295 gcc_assert (integer_zerop (elt));
12296 }
12297
12298 return immed_wide_int_const (res, mode);
12299 }
12300
12301 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12302 static rtx
12303 const_vector_from_tree (tree exp)
12304 {
12305 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12306
12307 if (initializer_zerop (exp))
12308 return CONST0_RTX (mode);
12309
12310 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12311 return const_vector_mask_from_tree (exp);
12312
12313 machine_mode inner = GET_MODE_INNER (mode);
12314
12315 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12316 VECTOR_CST_NELTS_PER_PATTERN (exp));
12317 unsigned int count = builder.encoded_nelts ();
12318 for (unsigned int i = 0; i < count; ++i)
12319 {
12320 tree elt = VECTOR_CST_ELT (exp, i);
12321 if (TREE_CODE (elt) == REAL_CST)
12322 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12323 inner));
12324 else if (TREE_CODE (elt) == FIXED_CST)
12325 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12326 inner));
12327 else
12328 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12329 inner));
12330 }
12331 return builder.build ();
12332 }
12333
12334 /* Build a decl for a personality function given a language prefix. */
12335
12336 tree
12337 build_personality_function (const char *lang)
12338 {
12339 const char *unwind_and_version;
12340 tree decl, type;
12341 char *name;
12342
12343 switch (targetm_common.except_unwind_info (&global_options))
12344 {
12345 case UI_NONE:
12346 return NULL;
12347 case UI_SJLJ:
12348 unwind_and_version = "_sj0";
12349 break;
12350 case UI_DWARF2:
12351 case UI_TARGET:
12352 unwind_and_version = "_v0";
12353 break;
12354 case UI_SEH:
12355 unwind_and_version = "_seh0";
12356 break;
12357 default:
12358 gcc_unreachable ();
12359 }
12360
12361 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12362
12363 type = build_function_type_list (integer_type_node, integer_type_node,
12364 long_long_unsigned_type_node,
12365 ptr_type_node, ptr_type_node, NULL_TREE);
12366 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12367 get_identifier (name), type);
12368 DECL_ARTIFICIAL (decl) = 1;
12369 DECL_EXTERNAL (decl) = 1;
12370 TREE_PUBLIC (decl) = 1;
12371
12372 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12373 are the flags assigned by targetm.encode_section_info. */
12374 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12375
12376 return decl;
12377 }
12378
12379 /* Extracts the personality function of DECL and returns the corresponding
12380 libfunc. */
12381
12382 rtx
12383 get_personality_function (tree decl)
12384 {
12385 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12386 enum eh_personality_kind pk;
12387
12388 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12389 if (pk == eh_personality_none)
12390 return NULL;
12391
12392 if (!personality
12393 && pk == eh_personality_any)
12394 personality = lang_hooks.eh_personality ();
12395
12396 if (pk == eh_personality_lang)
12397 gcc_assert (personality != NULL_TREE);
12398
12399 return XEXP (DECL_RTL (personality), 0);
12400 }
12401
12402 /* Returns a tree for the size of EXP in bytes. */
12403
12404 static tree
12405 tree_expr_size (const_tree exp)
12406 {
12407 if (DECL_P (exp)
12408 && DECL_SIZE_UNIT (exp) != 0)
12409 return DECL_SIZE_UNIT (exp);
12410 else
12411 return size_in_bytes (TREE_TYPE (exp));
12412 }
12413
12414 /* Return an rtx for the size in bytes of the value of EXP. */
12415
12416 rtx
12417 expr_size (tree exp)
12418 {
12419 tree size;
12420
12421 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12422 size = TREE_OPERAND (exp, 1);
12423 else
12424 {
12425 size = tree_expr_size (exp);
12426 gcc_assert (size);
12427 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12428 }
12429
12430 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12431 }
12432
12433 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12434 if the size can vary or is larger than an integer. */
12435
12436 static HOST_WIDE_INT
12437 int_expr_size (tree exp)
12438 {
12439 tree size;
12440
12441 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12442 size = TREE_OPERAND (exp, 1);
12443 else
12444 {
12445 size = tree_expr_size (exp);
12446 gcc_assert (size);
12447 }
12448
12449 if (size == 0 || !tree_fits_shwi_p (size))
12450 return -1;
12451
12452 return tree_to_shwi (size);
12453 }