inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
57 #include "ssaexpand.h"
58
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
61
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
64
65 #ifdef PUSH_ROUNDING
66
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
70 #endif
71 #endif
72
73 #endif
74
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
78 #else
79 #define STACK_PUSH_CODE PRE_INC
80 #endif
81 #endif
82
83
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
90 int cse_not_expected;
91
92 /* This structure is used by move_by_pieces to describe the move to
93 be performed. */
94 struct move_by_pieces_d
95 {
96 rtx to;
97 rtx to_addr;
98 int autinc_to;
99 int explicit_inc_to;
100 rtx from;
101 rtx from_addr;
102 int autinc_from;
103 int explicit_inc_from;
104 unsigned HOST_WIDE_INT len;
105 HOST_WIDE_INT offset;
106 int reverse;
107 };
108
109 /* This structure is used by store_by_pieces to describe the clear to
110 be performed. */
111
112 struct store_by_pieces_d
113 {
114 rtx to;
115 rtx to_addr;
116 int autinc_to;
117 int explicit_inc_to;
118 unsigned HOST_WIDE_INT len;
119 HOST_WIDE_INT offset;
120 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
121 void *constfundata;
122 int reverse;
123 };
124
125 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
126 unsigned int,
127 unsigned int);
128 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
129 struct move_by_pieces_d *);
130 static bool block_move_libcall_safe_for_call_parm (void);
131 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
132 static tree emit_block_move_libcall_fn (int);
133 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
134 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
135 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
136 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
137 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
138 struct store_by_pieces_d *);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, alias_set_type);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, alias_set_type, bool);
148
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150
151 static int is_aligning_offset (const_tree, const_tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (sepops, rtx, enum machine_mode);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
162
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
166
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
169
170 /* Record for each mode whether we can float-extend from memory. */
171
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
180 #endif
181
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
188 #endif
189
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero. */
192 #ifndef SET_BY_PIECES_P
193 #define SET_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
196 #endif
197
198 /* This macro is used to determine whether store_by_pieces should be
199 called to "memcpy" storage when the source is a constant string. */
200 #ifndef STORE_BY_PIECES_P
201 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
202 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
203 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
204 #endif
205
206 /* This array records the insn_code of insns to perform block moves. */
207 enum insn_code movmem_optab[NUM_MACHINE_MODES];
208
209 /* This array records the insn_code of insns to perform block sets. */
210 enum insn_code setmem_optab[NUM_MACHINE_MODES];
211
212 /* These arrays record the insn_code of three different kinds of insns
213 to perform block compares. */
214 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
216 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
217
218 /* Synchronization primitives. */
219 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
240
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
242
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
246 \f
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
250
251 void
252 init_expr_target (void)
253 {
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
259
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
265
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
269
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
273
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
276 {
277 int regno;
278
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
283
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
286
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
291 {
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
294
295 SET_REGNO (reg, regno);
296
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
301
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
306
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
311
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
316 }
317 }
318
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
320
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 {
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
327 {
328 enum insn_code ic;
329
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
333
334 PUT_MODE (mem, srcmode);
335
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
338 }
339 }
340 }
341
342 /* This is run at the start of compiling a function. */
343
344 void
345 init_expr (void)
346 {
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 }
349 \f
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
355
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
358 {
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
365
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369
370
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
374
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
379
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
383
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
389
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
391
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
394 {
395 emit_move_insn (to, from);
396 return;
397 }
398
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
400 {
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
402
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
407
408 emit_move_insn (to, from);
409 return;
410 }
411
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
413 {
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
417 }
418
419 if (to_real)
420 {
421 rtx value, insns;
422 convert_optab tab;
423
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
428
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
436
437 /* Try converting directly if the insn is supported. */
438
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
441 {
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
445 }
446
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
449
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
452
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
463 }
464
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
469 {
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
472
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
475
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
481 }
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
483 {
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
487
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
490
491 if (to_mode == full_mode)
492 {
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
496 }
497
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
501
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
505 }
506
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
511 {
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
521 }
522
523 /* Now both modes are integers. */
524
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
528 {
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
536
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
540 {
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
549 }
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
554 {
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
557 {
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
561 }
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
565 }
566
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
569
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
572
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
575
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
581
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
583
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
586
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
591 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
592 LT, lowfrom, const0_rtx,
593 VOIDmode, 0, -1);
594
595 /* Fill the remaining words. */
596 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
597 {
598 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
599 rtx subword = operand_subword (to, index, 1, to_mode);
600
601 gcc_assert (subword);
602
603 if (fill_value != subword)
604 emit_move_insn (subword, fill_value);
605 }
606
607 insns = get_insns ();
608 end_sequence ();
609
610 emit_insn (insns);
611 return;
612 }
613
614 /* Truncating multi-word to a word or less. */
615 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
616 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
617 {
618 if (!((MEM_P (from)
619 && ! MEM_VOLATILE_P (from)
620 && direct_load[(int) to_mode]
621 && ! mode_dependent_address_p (XEXP (from, 0)))
622 || REG_P (from)
623 || GET_CODE (from) == SUBREG))
624 from = force_reg (from_mode, from);
625 convert_move (to, gen_lowpart (word_mode, from), 0);
626 return;
627 }
628
629 /* Now follow all the conversions between integers
630 no more than a word long. */
631
632 /* For truncation, usually we can just refer to FROM in a narrower mode. */
633 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
634 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
635 GET_MODE_BITSIZE (from_mode)))
636 {
637 if (!((MEM_P (from)
638 && ! MEM_VOLATILE_P (from)
639 && direct_load[(int) to_mode]
640 && ! mode_dependent_address_p (XEXP (from, 0)))
641 || REG_P (from)
642 || GET_CODE (from) == SUBREG))
643 from = force_reg (from_mode, from);
644 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
645 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
646 from = copy_to_reg (from);
647 emit_move_insn (to, gen_lowpart (to_mode, from));
648 return;
649 }
650
651 /* Handle extension. */
652 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
653 {
654 /* Convert directly if that works. */
655 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
656 != CODE_FOR_nothing)
657 {
658 emit_unop_insn (code, to, from, equiv_code);
659 return;
660 }
661 else
662 {
663 enum machine_mode intermediate;
664 rtx tmp;
665 tree shift_amount;
666
667 /* Search for a mode to convert via. */
668 for (intermediate = from_mode; intermediate != VOIDmode;
669 intermediate = GET_MODE_WIDER_MODE (intermediate))
670 if (((can_extend_p (to_mode, intermediate, unsignedp)
671 != CODE_FOR_nothing)
672 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
673 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
674 GET_MODE_BITSIZE (intermediate))))
675 && (can_extend_p (intermediate, from_mode, unsignedp)
676 != CODE_FOR_nothing))
677 {
678 convert_move (to, convert_to_mode (intermediate, from,
679 unsignedp), unsignedp);
680 return;
681 }
682
683 /* No suitable intermediate mode.
684 Generate what we need with shifts. */
685 shift_amount = build_int_cst (NULL_TREE,
686 GET_MODE_BITSIZE (to_mode)
687 - GET_MODE_BITSIZE (from_mode));
688 from = gen_lowpart (to_mode, force_reg (from_mode, from));
689 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
690 to, unsignedp);
691 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
692 to, unsignedp);
693 if (tmp != to)
694 emit_move_insn (to, tmp);
695 return;
696 }
697 }
698
699 /* Support special truncate insns for certain modes. */
700 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
701 {
702 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
703 to, from, UNKNOWN);
704 return;
705 }
706
707 /* Handle truncation of volatile memrefs, and so on;
708 the things that couldn't be truncated directly,
709 and for which there was no special instruction.
710
711 ??? Code above formerly short-circuited this, for most integer
712 mode pairs, with a force_reg in from_mode followed by a recursive
713 call to this routine. Appears always to have been wrong. */
714 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
715 {
716 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
717 emit_move_insn (to, temp);
718 return;
719 }
720
721 /* Mode combination is not recognized. */
722 gcc_unreachable ();
723 }
724
725 /* Return an rtx for a value that would result
726 from converting X to mode MODE.
727 Both X and MODE may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
729 This can be done by referring to a part of X in place
730 or by copying to a new temporary with conversion. */
731
732 rtx
733 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
734 {
735 return convert_modes (mode, VOIDmode, x, unsignedp);
736 }
737
738 /* Return an rtx for a value that would result
739 from converting X from mode OLDMODE to mode MODE.
740 Both modes may be floating, or both integer.
741 UNSIGNEDP is nonzero if X is an unsigned value.
742
743 This can be done by referring to a part of X in place
744 or by copying to a new temporary with conversion.
745
746 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
747
748 rtx
749 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
750 {
751 rtx temp;
752
753 /* If FROM is a SUBREG that indicates that we have already done at least
754 the required extension, strip it. */
755
756 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
757 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
758 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
759 x = gen_lowpart (mode, x);
760
761 if (GET_MODE (x) != VOIDmode)
762 oldmode = GET_MODE (x);
763
764 if (mode == oldmode)
765 return x;
766
767 /* There is one case that we must handle specially: If we are converting
768 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
769 we are to interpret the constant as unsigned, gen_lowpart will do
770 the wrong if the constant appears negative. What we want to do is
771 make the high-order word of the constant zero, not all ones. */
772
773 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
774 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
775 && CONST_INT_P (x) && INTVAL (x) < 0)
776 {
777 HOST_WIDE_INT val = INTVAL (x);
778
779 if (oldmode != VOIDmode
780 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
781 {
782 int width = GET_MODE_BITSIZE (oldmode);
783
784 /* We need to zero extend VAL. */
785 val &= ((HOST_WIDE_INT) 1 << width) - 1;
786 }
787
788 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
789 }
790
791 /* We can do this with a gen_lowpart if both desired and current modes
792 are integer, and this is either a constant integer, a register, or a
793 non-volatile MEM. Except for the constant case where MODE is no
794 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
795
796 if ((CONST_INT_P (x)
797 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
798 || (GET_MODE_CLASS (mode) == MODE_INT
799 && GET_MODE_CLASS (oldmode) == MODE_INT
800 && (GET_CODE (x) == CONST_DOUBLE
801 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
802 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
803 && direct_load[(int) mode])
804 || (REG_P (x)
805 && (! HARD_REGISTER_P (x)
806 || HARD_REGNO_MODE_OK (REGNO (x), mode))
807 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
808 GET_MODE_BITSIZE (GET_MODE (x)))))))))
809 {
810 /* ?? If we don't know OLDMODE, we have to assume here that
811 X does not need sign- or zero-extension. This may not be
812 the case, but it's the best we can do. */
813 if (CONST_INT_P (x) && oldmode != VOIDmode
814 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
815 {
816 HOST_WIDE_INT val = INTVAL (x);
817 int width = GET_MODE_BITSIZE (oldmode);
818
819 /* We must sign or zero-extend in this case. Start by
820 zero-extending, then sign extend if we need to. */
821 val &= ((HOST_WIDE_INT) 1 << width) - 1;
822 if (! unsignedp
823 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
824 val |= (HOST_WIDE_INT) (-1) << width;
825
826 return gen_int_mode (val, mode);
827 }
828
829 return gen_lowpart (mode, x);
830 }
831
832 /* Converting from integer constant into mode is always equivalent to an
833 subreg operation. */
834 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
835 {
836 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
837 return simplify_gen_subreg (mode, x, oldmode, 0);
838 }
839
840 temp = gen_reg_rtx (mode);
841 convert_move (temp, x, unsignedp);
842 return temp;
843 }
844 \f
845 /* STORE_MAX_PIECES is the number of bytes at a time that we can
846 store efficiently. Due to internal GCC limitations, this is
847 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
848 for an immediate constant. */
849
850 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
851
852 /* Determine whether the LEN bytes can be moved by using several move
853 instructions. Return nonzero if a call to move_by_pieces should
854 succeed. */
855
856 int
857 can_move_by_pieces (unsigned HOST_WIDE_INT len,
858 unsigned int align ATTRIBUTE_UNUSED)
859 {
860 return MOVE_BY_PIECES_P (len, align);
861 }
862
863 /* Generate several move instructions to copy LEN bytes from block FROM to
864 block TO. (These are MEM rtx's with BLKmode).
865
866 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
867 used to push FROM to the stack.
868
869 ALIGN is maximum stack alignment we can assume.
870
871 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
872 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
873 stpcpy. */
874
875 rtx
876 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
877 unsigned int align, int endp)
878 {
879 struct move_by_pieces_d data;
880 rtx to_addr, from_addr = XEXP (from, 0);
881 unsigned int max_size = MOVE_MAX_PIECES + 1;
882 enum machine_mode mode = VOIDmode, tmode;
883 enum insn_code icode;
884
885 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
886
887 data.offset = 0;
888 data.from_addr = from_addr;
889 if (to)
890 {
891 to_addr = XEXP (to, 0);
892 data.to = to;
893 data.autinc_to
894 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
895 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
896 data.reverse
897 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
898 }
899 else
900 {
901 to_addr = NULL_RTX;
902 data.to = NULL_RTX;
903 data.autinc_to = 1;
904 #ifdef STACK_GROWS_DOWNWARD
905 data.reverse = 1;
906 #else
907 data.reverse = 0;
908 #endif
909 }
910 data.to_addr = to_addr;
911 data.from = from;
912 data.autinc_from
913 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
914 || GET_CODE (from_addr) == POST_INC
915 || GET_CODE (from_addr) == POST_DEC);
916
917 data.explicit_inc_from = 0;
918 data.explicit_inc_to = 0;
919 if (data.reverse) data.offset = len;
920 data.len = len;
921
922 /* If copying requires more than two move insns,
923 copy addresses to registers (to make displacements shorter)
924 and use post-increment if available. */
925 if (!(data.autinc_from && data.autinc_to)
926 && move_by_pieces_ninsns (len, align, max_size) > 2)
927 {
928 /* Find the mode of the largest move... */
929 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
930 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
931 if (GET_MODE_SIZE (tmode) < max_size)
932 mode = tmode;
933
934 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
935 {
936 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
937 data.autinc_from = 1;
938 data.explicit_inc_from = -1;
939 }
940 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
941 {
942 data.from_addr = copy_addr_to_reg (from_addr);
943 data.autinc_from = 1;
944 data.explicit_inc_from = 1;
945 }
946 if (!data.autinc_from && CONSTANT_P (from_addr))
947 data.from_addr = copy_addr_to_reg (from_addr);
948 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
949 {
950 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
951 data.autinc_to = 1;
952 data.explicit_inc_to = -1;
953 }
954 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 {
956 data.to_addr = copy_addr_to_reg (to_addr);
957 data.autinc_to = 1;
958 data.explicit_inc_to = 1;
959 }
960 if (!data.autinc_to && CONSTANT_P (to_addr))
961 data.to_addr = copy_addr_to_reg (to_addr);
962 }
963
964 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
965 if (align >= GET_MODE_ALIGNMENT (tmode))
966 align = GET_MODE_ALIGNMENT (tmode);
967 else
968 {
969 enum machine_mode xmode;
970
971 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
972 tmode != VOIDmode;
973 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
974 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
975 || SLOW_UNALIGNED_ACCESS (tmode, align))
976 break;
977
978 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
979 }
980
981 /* First move what we can in the largest integer mode, then go to
982 successively smaller modes. */
983
984 while (max_size > 1)
985 {
986 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
987 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
988 if (GET_MODE_SIZE (tmode) < max_size)
989 mode = tmode;
990
991 if (mode == VOIDmode)
992 break;
993
994 icode = optab_handler (mov_optab, mode)->insn_code;
995 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
996 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
997
998 max_size = GET_MODE_SIZE (mode);
999 }
1000
1001 /* The code above should have handled everything. */
1002 gcc_assert (!data.len);
1003
1004 if (endp)
1005 {
1006 rtx to1;
1007
1008 gcc_assert (!data.reverse);
1009 if (data.autinc_to)
1010 {
1011 if (endp == 2)
1012 {
1013 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1014 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1015 else
1016 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1017 -1));
1018 }
1019 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1020 data.offset);
1021 }
1022 else
1023 {
1024 if (endp == 2)
1025 --data.offset;
1026 to1 = adjust_address (data.to, QImode, data.offset);
1027 }
1028 return to1;
1029 }
1030 else
1031 return data.to;
1032 }
1033
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1036
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1039 unsigned int max_size)
1040 {
1041 unsigned HOST_WIDE_INT n_insns = 0;
1042 enum machine_mode tmode;
1043
1044 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1045 if (align >= GET_MODE_ALIGNMENT (tmode))
1046 align = GET_MODE_ALIGNMENT (tmode);
1047 else
1048 {
1049 enum machine_mode tmode, xmode;
1050
1051 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1052 tmode != VOIDmode;
1053 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1054 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode, align))
1056 break;
1057
1058 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1059 }
1060
1061 while (max_size > 1)
1062 {
1063 enum machine_mode mode = VOIDmode;
1064 enum insn_code icode;
1065
1066 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1067 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1068 if (GET_MODE_SIZE (tmode) < max_size)
1069 mode = tmode;
1070
1071 if (mode == VOIDmode)
1072 break;
1073
1074 icode = optab_handler (mov_optab, mode)->insn_code;
1075 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1076 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1077
1078 max_size = GET_MODE_SIZE (mode);
1079 }
1080
1081 gcc_assert (!l);
1082 return n_insns;
1083 }
1084
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1088
1089 static void
1090 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1091 struct move_by_pieces_d *data)
1092 {
1093 unsigned int size = GET_MODE_SIZE (mode);
1094 rtx to1 = NULL_RTX, from1;
1095
1096 while (data->len >= size)
1097 {
1098 if (data->reverse)
1099 data->offset -= size;
1100
1101 if (data->to)
1102 {
1103 if (data->autinc_to)
1104 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1105 data->offset);
1106 else
1107 to1 = adjust_address (data->to, mode, data->offset);
1108 }
1109
1110 if (data->autinc_from)
1111 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1112 data->offset);
1113 else
1114 from1 = adjust_address (data->from, mode, data->offset);
1115
1116 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1117 emit_insn (gen_add2_insn (data->to_addr,
1118 GEN_INT (-(HOST_WIDE_INT)size)));
1119 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1120 emit_insn (gen_add2_insn (data->from_addr,
1121 GEN_INT (-(HOST_WIDE_INT)size)));
1122
1123 if (data->to)
1124 emit_insn ((*genfun) (to1, from1));
1125 else
1126 {
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode, from1, NULL);
1129 #else
1130 gcc_unreachable ();
1131 #endif
1132 }
1133
1134 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1135 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1136 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1137 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1138
1139 if (! data->reverse)
1140 data->offset += size;
1141
1142 data->len -= size;
1143 }
1144 }
1145 \f
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1149
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1154
1155 Return the address of the new block, if memcpy is called and returns it,
1156 0 otherwise. */
1157
1158 rtx
1159 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1160 unsigned int expected_align, HOST_WIDE_INT expected_size)
1161 {
1162 bool may_use_call;
1163 rtx retval = 0;
1164 unsigned int align;
1165
1166 switch (method)
1167 {
1168 case BLOCK_OP_NORMAL:
1169 case BLOCK_OP_TAILCALL:
1170 may_use_call = true;
1171 break;
1172
1173 case BLOCK_OP_CALL_PARM:
1174 may_use_call = block_move_libcall_safe_for_call_parm ();
1175
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1178 NO_DEFER_POP;
1179 break;
1180
1181 case BLOCK_OP_NO_LIBCALL:
1182 may_use_call = false;
1183 break;
1184
1185 default:
1186 gcc_unreachable ();
1187 }
1188
1189 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1190
1191 gcc_assert (MEM_P (x));
1192 gcc_assert (MEM_P (y));
1193 gcc_assert (size);
1194
1195 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1196 block copy is more efficient for other large modes, e.g. DCmode. */
1197 x = adjust_address (x, BLKmode, 0);
1198 y = adjust_address (y, BLKmode, 0);
1199
1200 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1201 can be incorrect is coming from __builtin_memcpy. */
1202 if (CONST_INT_P (size))
1203 {
1204 if (INTVAL (size) == 0)
1205 return 0;
1206
1207 x = shallow_copy_rtx (x);
1208 y = shallow_copy_rtx (y);
1209 set_mem_size (x, size);
1210 set_mem_size (y, size);
1211 }
1212
1213 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1214 move_by_pieces (x, y, INTVAL (size), align, 0);
1215 else if (emit_block_move_via_movmem (x, y, size, align,
1216 expected_align, expected_size))
1217 ;
1218 else if (may_use_call)
1219 retval = emit_block_move_via_libcall (x, y, size,
1220 method == BLOCK_OP_TAILCALL);
1221 else
1222 emit_block_move_via_loop (x, y, size, align);
1223
1224 if (method == BLOCK_OP_CALL_PARM)
1225 OK_DEFER_POP;
1226
1227 return retval;
1228 }
1229
1230 rtx
1231 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1232 {
1233 return emit_block_move_hints (x, y, size, method, 0, -1);
1234 }
1235
1236 /* A subroutine of emit_block_move. Returns true if calling the
1237 block move libcall will not clobber any parameters which may have
1238 already been placed on the stack. */
1239
1240 static bool
1241 block_move_libcall_safe_for_call_parm (void)
1242 {
1243 #if defined (REG_PARM_STACK_SPACE)
1244 tree fn;
1245 #endif
1246
1247 /* If arguments are pushed on the stack, then they're safe. */
1248 if (PUSH_ARGS)
1249 return true;
1250
1251 /* If registers go on the stack anyway, any argument is sure to clobber
1252 an outgoing argument. */
1253 #if defined (REG_PARM_STACK_SPACE)
1254 fn = emit_block_move_libcall_fn (false);
1255 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1256 && REG_PARM_STACK_SPACE (fn) != 0)
1257 return false;
1258 #endif
1259
1260 /* If any argument goes in memory, then it might clobber an outgoing
1261 argument. */
1262 {
1263 CUMULATIVE_ARGS args_so_far;
1264 tree fn, arg;
1265
1266 fn = emit_block_move_libcall_fn (false);
1267 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1268
1269 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1270 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1271 {
1272 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1273 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1274 if (!tmp || !REG_P (tmp))
1275 return false;
1276 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1277 return false;
1278 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1279 }
1280 }
1281 return true;
1282 }
1283
1284 /* A subroutine of emit_block_move. Expand a movmem pattern;
1285 return true if successful. */
1286
1287 static bool
1288 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1289 unsigned int expected_align, HOST_WIDE_INT expected_size)
1290 {
1291 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1292 int save_volatile_ok = volatile_ok;
1293 enum machine_mode mode;
1294
1295 if (expected_align < align)
1296 expected_align = align;
1297
1298 /* Since this is a move insn, we don't care about volatility. */
1299 volatile_ok = 1;
1300
1301 /* Try the most limited insn first, because there's no point
1302 including more than one in the machine description unless
1303 the more limited one has some advantage. */
1304
1305 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1306 mode = GET_MODE_WIDER_MODE (mode))
1307 {
1308 enum insn_code code = movmem_optab[(int) mode];
1309 insn_operand_predicate_fn pred;
1310
1311 if (code != CODE_FOR_nothing
1312 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1313 here because if SIZE is less than the mode mask, as it is
1314 returned by the macro, it will definitely be less than the
1315 actual mode mask. */
1316 && ((CONST_INT_P (size)
1317 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1318 <= (GET_MODE_MASK (mode) >> 1)))
1319 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1320 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1321 || (*pred) (x, BLKmode))
1322 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1323 || (*pred) (y, BLKmode))
1324 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1325 || (*pred) (opalign, VOIDmode)))
1326 {
1327 rtx op2;
1328 rtx last = get_last_insn ();
1329 rtx pat;
1330
1331 op2 = convert_to_mode (mode, size, 1);
1332 pred = insn_data[(int) code].operand[2].predicate;
1333 if (pred != 0 && ! (*pred) (op2, mode))
1334 op2 = copy_to_mode_reg (mode, op2);
1335
1336 /* ??? When called via emit_block_move_for_call, it'd be
1337 nice if there were some way to inform the backend, so
1338 that it doesn't fail the expansion because it thinks
1339 emitting the libcall would be more efficient. */
1340
1341 if (insn_data[(int) code].n_operands == 4)
1342 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1343 else
1344 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1345 GEN_INT (expected_align
1346 / BITS_PER_UNIT),
1347 GEN_INT (expected_size));
1348 if (pat)
1349 {
1350 emit_insn (pat);
1351 volatile_ok = save_volatile_ok;
1352 return true;
1353 }
1354 else
1355 delete_insns_since (last);
1356 }
1357 }
1358
1359 volatile_ok = save_volatile_ok;
1360 return false;
1361 }
1362
1363 /* A subroutine of emit_block_move. Expand a call to memcpy.
1364 Return the return value from memcpy, 0 otherwise. */
1365
1366 rtx
1367 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1368 {
1369 rtx dst_addr, src_addr;
1370 tree call_expr, fn, src_tree, dst_tree, size_tree;
1371 enum machine_mode size_mode;
1372 rtx retval;
1373
1374 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1375 pseudos. We can then place those new pseudos into a VAR_DECL and
1376 use them later. */
1377
1378 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1379 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1380
1381 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1382 src_addr = convert_memory_address (ptr_mode, src_addr);
1383
1384 dst_tree = make_tree (ptr_type_node, dst_addr);
1385 src_tree = make_tree (ptr_type_node, src_addr);
1386
1387 size_mode = TYPE_MODE (sizetype);
1388
1389 size = convert_to_mode (size_mode, size, 1);
1390 size = copy_to_mode_reg (size_mode, size);
1391
1392 /* It is incorrect to use the libcall calling conventions to call
1393 memcpy in this context. This could be a user call to memcpy and
1394 the user may wish to examine the return value from memcpy. For
1395 targets where libcalls and normal calls have different conventions
1396 for returning pointers, we could end up generating incorrect code. */
1397
1398 size_tree = make_tree (sizetype, size);
1399
1400 fn = emit_block_move_libcall_fn (true);
1401 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1402 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1403
1404 retval = expand_normal (call_expr);
1405
1406 return retval;
1407 }
1408
1409 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1410 for the function we use for block copies. The first time FOR_CALL
1411 is true, we call assemble_external. */
1412
1413 static GTY(()) tree block_move_fn;
1414
1415 void
1416 init_block_move_fn (const char *asmspec)
1417 {
1418 if (!block_move_fn)
1419 {
1420 tree args, fn;
1421
1422 fn = get_identifier ("memcpy");
1423 args = build_function_type_list (ptr_type_node, ptr_type_node,
1424 const_ptr_type_node, sizetype,
1425 NULL_TREE);
1426
1427 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1428 DECL_EXTERNAL (fn) = 1;
1429 TREE_PUBLIC (fn) = 1;
1430 DECL_ARTIFICIAL (fn) = 1;
1431 TREE_NOTHROW (fn) = 1;
1432 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1433 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1434
1435 block_move_fn = fn;
1436 }
1437
1438 if (asmspec)
1439 set_user_assembler_name (block_move_fn, asmspec);
1440 }
1441
1442 static tree
1443 emit_block_move_libcall_fn (int for_call)
1444 {
1445 static bool emitted_extern;
1446
1447 if (!block_move_fn)
1448 init_block_move_fn (NULL);
1449
1450 if (for_call && !emitted_extern)
1451 {
1452 emitted_extern = true;
1453 make_decl_rtl (block_move_fn);
1454 assemble_external (block_move_fn);
1455 }
1456
1457 return block_move_fn;
1458 }
1459
1460 /* A subroutine of emit_block_move. Copy the data via an explicit
1461 loop. This is used only when libcalls are forbidden. */
1462 /* ??? It'd be nice to copy in hunks larger than QImode. */
1463
1464 static void
1465 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1466 unsigned int align ATTRIBUTE_UNUSED)
1467 {
1468 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1469 enum machine_mode iter_mode;
1470
1471 iter_mode = GET_MODE (size);
1472 if (iter_mode == VOIDmode)
1473 iter_mode = word_mode;
1474
1475 top_label = gen_label_rtx ();
1476 cmp_label = gen_label_rtx ();
1477 iter = gen_reg_rtx (iter_mode);
1478
1479 emit_move_insn (iter, const0_rtx);
1480
1481 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1482 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1483 do_pending_stack_adjust ();
1484
1485 emit_jump (cmp_label);
1486 emit_label (top_label);
1487
1488 tmp = convert_modes (Pmode, iter_mode, iter, true);
1489 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1490 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1491 x = change_address (x, QImode, x_addr);
1492 y = change_address (y, QImode, y_addr);
1493
1494 emit_move_insn (x, y);
1495
1496 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1497 true, OPTAB_LIB_WIDEN);
1498 if (tmp != iter)
1499 emit_move_insn (iter, tmp);
1500
1501 emit_label (cmp_label);
1502
1503 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1504 true, top_label);
1505 }
1506 \f
1507 /* Copy all or part of a value X into registers starting at REGNO.
1508 The number of registers to be filled is NREGS. */
1509
1510 void
1511 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1512 {
1513 int i;
1514 #ifdef HAVE_load_multiple
1515 rtx pat;
1516 rtx last;
1517 #endif
1518
1519 if (nregs == 0)
1520 return;
1521
1522 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1523 x = validize_mem (force_const_mem (mode, x));
1524
1525 /* See if the machine can do this with a load multiple insn. */
1526 #ifdef HAVE_load_multiple
1527 if (HAVE_load_multiple)
1528 {
1529 last = get_last_insn ();
1530 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1531 GEN_INT (nregs));
1532 if (pat)
1533 {
1534 emit_insn (pat);
1535 return;
1536 }
1537 else
1538 delete_insns_since (last);
1539 }
1540 #endif
1541
1542 for (i = 0; i < nregs; i++)
1543 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1544 operand_subword_force (x, i, mode));
1545 }
1546
1547 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1549
1550 void
1551 move_block_from_reg (int regno, rtx x, int nregs)
1552 {
1553 int i;
1554
1555 if (nregs == 0)
1556 return;
1557
1558 /* See if the machine can do this with a store multiple insn. */
1559 #ifdef HAVE_store_multiple
1560 if (HAVE_store_multiple)
1561 {
1562 rtx last = get_last_insn ();
1563 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1564 GEN_INT (nregs));
1565 if (pat)
1566 {
1567 emit_insn (pat);
1568 return;
1569 }
1570 else
1571 delete_insns_since (last);
1572 }
1573 #endif
1574
1575 for (i = 0; i < nregs; i++)
1576 {
1577 rtx tem = operand_subword (x, i, 1, BLKmode);
1578
1579 gcc_assert (tem);
1580
1581 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1582 }
1583 }
1584
1585 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1586 ORIG, where ORIG is a non-consecutive group of registers represented by
1587 a PARALLEL. The clone is identical to the original except in that the
1588 original set of registers is replaced by a new set of pseudo registers.
1589 The new set has the same modes as the original set. */
1590
1591 rtx
1592 gen_group_rtx (rtx orig)
1593 {
1594 int i, length;
1595 rtx *tmps;
1596
1597 gcc_assert (GET_CODE (orig) == PARALLEL);
1598
1599 length = XVECLEN (orig, 0);
1600 tmps = XALLOCAVEC (rtx, length);
1601
1602 /* Skip a NULL entry in first slot. */
1603 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1604
1605 if (i)
1606 tmps[0] = 0;
1607
1608 for (; i < length; i++)
1609 {
1610 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1611 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1612
1613 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1614 }
1615
1616 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1617 }
1618
1619 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1620 except that values are placed in TMPS[i], and must later be moved
1621 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1622
1623 static void
1624 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1625 {
1626 rtx src;
1627 int start, i;
1628 enum machine_mode m = GET_MODE (orig_src);
1629
1630 gcc_assert (GET_CODE (dst) == PARALLEL);
1631
1632 if (m != VOIDmode
1633 && !SCALAR_INT_MODE_P (m)
1634 && !MEM_P (orig_src)
1635 && GET_CODE (orig_src) != CONCAT)
1636 {
1637 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1638 if (imode == BLKmode)
1639 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1640 else
1641 src = gen_reg_rtx (imode);
1642 if (imode != BLKmode)
1643 src = gen_lowpart (GET_MODE (orig_src), src);
1644 emit_move_insn (src, orig_src);
1645 /* ...and back again. */
1646 if (imode != BLKmode)
1647 src = gen_lowpart (imode, src);
1648 emit_group_load_1 (tmps, dst, src, type, ssize);
1649 return;
1650 }
1651
1652 /* Check for a NULL entry, used to indicate that the parameter goes
1653 both on the stack and in registers. */
1654 if (XEXP (XVECEXP (dst, 0, 0), 0))
1655 start = 0;
1656 else
1657 start = 1;
1658
1659 /* Process the pieces. */
1660 for (i = start; i < XVECLEN (dst, 0); i++)
1661 {
1662 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1663 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1664 unsigned int bytelen = GET_MODE_SIZE (mode);
1665 int shift = 0;
1666
1667 /* Handle trailing fragments that run over the size of the struct. */
1668 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1669 {
1670 /* Arrange to shift the fragment to where it belongs.
1671 extract_bit_field loads to the lsb of the reg. */
1672 if (
1673 #ifdef BLOCK_REG_PADDING
1674 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1675 == (BYTES_BIG_ENDIAN ? upward : downward)
1676 #else
1677 BYTES_BIG_ENDIAN
1678 #endif
1679 )
1680 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1681 bytelen = ssize - bytepos;
1682 gcc_assert (bytelen > 0);
1683 }
1684
1685 /* If we won't be loading directly from memory, protect the real source
1686 from strange tricks we might play; but make sure that the source can
1687 be loaded directly into the destination. */
1688 src = orig_src;
1689 if (!MEM_P (orig_src)
1690 && (!CONSTANT_P (orig_src)
1691 || (GET_MODE (orig_src) != mode
1692 && GET_MODE (orig_src) != VOIDmode)))
1693 {
1694 if (GET_MODE (orig_src) == VOIDmode)
1695 src = gen_reg_rtx (mode);
1696 else
1697 src = gen_reg_rtx (GET_MODE (orig_src));
1698
1699 emit_move_insn (src, orig_src);
1700 }
1701
1702 /* Optimize the access just a bit. */
1703 if (MEM_P (src)
1704 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1705 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1706 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1707 && bytelen == GET_MODE_SIZE (mode))
1708 {
1709 tmps[i] = gen_reg_rtx (mode);
1710 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1711 }
1712 else if (COMPLEX_MODE_P (mode)
1713 && GET_MODE (src) == mode
1714 && bytelen == GET_MODE_SIZE (mode))
1715 /* Let emit_move_complex do the bulk of the work. */
1716 tmps[i] = src;
1717 else if (GET_CODE (src) == CONCAT)
1718 {
1719 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1720 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1721
1722 if ((bytepos == 0 && bytelen == slen0)
1723 || (bytepos != 0 && bytepos + bytelen <= slen))
1724 {
1725 /* The following assumes that the concatenated objects all
1726 have the same size. In this case, a simple calculation
1727 can be used to determine the object and the bit field
1728 to be extracted. */
1729 tmps[i] = XEXP (src, bytepos / slen0);
1730 if (! CONSTANT_P (tmps[i])
1731 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1732 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1733 (bytepos % slen0) * BITS_PER_UNIT,
1734 1, NULL_RTX, mode, mode);
1735 }
1736 else
1737 {
1738 rtx mem;
1739
1740 gcc_assert (!bytepos);
1741 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1742 emit_move_insn (mem, src);
1743 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1744 0, 1, NULL_RTX, mode, mode);
1745 }
1746 }
1747 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1748 SIMD register, which is currently broken. While we get GCC
1749 to emit proper RTL for these cases, let's dump to memory. */
1750 else if (VECTOR_MODE_P (GET_MODE (dst))
1751 && REG_P (src))
1752 {
1753 int slen = GET_MODE_SIZE (GET_MODE (src));
1754 rtx mem;
1755
1756 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1757 emit_move_insn (mem, src);
1758 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1759 }
1760 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1761 && XVECLEN (dst, 0) > 1)
1762 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1763 else if (CONSTANT_P (src))
1764 {
1765 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1766
1767 if (len == ssize)
1768 tmps[i] = src;
1769 else
1770 {
1771 rtx first, second;
1772
1773 gcc_assert (2 * len == ssize);
1774 split_double (src, &first, &second);
1775 if (i)
1776 tmps[i] = second;
1777 else
1778 tmps[i] = first;
1779 }
1780 }
1781 else if (REG_P (src) && GET_MODE (src) == mode)
1782 tmps[i] = src;
1783 else
1784 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1785 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1786 mode, mode);
1787
1788 if (shift)
1789 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1790 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1791 }
1792 }
1793
1794 /* Emit code to move a block SRC of type TYPE to a block DST,
1795 where DST is non-consecutive registers represented by a PARALLEL.
1796 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1797 if not known. */
1798
1799 void
1800 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1801 {
1802 rtx *tmps;
1803 int i;
1804
1805 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1806 emit_group_load_1 (tmps, dst, src, type, ssize);
1807
1808 /* Copy the extracted pieces into the proper (probable) hard regs. */
1809 for (i = 0; i < XVECLEN (dst, 0); i++)
1810 {
1811 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1812 if (d == NULL)
1813 continue;
1814 emit_move_insn (d, tmps[i]);
1815 }
1816 }
1817
1818 /* Similar, but load SRC into new pseudos in a format that looks like
1819 PARALLEL. This can later be fed to emit_group_move to get things
1820 in the right place. */
1821
1822 rtx
1823 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1824 {
1825 rtvec vec;
1826 int i;
1827
1828 vec = rtvec_alloc (XVECLEN (parallel, 0));
1829 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1830
1831 /* Convert the vector to look just like the original PARALLEL, except
1832 with the computed values. */
1833 for (i = 0; i < XVECLEN (parallel, 0); i++)
1834 {
1835 rtx e = XVECEXP (parallel, 0, i);
1836 rtx d = XEXP (e, 0);
1837
1838 if (d)
1839 {
1840 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1841 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1842 }
1843 RTVEC_ELT (vec, i) = e;
1844 }
1845
1846 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1847 }
1848
1849 /* Emit code to move a block SRC to block DST, where SRC and DST are
1850 non-consecutive groups of registers, each represented by a PARALLEL. */
1851
1852 void
1853 emit_group_move (rtx dst, rtx src)
1854 {
1855 int i;
1856
1857 gcc_assert (GET_CODE (src) == PARALLEL
1858 && GET_CODE (dst) == PARALLEL
1859 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1860
1861 /* Skip first entry if NULL. */
1862 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1863 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1864 XEXP (XVECEXP (src, 0, i), 0));
1865 }
1866
1867 /* Move a group of registers represented by a PARALLEL into pseudos. */
1868
1869 rtx
1870 emit_group_move_into_temps (rtx src)
1871 {
1872 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1873 int i;
1874
1875 for (i = 0; i < XVECLEN (src, 0); i++)
1876 {
1877 rtx e = XVECEXP (src, 0, i);
1878 rtx d = XEXP (e, 0);
1879
1880 if (d)
1881 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1882 RTVEC_ELT (vec, i) = e;
1883 }
1884
1885 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1886 }
1887
1888 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1889 where SRC is non-consecutive registers represented by a PARALLEL.
1890 SSIZE represents the total size of block ORIG_DST, or -1 if not
1891 known. */
1892
1893 void
1894 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1895 {
1896 rtx *tmps, dst;
1897 int start, finish, i;
1898 enum machine_mode m = GET_MODE (orig_dst);
1899
1900 gcc_assert (GET_CODE (src) == PARALLEL);
1901
1902 if (!SCALAR_INT_MODE_P (m)
1903 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1904 {
1905 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1906 if (imode == BLKmode)
1907 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1908 else
1909 dst = gen_reg_rtx (imode);
1910 emit_group_store (dst, src, type, ssize);
1911 if (imode != BLKmode)
1912 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1913 emit_move_insn (orig_dst, dst);
1914 return;
1915 }
1916
1917 /* Check for a NULL entry, used to indicate that the parameter goes
1918 both on the stack and in registers. */
1919 if (XEXP (XVECEXP (src, 0, 0), 0))
1920 start = 0;
1921 else
1922 start = 1;
1923 finish = XVECLEN (src, 0);
1924
1925 tmps = XALLOCAVEC (rtx, finish);
1926
1927 /* Copy the (probable) hard regs into pseudos. */
1928 for (i = start; i < finish; i++)
1929 {
1930 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1931 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1932 {
1933 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1934 emit_move_insn (tmps[i], reg);
1935 }
1936 else
1937 tmps[i] = reg;
1938 }
1939
1940 /* If we won't be storing directly into memory, protect the real destination
1941 from strange tricks we might play. */
1942 dst = orig_dst;
1943 if (GET_CODE (dst) == PARALLEL)
1944 {
1945 rtx temp;
1946
1947 /* We can get a PARALLEL dst if there is a conditional expression in
1948 a return statement. In that case, the dst and src are the same,
1949 so no action is necessary. */
1950 if (rtx_equal_p (dst, src))
1951 return;
1952
1953 /* It is unclear if we can ever reach here, but we may as well handle
1954 it. Allocate a temporary, and split this into a store/load to/from
1955 the temporary. */
1956
1957 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1958 emit_group_store (temp, src, type, ssize);
1959 emit_group_load (dst, temp, type, ssize);
1960 return;
1961 }
1962 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1963 {
1964 enum machine_mode outer = GET_MODE (dst);
1965 enum machine_mode inner;
1966 HOST_WIDE_INT bytepos;
1967 bool done = false;
1968 rtx temp;
1969
1970 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1971 dst = gen_reg_rtx (outer);
1972
1973 /* Make life a bit easier for combine. */
1974 /* If the first element of the vector is the low part
1975 of the destination mode, use a paradoxical subreg to
1976 initialize the destination. */
1977 if (start < finish)
1978 {
1979 inner = GET_MODE (tmps[start]);
1980 bytepos = subreg_lowpart_offset (inner, outer);
1981 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1982 {
1983 temp = simplify_gen_subreg (outer, tmps[start],
1984 inner, 0);
1985 if (temp)
1986 {
1987 emit_move_insn (dst, temp);
1988 done = true;
1989 start++;
1990 }
1991 }
1992 }
1993
1994 /* If the first element wasn't the low part, try the last. */
1995 if (!done
1996 && start < finish - 1)
1997 {
1998 inner = GET_MODE (tmps[finish - 1]);
1999 bytepos = subreg_lowpart_offset (inner, outer);
2000 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2001 {
2002 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2003 inner, 0);
2004 if (temp)
2005 {
2006 emit_move_insn (dst, temp);
2007 done = true;
2008 finish--;
2009 }
2010 }
2011 }
2012
2013 /* Otherwise, simply initialize the result to zero. */
2014 if (!done)
2015 emit_move_insn (dst, CONST0_RTX (outer));
2016 }
2017
2018 /* Process the pieces. */
2019 for (i = start; i < finish; i++)
2020 {
2021 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2022 enum machine_mode mode = GET_MODE (tmps[i]);
2023 unsigned int bytelen = GET_MODE_SIZE (mode);
2024 unsigned int adj_bytelen = bytelen;
2025 rtx dest = dst;
2026
2027 /* Handle trailing fragments that run over the size of the struct. */
2028 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2029 adj_bytelen = ssize - bytepos;
2030
2031 if (GET_CODE (dst) == CONCAT)
2032 {
2033 if (bytepos + adj_bytelen
2034 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2035 dest = XEXP (dst, 0);
2036 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2037 {
2038 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2039 dest = XEXP (dst, 1);
2040 }
2041 else
2042 {
2043 enum machine_mode dest_mode = GET_MODE (dest);
2044 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2045
2046 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2047
2048 if (GET_MODE_ALIGNMENT (dest_mode)
2049 >= GET_MODE_ALIGNMENT (tmp_mode))
2050 {
2051 dest = assign_stack_temp (dest_mode,
2052 GET_MODE_SIZE (dest_mode),
2053 0);
2054 emit_move_insn (adjust_address (dest,
2055 tmp_mode,
2056 bytepos),
2057 tmps[i]);
2058 dst = dest;
2059 }
2060 else
2061 {
2062 dest = assign_stack_temp (tmp_mode,
2063 GET_MODE_SIZE (tmp_mode),
2064 0);
2065 emit_move_insn (dest, tmps[i]);
2066 dst = adjust_address (dest, dest_mode, bytepos);
2067 }
2068 break;
2069 }
2070 }
2071
2072 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2073 {
2074 /* store_bit_field always takes its value from the lsb.
2075 Move the fragment to the lsb if it's not already there. */
2076 if (
2077 #ifdef BLOCK_REG_PADDING
2078 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2079 == (BYTES_BIG_ENDIAN ? upward : downward)
2080 #else
2081 BYTES_BIG_ENDIAN
2082 #endif
2083 )
2084 {
2085 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2086 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2087 build_int_cst (NULL_TREE, shift),
2088 tmps[i], 0);
2089 }
2090 bytelen = adj_bytelen;
2091 }
2092
2093 /* Optimize the access just a bit. */
2094 if (MEM_P (dest)
2095 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2096 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2097 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2098 && bytelen == GET_MODE_SIZE (mode))
2099 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2100 else
2101 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2102 mode, tmps[i]);
2103 }
2104
2105 /* Copy from the pseudo into the (probable) hard reg. */
2106 if (orig_dst != dst)
2107 emit_move_insn (orig_dst, dst);
2108 }
2109
2110 /* Generate code to copy a BLKmode object of TYPE out of a
2111 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2112 is null, a stack temporary is created. TGTBLK is returned.
2113
2114 The purpose of this routine is to handle functions that return
2115 BLKmode structures in registers. Some machines (the PA for example)
2116 want to return all small structures in registers regardless of the
2117 structure's alignment. */
2118
2119 rtx
2120 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2121 {
2122 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2123 rtx src = NULL, dst = NULL;
2124 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2125 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2126 enum machine_mode copy_mode;
2127
2128 if (tgtblk == 0)
2129 {
2130 tgtblk = assign_temp (build_qualified_type (type,
2131 (TYPE_QUALS (type)
2132 | TYPE_QUAL_CONST)),
2133 0, 1, 1);
2134 preserve_temp_slots (tgtblk);
2135 }
2136
2137 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2138 into a new pseudo which is a full word. */
2139
2140 if (GET_MODE (srcreg) != BLKmode
2141 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2142 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2143
2144 /* If the structure doesn't take up a whole number of words, see whether
2145 SRCREG is padded on the left or on the right. If it's on the left,
2146 set PADDING_CORRECTION to the number of bits to skip.
2147
2148 In most ABIs, the structure will be returned at the least end of
2149 the register, which translates to right padding on little-endian
2150 targets and left padding on big-endian targets. The opposite
2151 holds if the structure is returned at the most significant
2152 end of the register. */
2153 if (bytes % UNITS_PER_WORD != 0
2154 && (targetm.calls.return_in_msb (type)
2155 ? !BYTES_BIG_ENDIAN
2156 : BYTES_BIG_ENDIAN))
2157 padding_correction
2158 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2159
2160 /* Copy the structure BITSIZE bits at a time. If the target lives in
2161 memory, take care of not reading/writing past its end by selecting
2162 a copy mode suited to BITSIZE. This should always be possible given
2163 how it is computed.
2164
2165 We could probably emit more efficient code for machines which do not use
2166 strict alignment, but it doesn't seem worth the effort at the current
2167 time. */
2168
2169 copy_mode = word_mode;
2170 if (MEM_P (tgtblk))
2171 {
2172 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2173 if (mem_mode != BLKmode)
2174 copy_mode = mem_mode;
2175 }
2176
2177 for (bitpos = 0, xbitpos = padding_correction;
2178 bitpos < bytes * BITS_PER_UNIT;
2179 bitpos += bitsize, xbitpos += bitsize)
2180 {
2181 /* We need a new source operand each time xbitpos is on a
2182 word boundary and when xbitpos == padding_correction
2183 (the first time through). */
2184 if (xbitpos % BITS_PER_WORD == 0
2185 || xbitpos == padding_correction)
2186 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2187 GET_MODE (srcreg));
2188
2189 /* We need a new destination operand each time bitpos is on
2190 a word boundary. */
2191 if (bitpos % BITS_PER_WORD == 0)
2192 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2193
2194 /* Use xbitpos for the source extraction (right justified) and
2195 bitpos for the destination store (left justified). */
2196 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2197 extract_bit_field (src, bitsize,
2198 xbitpos % BITS_PER_WORD, 1,
2199 NULL_RTX, copy_mode, copy_mode));
2200 }
2201
2202 return tgtblk;
2203 }
2204
2205 /* Add a USE expression for REG to the (possibly empty) list pointed
2206 to by CALL_FUSAGE. REG must denote a hard register. */
2207
2208 void
2209 use_reg (rtx *call_fusage, rtx reg)
2210 {
2211 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2212
2213 *call_fusage
2214 = gen_rtx_EXPR_LIST (VOIDmode,
2215 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2216 }
2217
2218 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2219 starting at REGNO. All of these registers must be hard registers. */
2220
2221 void
2222 use_regs (rtx *call_fusage, int regno, int nregs)
2223 {
2224 int i;
2225
2226 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2227
2228 for (i = 0; i < nregs; i++)
2229 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2230 }
2231
2232 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2233 PARALLEL REGS. This is for calls that pass values in multiple
2234 non-contiguous locations. The Irix 6 ABI has examples of this. */
2235
2236 void
2237 use_group_regs (rtx *call_fusage, rtx regs)
2238 {
2239 int i;
2240
2241 for (i = 0; i < XVECLEN (regs, 0); i++)
2242 {
2243 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2244
2245 /* A NULL entry means the parameter goes both on the stack and in
2246 registers. This can also be a MEM for targets that pass values
2247 partially on the stack and partially in registers. */
2248 if (reg != 0 && REG_P (reg))
2249 use_reg (call_fusage, reg);
2250 }
2251 }
2252
2253 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2254 assigment and the code of the expresion on the RHS is CODE. Return
2255 NULL otherwise. */
2256
2257 static gimple
2258 get_def_for_expr (tree name, enum tree_code code)
2259 {
2260 gimple def_stmt;
2261
2262 if (TREE_CODE (name) != SSA_NAME)
2263 return NULL;
2264
2265 def_stmt = get_gimple_for_ssa_name (name);
2266 if (!def_stmt
2267 || gimple_assign_rhs_code (def_stmt) != code)
2268 return NULL;
2269
2270 return def_stmt;
2271 }
2272 \f
2273
2274 /* Determine whether the LEN bytes generated by CONSTFUN can be
2275 stored to memory using several move instructions. CONSTFUNDATA is
2276 a pointer which will be passed as argument in every CONSTFUN call.
2277 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2278 a memset operation and false if it's a copy of a constant string.
2279 Return nonzero if a call to store_by_pieces should succeed. */
2280
2281 int
2282 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2283 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2284 void *constfundata, unsigned int align, bool memsetp)
2285 {
2286 unsigned HOST_WIDE_INT l;
2287 unsigned int max_size;
2288 HOST_WIDE_INT offset = 0;
2289 enum machine_mode mode, tmode;
2290 enum insn_code icode;
2291 int reverse;
2292 rtx cst;
2293
2294 if (len == 0)
2295 return 1;
2296
2297 if (! (memsetp
2298 ? SET_BY_PIECES_P (len, align)
2299 : STORE_BY_PIECES_P (len, align)))
2300 return 0;
2301
2302 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2303 if (align >= GET_MODE_ALIGNMENT (tmode))
2304 align = GET_MODE_ALIGNMENT (tmode);
2305 else
2306 {
2307 enum machine_mode xmode;
2308
2309 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2310 tmode != VOIDmode;
2311 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2312 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2313 || SLOW_UNALIGNED_ACCESS (tmode, align))
2314 break;
2315
2316 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2317 }
2318
2319 /* We would first store what we can in the largest integer mode, then go to
2320 successively smaller modes. */
2321
2322 for (reverse = 0;
2323 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2324 reverse++)
2325 {
2326 l = len;
2327 mode = VOIDmode;
2328 max_size = STORE_MAX_PIECES + 1;
2329 while (max_size > 1)
2330 {
2331 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2332 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2333 if (GET_MODE_SIZE (tmode) < max_size)
2334 mode = tmode;
2335
2336 if (mode == VOIDmode)
2337 break;
2338
2339 icode = optab_handler (mov_optab, mode)->insn_code;
2340 if (icode != CODE_FOR_nothing
2341 && align >= GET_MODE_ALIGNMENT (mode))
2342 {
2343 unsigned int size = GET_MODE_SIZE (mode);
2344
2345 while (l >= size)
2346 {
2347 if (reverse)
2348 offset -= size;
2349
2350 cst = (*constfun) (constfundata, offset, mode);
2351 if (!LEGITIMATE_CONSTANT_P (cst))
2352 return 0;
2353
2354 if (!reverse)
2355 offset += size;
2356
2357 l -= size;
2358 }
2359 }
2360
2361 max_size = GET_MODE_SIZE (mode);
2362 }
2363
2364 /* The code above should have handled everything. */
2365 gcc_assert (!l);
2366 }
2367
2368 return 1;
2369 }
2370
2371 /* Generate several move instructions to store LEN bytes generated by
2372 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2373 pointer which will be passed as argument in every CONSTFUN call.
2374 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2375 a memset operation and false if it's a copy of a constant string.
2376 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2377 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2378 stpcpy. */
2379
2380 rtx
2381 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2382 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2383 void *constfundata, unsigned int align, bool memsetp, int endp)
2384 {
2385 struct store_by_pieces_d data;
2386
2387 if (len == 0)
2388 {
2389 gcc_assert (endp != 2);
2390 return to;
2391 }
2392
2393 gcc_assert (memsetp
2394 ? SET_BY_PIECES_P (len, align)
2395 : STORE_BY_PIECES_P (len, align));
2396 data.constfun = constfun;
2397 data.constfundata = constfundata;
2398 data.len = len;
2399 data.to = to;
2400 store_by_pieces_1 (&data, align);
2401 if (endp)
2402 {
2403 rtx to1;
2404
2405 gcc_assert (!data.reverse);
2406 if (data.autinc_to)
2407 {
2408 if (endp == 2)
2409 {
2410 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2411 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2412 else
2413 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2414 -1));
2415 }
2416 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2417 data.offset);
2418 }
2419 else
2420 {
2421 if (endp == 2)
2422 --data.offset;
2423 to1 = adjust_address (data.to, QImode, data.offset);
2424 }
2425 return to1;
2426 }
2427 else
2428 return data.to;
2429 }
2430
2431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2433
2434 static void
2435 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2436 {
2437 struct store_by_pieces_d data;
2438
2439 if (len == 0)
2440 return;
2441
2442 data.constfun = clear_by_pieces_1;
2443 data.constfundata = NULL;
2444 data.len = len;
2445 data.to = to;
2446 store_by_pieces_1 (&data, align);
2447 }
2448
2449 /* Callback routine for clear_by_pieces.
2450 Return const0_rtx unconditionally. */
2451
2452 static rtx
2453 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2454 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2455 enum machine_mode mode ATTRIBUTE_UNUSED)
2456 {
2457 return const0_rtx;
2458 }
2459
2460 /* Subroutine of clear_by_pieces and store_by_pieces.
2461 Generate several move instructions to store LEN bytes of block TO. (A MEM
2462 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2463
2464 static void
2465 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2466 unsigned int align ATTRIBUTE_UNUSED)
2467 {
2468 rtx to_addr = XEXP (data->to, 0);
2469 unsigned int max_size = STORE_MAX_PIECES + 1;
2470 enum machine_mode mode = VOIDmode, tmode;
2471 enum insn_code icode;
2472
2473 data->offset = 0;
2474 data->to_addr = to_addr;
2475 data->autinc_to
2476 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2477 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2478
2479 data->explicit_inc_to = 0;
2480 data->reverse
2481 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2482 if (data->reverse)
2483 data->offset = data->len;
2484
2485 /* If storing requires more than two move insns,
2486 copy addresses to registers (to make displacements shorter)
2487 and use post-increment if available. */
2488 if (!data->autinc_to
2489 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2490 {
2491 /* Determine the main mode we'll be using. */
2492 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2493 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2494 if (GET_MODE_SIZE (tmode) < max_size)
2495 mode = tmode;
2496
2497 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2498 {
2499 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2500 data->autinc_to = 1;
2501 data->explicit_inc_to = -1;
2502 }
2503
2504 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2505 && ! data->autinc_to)
2506 {
2507 data->to_addr = copy_addr_to_reg (to_addr);
2508 data->autinc_to = 1;
2509 data->explicit_inc_to = 1;
2510 }
2511
2512 if ( !data->autinc_to && CONSTANT_P (to_addr))
2513 data->to_addr = copy_addr_to_reg (to_addr);
2514 }
2515
2516 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2517 if (align >= GET_MODE_ALIGNMENT (tmode))
2518 align = GET_MODE_ALIGNMENT (tmode);
2519 else
2520 {
2521 enum machine_mode xmode;
2522
2523 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2524 tmode != VOIDmode;
2525 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2526 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2527 || SLOW_UNALIGNED_ACCESS (tmode, align))
2528 break;
2529
2530 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2531 }
2532
2533 /* First store what we can in the largest integer mode, then go to
2534 successively smaller modes. */
2535
2536 while (max_size > 1)
2537 {
2538 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2539 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2540 if (GET_MODE_SIZE (tmode) < max_size)
2541 mode = tmode;
2542
2543 if (mode == VOIDmode)
2544 break;
2545
2546 icode = optab_handler (mov_optab, mode)->insn_code;
2547 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2548 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2549
2550 max_size = GET_MODE_SIZE (mode);
2551 }
2552
2553 /* The code above should have handled everything. */
2554 gcc_assert (!data->len);
2555 }
2556
2557 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2558 with move instructions for mode MODE. GENFUN is the gen_... function
2559 to make a move insn for that mode. DATA has all the other info. */
2560
2561 static void
2562 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2563 struct store_by_pieces_d *data)
2564 {
2565 unsigned int size = GET_MODE_SIZE (mode);
2566 rtx to1, cst;
2567
2568 while (data->len >= size)
2569 {
2570 if (data->reverse)
2571 data->offset -= size;
2572
2573 if (data->autinc_to)
2574 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2575 data->offset);
2576 else
2577 to1 = adjust_address (data->to, mode, data->offset);
2578
2579 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2580 emit_insn (gen_add2_insn (data->to_addr,
2581 GEN_INT (-(HOST_WIDE_INT) size)));
2582
2583 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2584 emit_insn ((*genfun) (to1, cst));
2585
2586 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2587 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2588
2589 if (! data->reverse)
2590 data->offset += size;
2591
2592 data->len -= size;
2593 }
2594 }
2595 \f
2596 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2597 its length in bytes. */
2598
2599 rtx
2600 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2601 unsigned int expected_align, HOST_WIDE_INT expected_size)
2602 {
2603 enum machine_mode mode = GET_MODE (object);
2604 unsigned int align;
2605
2606 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2607
2608 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2609 just move a zero. Otherwise, do this a piece at a time. */
2610 if (mode != BLKmode
2611 && CONST_INT_P (size)
2612 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2613 {
2614 rtx zero = CONST0_RTX (mode);
2615 if (zero != NULL)
2616 {
2617 emit_move_insn (object, zero);
2618 return NULL;
2619 }
2620
2621 if (COMPLEX_MODE_P (mode))
2622 {
2623 zero = CONST0_RTX (GET_MODE_INNER (mode));
2624 if (zero != NULL)
2625 {
2626 write_complex_part (object, zero, 0);
2627 write_complex_part (object, zero, 1);
2628 return NULL;
2629 }
2630 }
2631 }
2632
2633 if (size == const0_rtx)
2634 return NULL;
2635
2636 align = MEM_ALIGN (object);
2637
2638 if (CONST_INT_P (size)
2639 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2640 clear_by_pieces (object, INTVAL (size), align);
2641 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2642 expected_align, expected_size))
2643 ;
2644 else
2645 return set_storage_via_libcall (object, size, const0_rtx,
2646 method == BLOCK_OP_TAILCALL);
2647
2648 return NULL;
2649 }
2650
2651 rtx
2652 clear_storage (rtx object, rtx size, enum block_op_methods method)
2653 {
2654 return clear_storage_hints (object, size, method, 0, -1);
2655 }
2656
2657
2658 /* A subroutine of clear_storage. Expand a call to memset.
2659 Return the return value of memset, 0 otherwise. */
2660
2661 rtx
2662 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2663 {
2664 tree call_expr, fn, object_tree, size_tree, val_tree;
2665 enum machine_mode size_mode;
2666 rtx retval;
2667
2668 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2669 place those into new pseudos into a VAR_DECL and use them later. */
2670
2671 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2672
2673 size_mode = TYPE_MODE (sizetype);
2674 size = convert_to_mode (size_mode, size, 1);
2675 size = copy_to_mode_reg (size_mode, size);
2676
2677 /* It is incorrect to use the libcall calling conventions to call
2678 memset in this context. This could be a user call to memset and
2679 the user may wish to examine the return value from memset. For
2680 targets where libcalls and normal calls have different conventions
2681 for returning pointers, we could end up generating incorrect code. */
2682
2683 object_tree = make_tree (ptr_type_node, object);
2684 if (!CONST_INT_P (val))
2685 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2686 size_tree = make_tree (sizetype, size);
2687 val_tree = make_tree (integer_type_node, val);
2688
2689 fn = clear_storage_libcall_fn (true);
2690 call_expr = build_call_expr (fn, 3,
2691 object_tree, integer_zero_node, size_tree);
2692 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2693
2694 retval = expand_normal (call_expr);
2695
2696 return retval;
2697 }
2698
2699 /* A subroutine of set_storage_via_libcall. Create the tree node
2700 for the function we use for block clears. The first time FOR_CALL
2701 is true, we call assemble_external. */
2702
2703 tree block_clear_fn;
2704
2705 void
2706 init_block_clear_fn (const char *asmspec)
2707 {
2708 if (!block_clear_fn)
2709 {
2710 tree fn, args;
2711
2712 fn = get_identifier ("memset");
2713 args = build_function_type_list (ptr_type_node, ptr_type_node,
2714 integer_type_node, sizetype,
2715 NULL_TREE);
2716
2717 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2718 DECL_EXTERNAL (fn) = 1;
2719 TREE_PUBLIC (fn) = 1;
2720 DECL_ARTIFICIAL (fn) = 1;
2721 TREE_NOTHROW (fn) = 1;
2722 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2723 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2724
2725 block_clear_fn = fn;
2726 }
2727
2728 if (asmspec)
2729 set_user_assembler_name (block_clear_fn, asmspec);
2730 }
2731
2732 static tree
2733 clear_storage_libcall_fn (int for_call)
2734 {
2735 static bool emitted_extern;
2736
2737 if (!block_clear_fn)
2738 init_block_clear_fn (NULL);
2739
2740 if (for_call && !emitted_extern)
2741 {
2742 emitted_extern = true;
2743 make_decl_rtl (block_clear_fn);
2744 assemble_external (block_clear_fn);
2745 }
2746
2747 return block_clear_fn;
2748 }
2749 \f
2750 /* Expand a setmem pattern; return true if successful. */
2751
2752 bool
2753 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2754 unsigned int expected_align, HOST_WIDE_INT expected_size)
2755 {
2756 /* Try the most limited insn first, because there's no point
2757 including more than one in the machine description unless
2758 the more limited one has some advantage. */
2759
2760 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2761 enum machine_mode mode;
2762
2763 if (expected_align < align)
2764 expected_align = align;
2765
2766 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2767 mode = GET_MODE_WIDER_MODE (mode))
2768 {
2769 enum insn_code code = setmem_optab[(int) mode];
2770 insn_operand_predicate_fn pred;
2771
2772 if (code != CODE_FOR_nothing
2773 /* We don't need MODE to be narrower than
2774 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2775 the mode mask, as it is returned by the macro, it will
2776 definitely be less than the actual mode mask. */
2777 && ((CONST_INT_P (size)
2778 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2779 <= (GET_MODE_MASK (mode) >> 1)))
2780 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2781 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2782 || (*pred) (object, BLKmode))
2783 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2784 || (*pred) (opalign, VOIDmode)))
2785 {
2786 rtx opsize, opchar;
2787 enum machine_mode char_mode;
2788 rtx last = get_last_insn ();
2789 rtx pat;
2790
2791 opsize = convert_to_mode (mode, size, 1);
2792 pred = insn_data[(int) code].operand[1].predicate;
2793 if (pred != 0 && ! (*pred) (opsize, mode))
2794 opsize = copy_to_mode_reg (mode, opsize);
2795
2796 opchar = val;
2797 char_mode = insn_data[(int) code].operand[2].mode;
2798 if (char_mode != VOIDmode)
2799 {
2800 opchar = convert_to_mode (char_mode, opchar, 1);
2801 pred = insn_data[(int) code].operand[2].predicate;
2802 if (pred != 0 && ! (*pred) (opchar, char_mode))
2803 opchar = copy_to_mode_reg (char_mode, opchar);
2804 }
2805
2806 if (insn_data[(int) code].n_operands == 4)
2807 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2808 else
2809 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2810 GEN_INT (expected_align
2811 / BITS_PER_UNIT),
2812 GEN_INT (expected_size));
2813 if (pat)
2814 {
2815 emit_insn (pat);
2816 return true;
2817 }
2818 else
2819 delete_insns_since (last);
2820 }
2821 }
2822
2823 return false;
2824 }
2825
2826 \f
2827 /* Write to one of the components of the complex value CPLX. Write VAL to
2828 the real part if IMAG_P is false, and the imaginary part if its true. */
2829
2830 static void
2831 write_complex_part (rtx cplx, rtx val, bool imag_p)
2832 {
2833 enum machine_mode cmode;
2834 enum machine_mode imode;
2835 unsigned ibitsize;
2836
2837 if (GET_CODE (cplx) == CONCAT)
2838 {
2839 emit_move_insn (XEXP (cplx, imag_p), val);
2840 return;
2841 }
2842
2843 cmode = GET_MODE (cplx);
2844 imode = GET_MODE_INNER (cmode);
2845 ibitsize = GET_MODE_BITSIZE (imode);
2846
2847 /* For MEMs simplify_gen_subreg may generate an invalid new address
2848 because, e.g., the original address is considered mode-dependent
2849 by the target, which restricts simplify_subreg from invoking
2850 adjust_address_nv. Instead of preparing fallback support for an
2851 invalid address, we call adjust_address_nv directly. */
2852 if (MEM_P (cplx))
2853 {
2854 emit_move_insn (adjust_address_nv (cplx, imode,
2855 imag_p ? GET_MODE_SIZE (imode) : 0),
2856 val);
2857 return;
2858 }
2859
2860 /* If the sub-object is at least word sized, then we know that subregging
2861 will work. This special case is important, since store_bit_field
2862 wants to operate on integer modes, and there's rarely an OImode to
2863 correspond to TCmode. */
2864 if (ibitsize >= BITS_PER_WORD
2865 /* For hard regs we have exact predicates. Assume we can split
2866 the original object if it spans an even number of hard regs.
2867 This special case is important for SCmode on 64-bit platforms
2868 where the natural size of floating-point regs is 32-bit. */
2869 || (REG_P (cplx)
2870 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2871 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2872 {
2873 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2874 imag_p ? GET_MODE_SIZE (imode) : 0);
2875 if (part)
2876 {
2877 emit_move_insn (part, val);
2878 return;
2879 }
2880 else
2881 /* simplify_gen_subreg may fail for sub-word MEMs. */
2882 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2883 }
2884
2885 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2886 }
2887
2888 /* Extract one of the components of the complex value CPLX. Extract the
2889 real part if IMAG_P is false, and the imaginary part if it's true. */
2890
2891 static rtx
2892 read_complex_part (rtx cplx, bool imag_p)
2893 {
2894 enum machine_mode cmode, imode;
2895 unsigned ibitsize;
2896
2897 if (GET_CODE (cplx) == CONCAT)
2898 return XEXP (cplx, imag_p);
2899
2900 cmode = GET_MODE (cplx);
2901 imode = GET_MODE_INNER (cmode);
2902 ibitsize = GET_MODE_BITSIZE (imode);
2903
2904 /* Special case reads from complex constants that got spilled to memory. */
2905 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2906 {
2907 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2908 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2909 {
2910 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2911 if (CONSTANT_CLASS_P (part))
2912 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2913 }
2914 }
2915
2916 /* For MEMs simplify_gen_subreg may generate an invalid new address
2917 because, e.g., the original address is considered mode-dependent
2918 by the target, which restricts simplify_subreg from invoking
2919 adjust_address_nv. Instead of preparing fallback support for an
2920 invalid address, we call adjust_address_nv directly. */
2921 if (MEM_P (cplx))
2922 return adjust_address_nv (cplx, imode,
2923 imag_p ? GET_MODE_SIZE (imode) : 0);
2924
2925 /* If the sub-object is at least word sized, then we know that subregging
2926 will work. This special case is important, since extract_bit_field
2927 wants to operate on integer modes, and there's rarely an OImode to
2928 correspond to TCmode. */
2929 if (ibitsize >= BITS_PER_WORD
2930 /* For hard regs we have exact predicates. Assume we can split
2931 the original object if it spans an even number of hard regs.
2932 This special case is important for SCmode on 64-bit platforms
2933 where the natural size of floating-point regs is 32-bit. */
2934 || (REG_P (cplx)
2935 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2936 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2937 {
2938 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2939 imag_p ? GET_MODE_SIZE (imode) : 0);
2940 if (ret)
2941 return ret;
2942 else
2943 /* simplify_gen_subreg may fail for sub-word MEMs. */
2944 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2945 }
2946
2947 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2948 true, NULL_RTX, imode, imode);
2949 }
2950 \f
2951 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2952 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2953 represented in NEW_MODE. If FORCE is true, this will never happen, as
2954 we'll force-create a SUBREG if needed. */
2955
2956 static rtx
2957 emit_move_change_mode (enum machine_mode new_mode,
2958 enum machine_mode old_mode, rtx x, bool force)
2959 {
2960 rtx ret;
2961
2962 if (push_operand (x, GET_MODE (x)))
2963 {
2964 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2965 MEM_COPY_ATTRIBUTES (ret, x);
2966 }
2967 else if (MEM_P (x))
2968 {
2969 /* We don't have to worry about changing the address since the
2970 size in bytes is supposed to be the same. */
2971 if (reload_in_progress)
2972 {
2973 /* Copy the MEM to change the mode and move any
2974 substitutions from the old MEM to the new one. */
2975 ret = adjust_address_nv (x, new_mode, 0);
2976 copy_replacements (x, ret);
2977 }
2978 else
2979 ret = adjust_address (x, new_mode, 0);
2980 }
2981 else
2982 {
2983 /* Note that we do want simplify_subreg's behavior of validating
2984 that the new mode is ok for a hard register. If we were to use
2985 simplify_gen_subreg, we would create the subreg, but would
2986 probably run into the target not being able to implement it. */
2987 /* Except, of course, when FORCE is true, when this is exactly what
2988 we want. Which is needed for CCmodes on some targets. */
2989 if (force)
2990 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2991 else
2992 ret = simplify_subreg (new_mode, x, old_mode, 0);
2993 }
2994
2995 return ret;
2996 }
2997
2998 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2999 an integer mode of the same size as MODE. Returns the instruction
3000 emitted, or NULL if such a move could not be generated. */
3001
3002 static rtx
3003 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3004 {
3005 enum machine_mode imode;
3006 enum insn_code code;
3007
3008 /* There must exist a mode of the exact size we require. */
3009 imode = int_mode_for_mode (mode);
3010 if (imode == BLKmode)
3011 return NULL_RTX;
3012
3013 /* The target must support moves in this mode. */
3014 code = optab_handler (mov_optab, imode)->insn_code;
3015 if (code == CODE_FOR_nothing)
3016 return NULL_RTX;
3017
3018 x = emit_move_change_mode (imode, mode, x, force);
3019 if (x == NULL_RTX)
3020 return NULL_RTX;
3021 y = emit_move_change_mode (imode, mode, y, force);
3022 if (y == NULL_RTX)
3023 return NULL_RTX;
3024 return emit_insn (GEN_FCN (code) (x, y));
3025 }
3026
3027 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3028 Return an equivalent MEM that does not use an auto-increment. */
3029
3030 static rtx
3031 emit_move_resolve_push (enum machine_mode mode, rtx x)
3032 {
3033 enum rtx_code code = GET_CODE (XEXP (x, 0));
3034 HOST_WIDE_INT adjust;
3035 rtx temp;
3036
3037 adjust = GET_MODE_SIZE (mode);
3038 #ifdef PUSH_ROUNDING
3039 adjust = PUSH_ROUNDING (adjust);
3040 #endif
3041 if (code == PRE_DEC || code == POST_DEC)
3042 adjust = -adjust;
3043 else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 {
3045 rtx expr = XEXP (XEXP (x, 0), 1);
3046 HOST_WIDE_INT val;
3047
3048 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3049 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3050 val = INTVAL (XEXP (expr, 1));
3051 if (GET_CODE (expr) == MINUS)
3052 val = -val;
3053 gcc_assert (adjust == val || adjust == -val);
3054 adjust = val;
3055 }
3056
3057 /* Do not use anti_adjust_stack, since we don't want to update
3058 stack_pointer_delta. */
3059 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3060 GEN_INT (adjust), stack_pointer_rtx,
3061 0, OPTAB_LIB_WIDEN);
3062 if (temp != stack_pointer_rtx)
3063 emit_move_insn (stack_pointer_rtx, temp);
3064
3065 switch (code)
3066 {
3067 case PRE_INC:
3068 case PRE_DEC:
3069 case PRE_MODIFY:
3070 temp = stack_pointer_rtx;
3071 break;
3072 case POST_INC:
3073 case POST_DEC:
3074 case POST_MODIFY:
3075 temp = plus_constant (stack_pointer_rtx, -adjust);
3076 break;
3077 default:
3078 gcc_unreachable ();
3079 }
3080
3081 return replace_equiv_address (x, temp);
3082 }
3083
3084 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3085 X is known to satisfy push_operand, and MODE is known to be complex.
3086 Returns the last instruction emitted. */
3087
3088 rtx
3089 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3090 {
3091 enum machine_mode submode = GET_MODE_INNER (mode);
3092 bool imag_first;
3093
3094 #ifdef PUSH_ROUNDING
3095 unsigned int submodesize = GET_MODE_SIZE (submode);
3096
3097 /* In case we output to the stack, but the size is smaller than the
3098 machine can push exactly, we need to use move instructions. */
3099 if (PUSH_ROUNDING (submodesize) != submodesize)
3100 {
3101 x = emit_move_resolve_push (mode, x);
3102 return emit_move_insn (x, y);
3103 }
3104 #endif
3105
3106 /* Note that the real part always precedes the imag part in memory
3107 regardless of machine's endianness. */
3108 switch (GET_CODE (XEXP (x, 0)))
3109 {
3110 case PRE_DEC:
3111 case POST_DEC:
3112 imag_first = true;
3113 break;
3114 case PRE_INC:
3115 case POST_INC:
3116 imag_first = false;
3117 break;
3118 default:
3119 gcc_unreachable ();
3120 }
3121
3122 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3123 read_complex_part (y, imag_first));
3124 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3125 read_complex_part (y, !imag_first));
3126 }
3127
3128 /* A subroutine of emit_move_complex. Perform the move from Y to X
3129 via two moves of the parts. Returns the last instruction emitted. */
3130
3131 rtx
3132 emit_move_complex_parts (rtx x, rtx y)
3133 {
3134 /* Show the output dies here. This is necessary for SUBREGs
3135 of pseudos since we cannot track their lifetimes correctly;
3136 hard regs shouldn't appear here except as return values. */
3137 if (!reload_completed && !reload_in_progress
3138 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3139 emit_clobber (x);
3140
3141 write_complex_part (x, read_complex_part (y, false), false);
3142 write_complex_part (x, read_complex_part (y, true), true);
3143
3144 return get_last_insn ();
3145 }
3146
3147 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3148 MODE is known to be complex. Returns the last instruction emitted. */
3149
3150 static rtx
3151 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3152 {
3153 bool try_int;
3154
3155 /* Need to take special care for pushes, to maintain proper ordering
3156 of the data, and possibly extra padding. */
3157 if (push_operand (x, mode))
3158 return emit_move_complex_push (mode, x, y);
3159
3160 /* See if we can coerce the target into moving both values at once. */
3161
3162 /* Move floating point as parts. */
3163 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3164 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3165 try_int = false;
3166 /* Not possible if the values are inherently not adjacent. */
3167 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3168 try_int = false;
3169 /* Is possible if both are registers (or subregs of registers). */
3170 else if (register_operand (x, mode) && register_operand (y, mode))
3171 try_int = true;
3172 /* If one of the operands is a memory, and alignment constraints
3173 are friendly enough, we may be able to do combined memory operations.
3174 We do not attempt this if Y is a constant because that combination is
3175 usually better with the by-parts thing below. */
3176 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3177 && (!STRICT_ALIGNMENT
3178 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3179 try_int = true;
3180 else
3181 try_int = false;
3182
3183 if (try_int)
3184 {
3185 rtx ret;
3186
3187 /* For memory to memory moves, optimal behavior can be had with the
3188 existing block move logic. */
3189 if (MEM_P (x) && MEM_P (y))
3190 {
3191 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3192 BLOCK_OP_NO_LIBCALL);
3193 return get_last_insn ();
3194 }
3195
3196 ret = emit_move_via_integer (mode, x, y, true);
3197 if (ret)
3198 return ret;
3199 }
3200
3201 return emit_move_complex_parts (x, y);
3202 }
3203
3204 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3205 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3206
3207 static rtx
3208 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3209 {
3210 rtx ret;
3211
3212 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3213 if (mode != CCmode)
3214 {
3215 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3216 if (code != CODE_FOR_nothing)
3217 {
3218 x = emit_move_change_mode (CCmode, mode, x, true);
3219 y = emit_move_change_mode (CCmode, mode, y, true);
3220 return emit_insn (GEN_FCN (code) (x, y));
3221 }
3222 }
3223
3224 /* Otherwise, find the MODE_INT mode of the same width. */
3225 ret = emit_move_via_integer (mode, x, y, false);
3226 gcc_assert (ret != NULL);
3227 return ret;
3228 }
3229
3230 /* Return true if word I of OP lies entirely in the
3231 undefined bits of a paradoxical subreg. */
3232
3233 static bool
3234 undefined_operand_subword_p (const_rtx op, int i)
3235 {
3236 enum machine_mode innermode, innermostmode;
3237 int offset;
3238 if (GET_CODE (op) != SUBREG)
3239 return false;
3240 innermode = GET_MODE (op);
3241 innermostmode = GET_MODE (SUBREG_REG (op));
3242 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3243 /* The SUBREG_BYTE represents offset, as if the value were stored in
3244 memory, except for a paradoxical subreg where we define
3245 SUBREG_BYTE to be 0; undo this exception as in
3246 simplify_subreg. */
3247 if (SUBREG_BYTE (op) == 0
3248 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3249 {
3250 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3251 if (WORDS_BIG_ENDIAN)
3252 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3253 if (BYTES_BIG_ENDIAN)
3254 offset += difference % UNITS_PER_WORD;
3255 }
3256 if (offset >= GET_MODE_SIZE (innermostmode)
3257 || offset <= -GET_MODE_SIZE (word_mode))
3258 return true;
3259 return false;
3260 }
3261
3262 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3263 MODE is any multi-word or full-word mode that lacks a move_insn
3264 pattern. Note that you will get better code if you define such
3265 patterns, even if they must turn into multiple assembler instructions. */
3266
3267 static rtx
3268 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3269 {
3270 rtx last_insn = 0;
3271 rtx seq, inner;
3272 bool need_clobber;
3273 int i;
3274
3275 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3276
3277 /* If X is a push on the stack, do the push now and replace
3278 X with a reference to the stack pointer. */
3279 if (push_operand (x, mode))
3280 x = emit_move_resolve_push (mode, x);
3281
3282 /* If we are in reload, see if either operand is a MEM whose address
3283 is scheduled for replacement. */
3284 if (reload_in_progress && MEM_P (x)
3285 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3286 x = replace_equiv_address_nv (x, inner);
3287 if (reload_in_progress && MEM_P (y)
3288 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3289 y = replace_equiv_address_nv (y, inner);
3290
3291 start_sequence ();
3292
3293 need_clobber = false;
3294 for (i = 0;
3295 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3296 i++)
3297 {
3298 rtx xpart = operand_subword (x, i, 1, mode);
3299 rtx ypart;
3300
3301 /* Do not generate code for a move if it would come entirely
3302 from the undefined bits of a paradoxical subreg. */
3303 if (undefined_operand_subword_p (y, i))
3304 continue;
3305
3306 ypart = operand_subword (y, i, 1, mode);
3307
3308 /* If we can't get a part of Y, put Y into memory if it is a
3309 constant. Otherwise, force it into a register. Then we must
3310 be able to get a part of Y. */
3311 if (ypart == 0 && CONSTANT_P (y))
3312 {
3313 y = use_anchored_address (force_const_mem (mode, y));
3314 ypart = operand_subword (y, i, 1, mode);
3315 }
3316 else if (ypart == 0)
3317 ypart = operand_subword_force (y, i, mode);
3318
3319 gcc_assert (xpart && ypart);
3320
3321 need_clobber |= (GET_CODE (xpart) == SUBREG);
3322
3323 last_insn = emit_move_insn (xpart, ypart);
3324 }
3325
3326 seq = get_insns ();
3327 end_sequence ();
3328
3329 /* Show the output dies here. This is necessary for SUBREGs
3330 of pseudos since we cannot track their lifetimes correctly;
3331 hard regs shouldn't appear here except as return values.
3332 We never want to emit such a clobber after reload. */
3333 if (x != y
3334 && ! (reload_in_progress || reload_completed)
3335 && need_clobber != 0)
3336 emit_clobber (x);
3337
3338 emit_insn (seq);
3339
3340 return last_insn;
3341 }
3342
3343 /* Low level part of emit_move_insn.
3344 Called just like emit_move_insn, but assumes X and Y
3345 are basically valid. */
3346
3347 rtx
3348 emit_move_insn_1 (rtx x, rtx y)
3349 {
3350 enum machine_mode mode = GET_MODE (x);
3351 enum insn_code code;
3352
3353 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3354
3355 code = optab_handler (mov_optab, mode)->insn_code;
3356 if (code != CODE_FOR_nothing)
3357 return emit_insn (GEN_FCN (code) (x, y));
3358
3359 /* Expand complex moves by moving real part and imag part. */
3360 if (COMPLEX_MODE_P (mode))
3361 return emit_move_complex (mode, x, y);
3362
3363 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3364 || ALL_FIXED_POINT_MODE_P (mode))
3365 {
3366 rtx result = emit_move_via_integer (mode, x, y, true);
3367
3368 /* If we can't find an integer mode, use multi words. */
3369 if (result)
3370 return result;
3371 else
3372 return emit_move_multi_word (mode, x, y);
3373 }
3374
3375 if (GET_MODE_CLASS (mode) == MODE_CC)
3376 return emit_move_ccmode (mode, x, y);
3377
3378 /* Try using a move pattern for the corresponding integer mode. This is
3379 only safe when simplify_subreg can convert MODE constants into integer
3380 constants. At present, it can only do this reliably if the value
3381 fits within a HOST_WIDE_INT. */
3382 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3383 {
3384 rtx ret = emit_move_via_integer (mode, x, y, false);
3385 if (ret)
3386 return ret;
3387 }
3388
3389 return emit_move_multi_word (mode, x, y);
3390 }
3391
3392 /* Generate code to copy Y into X.
3393 Both Y and X must have the same mode, except that
3394 Y can be a constant with VOIDmode.
3395 This mode cannot be BLKmode; use emit_block_move for that.
3396
3397 Return the last instruction emitted. */
3398
3399 rtx
3400 emit_move_insn (rtx x, rtx y)
3401 {
3402 enum machine_mode mode = GET_MODE (x);
3403 rtx y_cst = NULL_RTX;
3404 rtx last_insn, set;
3405
3406 gcc_assert (mode != BLKmode
3407 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3408
3409 if (CONSTANT_P (y))
3410 {
3411 if (optimize
3412 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3413 && (last_insn = compress_float_constant (x, y)))
3414 return last_insn;
3415
3416 y_cst = y;
3417
3418 if (!LEGITIMATE_CONSTANT_P (y))
3419 {
3420 y = force_const_mem (mode, y);
3421
3422 /* If the target's cannot_force_const_mem prevented the spill,
3423 assume that the target's move expanders will also take care
3424 of the non-legitimate constant. */
3425 if (!y)
3426 y = y_cst;
3427 else
3428 y = use_anchored_address (y);
3429 }
3430 }
3431
3432 /* If X or Y are memory references, verify that their addresses are valid
3433 for the machine. */
3434 if (MEM_P (x)
3435 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3436 && ! push_operand (x, GET_MODE (x))))
3437 x = validize_mem (x);
3438
3439 if (MEM_P (y)
3440 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3441 y = validize_mem (y);
3442
3443 gcc_assert (mode != BLKmode);
3444
3445 last_insn = emit_move_insn_1 (x, y);
3446
3447 if (y_cst && REG_P (x)
3448 && (set = single_set (last_insn)) != NULL_RTX
3449 && SET_DEST (set) == x
3450 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3451 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3452
3453 return last_insn;
3454 }
3455
3456 /* If Y is representable exactly in a narrower mode, and the target can
3457 perform the extension directly from constant or memory, then emit the
3458 move as an extension. */
3459
3460 static rtx
3461 compress_float_constant (rtx x, rtx y)
3462 {
3463 enum machine_mode dstmode = GET_MODE (x);
3464 enum machine_mode orig_srcmode = GET_MODE (y);
3465 enum machine_mode srcmode;
3466 REAL_VALUE_TYPE r;
3467 int oldcost, newcost;
3468 bool speed = optimize_insn_for_speed_p ();
3469
3470 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3471
3472 if (LEGITIMATE_CONSTANT_P (y))
3473 oldcost = rtx_cost (y, SET, speed);
3474 else
3475 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3476
3477 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3478 srcmode != orig_srcmode;
3479 srcmode = GET_MODE_WIDER_MODE (srcmode))
3480 {
3481 enum insn_code ic;
3482 rtx trunc_y, last_insn;
3483
3484 /* Skip if the target can't extend this way. */
3485 ic = can_extend_p (dstmode, srcmode, 0);
3486 if (ic == CODE_FOR_nothing)
3487 continue;
3488
3489 /* Skip if the narrowed value isn't exact. */
3490 if (! exact_real_truncate (srcmode, &r))
3491 continue;
3492
3493 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3494
3495 if (LEGITIMATE_CONSTANT_P (trunc_y))
3496 {
3497 /* Skip if the target needs extra instructions to perform
3498 the extension. */
3499 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3500 continue;
3501 /* This is valid, but may not be cheaper than the original. */
3502 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3503 if (oldcost < newcost)
3504 continue;
3505 }
3506 else if (float_extend_from_mem[dstmode][srcmode])
3507 {
3508 trunc_y = force_const_mem (srcmode, trunc_y);
3509 /* This is valid, but may not be cheaper than the original. */
3510 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3511 if (oldcost < newcost)
3512 continue;
3513 trunc_y = validize_mem (trunc_y);
3514 }
3515 else
3516 continue;
3517
3518 /* For CSE's benefit, force the compressed constant pool entry
3519 into a new pseudo. This constant may be used in different modes,
3520 and if not, combine will put things back together for us. */
3521 trunc_y = force_reg (srcmode, trunc_y);
3522 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3523 last_insn = get_last_insn ();
3524
3525 if (REG_P (x))
3526 set_unique_reg_note (last_insn, REG_EQUAL, y);
3527
3528 return last_insn;
3529 }
3530
3531 return NULL_RTX;
3532 }
3533 \f
3534 /* Pushing data onto the stack. */
3535
3536 /* Push a block of length SIZE (perhaps variable)
3537 and return an rtx to address the beginning of the block.
3538 The value may be virtual_outgoing_args_rtx.
3539
3540 EXTRA is the number of bytes of padding to push in addition to SIZE.
3541 BELOW nonzero means this padding comes at low addresses;
3542 otherwise, the padding comes at high addresses. */
3543
3544 rtx
3545 push_block (rtx size, int extra, int below)
3546 {
3547 rtx temp;
3548
3549 size = convert_modes (Pmode, ptr_mode, size, 1);
3550 if (CONSTANT_P (size))
3551 anti_adjust_stack (plus_constant (size, extra));
3552 else if (REG_P (size) && extra == 0)
3553 anti_adjust_stack (size);
3554 else
3555 {
3556 temp = copy_to_mode_reg (Pmode, size);
3557 if (extra != 0)
3558 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3559 temp, 0, OPTAB_LIB_WIDEN);
3560 anti_adjust_stack (temp);
3561 }
3562
3563 #ifndef STACK_GROWS_DOWNWARD
3564 if (0)
3565 #else
3566 if (1)
3567 #endif
3568 {
3569 temp = virtual_outgoing_args_rtx;
3570 if (extra != 0 && below)
3571 temp = plus_constant (temp, extra);
3572 }
3573 else
3574 {
3575 if (CONST_INT_P (size))
3576 temp = plus_constant (virtual_outgoing_args_rtx,
3577 -INTVAL (size) - (below ? 0 : extra));
3578 else if (extra != 0 && !below)
3579 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3580 negate_rtx (Pmode, plus_constant (size, extra)));
3581 else
3582 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3583 negate_rtx (Pmode, size));
3584 }
3585
3586 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3587 }
3588
3589 #ifdef PUSH_ROUNDING
3590
3591 /* Emit single push insn. */
3592
3593 static void
3594 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3595 {
3596 rtx dest_addr;
3597 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3598 rtx dest;
3599 enum insn_code icode;
3600 insn_operand_predicate_fn pred;
3601
3602 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3603 /* If there is push pattern, use it. Otherwise try old way of throwing
3604 MEM representing push operation to move expander. */
3605 icode = optab_handler (push_optab, mode)->insn_code;
3606 if (icode != CODE_FOR_nothing)
3607 {
3608 if (((pred = insn_data[(int) icode].operand[0].predicate)
3609 && !((*pred) (x, mode))))
3610 x = force_reg (mode, x);
3611 emit_insn (GEN_FCN (icode) (x));
3612 return;
3613 }
3614 if (GET_MODE_SIZE (mode) == rounded_size)
3615 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3616 /* If we are to pad downward, adjust the stack pointer first and
3617 then store X into the stack location using an offset. This is
3618 because emit_move_insn does not know how to pad; it does not have
3619 access to type. */
3620 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3621 {
3622 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3623 HOST_WIDE_INT offset;
3624
3625 emit_move_insn (stack_pointer_rtx,
3626 expand_binop (Pmode,
3627 #ifdef STACK_GROWS_DOWNWARD
3628 sub_optab,
3629 #else
3630 add_optab,
3631 #endif
3632 stack_pointer_rtx,
3633 GEN_INT (rounded_size),
3634 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3635
3636 offset = (HOST_WIDE_INT) padding_size;
3637 #ifdef STACK_GROWS_DOWNWARD
3638 if (STACK_PUSH_CODE == POST_DEC)
3639 /* We have already decremented the stack pointer, so get the
3640 previous value. */
3641 offset += (HOST_WIDE_INT) rounded_size;
3642 #else
3643 if (STACK_PUSH_CODE == POST_INC)
3644 /* We have already incremented the stack pointer, so get the
3645 previous value. */
3646 offset -= (HOST_WIDE_INT) rounded_size;
3647 #endif
3648 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3649 }
3650 else
3651 {
3652 #ifdef STACK_GROWS_DOWNWARD
3653 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3654 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3655 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3656 #else
3657 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3658 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3659 GEN_INT (rounded_size));
3660 #endif
3661 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3662 }
3663
3664 dest = gen_rtx_MEM (mode, dest_addr);
3665
3666 if (type != 0)
3667 {
3668 set_mem_attributes (dest, type, 1);
3669
3670 if (flag_optimize_sibling_calls)
3671 /* Function incoming arguments may overlap with sibling call
3672 outgoing arguments and we cannot allow reordering of reads
3673 from function arguments with stores to outgoing arguments
3674 of sibling calls. */
3675 set_mem_alias_set (dest, 0);
3676 }
3677 emit_move_insn (dest, x);
3678 }
3679 #endif
3680
3681 /* Generate code to push X onto the stack, assuming it has mode MODE and
3682 type TYPE.
3683 MODE is redundant except when X is a CONST_INT (since they don't
3684 carry mode info).
3685 SIZE is an rtx for the size of data to be copied (in bytes),
3686 needed only if X is BLKmode.
3687
3688 ALIGN (in bits) is maximum alignment we can assume.
3689
3690 If PARTIAL and REG are both nonzero, then copy that many of the first
3691 bytes of X into registers starting with REG, and push the rest of X.
3692 The amount of space pushed is decreased by PARTIAL bytes.
3693 REG must be a hard register in this case.
3694 If REG is zero but PARTIAL is not, take any all others actions for an
3695 argument partially in registers, but do not actually load any
3696 registers.
3697
3698 EXTRA is the amount in bytes of extra space to leave next to this arg.
3699 This is ignored if an argument block has already been allocated.
3700
3701 On a machine that lacks real push insns, ARGS_ADDR is the address of
3702 the bottom of the argument block for this call. We use indexing off there
3703 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3704 argument block has not been preallocated.
3705
3706 ARGS_SO_FAR is the size of args previously pushed for this call.
3707
3708 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3709 for arguments passed in registers. If nonzero, it will be the number
3710 of bytes required. */
3711
3712 void
3713 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3714 unsigned int align, int partial, rtx reg, int extra,
3715 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3716 rtx alignment_pad)
3717 {
3718 rtx xinner;
3719 enum direction stack_direction
3720 #ifdef STACK_GROWS_DOWNWARD
3721 = downward;
3722 #else
3723 = upward;
3724 #endif
3725
3726 /* Decide where to pad the argument: `downward' for below,
3727 `upward' for above, or `none' for don't pad it.
3728 Default is below for small data on big-endian machines; else above. */
3729 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3730
3731 /* Invert direction if stack is post-decrement.
3732 FIXME: why? */
3733 if (STACK_PUSH_CODE == POST_DEC)
3734 if (where_pad != none)
3735 where_pad = (where_pad == downward ? upward : downward);
3736
3737 xinner = x;
3738
3739 if (mode == BLKmode
3740 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3741 {
3742 /* Copy a block into the stack, entirely or partially. */
3743
3744 rtx temp;
3745 int used;
3746 int offset;
3747 int skip;
3748
3749 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3750 used = partial - offset;
3751
3752 if (mode != BLKmode)
3753 {
3754 /* A value is to be stored in an insufficiently aligned
3755 stack slot; copy via a suitably aligned slot if
3756 necessary. */
3757 size = GEN_INT (GET_MODE_SIZE (mode));
3758 if (!MEM_P (xinner))
3759 {
3760 temp = assign_temp (type, 0, 1, 1);
3761 emit_move_insn (temp, xinner);
3762 xinner = temp;
3763 }
3764 }
3765
3766 gcc_assert (size);
3767
3768 /* USED is now the # of bytes we need not copy to the stack
3769 because registers will take care of them. */
3770
3771 if (partial != 0)
3772 xinner = adjust_address (xinner, BLKmode, used);
3773
3774 /* If the partial register-part of the arg counts in its stack size,
3775 skip the part of stack space corresponding to the registers.
3776 Otherwise, start copying to the beginning of the stack space,
3777 by setting SKIP to 0. */
3778 skip = (reg_parm_stack_space == 0) ? 0 : used;
3779
3780 #ifdef PUSH_ROUNDING
3781 /* Do it with several push insns if that doesn't take lots of insns
3782 and if there is no difficulty with push insns that skip bytes
3783 on the stack for alignment purposes. */
3784 if (args_addr == 0
3785 && PUSH_ARGS
3786 && CONST_INT_P (size)
3787 && skip == 0
3788 && MEM_ALIGN (xinner) >= align
3789 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3790 /* Here we avoid the case of a structure whose weak alignment
3791 forces many pushes of a small amount of data,
3792 and such small pushes do rounding that causes trouble. */
3793 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3794 || align >= BIGGEST_ALIGNMENT
3795 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3796 == (align / BITS_PER_UNIT)))
3797 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3798 {
3799 /* Push padding now if padding above and stack grows down,
3800 or if padding below and stack grows up.
3801 But if space already allocated, this has already been done. */
3802 if (extra && args_addr == 0
3803 && where_pad != none && where_pad != stack_direction)
3804 anti_adjust_stack (GEN_INT (extra));
3805
3806 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3807 }
3808 else
3809 #endif /* PUSH_ROUNDING */
3810 {
3811 rtx target;
3812
3813 /* Otherwise make space on the stack and copy the data
3814 to the address of that space. */
3815
3816 /* Deduct words put into registers from the size we must copy. */
3817 if (partial != 0)
3818 {
3819 if (CONST_INT_P (size))
3820 size = GEN_INT (INTVAL (size) - used);
3821 else
3822 size = expand_binop (GET_MODE (size), sub_optab, size,
3823 GEN_INT (used), NULL_RTX, 0,
3824 OPTAB_LIB_WIDEN);
3825 }
3826
3827 /* Get the address of the stack space.
3828 In this case, we do not deal with EXTRA separately.
3829 A single stack adjust will do. */
3830 if (! args_addr)
3831 {
3832 temp = push_block (size, extra, where_pad == downward);
3833 extra = 0;
3834 }
3835 else if (CONST_INT_P (args_so_far))
3836 temp = memory_address (BLKmode,
3837 plus_constant (args_addr,
3838 skip + INTVAL (args_so_far)));
3839 else
3840 temp = memory_address (BLKmode,
3841 plus_constant (gen_rtx_PLUS (Pmode,
3842 args_addr,
3843 args_so_far),
3844 skip));
3845
3846 if (!ACCUMULATE_OUTGOING_ARGS)
3847 {
3848 /* If the source is referenced relative to the stack pointer,
3849 copy it to another register to stabilize it. We do not need
3850 to do this if we know that we won't be changing sp. */
3851
3852 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3853 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3854 temp = copy_to_reg (temp);
3855 }
3856
3857 target = gen_rtx_MEM (BLKmode, temp);
3858
3859 /* We do *not* set_mem_attributes here, because incoming arguments
3860 may overlap with sibling call outgoing arguments and we cannot
3861 allow reordering of reads from function arguments with stores
3862 to outgoing arguments of sibling calls. We do, however, want
3863 to record the alignment of the stack slot. */
3864 /* ALIGN may well be better aligned than TYPE, e.g. due to
3865 PARM_BOUNDARY. Assume the caller isn't lying. */
3866 set_mem_align (target, align);
3867
3868 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3869 }
3870 }
3871 else if (partial > 0)
3872 {
3873 /* Scalar partly in registers. */
3874
3875 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3876 int i;
3877 int not_stack;
3878 /* # bytes of start of argument
3879 that we must make space for but need not store. */
3880 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3881 int args_offset = INTVAL (args_so_far);
3882 int skip;
3883
3884 /* Push padding now if padding above and stack grows down,
3885 or if padding below and stack grows up.
3886 But if space already allocated, this has already been done. */
3887 if (extra && args_addr == 0
3888 && where_pad != none && where_pad != stack_direction)
3889 anti_adjust_stack (GEN_INT (extra));
3890
3891 /* If we make space by pushing it, we might as well push
3892 the real data. Otherwise, we can leave OFFSET nonzero
3893 and leave the space uninitialized. */
3894 if (args_addr == 0)
3895 offset = 0;
3896
3897 /* Now NOT_STACK gets the number of words that we don't need to
3898 allocate on the stack. Convert OFFSET to words too. */
3899 not_stack = (partial - offset) / UNITS_PER_WORD;
3900 offset /= UNITS_PER_WORD;
3901
3902 /* If the partial register-part of the arg counts in its stack size,
3903 skip the part of stack space corresponding to the registers.
3904 Otherwise, start copying to the beginning of the stack space,
3905 by setting SKIP to 0. */
3906 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3907
3908 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3909 x = validize_mem (force_const_mem (mode, x));
3910
3911 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3912 SUBREGs of such registers are not allowed. */
3913 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3914 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3915 x = copy_to_reg (x);
3916
3917 /* Loop over all the words allocated on the stack for this arg. */
3918 /* We can do it by words, because any scalar bigger than a word
3919 has a size a multiple of a word. */
3920 #ifndef PUSH_ARGS_REVERSED
3921 for (i = not_stack; i < size; i++)
3922 #else
3923 for (i = size - 1; i >= not_stack; i--)
3924 #endif
3925 if (i >= not_stack + offset)
3926 emit_push_insn (operand_subword_force (x, i, mode),
3927 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3928 0, args_addr,
3929 GEN_INT (args_offset + ((i - not_stack + skip)
3930 * UNITS_PER_WORD)),
3931 reg_parm_stack_space, alignment_pad);
3932 }
3933 else
3934 {
3935 rtx addr;
3936 rtx dest;
3937
3938 /* Push padding now if padding above and stack grows down,
3939 or if padding below and stack grows up.
3940 But if space already allocated, this has already been done. */
3941 if (extra && args_addr == 0
3942 && where_pad != none && where_pad != stack_direction)
3943 anti_adjust_stack (GEN_INT (extra));
3944
3945 #ifdef PUSH_ROUNDING
3946 if (args_addr == 0 && PUSH_ARGS)
3947 emit_single_push_insn (mode, x, type);
3948 else
3949 #endif
3950 {
3951 if (CONST_INT_P (args_so_far))
3952 addr
3953 = memory_address (mode,
3954 plus_constant (args_addr,
3955 INTVAL (args_so_far)));
3956 else
3957 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3958 args_so_far));
3959 dest = gen_rtx_MEM (mode, addr);
3960
3961 /* We do *not* set_mem_attributes here, because incoming arguments
3962 may overlap with sibling call outgoing arguments and we cannot
3963 allow reordering of reads from function arguments with stores
3964 to outgoing arguments of sibling calls. We do, however, want
3965 to record the alignment of the stack slot. */
3966 /* ALIGN may well be better aligned than TYPE, e.g. due to
3967 PARM_BOUNDARY. Assume the caller isn't lying. */
3968 set_mem_align (dest, align);
3969
3970 emit_move_insn (dest, x);
3971 }
3972 }
3973
3974 /* If part should go in registers, copy that part
3975 into the appropriate registers. Do this now, at the end,
3976 since mem-to-mem copies above may do function calls. */
3977 if (partial > 0 && reg != 0)
3978 {
3979 /* Handle calls that pass values in multiple non-contiguous locations.
3980 The Irix 6 ABI has examples of this. */
3981 if (GET_CODE (reg) == PARALLEL)
3982 emit_group_load (reg, x, type, -1);
3983 else
3984 {
3985 gcc_assert (partial % UNITS_PER_WORD == 0);
3986 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3987 }
3988 }
3989
3990 if (extra && args_addr == 0 && where_pad == stack_direction)
3991 anti_adjust_stack (GEN_INT (extra));
3992
3993 if (alignment_pad && args_addr == 0)
3994 anti_adjust_stack (alignment_pad);
3995 }
3996 \f
3997 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3998 operations. */
3999
4000 static rtx
4001 get_subtarget (rtx x)
4002 {
4003 return (optimize
4004 || x == 0
4005 /* Only registers can be subtargets. */
4006 || !REG_P (x)
4007 /* Don't use hard regs to avoid extending their life. */
4008 || REGNO (x) < FIRST_PSEUDO_REGISTER
4009 ? 0 : x);
4010 }
4011
4012 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4013 FIELD is a bitfield. Returns true if the optimization was successful,
4014 and there's nothing else to do. */
4015
4016 static bool
4017 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4018 unsigned HOST_WIDE_INT bitpos,
4019 enum machine_mode mode1, rtx str_rtx,
4020 tree to, tree src)
4021 {
4022 enum machine_mode str_mode = GET_MODE (str_rtx);
4023 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4024 tree op0, op1;
4025 rtx value, result;
4026 optab binop;
4027
4028 if (mode1 != VOIDmode
4029 || bitsize >= BITS_PER_WORD
4030 || str_bitsize > BITS_PER_WORD
4031 || TREE_SIDE_EFFECTS (to)
4032 || TREE_THIS_VOLATILE (to))
4033 return false;
4034
4035 STRIP_NOPS (src);
4036 if (!BINARY_CLASS_P (src)
4037 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4038 return false;
4039
4040 op0 = TREE_OPERAND (src, 0);
4041 op1 = TREE_OPERAND (src, 1);
4042 STRIP_NOPS (op0);
4043
4044 if (!operand_equal_p (to, op0, 0))
4045 return false;
4046
4047 if (MEM_P (str_rtx))
4048 {
4049 unsigned HOST_WIDE_INT offset1;
4050
4051 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4052 str_mode = word_mode;
4053 str_mode = get_best_mode (bitsize, bitpos,
4054 MEM_ALIGN (str_rtx), str_mode, 0);
4055 if (str_mode == VOIDmode)
4056 return false;
4057 str_bitsize = GET_MODE_BITSIZE (str_mode);
4058
4059 offset1 = bitpos;
4060 bitpos %= str_bitsize;
4061 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4062 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4063 }
4064 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4065 return false;
4066
4067 /* If the bit field covers the whole REG/MEM, store_field
4068 will likely generate better code. */
4069 if (bitsize >= str_bitsize)
4070 return false;
4071
4072 /* We can't handle fields split across multiple entities. */
4073 if (bitpos + bitsize > str_bitsize)
4074 return false;
4075
4076 if (BYTES_BIG_ENDIAN)
4077 bitpos = str_bitsize - bitpos - bitsize;
4078
4079 switch (TREE_CODE (src))
4080 {
4081 case PLUS_EXPR:
4082 case MINUS_EXPR:
4083 /* For now, just optimize the case of the topmost bitfield
4084 where we don't need to do any masking and also
4085 1 bit bitfields where xor can be used.
4086 We might win by one instruction for the other bitfields
4087 too if insv/extv instructions aren't used, so that
4088 can be added later. */
4089 if (bitpos + bitsize != str_bitsize
4090 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4091 break;
4092
4093 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4094 value = convert_modes (str_mode,
4095 TYPE_MODE (TREE_TYPE (op1)), value,
4096 TYPE_UNSIGNED (TREE_TYPE (op1)));
4097
4098 /* We may be accessing data outside the field, which means
4099 we can alias adjacent data. */
4100 if (MEM_P (str_rtx))
4101 {
4102 str_rtx = shallow_copy_rtx (str_rtx);
4103 set_mem_alias_set (str_rtx, 0);
4104 set_mem_expr (str_rtx, 0);
4105 }
4106
4107 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4108 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4109 {
4110 value = expand_and (str_mode, value, const1_rtx, NULL);
4111 binop = xor_optab;
4112 }
4113 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4114 build_int_cst (NULL_TREE, bitpos),
4115 NULL_RTX, 1);
4116 result = expand_binop (str_mode, binop, str_rtx,
4117 value, str_rtx, 1, OPTAB_WIDEN);
4118 if (result != str_rtx)
4119 emit_move_insn (str_rtx, result);
4120 return true;
4121
4122 case BIT_IOR_EXPR:
4123 case BIT_XOR_EXPR:
4124 if (TREE_CODE (op1) != INTEGER_CST)
4125 break;
4126 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4127 value = convert_modes (GET_MODE (str_rtx),
4128 TYPE_MODE (TREE_TYPE (op1)), value,
4129 TYPE_UNSIGNED (TREE_TYPE (op1)));
4130
4131 /* We may be accessing data outside the field, which means
4132 we can alias adjacent data. */
4133 if (MEM_P (str_rtx))
4134 {
4135 str_rtx = shallow_copy_rtx (str_rtx);
4136 set_mem_alias_set (str_rtx, 0);
4137 set_mem_expr (str_rtx, 0);
4138 }
4139
4140 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4141 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4142 {
4143 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4144 - 1);
4145 value = expand_and (GET_MODE (str_rtx), value, mask,
4146 NULL_RTX);
4147 }
4148 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4149 build_int_cst (NULL_TREE, bitpos),
4150 NULL_RTX, 1);
4151 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4152 value, str_rtx, 1, OPTAB_WIDEN);
4153 if (result != str_rtx)
4154 emit_move_insn (str_rtx, result);
4155 return true;
4156
4157 default:
4158 break;
4159 }
4160
4161 return false;
4162 }
4163
4164
4165 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4166 is true, try generating a nontemporal store. */
4167
4168 void
4169 expand_assignment (tree to, tree from, bool nontemporal)
4170 {
4171 rtx to_rtx = 0;
4172 rtx result;
4173
4174 /* Don't crash if the lhs of the assignment was erroneous. */
4175 if (TREE_CODE (to) == ERROR_MARK)
4176 {
4177 result = expand_normal (from);
4178 return;
4179 }
4180
4181 /* Optimize away no-op moves without side-effects. */
4182 if (operand_equal_p (to, from, 0))
4183 return;
4184
4185 /* Assignment of a structure component needs special treatment
4186 if the structure component's rtx is not simply a MEM.
4187 Assignment of an array element at a constant index, and assignment of
4188 an array element in an unaligned packed structure field, has the same
4189 problem. */
4190 if (handled_component_p (to)
4191 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4192 {
4193 enum machine_mode mode1;
4194 HOST_WIDE_INT bitsize, bitpos;
4195 tree offset;
4196 int unsignedp;
4197 int volatilep = 0;
4198 tree tem;
4199
4200 push_temp_slots ();
4201 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4202 &unsignedp, &volatilep, true);
4203
4204 /* If we are going to use store_bit_field and extract_bit_field,
4205 make sure to_rtx will be safe for multiple use. */
4206
4207 to_rtx = expand_normal (tem);
4208
4209 if (offset != 0)
4210 {
4211 rtx offset_rtx;
4212
4213 if (!MEM_P (to_rtx))
4214 {
4215 /* We can get constant negative offsets into arrays with broken
4216 user code. Translate this to a trap instead of ICEing. */
4217 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4218 expand_builtin_trap ();
4219 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4220 }
4221
4222 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4223 #ifdef POINTERS_EXTEND_UNSIGNED
4224 if (GET_MODE (offset_rtx) != Pmode)
4225 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4226 #else
4227 if (GET_MODE (offset_rtx) != ptr_mode)
4228 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4229 #endif
4230
4231 /* A constant address in TO_RTX can have VOIDmode, we must not try
4232 to call force_reg for that case. Avoid that case. */
4233 if (MEM_P (to_rtx)
4234 && GET_MODE (to_rtx) == BLKmode
4235 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4236 && bitsize > 0
4237 && (bitpos % bitsize) == 0
4238 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4239 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4240 {
4241 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4242 bitpos = 0;
4243 }
4244
4245 to_rtx = offset_address (to_rtx, offset_rtx,
4246 highest_pow2_factor_for_target (to,
4247 offset));
4248 }
4249
4250 /* Handle expand_expr of a complex value returning a CONCAT. */
4251 if (GET_CODE (to_rtx) == CONCAT)
4252 {
4253 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4254 {
4255 gcc_assert (bitpos == 0);
4256 result = store_expr (from, to_rtx, false, nontemporal);
4257 }
4258 else
4259 {
4260 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4261 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4262 nontemporal);
4263 }
4264 }
4265 else
4266 {
4267 if (MEM_P (to_rtx))
4268 {
4269 /* If the field is at offset zero, we could have been given the
4270 DECL_RTX of the parent struct. Don't munge it. */
4271 to_rtx = shallow_copy_rtx (to_rtx);
4272
4273 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4274
4275 /* Deal with volatile and readonly fields. The former is only
4276 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4277 if (volatilep)
4278 MEM_VOLATILE_P (to_rtx) = 1;
4279 if (component_uses_parent_alias_set (to))
4280 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4281 }
4282
4283 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4284 to_rtx, to, from))
4285 result = NULL;
4286 else
4287 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4288 TREE_TYPE (tem), get_alias_set (to),
4289 nontemporal);
4290 }
4291
4292 if (result)
4293 preserve_temp_slots (result);
4294 free_temp_slots ();
4295 pop_temp_slots ();
4296 return;
4297 }
4298
4299 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4300 {
4301 enum machine_mode mode, op_mode1;
4302 enum insn_code icode;
4303 rtx reg, addr, mem, insn;
4304
4305 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4306 reg = force_not_mem (reg);
4307
4308 mode = TYPE_MODE (TREE_TYPE (to));
4309 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4310 EXPAND_SUM);
4311 addr = memory_address (mode, addr);
4312 mem = gen_rtx_MEM (mode, addr);
4313
4314 set_mem_attributes (mem, to, 0);
4315
4316 icode = movmisalign_optab->handlers[mode].insn_code;
4317 gcc_assert (icode != CODE_FOR_nothing);
4318
4319 op_mode1 = insn_data[icode].operand[1].mode;
4320 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4321 && op_mode1 != VOIDmode)
4322 reg = copy_to_mode_reg (op_mode1, reg);
4323
4324 insn = GEN_FCN (icode) (mem, reg);
4325 emit_insn (insn);
4326 return;
4327 }
4328
4329 /* If the rhs is a function call and its value is not an aggregate,
4330 call the function before we start to compute the lhs.
4331 This is needed for correct code for cases such as
4332 val = setjmp (buf) on machines where reference to val
4333 requires loading up part of an address in a separate insn.
4334
4335 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4336 since it might be a promoted variable where the zero- or sign- extension
4337 needs to be done. Handling this in the normal way is safe because no
4338 computation is done before the call. The same is true for SSA names. */
4339 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4340 && COMPLETE_TYPE_P (TREE_TYPE (from))
4341 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4342 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4343 && REG_P (DECL_RTL (to)))
4344 || TREE_CODE (to) == SSA_NAME))
4345 {
4346 rtx value;
4347
4348 push_temp_slots ();
4349 value = expand_normal (from);
4350 if (to_rtx == 0)
4351 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4352
4353 /* Handle calls that return values in multiple non-contiguous locations.
4354 The Irix 6 ABI has examples of this. */
4355 if (GET_CODE (to_rtx) == PARALLEL)
4356 emit_group_load (to_rtx, value, TREE_TYPE (from),
4357 int_size_in_bytes (TREE_TYPE (from)));
4358 else if (GET_MODE (to_rtx) == BLKmode)
4359 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4360 else
4361 {
4362 if (POINTER_TYPE_P (TREE_TYPE (to)))
4363 value = convert_memory_address (GET_MODE (to_rtx), value);
4364 emit_move_insn (to_rtx, value);
4365 }
4366 preserve_temp_slots (to_rtx);
4367 free_temp_slots ();
4368 pop_temp_slots ();
4369 return;
4370 }
4371
4372 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4373 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4374
4375 if (to_rtx == 0)
4376 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4377
4378 /* Don't move directly into a return register. */
4379 if (TREE_CODE (to) == RESULT_DECL
4380 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4381 {
4382 rtx temp;
4383
4384 push_temp_slots ();
4385 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4386
4387 if (GET_CODE (to_rtx) == PARALLEL)
4388 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4389 int_size_in_bytes (TREE_TYPE (from)));
4390 else
4391 emit_move_insn (to_rtx, temp);
4392
4393 preserve_temp_slots (to_rtx);
4394 free_temp_slots ();
4395 pop_temp_slots ();
4396 return;
4397 }
4398
4399 /* In case we are returning the contents of an object which overlaps
4400 the place the value is being stored, use a safe function when copying
4401 a value through a pointer into a structure value return block. */
4402 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4403 && cfun->returns_struct
4404 && !cfun->returns_pcc_struct)
4405 {
4406 rtx from_rtx, size;
4407
4408 push_temp_slots ();
4409 size = expr_size (from);
4410 from_rtx = expand_normal (from);
4411
4412 emit_library_call (memmove_libfunc, LCT_NORMAL,
4413 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4414 XEXP (from_rtx, 0), Pmode,
4415 convert_to_mode (TYPE_MODE (sizetype),
4416 size, TYPE_UNSIGNED (sizetype)),
4417 TYPE_MODE (sizetype));
4418
4419 preserve_temp_slots (to_rtx);
4420 free_temp_slots ();
4421 pop_temp_slots ();
4422 return;
4423 }
4424
4425 /* Compute FROM and store the value in the rtx we got. */
4426
4427 push_temp_slots ();
4428 result = store_expr (from, to_rtx, 0, nontemporal);
4429 preserve_temp_slots (result);
4430 free_temp_slots ();
4431 pop_temp_slots ();
4432 return;
4433 }
4434
4435 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4436 succeeded, false otherwise. */
4437
4438 static bool
4439 emit_storent_insn (rtx to, rtx from)
4440 {
4441 enum machine_mode mode = GET_MODE (to), imode;
4442 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4443 rtx pattern;
4444
4445 if (code == CODE_FOR_nothing)
4446 return false;
4447
4448 imode = insn_data[code].operand[0].mode;
4449 if (!insn_data[code].operand[0].predicate (to, imode))
4450 return false;
4451
4452 imode = insn_data[code].operand[1].mode;
4453 if (!insn_data[code].operand[1].predicate (from, imode))
4454 {
4455 from = copy_to_mode_reg (imode, from);
4456 if (!insn_data[code].operand[1].predicate (from, imode))
4457 return false;
4458 }
4459
4460 pattern = GEN_FCN (code) (to, from);
4461 if (pattern == NULL_RTX)
4462 return false;
4463
4464 emit_insn (pattern);
4465 return true;
4466 }
4467
4468 /* Generate code for computing expression EXP,
4469 and storing the value into TARGET.
4470
4471 If the mode is BLKmode then we may return TARGET itself.
4472 It turns out that in BLKmode it doesn't cause a problem.
4473 because C has no operators that could combine two different
4474 assignments into the same BLKmode object with different values
4475 with no sequence point. Will other languages need this to
4476 be more thorough?
4477
4478 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4479 stack, and block moves may need to be treated specially.
4480
4481 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4482
4483 rtx
4484 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4485 {
4486 rtx temp;
4487 rtx alt_rtl = NULL_RTX;
4488 int dont_return_target = 0;
4489 location_t loc = EXPR_LOCATION (exp);
4490
4491 if (VOID_TYPE_P (TREE_TYPE (exp)))
4492 {
4493 /* C++ can generate ?: expressions with a throw expression in one
4494 branch and an rvalue in the other. Here, we resolve attempts to
4495 store the throw expression's nonexistent result. */
4496 gcc_assert (!call_param_p);
4497 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4498 return NULL_RTX;
4499 }
4500 if (TREE_CODE (exp) == COMPOUND_EXPR)
4501 {
4502 /* Perform first part of compound expression, then assign from second
4503 part. */
4504 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4505 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4506 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4507 nontemporal);
4508 }
4509 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4510 {
4511 /* For conditional expression, get safe form of the target. Then
4512 test the condition, doing the appropriate assignment on either
4513 side. This avoids the creation of unnecessary temporaries.
4514 For non-BLKmode, it is more efficient not to do this. */
4515
4516 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4517
4518 do_pending_stack_adjust ();
4519 NO_DEFER_POP;
4520 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4521 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4522 nontemporal);
4523 emit_jump_insn (gen_jump (lab2));
4524 emit_barrier ();
4525 emit_label (lab1);
4526 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4527 nontemporal);
4528 emit_label (lab2);
4529 OK_DEFER_POP;
4530
4531 return NULL_RTX;
4532 }
4533 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4534 /* If this is a scalar in a register that is stored in a wider mode
4535 than the declared mode, compute the result into its declared mode
4536 and then convert to the wider mode. Our value is the computed
4537 expression. */
4538 {
4539 rtx inner_target = 0;
4540
4541 /* We can do the conversion inside EXP, which will often result
4542 in some optimizations. Do the conversion in two steps: first
4543 change the signedness, if needed, then the extend. But don't
4544 do this if the type of EXP is a subtype of something else
4545 since then the conversion might involve more than just
4546 converting modes. */
4547 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4548 && TREE_TYPE (TREE_TYPE (exp)) == 0
4549 && GET_MODE_PRECISION (GET_MODE (target))
4550 == TYPE_PRECISION (TREE_TYPE (exp)))
4551 {
4552 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4553 != SUBREG_PROMOTED_UNSIGNED_P (target))
4554 {
4555 /* Some types, e.g. Fortran's logical*4, won't have a signed
4556 version, so use the mode instead. */
4557 tree ntype
4558 = (signed_or_unsigned_type_for
4559 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4560 if (ntype == NULL)
4561 ntype = lang_hooks.types.type_for_mode
4562 (TYPE_MODE (TREE_TYPE (exp)),
4563 SUBREG_PROMOTED_UNSIGNED_P (target));
4564
4565 exp = fold_convert_loc (loc, ntype, exp);
4566 }
4567
4568 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4569 (GET_MODE (SUBREG_REG (target)),
4570 SUBREG_PROMOTED_UNSIGNED_P (target)),
4571 exp);
4572
4573 inner_target = SUBREG_REG (target);
4574 }
4575
4576 temp = expand_expr (exp, inner_target, VOIDmode,
4577 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4578
4579 /* If TEMP is a VOIDmode constant, use convert_modes to make
4580 sure that we properly convert it. */
4581 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4582 {
4583 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4584 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4585 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4586 GET_MODE (target), temp,
4587 SUBREG_PROMOTED_UNSIGNED_P (target));
4588 }
4589
4590 convert_move (SUBREG_REG (target), temp,
4591 SUBREG_PROMOTED_UNSIGNED_P (target));
4592
4593 return NULL_RTX;
4594 }
4595 else if (TREE_CODE (exp) == STRING_CST
4596 && !nontemporal && !call_param_p
4597 && TREE_STRING_LENGTH (exp) > 0
4598 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4599 {
4600 /* Optimize initialization of an array with a STRING_CST. */
4601 HOST_WIDE_INT exp_len, str_copy_len;
4602 rtx dest_mem;
4603
4604 exp_len = int_expr_size (exp);
4605 if (exp_len <= 0)
4606 goto normal_expr;
4607
4608 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4609 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4610 goto normal_expr;
4611
4612 str_copy_len = TREE_STRING_LENGTH (exp);
4613 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4614 {
4615 str_copy_len += STORE_MAX_PIECES - 1;
4616 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4617 }
4618 str_copy_len = MIN (str_copy_len, exp_len);
4619 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4620 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4621 MEM_ALIGN (target), false))
4622 goto normal_expr;
4623
4624 dest_mem = target;
4625
4626 dest_mem = store_by_pieces (dest_mem,
4627 str_copy_len, builtin_strncpy_read_str,
4628 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4629 MEM_ALIGN (target), false,
4630 exp_len > str_copy_len ? 1 : 0);
4631 if (exp_len > str_copy_len)
4632 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4633 GEN_INT (exp_len - str_copy_len),
4634 BLOCK_OP_NORMAL);
4635 return NULL_RTX;
4636 }
4637 else
4638 {
4639 rtx tmp_target;
4640
4641 normal_expr:
4642 /* If we want to use a nontemporal store, force the value to
4643 register first. */
4644 tmp_target = nontemporal ? NULL_RTX : target;
4645 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4646 (call_param_p
4647 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4648 &alt_rtl);
4649 /* Return TARGET if it's a specified hardware register.
4650 If TARGET is a volatile mem ref, either return TARGET
4651 or return a reg copied *from* TARGET; ANSI requires this.
4652
4653 Otherwise, if TEMP is not TARGET, return TEMP
4654 if it is constant (for efficiency),
4655 or if we really want the correct value. */
4656 if (!(target && REG_P (target)
4657 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4658 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4659 && ! rtx_equal_p (temp, target)
4660 && CONSTANT_P (temp))
4661 dont_return_target = 1;
4662 }
4663
4664 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4665 the same as that of TARGET, adjust the constant. This is needed, for
4666 example, in case it is a CONST_DOUBLE and we want only a word-sized
4667 value. */
4668 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4669 && TREE_CODE (exp) != ERROR_MARK
4670 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4671 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4672 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4673
4674 /* If value was not generated in the target, store it there.
4675 Convert the value to TARGET's type first if necessary and emit the
4676 pending incrementations that have been queued when expanding EXP.
4677 Note that we cannot emit the whole queue blindly because this will
4678 effectively disable the POST_INC optimization later.
4679
4680 If TEMP and TARGET compare equal according to rtx_equal_p, but
4681 one or both of them are volatile memory refs, we have to distinguish
4682 two cases:
4683 - expand_expr has used TARGET. In this case, we must not generate
4684 another copy. This can be detected by TARGET being equal according
4685 to == .
4686 - expand_expr has not used TARGET - that means that the source just
4687 happens to have the same RTX form. Since temp will have been created
4688 by expand_expr, it will compare unequal according to == .
4689 We must generate a copy in this case, to reach the correct number
4690 of volatile memory references. */
4691
4692 if ((! rtx_equal_p (temp, target)
4693 || (temp != target && (side_effects_p (temp)
4694 || side_effects_p (target))))
4695 && TREE_CODE (exp) != ERROR_MARK
4696 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4697 but TARGET is not valid memory reference, TEMP will differ
4698 from TARGET although it is really the same location. */
4699 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4700 /* If there's nothing to copy, don't bother. Don't call
4701 expr_size unless necessary, because some front-ends (C++)
4702 expr_size-hook must not be given objects that are not
4703 supposed to be bit-copied or bit-initialized. */
4704 && expr_size (exp) != const0_rtx)
4705 {
4706 if (GET_MODE (temp) != GET_MODE (target)
4707 && GET_MODE (temp) != VOIDmode)
4708 {
4709 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4710 if (dont_return_target)
4711 {
4712 /* In this case, we will return TEMP,
4713 so make sure it has the proper mode.
4714 But don't forget to store the value into TARGET. */
4715 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4716 emit_move_insn (target, temp);
4717 }
4718 else if (GET_MODE (target) == BLKmode
4719 || GET_MODE (temp) == BLKmode)
4720 emit_block_move (target, temp, expr_size (exp),
4721 (call_param_p
4722 ? BLOCK_OP_CALL_PARM
4723 : BLOCK_OP_NORMAL));
4724 else
4725 convert_move (target, temp, unsignedp);
4726 }
4727
4728 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4729 {
4730 /* Handle copying a string constant into an array. The string
4731 constant may be shorter than the array. So copy just the string's
4732 actual length, and clear the rest. First get the size of the data
4733 type of the string, which is actually the size of the target. */
4734 rtx size = expr_size (exp);
4735
4736 if (CONST_INT_P (size)
4737 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4738 emit_block_move (target, temp, size,
4739 (call_param_p
4740 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4741 else
4742 {
4743 /* Compute the size of the data to copy from the string. */
4744 tree copy_size
4745 = size_binop_loc (loc, MIN_EXPR,
4746 make_tree (sizetype, size),
4747 size_int (TREE_STRING_LENGTH (exp)));
4748 rtx copy_size_rtx
4749 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4750 (call_param_p
4751 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4752 rtx label = 0;
4753
4754 /* Copy that much. */
4755 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4756 TYPE_UNSIGNED (sizetype));
4757 emit_block_move (target, temp, copy_size_rtx,
4758 (call_param_p
4759 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4760
4761 /* Figure out how much is left in TARGET that we have to clear.
4762 Do all calculations in ptr_mode. */
4763 if (CONST_INT_P (copy_size_rtx))
4764 {
4765 size = plus_constant (size, -INTVAL (copy_size_rtx));
4766 target = adjust_address (target, BLKmode,
4767 INTVAL (copy_size_rtx));
4768 }
4769 else
4770 {
4771 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4772 copy_size_rtx, NULL_RTX, 0,
4773 OPTAB_LIB_WIDEN);
4774
4775 #ifdef POINTERS_EXTEND_UNSIGNED
4776 if (GET_MODE (copy_size_rtx) != Pmode)
4777 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4778 TYPE_UNSIGNED (sizetype));
4779 #endif
4780
4781 target = offset_address (target, copy_size_rtx,
4782 highest_pow2_factor (copy_size));
4783 label = gen_label_rtx ();
4784 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4785 GET_MODE (size), 0, label);
4786 }
4787
4788 if (size != const0_rtx)
4789 clear_storage (target, size, BLOCK_OP_NORMAL);
4790
4791 if (label)
4792 emit_label (label);
4793 }
4794 }
4795 /* Handle calls that return values in multiple non-contiguous locations.
4796 The Irix 6 ABI has examples of this. */
4797 else if (GET_CODE (target) == PARALLEL)
4798 emit_group_load (target, temp, TREE_TYPE (exp),
4799 int_size_in_bytes (TREE_TYPE (exp)));
4800 else if (GET_MODE (temp) == BLKmode)
4801 emit_block_move (target, temp, expr_size (exp),
4802 (call_param_p
4803 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4804 else if (nontemporal
4805 && emit_storent_insn (target, temp))
4806 /* If we managed to emit a nontemporal store, there is nothing else to
4807 do. */
4808 ;
4809 else
4810 {
4811 temp = force_operand (temp, target);
4812 if (temp != target)
4813 emit_move_insn (target, temp);
4814 }
4815 }
4816
4817 return NULL_RTX;
4818 }
4819 \f
4820 /* Helper for categorize_ctor_elements. Identical interface. */
4821
4822 static bool
4823 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4824 HOST_WIDE_INT *p_elt_count,
4825 bool *p_must_clear)
4826 {
4827 unsigned HOST_WIDE_INT idx;
4828 HOST_WIDE_INT nz_elts, elt_count;
4829 tree value, purpose;
4830
4831 /* Whether CTOR is a valid constant initializer, in accordance with what
4832 initializer_constant_valid_p does. If inferred from the constructor
4833 elements, true until proven otherwise. */
4834 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4835 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4836
4837 nz_elts = 0;
4838 elt_count = 0;
4839
4840 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4841 {
4842 HOST_WIDE_INT mult;
4843
4844 mult = 1;
4845 if (TREE_CODE (purpose) == RANGE_EXPR)
4846 {
4847 tree lo_index = TREE_OPERAND (purpose, 0);
4848 tree hi_index = TREE_OPERAND (purpose, 1);
4849
4850 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4851 mult = (tree_low_cst (hi_index, 1)
4852 - tree_low_cst (lo_index, 1) + 1);
4853 }
4854
4855 switch (TREE_CODE (value))
4856 {
4857 case CONSTRUCTOR:
4858 {
4859 HOST_WIDE_INT nz = 0, ic = 0;
4860
4861 bool const_elt_p
4862 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4863
4864 nz_elts += mult * nz;
4865 elt_count += mult * ic;
4866
4867 if (const_from_elts_p && const_p)
4868 const_p = const_elt_p;
4869 }
4870 break;
4871
4872 case INTEGER_CST:
4873 case REAL_CST:
4874 case FIXED_CST:
4875 if (!initializer_zerop (value))
4876 nz_elts += mult;
4877 elt_count += mult;
4878 break;
4879
4880 case STRING_CST:
4881 nz_elts += mult * TREE_STRING_LENGTH (value);
4882 elt_count += mult * TREE_STRING_LENGTH (value);
4883 break;
4884
4885 case COMPLEX_CST:
4886 if (!initializer_zerop (TREE_REALPART (value)))
4887 nz_elts += mult;
4888 if (!initializer_zerop (TREE_IMAGPART (value)))
4889 nz_elts += mult;
4890 elt_count += mult;
4891 break;
4892
4893 case VECTOR_CST:
4894 {
4895 tree v;
4896 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4897 {
4898 if (!initializer_zerop (TREE_VALUE (v)))
4899 nz_elts += mult;
4900 elt_count += mult;
4901 }
4902 }
4903 break;
4904
4905 default:
4906 nz_elts += mult;
4907 elt_count += mult;
4908
4909 if (const_from_elts_p && const_p)
4910 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4911 != NULL_TREE;
4912 break;
4913 }
4914 }
4915
4916 if (!*p_must_clear
4917 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4918 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4919 {
4920 tree init_sub_type;
4921 bool clear_this = true;
4922
4923 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4924 {
4925 /* We don't expect more than one element of the union to be
4926 initialized. Not sure what we should do otherwise... */
4927 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4928 == 1);
4929
4930 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4931 CONSTRUCTOR_ELTS (ctor),
4932 0)->value);
4933
4934 /* ??? We could look at each element of the union, and find the
4935 largest element. Which would avoid comparing the size of the
4936 initialized element against any tail padding in the union.
4937 Doesn't seem worth the effort... */
4938 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4939 TYPE_SIZE (init_sub_type)) == 1)
4940 {
4941 /* And now we have to find out if the element itself is fully
4942 constructed. E.g. for union { struct { int a, b; } s; } u
4943 = { .s = { .a = 1 } }. */
4944 if (elt_count == count_type_elements (init_sub_type, false))
4945 clear_this = false;
4946 }
4947 }
4948
4949 *p_must_clear = clear_this;
4950 }
4951
4952 *p_nz_elts += nz_elts;
4953 *p_elt_count += elt_count;
4954
4955 return const_p;
4956 }
4957
4958 /* Examine CTOR to discover:
4959 * how many scalar fields are set to nonzero values,
4960 and place it in *P_NZ_ELTS;
4961 * how many scalar fields in total are in CTOR,
4962 and place it in *P_ELT_COUNT.
4963 * if a type is a union, and the initializer from the constructor
4964 is not the largest element in the union, then set *p_must_clear.
4965
4966 Return whether or not CTOR is a valid static constant initializer, the same
4967 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4968
4969 bool
4970 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4971 HOST_WIDE_INT *p_elt_count,
4972 bool *p_must_clear)
4973 {
4974 *p_nz_elts = 0;
4975 *p_elt_count = 0;
4976 *p_must_clear = false;
4977
4978 return
4979 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4980 }
4981
4982 /* Count the number of scalars in TYPE. Return -1 on overflow or
4983 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4984 array member at the end of the structure. */
4985
4986 HOST_WIDE_INT
4987 count_type_elements (const_tree type, bool allow_flexarr)
4988 {
4989 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4990 switch (TREE_CODE (type))
4991 {
4992 case ARRAY_TYPE:
4993 {
4994 tree telts = array_type_nelts (type);
4995 if (telts && host_integerp (telts, 1))
4996 {
4997 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4998 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4999 if (n == 0)
5000 return 0;
5001 else if (max / n > m)
5002 return n * m;
5003 }
5004 return -1;
5005 }
5006
5007 case RECORD_TYPE:
5008 {
5009 HOST_WIDE_INT n = 0, t;
5010 tree f;
5011
5012 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5013 if (TREE_CODE (f) == FIELD_DECL)
5014 {
5015 t = count_type_elements (TREE_TYPE (f), false);
5016 if (t < 0)
5017 {
5018 /* Check for structures with flexible array member. */
5019 tree tf = TREE_TYPE (f);
5020 if (allow_flexarr
5021 && TREE_CHAIN (f) == NULL
5022 && TREE_CODE (tf) == ARRAY_TYPE
5023 && TYPE_DOMAIN (tf)
5024 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5025 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5026 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5027 && int_size_in_bytes (type) >= 0)
5028 break;
5029
5030 return -1;
5031 }
5032 n += t;
5033 }
5034
5035 return n;
5036 }
5037
5038 case UNION_TYPE:
5039 case QUAL_UNION_TYPE:
5040 return -1;
5041
5042 case COMPLEX_TYPE:
5043 return 2;
5044
5045 case VECTOR_TYPE:
5046 return TYPE_VECTOR_SUBPARTS (type);
5047
5048 case INTEGER_TYPE:
5049 case REAL_TYPE:
5050 case FIXED_POINT_TYPE:
5051 case ENUMERAL_TYPE:
5052 case BOOLEAN_TYPE:
5053 case POINTER_TYPE:
5054 case OFFSET_TYPE:
5055 case REFERENCE_TYPE:
5056 return 1;
5057
5058 case ERROR_MARK:
5059 return 0;
5060
5061 case VOID_TYPE:
5062 case METHOD_TYPE:
5063 case FUNCTION_TYPE:
5064 case LANG_TYPE:
5065 default:
5066 gcc_unreachable ();
5067 }
5068 }
5069
5070 /* Return 1 if EXP contains mostly (3/4) zeros. */
5071
5072 static int
5073 mostly_zeros_p (const_tree exp)
5074 {
5075 if (TREE_CODE (exp) == CONSTRUCTOR)
5076
5077 {
5078 HOST_WIDE_INT nz_elts, count, elts;
5079 bool must_clear;
5080
5081 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5082 if (must_clear)
5083 return 1;
5084
5085 elts = count_type_elements (TREE_TYPE (exp), false);
5086
5087 return nz_elts < elts / 4;
5088 }
5089
5090 return initializer_zerop (exp);
5091 }
5092
5093 /* Return 1 if EXP contains all zeros. */
5094
5095 static int
5096 all_zeros_p (const_tree exp)
5097 {
5098 if (TREE_CODE (exp) == CONSTRUCTOR)
5099
5100 {
5101 HOST_WIDE_INT nz_elts, count;
5102 bool must_clear;
5103
5104 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5105 return nz_elts == 0;
5106 }
5107
5108 return initializer_zerop (exp);
5109 }
5110 \f
5111 /* Helper function for store_constructor.
5112 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5113 TYPE is the type of the CONSTRUCTOR, not the element type.
5114 CLEARED is as for store_constructor.
5115 ALIAS_SET is the alias set to use for any stores.
5116
5117 This provides a recursive shortcut back to store_constructor when it isn't
5118 necessary to go through store_field. This is so that we can pass through
5119 the cleared field to let store_constructor know that we may not have to
5120 clear a substructure if the outer structure has already been cleared. */
5121
5122 static void
5123 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5124 HOST_WIDE_INT bitpos, enum machine_mode mode,
5125 tree exp, tree type, int cleared,
5126 alias_set_type alias_set)
5127 {
5128 if (TREE_CODE (exp) == CONSTRUCTOR
5129 /* We can only call store_constructor recursively if the size and
5130 bit position are on a byte boundary. */
5131 && bitpos % BITS_PER_UNIT == 0
5132 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5133 /* If we have a nonzero bitpos for a register target, then we just
5134 let store_field do the bitfield handling. This is unlikely to
5135 generate unnecessary clear instructions anyways. */
5136 && (bitpos == 0 || MEM_P (target)))
5137 {
5138 if (MEM_P (target))
5139 target
5140 = adjust_address (target,
5141 GET_MODE (target) == BLKmode
5142 || 0 != (bitpos
5143 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5144 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5145
5146
5147 /* Update the alias set, if required. */
5148 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5149 && MEM_ALIAS_SET (target) != 0)
5150 {
5151 target = copy_rtx (target);
5152 set_mem_alias_set (target, alias_set);
5153 }
5154
5155 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5156 }
5157 else
5158 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5159 }
5160
5161 /* Store the value of constructor EXP into the rtx TARGET.
5162 TARGET is either a REG or a MEM; we know it cannot conflict, since
5163 safe_from_p has been called.
5164 CLEARED is true if TARGET is known to have been zero'd.
5165 SIZE is the number of bytes of TARGET we are allowed to modify: this
5166 may not be the same as the size of EXP if we are assigning to a field
5167 which has been packed to exclude padding bits. */
5168
5169 static void
5170 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5171 {
5172 tree type = TREE_TYPE (exp);
5173 #ifdef WORD_REGISTER_OPERATIONS
5174 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5175 #endif
5176
5177 switch (TREE_CODE (type))
5178 {
5179 case RECORD_TYPE:
5180 case UNION_TYPE:
5181 case QUAL_UNION_TYPE:
5182 {
5183 unsigned HOST_WIDE_INT idx;
5184 tree field, value;
5185
5186 /* If size is zero or the target is already cleared, do nothing. */
5187 if (size == 0 || cleared)
5188 cleared = 1;
5189 /* We either clear the aggregate or indicate the value is dead. */
5190 else if ((TREE_CODE (type) == UNION_TYPE
5191 || TREE_CODE (type) == QUAL_UNION_TYPE)
5192 && ! CONSTRUCTOR_ELTS (exp))
5193 /* If the constructor is empty, clear the union. */
5194 {
5195 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5196 cleared = 1;
5197 }
5198
5199 /* If we are building a static constructor into a register,
5200 set the initial value as zero so we can fold the value into
5201 a constant. But if more than one register is involved,
5202 this probably loses. */
5203 else if (REG_P (target) && TREE_STATIC (exp)
5204 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5205 {
5206 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5207 cleared = 1;
5208 }
5209
5210 /* If the constructor has fewer fields than the structure or
5211 if we are initializing the structure to mostly zeros, clear
5212 the whole structure first. Don't do this if TARGET is a
5213 register whose mode size isn't equal to SIZE since
5214 clear_storage can't handle this case. */
5215 else if (size > 0
5216 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5217 != fields_length (type))
5218 || mostly_zeros_p (exp))
5219 && (!REG_P (target)
5220 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5221 == size)))
5222 {
5223 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5224 cleared = 1;
5225 }
5226
5227 if (REG_P (target) && !cleared)
5228 emit_clobber (target);
5229
5230 /* Store each element of the constructor into the
5231 corresponding field of TARGET. */
5232 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5233 {
5234 enum machine_mode mode;
5235 HOST_WIDE_INT bitsize;
5236 HOST_WIDE_INT bitpos = 0;
5237 tree offset;
5238 rtx to_rtx = target;
5239
5240 /* Just ignore missing fields. We cleared the whole
5241 structure, above, if any fields are missing. */
5242 if (field == 0)
5243 continue;
5244
5245 if (cleared && initializer_zerop (value))
5246 continue;
5247
5248 if (host_integerp (DECL_SIZE (field), 1))
5249 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5250 else
5251 bitsize = -1;
5252
5253 mode = DECL_MODE (field);
5254 if (DECL_BIT_FIELD (field))
5255 mode = VOIDmode;
5256
5257 offset = DECL_FIELD_OFFSET (field);
5258 if (host_integerp (offset, 0)
5259 && host_integerp (bit_position (field), 0))
5260 {
5261 bitpos = int_bit_position (field);
5262 offset = 0;
5263 }
5264 else
5265 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5266
5267 if (offset)
5268 {
5269 rtx offset_rtx;
5270
5271 offset
5272 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5273 make_tree (TREE_TYPE (exp),
5274 target));
5275
5276 offset_rtx = expand_normal (offset);
5277 gcc_assert (MEM_P (to_rtx));
5278
5279 #ifdef POINTERS_EXTEND_UNSIGNED
5280 if (GET_MODE (offset_rtx) != Pmode)
5281 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5282 #else
5283 if (GET_MODE (offset_rtx) != ptr_mode)
5284 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5285 #endif
5286
5287 to_rtx = offset_address (to_rtx, offset_rtx,
5288 highest_pow2_factor (offset));
5289 }
5290
5291 #ifdef WORD_REGISTER_OPERATIONS
5292 /* If this initializes a field that is smaller than a
5293 word, at the start of a word, try to widen it to a full
5294 word. This special case allows us to output C++ member
5295 function initializations in a form that the optimizers
5296 can understand. */
5297 if (REG_P (target)
5298 && bitsize < BITS_PER_WORD
5299 && bitpos % BITS_PER_WORD == 0
5300 && GET_MODE_CLASS (mode) == MODE_INT
5301 && TREE_CODE (value) == INTEGER_CST
5302 && exp_size >= 0
5303 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5304 {
5305 tree type = TREE_TYPE (value);
5306
5307 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5308 {
5309 type = lang_hooks.types.type_for_size
5310 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5311 value = fold_convert (type, value);
5312 }
5313
5314 if (BYTES_BIG_ENDIAN)
5315 value
5316 = fold_build2 (LSHIFT_EXPR, type, value,
5317 build_int_cst (type,
5318 BITS_PER_WORD - bitsize));
5319 bitsize = BITS_PER_WORD;
5320 mode = word_mode;
5321 }
5322 #endif
5323
5324 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5325 && DECL_NONADDRESSABLE_P (field))
5326 {
5327 to_rtx = copy_rtx (to_rtx);
5328 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5329 }
5330
5331 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5332 value, type, cleared,
5333 get_alias_set (TREE_TYPE (field)));
5334 }
5335 break;
5336 }
5337 case ARRAY_TYPE:
5338 {
5339 tree value, index;
5340 unsigned HOST_WIDE_INT i;
5341 int need_to_clear;
5342 tree domain;
5343 tree elttype = TREE_TYPE (type);
5344 int const_bounds_p;
5345 HOST_WIDE_INT minelt = 0;
5346 HOST_WIDE_INT maxelt = 0;
5347
5348 domain = TYPE_DOMAIN (type);
5349 const_bounds_p = (TYPE_MIN_VALUE (domain)
5350 && TYPE_MAX_VALUE (domain)
5351 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5352 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5353
5354 /* If we have constant bounds for the range of the type, get them. */
5355 if (const_bounds_p)
5356 {
5357 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5358 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5359 }
5360
5361 /* If the constructor has fewer elements than the array, clear
5362 the whole array first. Similarly if this is static
5363 constructor of a non-BLKmode object. */
5364 if (cleared)
5365 need_to_clear = 0;
5366 else if (REG_P (target) && TREE_STATIC (exp))
5367 need_to_clear = 1;
5368 else
5369 {
5370 unsigned HOST_WIDE_INT idx;
5371 tree index, value;
5372 HOST_WIDE_INT count = 0, zero_count = 0;
5373 need_to_clear = ! const_bounds_p;
5374
5375 /* This loop is a more accurate version of the loop in
5376 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5377 is also needed to check for missing elements. */
5378 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5379 {
5380 HOST_WIDE_INT this_node_count;
5381
5382 if (need_to_clear)
5383 break;
5384
5385 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5386 {
5387 tree lo_index = TREE_OPERAND (index, 0);
5388 tree hi_index = TREE_OPERAND (index, 1);
5389
5390 if (! host_integerp (lo_index, 1)
5391 || ! host_integerp (hi_index, 1))
5392 {
5393 need_to_clear = 1;
5394 break;
5395 }
5396
5397 this_node_count = (tree_low_cst (hi_index, 1)
5398 - tree_low_cst (lo_index, 1) + 1);
5399 }
5400 else
5401 this_node_count = 1;
5402
5403 count += this_node_count;
5404 if (mostly_zeros_p (value))
5405 zero_count += this_node_count;
5406 }
5407
5408 /* Clear the entire array first if there are any missing
5409 elements, or if the incidence of zero elements is >=
5410 75%. */
5411 if (! need_to_clear
5412 && (count < maxelt - minelt + 1
5413 || 4 * zero_count >= 3 * count))
5414 need_to_clear = 1;
5415 }
5416
5417 if (need_to_clear && size > 0)
5418 {
5419 if (REG_P (target))
5420 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5421 else
5422 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5423 cleared = 1;
5424 }
5425
5426 if (!cleared && REG_P (target))
5427 /* Inform later passes that the old value is dead. */
5428 emit_clobber (target);
5429
5430 /* Store each element of the constructor into the
5431 corresponding element of TARGET, determined by counting the
5432 elements. */
5433 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5434 {
5435 enum machine_mode mode;
5436 HOST_WIDE_INT bitsize;
5437 HOST_WIDE_INT bitpos;
5438 rtx xtarget = target;
5439
5440 if (cleared && initializer_zerop (value))
5441 continue;
5442
5443 mode = TYPE_MODE (elttype);
5444 if (mode == BLKmode)
5445 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5446 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5447 : -1);
5448 else
5449 bitsize = GET_MODE_BITSIZE (mode);
5450
5451 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5452 {
5453 tree lo_index = TREE_OPERAND (index, 0);
5454 tree hi_index = TREE_OPERAND (index, 1);
5455 rtx index_r, pos_rtx;
5456 HOST_WIDE_INT lo, hi, count;
5457 tree position;
5458
5459 /* If the range is constant and "small", unroll the loop. */
5460 if (const_bounds_p
5461 && host_integerp (lo_index, 0)
5462 && host_integerp (hi_index, 0)
5463 && (lo = tree_low_cst (lo_index, 0),
5464 hi = tree_low_cst (hi_index, 0),
5465 count = hi - lo + 1,
5466 (!MEM_P (target)
5467 || count <= 2
5468 || (host_integerp (TYPE_SIZE (elttype), 1)
5469 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5470 <= 40 * 8)))))
5471 {
5472 lo -= minelt; hi -= minelt;
5473 for (; lo <= hi; lo++)
5474 {
5475 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5476
5477 if (MEM_P (target)
5478 && !MEM_KEEP_ALIAS_SET_P (target)
5479 && TREE_CODE (type) == ARRAY_TYPE
5480 && TYPE_NONALIASED_COMPONENT (type))
5481 {
5482 target = copy_rtx (target);
5483 MEM_KEEP_ALIAS_SET_P (target) = 1;
5484 }
5485
5486 store_constructor_field
5487 (target, bitsize, bitpos, mode, value, type, cleared,
5488 get_alias_set (elttype));
5489 }
5490 }
5491 else
5492 {
5493 rtx loop_start = gen_label_rtx ();
5494 rtx loop_end = gen_label_rtx ();
5495 tree exit_cond;
5496
5497 expand_normal (hi_index);
5498
5499 index = build_decl (EXPR_LOCATION (exp),
5500 VAR_DECL, NULL_TREE, domain);
5501 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5502 SET_DECL_RTL (index, index_r);
5503 store_expr (lo_index, index_r, 0, false);
5504
5505 /* Build the head of the loop. */
5506 do_pending_stack_adjust ();
5507 emit_label (loop_start);
5508
5509 /* Assign value to element index. */
5510 position =
5511 fold_convert (ssizetype,
5512 fold_build2 (MINUS_EXPR,
5513 TREE_TYPE (index),
5514 index,
5515 TYPE_MIN_VALUE (domain)));
5516
5517 position =
5518 size_binop (MULT_EXPR, position,
5519 fold_convert (ssizetype,
5520 TYPE_SIZE_UNIT (elttype)));
5521
5522 pos_rtx = expand_normal (position);
5523 xtarget = offset_address (target, pos_rtx,
5524 highest_pow2_factor (position));
5525 xtarget = adjust_address (xtarget, mode, 0);
5526 if (TREE_CODE (value) == CONSTRUCTOR)
5527 store_constructor (value, xtarget, cleared,
5528 bitsize / BITS_PER_UNIT);
5529 else
5530 store_expr (value, xtarget, 0, false);
5531
5532 /* Generate a conditional jump to exit the loop. */
5533 exit_cond = build2 (LT_EXPR, integer_type_node,
5534 index, hi_index);
5535 jumpif (exit_cond, loop_end);
5536
5537 /* Update the loop counter, and jump to the head of
5538 the loop. */
5539 expand_assignment (index,
5540 build2 (PLUS_EXPR, TREE_TYPE (index),
5541 index, integer_one_node),
5542 false);
5543
5544 emit_jump (loop_start);
5545
5546 /* Build the end of the loop. */
5547 emit_label (loop_end);
5548 }
5549 }
5550 else if ((index != 0 && ! host_integerp (index, 0))
5551 || ! host_integerp (TYPE_SIZE (elttype), 1))
5552 {
5553 tree position;
5554
5555 if (index == 0)
5556 index = ssize_int (1);
5557
5558 if (minelt)
5559 index = fold_convert (ssizetype,
5560 fold_build2 (MINUS_EXPR,
5561 TREE_TYPE (index),
5562 index,
5563 TYPE_MIN_VALUE (domain)));
5564
5565 position =
5566 size_binop (MULT_EXPR, index,
5567 fold_convert (ssizetype,
5568 TYPE_SIZE_UNIT (elttype)));
5569 xtarget = offset_address (target,
5570 expand_normal (position),
5571 highest_pow2_factor (position));
5572 xtarget = adjust_address (xtarget, mode, 0);
5573 store_expr (value, xtarget, 0, false);
5574 }
5575 else
5576 {
5577 if (index != 0)
5578 bitpos = ((tree_low_cst (index, 0) - minelt)
5579 * tree_low_cst (TYPE_SIZE (elttype), 1));
5580 else
5581 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5582
5583 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5584 && TREE_CODE (type) == ARRAY_TYPE
5585 && TYPE_NONALIASED_COMPONENT (type))
5586 {
5587 target = copy_rtx (target);
5588 MEM_KEEP_ALIAS_SET_P (target) = 1;
5589 }
5590 store_constructor_field (target, bitsize, bitpos, mode, value,
5591 type, cleared, get_alias_set (elttype));
5592 }
5593 }
5594 break;
5595 }
5596
5597 case VECTOR_TYPE:
5598 {
5599 unsigned HOST_WIDE_INT idx;
5600 constructor_elt *ce;
5601 int i;
5602 int need_to_clear;
5603 int icode = 0;
5604 tree elttype = TREE_TYPE (type);
5605 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5606 enum machine_mode eltmode = TYPE_MODE (elttype);
5607 HOST_WIDE_INT bitsize;
5608 HOST_WIDE_INT bitpos;
5609 rtvec vector = NULL;
5610 unsigned n_elts;
5611 alias_set_type alias;
5612
5613 gcc_assert (eltmode != BLKmode);
5614
5615 n_elts = TYPE_VECTOR_SUBPARTS (type);
5616 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5617 {
5618 enum machine_mode mode = GET_MODE (target);
5619
5620 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5621 if (icode != CODE_FOR_nothing)
5622 {
5623 unsigned int i;
5624
5625 vector = rtvec_alloc (n_elts);
5626 for (i = 0; i < n_elts; i++)
5627 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5628 }
5629 }
5630
5631 /* If the constructor has fewer elements than the vector,
5632 clear the whole array first. Similarly if this is static
5633 constructor of a non-BLKmode object. */
5634 if (cleared)
5635 need_to_clear = 0;
5636 else if (REG_P (target) && TREE_STATIC (exp))
5637 need_to_clear = 1;
5638 else
5639 {
5640 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5641 tree value;
5642
5643 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5644 {
5645 int n_elts_here = tree_low_cst
5646 (int_const_binop (TRUNC_DIV_EXPR,
5647 TYPE_SIZE (TREE_TYPE (value)),
5648 TYPE_SIZE (elttype), 0), 1);
5649
5650 count += n_elts_here;
5651 if (mostly_zeros_p (value))
5652 zero_count += n_elts_here;
5653 }
5654
5655 /* Clear the entire vector first if there are any missing elements,
5656 or if the incidence of zero elements is >= 75%. */
5657 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5658 }
5659
5660 if (need_to_clear && size > 0 && !vector)
5661 {
5662 if (REG_P (target))
5663 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5664 else
5665 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5666 cleared = 1;
5667 }
5668
5669 /* Inform later passes that the old value is dead. */
5670 if (!cleared && !vector && REG_P (target))
5671 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5672
5673 if (MEM_P (target))
5674 alias = MEM_ALIAS_SET (target);
5675 else
5676 alias = get_alias_set (elttype);
5677
5678 /* Store each element of the constructor into the corresponding
5679 element of TARGET, determined by counting the elements. */
5680 for (idx = 0, i = 0;
5681 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5682 idx++, i += bitsize / elt_size)
5683 {
5684 HOST_WIDE_INT eltpos;
5685 tree value = ce->value;
5686
5687 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5688 if (cleared && initializer_zerop (value))
5689 continue;
5690
5691 if (ce->index)
5692 eltpos = tree_low_cst (ce->index, 1);
5693 else
5694 eltpos = i;
5695
5696 if (vector)
5697 {
5698 /* Vector CONSTRUCTORs should only be built from smaller
5699 vectors in the case of BLKmode vectors. */
5700 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5701 RTVEC_ELT (vector, eltpos)
5702 = expand_normal (value);
5703 }
5704 else
5705 {
5706 enum machine_mode value_mode =
5707 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5708 ? TYPE_MODE (TREE_TYPE (value))
5709 : eltmode;
5710 bitpos = eltpos * elt_size;
5711 store_constructor_field (target, bitsize, bitpos,
5712 value_mode, value, type,
5713 cleared, alias);
5714 }
5715 }
5716
5717 if (vector)
5718 emit_insn (GEN_FCN (icode)
5719 (target,
5720 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5721 break;
5722 }
5723
5724 default:
5725 gcc_unreachable ();
5726 }
5727 }
5728
5729 /* Store the value of EXP (an expression tree)
5730 into a subfield of TARGET which has mode MODE and occupies
5731 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5732 If MODE is VOIDmode, it means that we are storing into a bit-field.
5733
5734 Always return const0_rtx unless we have something particular to
5735 return.
5736
5737 TYPE is the type of the underlying object,
5738
5739 ALIAS_SET is the alias set for the destination. This value will
5740 (in general) be different from that for TARGET, since TARGET is a
5741 reference to the containing structure.
5742
5743 If NONTEMPORAL is true, try generating a nontemporal store. */
5744
5745 static rtx
5746 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5747 enum machine_mode mode, tree exp, tree type,
5748 alias_set_type alias_set, bool nontemporal)
5749 {
5750 HOST_WIDE_INT width_mask = 0;
5751
5752 if (TREE_CODE (exp) == ERROR_MARK)
5753 return const0_rtx;
5754
5755 /* If we have nothing to store, do nothing unless the expression has
5756 side-effects. */
5757 if (bitsize == 0)
5758 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5759 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5760 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5761
5762 /* If we are storing into an unaligned field of an aligned union that is
5763 in a register, we may have the mode of TARGET being an integer mode but
5764 MODE == BLKmode. In that case, get an aligned object whose size and
5765 alignment are the same as TARGET and store TARGET into it (we can avoid
5766 the store if the field being stored is the entire width of TARGET). Then
5767 call ourselves recursively to store the field into a BLKmode version of
5768 that object. Finally, load from the object into TARGET. This is not
5769 very efficient in general, but should only be slightly more expensive
5770 than the otherwise-required unaligned accesses. Perhaps this can be
5771 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5772 twice, once with emit_move_insn and once via store_field. */
5773
5774 if (mode == BLKmode
5775 && (REG_P (target) || GET_CODE (target) == SUBREG))
5776 {
5777 rtx object = assign_temp (type, 0, 1, 1);
5778 rtx blk_object = adjust_address (object, BLKmode, 0);
5779
5780 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5781 emit_move_insn (object, target);
5782
5783 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5784 nontemporal);
5785
5786 emit_move_insn (target, object);
5787
5788 /* We want to return the BLKmode version of the data. */
5789 return blk_object;
5790 }
5791
5792 if (GET_CODE (target) == CONCAT)
5793 {
5794 /* We're storing into a struct containing a single __complex. */
5795
5796 gcc_assert (!bitpos);
5797 return store_expr (exp, target, 0, nontemporal);
5798 }
5799
5800 /* If the structure is in a register or if the component
5801 is a bit field, we cannot use addressing to access it.
5802 Use bit-field techniques or SUBREG to store in it. */
5803
5804 if (mode == VOIDmode
5805 || (mode != BLKmode && ! direct_store[(int) mode]
5806 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5807 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5808 || REG_P (target)
5809 || GET_CODE (target) == SUBREG
5810 /* If the field isn't aligned enough to store as an ordinary memref,
5811 store it as a bit field. */
5812 || (mode != BLKmode
5813 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5814 || bitpos % GET_MODE_ALIGNMENT (mode))
5815 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5816 || (bitpos % BITS_PER_UNIT != 0)))
5817 /* If the RHS and field are a constant size and the size of the
5818 RHS isn't the same size as the bitfield, we must use bitfield
5819 operations. */
5820 || (bitsize >= 0
5821 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5822 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5823 {
5824 rtx temp;
5825 gimple nop_def;
5826
5827 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5828 implies a mask operation. If the precision is the same size as
5829 the field we're storing into, that mask is redundant. This is
5830 particularly common with bit field assignments generated by the
5831 C front end. */
5832 nop_def = get_def_for_expr (exp, NOP_EXPR);
5833 if (nop_def)
5834 {
5835 tree type = TREE_TYPE (exp);
5836 if (INTEGRAL_TYPE_P (type)
5837 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5838 && bitsize == TYPE_PRECISION (type))
5839 {
5840 tree op = gimple_assign_rhs1 (nop_def);
5841 type = TREE_TYPE (op);
5842 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5843 exp = op;
5844 }
5845 }
5846
5847 temp = expand_normal (exp);
5848
5849 /* If BITSIZE is narrower than the size of the type of EXP
5850 we will be narrowing TEMP. Normally, what's wanted are the
5851 low-order bits. However, if EXP's type is a record and this is
5852 big-endian machine, we want the upper BITSIZE bits. */
5853 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5854 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5855 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5856 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5857 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5858 - bitsize),
5859 NULL_RTX, 1);
5860
5861 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5862 MODE. */
5863 if (mode != VOIDmode && mode != BLKmode
5864 && mode != TYPE_MODE (TREE_TYPE (exp)))
5865 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5866
5867 /* If the modes of TEMP and TARGET are both BLKmode, both
5868 must be in memory and BITPOS must be aligned on a byte
5869 boundary. If so, we simply do a block copy. Likewise
5870 for a BLKmode-like TARGET. */
5871 if (GET_MODE (temp) == BLKmode
5872 && (GET_MODE (target) == BLKmode
5873 || (MEM_P (target)
5874 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5875 && (bitpos % BITS_PER_UNIT) == 0
5876 && (bitsize % BITS_PER_UNIT) == 0)))
5877 {
5878 gcc_assert (MEM_P (target) && MEM_P (temp)
5879 && (bitpos % BITS_PER_UNIT) == 0);
5880
5881 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5882 emit_block_move (target, temp,
5883 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5884 / BITS_PER_UNIT),
5885 BLOCK_OP_NORMAL);
5886
5887 return const0_rtx;
5888 }
5889
5890 /* Store the value in the bitfield. */
5891 store_bit_field (target, bitsize, bitpos, mode, temp);
5892
5893 return const0_rtx;
5894 }
5895 else
5896 {
5897 /* Now build a reference to just the desired component. */
5898 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5899
5900 if (to_rtx == target)
5901 to_rtx = copy_rtx (to_rtx);
5902
5903 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5904 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5905 set_mem_alias_set (to_rtx, alias_set);
5906
5907 return store_expr (exp, to_rtx, 0, nontemporal);
5908 }
5909 }
5910 \f
5911 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5912 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5913 codes and find the ultimate containing object, which we return.
5914
5915 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5916 bit position, and *PUNSIGNEDP to the signedness of the field.
5917 If the position of the field is variable, we store a tree
5918 giving the variable offset (in units) in *POFFSET.
5919 This offset is in addition to the bit position.
5920 If the position is not variable, we store 0 in *POFFSET.
5921
5922 If any of the extraction expressions is volatile,
5923 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5924
5925 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5926 Otherwise, it is a mode that can be used to access the field.
5927
5928 If the field describes a variable-sized object, *PMODE is set to
5929 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5930 this case, but the address of the object can be found.
5931
5932 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5933 look through nodes that serve as markers of a greater alignment than
5934 the one that can be deduced from the expression. These nodes make it
5935 possible for front-ends to prevent temporaries from being created by
5936 the middle-end on alignment considerations. For that purpose, the
5937 normal operating mode at high-level is to always pass FALSE so that
5938 the ultimate containing object is really returned; moreover, the
5939 associated predicate handled_component_p will always return TRUE
5940 on these nodes, thus indicating that they are essentially handled
5941 by get_inner_reference. TRUE should only be passed when the caller
5942 is scanning the expression in order to build another representation
5943 and specifically knows how to handle these nodes; as such, this is
5944 the normal operating mode in the RTL expanders. */
5945
5946 tree
5947 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5948 HOST_WIDE_INT *pbitpos, tree *poffset,
5949 enum machine_mode *pmode, int *punsignedp,
5950 int *pvolatilep, bool keep_aligning)
5951 {
5952 tree size_tree = 0;
5953 enum machine_mode mode = VOIDmode;
5954 bool blkmode_bitfield = false;
5955 tree offset = size_zero_node;
5956 tree bit_offset = bitsize_zero_node;
5957
5958 /* First get the mode, signedness, and size. We do this from just the
5959 outermost expression. */
5960 if (TREE_CODE (exp) == COMPONENT_REF)
5961 {
5962 tree field = TREE_OPERAND (exp, 1);
5963 size_tree = DECL_SIZE (field);
5964 if (!DECL_BIT_FIELD (field))
5965 mode = DECL_MODE (field);
5966 else if (DECL_MODE (field) == BLKmode)
5967 blkmode_bitfield = true;
5968
5969 *punsignedp = DECL_UNSIGNED (field);
5970 }
5971 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5972 {
5973 size_tree = TREE_OPERAND (exp, 1);
5974 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5975 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5976
5977 /* For vector types, with the correct size of access, use the mode of
5978 inner type. */
5979 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5980 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5981 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5982 mode = TYPE_MODE (TREE_TYPE (exp));
5983 }
5984 else
5985 {
5986 mode = TYPE_MODE (TREE_TYPE (exp));
5987 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5988
5989 if (mode == BLKmode)
5990 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5991 else
5992 *pbitsize = GET_MODE_BITSIZE (mode);
5993 }
5994
5995 if (size_tree != 0)
5996 {
5997 if (! host_integerp (size_tree, 1))
5998 mode = BLKmode, *pbitsize = -1;
5999 else
6000 *pbitsize = tree_low_cst (size_tree, 1);
6001 }
6002
6003 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6004 and find the ultimate containing object. */
6005 while (1)
6006 {
6007 switch (TREE_CODE (exp))
6008 {
6009 case BIT_FIELD_REF:
6010 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6011 TREE_OPERAND (exp, 2));
6012 break;
6013
6014 case COMPONENT_REF:
6015 {
6016 tree field = TREE_OPERAND (exp, 1);
6017 tree this_offset = component_ref_field_offset (exp);
6018
6019 /* If this field hasn't been filled in yet, don't go past it.
6020 This should only happen when folding expressions made during
6021 type construction. */
6022 if (this_offset == 0)
6023 break;
6024
6025 offset = size_binop (PLUS_EXPR, offset, this_offset);
6026 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6027 DECL_FIELD_BIT_OFFSET (field));
6028
6029 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6030 }
6031 break;
6032
6033 case ARRAY_REF:
6034 case ARRAY_RANGE_REF:
6035 {
6036 tree index = TREE_OPERAND (exp, 1);
6037 tree low_bound = array_ref_low_bound (exp);
6038 tree unit_size = array_ref_element_size (exp);
6039
6040 /* We assume all arrays have sizes that are a multiple of a byte.
6041 First subtract the lower bound, if any, in the type of the
6042 index, then convert to sizetype and multiply by the size of
6043 the array element. */
6044 if (! integer_zerop (low_bound))
6045 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6046 index, low_bound);
6047
6048 offset = size_binop (PLUS_EXPR, offset,
6049 size_binop (MULT_EXPR,
6050 fold_convert (sizetype, index),
6051 unit_size));
6052 }
6053 break;
6054
6055 case REALPART_EXPR:
6056 break;
6057
6058 case IMAGPART_EXPR:
6059 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6060 bitsize_int (*pbitsize));
6061 break;
6062
6063 case VIEW_CONVERT_EXPR:
6064 if (keep_aligning && STRICT_ALIGNMENT
6065 && (TYPE_ALIGN (TREE_TYPE (exp))
6066 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6067 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6068 < BIGGEST_ALIGNMENT)
6069 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6070 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6071 goto done;
6072 break;
6073
6074 default:
6075 goto done;
6076 }
6077
6078 /* If any reference in the chain is volatile, the effect is volatile. */
6079 if (TREE_THIS_VOLATILE (exp))
6080 *pvolatilep = 1;
6081
6082 exp = TREE_OPERAND (exp, 0);
6083 }
6084 done:
6085
6086 /* If OFFSET is constant, see if we can return the whole thing as a
6087 constant bit position. Make sure to handle overflow during
6088 this conversion. */
6089 if (host_integerp (offset, 0))
6090 {
6091 double_int tem = double_int_mul (tree_to_double_int (offset),
6092 uhwi_to_double_int (BITS_PER_UNIT));
6093 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6094 if (double_int_fits_in_shwi_p (tem))
6095 {
6096 *pbitpos = double_int_to_shwi (tem);
6097 *poffset = offset = NULL_TREE;
6098 }
6099 }
6100
6101 /* Otherwise, split it up. */
6102 if (offset)
6103 {
6104 *pbitpos = tree_low_cst (bit_offset, 0);
6105 *poffset = offset;
6106 }
6107
6108 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6109 if (mode == VOIDmode
6110 && blkmode_bitfield
6111 && (*pbitpos % BITS_PER_UNIT) == 0
6112 && (*pbitsize % BITS_PER_UNIT) == 0)
6113 *pmode = BLKmode;
6114 else
6115 *pmode = mode;
6116
6117 return exp;
6118 }
6119
6120 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6121 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6122 EXP is marked as PACKED. */
6123
6124 bool
6125 contains_packed_reference (const_tree exp)
6126 {
6127 bool packed_p = false;
6128
6129 while (1)
6130 {
6131 switch (TREE_CODE (exp))
6132 {
6133 case COMPONENT_REF:
6134 {
6135 tree field = TREE_OPERAND (exp, 1);
6136 packed_p = DECL_PACKED (field)
6137 || TYPE_PACKED (TREE_TYPE (field))
6138 || TYPE_PACKED (TREE_TYPE (exp));
6139 if (packed_p)
6140 goto done;
6141 }
6142 break;
6143
6144 case BIT_FIELD_REF:
6145 case ARRAY_REF:
6146 case ARRAY_RANGE_REF:
6147 case REALPART_EXPR:
6148 case IMAGPART_EXPR:
6149 case VIEW_CONVERT_EXPR:
6150 break;
6151
6152 default:
6153 goto done;
6154 }
6155 exp = TREE_OPERAND (exp, 0);
6156 }
6157 done:
6158 return packed_p;
6159 }
6160
6161 /* Return a tree of sizetype representing the size, in bytes, of the element
6162 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6163
6164 tree
6165 array_ref_element_size (tree exp)
6166 {
6167 tree aligned_size = TREE_OPERAND (exp, 3);
6168 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6169 location_t loc = EXPR_LOCATION (exp);
6170
6171 /* If a size was specified in the ARRAY_REF, it's the size measured
6172 in alignment units of the element type. So multiply by that value. */
6173 if (aligned_size)
6174 {
6175 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6176 sizetype from another type of the same width and signedness. */
6177 if (TREE_TYPE (aligned_size) != sizetype)
6178 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6179 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6180 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6181 }
6182
6183 /* Otherwise, take the size from that of the element type. Substitute
6184 any PLACEHOLDER_EXPR that we have. */
6185 else
6186 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6187 }
6188
6189 /* Return a tree representing the lower bound of the array mentioned in
6190 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6191
6192 tree
6193 array_ref_low_bound (tree exp)
6194 {
6195 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6196
6197 /* If a lower bound is specified in EXP, use it. */
6198 if (TREE_OPERAND (exp, 2))
6199 return TREE_OPERAND (exp, 2);
6200
6201 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6202 substituting for a PLACEHOLDER_EXPR as needed. */
6203 if (domain_type && TYPE_MIN_VALUE (domain_type))
6204 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6205
6206 /* Otherwise, return a zero of the appropriate type. */
6207 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6208 }
6209
6210 /* Return a tree representing the upper bound of the array mentioned in
6211 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6212
6213 tree
6214 array_ref_up_bound (tree exp)
6215 {
6216 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6217
6218 /* If there is a domain type and it has an upper bound, use it, substituting
6219 for a PLACEHOLDER_EXPR as needed. */
6220 if (domain_type && TYPE_MAX_VALUE (domain_type))
6221 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6222
6223 /* Otherwise fail. */
6224 return NULL_TREE;
6225 }
6226
6227 /* Return a tree representing the offset, in bytes, of the field referenced
6228 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6229
6230 tree
6231 component_ref_field_offset (tree exp)
6232 {
6233 tree aligned_offset = TREE_OPERAND (exp, 2);
6234 tree field = TREE_OPERAND (exp, 1);
6235 location_t loc = EXPR_LOCATION (exp);
6236
6237 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6238 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6239 value. */
6240 if (aligned_offset)
6241 {
6242 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6243 sizetype from another type of the same width and signedness. */
6244 if (TREE_TYPE (aligned_offset) != sizetype)
6245 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6246 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6247 size_int (DECL_OFFSET_ALIGN (field)
6248 / BITS_PER_UNIT));
6249 }
6250
6251 /* Otherwise, take the offset from that of the field. Substitute
6252 any PLACEHOLDER_EXPR that we have. */
6253 else
6254 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6255 }
6256
6257 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6258
6259 static unsigned HOST_WIDE_INT
6260 target_align (const_tree target)
6261 {
6262 /* We might have a chain of nested references with intermediate misaligning
6263 bitfields components, so need to recurse to find out. */
6264
6265 unsigned HOST_WIDE_INT this_align, outer_align;
6266
6267 switch (TREE_CODE (target))
6268 {
6269 case BIT_FIELD_REF:
6270 return 1;
6271
6272 case COMPONENT_REF:
6273 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6274 outer_align = target_align (TREE_OPERAND (target, 0));
6275 return MIN (this_align, outer_align);
6276
6277 case ARRAY_REF:
6278 case ARRAY_RANGE_REF:
6279 this_align = TYPE_ALIGN (TREE_TYPE (target));
6280 outer_align = target_align (TREE_OPERAND (target, 0));
6281 return MIN (this_align, outer_align);
6282
6283 CASE_CONVERT:
6284 case NON_LVALUE_EXPR:
6285 case VIEW_CONVERT_EXPR:
6286 this_align = TYPE_ALIGN (TREE_TYPE (target));
6287 outer_align = target_align (TREE_OPERAND (target, 0));
6288 return MAX (this_align, outer_align);
6289
6290 default:
6291 return TYPE_ALIGN (TREE_TYPE (target));
6292 }
6293 }
6294
6295 \f
6296 /* Given an rtx VALUE that may contain additions and multiplications, return
6297 an equivalent value that just refers to a register, memory, or constant.
6298 This is done by generating instructions to perform the arithmetic and
6299 returning a pseudo-register containing the value.
6300
6301 The returned value may be a REG, SUBREG, MEM or constant. */
6302
6303 rtx
6304 force_operand (rtx value, rtx target)
6305 {
6306 rtx op1, op2;
6307 /* Use subtarget as the target for operand 0 of a binary operation. */
6308 rtx subtarget = get_subtarget (target);
6309 enum rtx_code code = GET_CODE (value);
6310
6311 /* Check for subreg applied to an expression produced by loop optimizer. */
6312 if (code == SUBREG
6313 && !REG_P (SUBREG_REG (value))
6314 && !MEM_P (SUBREG_REG (value)))
6315 {
6316 value
6317 = simplify_gen_subreg (GET_MODE (value),
6318 force_reg (GET_MODE (SUBREG_REG (value)),
6319 force_operand (SUBREG_REG (value),
6320 NULL_RTX)),
6321 GET_MODE (SUBREG_REG (value)),
6322 SUBREG_BYTE (value));
6323 code = GET_CODE (value);
6324 }
6325
6326 /* Check for a PIC address load. */
6327 if ((code == PLUS || code == MINUS)
6328 && XEXP (value, 0) == pic_offset_table_rtx
6329 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6330 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6331 || GET_CODE (XEXP (value, 1)) == CONST))
6332 {
6333 if (!subtarget)
6334 subtarget = gen_reg_rtx (GET_MODE (value));
6335 emit_move_insn (subtarget, value);
6336 return subtarget;
6337 }
6338
6339 if (ARITHMETIC_P (value))
6340 {
6341 op2 = XEXP (value, 1);
6342 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6343 subtarget = 0;
6344 if (code == MINUS && CONST_INT_P (op2))
6345 {
6346 code = PLUS;
6347 op2 = negate_rtx (GET_MODE (value), op2);
6348 }
6349
6350 /* Check for an addition with OP2 a constant integer and our first
6351 operand a PLUS of a virtual register and something else. In that
6352 case, we want to emit the sum of the virtual register and the
6353 constant first and then add the other value. This allows virtual
6354 register instantiation to simply modify the constant rather than
6355 creating another one around this addition. */
6356 if (code == PLUS && CONST_INT_P (op2)
6357 && GET_CODE (XEXP (value, 0)) == PLUS
6358 && REG_P (XEXP (XEXP (value, 0), 0))
6359 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6360 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6361 {
6362 rtx temp = expand_simple_binop (GET_MODE (value), code,
6363 XEXP (XEXP (value, 0), 0), op2,
6364 subtarget, 0, OPTAB_LIB_WIDEN);
6365 return expand_simple_binop (GET_MODE (value), code, temp,
6366 force_operand (XEXP (XEXP (value,
6367 0), 1), 0),
6368 target, 0, OPTAB_LIB_WIDEN);
6369 }
6370
6371 op1 = force_operand (XEXP (value, 0), subtarget);
6372 op2 = force_operand (op2, NULL_RTX);
6373 switch (code)
6374 {
6375 case MULT:
6376 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6377 case DIV:
6378 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6379 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6380 target, 1, OPTAB_LIB_WIDEN);
6381 else
6382 return expand_divmod (0,
6383 FLOAT_MODE_P (GET_MODE (value))
6384 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6385 GET_MODE (value), op1, op2, target, 0);
6386 case MOD:
6387 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6388 target, 0);
6389 case UDIV:
6390 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6391 target, 1);
6392 case UMOD:
6393 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6394 target, 1);
6395 case ASHIFTRT:
6396 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6397 target, 0, OPTAB_LIB_WIDEN);
6398 default:
6399 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6400 target, 1, OPTAB_LIB_WIDEN);
6401 }
6402 }
6403 if (UNARY_P (value))
6404 {
6405 if (!target)
6406 target = gen_reg_rtx (GET_MODE (value));
6407 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6408 switch (code)
6409 {
6410 case ZERO_EXTEND:
6411 case SIGN_EXTEND:
6412 case TRUNCATE:
6413 case FLOAT_EXTEND:
6414 case FLOAT_TRUNCATE:
6415 convert_move (target, op1, code == ZERO_EXTEND);
6416 return target;
6417
6418 case FIX:
6419 case UNSIGNED_FIX:
6420 expand_fix (target, op1, code == UNSIGNED_FIX);
6421 return target;
6422
6423 case FLOAT:
6424 case UNSIGNED_FLOAT:
6425 expand_float (target, op1, code == UNSIGNED_FLOAT);
6426 return target;
6427
6428 default:
6429 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6430 }
6431 }
6432
6433 #ifdef INSN_SCHEDULING
6434 /* On machines that have insn scheduling, we want all memory reference to be
6435 explicit, so we need to deal with such paradoxical SUBREGs. */
6436 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6437 && (GET_MODE_SIZE (GET_MODE (value))
6438 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6439 value
6440 = simplify_gen_subreg (GET_MODE (value),
6441 force_reg (GET_MODE (SUBREG_REG (value)),
6442 force_operand (SUBREG_REG (value),
6443 NULL_RTX)),
6444 GET_MODE (SUBREG_REG (value)),
6445 SUBREG_BYTE (value));
6446 #endif
6447
6448 return value;
6449 }
6450 \f
6451 /* Subroutine of expand_expr: return nonzero iff there is no way that
6452 EXP can reference X, which is being modified. TOP_P is nonzero if this
6453 call is going to be used to determine whether we need a temporary
6454 for EXP, as opposed to a recursive call to this function.
6455
6456 It is always safe for this routine to return zero since it merely
6457 searches for optimization opportunities. */
6458
6459 int
6460 safe_from_p (const_rtx x, tree exp, int top_p)
6461 {
6462 rtx exp_rtl = 0;
6463 int i, nops;
6464
6465 if (x == 0
6466 /* If EXP has varying size, we MUST use a target since we currently
6467 have no way of allocating temporaries of variable size
6468 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6469 So we assume here that something at a higher level has prevented a
6470 clash. This is somewhat bogus, but the best we can do. Only
6471 do this when X is BLKmode and when we are at the top level. */
6472 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6473 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6474 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6475 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6476 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6477 != INTEGER_CST)
6478 && GET_MODE (x) == BLKmode)
6479 /* If X is in the outgoing argument area, it is always safe. */
6480 || (MEM_P (x)
6481 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6482 || (GET_CODE (XEXP (x, 0)) == PLUS
6483 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6484 return 1;
6485
6486 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6487 find the underlying pseudo. */
6488 if (GET_CODE (x) == SUBREG)
6489 {
6490 x = SUBREG_REG (x);
6491 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6492 return 0;
6493 }
6494
6495 /* Now look at our tree code and possibly recurse. */
6496 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6497 {
6498 case tcc_declaration:
6499 exp_rtl = DECL_RTL_IF_SET (exp);
6500 break;
6501
6502 case tcc_constant:
6503 return 1;
6504
6505 case tcc_exceptional:
6506 if (TREE_CODE (exp) == TREE_LIST)
6507 {
6508 while (1)
6509 {
6510 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6511 return 0;
6512 exp = TREE_CHAIN (exp);
6513 if (!exp)
6514 return 1;
6515 if (TREE_CODE (exp) != TREE_LIST)
6516 return safe_from_p (x, exp, 0);
6517 }
6518 }
6519 else if (TREE_CODE (exp) == CONSTRUCTOR)
6520 {
6521 constructor_elt *ce;
6522 unsigned HOST_WIDE_INT idx;
6523
6524 for (idx = 0;
6525 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6526 idx++)
6527 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6528 || !safe_from_p (x, ce->value, 0))
6529 return 0;
6530 return 1;
6531 }
6532 else if (TREE_CODE (exp) == ERROR_MARK)
6533 return 1; /* An already-visited SAVE_EXPR? */
6534 else
6535 return 0;
6536
6537 case tcc_statement:
6538 /* The only case we look at here is the DECL_INITIAL inside a
6539 DECL_EXPR. */
6540 return (TREE_CODE (exp) != DECL_EXPR
6541 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6542 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6543 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6544
6545 case tcc_binary:
6546 case tcc_comparison:
6547 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6548 return 0;
6549 /* Fall through. */
6550
6551 case tcc_unary:
6552 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6553
6554 case tcc_expression:
6555 case tcc_reference:
6556 case tcc_vl_exp:
6557 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6558 the expression. If it is set, we conflict iff we are that rtx or
6559 both are in memory. Otherwise, we check all operands of the
6560 expression recursively. */
6561
6562 switch (TREE_CODE (exp))
6563 {
6564 case ADDR_EXPR:
6565 /* If the operand is static or we are static, we can't conflict.
6566 Likewise if we don't conflict with the operand at all. */
6567 if (staticp (TREE_OPERAND (exp, 0))
6568 || TREE_STATIC (exp)
6569 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6570 return 1;
6571
6572 /* Otherwise, the only way this can conflict is if we are taking
6573 the address of a DECL a that address if part of X, which is
6574 very rare. */
6575 exp = TREE_OPERAND (exp, 0);
6576 if (DECL_P (exp))
6577 {
6578 if (!DECL_RTL_SET_P (exp)
6579 || !MEM_P (DECL_RTL (exp)))
6580 return 0;
6581 else
6582 exp_rtl = XEXP (DECL_RTL (exp), 0);
6583 }
6584 break;
6585
6586 case MISALIGNED_INDIRECT_REF:
6587 case ALIGN_INDIRECT_REF:
6588 case INDIRECT_REF:
6589 if (MEM_P (x)
6590 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6591 get_alias_set (exp)))
6592 return 0;
6593 break;
6594
6595 case CALL_EXPR:
6596 /* Assume that the call will clobber all hard registers and
6597 all of memory. */
6598 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6599 || MEM_P (x))
6600 return 0;
6601 break;
6602
6603 case WITH_CLEANUP_EXPR:
6604 case CLEANUP_POINT_EXPR:
6605 /* Lowered by gimplify.c. */
6606 gcc_unreachable ();
6607
6608 case SAVE_EXPR:
6609 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6610
6611 default:
6612 break;
6613 }
6614
6615 /* If we have an rtx, we do not need to scan our operands. */
6616 if (exp_rtl)
6617 break;
6618
6619 nops = TREE_OPERAND_LENGTH (exp);
6620 for (i = 0; i < nops; i++)
6621 if (TREE_OPERAND (exp, i) != 0
6622 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6623 return 0;
6624
6625 break;
6626
6627 case tcc_type:
6628 /* Should never get a type here. */
6629 gcc_unreachable ();
6630 }
6631
6632 /* If we have an rtl, find any enclosed object. Then see if we conflict
6633 with it. */
6634 if (exp_rtl)
6635 {
6636 if (GET_CODE (exp_rtl) == SUBREG)
6637 {
6638 exp_rtl = SUBREG_REG (exp_rtl);
6639 if (REG_P (exp_rtl)
6640 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6641 return 0;
6642 }
6643
6644 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6645 are memory and they conflict. */
6646 return ! (rtx_equal_p (x, exp_rtl)
6647 || (MEM_P (x) && MEM_P (exp_rtl)
6648 && true_dependence (exp_rtl, VOIDmode, x,
6649 rtx_addr_varies_p)));
6650 }
6651
6652 /* If we reach here, it is safe. */
6653 return 1;
6654 }
6655
6656 \f
6657 /* Return the highest power of two that EXP is known to be a multiple of.
6658 This is used in updating alignment of MEMs in array references. */
6659
6660 unsigned HOST_WIDE_INT
6661 highest_pow2_factor (const_tree exp)
6662 {
6663 unsigned HOST_WIDE_INT c0, c1;
6664
6665 switch (TREE_CODE (exp))
6666 {
6667 case INTEGER_CST:
6668 /* We can find the lowest bit that's a one. If the low
6669 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6670 We need to handle this case since we can find it in a COND_EXPR,
6671 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6672 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6673 later ICE. */
6674 if (TREE_OVERFLOW (exp))
6675 return BIGGEST_ALIGNMENT;
6676 else
6677 {
6678 /* Note: tree_low_cst is intentionally not used here,
6679 we don't care about the upper bits. */
6680 c0 = TREE_INT_CST_LOW (exp);
6681 c0 &= -c0;
6682 return c0 ? c0 : BIGGEST_ALIGNMENT;
6683 }
6684 break;
6685
6686 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6687 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6688 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6689 return MIN (c0, c1);
6690
6691 case MULT_EXPR:
6692 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6693 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6694 return c0 * c1;
6695
6696 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6697 case CEIL_DIV_EXPR:
6698 if (integer_pow2p (TREE_OPERAND (exp, 1))
6699 && host_integerp (TREE_OPERAND (exp, 1), 1))
6700 {
6701 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6702 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6703 return MAX (1, c0 / c1);
6704 }
6705 break;
6706
6707 case BIT_AND_EXPR:
6708 /* The highest power of two of a bit-and expression is the maximum of
6709 that of its operands. We typically get here for a complex LHS and
6710 a constant negative power of two on the RHS to force an explicit
6711 alignment, so don't bother looking at the LHS. */
6712 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6713
6714 CASE_CONVERT:
6715 case SAVE_EXPR:
6716 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6717
6718 case COMPOUND_EXPR:
6719 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6720
6721 case COND_EXPR:
6722 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6723 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6724 return MIN (c0, c1);
6725
6726 default:
6727 break;
6728 }
6729
6730 return 1;
6731 }
6732
6733 /* Similar, except that the alignment requirements of TARGET are
6734 taken into account. Assume it is at least as aligned as its
6735 type, unless it is a COMPONENT_REF in which case the layout of
6736 the structure gives the alignment. */
6737
6738 static unsigned HOST_WIDE_INT
6739 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6740 {
6741 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6742 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6743
6744 return MAX (factor, talign);
6745 }
6746 \f
6747 /* Return &VAR expression for emulated thread local VAR. */
6748
6749 static tree
6750 emutls_var_address (tree var)
6751 {
6752 tree emuvar = emutls_decl (var);
6753 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6754 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6755 tree arglist = build_tree_list (NULL_TREE, arg);
6756 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6757 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6758 }
6759 \f
6760
6761 /* Subroutine of expand_expr. Expand the two operands of a binary
6762 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6763 The value may be stored in TARGET if TARGET is nonzero. The
6764 MODIFIER argument is as documented by expand_expr. */
6765
6766 static void
6767 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6768 enum expand_modifier modifier)
6769 {
6770 if (! safe_from_p (target, exp1, 1))
6771 target = 0;
6772 if (operand_equal_p (exp0, exp1, 0))
6773 {
6774 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6775 *op1 = copy_rtx (*op0);
6776 }
6777 else
6778 {
6779 /* If we need to preserve evaluation order, copy exp0 into its own
6780 temporary variable so that it can't be clobbered by exp1. */
6781 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6782 exp0 = save_expr (exp0);
6783 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6784 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6785 }
6786 }
6787
6788 \f
6789 /* Return a MEM that contains constant EXP. DEFER is as for
6790 output_constant_def and MODIFIER is as for expand_expr. */
6791
6792 static rtx
6793 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6794 {
6795 rtx mem;
6796
6797 mem = output_constant_def (exp, defer);
6798 if (modifier != EXPAND_INITIALIZER)
6799 mem = use_anchored_address (mem);
6800 return mem;
6801 }
6802
6803 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6804 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6805
6806 static rtx
6807 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6808 enum expand_modifier modifier)
6809 {
6810 rtx result, subtarget;
6811 tree inner, offset;
6812 HOST_WIDE_INT bitsize, bitpos;
6813 int volatilep, unsignedp;
6814 enum machine_mode mode1;
6815
6816 /* If we are taking the address of a constant and are at the top level,
6817 we have to use output_constant_def since we can't call force_const_mem
6818 at top level. */
6819 /* ??? This should be considered a front-end bug. We should not be
6820 generating ADDR_EXPR of something that isn't an LVALUE. The only
6821 exception here is STRING_CST. */
6822 if (CONSTANT_CLASS_P (exp))
6823 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6824
6825 /* Everything must be something allowed by is_gimple_addressable. */
6826 switch (TREE_CODE (exp))
6827 {
6828 case INDIRECT_REF:
6829 /* This case will happen via recursion for &a->b. */
6830 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6831
6832 case CONST_DECL:
6833 /* Recurse and make the output_constant_def clause above handle this. */
6834 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6835 tmode, modifier);
6836
6837 case REALPART_EXPR:
6838 /* The real part of the complex number is always first, therefore
6839 the address is the same as the address of the parent object. */
6840 offset = 0;
6841 bitpos = 0;
6842 inner = TREE_OPERAND (exp, 0);
6843 break;
6844
6845 case IMAGPART_EXPR:
6846 /* The imaginary part of the complex number is always second.
6847 The expression is therefore always offset by the size of the
6848 scalar type. */
6849 offset = 0;
6850 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6851 inner = TREE_OPERAND (exp, 0);
6852 break;
6853
6854 case VAR_DECL:
6855 /* TLS emulation hook - replace __thread VAR's &VAR with
6856 __emutls_get_address (&_emutls.VAR). */
6857 if (! targetm.have_tls
6858 && TREE_CODE (exp) == VAR_DECL
6859 && DECL_THREAD_LOCAL_P (exp))
6860 {
6861 exp = emutls_var_address (exp);
6862 return expand_expr (exp, target, tmode, modifier);
6863 }
6864 /* Fall through. */
6865
6866 default:
6867 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6868 expand_expr, as that can have various side effects; LABEL_DECLs for
6869 example, may not have their DECL_RTL set yet. Expand the rtl of
6870 CONSTRUCTORs too, which should yield a memory reference for the
6871 constructor's contents. Assume language specific tree nodes can
6872 be expanded in some interesting way. */
6873 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6874 if (DECL_P (exp)
6875 || TREE_CODE (exp) == CONSTRUCTOR
6876 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6877 {
6878 result = expand_expr (exp, target, tmode,
6879 modifier == EXPAND_INITIALIZER
6880 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6881
6882 /* If the DECL isn't in memory, then the DECL wasn't properly
6883 marked TREE_ADDRESSABLE, which will be either a front-end
6884 or a tree optimizer bug. */
6885 gcc_assert (MEM_P (result));
6886 result = XEXP (result, 0);
6887
6888 /* ??? Is this needed anymore? */
6889 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6890 {
6891 assemble_external (exp);
6892 TREE_USED (exp) = 1;
6893 }
6894
6895 if (modifier != EXPAND_INITIALIZER
6896 && modifier != EXPAND_CONST_ADDRESS)
6897 result = force_operand (result, target);
6898 return result;
6899 }
6900
6901 /* Pass FALSE as the last argument to get_inner_reference although
6902 we are expanding to RTL. The rationale is that we know how to
6903 handle "aligning nodes" here: we can just bypass them because
6904 they won't change the final object whose address will be returned
6905 (they actually exist only for that purpose). */
6906 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6907 &mode1, &unsignedp, &volatilep, false);
6908 break;
6909 }
6910
6911 /* We must have made progress. */
6912 gcc_assert (inner != exp);
6913
6914 subtarget = offset || bitpos ? NULL_RTX : target;
6915 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6916 inner alignment, force the inner to be sufficiently aligned. */
6917 if (CONSTANT_CLASS_P (inner)
6918 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6919 {
6920 inner = copy_node (inner);
6921 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6922 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6923 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6924 }
6925 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6926
6927 if (offset)
6928 {
6929 rtx tmp;
6930
6931 if (modifier != EXPAND_NORMAL)
6932 result = force_operand (result, NULL);
6933 tmp = expand_expr (offset, NULL_RTX, tmode,
6934 modifier == EXPAND_INITIALIZER
6935 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6936
6937 result = convert_memory_address (tmode, result);
6938 tmp = convert_memory_address (tmode, tmp);
6939
6940 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6941 result = gen_rtx_PLUS (tmode, result, tmp);
6942 else
6943 {
6944 subtarget = bitpos ? NULL_RTX : target;
6945 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6946 1, OPTAB_LIB_WIDEN);
6947 }
6948 }
6949
6950 if (bitpos)
6951 {
6952 /* Someone beforehand should have rejected taking the address
6953 of such an object. */
6954 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6955
6956 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6957 if (modifier < EXPAND_SUM)
6958 result = force_operand (result, target);
6959 }
6960
6961 return result;
6962 }
6963
6964 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6965 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6966
6967 static rtx
6968 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6969 enum expand_modifier modifier)
6970 {
6971 enum machine_mode rmode;
6972 rtx result;
6973
6974 /* Target mode of VOIDmode says "whatever's natural". */
6975 if (tmode == VOIDmode)
6976 tmode = TYPE_MODE (TREE_TYPE (exp));
6977
6978 /* We can get called with some Weird Things if the user does silliness
6979 like "(short) &a". In that case, convert_memory_address won't do
6980 the right thing, so ignore the given target mode. */
6981 if (tmode != Pmode && tmode != ptr_mode)
6982 tmode = Pmode;
6983
6984 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6985 tmode, modifier);
6986
6987 /* Despite expand_expr claims concerning ignoring TMODE when not
6988 strictly convenient, stuff breaks if we don't honor it. Note
6989 that combined with the above, we only do this for pointer modes. */
6990 rmode = GET_MODE (result);
6991 if (rmode == VOIDmode)
6992 rmode = tmode;
6993 if (rmode != tmode)
6994 result = convert_memory_address (tmode, result);
6995
6996 return result;
6997 }
6998
6999 /* Generate code for computing CONSTRUCTOR EXP.
7000 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7001 is TRUE, instead of creating a temporary variable in memory
7002 NULL is returned and the caller needs to handle it differently. */
7003
7004 static rtx
7005 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7006 bool avoid_temp_mem)
7007 {
7008 tree type = TREE_TYPE (exp);
7009 enum machine_mode mode = TYPE_MODE (type);
7010
7011 /* Try to avoid creating a temporary at all. This is possible
7012 if all of the initializer is zero.
7013 FIXME: try to handle all [0..255] initializers we can handle
7014 with memset. */
7015 if (TREE_STATIC (exp)
7016 && !TREE_ADDRESSABLE (exp)
7017 && target != 0 && mode == BLKmode
7018 && all_zeros_p (exp))
7019 {
7020 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7021 return target;
7022 }
7023
7024 /* All elts simple constants => refer to a constant in memory. But
7025 if this is a non-BLKmode mode, let it store a field at a time
7026 since that should make a CONST_INT or CONST_DOUBLE when we
7027 fold. Likewise, if we have a target we can use, it is best to
7028 store directly into the target unless the type is large enough
7029 that memcpy will be used. If we are making an initializer and
7030 all operands are constant, put it in memory as well.
7031
7032 FIXME: Avoid trying to fill vector constructors piece-meal.
7033 Output them with output_constant_def below unless we're sure
7034 they're zeros. This should go away when vector initializers
7035 are treated like VECTOR_CST instead of arrays. */
7036 if ((TREE_STATIC (exp)
7037 && ((mode == BLKmode
7038 && ! (target != 0 && safe_from_p (target, exp, 1)))
7039 || TREE_ADDRESSABLE (exp)
7040 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7041 && (! MOVE_BY_PIECES_P
7042 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7043 TYPE_ALIGN (type)))
7044 && ! mostly_zeros_p (exp))))
7045 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7046 && TREE_CONSTANT (exp)))
7047 {
7048 rtx constructor;
7049
7050 if (avoid_temp_mem)
7051 return NULL_RTX;
7052
7053 constructor = expand_expr_constant (exp, 1, modifier);
7054
7055 if (modifier != EXPAND_CONST_ADDRESS
7056 && modifier != EXPAND_INITIALIZER
7057 && modifier != EXPAND_SUM)
7058 constructor = validize_mem (constructor);
7059
7060 return constructor;
7061 }
7062
7063 /* Handle calls that pass values in multiple non-contiguous
7064 locations. The Irix 6 ABI has examples of this. */
7065 if (target == 0 || ! safe_from_p (target, exp, 1)
7066 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7067 {
7068 if (avoid_temp_mem)
7069 return NULL_RTX;
7070
7071 target
7072 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7073 | (TREE_READONLY (exp)
7074 * TYPE_QUAL_CONST))),
7075 0, TREE_ADDRESSABLE (exp), 1);
7076 }
7077
7078 store_constructor (exp, target, 0, int_expr_size (exp));
7079 return target;
7080 }
7081
7082
7083 /* expand_expr: generate code for computing expression EXP.
7084 An rtx for the computed value is returned. The value is never null.
7085 In the case of a void EXP, const0_rtx is returned.
7086
7087 The value may be stored in TARGET if TARGET is nonzero.
7088 TARGET is just a suggestion; callers must assume that
7089 the rtx returned may not be the same as TARGET.
7090
7091 If TARGET is CONST0_RTX, it means that the value will be ignored.
7092
7093 If TMODE is not VOIDmode, it suggests generating the
7094 result in mode TMODE. But this is done only when convenient.
7095 Otherwise, TMODE is ignored and the value generated in its natural mode.
7096 TMODE is just a suggestion; callers must assume that
7097 the rtx returned may not have mode TMODE.
7098
7099 Note that TARGET may have neither TMODE nor MODE. In that case, it
7100 probably will not be used.
7101
7102 If MODIFIER is EXPAND_SUM then when EXP is an addition
7103 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7104 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7105 products as above, or REG or MEM, or constant.
7106 Ordinarily in such cases we would output mul or add instructions
7107 and then return a pseudo reg containing the sum.
7108
7109 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7110 it also marks a label as absolutely required (it can't be dead).
7111 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7112 This is used for outputting expressions used in initializers.
7113
7114 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7115 with a constant address even if that address is not normally legitimate.
7116 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7117
7118 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7119 a call parameter. Such targets require special care as we haven't yet
7120 marked TARGET so that it's safe from being trashed by libcalls. We
7121 don't want to use TARGET for anything but the final result;
7122 Intermediate values must go elsewhere. Additionally, calls to
7123 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7124
7125 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7126 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7127 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7128 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7129 recursively. */
7130
7131 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7132 enum expand_modifier, rtx *);
7133
7134 rtx
7135 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7136 enum expand_modifier modifier, rtx *alt_rtl)
7137 {
7138 int rn = -1;
7139 rtx ret, last = NULL;
7140
7141 /* Handle ERROR_MARK before anybody tries to access its type. */
7142 if (TREE_CODE (exp) == ERROR_MARK
7143 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7144 {
7145 ret = CONST0_RTX (tmode);
7146 return ret ? ret : const0_rtx;
7147 }
7148
7149 if (flag_non_call_exceptions)
7150 {
7151 rn = lookup_expr_eh_region (exp);
7152
7153 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7154 if (rn >= 0)
7155 last = get_last_insn ();
7156 }
7157
7158 /* If this is an expression of some kind and it has an associated line
7159 number, then emit the line number before expanding the expression.
7160
7161 We need to save and restore the file and line information so that
7162 errors discovered during expansion are emitted with the right
7163 information. It would be better of the diagnostic routines
7164 used the file/line information embedded in the tree nodes rather
7165 than globals. */
7166 if (cfun && EXPR_HAS_LOCATION (exp))
7167 {
7168 location_t saved_location = input_location;
7169 input_location = EXPR_LOCATION (exp);
7170 set_curr_insn_source_location (input_location);
7171
7172 /* Record where the insns produced belong. */
7173 set_curr_insn_block (TREE_BLOCK (exp));
7174
7175 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7176
7177 input_location = saved_location;
7178 }
7179 else
7180 {
7181 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7182 }
7183
7184 /* If using non-call exceptions, mark all insns that may trap.
7185 expand_call() will mark CALL_INSNs before we get to this code,
7186 but it doesn't handle libcalls, and these may trap. */
7187 if (rn >= 0)
7188 {
7189 rtx insn;
7190 for (insn = next_real_insn (last); insn;
7191 insn = next_real_insn (insn))
7192 {
7193 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7194 /* If we want exceptions for non-call insns, any
7195 may_trap_p instruction may throw. */
7196 && GET_CODE (PATTERN (insn)) != CLOBBER
7197 && GET_CODE (PATTERN (insn)) != USE
7198 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7199 add_reg_note (insn, REG_EH_REGION, GEN_INT (rn));
7200 }
7201 }
7202
7203 return ret;
7204 }
7205
7206 static rtx
7207 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7208 enum expand_modifier modifier)
7209 {
7210 rtx op0, op1, op2, temp;
7211 tree type;
7212 int unsignedp;
7213 enum machine_mode mode;
7214 enum tree_code code = ops->code;
7215 optab this_optab;
7216 rtx subtarget, original_target;
7217 int ignore;
7218 tree subexp0, subexp1;
7219 bool reduce_bit_field;
7220 gimple subexp0_def, subexp1_def;
7221 tree top0, top1;
7222 location_t loc = ops->location;
7223 tree treeop0, treeop1, treeop2;
7224 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7225 ? reduce_to_bit_field_precision ((expr), \
7226 target, \
7227 type) \
7228 : (expr))
7229
7230 type = ops->type;
7231 mode = TYPE_MODE (type);
7232 unsignedp = TYPE_UNSIGNED (type);
7233
7234 treeop0 = ops->op0;
7235 treeop1 = ops->op1;
7236 treeop2 = ops->op2;
7237
7238 /* We should be called only on simple (binary or unary) expressions,
7239 exactly those that are valid in gimple expressions that aren't
7240 GIMPLE_SINGLE_RHS (or invalid). */
7241 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7242 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS);
7243
7244 ignore = (target == const0_rtx
7245 || ((CONVERT_EXPR_CODE_P (code)
7246 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7247 && TREE_CODE (type) == VOID_TYPE));
7248
7249 /* We should be called only if we need the result. */
7250 gcc_assert (!ignore);
7251
7252 /* An operation in what may be a bit-field type needs the
7253 result to be reduced to the precision of the bit-field type,
7254 which is narrower than that of the type's mode. */
7255 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7256 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7257
7258 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7259 target = 0;
7260
7261 /* Use subtarget as the target for operand 0 of a binary operation. */
7262 subtarget = get_subtarget (target);
7263 original_target = target;
7264
7265 switch (code)
7266 {
7267 case PAREN_EXPR:
7268 CASE_CONVERT:
7269 if (treeop0 == error_mark_node)
7270 return const0_rtx;
7271
7272 if (TREE_CODE (type) == UNION_TYPE)
7273 {
7274 tree valtype = TREE_TYPE (treeop0);
7275
7276 /* If both input and output are BLKmode, this conversion isn't doing
7277 anything except possibly changing memory attribute. */
7278 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7279 {
7280 rtx result = expand_expr (treeop0, target, tmode,
7281 modifier);
7282
7283 result = copy_rtx (result);
7284 set_mem_attributes (result, type, 0);
7285 return result;
7286 }
7287
7288 if (target == 0)
7289 {
7290 if (TYPE_MODE (type) != BLKmode)
7291 target = gen_reg_rtx (TYPE_MODE (type));
7292 else
7293 target = assign_temp (type, 0, 1, 1);
7294 }
7295
7296 if (MEM_P (target))
7297 /* Store data into beginning of memory target. */
7298 store_expr (treeop0,
7299 adjust_address (target, TYPE_MODE (valtype), 0),
7300 modifier == EXPAND_STACK_PARM,
7301 false);
7302
7303 else
7304 {
7305 gcc_assert (REG_P (target));
7306
7307 /* Store this field into a union of the proper type. */
7308 store_field (target,
7309 MIN ((int_size_in_bytes (TREE_TYPE
7310 (treeop0))
7311 * BITS_PER_UNIT),
7312 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7313 0, TYPE_MODE (valtype), treeop0,
7314 type, 0, false);
7315 }
7316
7317 /* Return the entire union. */
7318 return target;
7319 }
7320
7321 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7322 {
7323 op0 = expand_expr (treeop0, target, VOIDmode,
7324 modifier);
7325
7326 /* If the signedness of the conversion differs and OP0 is
7327 a promoted SUBREG, clear that indication since we now
7328 have to do the proper extension. */
7329 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7330 && GET_CODE (op0) == SUBREG)
7331 SUBREG_PROMOTED_VAR_P (op0) = 0;
7332
7333 return REDUCE_BIT_FIELD (op0);
7334 }
7335
7336 op0 = expand_expr (treeop0, NULL_RTX, mode,
7337 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7338 if (GET_MODE (op0) == mode)
7339 ;
7340
7341 /* If OP0 is a constant, just convert it into the proper mode. */
7342 else if (CONSTANT_P (op0))
7343 {
7344 tree inner_type = TREE_TYPE (treeop0);
7345 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7346
7347 if (modifier == EXPAND_INITIALIZER)
7348 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7349 subreg_lowpart_offset (mode,
7350 inner_mode));
7351 else
7352 op0= convert_modes (mode, inner_mode, op0,
7353 TYPE_UNSIGNED (inner_type));
7354 }
7355
7356 else if (modifier == EXPAND_INITIALIZER)
7357 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7358
7359 else if (target == 0)
7360 op0 = convert_to_mode (mode, op0,
7361 TYPE_UNSIGNED (TREE_TYPE
7362 (treeop0)));
7363 else
7364 {
7365 convert_move (target, op0,
7366 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7367 op0 = target;
7368 }
7369
7370 return REDUCE_BIT_FIELD (op0);
7371
7372 case POINTER_PLUS_EXPR:
7373 /* Even though the sizetype mode and the pointer's mode can be different
7374 expand is able to handle this correctly and get the correct result out
7375 of the PLUS_EXPR code. */
7376 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7377 if sizetype precision is smaller than pointer precision. */
7378 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7379 treeop1 = fold_convert_loc (loc, type,
7380 fold_convert_loc (loc, ssizetype,
7381 treeop1));
7382 case PLUS_EXPR:
7383
7384 /* Check if this is a case for multiplication and addition. */
7385 if ((TREE_CODE (type) == INTEGER_TYPE
7386 || TREE_CODE (type) == FIXED_POINT_TYPE)
7387 && (subexp0_def = get_def_for_expr (treeop0,
7388 MULT_EXPR)))
7389 {
7390 tree subsubexp0, subsubexp1;
7391 gimple subsubexp0_def, subsubexp1_def;
7392 enum tree_code this_code;
7393
7394 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7395 : FIXED_CONVERT_EXPR;
7396 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
7397 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7398 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
7399 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7400 if (subsubexp0_def && subsubexp1_def
7401 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7402 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7403 && (TYPE_PRECISION (TREE_TYPE (top0))
7404 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7405 && (TYPE_PRECISION (TREE_TYPE (top0))
7406 == TYPE_PRECISION (TREE_TYPE (top1)))
7407 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7408 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7409 {
7410 tree op0type = TREE_TYPE (top0);
7411 enum machine_mode innermode = TYPE_MODE (op0type);
7412 bool zextend_p = TYPE_UNSIGNED (op0type);
7413 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7414 if (sat_p == 0)
7415 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
7416 else
7417 this_optab = zextend_p ? usmadd_widen_optab
7418 : ssmadd_widen_optab;
7419 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7420 && (optab_handler (this_optab, mode)->insn_code
7421 != CODE_FOR_nothing))
7422 {
7423 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7424 EXPAND_NORMAL);
7425 op2 = expand_expr (treeop1, subtarget,
7426 VOIDmode, EXPAND_NORMAL);
7427 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7428 target, unsignedp);
7429 gcc_assert (temp);
7430 return REDUCE_BIT_FIELD (temp);
7431 }
7432 }
7433 }
7434
7435 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7436 something else, make sure we add the register to the constant and
7437 then to the other thing. This case can occur during strength
7438 reduction and doing it this way will produce better code if the
7439 frame pointer or argument pointer is eliminated.
7440
7441 fold-const.c will ensure that the constant is always in the inner
7442 PLUS_EXPR, so the only case we need to do anything about is if
7443 sp, ap, or fp is our second argument, in which case we must swap
7444 the innermost first argument and our second argument. */
7445
7446 if (TREE_CODE (treeop0) == PLUS_EXPR
7447 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7448 && TREE_CODE (treeop1) == VAR_DECL
7449 && (DECL_RTL (treeop1) == frame_pointer_rtx
7450 || DECL_RTL (treeop1) == stack_pointer_rtx
7451 || DECL_RTL (treeop1) == arg_pointer_rtx))
7452 {
7453 tree t = treeop1;
7454
7455 treeop1 = TREE_OPERAND (treeop0, 0);
7456 TREE_OPERAND (treeop0, 0) = t;
7457 }
7458
7459 /* If the result is to be ptr_mode and we are adding an integer to
7460 something, we might be forming a constant. So try to use
7461 plus_constant. If it produces a sum and we can't accept it,
7462 use force_operand. This allows P = &ARR[const] to generate
7463 efficient code on machines where a SYMBOL_REF is not a valid
7464 address.
7465
7466 If this is an EXPAND_SUM call, always return the sum. */
7467 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7468 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7469 {
7470 if (modifier == EXPAND_STACK_PARM)
7471 target = 0;
7472 if (TREE_CODE (treeop0) == INTEGER_CST
7473 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7474 && TREE_CONSTANT (treeop1))
7475 {
7476 rtx constant_part;
7477
7478 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7479 EXPAND_SUM);
7480 /* Use immed_double_const to ensure that the constant is
7481 truncated according to the mode of OP1, then sign extended
7482 to a HOST_WIDE_INT. Using the constant directly can result
7483 in non-canonical RTL in a 64x32 cross compile. */
7484 constant_part
7485 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7486 (HOST_WIDE_INT) 0,
7487 TYPE_MODE (TREE_TYPE (treeop1)));
7488 op1 = plus_constant (op1, INTVAL (constant_part));
7489 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7490 op1 = force_operand (op1, target);
7491 return REDUCE_BIT_FIELD (op1);
7492 }
7493
7494 else if (TREE_CODE (treeop1) == INTEGER_CST
7495 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7496 && TREE_CONSTANT (treeop0))
7497 {
7498 rtx constant_part;
7499
7500 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7501 (modifier == EXPAND_INITIALIZER
7502 ? EXPAND_INITIALIZER : EXPAND_SUM));
7503 if (! CONSTANT_P (op0))
7504 {
7505 op1 = expand_expr (treeop1, NULL_RTX,
7506 VOIDmode, modifier);
7507 /* Return a PLUS if modifier says it's OK. */
7508 if (modifier == EXPAND_SUM
7509 || modifier == EXPAND_INITIALIZER)
7510 return simplify_gen_binary (PLUS, mode, op0, op1);
7511 goto binop2;
7512 }
7513 /* Use immed_double_const to ensure that the constant is
7514 truncated according to the mode of OP1, then sign extended
7515 to a HOST_WIDE_INT. Using the constant directly can result
7516 in non-canonical RTL in a 64x32 cross compile. */
7517 constant_part
7518 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7519 (HOST_WIDE_INT) 0,
7520 TYPE_MODE (TREE_TYPE (treeop0)));
7521 op0 = plus_constant (op0, INTVAL (constant_part));
7522 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7523 op0 = force_operand (op0, target);
7524 return REDUCE_BIT_FIELD (op0);
7525 }
7526 }
7527
7528 /* No sense saving up arithmetic to be done
7529 if it's all in the wrong mode to form part of an address.
7530 And force_operand won't know whether to sign-extend or
7531 zero-extend. */
7532 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7533 || mode != ptr_mode)
7534 {
7535 expand_operands (treeop0, treeop1,
7536 subtarget, &op0, &op1, EXPAND_NORMAL);
7537 if (op0 == const0_rtx)
7538 return op1;
7539 if (op1 == const0_rtx)
7540 return op0;
7541 goto binop2;
7542 }
7543
7544 expand_operands (treeop0, treeop1,
7545 subtarget, &op0, &op1, modifier);
7546 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7547
7548 case MINUS_EXPR:
7549 /* Check if this is a case for multiplication and subtraction. */
7550 if ((TREE_CODE (type) == INTEGER_TYPE
7551 || TREE_CODE (type) == FIXED_POINT_TYPE)
7552 && (subexp1_def = get_def_for_expr (treeop1,
7553 MULT_EXPR)))
7554 {
7555 tree subsubexp0, subsubexp1;
7556 gimple subsubexp0_def, subsubexp1_def;
7557 enum tree_code this_code;
7558
7559 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7560 : FIXED_CONVERT_EXPR;
7561 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
7562 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7563 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
7564 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7565 if (subsubexp0_def && subsubexp1_def
7566 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7567 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7568 && (TYPE_PRECISION (TREE_TYPE (top0))
7569 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7570 && (TYPE_PRECISION (TREE_TYPE (top0))
7571 == TYPE_PRECISION (TREE_TYPE (top1)))
7572 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7573 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7574 {
7575 tree op0type = TREE_TYPE (top0);
7576 enum machine_mode innermode = TYPE_MODE (op0type);
7577 bool zextend_p = TYPE_UNSIGNED (op0type);
7578 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7579 if (sat_p == 0)
7580 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
7581 else
7582 this_optab = zextend_p ? usmsub_widen_optab
7583 : ssmsub_widen_optab;
7584 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7585 && (optab_handler (this_optab, mode)->insn_code
7586 != CODE_FOR_nothing))
7587 {
7588 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7589 EXPAND_NORMAL);
7590 op2 = expand_expr (treeop0, subtarget,
7591 VOIDmode, EXPAND_NORMAL);
7592 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7593 target, unsignedp);
7594 gcc_assert (temp);
7595 return REDUCE_BIT_FIELD (temp);
7596 }
7597 }
7598 }
7599
7600 /* For initializers, we are allowed to return a MINUS of two
7601 symbolic constants. Here we handle all cases when both operands
7602 are constant. */
7603 /* Handle difference of two symbolic constants,
7604 for the sake of an initializer. */
7605 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7606 && really_constant_p (treeop0)
7607 && really_constant_p (treeop1))
7608 {
7609 expand_operands (treeop0, treeop1,
7610 NULL_RTX, &op0, &op1, modifier);
7611
7612 /* If the last operand is a CONST_INT, use plus_constant of
7613 the negated constant. Else make the MINUS. */
7614 if (CONST_INT_P (op1))
7615 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7616 else
7617 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7618 }
7619
7620 /* No sense saving up arithmetic to be done
7621 if it's all in the wrong mode to form part of an address.
7622 And force_operand won't know whether to sign-extend or
7623 zero-extend. */
7624 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7625 || mode != ptr_mode)
7626 goto binop;
7627
7628 expand_operands (treeop0, treeop1,
7629 subtarget, &op0, &op1, modifier);
7630
7631 /* Convert A - const to A + (-const). */
7632 if (CONST_INT_P (op1))
7633 {
7634 op1 = negate_rtx (mode, op1);
7635 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7636 }
7637
7638 goto binop2;
7639
7640 case MULT_EXPR:
7641 /* If this is a fixed-point operation, then we cannot use the code
7642 below because "expand_mult" doesn't support sat/no-sat fixed-point
7643 multiplications. */
7644 if (ALL_FIXED_POINT_MODE_P (mode))
7645 goto binop;
7646
7647 /* If first operand is constant, swap them.
7648 Thus the following special case checks need only
7649 check the second operand. */
7650 if (TREE_CODE (treeop0) == INTEGER_CST)
7651 {
7652 tree t1 = treeop0;
7653 treeop0 = treeop1;
7654 treeop1 = t1;
7655 }
7656
7657 /* Attempt to return something suitable for generating an
7658 indexed address, for machines that support that. */
7659
7660 if (modifier == EXPAND_SUM && mode == ptr_mode
7661 && host_integerp (treeop1, 0))
7662 {
7663 tree exp1 = treeop1;
7664
7665 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7666 EXPAND_SUM);
7667
7668 if (!REG_P (op0))
7669 op0 = force_operand (op0, NULL_RTX);
7670 if (!REG_P (op0))
7671 op0 = copy_to_mode_reg (mode, op0);
7672
7673 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7674 gen_int_mode (tree_low_cst (exp1, 0),
7675 TYPE_MODE (TREE_TYPE (exp1)))));
7676 }
7677
7678 if (modifier == EXPAND_STACK_PARM)
7679 target = 0;
7680
7681 /* Check for multiplying things that have been extended
7682 from a narrower type. If this machine supports multiplying
7683 in that narrower type with a result in the desired type,
7684 do it that way, and avoid the explicit type-conversion. */
7685
7686 subexp0 = treeop0;
7687 subexp1 = treeop1;
7688 subexp0_def = get_def_for_expr (subexp0, NOP_EXPR);
7689 subexp1_def = get_def_for_expr (subexp1, NOP_EXPR);
7690 top0 = top1 = NULL_TREE;
7691
7692 /* First, check if we have a multiplication of one signed and one
7693 unsigned operand. */
7694 if (subexp0_def
7695 && (top0 = gimple_assign_rhs1 (subexp0_def))
7696 && subexp1_def
7697 && (top1 = gimple_assign_rhs1 (subexp1_def))
7698 && TREE_CODE (type) == INTEGER_TYPE
7699 && (TYPE_PRECISION (TREE_TYPE (top0))
7700 < TYPE_PRECISION (TREE_TYPE (subexp0)))
7701 && (TYPE_PRECISION (TREE_TYPE (top0))
7702 == TYPE_PRECISION (TREE_TYPE (top1)))
7703 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7704 != TYPE_UNSIGNED (TREE_TYPE (top1))))
7705 {
7706 enum machine_mode innermode
7707 = TYPE_MODE (TREE_TYPE (top0));
7708 this_optab = usmul_widen_optab;
7709 if (mode == GET_MODE_WIDER_MODE (innermode))
7710 {
7711 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7712 {
7713 if (TYPE_UNSIGNED (TREE_TYPE (top0)))
7714 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7715 EXPAND_NORMAL);
7716 else
7717 expand_operands (top0, top1, NULL_RTX, &op1, &op0,
7718 EXPAND_NORMAL);
7719
7720 goto binop3;
7721 }
7722 }
7723 }
7724 /* Check for a multiplication with matching signedness. If
7725 valid, TOP0 and TOP1 were set in the previous if
7726 condition. */
7727 else if (top0
7728 && TREE_CODE (type) == INTEGER_TYPE
7729 && (TYPE_PRECISION (TREE_TYPE (top0))
7730 < TYPE_PRECISION (TREE_TYPE (subexp0)))
7731 && ((TREE_CODE (subexp1) == INTEGER_CST
7732 && int_fits_type_p (subexp1, TREE_TYPE (top0))
7733 /* Don't use a widening multiply if a shift will do. */
7734 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (subexp1)))
7735 > HOST_BITS_PER_WIDE_INT)
7736 || exact_log2 (TREE_INT_CST_LOW (subexp1)) < 0))
7737 ||
7738 (top1
7739 && (TYPE_PRECISION (TREE_TYPE (top1))
7740 == TYPE_PRECISION (TREE_TYPE (top0))
7741 /* If both operands are extended, they must either both
7742 be zero-extended or both be sign-extended. */
7743 && (TYPE_UNSIGNED (TREE_TYPE (top1))
7744 == TYPE_UNSIGNED (TREE_TYPE (top0)))))))
7745 {
7746 tree op0type = TREE_TYPE (top0);
7747 enum machine_mode innermode = TYPE_MODE (op0type);
7748 bool zextend_p = TYPE_UNSIGNED (op0type);
7749 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7750 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7751
7752 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7753 {
7754 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7755 {
7756 if (TREE_CODE (subexp1) == INTEGER_CST)
7757 expand_operands (top0, subexp1, NULL_RTX, &op0, &op1,
7758 EXPAND_NORMAL);
7759 else
7760 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7761 EXPAND_NORMAL);
7762 goto binop3;
7763 }
7764 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7765 && innermode == word_mode)
7766 {
7767 rtx htem, hipart;
7768 op0 = expand_normal (top0);
7769 if (TREE_CODE (subexp1) == INTEGER_CST)
7770 op1 = convert_modes (innermode, mode,
7771 expand_normal (subexp1), unsignedp);
7772 else
7773 op1 = expand_normal (top1);
7774 temp = expand_binop (mode, other_optab, op0, op1, target,
7775 unsignedp, OPTAB_LIB_WIDEN);
7776 hipart = gen_highpart (innermode, temp);
7777 htem = expand_mult_highpart_adjust (innermode, hipart,
7778 op0, op1, hipart,
7779 zextend_p);
7780 if (htem != hipart)
7781 emit_move_insn (hipart, htem);
7782 return REDUCE_BIT_FIELD (temp);
7783 }
7784 }
7785 }
7786 expand_operands (subexp0, subexp1, subtarget, &op0, &op1, EXPAND_NORMAL);
7787 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7788
7789 case TRUNC_DIV_EXPR:
7790 case FLOOR_DIV_EXPR:
7791 case CEIL_DIV_EXPR:
7792 case ROUND_DIV_EXPR:
7793 case EXACT_DIV_EXPR:
7794 /* If this is a fixed-point operation, then we cannot use the code
7795 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7796 divisions. */
7797 if (ALL_FIXED_POINT_MODE_P (mode))
7798 goto binop;
7799
7800 if (modifier == EXPAND_STACK_PARM)
7801 target = 0;
7802 /* Possible optimization: compute the dividend with EXPAND_SUM
7803 then if the divisor is constant can optimize the case
7804 where some terms of the dividend have coeffs divisible by it. */
7805 expand_operands (treeop0, treeop1,
7806 subtarget, &op0, &op1, EXPAND_NORMAL);
7807 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7808
7809 case RDIV_EXPR:
7810 goto binop;
7811
7812 case TRUNC_MOD_EXPR:
7813 case FLOOR_MOD_EXPR:
7814 case CEIL_MOD_EXPR:
7815 case ROUND_MOD_EXPR:
7816 if (modifier == EXPAND_STACK_PARM)
7817 target = 0;
7818 expand_operands (treeop0, treeop1,
7819 subtarget, &op0, &op1, EXPAND_NORMAL);
7820 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7821
7822 case FIXED_CONVERT_EXPR:
7823 op0 = expand_normal (treeop0);
7824 if (target == 0 || modifier == EXPAND_STACK_PARM)
7825 target = gen_reg_rtx (mode);
7826
7827 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7828 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7829 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7830 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7831 else
7832 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7833 return target;
7834
7835 case FIX_TRUNC_EXPR:
7836 op0 = expand_normal (treeop0);
7837 if (target == 0 || modifier == EXPAND_STACK_PARM)
7838 target = gen_reg_rtx (mode);
7839 expand_fix (target, op0, unsignedp);
7840 return target;
7841
7842 case FLOAT_EXPR:
7843 op0 = expand_normal (treeop0);
7844 if (target == 0 || modifier == EXPAND_STACK_PARM)
7845 target = gen_reg_rtx (mode);
7846 /* expand_float can't figure out what to do if FROM has VOIDmode.
7847 So give it the correct mode. With -O, cse will optimize this. */
7848 if (GET_MODE (op0) == VOIDmode)
7849 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7850 op0);
7851 expand_float (target, op0,
7852 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7853 return target;
7854
7855 case NEGATE_EXPR:
7856 op0 = expand_expr (treeop0, subtarget,
7857 VOIDmode, EXPAND_NORMAL);
7858 if (modifier == EXPAND_STACK_PARM)
7859 target = 0;
7860 temp = expand_unop (mode,
7861 optab_for_tree_code (NEGATE_EXPR, type,
7862 optab_default),
7863 op0, target, 0);
7864 gcc_assert (temp);
7865 return REDUCE_BIT_FIELD (temp);
7866
7867 case ABS_EXPR:
7868 op0 = expand_expr (treeop0, subtarget,
7869 VOIDmode, EXPAND_NORMAL);
7870 if (modifier == EXPAND_STACK_PARM)
7871 target = 0;
7872
7873 /* ABS_EXPR is not valid for complex arguments. */
7874 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7875 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7876
7877 /* Unsigned abs is simply the operand. Testing here means we don't
7878 risk generating incorrect code below. */
7879 if (TYPE_UNSIGNED (type))
7880 return op0;
7881
7882 return expand_abs (mode, op0, target, unsignedp,
7883 safe_from_p (target, treeop0, 1));
7884
7885 case MAX_EXPR:
7886 case MIN_EXPR:
7887 target = original_target;
7888 if (target == 0
7889 || modifier == EXPAND_STACK_PARM
7890 || (MEM_P (target) && MEM_VOLATILE_P (target))
7891 || GET_MODE (target) != mode
7892 || (REG_P (target)
7893 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7894 target = gen_reg_rtx (mode);
7895 expand_operands (treeop0, treeop1,
7896 target, &op0, &op1, EXPAND_NORMAL);
7897
7898 /* First try to do it with a special MIN or MAX instruction.
7899 If that does not win, use a conditional jump to select the proper
7900 value. */
7901 this_optab = optab_for_tree_code (code, type, optab_default);
7902 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7903 OPTAB_WIDEN);
7904 if (temp != 0)
7905 return temp;
7906
7907 /* At this point, a MEM target is no longer useful; we will get better
7908 code without it. */
7909
7910 if (! REG_P (target))
7911 target = gen_reg_rtx (mode);
7912
7913 /* If op1 was placed in target, swap op0 and op1. */
7914 if (target != op0 && target == op1)
7915 {
7916 temp = op0;
7917 op0 = op1;
7918 op1 = temp;
7919 }
7920
7921 /* We generate better code and avoid problems with op1 mentioning
7922 target by forcing op1 into a pseudo if it isn't a constant. */
7923 if (! CONSTANT_P (op1))
7924 op1 = force_reg (mode, op1);
7925
7926 {
7927 enum rtx_code comparison_code;
7928 rtx cmpop1 = op1;
7929
7930 if (code == MAX_EXPR)
7931 comparison_code = unsignedp ? GEU : GE;
7932 else
7933 comparison_code = unsignedp ? LEU : LE;
7934
7935 /* Canonicalize to comparisons against 0. */
7936 if (op1 == const1_rtx)
7937 {
7938 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7939 or (a != 0 ? a : 1) for unsigned.
7940 For MIN we are safe converting (a <= 1 ? a : 1)
7941 into (a <= 0 ? a : 1) */
7942 cmpop1 = const0_rtx;
7943 if (code == MAX_EXPR)
7944 comparison_code = unsignedp ? NE : GT;
7945 }
7946 if (op1 == constm1_rtx && !unsignedp)
7947 {
7948 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7949 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7950 cmpop1 = const0_rtx;
7951 if (code == MIN_EXPR)
7952 comparison_code = LT;
7953 }
7954 #ifdef HAVE_conditional_move
7955 /* Use a conditional move if possible. */
7956 if (can_conditionally_move_p (mode))
7957 {
7958 rtx insn;
7959
7960 /* ??? Same problem as in expmed.c: emit_conditional_move
7961 forces a stack adjustment via compare_from_rtx, and we
7962 lose the stack adjustment if the sequence we are about
7963 to create is discarded. */
7964 do_pending_stack_adjust ();
7965
7966 start_sequence ();
7967
7968 /* Try to emit the conditional move. */
7969 insn = emit_conditional_move (target, comparison_code,
7970 op0, cmpop1, mode,
7971 op0, op1, mode,
7972 unsignedp);
7973
7974 /* If we could do the conditional move, emit the sequence,
7975 and return. */
7976 if (insn)
7977 {
7978 rtx seq = get_insns ();
7979 end_sequence ();
7980 emit_insn (seq);
7981 return target;
7982 }
7983
7984 /* Otherwise discard the sequence and fall back to code with
7985 branches. */
7986 end_sequence ();
7987 }
7988 #endif
7989 if (target != op0)
7990 emit_move_insn (target, op0);
7991
7992 temp = gen_label_rtx ();
7993 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7994 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
7995 }
7996 emit_move_insn (target, op1);
7997 emit_label (temp);
7998 return target;
7999
8000 case BIT_NOT_EXPR:
8001 op0 = expand_expr (treeop0, subtarget,
8002 VOIDmode, EXPAND_NORMAL);
8003 if (modifier == EXPAND_STACK_PARM)
8004 target = 0;
8005 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8006 gcc_assert (temp);
8007 return temp;
8008
8009 /* ??? Can optimize bitwise operations with one arg constant.
8010 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8011 and (a bitwise1 b) bitwise2 b (etc)
8012 but that is probably not worth while. */
8013
8014 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8015 boolean values when we want in all cases to compute both of them. In
8016 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8017 as actual zero-or-1 values and then bitwise anding. In cases where
8018 there cannot be any side effects, better code would be made by
8019 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8020 how to recognize those cases. */
8021
8022 case TRUTH_AND_EXPR:
8023 code = BIT_AND_EXPR;
8024 case BIT_AND_EXPR:
8025 goto binop;
8026
8027 case TRUTH_OR_EXPR:
8028 code = BIT_IOR_EXPR;
8029 case BIT_IOR_EXPR:
8030 goto binop;
8031
8032 case TRUTH_XOR_EXPR:
8033 code = BIT_XOR_EXPR;
8034 case BIT_XOR_EXPR:
8035 goto binop;
8036
8037 case LROTATE_EXPR:
8038 case RROTATE_EXPR:
8039 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8040 || (GET_MODE_PRECISION (TYPE_MODE (type))
8041 == TYPE_PRECISION (type)));
8042 /* fall through */
8043
8044 case LSHIFT_EXPR:
8045 case RSHIFT_EXPR:
8046 /* If this is a fixed-point operation, then we cannot use the code
8047 below because "expand_shift" doesn't support sat/no-sat fixed-point
8048 shifts. */
8049 if (ALL_FIXED_POINT_MODE_P (mode))
8050 goto binop;
8051
8052 if (! safe_from_p (subtarget, treeop1, 1))
8053 subtarget = 0;
8054 if (modifier == EXPAND_STACK_PARM)
8055 target = 0;
8056 op0 = expand_expr (treeop0, subtarget,
8057 VOIDmode, EXPAND_NORMAL);
8058 temp = expand_shift (code, mode, op0, treeop1, target,
8059 unsignedp);
8060 if (code == LSHIFT_EXPR)
8061 temp = REDUCE_BIT_FIELD (temp);
8062 return temp;
8063
8064 /* Could determine the answer when only additive constants differ. Also,
8065 the addition of one can be handled by changing the condition. */
8066 case LT_EXPR:
8067 case LE_EXPR:
8068 case GT_EXPR:
8069 case GE_EXPR:
8070 case EQ_EXPR:
8071 case NE_EXPR:
8072 case UNORDERED_EXPR:
8073 case ORDERED_EXPR:
8074 case UNLT_EXPR:
8075 case UNLE_EXPR:
8076 case UNGT_EXPR:
8077 case UNGE_EXPR:
8078 case UNEQ_EXPR:
8079 case LTGT_EXPR:
8080 temp = do_store_flag (ops,
8081 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8082 tmode != VOIDmode ? tmode : mode);
8083 if (temp)
8084 return temp;
8085
8086 /* Use a compare and a jump for BLKmode comparisons, or for function
8087 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8088
8089 if ((target == 0
8090 || modifier == EXPAND_STACK_PARM
8091 || ! safe_from_p (target, treeop0, 1)
8092 || ! safe_from_p (target, treeop1, 1)
8093 /* Make sure we don't have a hard reg (such as function's return
8094 value) live across basic blocks, if not optimizing. */
8095 || (!optimize && REG_P (target)
8096 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8097 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8098
8099 emit_move_insn (target, const0_rtx);
8100
8101 op1 = gen_label_rtx ();
8102 jumpifnot_1 (code, treeop0, treeop1, op1);
8103
8104 emit_move_insn (target, const1_rtx);
8105
8106 emit_label (op1);
8107 return target;
8108
8109 case TRUTH_NOT_EXPR:
8110 if (modifier == EXPAND_STACK_PARM)
8111 target = 0;
8112 op0 = expand_expr (treeop0, target,
8113 VOIDmode, EXPAND_NORMAL);
8114 /* The parser is careful to generate TRUTH_NOT_EXPR
8115 only with operands that are always zero or one. */
8116 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8117 target, 1, OPTAB_LIB_WIDEN);
8118 gcc_assert (temp);
8119 return temp;
8120
8121 case COMPLEX_EXPR:
8122 /* Get the rtx code of the operands. */
8123 op0 = expand_normal (treeop0);
8124 op1 = expand_normal (treeop1);
8125
8126 if (!target)
8127 target = gen_reg_rtx (TYPE_MODE (type));
8128
8129 /* Move the real (op0) and imaginary (op1) parts to their location. */
8130 write_complex_part (target, op0, false);
8131 write_complex_part (target, op1, true);
8132
8133 return target;
8134
8135 case WIDEN_SUM_EXPR:
8136 {
8137 tree oprnd0 = treeop0;
8138 tree oprnd1 = treeop1;
8139
8140 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8141 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8142 target, unsignedp);
8143 return target;
8144 }
8145
8146 case REDUC_MAX_EXPR:
8147 case REDUC_MIN_EXPR:
8148 case REDUC_PLUS_EXPR:
8149 {
8150 op0 = expand_normal (treeop0);
8151 this_optab = optab_for_tree_code (code, type, optab_default);
8152 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8153 gcc_assert (temp);
8154 return temp;
8155 }
8156
8157 case VEC_EXTRACT_EVEN_EXPR:
8158 case VEC_EXTRACT_ODD_EXPR:
8159 {
8160 expand_operands (treeop0, treeop1,
8161 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8162 this_optab = optab_for_tree_code (code, type, optab_default);
8163 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8164 OPTAB_WIDEN);
8165 gcc_assert (temp);
8166 return temp;
8167 }
8168
8169 case VEC_INTERLEAVE_HIGH_EXPR:
8170 case VEC_INTERLEAVE_LOW_EXPR:
8171 {
8172 expand_operands (treeop0, treeop1,
8173 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8174 this_optab = optab_for_tree_code (code, type, optab_default);
8175 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8176 OPTAB_WIDEN);
8177 gcc_assert (temp);
8178 return temp;
8179 }
8180
8181 case VEC_LSHIFT_EXPR:
8182 case VEC_RSHIFT_EXPR:
8183 {
8184 target = expand_vec_shift_expr (ops, target);
8185 return target;
8186 }
8187
8188 case VEC_UNPACK_HI_EXPR:
8189 case VEC_UNPACK_LO_EXPR:
8190 {
8191 op0 = expand_normal (treeop0);
8192 this_optab = optab_for_tree_code (code, type, optab_default);
8193 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8194 target, unsignedp);
8195 gcc_assert (temp);
8196 return temp;
8197 }
8198
8199 case VEC_UNPACK_FLOAT_HI_EXPR:
8200 case VEC_UNPACK_FLOAT_LO_EXPR:
8201 {
8202 op0 = expand_normal (treeop0);
8203 /* The signedness is determined from input operand. */
8204 this_optab = optab_for_tree_code (code,
8205 TREE_TYPE (treeop0),
8206 optab_default);
8207 temp = expand_widen_pattern_expr
8208 (ops, op0, NULL_RTX, NULL_RTX,
8209 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8210
8211 gcc_assert (temp);
8212 return temp;
8213 }
8214
8215 case VEC_WIDEN_MULT_HI_EXPR:
8216 case VEC_WIDEN_MULT_LO_EXPR:
8217 {
8218 tree oprnd0 = treeop0;
8219 tree oprnd1 = treeop1;
8220
8221 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8222 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8223 target, unsignedp);
8224 gcc_assert (target);
8225 return target;
8226 }
8227
8228 case VEC_PACK_TRUNC_EXPR:
8229 case VEC_PACK_SAT_EXPR:
8230 case VEC_PACK_FIX_TRUNC_EXPR:
8231 mode = TYPE_MODE (TREE_TYPE (treeop0));
8232 goto binop;
8233
8234 default:
8235 gcc_unreachable ();
8236 }
8237
8238 /* Here to do an ordinary binary operator. */
8239 binop:
8240 expand_operands (treeop0, treeop1,
8241 subtarget, &op0, &op1, EXPAND_NORMAL);
8242 binop2:
8243 this_optab = optab_for_tree_code (code, type, optab_default);
8244 binop3:
8245 if (modifier == EXPAND_STACK_PARM)
8246 target = 0;
8247 temp = expand_binop (mode, this_optab, op0, op1, target,
8248 unsignedp, OPTAB_LIB_WIDEN);
8249 gcc_assert (temp);
8250 return REDUCE_BIT_FIELD (temp);
8251 }
8252 #undef REDUCE_BIT_FIELD
8253
8254 static rtx
8255 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8256 enum expand_modifier modifier, rtx *alt_rtl)
8257 {
8258 rtx op0, op1, temp, decl_rtl;
8259 tree type;
8260 int unsignedp;
8261 enum machine_mode mode;
8262 enum tree_code code = TREE_CODE (exp);
8263 optab this_optab;
8264 rtx subtarget, original_target;
8265 int ignore;
8266 tree context;
8267 bool reduce_bit_field;
8268 location_t loc = EXPR_LOCATION (exp);
8269 struct separate_ops ops;
8270 tree treeop0, treeop1, treeop2;
8271
8272 type = TREE_TYPE (exp);
8273 mode = TYPE_MODE (type);
8274 unsignedp = TYPE_UNSIGNED (type);
8275
8276 treeop0 = treeop1 = treeop2 = NULL_TREE;
8277 if (!VL_EXP_CLASS_P (exp))
8278 switch (TREE_CODE_LENGTH (code))
8279 {
8280 default:
8281 case 3: treeop2 = TREE_OPERAND (exp, 2);
8282 case 2: treeop1 = TREE_OPERAND (exp, 1);
8283 case 1: treeop0 = TREE_OPERAND (exp, 0);
8284 case 0: break;
8285 }
8286 ops.code = code;
8287 ops.type = type;
8288 ops.op0 = treeop0;
8289 ops.op1 = treeop1;
8290 ops.op2 = treeop2;
8291 ops.location = loc;
8292
8293 ignore = (target == const0_rtx
8294 || ((CONVERT_EXPR_CODE_P (code)
8295 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8296 && TREE_CODE (type) == VOID_TYPE));
8297
8298 /* An operation in what may be a bit-field type needs the
8299 result to be reduced to the precision of the bit-field type,
8300 which is narrower than that of the type's mode. */
8301 reduce_bit_field = (!ignore
8302 && TREE_CODE (type) == INTEGER_TYPE
8303 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8304
8305 /* If we are going to ignore this result, we need only do something
8306 if there is a side-effect somewhere in the expression. If there
8307 is, short-circuit the most common cases here. Note that we must
8308 not call expand_expr with anything but const0_rtx in case this
8309 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8310
8311 if (ignore)
8312 {
8313 if (! TREE_SIDE_EFFECTS (exp))
8314 return const0_rtx;
8315
8316 /* Ensure we reference a volatile object even if value is ignored, but
8317 don't do this if all we are doing is taking its address. */
8318 if (TREE_THIS_VOLATILE (exp)
8319 && TREE_CODE (exp) != FUNCTION_DECL
8320 && mode != VOIDmode && mode != BLKmode
8321 && modifier != EXPAND_CONST_ADDRESS)
8322 {
8323 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8324 if (MEM_P (temp))
8325 temp = copy_to_reg (temp);
8326 return const0_rtx;
8327 }
8328
8329 if (TREE_CODE_CLASS (code) == tcc_unary
8330 || code == COMPONENT_REF || code == INDIRECT_REF)
8331 return expand_expr (treeop0, const0_rtx, VOIDmode,
8332 modifier);
8333
8334 else if (TREE_CODE_CLASS (code) == tcc_binary
8335 || TREE_CODE_CLASS (code) == tcc_comparison
8336 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8337 {
8338 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8339 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8340 return const0_rtx;
8341 }
8342 else if (code == BIT_FIELD_REF)
8343 {
8344 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8345 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8346 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8347 return const0_rtx;
8348 }
8349
8350 target = 0;
8351 }
8352
8353 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8354 target = 0;
8355
8356 /* Use subtarget as the target for operand 0 of a binary operation. */
8357 subtarget = get_subtarget (target);
8358 original_target = target;
8359
8360 switch (code)
8361 {
8362 case LABEL_DECL:
8363 {
8364 tree function = decl_function_context (exp);
8365
8366 temp = label_rtx (exp);
8367 temp = gen_rtx_LABEL_REF (Pmode, temp);
8368
8369 if (function != current_function_decl
8370 && function != 0)
8371 LABEL_REF_NONLOCAL_P (temp) = 1;
8372
8373 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8374 return temp;
8375 }
8376
8377 case SSA_NAME:
8378 /* ??? ivopts calls expander, without any preparation from
8379 out-of-ssa. So fake instructions as if this was an access to the
8380 base variable. This unnecessarily allocates a pseudo, see how we can
8381 reuse it, if partition base vars have it set already. */
8382 if (!currently_expanding_to_rtl)
8383 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier, NULL);
8384 {
8385 gimple g = get_gimple_for_ssa_name (exp);
8386 if (g)
8387 return expand_expr_real_1 (gimple_assign_rhs_to_tree (g), target,
8388 tmode, modifier, NULL);
8389 }
8390 decl_rtl = get_rtx_for_ssa_name (exp);
8391 exp = SSA_NAME_VAR (exp);
8392 goto expand_decl_rtl;
8393
8394 case PARM_DECL:
8395 case VAR_DECL:
8396 /* If a static var's type was incomplete when the decl was written,
8397 but the type is complete now, lay out the decl now. */
8398 if (DECL_SIZE (exp) == 0
8399 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8400 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8401 layout_decl (exp, 0);
8402
8403 /* TLS emulation hook - replace __thread vars with
8404 *__emutls_get_address (&_emutls.var). */
8405 if (! targetm.have_tls
8406 && TREE_CODE (exp) == VAR_DECL
8407 && DECL_THREAD_LOCAL_P (exp))
8408 {
8409 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8410 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8411 }
8412
8413 /* ... fall through ... */
8414
8415 case FUNCTION_DECL:
8416 case RESULT_DECL:
8417 decl_rtl = DECL_RTL (exp);
8418 expand_decl_rtl:
8419 gcc_assert (decl_rtl);
8420 decl_rtl = copy_rtx (decl_rtl);
8421
8422 /* Ensure variable marked as used even if it doesn't go through
8423 a parser. If it hasn't be used yet, write out an external
8424 definition. */
8425 if (! TREE_USED (exp))
8426 {
8427 assemble_external (exp);
8428 TREE_USED (exp) = 1;
8429 }
8430
8431 /* Show we haven't gotten RTL for this yet. */
8432 temp = 0;
8433
8434 /* Variables inherited from containing functions should have
8435 been lowered by this point. */
8436 context = decl_function_context (exp);
8437 gcc_assert (!context
8438 || context == current_function_decl
8439 || TREE_STATIC (exp)
8440 /* ??? C++ creates functions that are not TREE_STATIC. */
8441 || TREE_CODE (exp) == FUNCTION_DECL);
8442
8443 /* This is the case of an array whose size is to be determined
8444 from its initializer, while the initializer is still being parsed.
8445 See expand_decl. */
8446
8447 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8448 temp = validize_mem (decl_rtl);
8449
8450 /* If DECL_RTL is memory, we are in the normal case and the
8451 address is not valid, get the address into a register. */
8452
8453 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8454 {
8455 if (alt_rtl)
8456 *alt_rtl = decl_rtl;
8457 decl_rtl = use_anchored_address (decl_rtl);
8458 if (modifier != EXPAND_CONST_ADDRESS
8459 && modifier != EXPAND_SUM
8460 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
8461 temp = replace_equiv_address (decl_rtl,
8462 copy_rtx (XEXP (decl_rtl, 0)));
8463 }
8464
8465 /* If we got something, return it. But first, set the alignment
8466 if the address is a register. */
8467 if (temp != 0)
8468 {
8469 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8470 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8471
8472 return temp;
8473 }
8474
8475 /* If the mode of DECL_RTL does not match that of the decl, it
8476 must be a promoted value. We return a SUBREG of the wanted mode,
8477 but mark it so that we know that it was already extended. */
8478
8479 if (REG_P (decl_rtl)
8480 && GET_MODE (decl_rtl) != DECL_MODE (exp))
8481 {
8482 enum machine_mode pmode;
8483
8484 /* Get the signedness used for this variable. Ensure we get the
8485 same mode we got when the variable was declared. */
8486 pmode = promote_decl_mode (exp, &unsignedp);
8487 gcc_assert (GET_MODE (decl_rtl) == pmode);
8488
8489 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8490 SUBREG_PROMOTED_VAR_P (temp) = 1;
8491 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8492 return temp;
8493 }
8494
8495 return decl_rtl;
8496
8497 case INTEGER_CST:
8498 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8499 TREE_INT_CST_HIGH (exp), mode);
8500
8501 return temp;
8502
8503 case VECTOR_CST:
8504 {
8505 tree tmp = NULL_TREE;
8506 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8507 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8508 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8509 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8510 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8511 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8512 return const_vector_from_tree (exp);
8513 if (GET_MODE_CLASS (mode) == MODE_INT)
8514 {
8515 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8516 if (type_for_mode)
8517 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8518 }
8519 if (!tmp)
8520 tmp = build_constructor_from_list (type,
8521 TREE_VECTOR_CST_ELTS (exp));
8522 return expand_expr (tmp, ignore ? const0_rtx : target,
8523 tmode, modifier);
8524 }
8525
8526 case CONST_DECL:
8527 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8528
8529 case REAL_CST:
8530 /* If optimized, generate immediate CONST_DOUBLE
8531 which will be turned into memory by reload if necessary.
8532
8533 We used to force a register so that loop.c could see it. But
8534 this does not allow gen_* patterns to perform optimizations with
8535 the constants. It also produces two insns in cases like "x = 1.0;".
8536 On most machines, floating-point constants are not permitted in
8537 many insns, so we'd end up copying it to a register in any case.
8538
8539 Now, we do the copying in expand_binop, if appropriate. */
8540 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8541 TYPE_MODE (TREE_TYPE (exp)));
8542
8543 case FIXED_CST:
8544 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8545 TYPE_MODE (TREE_TYPE (exp)));
8546
8547 case COMPLEX_CST:
8548 /* Handle evaluating a complex constant in a CONCAT target. */
8549 if (original_target && GET_CODE (original_target) == CONCAT)
8550 {
8551 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8552 rtx rtarg, itarg;
8553
8554 rtarg = XEXP (original_target, 0);
8555 itarg = XEXP (original_target, 1);
8556
8557 /* Move the real and imaginary parts separately. */
8558 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8559 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8560
8561 if (op0 != rtarg)
8562 emit_move_insn (rtarg, op0);
8563 if (op1 != itarg)
8564 emit_move_insn (itarg, op1);
8565
8566 return original_target;
8567 }
8568
8569 /* ... fall through ... */
8570
8571 case STRING_CST:
8572 temp = expand_expr_constant (exp, 1, modifier);
8573
8574 /* temp contains a constant address.
8575 On RISC machines where a constant address isn't valid,
8576 make some insns to get that address into a register. */
8577 if (modifier != EXPAND_CONST_ADDRESS
8578 && modifier != EXPAND_INITIALIZER
8579 && modifier != EXPAND_SUM
8580 && ! memory_address_p (mode, XEXP (temp, 0)))
8581 return replace_equiv_address (temp,
8582 copy_rtx (XEXP (temp, 0)));
8583 return temp;
8584
8585 case SAVE_EXPR:
8586 {
8587 tree val = treeop0;
8588 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8589
8590 if (!SAVE_EXPR_RESOLVED_P (exp))
8591 {
8592 /* We can indeed still hit this case, typically via builtin
8593 expanders calling save_expr immediately before expanding
8594 something. Assume this means that we only have to deal
8595 with non-BLKmode values. */
8596 gcc_assert (GET_MODE (ret) != BLKmode);
8597
8598 val = build_decl (EXPR_LOCATION (exp),
8599 VAR_DECL, NULL, TREE_TYPE (exp));
8600 DECL_ARTIFICIAL (val) = 1;
8601 DECL_IGNORED_P (val) = 1;
8602 treeop0 = val;
8603 TREE_OPERAND (exp, 0) = treeop0;
8604 SAVE_EXPR_RESOLVED_P (exp) = 1;
8605
8606 if (!CONSTANT_P (ret))
8607 ret = copy_to_reg (ret);
8608 SET_DECL_RTL (val, ret);
8609 }
8610
8611 return ret;
8612 }
8613
8614 case GOTO_EXPR:
8615 if (TREE_CODE (treeop0) == LABEL_DECL)
8616 expand_goto (treeop0);
8617 else
8618 expand_computed_goto (treeop0);
8619 return const0_rtx;
8620
8621 case CONSTRUCTOR:
8622 /* If we don't need the result, just ensure we evaluate any
8623 subexpressions. */
8624 if (ignore)
8625 {
8626 unsigned HOST_WIDE_INT idx;
8627 tree value;
8628
8629 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8630 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8631
8632 return const0_rtx;
8633 }
8634
8635 return expand_constructor (exp, target, modifier, false);
8636
8637 case MISALIGNED_INDIRECT_REF:
8638 case ALIGN_INDIRECT_REF:
8639 case INDIRECT_REF:
8640 {
8641 tree exp1 = treeop0;
8642
8643 if (modifier != EXPAND_WRITE)
8644 {
8645 tree t;
8646
8647 t = fold_read_from_constant_string (exp);
8648 if (t)
8649 return expand_expr (t, target, tmode, modifier);
8650 }
8651
8652 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8653 op0 = memory_address (mode, op0);
8654
8655 if (code == ALIGN_INDIRECT_REF)
8656 {
8657 int align = TYPE_ALIGN_UNIT (type);
8658 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
8659 op0 = memory_address (mode, op0);
8660 }
8661
8662 temp = gen_rtx_MEM (mode, op0);
8663
8664 set_mem_attributes (temp, exp, 0);
8665
8666 /* Resolve the misalignment now, so that we don't have to remember
8667 to resolve it later. Of course, this only works for reads. */
8668 if (code == MISALIGNED_INDIRECT_REF)
8669 {
8670 int icode;
8671 rtx reg, insn;
8672
8673 gcc_assert (modifier == EXPAND_NORMAL
8674 || modifier == EXPAND_STACK_PARM);
8675
8676 /* The vectorizer should have already checked the mode. */
8677 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8678 gcc_assert (icode != CODE_FOR_nothing);
8679
8680 /* We've already validated the memory, and we're creating a
8681 new pseudo destination. The predicates really can't fail. */
8682 reg = gen_reg_rtx (mode);
8683
8684 /* Nor can the insn generator. */
8685 insn = GEN_FCN (icode) (reg, temp);
8686 emit_insn (insn);
8687
8688 return reg;
8689 }
8690
8691 return temp;
8692 }
8693
8694 case TARGET_MEM_REF:
8695 {
8696 struct mem_address addr;
8697
8698 get_address_description (exp, &addr);
8699 op0 = addr_for_mem_ref (&addr, true);
8700 op0 = memory_address (mode, op0);
8701 temp = gen_rtx_MEM (mode, op0);
8702 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8703 }
8704 return temp;
8705
8706 case ARRAY_REF:
8707
8708 {
8709 tree array = treeop0;
8710 tree index = treeop1;
8711
8712 /* Fold an expression like: "foo"[2].
8713 This is not done in fold so it won't happen inside &.
8714 Don't fold if this is for wide characters since it's too
8715 difficult to do correctly and this is a very rare case. */
8716
8717 if (modifier != EXPAND_CONST_ADDRESS
8718 && modifier != EXPAND_INITIALIZER
8719 && modifier != EXPAND_MEMORY)
8720 {
8721 tree t = fold_read_from_constant_string (exp);
8722
8723 if (t)
8724 return expand_expr (t, target, tmode, modifier);
8725 }
8726
8727 /* If this is a constant index into a constant array,
8728 just get the value from the array. Handle both the cases when
8729 we have an explicit constructor and when our operand is a variable
8730 that was declared const. */
8731
8732 if (modifier != EXPAND_CONST_ADDRESS
8733 && modifier != EXPAND_INITIALIZER
8734 && modifier != EXPAND_MEMORY
8735 && TREE_CODE (array) == CONSTRUCTOR
8736 && ! TREE_SIDE_EFFECTS (array)
8737 && TREE_CODE (index) == INTEGER_CST)
8738 {
8739 unsigned HOST_WIDE_INT ix;
8740 tree field, value;
8741
8742 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8743 field, value)
8744 if (tree_int_cst_equal (field, index))
8745 {
8746 if (!TREE_SIDE_EFFECTS (value))
8747 return expand_expr (fold (value), target, tmode, modifier);
8748 break;
8749 }
8750 }
8751
8752 else if (optimize >= 1
8753 && modifier != EXPAND_CONST_ADDRESS
8754 && modifier != EXPAND_INITIALIZER
8755 && modifier != EXPAND_MEMORY
8756 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8757 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8758 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8759 && targetm.binds_local_p (array))
8760 {
8761 if (TREE_CODE (index) == INTEGER_CST)
8762 {
8763 tree init = DECL_INITIAL (array);
8764
8765 if (TREE_CODE (init) == CONSTRUCTOR)
8766 {
8767 unsigned HOST_WIDE_INT ix;
8768 tree field, value;
8769
8770 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8771 field, value)
8772 if (tree_int_cst_equal (field, index))
8773 {
8774 if (TREE_SIDE_EFFECTS (value))
8775 break;
8776
8777 if (TREE_CODE (value) == CONSTRUCTOR)
8778 {
8779 /* If VALUE is a CONSTRUCTOR, this
8780 optimization is only useful if
8781 this doesn't store the CONSTRUCTOR
8782 into memory. If it does, it is more
8783 efficient to just load the data from
8784 the array directly. */
8785 rtx ret = expand_constructor (value, target,
8786 modifier, true);
8787 if (ret == NULL_RTX)
8788 break;
8789 }
8790
8791 return expand_expr (fold (value), target, tmode,
8792 modifier);
8793 }
8794 }
8795 else if(TREE_CODE (init) == STRING_CST)
8796 {
8797 tree index1 = index;
8798 tree low_bound = array_ref_low_bound (exp);
8799 index1 = fold_convert_loc (loc, sizetype,
8800 treeop1);
8801
8802 /* Optimize the special-case of a zero lower bound.
8803
8804 We convert the low_bound to sizetype to avoid some problems
8805 with constant folding. (E.g. suppose the lower bound is 1,
8806 and its mode is QI. Without the conversion,l (ARRAY
8807 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8808 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8809
8810 if (! integer_zerop (low_bound))
8811 index1 = size_diffop_loc (loc, index1,
8812 fold_convert_loc (loc, sizetype,
8813 low_bound));
8814
8815 if (0 > compare_tree_int (index1,
8816 TREE_STRING_LENGTH (init)))
8817 {
8818 tree type = TREE_TYPE (TREE_TYPE (init));
8819 enum machine_mode mode = TYPE_MODE (type);
8820
8821 if (GET_MODE_CLASS (mode) == MODE_INT
8822 && GET_MODE_SIZE (mode) == 1)
8823 return gen_int_mode (TREE_STRING_POINTER (init)
8824 [TREE_INT_CST_LOW (index1)],
8825 mode);
8826 }
8827 }
8828 }
8829 }
8830 }
8831 goto normal_inner_ref;
8832
8833 case COMPONENT_REF:
8834 /* If the operand is a CONSTRUCTOR, we can just extract the
8835 appropriate field if it is present. */
8836 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8837 {
8838 unsigned HOST_WIDE_INT idx;
8839 tree field, value;
8840
8841 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8842 idx, field, value)
8843 if (field == treeop1
8844 /* We can normally use the value of the field in the
8845 CONSTRUCTOR. However, if this is a bitfield in
8846 an integral mode that we can fit in a HOST_WIDE_INT,
8847 we must mask only the number of bits in the bitfield,
8848 since this is done implicitly by the constructor. If
8849 the bitfield does not meet either of those conditions,
8850 we can't do this optimization. */
8851 && (! DECL_BIT_FIELD (field)
8852 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8853 && (GET_MODE_BITSIZE (DECL_MODE (field))
8854 <= HOST_BITS_PER_WIDE_INT))))
8855 {
8856 if (DECL_BIT_FIELD (field)
8857 && modifier == EXPAND_STACK_PARM)
8858 target = 0;
8859 op0 = expand_expr (value, target, tmode, modifier);
8860 if (DECL_BIT_FIELD (field))
8861 {
8862 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8863 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8864
8865 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8866 {
8867 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8868 op0 = expand_and (imode, op0, op1, target);
8869 }
8870 else
8871 {
8872 tree count
8873 = build_int_cst (NULL_TREE,
8874 GET_MODE_BITSIZE (imode) - bitsize);
8875
8876 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8877 target, 0);
8878 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8879 target, 0);
8880 }
8881 }
8882
8883 return op0;
8884 }
8885 }
8886 goto normal_inner_ref;
8887
8888 case BIT_FIELD_REF:
8889 case ARRAY_RANGE_REF:
8890 normal_inner_ref:
8891 {
8892 enum machine_mode mode1, mode2;
8893 HOST_WIDE_INT bitsize, bitpos;
8894 tree offset;
8895 int volatilep = 0, must_force_mem;
8896 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8897 &mode1, &unsignedp, &volatilep, true);
8898 rtx orig_op0, memloc;
8899
8900 /* If we got back the original object, something is wrong. Perhaps
8901 we are evaluating an expression too early. In any event, don't
8902 infinitely recurse. */
8903 gcc_assert (tem != exp);
8904
8905 /* If TEM's type is a union of variable size, pass TARGET to the inner
8906 computation, since it will need a temporary and TARGET is known
8907 to have to do. This occurs in unchecked conversion in Ada. */
8908 orig_op0 = op0
8909 = expand_expr (tem,
8910 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8911 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8912 != INTEGER_CST)
8913 && modifier != EXPAND_STACK_PARM
8914 ? target : NULL_RTX),
8915 VOIDmode,
8916 (modifier == EXPAND_INITIALIZER
8917 || modifier == EXPAND_CONST_ADDRESS
8918 || modifier == EXPAND_STACK_PARM)
8919 ? modifier : EXPAND_NORMAL);
8920
8921 mode2
8922 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8923
8924 /* If we have either an offset, a BLKmode result, or a reference
8925 outside the underlying object, we must force it to memory.
8926 Such a case can occur in Ada if we have unchecked conversion
8927 of an expression from a scalar type to an aggregate type or
8928 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8929 passed a partially uninitialized object or a view-conversion
8930 to a larger size. */
8931 must_force_mem = (offset
8932 || mode1 == BLKmode
8933 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8934
8935 /* Handle CONCAT first. */
8936 if (GET_CODE (op0) == CONCAT && !must_force_mem)
8937 {
8938 if (bitpos == 0
8939 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
8940 return op0;
8941 if (bitpos == 0
8942 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8943 && bitsize)
8944 {
8945 op0 = XEXP (op0, 0);
8946 mode2 = GET_MODE (op0);
8947 }
8948 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8949 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
8950 && bitpos
8951 && bitsize)
8952 {
8953 op0 = XEXP (op0, 1);
8954 bitpos = 0;
8955 mode2 = GET_MODE (op0);
8956 }
8957 else
8958 /* Otherwise force into memory. */
8959 must_force_mem = 1;
8960 }
8961
8962 /* If this is a constant, put it in a register if it is a legitimate
8963 constant and we don't need a memory reference. */
8964 if (CONSTANT_P (op0)
8965 && mode2 != BLKmode
8966 && LEGITIMATE_CONSTANT_P (op0)
8967 && !must_force_mem)
8968 op0 = force_reg (mode2, op0);
8969
8970 /* Otherwise, if this is a constant, try to force it to the constant
8971 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
8972 is a legitimate constant. */
8973 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
8974 op0 = validize_mem (memloc);
8975
8976 /* Otherwise, if this is a constant or the object is not in memory
8977 and need be, put it there. */
8978 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
8979 {
8980 tree nt = build_qualified_type (TREE_TYPE (tem),
8981 (TYPE_QUALS (TREE_TYPE (tem))
8982 | TYPE_QUAL_CONST));
8983 memloc = assign_temp (nt, 1, 1, 1);
8984 emit_move_insn (memloc, op0);
8985 op0 = memloc;
8986 }
8987
8988 if (offset)
8989 {
8990 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
8991 EXPAND_SUM);
8992
8993 gcc_assert (MEM_P (op0));
8994
8995 #ifdef POINTERS_EXTEND_UNSIGNED
8996 if (GET_MODE (offset_rtx) != Pmode)
8997 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
8998 #else
8999 if (GET_MODE (offset_rtx) != ptr_mode)
9000 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
9001 #endif
9002
9003 if (GET_MODE (op0) == BLKmode
9004 /* A constant address in OP0 can have VOIDmode, we must
9005 not try to call force_reg in that case. */
9006 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9007 && bitsize != 0
9008 && (bitpos % bitsize) == 0
9009 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9010 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9011 {
9012 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9013 bitpos = 0;
9014 }
9015
9016 op0 = offset_address (op0, offset_rtx,
9017 highest_pow2_factor (offset));
9018 }
9019
9020 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9021 record its alignment as BIGGEST_ALIGNMENT. */
9022 if (MEM_P (op0) && bitpos == 0 && offset != 0
9023 && is_aligning_offset (offset, tem))
9024 set_mem_align (op0, BIGGEST_ALIGNMENT);
9025
9026 /* Don't forget about volatility even if this is a bitfield. */
9027 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9028 {
9029 if (op0 == orig_op0)
9030 op0 = copy_rtx (op0);
9031
9032 MEM_VOLATILE_P (op0) = 1;
9033 }
9034
9035 /* In cases where an aligned union has an unaligned object
9036 as a field, we might be extracting a BLKmode value from
9037 an integer-mode (e.g., SImode) object. Handle this case
9038 by doing the extract into an object as wide as the field
9039 (which we know to be the width of a basic mode), then
9040 storing into memory, and changing the mode to BLKmode. */
9041 if (mode1 == VOIDmode
9042 || REG_P (op0) || GET_CODE (op0) == SUBREG
9043 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9044 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9045 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9046 && modifier != EXPAND_CONST_ADDRESS
9047 && modifier != EXPAND_INITIALIZER)
9048 /* If the field isn't aligned enough to fetch as a memref,
9049 fetch it as a bit field. */
9050 || (mode1 != BLKmode
9051 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9052 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9053 || (MEM_P (op0)
9054 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9055 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9056 && ((modifier == EXPAND_CONST_ADDRESS
9057 || modifier == EXPAND_INITIALIZER)
9058 ? STRICT_ALIGNMENT
9059 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9060 || (bitpos % BITS_PER_UNIT != 0)))
9061 /* If the type and the field are a constant size and the
9062 size of the type isn't the same size as the bitfield,
9063 we must use bitfield operations. */
9064 || (bitsize >= 0
9065 && TYPE_SIZE (TREE_TYPE (exp))
9066 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9067 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9068 bitsize)))
9069 {
9070 enum machine_mode ext_mode = mode;
9071
9072 if (ext_mode == BLKmode
9073 && ! (target != 0 && MEM_P (op0)
9074 && MEM_P (target)
9075 && bitpos % BITS_PER_UNIT == 0))
9076 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9077
9078 if (ext_mode == BLKmode)
9079 {
9080 if (target == 0)
9081 target = assign_temp (type, 0, 1, 1);
9082
9083 if (bitsize == 0)
9084 return target;
9085
9086 /* In this case, BITPOS must start at a byte boundary and
9087 TARGET, if specified, must be a MEM. */
9088 gcc_assert (MEM_P (op0)
9089 && (!target || MEM_P (target))
9090 && !(bitpos % BITS_PER_UNIT));
9091
9092 emit_block_move (target,
9093 adjust_address (op0, VOIDmode,
9094 bitpos / BITS_PER_UNIT),
9095 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9096 / BITS_PER_UNIT),
9097 (modifier == EXPAND_STACK_PARM
9098 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9099
9100 return target;
9101 }
9102
9103 op0 = validize_mem (op0);
9104
9105 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9106 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9107
9108 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9109 (modifier == EXPAND_STACK_PARM
9110 ? NULL_RTX : target),
9111 ext_mode, ext_mode);
9112
9113 /* If the result is a record type and BITSIZE is narrower than
9114 the mode of OP0, an integral mode, and this is a big endian
9115 machine, we must put the field into the high-order bits. */
9116 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9117 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9118 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9119 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9120 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9121 - bitsize),
9122 op0, 1);
9123
9124 /* If the result type is BLKmode, store the data into a temporary
9125 of the appropriate type, but with the mode corresponding to the
9126 mode for the data we have (op0's mode). It's tempting to make
9127 this a constant type, since we know it's only being stored once,
9128 but that can cause problems if we are taking the address of this
9129 COMPONENT_REF because the MEM of any reference via that address
9130 will have flags corresponding to the type, which will not
9131 necessarily be constant. */
9132 if (mode == BLKmode)
9133 {
9134 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9135 rtx new_rtx;
9136
9137 /* If the reference doesn't use the alias set of its type,
9138 we cannot create the temporary using that type. */
9139 if (component_uses_parent_alias_set (exp))
9140 {
9141 new_rtx = assign_stack_local (ext_mode, size, 0);
9142 set_mem_alias_set (new_rtx, get_alias_set (exp));
9143 }
9144 else
9145 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9146
9147 emit_move_insn (new_rtx, op0);
9148 op0 = copy_rtx (new_rtx);
9149 PUT_MODE (op0, BLKmode);
9150 set_mem_attributes (op0, exp, 1);
9151 }
9152
9153 return op0;
9154 }
9155
9156 /* If the result is BLKmode, use that to access the object
9157 now as well. */
9158 if (mode == BLKmode)
9159 mode1 = BLKmode;
9160
9161 /* Get a reference to just this component. */
9162 if (modifier == EXPAND_CONST_ADDRESS
9163 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9164 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9165 else
9166 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9167
9168 if (op0 == orig_op0)
9169 op0 = copy_rtx (op0);
9170
9171 set_mem_attributes (op0, exp, 0);
9172 if (REG_P (XEXP (op0, 0)))
9173 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9174
9175 MEM_VOLATILE_P (op0) |= volatilep;
9176 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9177 || modifier == EXPAND_CONST_ADDRESS
9178 || modifier == EXPAND_INITIALIZER)
9179 return op0;
9180 else if (target == 0)
9181 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9182
9183 convert_move (target, op0, unsignedp);
9184 return target;
9185 }
9186
9187 case OBJ_TYPE_REF:
9188 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9189
9190 case CALL_EXPR:
9191 /* All valid uses of __builtin_va_arg_pack () are removed during
9192 inlining. */
9193 if (CALL_EXPR_VA_ARG_PACK (exp))
9194 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9195 {
9196 tree fndecl = get_callee_fndecl (exp), attr;
9197
9198 if (fndecl
9199 && (attr = lookup_attribute ("error",
9200 DECL_ATTRIBUTES (fndecl))) != NULL)
9201 error ("%Kcall to %qs declared with attribute error: %s",
9202 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9203 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9204 if (fndecl
9205 && (attr = lookup_attribute ("warning",
9206 DECL_ATTRIBUTES (fndecl))) != NULL)
9207 warning_at (tree_nonartificial_location (exp),
9208 0, "%Kcall to %qs declared with attribute warning: %s",
9209 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9210 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9211
9212 /* Check for a built-in function. */
9213 if (fndecl && DECL_BUILT_IN (fndecl))
9214 {
9215 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9216 return expand_builtin (exp, target, subtarget, tmode, ignore);
9217 }
9218 }
9219 return expand_call (exp, target, ignore);
9220
9221 case VIEW_CONVERT_EXPR:
9222 op0 = NULL_RTX;
9223
9224 /* If we are converting to BLKmode, try to avoid an intermediate
9225 temporary by fetching an inner memory reference. */
9226 if (mode == BLKmode
9227 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9228 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9229 && handled_component_p (treeop0))
9230 {
9231 enum machine_mode mode1;
9232 HOST_WIDE_INT bitsize, bitpos;
9233 tree offset;
9234 int unsignedp;
9235 int volatilep = 0;
9236 tree tem
9237 = get_inner_reference (treeop0, &bitsize, &bitpos,
9238 &offset, &mode1, &unsignedp, &volatilep,
9239 true);
9240 rtx orig_op0;
9241
9242 /* ??? We should work harder and deal with non-zero offsets. */
9243 if (!offset
9244 && (bitpos % BITS_PER_UNIT) == 0
9245 && bitsize >= 0
9246 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9247 {
9248 /* See the normal_inner_ref case for the rationale. */
9249 orig_op0
9250 = expand_expr (tem,
9251 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9252 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9253 != INTEGER_CST)
9254 && modifier != EXPAND_STACK_PARM
9255 ? target : NULL_RTX),
9256 VOIDmode,
9257 (modifier == EXPAND_INITIALIZER
9258 || modifier == EXPAND_CONST_ADDRESS
9259 || modifier == EXPAND_STACK_PARM)
9260 ? modifier : EXPAND_NORMAL);
9261
9262 if (MEM_P (orig_op0))
9263 {
9264 op0 = orig_op0;
9265
9266 /* Get a reference to just this component. */
9267 if (modifier == EXPAND_CONST_ADDRESS
9268 || modifier == EXPAND_SUM
9269 || modifier == EXPAND_INITIALIZER)
9270 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9271 else
9272 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9273
9274 if (op0 == orig_op0)
9275 op0 = copy_rtx (op0);
9276
9277 set_mem_attributes (op0, treeop0, 0);
9278 if (REG_P (XEXP (op0, 0)))
9279 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9280
9281 MEM_VOLATILE_P (op0) |= volatilep;
9282 }
9283 }
9284 }
9285
9286 if (!op0)
9287 op0 = expand_expr (treeop0,
9288 NULL_RTX, VOIDmode, modifier);
9289
9290 /* If the input and output modes are both the same, we are done. */
9291 if (mode == GET_MODE (op0))
9292 ;
9293 /* If neither mode is BLKmode, and both modes are the same size
9294 then we can use gen_lowpart. */
9295 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9296 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9297 && !COMPLEX_MODE_P (GET_MODE (op0)))
9298 {
9299 if (GET_CODE (op0) == SUBREG)
9300 op0 = force_reg (GET_MODE (op0), op0);
9301 op0 = gen_lowpart (mode, op0);
9302 }
9303 /* If both modes are integral, then we can convert from one to the
9304 other. */
9305 else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
9306 op0 = convert_modes (mode, GET_MODE (op0), op0,
9307 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9308 /* As a last resort, spill op0 to memory, and reload it in a
9309 different mode. */
9310 else if (!MEM_P (op0))
9311 {
9312 /* If the operand is not a MEM, force it into memory. Since we
9313 are going to be changing the mode of the MEM, don't call
9314 force_const_mem for constants because we don't allow pool
9315 constants to change mode. */
9316 tree inner_type = TREE_TYPE (treeop0);
9317
9318 gcc_assert (!TREE_ADDRESSABLE (exp));
9319
9320 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9321 target
9322 = assign_stack_temp_for_type
9323 (TYPE_MODE (inner_type),
9324 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9325
9326 emit_move_insn (target, op0);
9327 op0 = target;
9328 }
9329
9330 /* At this point, OP0 is in the correct mode. If the output type is
9331 such that the operand is known to be aligned, indicate that it is.
9332 Otherwise, we need only be concerned about alignment for non-BLKmode
9333 results. */
9334 if (MEM_P (op0))
9335 {
9336 op0 = copy_rtx (op0);
9337
9338 if (TYPE_ALIGN_OK (type))
9339 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9340 else if (STRICT_ALIGNMENT
9341 && mode != BLKmode
9342 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9343 {
9344 tree inner_type = TREE_TYPE (treeop0);
9345 HOST_WIDE_INT temp_size
9346 = MAX (int_size_in_bytes (inner_type),
9347 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9348 rtx new_rtx
9349 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9350 rtx new_with_op0_mode
9351 = adjust_address (new_rtx, GET_MODE (op0), 0);
9352
9353 gcc_assert (!TREE_ADDRESSABLE (exp));
9354
9355 if (GET_MODE (op0) == BLKmode)
9356 emit_block_move (new_with_op0_mode, op0,
9357 GEN_INT (GET_MODE_SIZE (mode)),
9358 (modifier == EXPAND_STACK_PARM
9359 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9360 else
9361 emit_move_insn (new_with_op0_mode, op0);
9362
9363 op0 = new_rtx;
9364 }
9365
9366 op0 = adjust_address (op0, mode, 0);
9367 }
9368
9369 return op0;
9370
9371 /* Use a compare and a jump for BLKmode comparisons, or for function
9372 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9373
9374 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9375 are occassionally created by folding during expansion. */
9376 case TRUTH_ANDIF_EXPR:
9377 case TRUTH_ORIF_EXPR:
9378 if (! ignore
9379 && (target == 0
9380 || modifier == EXPAND_STACK_PARM
9381 || ! safe_from_p (target, treeop0, 1)
9382 || ! safe_from_p (target, treeop1, 1)
9383 /* Make sure we don't have a hard reg (such as function's return
9384 value) live across basic blocks, if not optimizing. */
9385 || (!optimize && REG_P (target)
9386 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9387 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9388
9389 if (target)
9390 emit_move_insn (target, const0_rtx);
9391
9392 op1 = gen_label_rtx ();
9393 jumpifnot_1 (code, treeop0, treeop1, op1);
9394
9395 if (target)
9396 emit_move_insn (target, const1_rtx);
9397
9398 emit_label (op1);
9399 return ignore ? const0_rtx : target;
9400
9401 case STATEMENT_LIST:
9402 {
9403 tree_stmt_iterator iter;
9404
9405 gcc_assert (ignore);
9406
9407 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9408 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9409 }
9410 return const0_rtx;
9411
9412 case COND_EXPR:
9413 /* A COND_EXPR with its type being VOID_TYPE represents a
9414 conditional jump and is handled in
9415 expand_gimple_cond_expr. */
9416 gcc_assert (!VOID_TYPE_P (type));
9417
9418 /* Note that COND_EXPRs whose type is a structure or union
9419 are required to be constructed to contain assignments of
9420 a temporary variable, so that we can evaluate them here
9421 for side effect only. If type is void, we must do likewise. */
9422
9423 gcc_assert (!TREE_ADDRESSABLE (type)
9424 && !ignore
9425 && TREE_TYPE (treeop1) != void_type_node
9426 && TREE_TYPE (treeop2) != void_type_node);
9427
9428 /* If we are not to produce a result, we have no target. Otherwise,
9429 if a target was specified use it; it will not be used as an
9430 intermediate target unless it is safe. If no target, use a
9431 temporary. */
9432
9433 if (modifier != EXPAND_STACK_PARM
9434 && original_target
9435 && safe_from_p (original_target, treeop0, 1)
9436 && GET_MODE (original_target) == mode
9437 #ifdef HAVE_conditional_move
9438 && (! can_conditionally_move_p (mode)
9439 || REG_P (original_target))
9440 #endif
9441 && !MEM_P (original_target))
9442 temp = original_target;
9443 else
9444 temp = assign_temp (type, 0, 0, 1);
9445
9446 do_pending_stack_adjust ();
9447 NO_DEFER_POP;
9448 op0 = gen_label_rtx ();
9449 op1 = gen_label_rtx ();
9450 jumpifnot (treeop0, op0);
9451 store_expr (treeop1, temp,
9452 modifier == EXPAND_STACK_PARM,
9453 false);
9454
9455 emit_jump_insn (gen_jump (op1));
9456 emit_barrier ();
9457 emit_label (op0);
9458 store_expr (treeop2, temp,
9459 modifier == EXPAND_STACK_PARM,
9460 false);
9461
9462 emit_label (op1);
9463 OK_DEFER_POP;
9464 return temp;
9465
9466 case VEC_COND_EXPR:
9467 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9468 return target;
9469
9470 case MODIFY_EXPR:
9471 {
9472 tree lhs = treeop0;
9473 tree rhs = treeop1;
9474 gcc_assert (ignore);
9475
9476 /* Check for |= or &= of a bitfield of size one into another bitfield
9477 of size 1. In this case, (unless we need the result of the
9478 assignment) we can do this more efficiently with a
9479 test followed by an assignment, if necessary.
9480
9481 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9482 things change so we do, this code should be enhanced to
9483 support it. */
9484 if (TREE_CODE (lhs) == COMPONENT_REF
9485 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9486 || TREE_CODE (rhs) == BIT_AND_EXPR)
9487 && TREE_OPERAND (rhs, 0) == lhs
9488 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9489 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9490 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9491 {
9492 rtx label = gen_label_rtx ();
9493 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9494 do_jump (TREE_OPERAND (rhs, 1),
9495 value ? label : 0,
9496 value ? 0 : label);
9497 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9498 MOVE_NONTEMPORAL (exp));
9499 do_pending_stack_adjust ();
9500 emit_label (label);
9501 return const0_rtx;
9502 }
9503
9504 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9505 return const0_rtx;
9506 }
9507
9508 case RETURN_EXPR:
9509 if (!treeop0)
9510 expand_null_return ();
9511 else
9512 expand_return (treeop0);
9513 return const0_rtx;
9514
9515 case ADDR_EXPR:
9516 return expand_expr_addr_expr (exp, target, tmode, modifier);
9517
9518 case REALPART_EXPR:
9519 op0 = expand_normal (treeop0);
9520 return read_complex_part (op0, false);
9521
9522 case IMAGPART_EXPR:
9523 op0 = expand_normal (treeop0);
9524 return read_complex_part (op0, true);
9525
9526 case RESX_EXPR:
9527 expand_resx_expr (exp);
9528 return const0_rtx;
9529
9530 case TRY_CATCH_EXPR:
9531 case CATCH_EXPR:
9532 case EH_FILTER_EXPR:
9533 case TRY_FINALLY_EXPR:
9534 /* Lowered by tree-eh.c. */
9535 gcc_unreachable ();
9536
9537 case WITH_CLEANUP_EXPR:
9538 case CLEANUP_POINT_EXPR:
9539 case TARGET_EXPR:
9540 case CASE_LABEL_EXPR:
9541 case VA_ARG_EXPR:
9542 case BIND_EXPR:
9543 case INIT_EXPR:
9544 case CONJ_EXPR:
9545 case COMPOUND_EXPR:
9546 case PREINCREMENT_EXPR:
9547 case PREDECREMENT_EXPR:
9548 case POSTINCREMENT_EXPR:
9549 case POSTDECREMENT_EXPR:
9550 case LOOP_EXPR:
9551 case EXIT_EXPR:
9552 /* Lowered by gimplify.c. */
9553 gcc_unreachable ();
9554
9555 case EXC_PTR_EXPR:
9556 return get_exception_pointer ();
9557
9558 case FILTER_EXPR:
9559 return get_exception_filter ();
9560
9561 case FDESC_EXPR:
9562 /* Function descriptors are not valid except for as
9563 initialization constants, and should not be expanded. */
9564 gcc_unreachable ();
9565
9566 case SWITCH_EXPR:
9567 expand_case (exp);
9568 return const0_rtx;
9569
9570 case LABEL_EXPR:
9571 expand_label (treeop0);
9572 return const0_rtx;
9573
9574 case ASM_EXPR:
9575 expand_asm_expr (exp);
9576 return const0_rtx;
9577
9578 case WITH_SIZE_EXPR:
9579 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9580 have pulled out the size to use in whatever context it needed. */
9581 return expand_expr_real (treeop0, original_target, tmode,
9582 modifier, alt_rtl);
9583
9584 case REALIGN_LOAD_EXPR:
9585 {
9586 tree oprnd0 = treeop0;
9587 tree oprnd1 = treeop1;
9588 tree oprnd2 = treeop2;
9589 rtx op2;
9590
9591 this_optab = optab_for_tree_code (code, type, optab_default);
9592 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9593 op2 = expand_normal (oprnd2);
9594 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9595 target, unsignedp);
9596 gcc_assert (temp);
9597 return temp;
9598 }
9599
9600 case DOT_PROD_EXPR:
9601 {
9602 tree oprnd0 = treeop0;
9603 tree oprnd1 = treeop1;
9604 tree oprnd2 = treeop2;
9605 rtx op2;
9606
9607 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9608 op2 = expand_normal (oprnd2);
9609 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9610 target, unsignedp);
9611 return target;
9612 }
9613
9614 case COMPOUND_LITERAL_EXPR:
9615 {
9616 /* Initialize the anonymous variable declared in the compound
9617 literal, then return the variable. */
9618 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9619
9620 /* Create RTL for this variable. */
9621 if (!DECL_RTL_SET_P (decl))
9622 {
9623 if (DECL_HARD_REGISTER (decl))
9624 /* The user specified an assembler name for this variable.
9625 Set that up now. */
9626 rest_of_decl_compilation (decl, 0, 0);
9627 else
9628 expand_decl (decl);
9629 }
9630
9631 return expand_expr_real (decl, original_target, tmode,
9632 modifier, alt_rtl);
9633 }
9634
9635 default:
9636 return expand_expr_real_2 (&ops, target, tmode, modifier);
9637 }
9638 }
9639 \f
9640 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9641 signedness of TYPE), possibly returning the result in TARGET. */
9642 static rtx
9643 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9644 {
9645 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9646 if (target && GET_MODE (target) != GET_MODE (exp))
9647 target = 0;
9648 /* For constant values, reduce using build_int_cst_type. */
9649 if (CONST_INT_P (exp))
9650 {
9651 HOST_WIDE_INT value = INTVAL (exp);
9652 tree t = build_int_cst_type (type, value);
9653 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9654 }
9655 else if (TYPE_UNSIGNED (type))
9656 {
9657 rtx mask;
9658 if (prec < HOST_BITS_PER_WIDE_INT)
9659 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9660 GET_MODE (exp));
9661 else
9662 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9663 ((unsigned HOST_WIDE_INT) 1
9664 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9665 GET_MODE (exp));
9666 return expand_and (GET_MODE (exp), exp, mask, target);
9667 }
9668 else
9669 {
9670 tree count = build_int_cst (NULL_TREE,
9671 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9672 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9673 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9674 }
9675 }
9676 \f
9677 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9678 when applied to the address of EXP produces an address known to be
9679 aligned more than BIGGEST_ALIGNMENT. */
9680
9681 static int
9682 is_aligning_offset (const_tree offset, const_tree exp)
9683 {
9684 /* Strip off any conversions. */
9685 while (CONVERT_EXPR_P (offset))
9686 offset = TREE_OPERAND (offset, 0);
9687
9688 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9689 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9690 if (TREE_CODE (offset) != BIT_AND_EXPR
9691 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9692 || compare_tree_int (TREE_OPERAND (offset, 1),
9693 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9694 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9695 return 0;
9696
9697 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9698 It must be NEGATE_EXPR. Then strip any more conversions. */
9699 offset = TREE_OPERAND (offset, 0);
9700 while (CONVERT_EXPR_P (offset))
9701 offset = TREE_OPERAND (offset, 0);
9702
9703 if (TREE_CODE (offset) != NEGATE_EXPR)
9704 return 0;
9705
9706 offset = TREE_OPERAND (offset, 0);
9707 while (CONVERT_EXPR_P (offset))
9708 offset = TREE_OPERAND (offset, 0);
9709
9710 /* This must now be the address of EXP. */
9711 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9712 }
9713 \f
9714 /* Return the tree node if an ARG corresponds to a string constant or zero
9715 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9716 in bytes within the string that ARG is accessing. The type of the
9717 offset will be `sizetype'. */
9718
9719 tree
9720 string_constant (tree arg, tree *ptr_offset)
9721 {
9722 tree array, offset, lower_bound;
9723 STRIP_NOPS (arg);
9724
9725 if (TREE_CODE (arg) == ADDR_EXPR)
9726 {
9727 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9728 {
9729 *ptr_offset = size_zero_node;
9730 return TREE_OPERAND (arg, 0);
9731 }
9732 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9733 {
9734 array = TREE_OPERAND (arg, 0);
9735 offset = size_zero_node;
9736 }
9737 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9738 {
9739 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9740 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9741 if (TREE_CODE (array) != STRING_CST
9742 && TREE_CODE (array) != VAR_DECL)
9743 return 0;
9744
9745 /* Check if the array has a nonzero lower bound. */
9746 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9747 if (!integer_zerop (lower_bound))
9748 {
9749 /* If the offset and base aren't both constants, return 0. */
9750 if (TREE_CODE (lower_bound) != INTEGER_CST)
9751 return 0;
9752 if (TREE_CODE (offset) != INTEGER_CST)
9753 return 0;
9754 /* Adjust offset by the lower bound. */
9755 offset = size_diffop (fold_convert (sizetype, offset),
9756 fold_convert (sizetype, lower_bound));
9757 }
9758 }
9759 else
9760 return 0;
9761 }
9762 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9763 {
9764 tree arg0 = TREE_OPERAND (arg, 0);
9765 tree arg1 = TREE_OPERAND (arg, 1);
9766
9767 STRIP_NOPS (arg0);
9768 STRIP_NOPS (arg1);
9769
9770 if (TREE_CODE (arg0) == ADDR_EXPR
9771 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9772 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9773 {
9774 array = TREE_OPERAND (arg0, 0);
9775 offset = arg1;
9776 }
9777 else if (TREE_CODE (arg1) == ADDR_EXPR
9778 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9779 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9780 {
9781 array = TREE_OPERAND (arg1, 0);
9782 offset = arg0;
9783 }
9784 else
9785 return 0;
9786 }
9787 else
9788 return 0;
9789
9790 if (TREE_CODE (array) == STRING_CST)
9791 {
9792 *ptr_offset = fold_convert (sizetype, offset);
9793 return array;
9794 }
9795 else if (TREE_CODE (array) == VAR_DECL)
9796 {
9797 int length;
9798
9799 /* Variables initialized to string literals can be handled too. */
9800 if (DECL_INITIAL (array) == NULL_TREE
9801 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9802 return 0;
9803
9804 /* If they are read-only, non-volatile and bind locally. */
9805 if (! TREE_READONLY (array)
9806 || TREE_SIDE_EFFECTS (array)
9807 || ! targetm.binds_local_p (array))
9808 return 0;
9809
9810 /* Avoid const char foo[4] = "abcde"; */
9811 if (DECL_SIZE_UNIT (array) == NULL_TREE
9812 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9813 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9814 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9815 return 0;
9816
9817 /* If variable is bigger than the string literal, OFFSET must be constant
9818 and inside of the bounds of the string literal. */
9819 offset = fold_convert (sizetype, offset);
9820 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9821 && (! host_integerp (offset, 1)
9822 || compare_tree_int (offset, length) >= 0))
9823 return 0;
9824
9825 *ptr_offset = offset;
9826 return DECL_INITIAL (array);
9827 }
9828
9829 return 0;
9830 }
9831 \f
9832 /* Generate code to calculate OPS, and exploded expression
9833 using a store-flag instruction and return an rtx for the result.
9834 OPS reflects a comparison.
9835
9836 If TARGET is nonzero, store the result there if convenient.
9837
9838 Return zero if there is no suitable set-flag instruction
9839 available on this machine.
9840
9841 Once expand_expr has been called on the arguments of the comparison,
9842 we are committed to doing the store flag, since it is not safe to
9843 re-evaluate the expression. We emit the store-flag insn by calling
9844 emit_store_flag, but only expand the arguments if we have a reason
9845 to believe that emit_store_flag will be successful. If we think that
9846 it will, but it isn't, we have to simulate the store-flag with a
9847 set/jump/set sequence. */
9848
9849 static rtx
9850 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9851 {
9852 enum rtx_code code;
9853 tree arg0, arg1, type;
9854 tree tem;
9855 enum machine_mode operand_mode;
9856 int unsignedp;
9857 rtx op0, op1;
9858 rtx subtarget = target;
9859 location_t loc = ops->location;
9860
9861 arg0 = ops->op0;
9862 arg1 = ops->op1;
9863
9864 /* Don't crash if the comparison was erroneous. */
9865 if (arg0 == error_mark_node || arg1 == error_mark_node)
9866 return const0_rtx;
9867
9868 type = TREE_TYPE (arg0);
9869 operand_mode = TYPE_MODE (type);
9870 unsignedp = TYPE_UNSIGNED (type);
9871
9872 /* We won't bother with BLKmode store-flag operations because it would mean
9873 passing a lot of information to emit_store_flag. */
9874 if (operand_mode == BLKmode)
9875 return 0;
9876
9877 /* We won't bother with store-flag operations involving function pointers
9878 when function pointers must be canonicalized before comparisons. */
9879 #ifdef HAVE_canonicalize_funcptr_for_compare
9880 if (HAVE_canonicalize_funcptr_for_compare
9881 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9882 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9883 == FUNCTION_TYPE))
9884 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9885 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9886 == FUNCTION_TYPE))))
9887 return 0;
9888 #endif
9889
9890 STRIP_NOPS (arg0);
9891 STRIP_NOPS (arg1);
9892
9893 /* Get the rtx comparison code to use. We know that EXP is a comparison
9894 operation of some type. Some comparisons against 1 and -1 can be
9895 converted to comparisons with zero. Do so here so that the tests
9896 below will be aware that we have a comparison with zero. These
9897 tests will not catch constants in the first operand, but constants
9898 are rarely passed as the first operand. */
9899
9900 switch (ops->code)
9901 {
9902 case EQ_EXPR:
9903 code = EQ;
9904 break;
9905 case NE_EXPR:
9906 code = NE;
9907 break;
9908 case LT_EXPR:
9909 if (integer_onep (arg1))
9910 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9911 else
9912 code = unsignedp ? LTU : LT;
9913 break;
9914 case LE_EXPR:
9915 if (! unsignedp && integer_all_onesp (arg1))
9916 arg1 = integer_zero_node, code = LT;
9917 else
9918 code = unsignedp ? LEU : LE;
9919 break;
9920 case GT_EXPR:
9921 if (! unsignedp && integer_all_onesp (arg1))
9922 arg1 = integer_zero_node, code = GE;
9923 else
9924 code = unsignedp ? GTU : GT;
9925 break;
9926 case GE_EXPR:
9927 if (integer_onep (arg1))
9928 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9929 else
9930 code = unsignedp ? GEU : GE;
9931 break;
9932
9933 case UNORDERED_EXPR:
9934 code = UNORDERED;
9935 break;
9936 case ORDERED_EXPR:
9937 code = ORDERED;
9938 break;
9939 case UNLT_EXPR:
9940 code = UNLT;
9941 break;
9942 case UNLE_EXPR:
9943 code = UNLE;
9944 break;
9945 case UNGT_EXPR:
9946 code = UNGT;
9947 break;
9948 case UNGE_EXPR:
9949 code = UNGE;
9950 break;
9951 case UNEQ_EXPR:
9952 code = UNEQ;
9953 break;
9954 case LTGT_EXPR:
9955 code = LTGT;
9956 break;
9957
9958 default:
9959 gcc_unreachable ();
9960 }
9961
9962 /* Put a constant second. */
9963 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9964 || TREE_CODE (arg0) == FIXED_CST)
9965 {
9966 tem = arg0; arg0 = arg1; arg1 = tem;
9967 code = swap_condition (code);
9968 }
9969
9970 /* If this is an equality or inequality test of a single bit, we can
9971 do this by shifting the bit being tested to the low-order bit and
9972 masking the result with the constant 1. If the condition was EQ,
9973 we xor it with 1. This does not require an scc insn and is faster
9974 than an scc insn even if we have it.
9975
9976 The code to make this transformation was moved into fold_single_bit_test,
9977 so we just call into the folder and expand its result. */
9978
9979 if ((code == NE || code == EQ)
9980 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9981 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9982 {
9983 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9984 return expand_expr (fold_single_bit_test (loc,
9985 code == NE ? NE_EXPR : EQ_EXPR,
9986 arg0, arg1, type),
9987 target, VOIDmode, EXPAND_NORMAL);
9988 }
9989
9990 if (! get_subtarget (target)
9991 || GET_MODE (subtarget) != operand_mode)
9992 subtarget = 0;
9993
9994 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
9995
9996 if (target == 0)
9997 target = gen_reg_rtx (mode);
9998
9999 /* Try a cstore if possible. */
10000 return emit_store_flag_force (target, code, op0, op1,
10001 operand_mode, unsignedp, 1);
10002 }
10003 \f
10004
10005 /* Stubs in case we haven't got a casesi insn. */
10006 #ifndef HAVE_casesi
10007 # define HAVE_casesi 0
10008 # define gen_casesi(a, b, c, d, e) (0)
10009 # define CODE_FOR_casesi CODE_FOR_nothing
10010 #endif
10011
10012 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10013 0 otherwise (i.e. if there is no casesi instruction). */
10014 int
10015 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10016 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10017 rtx fallback_label ATTRIBUTE_UNUSED)
10018 {
10019 enum machine_mode index_mode = SImode;
10020 int index_bits = GET_MODE_BITSIZE (index_mode);
10021 rtx op1, op2, index;
10022 enum machine_mode op_mode;
10023
10024 if (! HAVE_casesi)
10025 return 0;
10026
10027 /* Convert the index to SImode. */
10028 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10029 {
10030 enum machine_mode omode = TYPE_MODE (index_type);
10031 rtx rangertx = expand_normal (range);
10032
10033 /* We must handle the endpoints in the original mode. */
10034 index_expr = build2 (MINUS_EXPR, index_type,
10035 index_expr, minval);
10036 minval = integer_zero_node;
10037 index = expand_normal (index_expr);
10038 if (default_label)
10039 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10040 omode, 1, default_label);
10041 /* Now we can safely truncate. */
10042 index = convert_to_mode (index_mode, index, 0);
10043 }
10044 else
10045 {
10046 if (TYPE_MODE (index_type) != index_mode)
10047 {
10048 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10049 index_expr = fold_convert (index_type, index_expr);
10050 }
10051
10052 index = expand_normal (index_expr);
10053 }
10054
10055 do_pending_stack_adjust ();
10056
10057 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10058 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10059 (index, op_mode))
10060 index = copy_to_mode_reg (op_mode, index);
10061
10062 op1 = expand_normal (minval);
10063
10064 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10065 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10066 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10067 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10068 (op1, op_mode))
10069 op1 = copy_to_mode_reg (op_mode, op1);
10070
10071 op2 = expand_normal (range);
10072
10073 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10074 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10075 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10076 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10077 (op2, op_mode))
10078 op2 = copy_to_mode_reg (op_mode, op2);
10079
10080 emit_jump_insn (gen_casesi (index, op1, op2,
10081 table_label, !default_label
10082 ? fallback_label : default_label));
10083 return 1;
10084 }
10085
10086 /* Attempt to generate a tablejump instruction; same concept. */
10087 #ifndef HAVE_tablejump
10088 #define HAVE_tablejump 0
10089 #define gen_tablejump(x, y) (0)
10090 #endif
10091
10092 /* Subroutine of the next function.
10093
10094 INDEX is the value being switched on, with the lowest value
10095 in the table already subtracted.
10096 MODE is its expected mode (needed if INDEX is constant).
10097 RANGE is the length of the jump table.
10098 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10099
10100 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10101 index value is out of range. */
10102
10103 static void
10104 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10105 rtx default_label)
10106 {
10107 rtx temp, vector;
10108
10109 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10110 cfun->cfg->max_jumptable_ents = INTVAL (range);
10111
10112 /* Do an unsigned comparison (in the proper mode) between the index
10113 expression and the value which represents the length of the range.
10114 Since we just finished subtracting the lower bound of the range
10115 from the index expression, this comparison allows us to simultaneously
10116 check that the original index expression value is both greater than
10117 or equal to the minimum value of the range and less than or equal to
10118 the maximum value of the range. */
10119
10120 if (default_label)
10121 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10122 default_label);
10123
10124 /* If index is in range, it must fit in Pmode.
10125 Convert to Pmode so we can index with it. */
10126 if (mode != Pmode)
10127 index = convert_to_mode (Pmode, index, 1);
10128
10129 /* Don't let a MEM slip through, because then INDEX that comes
10130 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10131 and break_out_memory_refs will go to work on it and mess it up. */
10132 #ifdef PIC_CASE_VECTOR_ADDRESS
10133 if (flag_pic && !REG_P (index))
10134 index = copy_to_mode_reg (Pmode, index);
10135 #endif
10136
10137 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10138 GET_MODE_SIZE, because this indicates how large insns are. The other
10139 uses should all be Pmode, because they are addresses. This code
10140 could fail if addresses and insns are not the same size. */
10141 index = gen_rtx_PLUS (Pmode,
10142 gen_rtx_MULT (Pmode, index,
10143 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10144 gen_rtx_LABEL_REF (Pmode, table_label));
10145 #ifdef PIC_CASE_VECTOR_ADDRESS
10146 if (flag_pic)
10147 index = PIC_CASE_VECTOR_ADDRESS (index);
10148 else
10149 #endif
10150 index = memory_address (CASE_VECTOR_MODE, index);
10151 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10152 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10153 convert_move (temp, vector, 0);
10154
10155 emit_jump_insn (gen_tablejump (temp, table_label));
10156
10157 /* If we are generating PIC code or if the table is PC-relative, the
10158 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10159 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10160 emit_barrier ();
10161 }
10162
10163 int
10164 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10165 rtx table_label, rtx default_label)
10166 {
10167 rtx index;
10168
10169 if (! HAVE_tablejump)
10170 return 0;
10171
10172 index_expr = fold_build2 (MINUS_EXPR, index_type,
10173 fold_convert (index_type, index_expr),
10174 fold_convert (index_type, minval));
10175 index = expand_normal (index_expr);
10176 do_pending_stack_adjust ();
10177
10178 do_tablejump (index, TYPE_MODE (index_type),
10179 convert_modes (TYPE_MODE (index_type),
10180 TYPE_MODE (TREE_TYPE (range)),
10181 expand_normal (range),
10182 TYPE_UNSIGNED (TREE_TYPE (range))),
10183 table_label, default_label);
10184 return 1;
10185 }
10186
10187 /* Nonzero if the mode is a valid vector mode for this architecture.
10188 This returns nonzero even if there is no hardware support for the
10189 vector mode, but we can emulate with narrower modes. */
10190
10191 int
10192 vector_mode_valid_p (enum machine_mode mode)
10193 {
10194 enum mode_class mclass = GET_MODE_CLASS (mode);
10195 enum machine_mode innermode;
10196
10197 /* Doh! What's going on? */
10198 if (mclass != MODE_VECTOR_INT
10199 && mclass != MODE_VECTOR_FLOAT
10200 && mclass != MODE_VECTOR_FRACT
10201 && mclass != MODE_VECTOR_UFRACT
10202 && mclass != MODE_VECTOR_ACCUM
10203 && mclass != MODE_VECTOR_UACCUM)
10204 return 0;
10205
10206 /* Hardware support. Woo hoo! */
10207 if (targetm.vector_mode_supported_p (mode))
10208 return 1;
10209
10210 innermode = GET_MODE_INNER (mode);
10211
10212 /* We should probably return 1 if requesting V4DI and we have no DI,
10213 but we have V2DI, but this is probably very unlikely. */
10214
10215 /* If we have support for the inner mode, we can safely emulate it.
10216 We may not have V2DI, but me can emulate with a pair of DIs. */
10217 return targetm.scalar_mode_supported_p (innermode);
10218 }
10219
10220 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10221 static rtx
10222 const_vector_from_tree (tree exp)
10223 {
10224 rtvec v;
10225 int units, i;
10226 tree link, elt;
10227 enum machine_mode inner, mode;
10228
10229 mode = TYPE_MODE (TREE_TYPE (exp));
10230
10231 if (initializer_zerop (exp))
10232 return CONST0_RTX (mode);
10233
10234 units = GET_MODE_NUNITS (mode);
10235 inner = GET_MODE_INNER (mode);
10236
10237 v = rtvec_alloc (units);
10238
10239 link = TREE_VECTOR_CST_ELTS (exp);
10240 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10241 {
10242 elt = TREE_VALUE (link);
10243
10244 if (TREE_CODE (elt) == REAL_CST)
10245 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10246 inner);
10247 else if (TREE_CODE (elt) == FIXED_CST)
10248 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10249 inner);
10250 else
10251 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10252 TREE_INT_CST_HIGH (elt),
10253 inner);
10254 }
10255
10256 /* Initialize remaining elements to 0. */
10257 for (; i < units; ++i)
10258 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10259
10260 return gen_rtx_CONST_VECTOR (mode, v);
10261 }
10262 #include "gt-expr.h"