tree.def (FMA_EXPR): New tree code.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces_d
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
443
444 if (to_mode == full_mode)
445 {
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
455
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
459 }
460
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
465 {
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
475 }
476
477 /* Now both modes are integers. */
478
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
482 {
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
490
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
494 {
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
503 }
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
508 {
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
511 {
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
515 }
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
519 }
520
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
523
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
526
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
529
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
535
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
537
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
540
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_insn (insns);
565 return;
566 }
567
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
571 {
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
581 }
582
583 /* Now follow all the conversions between integers
584 no more than a word long. */
585
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
590 {
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
603 }
604
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
607 {
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
611 {
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
614 }
615 else
616 {
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
620
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
650 }
651 }
652
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
656 {
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
660 }
661
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
665
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 {
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
674 }
675
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
678 }
679
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
686
687 rtx
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 {
690 return convert_modes (mode, VOIDmode, x, unsignedp);
691 }
692
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
697
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
700
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702
703 rtx
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 {
706 rtx temp;
707
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
710
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
715
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
718
719 if (mode == oldmode)
720 return x;
721
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
727
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
731 {
732 double_int val = uhwi_to_double_int (INTVAL (x));
733
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737
738 return immed_double_int_const (val, mode);
739 }
740
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 {
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 {
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* STORE_MAX_PIECES is the number of bytes at a time that we can
796 store efficiently. Due to internal GCC limitations, this is
797 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
798 for an immediate constant. */
799
800 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
801
802 /* Determine whether the LEN bytes can be moved by using several move
803 instructions. Return nonzero if a call to move_by_pieces should
804 succeed. */
805
806 int
807 can_move_by_pieces (unsigned HOST_WIDE_INT len,
808 unsigned int align ATTRIBUTE_UNUSED)
809 {
810 return MOVE_BY_PIECES_P (len, align);
811 }
812
813 /* Generate several move instructions to copy LEN bytes from block FROM to
814 block TO. (These are MEM rtx's with BLKmode).
815
816 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
817 used to push FROM to the stack.
818
819 ALIGN is maximum stack alignment we can assume.
820
821 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
822 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
823 stpcpy. */
824
825 rtx
826 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
827 unsigned int align, int endp)
828 {
829 struct move_by_pieces_d data;
830 enum machine_mode to_addr_mode, from_addr_mode
831 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
832 rtx to_addr, from_addr = XEXP (from, 0);
833 unsigned int max_size = MOVE_MAX_PIECES + 1;
834 enum machine_mode mode = VOIDmode, tmode;
835 enum insn_code icode;
836
837 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
838
839 data.offset = 0;
840 data.from_addr = from_addr;
841 if (to)
842 {
843 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
844 to_addr = XEXP (to, 0);
845 data.to = to;
846 data.autinc_to
847 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
848 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
849 data.reverse
850 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
851 }
852 else
853 {
854 to_addr_mode = VOIDmode;
855 to_addr = NULL_RTX;
856 data.to = NULL_RTX;
857 data.autinc_to = 1;
858 #ifdef STACK_GROWS_DOWNWARD
859 data.reverse = 1;
860 #else
861 data.reverse = 0;
862 #endif
863 }
864 data.to_addr = to_addr;
865 data.from = from;
866 data.autinc_from
867 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
868 || GET_CODE (from_addr) == POST_INC
869 || GET_CODE (from_addr) == POST_DEC);
870
871 data.explicit_inc_from = 0;
872 data.explicit_inc_to = 0;
873 if (data.reverse) data.offset = len;
874 data.len = len;
875
876 /* If copying requires more than two move insns,
877 copy addresses to registers (to make displacements shorter)
878 and use post-increment if available. */
879 if (!(data.autinc_from && data.autinc_to)
880 && move_by_pieces_ninsns (len, align, max_size) > 2)
881 {
882 /* Find the mode of the largest move... */
883 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
884 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
885 if (GET_MODE_SIZE (tmode) < max_size)
886 mode = tmode;
887
888 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
889 {
890 data.from_addr = copy_to_mode_reg (from_addr_mode,
891 plus_constant (from_addr, len));
892 data.autinc_from = 1;
893 data.explicit_inc_from = -1;
894 }
895 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
896 {
897 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
898 data.autinc_from = 1;
899 data.explicit_inc_from = 1;
900 }
901 if (!data.autinc_from && CONSTANT_P (from_addr))
902 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
903 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
904 {
905 data.to_addr = copy_to_mode_reg (to_addr_mode,
906 plus_constant (to_addr, len));
907 data.autinc_to = 1;
908 data.explicit_inc_to = -1;
909 }
910 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
911 {
912 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
913 data.autinc_to = 1;
914 data.explicit_inc_to = 1;
915 }
916 if (!data.autinc_to && CONSTANT_P (to_addr))
917 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
918 }
919
920 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
921 if (align >= GET_MODE_ALIGNMENT (tmode))
922 align = GET_MODE_ALIGNMENT (tmode);
923 else
924 {
925 enum machine_mode xmode;
926
927 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
928 tmode != VOIDmode;
929 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
930 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
931 || SLOW_UNALIGNED_ACCESS (tmode, align))
932 break;
933
934 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
935 }
936
937 /* First move what we can in the largest integer mode, then go to
938 successively smaller modes. */
939
940 while (max_size > 1)
941 {
942 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
943 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
944 if (GET_MODE_SIZE (tmode) < max_size)
945 mode = tmode;
946
947 if (mode == VOIDmode)
948 break;
949
950 icode = optab_handler (mov_optab, mode);
951 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
952 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
953
954 max_size = GET_MODE_SIZE (mode);
955 }
956
957 /* The code above should have handled everything. */
958 gcc_assert (!data.len);
959
960 if (endp)
961 {
962 rtx to1;
963
964 gcc_assert (!data.reverse);
965 if (data.autinc_to)
966 {
967 if (endp == 2)
968 {
969 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
970 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
971 else
972 data.to_addr = copy_to_mode_reg (to_addr_mode,
973 plus_constant (data.to_addr,
974 -1));
975 }
976 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
977 data.offset);
978 }
979 else
980 {
981 if (endp == 2)
982 --data.offset;
983 to1 = adjust_address (data.to, QImode, data.offset);
984 }
985 return to1;
986 }
987 else
988 return data.to;
989 }
990
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
993
994 static unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
996 unsigned int max_size)
997 {
998 unsigned HOST_WIDE_INT n_insns = 0;
999 enum machine_mode tmode;
1000
1001 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1002 if (align >= GET_MODE_ALIGNMENT (tmode))
1003 align = GET_MODE_ALIGNMENT (tmode);
1004 else
1005 {
1006 enum machine_mode tmode, xmode;
1007
1008 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1009 tmode != VOIDmode;
1010 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1011 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1012 || SLOW_UNALIGNED_ACCESS (tmode, align))
1013 break;
1014
1015 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1016 }
1017
1018 while (max_size > 1)
1019 {
1020 enum machine_mode mode = VOIDmode;
1021 enum insn_code icode;
1022
1023 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1024 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1025 if (GET_MODE_SIZE (tmode) < max_size)
1026 mode = tmode;
1027
1028 if (mode == VOIDmode)
1029 break;
1030
1031 icode = optab_handler (mov_optab, mode);
1032 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1033 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1034
1035 max_size = GET_MODE_SIZE (mode);
1036 }
1037
1038 gcc_assert (!l);
1039 return n_insns;
1040 }
1041
1042 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1043 with move instructions for mode MODE. GENFUN is the gen_... function
1044 to make a move insn for that mode. DATA has all the other info. */
1045
1046 static void
1047 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1048 struct move_by_pieces_d *data)
1049 {
1050 unsigned int size = GET_MODE_SIZE (mode);
1051 rtx to1 = NULL_RTX, from1;
1052
1053 while (data->len >= size)
1054 {
1055 if (data->reverse)
1056 data->offset -= size;
1057
1058 if (data->to)
1059 {
1060 if (data->autinc_to)
1061 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1062 data->offset);
1063 else
1064 to1 = adjust_address (data->to, mode, data->offset);
1065 }
1066
1067 if (data->autinc_from)
1068 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1069 data->offset);
1070 else
1071 from1 = adjust_address (data->from, mode, data->offset);
1072
1073 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1074 emit_insn (gen_add2_insn (data->to_addr,
1075 GEN_INT (-(HOST_WIDE_INT)size)));
1076 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1077 emit_insn (gen_add2_insn (data->from_addr,
1078 GEN_INT (-(HOST_WIDE_INT)size)));
1079
1080 if (data->to)
1081 emit_insn ((*genfun) (to1, from1));
1082 else
1083 {
1084 #ifdef PUSH_ROUNDING
1085 emit_single_push_insn (mode, from1, NULL);
1086 #else
1087 gcc_unreachable ();
1088 #endif
1089 }
1090
1091 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1092 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1094 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1095
1096 if (! data->reverse)
1097 data->offset += size;
1098
1099 data->len -= size;
1100 }
1101 }
1102 \f
1103 /* Emit code to move a block Y to a block X. This may be done with
1104 string-move instructions, with multiple scalar move instructions,
1105 or with a library call.
1106
1107 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1108 SIZE is an rtx that says how long they are.
1109 ALIGN is the maximum alignment we can assume they have.
1110 METHOD describes what kind of copy this is, and what mechanisms may be used.
1111
1112 Return the address of the new block, if memcpy is called and returns it,
1113 0 otherwise. */
1114
1115 rtx
1116 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1117 unsigned int expected_align, HOST_WIDE_INT expected_size)
1118 {
1119 bool may_use_call;
1120 rtx retval = 0;
1121 unsigned int align;
1122
1123 gcc_assert (size);
1124 if (CONST_INT_P (size)
1125 && INTVAL (size) == 0)
1126 return 0;
1127
1128 switch (method)
1129 {
1130 case BLOCK_OP_NORMAL:
1131 case BLOCK_OP_TAILCALL:
1132 may_use_call = true;
1133 break;
1134
1135 case BLOCK_OP_CALL_PARM:
1136 may_use_call = block_move_libcall_safe_for_call_parm ();
1137
1138 /* Make inhibit_defer_pop nonzero around the library call
1139 to force it to pop the arguments right away. */
1140 NO_DEFER_POP;
1141 break;
1142
1143 case BLOCK_OP_NO_LIBCALL:
1144 may_use_call = false;
1145 break;
1146
1147 default:
1148 gcc_unreachable ();
1149 }
1150
1151 gcc_assert (MEM_P (x) && MEM_P (y));
1152 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1153 gcc_assert (align >= BITS_PER_UNIT);
1154
1155 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1156 block copy is more efficient for other large modes, e.g. DCmode. */
1157 x = adjust_address (x, BLKmode, 0);
1158 y = adjust_address (y, BLKmode, 0);
1159
1160 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1161 can be incorrect is coming from __builtin_memcpy. */
1162 if (CONST_INT_P (size))
1163 {
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1168 }
1169
1170 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align,
1173 expected_align, expected_size))
1174 ;
1175 else if (may_use_call
1176 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1177 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1178 retval = emit_block_move_via_libcall (x, y, size,
1179 method == BLOCK_OP_TAILCALL);
1180 else
1181 emit_block_move_via_loop (x, y, size, align);
1182
1183 if (method == BLOCK_OP_CALL_PARM)
1184 OK_DEFER_POP;
1185
1186 return retval;
1187 }
1188
1189 rtx
1190 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1191 {
1192 return emit_block_move_hints (x, y, size, method, 0, -1);
1193 }
1194
1195 /* A subroutine of emit_block_move. Returns true if calling the
1196 block move libcall will not clobber any parameters which may have
1197 already been placed on the stack. */
1198
1199 static bool
1200 block_move_libcall_safe_for_call_parm (void)
1201 {
1202 #if defined (REG_PARM_STACK_SPACE)
1203 tree fn;
1204 #endif
1205
1206 /* If arguments are pushed on the stack, then they're safe. */
1207 if (PUSH_ARGS)
1208 return true;
1209
1210 /* If registers go on the stack anyway, any argument is sure to clobber
1211 an outgoing argument. */
1212 #if defined (REG_PARM_STACK_SPACE)
1213 fn = emit_block_move_libcall_fn (false);
1214 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1215 depend on its argument. */
1216 (void) fn;
1217 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1218 && REG_PARM_STACK_SPACE (fn) != 0)
1219 return false;
1220 #endif
1221
1222 /* If any argument goes in memory, then it might clobber an outgoing
1223 argument. */
1224 {
1225 CUMULATIVE_ARGS args_so_far;
1226 tree fn, arg;
1227
1228 fn = emit_block_move_libcall_fn (false);
1229 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1230
1231 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1232 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1233 {
1234 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1235 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1236 NULL_TREE, true);
1237 if (!tmp || !REG_P (tmp))
1238 return false;
1239 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1240 return false;
1241 targetm.calls.function_arg_advance (&args_so_far, mode,
1242 NULL_TREE, true);
1243 }
1244 }
1245 return true;
1246 }
1247
1248 /* A subroutine of emit_block_move. Expand a movmem pattern;
1249 return true if successful. */
1250
1251 static bool
1252 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1253 unsigned int expected_align, HOST_WIDE_INT expected_size)
1254 {
1255 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1256 int save_volatile_ok = volatile_ok;
1257 enum machine_mode mode;
1258
1259 if (expected_align < align)
1260 expected_align = align;
1261
1262 /* Since this is a move insn, we don't care about volatility. */
1263 volatile_ok = 1;
1264
1265 /* Try the most limited insn first, because there's no point
1266 including more than one in the machine description unless
1267 the more limited one has some advantage. */
1268
1269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1270 mode = GET_MODE_WIDER_MODE (mode))
1271 {
1272 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1273 insn_operand_predicate_fn pred;
1274
1275 if (code != CODE_FOR_nothing
1276 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1277 here because if SIZE is less than the mode mask, as it is
1278 returned by the macro, it will definitely be less than the
1279 actual mode mask. */
1280 && ((CONST_INT_P (size)
1281 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1282 <= (GET_MODE_MASK (mode) >> 1)))
1283 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1284 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1285 || (*pred) (x, BLKmode))
1286 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1287 || (*pred) (y, BLKmode))
1288 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1289 || (*pred) (opalign, VOIDmode)))
1290 {
1291 rtx op2;
1292 rtx last = get_last_insn ();
1293 rtx pat;
1294
1295 op2 = convert_to_mode (mode, size, 1);
1296 pred = insn_data[(int) code].operand[2].predicate;
1297 if (pred != 0 && ! (*pred) (op2, mode))
1298 op2 = copy_to_mode_reg (mode, op2);
1299
1300 /* ??? When called via emit_block_move_for_call, it'd be
1301 nice if there were some way to inform the backend, so
1302 that it doesn't fail the expansion because it thinks
1303 emitting the libcall would be more efficient. */
1304
1305 if (insn_data[(int) code].n_operands == 4)
1306 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1307 else
1308 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1309 GEN_INT (expected_align
1310 / BITS_PER_UNIT),
1311 GEN_INT (expected_size));
1312 if (pat)
1313 {
1314 emit_insn (pat);
1315 volatile_ok = save_volatile_ok;
1316 return true;
1317 }
1318 else
1319 delete_insns_since (last);
1320 }
1321 }
1322
1323 volatile_ok = save_volatile_ok;
1324 return false;
1325 }
1326
1327 /* A subroutine of emit_block_move. Expand a call to memcpy.
1328 Return the return value from memcpy, 0 otherwise. */
1329
1330 rtx
1331 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1332 {
1333 rtx dst_addr, src_addr;
1334 tree call_expr, fn, src_tree, dst_tree, size_tree;
1335 enum machine_mode size_mode;
1336 rtx retval;
1337
1338 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1339 pseudos. We can then place those new pseudos into a VAR_DECL and
1340 use them later. */
1341
1342 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1343 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1344
1345 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1346 src_addr = convert_memory_address (ptr_mode, src_addr);
1347
1348 dst_tree = make_tree (ptr_type_node, dst_addr);
1349 src_tree = make_tree (ptr_type_node, src_addr);
1350
1351 size_mode = TYPE_MODE (sizetype);
1352
1353 size = convert_to_mode (size_mode, size, 1);
1354 size = copy_to_mode_reg (size_mode, size);
1355
1356 /* It is incorrect to use the libcall calling conventions to call
1357 memcpy in this context. This could be a user call to memcpy and
1358 the user may wish to examine the return value from memcpy. For
1359 targets where libcalls and normal calls have different conventions
1360 for returning pointers, we could end up generating incorrect code. */
1361
1362 size_tree = make_tree (sizetype, size);
1363
1364 fn = emit_block_move_libcall_fn (true);
1365 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1366 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1367
1368 retval = expand_normal (call_expr);
1369
1370 return retval;
1371 }
1372
1373 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1374 for the function we use for block copies. The first time FOR_CALL
1375 is true, we call assemble_external. */
1376
1377 static GTY(()) tree block_move_fn;
1378
1379 void
1380 init_block_move_fn (const char *asmspec)
1381 {
1382 if (!block_move_fn)
1383 {
1384 tree args, fn;
1385
1386 fn = get_identifier ("memcpy");
1387 args = build_function_type_list (ptr_type_node, ptr_type_node,
1388 const_ptr_type_node, sizetype,
1389 NULL_TREE);
1390
1391 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1392 DECL_EXTERNAL (fn) = 1;
1393 TREE_PUBLIC (fn) = 1;
1394 DECL_ARTIFICIAL (fn) = 1;
1395 TREE_NOTHROW (fn) = 1;
1396 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1397 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1398
1399 block_move_fn = fn;
1400 }
1401
1402 if (asmspec)
1403 set_user_assembler_name (block_move_fn, asmspec);
1404 }
1405
1406 static tree
1407 emit_block_move_libcall_fn (int for_call)
1408 {
1409 static bool emitted_extern;
1410
1411 if (!block_move_fn)
1412 init_block_move_fn (NULL);
1413
1414 if (for_call && !emitted_extern)
1415 {
1416 emitted_extern = true;
1417 make_decl_rtl (block_move_fn);
1418 assemble_external (block_move_fn);
1419 }
1420
1421 return block_move_fn;
1422 }
1423
1424 /* A subroutine of emit_block_move. Copy the data via an explicit
1425 loop. This is used only when libcalls are forbidden. */
1426 /* ??? It'd be nice to copy in hunks larger than QImode. */
1427
1428 static void
1429 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1430 unsigned int align ATTRIBUTE_UNUSED)
1431 {
1432 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1433 enum machine_mode x_addr_mode
1434 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1435 enum machine_mode y_addr_mode
1436 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1437 enum machine_mode iter_mode;
1438
1439 iter_mode = GET_MODE (size);
1440 if (iter_mode == VOIDmode)
1441 iter_mode = word_mode;
1442
1443 top_label = gen_label_rtx ();
1444 cmp_label = gen_label_rtx ();
1445 iter = gen_reg_rtx (iter_mode);
1446
1447 emit_move_insn (iter, const0_rtx);
1448
1449 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1450 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1451 do_pending_stack_adjust ();
1452
1453 emit_jump (cmp_label);
1454 emit_label (top_label);
1455
1456 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1457 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1458
1459 if (x_addr_mode != y_addr_mode)
1460 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1461 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1462
1463 x = change_address (x, QImode, x_addr);
1464 y = change_address (y, QImode, y_addr);
1465
1466 emit_move_insn (x, y);
1467
1468 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1469 true, OPTAB_LIB_WIDEN);
1470 if (tmp != iter)
1471 emit_move_insn (iter, tmp);
1472
1473 emit_label (cmp_label);
1474
1475 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1476 true, top_label);
1477 }
1478 \f
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1481
1482 void
1483 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1484 {
1485 int i;
1486 #ifdef HAVE_load_multiple
1487 rtx pat;
1488 rtx last;
1489 #endif
1490
1491 if (nregs == 0)
1492 return;
1493
1494 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1495 x = validize_mem (force_const_mem (mode, x));
1496
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple)
1500 {
1501 last = get_last_insn ();
1502 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1503 GEN_INT (nregs));
1504 if (pat)
1505 {
1506 emit_insn (pat);
1507 return;
1508 }
1509 else
1510 delete_insns_since (last);
1511 }
1512 #endif
1513
1514 for (i = 0; i < nregs; i++)
1515 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1516 operand_subword_force (x, i, mode));
1517 }
1518
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1521
1522 void
1523 move_block_from_reg (int regno, rtx x, int nregs)
1524 {
1525 int i;
1526
1527 if (nregs == 0)
1528 return;
1529
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple)
1533 {
1534 rtx last = get_last_insn ();
1535 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1536 GEN_INT (nregs));
1537 if (pat)
1538 {
1539 emit_insn (pat);
1540 return;
1541 }
1542 else
1543 delete_insns_since (last);
1544 }
1545 #endif
1546
1547 for (i = 0; i < nregs; i++)
1548 {
1549 rtx tem = operand_subword (x, i, 1, BLKmode);
1550
1551 gcc_assert (tem);
1552
1553 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1554 }
1555 }
1556
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1562
1563 rtx
1564 gen_group_rtx (rtx orig)
1565 {
1566 int i, length;
1567 rtx *tmps;
1568
1569 gcc_assert (GET_CODE (orig) == PARALLEL);
1570
1571 length = XVECLEN (orig, 0);
1572 tmps = XALLOCAVEC (rtx, length);
1573
1574 /* Skip a NULL entry in first slot. */
1575 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1576
1577 if (i)
1578 tmps[0] = 0;
1579
1580 for (; i < length; i++)
1581 {
1582 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1583 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1584
1585 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1586 }
1587
1588 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1589 }
1590
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1594
1595 static void
1596 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1597 {
1598 rtx src;
1599 int start, i;
1600 enum machine_mode m = GET_MODE (orig_src);
1601
1602 gcc_assert (GET_CODE (dst) == PARALLEL);
1603
1604 if (m != VOIDmode
1605 && !SCALAR_INT_MODE_P (m)
1606 && !MEM_P (orig_src)
1607 && GET_CODE (orig_src) != CONCAT)
1608 {
1609 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1610 if (imode == BLKmode)
1611 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1612 else
1613 src = gen_reg_rtx (imode);
1614 if (imode != BLKmode)
1615 src = gen_lowpart (GET_MODE (orig_src), src);
1616 emit_move_insn (src, orig_src);
1617 /* ...and back again. */
1618 if (imode != BLKmode)
1619 src = gen_lowpart (imode, src);
1620 emit_group_load_1 (tmps, dst, src, type, ssize);
1621 return;
1622 }
1623
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst, 0, 0), 0))
1627 start = 0;
1628 else
1629 start = 1;
1630
1631 /* Process the pieces. */
1632 for (i = start; i < XVECLEN (dst, 0); i++)
1633 {
1634 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1635 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1636 unsigned int bytelen = GET_MODE_SIZE (mode);
1637 int shift = 0;
1638
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1641 {
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1644 if (
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1647 == (BYTES_BIG_ENDIAN ? upward : downward)
1648 #else
1649 BYTES_BIG_ENDIAN
1650 #endif
1651 )
1652 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1653 bytelen = ssize - bytepos;
1654 gcc_assert (bytelen > 0);
1655 }
1656
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1660 src = orig_src;
1661 if (!MEM_P (orig_src)
1662 && (!CONSTANT_P (orig_src)
1663 || (GET_MODE (orig_src) != mode
1664 && GET_MODE (orig_src) != VOIDmode)))
1665 {
1666 if (GET_MODE (orig_src) == VOIDmode)
1667 src = gen_reg_rtx (mode);
1668 else
1669 src = gen_reg_rtx (GET_MODE (orig_src));
1670
1671 emit_move_insn (src, orig_src);
1672 }
1673
1674 /* Optimize the access just a bit. */
1675 if (MEM_P (src)
1676 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1677 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1678 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1679 && bytelen == GET_MODE_SIZE (mode))
1680 {
1681 tmps[i] = gen_reg_rtx (mode);
1682 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1683 }
1684 else if (COMPLEX_MODE_P (mode)
1685 && GET_MODE (src) == mode
1686 && bytelen == GET_MODE_SIZE (mode))
1687 /* Let emit_move_complex do the bulk of the work. */
1688 tmps[i] = src;
1689 else if (GET_CODE (src) == CONCAT)
1690 {
1691 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1692 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1693
1694 if ((bytepos == 0 && bytelen == slen0)
1695 || (bytepos != 0 && bytepos + bytelen <= slen))
1696 {
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1700 to be extracted. */
1701 tmps[i] = XEXP (src, bytepos / slen0);
1702 if (! CONSTANT_P (tmps[i])
1703 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1704 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1705 (bytepos % slen0) * BITS_PER_UNIT,
1706 1, false, NULL_RTX, mode, mode);
1707 }
1708 else
1709 {
1710 rtx mem;
1711
1712 gcc_assert (!bytepos);
1713 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1714 emit_move_insn (mem, src);
1715 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1716 0, 1, false, NULL_RTX, mode, mode);
1717 }
1718 }
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst))
1723 && REG_P (src))
1724 {
1725 int slen = GET_MODE_SIZE (GET_MODE (src));
1726 rtx mem;
1727
1728 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1729 emit_move_insn (mem, src);
1730 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1731 }
1732 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1733 && XVECLEN (dst, 0) > 1)
1734 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1735 else if (CONSTANT_P (src))
1736 {
1737 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1738
1739 if (len == ssize)
1740 tmps[i] = src;
1741 else
1742 {
1743 rtx first, second;
1744
1745 gcc_assert (2 * len == ssize);
1746 split_double (src, &first, &second);
1747 if (i)
1748 tmps[i] = second;
1749 else
1750 tmps[i] = first;
1751 }
1752 }
1753 else if (REG_P (src) && GET_MODE (src) == mode)
1754 tmps[i] = src;
1755 else
1756 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1757 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1758 mode, mode);
1759
1760 if (shift)
1761 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1762 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1763 }
1764 }
1765
1766 /* Emit code to move a block SRC of type TYPE to a block DST,
1767 where DST is non-consecutive registers represented by a PARALLEL.
1768 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1769 if not known. */
1770
1771 void
1772 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1773 {
1774 rtx *tmps;
1775 int i;
1776
1777 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1778 emit_group_load_1 (tmps, dst, src, type, ssize);
1779
1780 /* Copy the extracted pieces into the proper (probable) hard regs. */
1781 for (i = 0; i < XVECLEN (dst, 0); i++)
1782 {
1783 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1784 if (d == NULL)
1785 continue;
1786 emit_move_insn (d, tmps[i]);
1787 }
1788 }
1789
1790 /* Similar, but load SRC into new pseudos in a format that looks like
1791 PARALLEL. This can later be fed to emit_group_move to get things
1792 in the right place. */
1793
1794 rtx
1795 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1796 {
1797 rtvec vec;
1798 int i;
1799
1800 vec = rtvec_alloc (XVECLEN (parallel, 0));
1801 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1802
1803 /* Convert the vector to look just like the original PARALLEL, except
1804 with the computed values. */
1805 for (i = 0; i < XVECLEN (parallel, 0); i++)
1806 {
1807 rtx e = XVECEXP (parallel, 0, i);
1808 rtx d = XEXP (e, 0);
1809
1810 if (d)
1811 {
1812 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1813 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1814 }
1815 RTVEC_ELT (vec, i) = e;
1816 }
1817
1818 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1819 }
1820
1821 /* Emit code to move a block SRC to block DST, where SRC and DST are
1822 non-consecutive groups of registers, each represented by a PARALLEL. */
1823
1824 void
1825 emit_group_move (rtx dst, rtx src)
1826 {
1827 int i;
1828
1829 gcc_assert (GET_CODE (src) == PARALLEL
1830 && GET_CODE (dst) == PARALLEL
1831 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1832
1833 /* Skip first entry if NULL. */
1834 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1835 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1836 XEXP (XVECEXP (src, 0, i), 0));
1837 }
1838
1839 /* Move a group of registers represented by a PARALLEL into pseudos. */
1840
1841 rtx
1842 emit_group_move_into_temps (rtx src)
1843 {
1844 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1845 int i;
1846
1847 for (i = 0; i < XVECLEN (src, 0); i++)
1848 {
1849 rtx e = XVECEXP (src, 0, i);
1850 rtx d = XEXP (e, 0);
1851
1852 if (d)
1853 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1854 RTVEC_ELT (vec, i) = e;
1855 }
1856
1857 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1858 }
1859
1860 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1861 where SRC is non-consecutive registers represented by a PARALLEL.
1862 SSIZE represents the total size of block ORIG_DST, or -1 if not
1863 known. */
1864
1865 void
1866 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1867 {
1868 rtx *tmps, dst;
1869 int start, finish, i;
1870 enum machine_mode m = GET_MODE (orig_dst);
1871
1872 gcc_assert (GET_CODE (src) == PARALLEL);
1873
1874 if (!SCALAR_INT_MODE_P (m)
1875 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1876 {
1877 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1878 if (imode == BLKmode)
1879 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1880 else
1881 dst = gen_reg_rtx (imode);
1882 emit_group_store (dst, src, type, ssize);
1883 if (imode != BLKmode)
1884 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1885 emit_move_insn (orig_dst, dst);
1886 return;
1887 }
1888
1889 /* Check for a NULL entry, used to indicate that the parameter goes
1890 both on the stack and in registers. */
1891 if (XEXP (XVECEXP (src, 0, 0), 0))
1892 start = 0;
1893 else
1894 start = 1;
1895 finish = XVECLEN (src, 0);
1896
1897 tmps = XALLOCAVEC (rtx, finish);
1898
1899 /* Copy the (probable) hard regs into pseudos. */
1900 for (i = start; i < finish; i++)
1901 {
1902 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1903 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1904 {
1905 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1906 emit_move_insn (tmps[i], reg);
1907 }
1908 else
1909 tmps[i] = reg;
1910 }
1911
1912 /* If we won't be storing directly into memory, protect the real destination
1913 from strange tricks we might play. */
1914 dst = orig_dst;
1915 if (GET_CODE (dst) == PARALLEL)
1916 {
1917 rtx temp;
1918
1919 /* We can get a PARALLEL dst if there is a conditional expression in
1920 a return statement. In that case, the dst and src are the same,
1921 so no action is necessary. */
1922 if (rtx_equal_p (dst, src))
1923 return;
1924
1925 /* It is unclear if we can ever reach here, but we may as well handle
1926 it. Allocate a temporary, and split this into a store/load to/from
1927 the temporary. */
1928
1929 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1930 emit_group_store (temp, src, type, ssize);
1931 emit_group_load (dst, temp, type, ssize);
1932 return;
1933 }
1934 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1935 {
1936 enum machine_mode outer = GET_MODE (dst);
1937 enum machine_mode inner;
1938 HOST_WIDE_INT bytepos;
1939 bool done = false;
1940 rtx temp;
1941
1942 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1943 dst = gen_reg_rtx (outer);
1944
1945 /* Make life a bit easier for combine. */
1946 /* If the first element of the vector is the low part
1947 of the destination mode, use a paradoxical subreg to
1948 initialize the destination. */
1949 if (start < finish)
1950 {
1951 inner = GET_MODE (tmps[start]);
1952 bytepos = subreg_lowpart_offset (inner, outer);
1953 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1954 {
1955 temp = simplify_gen_subreg (outer, tmps[start],
1956 inner, 0);
1957 if (temp)
1958 {
1959 emit_move_insn (dst, temp);
1960 done = true;
1961 start++;
1962 }
1963 }
1964 }
1965
1966 /* If the first element wasn't the low part, try the last. */
1967 if (!done
1968 && start < finish - 1)
1969 {
1970 inner = GET_MODE (tmps[finish - 1]);
1971 bytepos = subreg_lowpart_offset (inner, outer);
1972 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1973 {
1974 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1975 inner, 0);
1976 if (temp)
1977 {
1978 emit_move_insn (dst, temp);
1979 done = true;
1980 finish--;
1981 }
1982 }
1983 }
1984
1985 /* Otherwise, simply initialize the result to zero. */
1986 if (!done)
1987 emit_move_insn (dst, CONST0_RTX (outer));
1988 }
1989
1990 /* Process the pieces. */
1991 for (i = start; i < finish; i++)
1992 {
1993 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1994 enum machine_mode mode = GET_MODE (tmps[i]);
1995 unsigned int bytelen = GET_MODE_SIZE (mode);
1996 unsigned int adj_bytelen = bytelen;
1997 rtx dest = dst;
1998
1999 /* Handle trailing fragments that run over the size of the struct. */
2000 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2001 adj_bytelen = ssize - bytepos;
2002
2003 if (GET_CODE (dst) == CONCAT)
2004 {
2005 if (bytepos + adj_bytelen
2006 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2007 dest = XEXP (dst, 0);
2008 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2009 {
2010 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2011 dest = XEXP (dst, 1);
2012 }
2013 else
2014 {
2015 enum machine_mode dest_mode = GET_MODE (dest);
2016 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2017
2018 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2019
2020 if (GET_MODE_ALIGNMENT (dest_mode)
2021 >= GET_MODE_ALIGNMENT (tmp_mode))
2022 {
2023 dest = assign_stack_temp (dest_mode,
2024 GET_MODE_SIZE (dest_mode),
2025 0);
2026 emit_move_insn (adjust_address (dest,
2027 tmp_mode,
2028 bytepos),
2029 tmps[i]);
2030 dst = dest;
2031 }
2032 else
2033 {
2034 dest = assign_stack_temp (tmp_mode,
2035 GET_MODE_SIZE (tmp_mode),
2036 0);
2037 emit_move_insn (dest, tmps[i]);
2038 dst = adjust_address (dest, dest_mode, bytepos);
2039 }
2040 break;
2041 }
2042 }
2043
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2045 {
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2055 )
2056 {
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2061 }
2062 bytelen = adj_bytelen;
2063 }
2064
2065 /* Optimize the access just a bit. */
2066 if (MEM_P (dest)
2067 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2068 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2069 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2070 && bytelen == GET_MODE_SIZE (mode))
2071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2072 else
2073 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2074 mode, tmps[i]);
2075 }
2076
2077 /* Copy from the pseudo into the (probable) hard reg. */
2078 if (orig_dst != dst)
2079 emit_move_insn (orig_dst, dst);
2080 }
2081
2082 /* Generate code to copy a BLKmode object of TYPE out of a
2083 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2084 is null, a stack temporary is created. TGTBLK is returned.
2085
2086 The purpose of this routine is to handle functions that return
2087 BLKmode structures in registers. Some machines (the PA for example)
2088 want to return all small structures in registers regardless of the
2089 structure's alignment. */
2090
2091 rtx
2092 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2093 {
2094 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2095 rtx src = NULL, dst = NULL;
2096 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2097 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2098 enum machine_mode copy_mode;
2099
2100 if (tgtblk == 0)
2101 {
2102 tgtblk = assign_temp (build_qualified_type (type,
2103 (TYPE_QUALS (type)
2104 | TYPE_QUAL_CONST)),
2105 0, 1, 1);
2106 preserve_temp_slots (tgtblk);
2107 }
2108
2109 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2110 into a new pseudo which is a full word. */
2111
2112 if (GET_MODE (srcreg) != BLKmode
2113 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2114 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2115
2116 /* If the structure doesn't take up a whole number of words, see whether
2117 SRCREG is padded on the left or on the right. If it's on the left,
2118 set PADDING_CORRECTION to the number of bits to skip.
2119
2120 In most ABIs, the structure will be returned at the least end of
2121 the register, which translates to right padding on little-endian
2122 targets and left padding on big-endian targets. The opposite
2123 holds if the structure is returned at the most significant
2124 end of the register. */
2125 if (bytes % UNITS_PER_WORD != 0
2126 && (targetm.calls.return_in_msb (type)
2127 ? !BYTES_BIG_ENDIAN
2128 : BYTES_BIG_ENDIAN))
2129 padding_correction
2130 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2131
2132 /* Copy the structure BITSIZE bits at a time. If the target lives in
2133 memory, take care of not reading/writing past its end by selecting
2134 a copy mode suited to BITSIZE. This should always be possible given
2135 how it is computed.
2136
2137 We could probably emit more efficient code for machines which do not use
2138 strict alignment, but it doesn't seem worth the effort at the current
2139 time. */
2140
2141 copy_mode = word_mode;
2142 if (MEM_P (tgtblk))
2143 {
2144 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2145 if (mem_mode != BLKmode)
2146 copy_mode = mem_mode;
2147 }
2148
2149 for (bitpos = 0, xbitpos = padding_correction;
2150 bitpos < bytes * BITS_PER_UNIT;
2151 bitpos += bitsize, xbitpos += bitsize)
2152 {
2153 /* We need a new source operand each time xbitpos is on a
2154 word boundary and when xbitpos == padding_correction
2155 (the first time through). */
2156 if (xbitpos % BITS_PER_WORD == 0
2157 || xbitpos == padding_correction)
2158 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2159 GET_MODE (srcreg));
2160
2161 /* We need a new destination operand each time bitpos is on
2162 a word boundary. */
2163 if (bitpos % BITS_PER_WORD == 0)
2164 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2165
2166 /* Use xbitpos for the source extraction (right justified) and
2167 bitpos for the destination store (left justified). */
2168 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2169 extract_bit_field (src, bitsize,
2170 xbitpos % BITS_PER_WORD, 1, false,
2171 NULL_RTX, copy_mode, copy_mode));
2172 }
2173
2174 return tgtblk;
2175 }
2176
2177 /* Add a USE expression for REG to the (possibly empty) list pointed
2178 to by CALL_FUSAGE. REG must denote a hard register. */
2179
2180 void
2181 use_reg (rtx *call_fusage, rtx reg)
2182 {
2183 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2184
2185 *call_fusage
2186 = gen_rtx_EXPR_LIST (VOIDmode,
2187 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2188 }
2189
2190 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2191 starting at REGNO. All of these registers must be hard registers. */
2192
2193 void
2194 use_regs (rtx *call_fusage, int regno, int nregs)
2195 {
2196 int i;
2197
2198 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2199
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2202 }
2203
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2207
2208 void
2209 use_group_regs (rtx *call_fusage, rtx regs)
2210 {
2211 int i;
2212
2213 for (i = 0; i < XVECLEN (regs, 0); i++)
2214 {
2215 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2216
2217 /* A NULL entry means the parameter goes both on the stack and in
2218 registers. This can also be a MEM for targets that pass values
2219 partially on the stack and partially in registers. */
2220 if (reg != 0 && REG_P (reg))
2221 use_reg (call_fusage, reg);
2222 }
2223 }
2224
2225 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2226 assigment and the code of the expresion on the RHS is CODE. Return
2227 NULL otherwise. */
2228
2229 static gimple
2230 get_def_for_expr (tree name, enum tree_code code)
2231 {
2232 gimple def_stmt;
2233
2234 if (TREE_CODE (name) != SSA_NAME)
2235 return NULL;
2236
2237 def_stmt = get_gimple_for_ssa_name (name);
2238 if (!def_stmt
2239 || gimple_assign_rhs_code (def_stmt) != code)
2240 return NULL;
2241
2242 return def_stmt;
2243 }
2244 \f
2245
2246 /* Determine whether the LEN bytes generated by CONSTFUN can be
2247 stored to memory using several move instructions. CONSTFUNDATA is
2248 a pointer which will be passed as argument in every CONSTFUN call.
2249 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2250 a memset operation and false if it's a copy of a constant string.
2251 Return nonzero if a call to store_by_pieces should succeed. */
2252
2253 int
2254 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2255 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2256 void *constfundata, unsigned int align, bool memsetp)
2257 {
2258 unsigned HOST_WIDE_INT l;
2259 unsigned int max_size;
2260 HOST_WIDE_INT offset = 0;
2261 enum machine_mode mode, tmode;
2262 enum insn_code icode;
2263 int reverse;
2264 rtx cst;
2265
2266 if (len == 0)
2267 return 1;
2268
2269 if (! (memsetp
2270 ? SET_BY_PIECES_P (len, align)
2271 : STORE_BY_PIECES_P (len, align)))
2272 return 0;
2273
2274 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2275 if (align >= GET_MODE_ALIGNMENT (tmode))
2276 align = GET_MODE_ALIGNMENT (tmode);
2277 else
2278 {
2279 enum machine_mode xmode;
2280
2281 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2282 tmode != VOIDmode;
2283 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2284 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2285 || SLOW_UNALIGNED_ACCESS (tmode, align))
2286 break;
2287
2288 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2289 }
2290
2291 /* We would first store what we can in the largest integer mode, then go to
2292 successively smaller modes. */
2293
2294 for (reverse = 0;
2295 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2296 reverse++)
2297 {
2298 l = len;
2299 mode = VOIDmode;
2300 max_size = STORE_MAX_PIECES + 1;
2301 while (max_size > 1)
2302 {
2303 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2304 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2305 if (GET_MODE_SIZE (tmode) < max_size)
2306 mode = tmode;
2307
2308 if (mode == VOIDmode)
2309 break;
2310
2311 icode = optab_handler (mov_optab, mode);
2312 if (icode != CODE_FOR_nothing
2313 && align >= GET_MODE_ALIGNMENT (mode))
2314 {
2315 unsigned int size = GET_MODE_SIZE (mode);
2316
2317 while (l >= size)
2318 {
2319 if (reverse)
2320 offset -= size;
2321
2322 cst = (*constfun) (constfundata, offset, mode);
2323 if (!LEGITIMATE_CONSTANT_P (cst))
2324 return 0;
2325
2326 if (!reverse)
2327 offset += size;
2328
2329 l -= size;
2330 }
2331 }
2332
2333 max_size = GET_MODE_SIZE (mode);
2334 }
2335
2336 /* The code above should have handled everything. */
2337 gcc_assert (!l);
2338 }
2339
2340 return 1;
2341 }
2342
2343 /* Generate several move instructions to store LEN bytes generated by
2344 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2345 pointer which will be passed as argument in every CONSTFUN call.
2346 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2347 a memset operation and false if it's a copy of a constant string.
2348 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2349 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2350 stpcpy. */
2351
2352 rtx
2353 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2354 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2355 void *constfundata, unsigned int align, bool memsetp, int endp)
2356 {
2357 enum machine_mode to_addr_mode
2358 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2359 struct store_by_pieces_d data;
2360
2361 if (len == 0)
2362 {
2363 gcc_assert (endp != 2);
2364 return to;
2365 }
2366
2367 gcc_assert (memsetp
2368 ? SET_BY_PIECES_P (len, align)
2369 : STORE_BY_PIECES_P (len, align));
2370 data.constfun = constfun;
2371 data.constfundata = constfundata;
2372 data.len = len;
2373 data.to = to;
2374 store_by_pieces_1 (&data, align);
2375 if (endp)
2376 {
2377 rtx to1;
2378
2379 gcc_assert (!data.reverse);
2380 if (data.autinc_to)
2381 {
2382 if (endp == 2)
2383 {
2384 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2385 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2386 else
2387 data.to_addr = copy_to_mode_reg (to_addr_mode,
2388 plus_constant (data.to_addr,
2389 -1));
2390 }
2391 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2392 data.offset);
2393 }
2394 else
2395 {
2396 if (endp == 2)
2397 --data.offset;
2398 to1 = adjust_address (data.to, QImode, data.offset);
2399 }
2400 return to1;
2401 }
2402 else
2403 return data.to;
2404 }
2405
2406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2408
2409 static void
2410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2411 {
2412 struct store_by_pieces_d data;
2413
2414 if (len == 0)
2415 return;
2416
2417 data.constfun = clear_by_pieces_1;
2418 data.constfundata = NULL;
2419 data.len = len;
2420 data.to = to;
2421 store_by_pieces_1 (&data, align);
2422 }
2423
2424 /* Callback routine for clear_by_pieces.
2425 Return const0_rtx unconditionally. */
2426
2427 static rtx
2428 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2429 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2430 enum machine_mode mode ATTRIBUTE_UNUSED)
2431 {
2432 return const0_rtx;
2433 }
2434
2435 /* Subroutine of clear_by_pieces and store_by_pieces.
2436 Generate several move instructions to store LEN bytes of block TO. (A MEM
2437 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2438
2439 static void
2440 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2441 unsigned int align ATTRIBUTE_UNUSED)
2442 {
2443 enum machine_mode to_addr_mode
2444 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2445 rtx to_addr = XEXP (data->to, 0);
2446 unsigned int max_size = STORE_MAX_PIECES + 1;
2447 enum machine_mode mode = VOIDmode, tmode;
2448 enum insn_code icode;
2449
2450 data->offset = 0;
2451 data->to_addr = to_addr;
2452 data->autinc_to
2453 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2454 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2455
2456 data->explicit_inc_to = 0;
2457 data->reverse
2458 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2459 if (data->reverse)
2460 data->offset = data->len;
2461
2462 /* If storing requires more than two move insns,
2463 copy addresses to registers (to make displacements shorter)
2464 and use post-increment if available. */
2465 if (!data->autinc_to
2466 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2467 {
2468 /* Determine the main mode we'll be using. */
2469 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2470 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2471 if (GET_MODE_SIZE (tmode) < max_size)
2472 mode = tmode;
2473
2474 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2475 {
2476 data->to_addr = copy_to_mode_reg (to_addr_mode,
2477 plus_constant (to_addr, data->len));
2478 data->autinc_to = 1;
2479 data->explicit_inc_to = -1;
2480 }
2481
2482 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2483 && ! data->autinc_to)
2484 {
2485 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2486 data->autinc_to = 1;
2487 data->explicit_inc_to = 1;
2488 }
2489
2490 if ( !data->autinc_to && CONSTANT_P (to_addr))
2491 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2492 }
2493
2494 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2495 if (align >= GET_MODE_ALIGNMENT (tmode))
2496 align = GET_MODE_ALIGNMENT (tmode);
2497 else
2498 {
2499 enum machine_mode xmode;
2500
2501 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2502 tmode != VOIDmode;
2503 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2504 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2505 || SLOW_UNALIGNED_ACCESS (tmode, align))
2506 break;
2507
2508 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2509 }
2510
2511 /* First store what we can in the largest integer mode, then go to
2512 successively smaller modes. */
2513
2514 while (max_size > 1)
2515 {
2516 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2517 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2518 if (GET_MODE_SIZE (tmode) < max_size)
2519 mode = tmode;
2520
2521 if (mode == VOIDmode)
2522 break;
2523
2524 icode = optab_handler (mov_optab, mode);
2525 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2526 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2527
2528 max_size = GET_MODE_SIZE (mode);
2529 }
2530
2531 /* The code above should have handled everything. */
2532 gcc_assert (!data->len);
2533 }
2534
2535 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2536 with move instructions for mode MODE. GENFUN is the gen_... function
2537 to make a move insn for that mode. DATA has all the other info. */
2538
2539 static void
2540 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2541 struct store_by_pieces_d *data)
2542 {
2543 unsigned int size = GET_MODE_SIZE (mode);
2544 rtx to1, cst;
2545
2546 while (data->len >= size)
2547 {
2548 if (data->reverse)
2549 data->offset -= size;
2550
2551 if (data->autinc_to)
2552 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2553 data->offset);
2554 else
2555 to1 = adjust_address (data->to, mode, data->offset);
2556
2557 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2558 emit_insn (gen_add2_insn (data->to_addr,
2559 GEN_INT (-(HOST_WIDE_INT) size)));
2560
2561 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2562 emit_insn ((*genfun) (to1, cst));
2563
2564 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2565 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2566
2567 if (! data->reverse)
2568 data->offset += size;
2569
2570 data->len -= size;
2571 }
2572 }
2573 \f
2574 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2575 its length in bytes. */
2576
2577 rtx
2578 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2579 unsigned int expected_align, HOST_WIDE_INT expected_size)
2580 {
2581 enum machine_mode mode = GET_MODE (object);
2582 unsigned int align;
2583
2584 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2585
2586 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2587 just move a zero. Otherwise, do this a piece at a time. */
2588 if (mode != BLKmode
2589 && CONST_INT_P (size)
2590 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2591 {
2592 rtx zero = CONST0_RTX (mode);
2593 if (zero != NULL)
2594 {
2595 emit_move_insn (object, zero);
2596 return NULL;
2597 }
2598
2599 if (COMPLEX_MODE_P (mode))
2600 {
2601 zero = CONST0_RTX (GET_MODE_INNER (mode));
2602 if (zero != NULL)
2603 {
2604 write_complex_part (object, zero, 0);
2605 write_complex_part (object, zero, 1);
2606 return NULL;
2607 }
2608 }
2609 }
2610
2611 if (size == const0_rtx)
2612 return NULL;
2613
2614 align = MEM_ALIGN (object);
2615
2616 if (CONST_INT_P (size)
2617 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2618 clear_by_pieces (object, INTVAL (size), align);
2619 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2620 expected_align, expected_size))
2621 ;
2622 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2623 return set_storage_via_libcall (object, size, const0_rtx,
2624 method == BLOCK_OP_TAILCALL);
2625 else
2626 gcc_unreachable ();
2627
2628 return NULL;
2629 }
2630
2631 rtx
2632 clear_storage (rtx object, rtx size, enum block_op_methods method)
2633 {
2634 return clear_storage_hints (object, size, method, 0, -1);
2635 }
2636
2637
2638 /* A subroutine of clear_storage. Expand a call to memset.
2639 Return the return value of memset, 0 otherwise. */
2640
2641 rtx
2642 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2643 {
2644 tree call_expr, fn, object_tree, size_tree, val_tree;
2645 enum machine_mode size_mode;
2646 rtx retval;
2647
2648 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2649 place those into new pseudos into a VAR_DECL and use them later. */
2650
2651 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2652
2653 size_mode = TYPE_MODE (sizetype);
2654 size = convert_to_mode (size_mode, size, 1);
2655 size = copy_to_mode_reg (size_mode, size);
2656
2657 /* It is incorrect to use the libcall calling conventions to call
2658 memset in this context. This could be a user call to memset and
2659 the user may wish to examine the return value from memset. For
2660 targets where libcalls and normal calls have different conventions
2661 for returning pointers, we could end up generating incorrect code. */
2662
2663 object_tree = make_tree (ptr_type_node, object);
2664 if (!CONST_INT_P (val))
2665 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2666 size_tree = make_tree (sizetype, size);
2667 val_tree = make_tree (integer_type_node, val);
2668
2669 fn = clear_storage_libcall_fn (true);
2670 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2671 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2672
2673 retval = expand_normal (call_expr);
2674
2675 return retval;
2676 }
2677
2678 /* A subroutine of set_storage_via_libcall. Create the tree node
2679 for the function we use for block clears. The first time FOR_CALL
2680 is true, we call assemble_external. */
2681
2682 tree block_clear_fn;
2683
2684 void
2685 init_block_clear_fn (const char *asmspec)
2686 {
2687 if (!block_clear_fn)
2688 {
2689 tree fn, args;
2690
2691 fn = get_identifier ("memset");
2692 args = build_function_type_list (ptr_type_node, ptr_type_node,
2693 integer_type_node, sizetype,
2694 NULL_TREE);
2695
2696 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2697 DECL_EXTERNAL (fn) = 1;
2698 TREE_PUBLIC (fn) = 1;
2699 DECL_ARTIFICIAL (fn) = 1;
2700 TREE_NOTHROW (fn) = 1;
2701 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2702 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2703
2704 block_clear_fn = fn;
2705 }
2706
2707 if (asmspec)
2708 set_user_assembler_name (block_clear_fn, asmspec);
2709 }
2710
2711 static tree
2712 clear_storage_libcall_fn (int for_call)
2713 {
2714 static bool emitted_extern;
2715
2716 if (!block_clear_fn)
2717 init_block_clear_fn (NULL);
2718
2719 if (for_call && !emitted_extern)
2720 {
2721 emitted_extern = true;
2722 make_decl_rtl (block_clear_fn);
2723 assemble_external (block_clear_fn);
2724 }
2725
2726 return block_clear_fn;
2727 }
2728 \f
2729 /* Expand a setmem pattern; return true if successful. */
2730
2731 bool
2732 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2733 unsigned int expected_align, HOST_WIDE_INT expected_size)
2734 {
2735 /* Try the most limited insn first, because there's no point
2736 including more than one in the machine description unless
2737 the more limited one has some advantage. */
2738
2739 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2740 enum machine_mode mode;
2741
2742 if (expected_align < align)
2743 expected_align = align;
2744
2745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2746 mode = GET_MODE_WIDER_MODE (mode))
2747 {
2748 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2749 insn_operand_predicate_fn pred;
2750
2751 if (code != CODE_FOR_nothing
2752 /* We don't need MODE to be narrower than
2753 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2754 the mode mask, as it is returned by the macro, it will
2755 definitely be less than the actual mode mask. */
2756 && ((CONST_INT_P (size)
2757 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2758 <= (GET_MODE_MASK (mode) >> 1)))
2759 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2760 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2761 || (*pred) (object, BLKmode))
2762 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2763 || (*pred) (opalign, VOIDmode)))
2764 {
2765 rtx opsize, opchar;
2766 enum machine_mode char_mode;
2767 rtx last = get_last_insn ();
2768 rtx pat;
2769
2770 opsize = convert_to_mode (mode, size, 1);
2771 pred = insn_data[(int) code].operand[1].predicate;
2772 if (pred != 0 && ! (*pred) (opsize, mode))
2773 opsize = copy_to_mode_reg (mode, opsize);
2774
2775 opchar = val;
2776 char_mode = insn_data[(int) code].operand[2].mode;
2777 if (char_mode != VOIDmode)
2778 {
2779 opchar = convert_to_mode (char_mode, opchar, 1);
2780 pred = insn_data[(int) code].operand[2].predicate;
2781 if (pred != 0 && ! (*pred) (opchar, char_mode))
2782 opchar = copy_to_mode_reg (char_mode, opchar);
2783 }
2784
2785 if (insn_data[(int) code].n_operands == 4)
2786 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2787 else
2788 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2789 GEN_INT (expected_align
2790 / BITS_PER_UNIT),
2791 GEN_INT (expected_size));
2792 if (pat)
2793 {
2794 emit_insn (pat);
2795 return true;
2796 }
2797 else
2798 delete_insns_since (last);
2799 }
2800 }
2801
2802 return false;
2803 }
2804
2805 \f
2806 /* Write to one of the components of the complex value CPLX. Write VAL to
2807 the real part if IMAG_P is false, and the imaginary part if its true. */
2808
2809 static void
2810 write_complex_part (rtx cplx, rtx val, bool imag_p)
2811 {
2812 enum machine_mode cmode;
2813 enum machine_mode imode;
2814 unsigned ibitsize;
2815
2816 if (GET_CODE (cplx) == CONCAT)
2817 {
2818 emit_move_insn (XEXP (cplx, imag_p), val);
2819 return;
2820 }
2821
2822 cmode = GET_MODE (cplx);
2823 imode = GET_MODE_INNER (cmode);
2824 ibitsize = GET_MODE_BITSIZE (imode);
2825
2826 /* For MEMs simplify_gen_subreg may generate an invalid new address
2827 because, e.g., the original address is considered mode-dependent
2828 by the target, which restricts simplify_subreg from invoking
2829 adjust_address_nv. Instead of preparing fallback support for an
2830 invalid address, we call adjust_address_nv directly. */
2831 if (MEM_P (cplx))
2832 {
2833 emit_move_insn (adjust_address_nv (cplx, imode,
2834 imag_p ? GET_MODE_SIZE (imode) : 0),
2835 val);
2836 return;
2837 }
2838
2839 /* If the sub-object is at least word sized, then we know that subregging
2840 will work. This special case is important, since store_bit_field
2841 wants to operate on integer modes, and there's rarely an OImode to
2842 correspond to TCmode. */
2843 if (ibitsize >= BITS_PER_WORD
2844 /* For hard regs we have exact predicates. Assume we can split
2845 the original object if it spans an even number of hard regs.
2846 This special case is important for SCmode on 64-bit platforms
2847 where the natural size of floating-point regs is 32-bit. */
2848 || (REG_P (cplx)
2849 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2850 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2851 {
2852 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2853 imag_p ? GET_MODE_SIZE (imode) : 0);
2854 if (part)
2855 {
2856 emit_move_insn (part, val);
2857 return;
2858 }
2859 else
2860 /* simplify_gen_subreg may fail for sub-word MEMs. */
2861 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2862 }
2863
2864 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2865 }
2866
2867 /* Extract one of the components of the complex value CPLX. Extract the
2868 real part if IMAG_P is false, and the imaginary part if it's true. */
2869
2870 static rtx
2871 read_complex_part (rtx cplx, bool imag_p)
2872 {
2873 enum machine_mode cmode, imode;
2874 unsigned ibitsize;
2875
2876 if (GET_CODE (cplx) == CONCAT)
2877 return XEXP (cplx, imag_p);
2878
2879 cmode = GET_MODE (cplx);
2880 imode = GET_MODE_INNER (cmode);
2881 ibitsize = GET_MODE_BITSIZE (imode);
2882
2883 /* Special case reads from complex constants that got spilled to memory. */
2884 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2885 {
2886 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2887 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2888 {
2889 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2890 if (CONSTANT_CLASS_P (part))
2891 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2892 }
2893 }
2894
2895 /* For MEMs simplify_gen_subreg may generate an invalid new address
2896 because, e.g., the original address is considered mode-dependent
2897 by the target, which restricts simplify_subreg from invoking
2898 adjust_address_nv. Instead of preparing fallback support for an
2899 invalid address, we call adjust_address_nv directly. */
2900 if (MEM_P (cplx))
2901 return adjust_address_nv (cplx, imode,
2902 imag_p ? GET_MODE_SIZE (imode) : 0);
2903
2904 /* If the sub-object is at least word sized, then we know that subregging
2905 will work. This special case is important, since extract_bit_field
2906 wants to operate on integer modes, and there's rarely an OImode to
2907 correspond to TCmode. */
2908 if (ibitsize >= BITS_PER_WORD
2909 /* For hard regs we have exact predicates. Assume we can split
2910 the original object if it spans an even number of hard regs.
2911 This special case is important for SCmode on 64-bit platforms
2912 where the natural size of floating-point regs is 32-bit. */
2913 || (REG_P (cplx)
2914 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2915 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2916 {
2917 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2918 imag_p ? GET_MODE_SIZE (imode) : 0);
2919 if (ret)
2920 return ret;
2921 else
2922 /* simplify_gen_subreg may fail for sub-word MEMs. */
2923 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2924 }
2925
2926 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2927 true, false, NULL_RTX, imode, imode);
2928 }
2929 \f
2930 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2931 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2932 represented in NEW_MODE. If FORCE is true, this will never happen, as
2933 we'll force-create a SUBREG if needed. */
2934
2935 static rtx
2936 emit_move_change_mode (enum machine_mode new_mode,
2937 enum machine_mode old_mode, rtx x, bool force)
2938 {
2939 rtx ret;
2940
2941 if (push_operand (x, GET_MODE (x)))
2942 {
2943 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2944 MEM_COPY_ATTRIBUTES (ret, x);
2945 }
2946 else if (MEM_P (x))
2947 {
2948 /* We don't have to worry about changing the address since the
2949 size in bytes is supposed to be the same. */
2950 if (reload_in_progress)
2951 {
2952 /* Copy the MEM to change the mode and move any
2953 substitutions from the old MEM to the new one. */
2954 ret = adjust_address_nv (x, new_mode, 0);
2955 copy_replacements (x, ret);
2956 }
2957 else
2958 ret = adjust_address (x, new_mode, 0);
2959 }
2960 else
2961 {
2962 /* Note that we do want simplify_subreg's behavior of validating
2963 that the new mode is ok for a hard register. If we were to use
2964 simplify_gen_subreg, we would create the subreg, but would
2965 probably run into the target not being able to implement it. */
2966 /* Except, of course, when FORCE is true, when this is exactly what
2967 we want. Which is needed for CCmodes on some targets. */
2968 if (force)
2969 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2970 else
2971 ret = simplify_subreg (new_mode, x, old_mode, 0);
2972 }
2973
2974 return ret;
2975 }
2976
2977 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2978 an integer mode of the same size as MODE. Returns the instruction
2979 emitted, or NULL if such a move could not be generated. */
2980
2981 static rtx
2982 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2983 {
2984 enum machine_mode imode;
2985 enum insn_code code;
2986
2987 /* There must exist a mode of the exact size we require. */
2988 imode = int_mode_for_mode (mode);
2989 if (imode == BLKmode)
2990 return NULL_RTX;
2991
2992 /* The target must support moves in this mode. */
2993 code = optab_handler (mov_optab, imode);
2994 if (code == CODE_FOR_nothing)
2995 return NULL_RTX;
2996
2997 x = emit_move_change_mode (imode, mode, x, force);
2998 if (x == NULL_RTX)
2999 return NULL_RTX;
3000 y = emit_move_change_mode (imode, mode, y, force);
3001 if (y == NULL_RTX)
3002 return NULL_RTX;
3003 return emit_insn (GEN_FCN (code) (x, y));
3004 }
3005
3006 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3007 Return an equivalent MEM that does not use an auto-increment. */
3008
3009 static rtx
3010 emit_move_resolve_push (enum machine_mode mode, rtx x)
3011 {
3012 enum rtx_code code = GET_CODE (XEXP (x, 0));
3013 HOST_WIDE_INT adjust;
3014 rtx temp;
3015
3016 adjust = GET_MODE_SIZE (mode);
3017 #ifdef PUSH_ROUNDING
3018 adjust = PUSH_ROUNDING (adjust);
3019 #endif
3020 if (code == PRE_DEC || code == POST_DEC)
3021 adjust = -adjust;
3022 else if (code == PRE_MODIFY || code == POST_MODIFY)
3023 {
3024 rtx expr = XEXP (XEXP (x, 0), 1);
3025 HOST_WIDE_INT val;
3026
3027 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3028 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3029 val = INTVAL (XEXP (expr, 1));
3030 if (GET_CODE (expr) == MINUS)
3031 val = -val;
3032 gcc_assert (adjust == val || adjust == -val);
3033 adjust = val;
3034 }
3035
3036 /* Do not use anti_adjust_stack, since we don't want to update
3037 stack_pointer_delta. */
3038 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3039 GEN_INT (adjust), stack_pointer_rtx,
3040 0, OPTAB_LIB_WIDEN);
3041 if (temp != stack_pointer_rtx)
3042 emit_move_insn (stack_pointer_rtx, temp);
3043
3044 switch (code)
3045 {
3046 case PRE_INC:
3047 case PRE_DEC:
3048 case PRE_MODIFY:
3049 temp = stack_pointer_rtx;
3050 break;
3051 case POST_INC:
3052 case POST_DEC:
3053 case POST_MODIFY:
3054 temp = plus_constant (stack_pointer_rtx, -adjust);
3055 break;
3056 default:
3057 gcc_unreachable ();
3058 }
3059
3060 return replace_equiv_address (x, temp);
3061 }
3062
3063 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3064 X is known to satisfy push_operand, and MODE is known to be complex.
3065 Returns the last instruction emitted. */
3066
3067 rtx
3068 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3069 {
3070 enum machine_mode submode = GET_MODE_INNER (mode);
3071 bool imag_first;
3072
3073 #ifdef PUSH_ROUNDING
3074 unsigned int submodesize = GET_MODE_SIZE (submode);
3075
3076 /* In case we output to the stack, but the size is smaller than the
3077 machine can push exactly, we need to use move instructions. */
3078 if (PUSH_ROUNDING (submodesize) != submodesize)
3079 {
3080 x = emit_move_resolve_push (mode, x);
3081 return emit_move_insn (x, y);
3082 }
3083 #endif
3084
3085 /* Note that the real part always precedes the imag part in memory
3086 regardless of machine's endianness. */
3087 switch (GET_CODE (XEXP (x, 0)))
3088 {
3089 case PRE_DEC:
3090 case POST_DEC:
3091 imag_first = true;
3092 break;
3093 case PRE_INC:
3094 case POST_INC:
3095 imag_first = false;
3096 break;
3097 default:
3098 gcc_unreachable ();
3099 }
3100
3101 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3102 read_complex_part (y, imag_first));
3103 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3104 read_complex_part (y, !imag_first));
3105 }
3106
3107 /* A subroutine of emit_move_complex. Perform the move from Y to X
3108 via two moves of the parts. Returns the last instruction emitted. */
3109
3110 rtx
3111 emit_move_complex_parts (rtx x, rtx y)
3112 {
3113 /* Show the output dies here. This is necessary for SUBREGs
3114 of pseudos since we cannot track their lifetimes correctly;
3115 hard regs shouldn't appear here except as return values. */
3116 if (!reload_completed && !reload_in_progress
3117 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3118 emit_clobber (x);
3119
3120 write_complex_part (x, read_complex_part (y, false), false);
3121 write_complex_part (x, read_complex_part (y, true), true);
3122
3123 return get_last_insn ();
3124 }
3125
3126 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3127 MODE is known to be complex. Returns the last instruction emitted. */
3128
3129 static rtx
3130 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3131 {
3132 bool try_int;
3133
3134 /* Need to take special care for pushes, to maintain proper ordering
3135 of the data, and possibly extra padding. */
3136 if (push_operand (x, mode))
3137 return emit_move_complex_push (mode, x, y);
3138
3139 /* See if we can coerce the target into moving both values at once. */
3140
3141 /* Move floating point as parts. */
3142 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3143 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3144 try_int = false;
3145 /* Not possible if the values are inherently not adjacent. */
3146 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3147 try_int = false;
3148 /* Is possible if both are registers (or subregs of registers). */
3149 else if (register_operand (x, mode) && register_operand (y, mode))
3150 try_int = true;
3151 /* If one of the operands is a memory, and alignment constraints
3152 are friendly enough, we may be able to do combined memory operations.
3153 We do not attempt this if Y is a constant because that combination is
3154 usually better with the by-parts thing below. */
3155 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3156 && (!STRICT_ALIGNMENT
3157 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3158 try_int = true;
3159 else
3160 try_int = false;
3161
3162 if (try_int)
3163 {
3164 rtx ret;
3165
3166 /* For memory to memory moves, optimal behavior can be had with the
3167 existing block move logic. */
3168 if (MEM_P (x) && MEM_P (y))
3169 {
3170 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3171 BLOCK_OP_NO_LIBCALL);
3172 return get_last_insn ();
3173 }
3174
3175 ret = emit_move_via_integer (mode, x, y, true);
3176 if (ret)
3177 return ret;
3178 }
3179
3180 return emit_move_complex_parts (x, y);
3181 }
3182
3183 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3184 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3185
3186 static rtx
3187 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3188 {
3189 rtx ret;
3190
3191 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3192 if (mode != CCmode)
3193 {
3194 enum insn_code code = optab_handler (mov_optab, CCmode);
3195 if (code != CODE_FOR_nothing)
3196 {
3197 x = emit_move_change_mode (CCmode, mode, x, true);
3198 y = emit_move_change_mode (CCmode, mode, y, true);
3199 return emit_insn (GEN_FCN (code) (x, y));
3200 }
3201 }
3202
3203 /* Otherwise, find the MODE_INT mode of the same width. */
3204 ret = emit_move_via_integer (mode, x, y, false);
3205 gcc_assert (ret != NULL);
3206 return ret;
3207 }
3208
3209 /* Return true if word I of OP lies entirely in the
3210 undefined bits of a paradoxical subreg. */
3211
3212 static bool
3213 undefined_operand_subword_p (const_rtx op, int i)
3214 {
3215 enum machine_mode innermode, innermostmode;
3216 int offset;
3217 if (GET_CODE (op) != SUBREG)
3218 return false;
3219 innermode = GET_MODE (op);
3220 innermostmode = GET_MODE (SUBREG_REG (op));
3221 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3222 /* The SUBREG_BYTE represents offset, as if the value were stored in
3223 memory, except for a paradoxical subreg where we define
3224 SUBREG_BYTE to be 0; undo this exception as in
3225 simplify_subreg. */
3226 if (SUBREG_BYTE (op) == 0
3227 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3228 {
3229 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3230 if (WORDS_BIG_ENDIAN)
3231 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3232 if (BYTES_BIG_ENDIAN)
3233 offset += difference % UNITS_PER_WORD;
3234 }
3235 if (offset >= GET_MODE_SIZE (innermostmode)
3236 || offset <= -GET_MODE_SIZE (word_mode))
3237 return true;
3238 return false;
3239 }
3240
3241 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3242 MODE is any multi-word or full-word mode that lacks a move_insn
3243 pattern. Note that you will get better code if you define such
3244 patterns, even if they must turn into multiple assembler instructions. */
3245
3246 static rtx
3247 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3248 {
3249 rtx last_insn = 0;
3250 rtx seq, inner;
3251 bool need_clobber;
3252 int i;
3253
3254 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3255
3256 /* If X is a push on the stack, do the push now and replace
3257 X with a reference to the stack pointer. */
3258 if (push_operand (x, mode))
3259 x = emit_move_resolve_push (mode, x);
3260
3261 /* If we are in reload, see if either operand is a MEM whose address
3262 is scheduled for replacement. */
3263 if (reload_in_progress && MEM_P (x)
3264 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3265 x = replace_equiv_address_nv (x, inner);
3266 if (reload_in_progress && MEM_P (y)
3267 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3268 y = replace_equiv_address_nv (y, inner);
3269
3270 start_sequence ();
3271
3272 need_clobber = false;
3273 for (i = 0;
3274 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3275 i++)
3276 {
3277 rtx xpart = operand_subword (x, i, 1, mode);
3278 rtx ypart;
3279
3280 /* Do not generate code for a move if it would come entirely
3281 from the undefined bits of a paradoxical subreg. */
3282 if (undefined_operand_subword_p (y, i))
3283 continue;
3284
3285 ypart = operand_subword (y, i, 1, mode);
3286
3287 /* If we can't get a part of Y, put Y into memory if it is a
3288 constant. Otherwise, force it into a register. Then we must
3289 be able to get a part of Y. */
3290 if (ypart == 0 && CONSTANT_P (y))
3291 {
3292 y = use_anchored_address (force_const_mem (mode, y));
3293 ypart = operand_subword (y, i, 1, mode);
3294 }
3295 else if (ypart == 0)
3296 ypart = operand_subword_force (y, i, mode);
3297
3298 gcc_assert (xpart && ypart);
3299
3300 need_clobber |= (GET_CODE (xpart) == SUBREG);
3301
3302 last_insn = emit_move_insn (xpart, ypart);
3303 }
3304
3305 seq = get_insns ();
3306 end_sequence ();
3307
3308 /* Show the output dies here. This is necessary for SUBREGs
3309 of pseudos since we cannot track their lifetimes correctly;
3310 hard regs shouldn't appear here except as return values.
3311 We never want to emit such a clobber after reload. */
3312 if (x != y
3313 && ! (reload_in_progress || reload_completed)
3314 && need_clobber != 0)
3315 emit_clobber (x);
3316
3317 emit_insn (seq);
3318
3319 return last_insn;
3320 }
3321
3322 /* Low level part of emit_move_insn.
3323 Called just like emit_move_insn, but assumes X and Y
3324 are basically valid. */
3325
3326 rtx
3327 emit_move_insn_1 (rtx x, rtx y)
3328 {
3329 enum machine_mode mode = GET_MODE (x);
3330 enum insn_code code;
3331
3332 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3333
3334 code = optab_handler (mov_optab, mode);
3335 if (code != CODE_FOR_nothing)
3336 return emit_insn (GEN_FCN (code) (x, y));
3337
3338 /* Expand complex moves by moving real part and imag part. */
3339 if (COMPLEX_MODE_P (mode))
3340 return emit_move_complex (mode, x, y);
3341
3342 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3343 || ALL_FIXED_POINT_MODE_P (mode))
3344 {
3345 rtx result = emit_move_via_integer (mode, x, y, true);
3346
3347 /* If we can't find an integer mode, use multi words. */
3348 if (result)
3349 return result;
3350 else
3351 return emit_move_multi_word (mode, x, y);
3352 }
3353
3354 if (GET_MODE_CLASS (mode) == MODE_CC)
3355 return emit_move_ccmode (mode, x, y);
3356
3357 /* Try using a move pattern for the corresponding integer mode. This is
3358 only safe when simplify_subreg can convert MODE constants into integer
3359 constants. At present, it can only do this reliably if the value
3360 fits within a HOST_WIDE_INT. */
3361 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3362 {
3363 rtx ret = emit_move_via_integer (mode, x, y, false);
3364 if (ret)
3365 return ret;
3366 }
3367
3368 return emit_move_multi_word (mode, x, y);
3369 }
3370
3371 /* Generate code to copy Y into X.
3372 Both Y and X must have the same mode, except that
3373 Y can be a constant with VOIDmode.
3374 This mode cannot be BLKmode; use emit_block_move for that.
3375
3376 Return the last instruction emitted. */
3377
3378 rtx
3379 emit_move_insn (rtx x, rtx y)
3380 {
3381 enum machine_mode mode = GET_MODE (x);
3382 rtx y_cst = NULL_RTX;
3383 rtx last_insn, set;
3384
3385 gcc_assert (mode != BLKmode
3386 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3387
3388 if (CONSTANT_P (y))
3389 {
3390 if (optimize
3391 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3392 && (last_insn = compress_float_constant (x, y)))
3393 return last_insn;
3394
3395 y_cst = y;
3396
3397 if (!LEGITIMATE_CONSTANT_P (y))
3398 {
3399 y = force_const_mem (mode, y);
3400
3401 /* If the target's cannot_force_const_mem prevented the spill,
3402 assume that the target's move expanders will also take care
3403 of the non-legitimate constant. */
3404 if (!y)
3405 y = y_cst;
3406 else
3407 y = use_anchored_address (y);
3408 }
3409 }
3410
3411 /* If X or Y are memory references, verify that their addresses are valid
3412 for the machine. */
3413 if (MEM_P (x)
3414 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3415 MEM_ADDR_SPACE (x))
3416 && ! push_operand (x, GET_MODE (x))))
3417 x = validize_mem (x);
3418
3419 if (MEM_P (y)
3420 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3421 MEM_ADDR_SPACE (y)))
3422 y = validize_mem (y);
3423
3424 gcc_assert (mode != BLKmode);
3425
3426 last_insn = emit_move_insn_1 (x, y);
3427
3428 if (y_cst && REG_P (x)
3429 && (set = single_set (last_insn)) != NULL_RTX
3430 && SET_DEST (set) == x
3431 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3432 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3433
3434 return last_insn;
3435 }
3436
3437 /* If Y is representable exactly in a narrower mode, and the target can
3438 perform the extension directly from constant or memory, then emit the
3439 move as an extension. */
3440
3441 static rtx
3442 compress_float_constant (rtx x, rtx y)
3443 {
3444 enum machine_mode dstmode = GET_MODE (x);
3445 enum machine_mode orig_srcmode = GET_MODE (y);
3446 enum machine_mode srcmode;
3447 REAL_VALUE_TYPE r;
3448 int oldcost, newcost;
3449 bool speed = optimize_insn_for_speed_p ();
3450
3451 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3452
3453 if (LEGITIMATE_CONSTANT_P (y))
3454 oldcost = rtx_cost (y, SET, speed);
3455 else
3456 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3457
3458 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3459 srcmode != orig_srcmode;
3460 srcmode = GET_MODE_WIDER_MODE (srcmode))
3461 {
3462 enum insn_code ic;
3463 rtx trunc_y, last_insn;
3464
3465 /* Skip if the target can't extend this way. */
3466 ic = can_extend_p (dstmode, srcmode, 0);
3467 if (ic == CODE_FOR_nothing)
3468 continue;
3469
3470 /* Skip if the narrowed value isn't exact. */
3471 if (! exact_real_truncate (srcmode, &r))
3472 continue;
3473
3474 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3475
3476 if (LEGITIMATE_CONSTANT_P (trunc_y))
3477 {
3478 /* Skip if the target needs extra instructions to perform
3479 the extension. */
3480 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3481 continue;
3482 /* This is valid, but may not be cheaper than the original. */
3483 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3484 if (oldcost < newcost)
3485 continue;
3486 }
3487 else if (float_extend_from_mem[dstmode][srcmode])
3488 {
3489 trunc_y = force_const_mem (srcmode, trunc_y);
3490 /* This is valid, but may not be cheaper than the original. */
3491 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3492 if (oldcost < newcost)
3493 continue;
3494 trunc_y = validize_mem (trunc_y);
3495 }
3496 else
3497 continue;
3498
3499 /* For CSE's benefit, force the compressed constant pool entry
3500 into a new pseudo. This constant may be used in different modes,
3501 and if not, combine will put things back together for us. */
3502 trunc_y = force_reg (srcmode, trunc_y);
3503 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3504 last_insn = get_last_insn ();
3505
3506 if (REG_P (x))
3507 set_unique_reg_note (last_insn, REG_EQUAL, y);
3508
3509 return last_insn;
3510 }
3511
3512 return NULL_RTX;
3513 }
3514 \f
3515 /* Pushing data onto the stack. */
3516
3517 /* Push a block of length SIZE (perhaps variable)
3518 and return an rtx to address the beginning of the block.
3519 The value may be virtual_outgoing_args_rtx.
3520
3521 EXTRA is the number of bytes of padding to push in addition to SIZE.
3522 BELOW nonzero means this padding comes at low addresses;
3523 otherwise, the padding comes at high addresses. */
3524
3525 rtx
3526 push_block (rtx size, int extra, int below)
3527 {
3528 rtx temp;
3529
3530 size = convert_modes (Pmode, ptr_mode, size, 1);
3531 if (CONSTANT_P (size))
3532 anti_adjust_stack (plus_constant (size, extra));
3533 else if (REG_P (size) && extra == 0)
3534 anti_adjust_stack (size);
3535 else
3536 {
3537 temp = copy_to_mode_reg (Pmode, size);
3538 if (extra != 0)
3539 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3540 temp, 0, OPTAB_LIB_WIDEN);
3541 anti_adjust_stack (temp);
3542 }
3543
3544 #ifndef STACK_GROWS_DOWNWARD
3545 if (0)
3546 #else
3547 if (1)
3548 #endif
3549 {
3550 temp = virtual_outgoing_args_rtx;
3551 if (extra != 0 && below)
3552 temp = plus_constant (temp, extra);
3553 }
3554 else
3555 {
3556 if (CONST_INT_P (size))
3557 temp = plus_constant (virtual_outgoing_args_rtx,
3558 -INTVAL (size) - (below ? 0 : extra));
3559 else if (extra != 0 && !below)
3560 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3561 negate_rtx (Pmode, plus_constant (size, extra)));
3562 else
3563 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3564 negate_rtx (Pmode, size));
3565 }
3566
3567 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3568 }
3569
3570 #ifdef PUSH_ROUNDING
3571
3572 /* Emit single push insn. */
3573
3574 static void
3575 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3576 {
3577 rtx dest_addr;
3578 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3579 rtx dest;
3580 enum insn_code icode;
3581 insn_operand_predicate_fn pred;
3582
3583 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3584 /* If there is push pattern, use it. Otherwise try old way of throwing
3585 MEM representing push operation to move expander. */
3586 icode = optab_handler (push_optab, mode);
3587 if (icode != CODE_FOR_nothing)
3588 {
3589 if (((pred = insn_data[(int) icode].operand[0].predicate)
3590 && !((*pred) (x, mode))))
3591 x = force_reg (mode, x);
3592 emit_insn (GEN_FCN (icode) (x));
3593 return;
3594 }
3595 if (GET_MODE_SIZE (mode) == rounded_size)
3596 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3597 /* If we are to pad downward, adjust the stack pointer first and
3598 then store X into the stack location using an offset. This is
3599 because emit_move_insn does not know how to pad; it does not have
3600 access to type. */
3601 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3602 {
3603 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3604 HOST_WIDE_INT offset;
3605
3606 emit_move_insn (stack_pointer_rtx,
3607 expand_binop (Pmode,
3608 #ifdef STACK_GROWS_DOWNWARD
3609 sub_optab,
3610 #else
3611 add_optab,
3612 #endif
3613 stack_pointer_rtx,
3614 GEN_INT (rounded_size),
3615 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3616
3617 offset = (HOST_WIDE_INT) padding_size;
3618 #ifdef STACK_GROWS_DOWNWARD
3619 if (STACK_PUSH_CODE == POST_DEC)
3620 /* We have already decremented the stack pointer, so get the
3621 previous value. */
3622 offset += (HOST_WIDE_INT) rounded_size;
3623 #else
3624 if (STACK_PUSH_CODE == POST_INC)
3625 /* We have already incremented the stack pointer, so get the
3626 previous value. */
3627 offset -= (HOST_WIDE_INT) rounded_size;
3628 #endif
3629 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3630 }
3631 else
3632 {
3633 #ifdef STACK_GROWS_DOWNWARD
3634 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3635 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3636 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3637 #else
3638 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3639 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3640 GEN_INT (rounded_size));
3641 #endif
3642 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3643 }
3644
3645 dest = gen_rtx_MEM (mode, dest_addr);
3646
3647 if (type != 0)
3648 {
3649 set_mem_attributes (dest, type, 1);
3650
3651 if (flag_optimize_sibling_calls)
3652 /* Function incoming arguments may overlap with sibling call
3653 outgoing arguments and we cannot allow reordering of reads
3654 from function arguments with stores to outgoing arguments
3655 of sibling calls. */
3656 set_mem_alias_set (dest, 0);
3657 }
3658 emit_move_insn (dest, x);
3659 }
3660 #endif
3661
3662 /* Generate code to push X onto the stack, assuming it has mode MODE and
3663 type TYPE.
3664 MODE is redundant except when X is a CONST_INT (since they don't
3665 carry mode info).
3666 SIZE is an rtx for the size of data to be copied (in bytes),
3667 needed only if X is BLKmode.
3668
3669 ALIGN (in bits) is maximum alignment we can assume.
3670
3671 If PARTIAL and REG are both nonzero, then copy that many of the first
3672 bytes of X into registers starting with REG, and push the rest of X.
3673 The amount of space pushed is decreased by PARTIAL bytes.
3674 REG must be a hard register in this case.
3675 If REG is zero but PARTIAL is not, take any all others actions for an
3676 argument partially in registers, but do not actually load any
3677 registers.
3678
3679 EXTRA is the amount in bytes of extra space to leave next to this arg.
3680 This is ignored if an argument block has already been allocated.
3681
3682 On a machine that lacks real push insns, ARGS_ADDR is the address of
3683 the bottom of the argument block for this call. We use indexing off there
3684 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3685 argument block has not been preallocated.
3686
3687 ARGS_SO_FAR is the size of args previously pushed for this call.
3688
3689 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3690 for arguments passed in registers. If nonzero, it will be the number
3691 of bytes required. */
3692
3693 void
3694 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3695 unsigned int align, int partial, rtx reg, int extra,
3696 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3697 rtx alignment_pad)
3698 {
3699 rtx xinner;
3700 enum direction stack_direction
3701 #ifdef STACK_GROWS_DOWNWARD
3702 = downward;
3703 #else
3704 = upward;
3705 #endif
3706
3707 /* Decide where to pad the argument: `downward' for below,
3708 `upward' for above, or `none' for don't pad it.
3709 Default is below for small data on big-endian machines; else above. */
3710 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3711
3712 /* Invert direction if stack is post-decrement.
3713 FIXME: why? */
3714 if (STACK_PUSH_CODE == POST_DEC)
3715 if (where_pad != none)
3716 where_pad = (where_pad == downward ? upward : downward);
3717
3718 xinner = x;
3719
3720 if (mode == BLKmode
3721 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3722 {
3723 /* Copy a block into the stack, entirely or partially. */
3724
3725 rtx temp;
3726 int used;
3727 int offset;
3728 int skip;
3729
3730 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3731 used = partial - offset;
3732
3733 if (mode != BLKmode)
3734 {
3735 /* A value is to be stored in an insufficiently aligned
3736 stack slot; copy via a suitably aligned slot if
3737 necessary. */
3738 size = GEN_INT (GET_MODE_SIZE (mode));
3739 if (!MEM_P (xinner))
3740 {
3741 temp = assign_temp (type, 0, 1, 1);
3742 emit_move_insn (temp, xinner);
3743 xinner = temp;
3744 }
3745 }
3746
3747 gcc_assert (size);
3748
3749 /* USED is now the # of bytes we need not copy to the stack
3750 because registers will take care of them. */
3751
3752 if (partial != 0)
3753 xinner = adjust_address (xinner, BLKmode, used);
3754
3755 /* If the partial register-part of the arg counts in its stack size,
3756 skip the part of stack space corresponding to the registers.
3757 Otherwise, start copying to the beginning of the stack space,
3758 by setting SKIP to 0. */
3759 skip = (reg_parm_stack_space == 0) ? 0 : used;
3760
3761 #ifdef PUSH_ROUNDING
3762 /* Do it with several push insns if that doesn't take lots of insns
3763 and if there is no difficulty with push insns that skip bytes
3764 on the stack for alignment purposes. */
3765 if (args_addr == 0
3766 && PUSH_ARGS
3767 && CONST_INT_P (size)
3768 && skip == 0
3769 && MEM_ALIGN (xinner) >= align
3770 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3771 /* Here we avoid the case of a structure whose weak alignment
3772 forces many pushes of a small amount of data,
3773 and such small pushes do rounding that causes trouble. */
3774 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3775 || align >= BIGGEST_ALIGNMENT
3776 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3777 == (align / BITS_PER_UNIT)))
3778 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3779 {
3780 /* Push padding now if padding above and stack grows down,
3781 or if padding below and stack grows up.
3782 But if space already allocated, this has already been done. */
3783 if (extra && args_addr == 0
3784 && where_pad != none && where_pad != stack_direction)
3785 anti_adjust_stack (GEN_INT (extra));
3786
3787 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3788 }
3789 else
3790 #endif /* PUSH_ROUNDING */
3791 {
3792 rtx target;
3793
3794 /* Otherwise make space on the stack and copy the data
3795 to the address of that space. */
3796
3797 /* Deduct words put into registers from the size we must copy. */
3798 if (partial != 0)
3799 {
3800 if (CONST_INT_P (size))
3801 size = GEN_INT (INTVAL (size) - used);
3802 else
3803 size = expand_binop (GET_MODE (size), sub_optab, size,
3804 GEN_INT (used), NULL_RTX, 0,
3805 OPTAB_LIB_WIDEN);
3806 }
3807
3808 /* Get the address of the stack space.
3809 In this case, we do not deal with EXTRA separately.
3810 A single stack adjust will do. */
3811 if (! args_addr)
3812 {
3813 temp = push_block (size, extra, where_pad == downward);
3814 extra = 0;
3815 }
3816 else if (CONST_INT_P (args_so_far))
3817 temp = memory_address (BLKmode,
3818 plus_constant (args_addr,
3819 skip + INTVAL (args_so_far)));
3820 else
3821 temp = memory_address (BLKmode,
3822 plus_constant (gen_rtx_PLUS (Pmode,
3823 args_addr,
3824 args_so_far),
3825 skip));
3826
3827 if (!ACCUMULATE_OUTGOING_ARGS)
3828 {
3829 /* If the source is referenced relative to the stack pointer,
3830 copy it to another register to stabilize it. We do not need
3831 to do this if we know that we won't be changing sp. */
3832
3833 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3834 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3835 temp = copy_to_reg (temp);
3836 }
3837
3838 target = gen_rtx_MEM (BLKmode, temp);
3839
3840 /* We do *not* set_mem_attributes here, because incoming arguments
3841 may overlap with sibling call outgoing arguments and we cannot
3842 allow reordering of reads from function arguments with stores
3843 to outgoing arguments of sibling calls. We do, however, want
3844 to record the alignment of the stack slot. */
3845 /* ALIGN may well be better aligned than TYPE, e.g. due to
3846 PARM_BOUNDARY. Assume the caller isn't lying. */
3847 set_mem_align (target, align);
3848
3849 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3850 }
3851 }
3852 else if (partial > 0)
3853 {
3854 /* Scalar partly in registers. */
3855
3856 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3857 int i;
3858 int not_stack;
3859 /* # bytes of start of argument
3860 that we must make space for but need not store. */
3861 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3862 int args_offset = INTVAL (args_so_far);
3863 int skip;
3864
3865 /* Push padding now if padding above and stack grows down,
3866 or if padding below and stack grows up.
3867 But if space already allocated, this has already been done. */
3868 if (extra && args_addr == 0
3869 && where_pad != none && where_pad != stack_direction)
3870 anti_adjust_stack (GEN_INT (extra));
3871
3872 /* If we make space by pushing it, we might as well push
3873 the real data. Otherwise, we can leave OFFSET nonzero
3874 and leave the space uninitialized. */
3875 if (args_addr == 0)
3876 offset = 0;
3877
3878 /* Now NOT_STACK gets the number of words that we don't need to
3879 allocate on the stack. Convert OFFSET to words too. */
3880 not_stack = (partial - offset) / UNITS_PER_WORD;
3881 offset /= UNITS_PER_WORD;
3882
3883 /* If the partial register-part of the arg counts in its stack size,
3884 skip the part of stack space corresponding to the registers.
3885 Otherwise, start copying to the beginning of the stack space,
3886 by setting SKIP to 0. */
3887 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3888
3889 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3890 x = validize_mem (force_const_mem (mode, x));
3891
3892 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3893 SUBREGs of such registers are not allowed. */
3894 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3895 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3896 x = copy_to_reg (x);
3897
3898 /* Loop over all the words allocated on the stack for this arg. */
3899 /* We can do it by words, because any scalar bigger than a word
3900 has a size a multiple of a word. */
3901 #ifndef PUSH_ARGS_REVERSED
3902 for (i = not_stack; i < size; i++)
3903 #else
3904 for (i = size - 1; i >= not_stack; i--)
3905 #endif
3906 if (i >= not_stack + offset)
3907 emit_push_insn (operand_subword_force (x, i, mode),
3908 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3909 0, args_addr,
3910 GEN_INT (args_offset + ((i - not_stack + skip)
3911 * UNITS_PER_WORD)),
3912 reg_parm_stack_space, alignment_pad);
3913 }
3914 else
3915 {
3916 rtx addr;
3917 rtx dest;
3918
3919 /* Push padding now if padding above and stack grows down,
3920 or if padding below and stack grows up.
3921 But if space already allocated, this has already been done. */
3922 if (extra && args_addr == 0
3923 && where_pad != none && where_pad != stack_direction)
3924 anti_adjust_stack (GEN_INT (extra));
3925
3926 #ifdef PUSH_ROUNDING
3927 if (args_addr == 0 && PUSH_ARGS)
3928 emit_single_push_insn (mode, x, type);
3929 else
3930 #endif
3931 {
3932 if (CONST_INT_P (args_so_far))
3933 addr
3934 = memory_address (mode,
3935 plus_constant (args_addr,
3936 INTVAL (args_so_far)));
3937 else
3938 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3939 args_so_far));
3940 dest = gen_rtx_MEM (mode, addr);
3941
3942 /* We do *not* set_mem_attributes here, because incoming arguments
3943 may overlap with sibling call outgoing arguments and we cannot
3944 allow reordering of reads from function arguments with stores
3945 to outgoing arguments of sibling calls. We do, however, want
3946 to record the alignment of the stack slot. */
3947 /* ALIGN may well be better aligned than TYPE, e.g. due to
3948 PARM_BOUNDARY. Assume the caller isn't lying. */
3949 set_mem_align (dest, align);
3950
3951 emit_move_insn (dest, x);
3952 }
3953 }
3954
3955 /* If part should go in registers, copy that part
3956 into the appropriate registers. Do this now, at the end,
3957 since mem-to-mem copies above may do function calls. */
3958 if (partial > 0 && reg != 0)
3959 {
3960 /* Handle calls that pass values in multiple non-contiguous locations.
3961 The Irix 6 ABI has examples of this. */
3962 if (GET_CODE (reg) == PARALLEL)
3963 emit_group_load (reg, x, type, -1);
3964 else
3965 {
3966 gcc_assert (partial % UNITS_PER_WORD == 0);
3967 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3968 }
3969 }
3970
3971 if (extra && args_addr == 0 && where_pad == stack_direction)
3972 anti_adjust_stack (GEN_INT (extra));
3973
3974 if (alignment_pad && args_addr == 0)
3975 anti_adjust_stack (alignment_pad);
3976 }
3977 \f
3978 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3979 operations. */
3980
3981 static rtx
3982 get_subtarget (rtx x)
3983 {
3984 return (optimize
3985 || x == 0
3986 /* Only registers can be subtargets. */
3987 || !REG_P (x)
3988 /* Don't use hard regs to avoid extending their life. */
3989 || REGNO (x) < FIRST_PSEUDO_REGISTER
3990 ? 0 : x);
3991 }
3992
3993 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3994 FIELD is a bitfield. Returns true if the optimization was successful,
3995 and there's nothing else to do. */
3996
3997 static bool
3998 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3999 unsigned HOST_WIDE_INT bitpos,
4000 enum machine_mode mode1, rtx str_rtx,
4001 tree to, tree src)
4002 {
4003 enum machine_mode str_mode = GET_MODE (str_rtx);
4004 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4005 tree op0, op1;
4006 rtx value, result;
4007 optab binop;
4008
4009 if (mode1 != VOIDmode
4010 || bitsize >= BITS_PER_WORD
4011 || str_bitsize > BITS_PER_WORD
4012 || TREE_SIDE_EFFECTS (to)
4013 || TREE_THIS_VOLATILE (to))
4014 return false;
4015
4016 STRIP_NOPS (src);
4017 if (!BINARY_CLASS_P (src)
4018 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4019 return false;
4020
4021 op0 = TREE_OPERAND (src, 0);
4022 op1 = TREE_OPERAND (src, 1);
4023 STRIP_NOPS (op0);
4024
4025 if (!operand_equal_p (to, op0, 0))
4026 return false;
4027
4028 if (MEM_P (str_rtx))
4029 {
4030 unsigned HOST_WIDE_INT offset1;
4031
4032 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4033 str_mode = word_mode;
4034 str_mode = get_best_mode (bitsize, bitpos,
4035 MEM_ALIGN (str_rtx), str_mode, 0);
4036 if (str_mode == VOIDmode)
4037 return false;
4038 str_bitsize = GET_MODE_BITSIZE (str_mode);
4039
4040 offset1 = bitpos;
4041 bitpos %= str_bitsize;
4042 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4043 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4044 }
4045 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4046 return false;
4047
4048 /* If the bit field covers the whole REG/MEM, store_field
4049 will likely generate better code. */
4050 if (bitsize >= str_bitsize)
4051 return false;
4052
4053 /* We can't handle fields split across multiple entities. */
4054 if (bitpos + bitsize > str_bitsize)
4055 return false;
4056
4057 if (BYTES_BIG_ENDIAN)
4058 bitpos = str_bitsize - bitpos - bitsize;
4059
4060 switch (TREE_CODE (src))
4061 {
4062 case PLUS_EXPR:
4063 case MINUS_EXPR:
4064 /* For now, just optimize the case of the topmost bitfield
4065 where we don't need to do any masking and also
4066 1 bit bitfields where xor can be used.
4067 We might win by one instruction for the other bitfields
4068 too if insv/extv instructions aren't used, so that
4069 can be added later. */
4070 if (bitpos + bitsize != str_bitsize
4071 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4072 break;
4073
4074 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4075 value = convert_modes (str_mode,
4076 TYPE_MODE (TREE_TYPE (op1)), value,
4077 TYPE_UNSIGNED (TREE_TYPE (op1)));
4078
4079 /* We may be accessing data outside the field, which means
4080 we can alias adjacent data. */
4081 if (MEM_P (str_rtx))
4082 {
4083 str_rtx = shallow_copy_rtx (str_rtx);
4084 set_mem_alias_set (str_rtx, 0);
4085 set_mem_expr (str_rtx, 0);
4086 }
4087
4088 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4089 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4090 {
4091 value = expand_and (str_mode, value, const1_rtx, NULL);
4092 binop = xor_optab;
4093 }
4094 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4095 build_int_cst (NULL_TREE, bitpos),
4096 NULL_RTX, 1);
4097 result = expand_binop (str_mode, binop, str_rtx,
4098 value, str_rtx, 1, OPTAB_WIDEN);
4099 if (result != str_rtx)
4100 emit_move_insn (str_rtx, result);
4101 return true;
4102
4103 case BIT_IOR_EXPR:
4104 case BIT_XOR_EXPR:
4105 if (TREE_CODE (op1) != INTEGER_CST)
4106 break;
4107 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4108 value = convert_modes (GET_MODE (str_rtx),
4109 TYPE_MODE (TREE_TYPE (op1)), value,
4110 TYPE_UNSIGNED (TREE_TYPE (op1)));
4111
4112 /* We may be accessing data outside the field, which means
4113 we can alias adjacent data. */
4114 if (MEM_P (str_rtx))
4115 {
4116 str_rtx = shallow_copy_rtx (str_rtx);
4117 set_mem_alias_set (str_rtx, 0);
4118 set_mem_expr (str_rtx, 0);
4119 }
4120
4121 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4122 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4123 {
4124 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4125 - 1);
4126 value = expand_and (GET_MODE (str_rtx), value, mask,
4127 NULL_RTX);
4128 }
4129 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4130 build_int_cst (NULL_TREE, bitpos),
4131 NULL_RTX, 1);
4132 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4133 value, str_rtx, 1, OPTAB_WIDEN);
4134 if (result != str_rtx)
4135 emit_move_insn (str_rtx, result);
4136 return true;
4137
4138 default:
4139 break;
4140 }
4141
4142 return false;
4143 }
4144
4145
4146 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4147 is true, try generating a nontemporal store. */
4148
4149 void
4150 expand_assignment (tree to, tree from, bool nontemporal)
4151 {
4152 rtx to_rtx = 0;
4153 rtx result;
4154 enum machine_mode mode;
4155 int align, icode;
4156
4157 /* Don't crash if the lhs of the assignment was erroneous. */
4158 if (TREE_CODE (to) == ERROR_MARK)
4159 {
4160 result = expand_normal (from);
4161 return;
4162 }
4163
4164 /* Optimize away no-op moves without side-effects. */
4165 if (operand_equal_p (to, from, 0))
4166 return;
4167
4168 mode = TYPE_MODE (TREE_TYPE (to));
4169 if ((TREE_CODE (to) == MEM_REF
4170 || TREE_CODE (to) == TARGET_MEM_REF)
4171 && mode != BLKmode
4172 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4173 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4174 < (signed) GET_MODE_ALIGNMENT (mode))
4175 && ((icode = optab_handler (movmisalign_optab, mode))
4176 != CODE_FOR_nothing))
4177 {
4178 enum machine_mode address_mode, op_mode1;
4179 rtx insn, reg, op0, mem;
4180
4181 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4182 reg = force_not_mem (reg);
4183
4184 if (TREE_CODE (to) == MEM_REF)
4185 {
4186 addr_space_t as
4187 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4188 tree base = TREE_OPERAND (to, 0);
4189 address_mode = targetm.addr_space.address_mode (as);
4190 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4191 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4192 if (!integer_zerop (TREE_OPERAND (to, 1)))
4193 {
4194 rtx off
4195 = immed_double_int_const (mem_ref_offset (to), address_mode);
4196 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4197 }
4198 op0 = memory_address_addr_space (mode, op0, as);
4199 mem = gen_rtx_MEM (mode, op0);
4200 set_mem_attributes (mem, to, 0);
4201 set_mem_addr_space (mem, as);
4202 }
4203 else if (TREE_CODE (to) == TARGET_MEM_REF)
4204 {
4205 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4206 struct mem_address addr;
4207
4208 get_address_description (to, &addr);
4209 op0 = addr_for_mem_ref (&addr, as, true);
4210 op0 = memory_address_addr_space (mode, op0, as);
4211 mem = gen_rtx_MEM (mode, op0);
4212 set_mem_attributes (mem, to, 0);
4213 set_mem_addr_space (mem, as);
4214 }
4215 else
4216 gcc_unreachable ();
4217 if (TREE_THIS_VOLATILE (to))
4218 MEM_VOLATILE_P (mem) = 1;
4219
4220 op_mode1 = insn_data[icode].operand[1].mode;
4221 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4222 && op_mode1 != VOIDmode)
4223 reg = copy_to_mode_reg (op_mode1, reg);
4224
4225 insn = GEN_FCN (icode) (mem, reg);
4226 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4227 silently be omitted. */
4228 gcc_assert (insn != NULL_RTX);
4229 emit_insn (insn);
4230 return;
4231 }
4232
4233 /* Assignment of a structure component needs special treatment
4234 if the structure component's rtx is not simply a MEM.
4235 Assignment of an array element at a constant index, and assignment of
4236 an array element in an unaligned packed structure field, has the same
4237 problem. */
4238 if (handled_component_p (to)
4239 /* ??? We only need to handle MEM_REF here if the access is not
4240 a full access of the base object. */
4241 || (TREE_CODE (to) == MEM_REF
4242 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4243 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4244 {
4245 enum machine_mode mode1;
4246 HOST_WIDE_INT bitsize, bitpos;
4247 tree offset;
4248 int unsignedp;
4249 int volatilep = 0;
4250 tree tem;
4251
4252 push_temp_slots ();
4253 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4254 &unsignedp, &volatilep, true);
4255
4256 /* If we are going to use store_bit_field and extract_bit_field,
4257 make sure to_rtx will be safe for multiple use. */
4258
4259 to_rtx = expand_normal (tem);
4260
4261 /* If the bitfield is volatile, we want to access it in the
4262 field's mode, not the computed mode. */
4263 if (volatilep
4264 && GET_CODE (to_rtx) == MEM
4265 && flag_strict_volatile_bitfields > 0)
4266 to_rtx = adjust_address (to_rtx, mode1, 0);
4267
4268 if (offset != 0)
4269 {
4270 enum machine_mode address_mode;
4271 rtx offset_rtx;
4272
4273 if (!MEM_P (to_rtx))
4274 {
4275 /* We can get constant negative offsets into arrays with broken
4276 user code. Translate this to a trap instead of ICEing. */
4277 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4278 expand_builtin_trap ();
4279 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4280 }
4281
4282 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4283 address_mode
4284 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4285 if (GET_MODE (offset_rtx) != address_mode)
4286 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4287
4288 /* A constant address in TO_RTX can have VOIDmode, we must not try
4289 to call force_reg for that case. Avoid that case. */
4290 if (MEM_P (to_rtx)
4291 && GET_MODE (to_rtx) == BLKmode
4292 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4293 && bitsize > 0
4294 && (bitpos % bitsize) == 0
4295 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4296 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4297 {
4298 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4299 bitpos = 0;
4300 }
4301
4302 to_rtx = offset_address (to_rtx, offset_rtx,
4303 highest_pow2_factor_for_target (to,
4304 offset));
4305 }
4306
4307 /* No action is needed if the target is not a memory and the field
4308 lies completely outside that target. This can occur if the source
4309 code contains an out-of-bounds access to a small array. */
4310 if (!MEM_P (to_rtx)
4311 && GET_MODE (to_rtx) != BLKmode
4312 && (unsigned HOST_WIDE_INT) bitpos
4313 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4314 {
4315 expand_normal (from);
4316 result = NULL;
4317 }
4318 /* Handle expand_expr of a complex value returning a CONCAT. */
4319 else if (GET_CODE (to_rtx) == CONCAT)
4320 {
4321 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4322 {
4323 gcc_assert (bitpos == 0);
4324 result = store_expr (from, to_rtx, false, nontemporal);
4325 }
4326 else
4327 {
4328 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4329 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4330 nontemporal);
4331 }
4332 }
4333 else
4334 {
4335 if (MEM_P (to_rtx))
4336 {
4337 /* If the field is at offset zero, we could have been given the
4338 DECL_RTX of the parent struct. Don't munge it. */
4339 to_rtx = shallow_copy_rtx (to_rtx);
4340
4341 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4342
4343 /* Deal with volatile and readonly fields. The former is only
4344 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4345 if (volatilep)
4346 MEM_VOLATILE_P (to_rtx) = 1;
4347 if (component_uses_parent_alias_set (to))
4348 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4349 }
4350
4351 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4352 to_rtx, to, from))
4353 result = NULL;
4354 else
4355 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4356 TREE_TYPE (tem), get_alias_set (to),
4357 nontemporal);
4358 }
4359
4360 if (result)
4361 preserve_temp_slots (result);
4362 free_temp_slots ();
4363 pop_temp_slots ();
4364 return;
4365 }
4366
4367 /* If the rhs is a function call and its value is not an aggregate,
4368 call the function before we start to compute the lhs.
4369 This is needed for correct code for cases such as
4370 val = setjmp (buf) on machines where reference to val
4371 requires loading up part of an address in a separate insn.
4372
4373 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4374 since it might be a promoted variable where the zero- or sign- extension
4375 needs to be done. Handling this in the normal way is safe because no
4376 computation is done before the call. The same is true for SSA names. */
4377 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4378 && COMPLETE_TYPE_P (TREE_TYPE (from))
4379 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4380 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4381 && REG_P (DECL_RTL (to)))
4382 || TREE_CODE (to) == SSA_NAME))
4383 {
4384 rtx value;
4385
4386 push_temp_slots ();
4387 value = expand_normal (from);
4388 if (to_rtx == 0)
4389 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4390
4391 /* Handle calls that return values in multiple non-contiguous locations.
4392 The Irix 6 ABI has examples of this. */
4393 if (GET_CODE (to_rtx) == PARALLEL)
4394 emit_group_load (to_rtx, value, TREE_TYPE (from),
4395 int_size_in_bytes (TREE_TYPE (from)));
4396 else if (GET_MODE (to_rtx) == BLKmode)
4397 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4398 else
4399 {
4400 if (POINTER_TYPE_P (TREE_TYPE (to)))
4401 value = convert_memory_address_addr_space
4402 (GET_MODE (to_rtx), value,
4403 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4404
4405 emit_move_insn (to_rtx, value);
4406 }
4407 preserve_temp_slots (to_rtx);
4408 free_temp_slots ();
4409 pop_temp_slots ();
4410 return;
4411 }
4412
4413 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4414 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4415
4416 if (to_rtx == 0)
4417 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4418
4419 /* Don't move directly into a return register. */
4420 if (TREE_CODE (to) == RESULT_DECL
4421 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4422 {
4423 rtx temp;
4424
4425 push_temp_slots ();
4426 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4427
4428 if (GET_CODE (to_rtx) == PARALLEL)
4429 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4430 int_size_in_bytes (TREE_TYPE (from)));
4431 else
4432 emit_move_insn (to_rtx, temp);
4433
4434 preserve_temp_slots (to_rtx);
4435 free_temp_slots ();
4436 pop_temp_slots ();
4437 return;
4438 }
4439
4440 /* In case we are returning the contents of an object which overlaps
4441 the place the value is being stored, use a safe function when copying
4442 a value through a pointer into a structure value return block. */
4443 if (TREE_CODE (to) == RESULT_DECL
4444 && TREE_CODE (from) == INDIRECT_REF
4445 && ADDR_SPACE_GENERIC_P
4446 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4447 && refs_may_alias_p (to, from)
4448 && cfun->returns_struct
4449 && !cfun->returns_pcc_struct)
4450 {
4451 rtx from_rtx, size;
4452
4453 push_temp_slots ();
4454 size = expr_size (from);
4455 from_rtx = expand_normal (from);
4456
4457 emit_library_call (memmove_libfunc, LCT_NORMAL,
4458 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4459 XEXP (from_rtx, 0), Pmode,
4460 convert_to_mode (TYPE_MODE (sizetype),
4461 size, TYPE_UNSIGNED (sizetype)),
4462 TYPE_MODE (sizetype));
4463
4464 preserve_temp_slots (to_rtx);
4465 free_temp_slots ();
4466 pop_temp_slots ();
4467 return;
4468 }
4469
4470 /* Compute FROM and store the value in the rtx we got. */
4471
4472 push_temp_slots ();
4473 result = store_expr (from, to_rtx, 0, nontemporal);
4474 preserve_temp_slots (result);
4475 free_temp_slots ();
4476 pop_temp_slots ();
4477 return;
4478 }
4479
4480 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4481 succeeded, false otherwise. */
4482
4483 bool
4484 emit_storent_insn (rtx to, rtx from)
4485 {
4486 enum machine_mode mode = GET_MODE (to), imode;
4487 enum insn_code code = optab_handler (storent_optab, mode);
4488 rtx pattern;
4489
4490 if (code == CODE_FOR_nothing)
4491 return false;
4492
4493 imode = insn_data[code].operand[0].mode;
4494 if (!insn_data[code].operand[0].predicate (to, imode))
4495 return false;
4496
4497 imode = insn_data[code].operand[1].mode;
4498 if (!insn_data[code].operand[1].predicate (from, imode))
4499 {
4500 from = copy_to_mode_reg (imode, from);
4501 if (!insn_data[code].operand[1].predicate (from, imode))
4502 return false;
4503 }
4504
4505 pattern = GEN_FCN (code) (to, from);
4506 if (pattern == NULL_RTX)
4507 return false;
4508
4509 emit_insn (pattern);
4510 return true;
4511 }
4512
4513 /* Generate code for computing expression EXP,
4514 and storing the value into TARGET.
4515
4516 If the mode is BLKmode then we may return TARGET itself.
4517 It turns out that in BLKmode it doesn't cause a problem.
4518 because C has no operators that could combine two different
4519 assignments into the same BLKmode object with different values
4520 with no sequence point. Will other languages need this to
4521 be more thorough?
4522
4523 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4524 stack, and block moves may need to be treated specially.
4525
4526 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4527
4528 rtx
4529 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4530 {
4531 rtx temp;
4532 rtx alt_rtl = NULL_RTX;
4533 location_t loc = EXPR_LOCATION (exp);
4534
4535 if (VOID_TYPE_P (TREE_TYPE (exp)))
4536 {
4537 /* C++ can generate ?: expressions with a throw expression in one
4538 branch and an rvalue in the other. Here, we resolve attempts to
4539 store the throw expression's nonexistent result. */
4540 gcc_assert (!call_param_p);
4541 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4542 return NULL_RTX;
4543 }
4544 if (TREE_CODE (exp) == COMPOUND_EXPR)
4545 {
4546 /* Perform first part of compound expression, then assign from second
4547 part. */
4548 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4549 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4550 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4551 nontemporal);
4552 }
4553 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4554 {
4555 /* For conditional expression, get safe form of the target. Then
4556 test the condition, doing the appropriate assignment on either
4557 side. This avoids the creation of unnecessary temporaries.
4558 For non-BLKmode, it is more efficient not to do this. */
4559
4560 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4561
4562 do_pending_stack_adjust ();
4563 NO_DEFER_POP;
4564 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4565 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4566 nontemporal);
4567 emit_jump_insn (gen_jump (lab2));
4568 emit_barrier ();
4569 emit_label (lab1);
4570 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4571 nontemporal);
4572 emit_label (lab2);
4573 OK_DEFER_POP;
4574
4575 return NULL_RTX;
4576 }
4577 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4578 /* If this is a scalar in a register that is stored in a wider mode
4579 than the declared mode, compute the result into its declared mode
4580 and then convert to the wider mode. Our value is the computed
4581 expression. */
4582 {
4583 rtx inner_target = 0;
4584
4585 /* We can do the conversion inside EXP, which will often result
4586 in some optimizations. Do the conversion in two steps: first
4587 change the signedness, if needed, then the extend. But don't
4588 do this if the type of EXP is a subtype of something else
4589 since then the conversion might involve more than just
4590 converting modes. */
4591 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4592 && TREE_TYPE (TREE_TYPE (exp)) == 0
4593 && GET_MODE_PRECISION (GET_MODE (target))
4594 == TYPE_PRECISION (TREE_TYPE (exp)))
4595 {
4596 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4597 != SUBREG_PROMOTED_UNSIGNED_P (target))
4598 {
4599 /* Some types, e.g. Fortran's logical*4, won't have a signed
4600 version, so use the mode instead. */
4601 tree ntype
4602 = (signed_or_unsigned_type_for
4603 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4604 if (ntype == NULL)
4605 ntype = lang_hooks.types.type_for_mode
4606 (TYPE_MODE (TREE_TYPE (exp)),
4607 SUBREG_PROMOTED_UNSIGNED_P (target));
4608
4609 exp = fold_convert_loc (loc, ntype, exp);
4610 }
4611
4612 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4613 (GET_MODE (SUBREG_REG (target)),
4614 SUBREG_PROMOTED_UNSIGNED_P (target)),
4615 exp);
4616
4617 inner_target = SUBREG_REG (target);
4618 }
4619
4620 temp = expand_expr (exp, inner_target, VOIDmode,
4621 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4622
4623 /* If TEMP is a VOIDmode constant, use convert_modes to make
4624 sure that we properly convert it. */
4625 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4626 {
4627 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4628 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4629 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4630 GET_MODE (target), temp,
4631 SUBREG_PROMOTED_UNSIGNED_P (target));
4632 }
4633
4634 convert_move (SUBREG_REG (target), temp,
4635 SUBREG_PROMOTED_UNSIGNED_P (target));
4636
4637 return NULL_RTX;
4638 }
4639 else if ((TREE_CODE (exp) == STRING_CST
4640 || (TREE_CODE (exp) == MEM_REF
4641 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4642 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4643 == STRING_CST
4644 && integer_zerop (TREE_OPERAND (exp, 1))))
4645 && !nontemporal && !call_param_p
4646 && MEM_P (target))
4647 {
4648 /* Optimize initialization of an array with a STRING_CST. */
4649 HOST_WIDE_INT exp_len, str_copy_len;
4650 rtx dest_mem;
4651 tree str = TREE_CODE (exp) == STRING_CST
4652 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4653
4654 exp_len = int_expr_size (exp);
4655 if (exp_len <= 0)
4656 goto normal_expr;
4657
4658 if (TREE_STRING_LENGTH (str) <= 0)
4659 goto normal_expr;
4660
4661 str_copy_len = strlen (TREE_STRING_POINTER (str));
4662 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4663 goto normal_expr;
4664
4665 str_copy_len = TREE_STRING_LENGTH (str);
4666 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4667 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4668 {
4669 str_copy_len += STORE_MAX_PIECES - 1;
4670 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4671 }
4672 str_copy_len = MIN (str_copy_len, exp_len);
4673 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4674 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4675 MEM_ALIGN (target), false))
4676 goto normal_expr;
4677
4678 dest_mem = target;
4679
4680 dest_mem = store_by_pieces (dest_mem,
4681 str_copy_len, builtin_strncpy_read_str,
4682 CONST_CAST (char *,
4683 TREE_STRING_POINTER (str)),
4684 MEM_ALIGN (target), false,
4685 exp_len > str_copy_len ? 1 : 0);
4686 if (exp_len > str_copy_len)
4687 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4688 GEN_INT (exp_len - str_copy_len),
4689 BLOCK_OP_NORMAL);
4690 return NULL_RTX;
4691 }
4692 else
4693 {
4694 rtx tmp_target;
4695
4696 normal_expr:
4697 /* If we want to use a nontemporal store, force the value to
4698 register first. */
4699 tmp_target = nontemporal ? NULL_RTX : target;
4700 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4701 (call_param_p
4702 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4703 &alt_rtl);
4704 }
4705
4706 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4707 the same as that of TARGET, adjust the constant. This is needed, for
4708 example, in case it is a CONST_DOUBLE and we want only a word-sized
4709 value. */
4710 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4711 && TREE_CODE (exp) != ERROR_MARK
4712 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4713 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4714 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4715
4716 /* If value was not generated in the target, store it there.
4717 Convert the value to TARGET's type first if necessary and emit the
4718 pending incrementations that have been queued when expanding EXP.
4719 Note that we cannot emit the whole queue blindly because this will
4720 effectively disable the POST_INC optimization later.
4721
4722 If TEMP and TARGET compare equal according to rtx_equal_p, but
4723 one or both of them are volatile memory refs, we have to distinguish
4724 two cases:
4725 - expand_expr has used TARGET. In this case, we must not generate
4726 another copy. This can be detected by TARGET being equal according
4727 to == .
4728 - expand_expr has not used TARGET - that means that the source just
4729 happens to have the same RTX form. Since temp will have been created
4730 by expand_expr, it will compare unequal according to == .
4731 We must generate a copy in this case, to reach the correct number
4732 of volatile memory references. */
4733
4734 if ((! rtx_equal_p (temp, target)
4735 || (temp != target && (side_effects_p (temp)
4736 || side_effects_p (target))))
4737 && TREE_CODE (exp) != ERROR_MARK
4738 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4739 but TARGET is not valid memory reference, TEMP will differ
4740 from TARGET although it is really the same location. */
4741 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4742 /* If there's nothing to copy, don't bother. Don't call
4743 expr_size unless necessary, because some front-ends (C++)
4744 expr_size-hook must not be given objects that are not
4745 supposed to be bit-copied or bit-initialized. */
4746 && expr_size (exp) != const0_rtx)
4747 {
4748 if (GET_MODE (temp) != GET_MODE (target)
4749 && GET_MODE (temp) != VOIDmode)
4750 {
4751 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4752 if (GET_MODE (target) == BLKmode
4753 && GET_MODE (temp) == BLKmode)
4754 emit_block_move (target, temp, expr_size (exp),
4755 (call_param_p
4756 ? BLOCK_OP_CALL_PARM
4757 : BLOCK_OP_NORMAL));
4758 else if (GET_MODE (target) == BLKmode)
4759 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4760 0, GET_MODE (temp), temp);
4761 else
4762 convert_move (target, temp, unsignedp);
4763 }
4764
4765 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4766 {
4767 /* Handle copying a string constant into an array. The string
4768 constant may be shorter than the array. So copy just the string's
4769 actual length, and clear the rest. First get the size of the data
4770 type of the string, which is actually the size of the target. */
4771 rtx size = expr_size (exp);
4772
4773 if (CONST_INT_P (size)
4774 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4775 emit_block_move (target, temp, size,
4776 (call_param_p
4777 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4778 else
4779 {
4780 enum machine_mode pointer_mode
4781 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4782 enum machine_mode address_mode
4783 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4784
4785 /* Compute the size of the data to copy from the string. */
4786 tree copy_size
4787 = size_binop_loc (loc, MIN_EXPR,
4788 make_tree (sizetype, size),
4789 size_int (TREE_STRING_LENGTH (exp)));
4790 rtx copy_size_rtx
4791 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4792 (call_param_p
4793 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4794 rtx label = 0;
4795
4796 /* Copy that much. */
4797 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4798 TYPE_UNSIGNED (sizetype));
4799 emit_block_move (target, temp, copy_size_rtx,
4800 (call_param_p
4801 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4802
4803 /* Figure out how much is left in TARGET that we have to clear.
4804 Do all calculations in pointer_mode. */
4805 if (CONST_INT_P (copy_size_rtx))
4806 {
4807 size = plus_constant (size, -INTVAL (copy_size_rtx));
4808 target = adjust_address (target, BLKmode,
4809 INTVAL (copy_size_rtx));
4810 }
4811 else
4812 {
4813 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4814 copy_size_rtx, NULL_RTX, 0,
4815 OPTAB_LIB_WIDEN);
4816
4817 if (GET_MODE (copy_size_rtx) != address_mode)
4818 copy_size_rtx = convert_to_mode (address_mode,
4819 copy_size_rtx,
4820 TYPE_UNSIGNED (sizetype));
4821
4822 target = offset_address (target, copy_size_rtx,
4823 highest_pow2_factor (copy_size));
4824 label = gen_label_rtx ();
4825 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4826 GET_MODE (size), 0, label);
4827 }
4828
4829 if (size != const0_rtx)
4830 clear_storage (target, size, BLOCK_OP_NORMAL);
4831
4832 if (label)
4833 emit_label (label);
4834 }
4835 }
4836 /* Handle calls that return values in multiple non-contiguous locations.
4837 The Irix 6 ABI has examples of this. */
4838 else if (GET_CODE (target) == PARALLEL)
4839 emit_group_load (target, temp, TREE_TYPE (exp),
4840 int_size_in_bytes (TREE_TYPE (exp)));
4841 else if (GET_MODE (temp) == BLKmode)
4842 emit_block_move (target, temp, expr_size (exp),
4843 (call_param_p
4844 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4845 else if (nontemporal
4846 && emit_storent_insn (target, temp))
4847 /* If we managed to emit a nontemporal store, there is nothing else to
4848 do. */
4849 ;
4850 else
4851 {
4852 temp = force_operand (temp, target);
4853 if (temp != target)
4854 emit_move_insn (target, temp);
4855 }
4856 }
4857
4858 return NULL_RTX;
4859 }
4860 \f
4861 /* Helper for categorize_ctor_elements. Identical interface. */
4862
4863 static bool
4864 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4865 HOST_WIDE_INT *p_elt_count,
4866 bool *p_must_clear)
4867 {
4868 unsigned HOST_WIDE_INT idx;
4869 HOST_WIDE_INT nz_elts, elt_count;
4870 tree value, purpose;
4871
4872 /* Whether CTOR is a valid constant initializer, in accordance with what
4873 initializer_constant_valid_p does. If inferred from the constructor
4874 elements, true until proven otherwise. */
4875 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4876 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4877
4878 nz_elts = 0;
4879 elt_count = 0;
4880
4881 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4882 {
4883 HOST_WIDE_INT mult = 1;
4884
4885 if (TREE_CODE (purpose) == RANGE_EXPR)
4886 {
4887 tree lo_index = TREE_OPERAND (purpose, 0);
4888 tree hi_index = TREE_OPERAND (purpose, 1);
4889
4890 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4891 mult = (tree_low_cst (hi_index, 1)
4892 - tree_low_cst (lo_index, 1) + 1);
4893 }
4894
4895 switch (TREE_CODE (value))
4896 {
4897 case CONSTRUCTOR:
4898 {
4899 HOST_WIDE_INT nz = 0, ic = 0;
4900
4901 bool const_elt_p
4902 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4903
4904 nz_elts += mult * nz;
4905 elt_count += mult * ic;
4906
4907 if (const_from_elts_p && const_p)
4908 const_p = const_elt_p;
4909 }
4910 break;
4911
4912 case INTEGER_CST:
4913 case REAL_CST:
4914 case FIXED_CST:
4915 if (!initializer_zerop (value))
4916 nz_elts += mult;
4917 elt_count += mult;
4918 break;
4919
4920 case STRING_CST:
4921 nz_elts += mult * TREE_STRING_LENGTH (value);
4922 elt_count += mult * TREE_STRING_LENGTH (value);
4923 break;
4924
4925 case COMPLEX_CST:
4926 if (!initializer_zerop (TREE_REALPART (value)))
4927 nz_elts += mult;
4928 if (!initializer_zerop (TREE_IMAGPART (value)))
4929 nz_elts += mult;
4930 elt_count += mult;
4931 break;
4932
4933 case VECTOR_CST:
4934 {
4935 tree v;
4936 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4937 {
4938 if (!initializer_zerop (TREE_VALUE (v)))
4939 nz_elts += mult;
4940 elt_count += mult;
4941 }
4942 }
4943 break;
4944
4945 default:
4946 {
4947 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4948 if (tc < 1)
4949 tc = 1;
4950 nz_elts += mult * tc;
4951 elt_count += mult * tc;
4952
4953 if (const_from_elts_p && const_p)
4954 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4955 != NULL_TREE;
4956 }
4957 break;
4958 }
4959 }
4960
4961 if (!*p_must_clear
4962 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4963 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4964 {
4965 tree init_sub_type;
4966 bool clear_this = true;
4967
4968 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4969 {
4970 /* We don't expect more than one element of the union to be
4971 initialized. Not sure what we should do otherwise... */
4972 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4973 == 1);
4974
4975 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4976 CONSTRUCTOR_ELTS (ctor),
4977 0)->value);
4978
4979 /* ??? We could look at each element of the union, and find the
4980 largest element. Which would avoid comparing the size of the
4981 initialized element against any tail padding in the union.
4982 Doesn't seem worth the effort... */
4983 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4984 TYPE_SIZE (init_sub_type)) == 1)
4985 {
4986 /* And now we have to find out if the element itself is fully
4987 constructed. E.g. for union { struct { int a, b; } s; } u
4988 = { .s = { .a = 1 } }. */
4989 if (elt_count == count_type_elements (init_sub_type, false))
4990 clear_this = false;
4991 }
4992 }
4993
4994 *p_must_clear = clear_this;
4995 }
4996
4997 *p_nz_elts += nz_elts;
4998 *p_elt_count += elt_count;
4999
5000 return const_p;
5001 }
5002
5003 /* Examine CTOR to discover:
5004 * how many scalar fields are set to nonzero values,
5005 and place it in *P_NZ_ELTS;
5006 * how many scalar fields in total are in CTOR,
5007 and place it in *P_ELT_COUNT.
5008 * if a type is a union, and the initializer from the constructor
5009 is not the largest element in the union, then set *p_must_clear.
5010
5011 Return whether or not CTOR is a valid static constant initializer, the same
5012 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5013
5014 bool
5015 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5016 HOST_WIDE_INT *p_elt_count,
5017 bool *p_must_clear)
5018 {
5019 *p_nz_elts = 0;
5020 *p_elt_count = 0;
5021 *p_must_clear = false;
5022
5023 return
5024 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5025 }
5026
5027 /* Count the number of scalars in TYPE. Return -1 on overflow or
5028 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5029 array member at the end of the structure. */
5030
5031 HOST_WIDE_INT
5032 count_type_elements (const_tree type, bool allow_flexarr)
5033 {
5034 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5035 switch (TREE_CODE (type))
5036 {
5037 case ARRAY_TYPE:
5038 {
5039 tree telts = array_type_nelts (type);
5040 if (telts && host_integerp (telts, 1))
5041 {
5042 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5043 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5044 if (n == 0)
5045 return 0;
5046 else if (max / n > m)
5047 return n * m;
5048 }
5049 return -1;
5050 }
5051
5052 case RECORD_TYPE:
5053 {
5054 HOST_WIDE_INT n = 0, t;
5055 tree f;
5056
5057 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5058 if (TREE_CODE (f) == FIELD_DECL)
5059 {
5060 t = count_type_elements (TREE_TYPE (f), false);
5061 if (t < 0)
5062 {
5063 /* Check for structures with flexible array member. */
5064 tree tf = TREE_TYPE (f);
5065 if (allow_flexarr
5066 && DECL_CHAIN (f) == NULL
5067 && TREE_CODE (tf) == ARRAY_TYPE
5068 && TYPE_DOMAIN (tf)
5069 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5070 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5071 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5072 && int_size_in_bytes (type) >= 0)
5073 break;
5074
5075 return -1;
5076 }
5077 n += t;
5078 }
5079
5080 return n;
5081 }
5082
5083 case UNION_TYPE:
5084 case QUAL_UNION_TYPE:
5085 return -1;
5086
5087 case COMPLEX_TYPE:
5088 return 2;
5089
5090 case VECTOR_TYPE:
5091 return TYPE_VECTOR_SUBPARTS (type);
5092
5093 case INTEGER_TYPE:
5094 case REAL_TYPE:
5095 case FIXED_POINT_TYPE:
5096 case ENUMERAL_TYPE:
5097 case BOOLEAN_TYPE:
5098 case POINTER_TYPE:
5099 case OFFSET_TYPE:
5100 case REFERENCE_TYPE:
5101 return 1;
5102
5103 case ERROR_MARK:
5104 return 0;
5105
5106 case VOID_TYPE:
5107 case METHOD_TYPE:
5108 case FUNCTION_TYPE:
5109 case LANG_TYPE:
5110 default:
5111 gcc_unreachable ();
5112 }
5113 }
5114
5115 /* Return 1 if EXP contains mostly (3/4) zeros. */
5116
5117 static int
5118 mostly_zeros_p (const_tree exp)
5119 {
5120 if (TREE_CODE (exp) == CONSTRUCTOR)
5121
5122 {
5123 HOST_WIDE_INT nz_elts, count, elts;
5124 bool must_clear;
5125
5126 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5127 if (must_clear)
5128 return 1;
5129
5130 elts = count_type_elements (TREE_TYPE (exp), false);
5131
5132 return nz_elts < elts / 4;
5133 }
5134
5135 return initializer_zerop (exp);
5136 }
5137
5138 /* Return 1 if EXP contains all zeros. */
5139
5140 static int
5141 all_zeros_p (const_tree exp)
5142 {
5143 if (TREE_CODE (exp) == CONSTRUCTOR)
5144
5145 {
5146 HOST_WIDE_INT nz_elts, count;
5147 bool must_clear;
5148
5149 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5150 return nz_elts == 0;
5151 }
5152
5153 return initializer_zerop (exp);
5154 }
5155 \f
5156 /* Helper function for store_constructor.
5157 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5158 TYPE is the type of the CONSTRUCTOR, not the element type.
5159 CLEARED is as for store_constructor.
5160 ALIAS_SET is the alias set to use for any stores.
5161
5162 This provides a recursive shortcut back to store_constructor when it isn't
5163 necessary to go through store_field. This is so that we can pass through
5164 the cleared field to let store_constructor know that we may not have to
5165 clear a substructure if the outer structure has already been cleared. */
5166
5167 static void
5168 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5169 HOST_WIDE_INT bitpos, enum machine_mode mode,
5170 tree exp, tree type, int cleared,
5171 alias_set_type alias_set)
5172 {
5173 if (TREE_CODE (exp) == CONSTRUCTOR
5174 /* We can only call store_constructor recursively if the size and
5175 bit position are on a byte boundary. */
5176 && bitpos % BITS_PER_UNIT == 0
5177 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5178 /* If we have a nonzero bitpos for a register target, then we just
5179 let store_field do the bitfield handling. This is unlikely to
5180 generate unnecessary clear instructions anyways. */
5181 && (bitpos == 0 || MEM_P (target)))
5182 {
5183 if (MEM_P (target))
5184 target
5185 = adjust_address (target,
5186 GET_MODE (target) == BLKmode
5187 || 0 != (bitpos
5188 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5189 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5190
5191
5192 /* Update the alias set, if required. */
5193 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5194 && MEM_ALIAS_SET (target) != 0)
5195 {
5196 target = copy_rtx (target);
5197 set_mem_alias_set (target, alias_set);
5198 }
5199
5200 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5201 }
5202 else
5203 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5204 }
5205
5206 /* Store the value of constructor EXP into the rtx TARGET.
5207 TARGET is either a REG or a MEM; we know it cannot conflict, since
5208 safe_from_p has been called.
5209 CLEARED is true if TARGET is known to have been zero'd.
5210 SIZE is the number of bytes of TARGET we are allowed to modify: this
5211 may not be the same as the size of EXP if we are assigning to a field
5212 which has been packed to exclude padding bits. */
5213
5214 static void
5215 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5216 {
5217 tree type = TREE_TYPE (exp);
5218 #ifdef WORD_REGISTER_OPERATIONS
5219 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5220 #endif
5221
5222 switch (TREE_CODE (type))
5223 {
5224 case RECORD_TYPE:
5225 case UNION_TYPE:
5226 case QUAL_UNION_TYPE:
5227 {
5228 unsigned HOST_WIDE_INT idx;
5229 tree field, value;
5230
5231 /* If size is zero or the target is already cleared, do nothing. */
5232 if (size == 0 || cleared)
5233 cleared = 1;
5234 /* We either clear the aggregate or indicate the value is dead. */
5235 else if ((TREE_CODE (type) == UNION_TYPE
5236 || TREE_CODE (type) == QUAL_UNION_TYPE)
5237 && ! CONSTRUCTOR_ELTS (exp))
5238 /* If the constructor is empty, clear the union. */
5239 {
5240 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5241 cleared = 1;
5242 }
5243
5244 /* If we are building a static constructor into a register,
5245 set the initial value as zero so we can fold the value into
5246 a constant. But if more than one register is involved,
5247 this probably loses. */
5248 else if (REG_P (target) && TREE_STATIC (exp)
5249 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5250 {
5251 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5252 cleared = 1;
5253 }
5254
5255 /* If the constructor has fewer fields than the structure or
5256 if we are initializing the structure to mostly zeros, clear
5257 the whole structure first. Don't do this if TARGET is a
5258 register whose mode size isn't equal to SIZE since
5259 clear_storage can't handle this case. */
5260 else if (size > 0
5261 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5262 != fields_length (type))
5263 || mostly_zeros_p (exp))
5264 && (!REG_P (target)
5265 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5266 == size)))
5267 {
5268 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5269 cleared = 1;
5270 }
5271
5272 if (REG_P (target) && !cleared)
5273 emit_clobber (target);
5274
5275 /* Store each element of the constructor into the
5276 corresponding field of TARGET. */
5277 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5278 {
5279 enum machine_mode mode;
5280 HOST_WIDE_INT bitsize;
5281 HOST_WIDE_INT bitpos = 0;
5282 tree offset;
5283 rtx to_rtx = target;
5284
5285 /* Just ignore missing fields. We cleared the whole
5286 structure, above, if any fields are missing. */
5287 if (field == 0)
5288 continue;
5289
5290 if (cleared && initializer_zerop (value))
5291 continue;
5292
5293 if (host_integerp (DECL_SIZE (field), 1))
5294 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5295 else
5296 bitsize = -1;
5297
5298 mode = DECL_MODE (field);
5299 if (DECL_BIT_FIELD (field))
5300 mode = VOIDmode;
5301
5302 offset = DECL_FIELD_OFFSET (field);
5303 if (host_integerp (offset, 0)
5304 && host_integerp (bit_position (field), 0))
5305 {
5306 bitpos = int_bit_position (field);
5307 offset = 0;
5308 }
5309 else
5310 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5311
5312 if (offset)
5313 {
5314 enum machine_mode address_mode;
5315 rtx offset_rtx;
5316
5317 offset
5318 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5319 make_tree (TREE_TYPE (exp),
5320 target));
5321
5322 offset_rtx = expand_normal (offset);
5323 gcc_assert (MEM_P (to_rtx));
5324
5325 address_mode
5326 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5327 if (GET_MODE (offset_rtx) != address_mode)
5328 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5329
5330 to_rtx = offset_address (to_rtx, offset_rtx,
5331 highest_pow2_factor (offset));
5332 }
5333
5334 #ifdef WORD_REGISTER_OPERATIONS
5335 /* If this initializes a field that is smaller than a
5336 word, at the start of a word, try to widen it to a full
5337 word. This special case allows us to output C++ member
5338 function initializations in a form that the optimizers
5339 can understand. */
5340 if (REG_P (target)
5341 && bitsize < BITS_PER_WORD
5342 && bitpos % BITS_PER_WORD == 0
5343 && GET_MODE_CLASS (mode) == MODE_INT
5344 && TREE_CODE (value) == INTEGER_CST
5345 && exp_size >= 0
5346 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5347 {
5348 tree type = TREE_TYPE (value);
5349
5350 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5351 {
5352 type = lang_hooks.types.type_for_size
5353 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5354 value = fold_convert (type, value);
5355 }
5356
5357 if (BYTES_BIG_ENDIAN)
5358 value
5359 = fold_build2 (LSHIFT_EXPR, type, value,
5360 build_int_cst (type,
5361 BITS_PER_WORD - bitsize));
5362 bitsize = BITS_PER_WORD;
5363 mode = word_mode;
5364 }
5365 #endif
5366
5367 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5368 && DECL_NONADDRESSABLE_P (field))
5369 {
5370 to_rtx = copy_rtx (to_rtx);
5371 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5372 }
5373
5374 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5375 value, type, cleared,
5376 get_alias_set (TREE_TYPE (field)));
5377 }
5378 break;
5379 }
5380 case ARRAY_TYPE:
5381 {
5382 tree value, index;
5383 unsigned HOST_WIDE_INT i;
5384 int need_to_clear;
5385 tree domain;
5386 tree elttype = TREE_TYPE (type);
5387 int const_bounds_p;
5388 HOST_WIDE_INT minelt = 0;
5389 HOST_WIDE_INT maxelt = 0;
5390
5391 domain = TYPE_DOMAIN (type);
5392 const_bounds_p = (TYPE_MIN_VALUE (domain)
5393 && TYPE_MAX_VALUE (domain)
5394 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5395 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5396
5397 /* If we have constant bounds for the range of the type, get them. */
5398 if (const_bounds_p)
5399 {
5400 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5401 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5402 }
5403
5404 /* If the constructor has fewer elements than the array, clear
5405 the whole array first. Similarly if this is static
5406 constructor of a non-BLKmode object. */
5407 if (cleared)
5408 need_to_clear = 0;
5409 else if (REG_P (target) && TREE_STATIC (exp))
5410 need_to_clear = 1;
5411 else
5412 {
5413 unsigned HOST_WIDE_INT idx;
5414 tree index, value;
5415 HOST_WIDE_INT count = 0, zero_count = 0;
5416 need_to_clear = ! const_bounds_p;
5417
5418 /* This loop is a more accurate version of the loop in
5419 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5420 is also needed to check for missing elements. */
5421 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5422 {
5423 HOST_WIDE_INT this_node_count;
5424
5425 if (need_to_clear)
5426 break;
5427
5428 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5429 {
5430 tree lo_index = TREE_OPERAND (index, 0);
5431 tree hi_index = TREE_OPERAND (index, 1);
5432
5433 if (! host_integerp (lo_index, 1)
5434 || ! host_integerp (hi_index, 1))
5435 {
5436 need_to_clear = 1;
5437 break;
5438 }
5439
5440 this_node_count = (tree_low_cst (hi_index, 1)
5441 - tree_low_cst (lo_index, 1) + 1);
5442 }
5443 else
5444 this_node_count = 1;
5445
5446 count += this_node_count;
5447 if (mostly_zeros_p (value))
5448 zero_count += this_node_count;
5449 }
5450
5451 /* Clear the entire array first if there are any missing
5452 elements, or if the incidence of zero elements is >=
5453 75%. */
5454 if (! need_to_clear
5455 && (count < maxelt - minelt + 1
5456 || 4 * zero_count >= 3 * count))
5457 need_to_clear = 1;
5458 }
5459
5460 if (need_to_clear && size > 0)
5461 {
5462 if (REG_P (target))
5463 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5464 else
5465 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5466 cleared = 1;
5467 }
5468
5469 if (!cleared && REG_P (target))
5470 /* Inform later passes that the old value is dead. */
5471 emit_clobber (target);
5472
5473 /* Store each element of the constructor into the
5474 corresponding element of TARGET, determined by counting the
5475 elements. */
5476 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5477 {
5478 enum machine_mode mode;
5479 HOST_WIDE_INT bitsize;
5480 HOST_WIDE_INT bitpos;
5481 rtx xtarget = target;
5482
5483 if (cleared && initializer_zerop (value))
5484 continue;
5485
5486 mode = TYPE_MODE (elttype);
5487 if (mode == BLKmode)
5488 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5489 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5490 : -1);
5491 else
5492 bitsize = GET_MODE_BITSIZE (mode);
5493
5494 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5495 {
5496 tree lo_index = TREE_OPERAND (index, 0);
5497 tree hi_index = TREE_OPERAND (index, 1);
5498 rtx index_r, pos_rtx;
5499 HOST_WIDE_INT lo, hi, count;
5500 tree position;
5501
5502 /* If the range is constant and "small", unroll the loop. */
5503 if (const_bounds_p
5504 && host_integerp (lo_index, 0)
5505 && host_integerp (hi_index, 0)
5506 && (lo = tree_low_cst (lo_index, 0),
5507 hi = tree_low_cst (hi_index, 0),
5508 count = hi - lo + 1,
5509 (!MEM_P (target)
5510 || count <= 2
5511 || (host_integerp (TYPE_SIZE (elttype), 1)
5512 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5513 <= 40 * 8)))))
5514 {
5515 lo -= minelt; hi -= minelt;
5516 for (; lo <= hi; lo++)
5517 {
5518 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5519
5520 if (MEM_P (target)
5521 && !MEM_KEEP_ALIAS_SET_P (target)
5522 && TREE_CODE (type) == ARRAY_TYPE
5523 && TYPE_NONALIASED_COMPONENT (type))
5524 {
5525 target = copy_rtx (target);
5526 MEM_KEEP_ALIAS_SET_P (target) = 1;
5527 }
5528
5529 store_constructor_field
5530 (target, bitsize, bitpos, mode, value, type, cleared,
5531 get_alias_set (elttype));
5532 }
5533 }
5534 else
5535 {
5536 rtx loop_start = gen_label_rtx ();
5537 rtx loop_end = gen_label_rtx ();
5538 tree exit_cond;
5539
5540 expand_normal (hi_index);
5541
5542 index = build_decl (EXPR_LOCATION (exp),
5543 VAR_DECL, NULL_TREE, domain);
5544 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5545 SET_DECL_RTL (index, index_r);
5546 store_expr (lo_index, index_r, 0, false);
5547
5548 /* Build the head of the loop. */
5549 do_pending_stack_adjust ();
5550 emit_label (loop_start);
5551
5552 /* Assign value to element index. */
5553 position =
5554 fold_convert (ssizetype,
5555 fold_build2 (MINUS_EXPR,
5556 TREE_TYPE (index),
5557 index,
5558 TYPE_MIN_VALUE (domain)));
5559
5560 position =
5561 size_binop (MULT_EXPR, position,
5562 fold_convert (ssizetype,
5563 TYPE_SIZE_UNIT (elttype)));
5564
5565 pos_rtx = expand_normal (position);
5566 xtarget = offset_address (target, pos_rtx,
5567 highest_pow2_factor (position));
5568 xtarget = adjust_address (xtarget, mode, 0);
5569 if (TREE_CODE (value) == CONSTRUCTOR)
5570 store_constructor (value, xtarget, cleared,
5571 bitsize / BITS_PER_UNIT);
5572 else
5573 store_expr (value, xtarget, 0, false);
5574
5575 /* Generate a conditional jump to exit the loop. */
5576 exit_cond = build2 (LT_EXPR, integer_type_node,
5577 index, hi_index);
5578 jumpif (exit_cond, loop_end, -1);
5579
5580 /* Update the loop counter, and jump to the head of
5581 the loop. */
5582 expand_assignment (index,
5583 build2 (PLUS_EXPR, TREE_TYPE (index),
5584 index, integer_one_node),
5585 false);
5586
5587 emit_jump (loop_start);
5588
5589 /* Build the end of the loop. */
5590 emit_label (loop_end);
5591 }
5592 }
5593 else if ((index != 0 && ! host_integerp (index, 0))
5594 || ! host_integerp (TYPE_SIZE (elttype), 1))
5595 {
5596 tree position;
5597
5598 if (index == 0)
5599 index = ssize_int (1);
5600
5601 if (minelt)
5602 index = fold_convert (ssizetype,
5603 fold_build2 (MINUS_EXPR,
5604 TREE_TYPE (index),
5605 index,
5606 TYPE_MIN_VALUE (domain)));
5607
5608 position =
5609 size_binop (MULT_EXPR, index,
5610 fold_convert (ssizetype,
5611 TYPE_SIZE_UNIT (elttype)));
5612 xtarget = offset_address (target,
5613 expand_normal (position),
5614 highest_pow2_factor (position));
5615 xtarget = adjust_address (xtarget, mode, 0);
5616 store_expr (value, xtarget, 0, false);
5617 }
5618 else
5619 {
5620 if (index != 0)
5621 bitpos = ((tree_low_cst (index, 0) - minelt)
5622 * tree_low_cst (TYPE_SIZE (elttype), 1));
5623 else
5624 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5625
5626 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5627 && TREE_CODE (type) == ARRAY_TYPE
5628 && TYPE_NONALIASED_COMPONENT (type))
5629 {
5630 target = copy_rtx (target);
5631 MEM_KEEP_ALIAS_SET_P (target) = 1;
5632 }
5633 store_constructor_field (target, bitsize, bitpos, mode, value,
5634 type, cleared, get_alias_set (elttype));
5635 }
5636 }
5637 break;
5638 }
5639
5640 case VECTOR_TYPE:
5641 {
5642 unsigned HOST_WIDE_INT idx;
5643 constructor_elt *ce;
5644 int i;
5645 int need_to_clear;
5646 int icode = 0;
5647 tree elttype = TREE_TYPE (type);
5648 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5649 enum machine_mode eltmode = TYPE_MODE (elttype);
5650 HOST_WIDE_INT bitsize;
5651 HOST_WIDE_INT bitpos;
5652 rtvec vector = NULL;
5653 unsigned n_elts;
5654 alias_set_type alias;
5655
5656 gcc_assert (eltmode != BLKmode);
5657
5658 n_elts = TYPE_VECTOR_SUBPARTS (type);
5659 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5660 {
5661 enum machine_mode mode = GET_MODE (target);
5662
5663 icode = (int) optab_handler (vec_init_optab, mode);
5664 if (icode != CODE_FOR_nothing)
5665 {
5666 unsigned int i;
5667
5668 vector = rtvec_alloc (n_elts);
5669 for (i = 0; i < n_elts; i++)
5670 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5671 }
5672 }
5673
5674 /* If the constructor has fewer elements than the vector,
5675 clear the whole array first. Similarly if this is static
5676 constructor of a non-BLKmode object. */
5677 if (cleared)
5678 need_to_clear = 0;
5679 else if (REG_P (target) && TREE_STATIC (exp))
5680 need_to_clear = 1;
5681 else
5682 {
5683 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5684 tree value;
5685
5686 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5687 {
5688 int n_elts_here = tree_low_cst
5689 (int_const_binop (TRUNC_DIV_EXPR,
5690 TYPE_SIZE (TREE_TYPE (value)),
5691 TYPE_SIZE (elttype), 0), 1);
5692
5693 count += n_elts_here;
5694 if (mostly_zeros_p (value))
5695 zero_count += n_elts_here;
5696 }
5697
5698 /* Clear the entire vector first if there are any missing elements,
5699 or if the incidence of zero elements is >= 75%. */
5700 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5701 }
5702
5703 if (need_to_clear && size > 0 && !vector)
5704 {
5705 if (REG_P (target))
5706 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5707 else
5708 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5709 cleared = 1;
5710 }
5711
5712 /* Inform later passes that the old value is dead. */
5713 if (!cleared && !vector && REG_P (target))
5714 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5715
5716 if (MEM_P (target))
5717 alias = MEM_ALIAS_SET (target);
5718 else
5719 alias = get_alias_set (elttype);
5720
5721 /* Store each element of the constructor into the corresponding
5722 element of TARGET, determined by counting the elements. */
5723 for (idx = 0, i = 0;
5724 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5725 idx++, i += bitsize / elt_size)
5726 {
5727 HOST_WIDE_INT eltpos;
5728 tree value = ce->value;
5729
5730 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5731 if (cleared && initializer_zerop (value))
5732 continue;
5733
5734 if (ce->index)
5735 eltpos = tree_low_cst (ce->index, 1);
5736 else
5737 eltpos = i;
5738
5739 if (vector)
5740 {
5741 /* Vector CONSTRUCTORs should only be built from smaller
5742 vectors in the case of BLKmode vectors. */
5743 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5744 RTVEC_ELT (vector, eltpos)
5745 = expand_normal (value);
5746 }
5747 else
5748 {
5749 enum machine_mode value_mode =
5750 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5751 ? TYPE_MODE (TREE_TYPE (value))
5752 : eltmode;
5753 bitpos = eltpos * elt_size;
5754 store_constructor_field (target, bitsize, bitpos,
5755 value_mode, value, type,
5756 cleared, alias);
5757 }
5758 }
5759
5760 if (vector)
5761 emit_insn (GEN_FCN (icode)
5762 (target,
5763 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5764 break;
5765 }
5766
5767 default:
5768 gcc_unreachable ();
5769 }
5770 }
5771
5772 /* Store the value of EXP (an expression tree)
5773 into a subfield of TARGET which has mode MODE and occupies
5774 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5775 If MODE is VOIDmode, it means that we are storing into a bit-field.
5776
5777 Always return const0_rtx unless we have something particular to
5778 return.
5779
5780 TYPE is the type of the underlying object,
5781
5782 ALIAS_SET is the alias set for the destination. This value will
5783 (in general) be different from that for TARGET, since TARGET is a
5784 reference to the containing structure.
5785
5786 If NONTEMPORAL is true, try generating a nontemporal store. */
5787
5788 static rtx
5789 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5790 enum machine_mode mode, tree exp, tree type,
5791 alias_set_type alias_set, bool nontemporal)
5792 {
5793 if (TREE_CODE (exp) == ERROR_MARK)
5794 return const0_rtx;
5795
5796 /* If we have nothing to store, do nothing unless the expression has
5797 side-effects. */
5798 if (bitsize == 0)
5799 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5800
5801 /* If we are storing into an unaligned field of an aligned union that is
5802 in a register, we may have the mode of TARGET being an integer mode but
5803 MODE == BLKmode. In that case, get an aligned object whose size and
5804 alignment are the same as TARGET and store TARGET into it (we can avoid
5805 the store if the field being stored is the entire width of TARGET). Then
5806 call ourselves recursively to store the field into a BLKmode version of
5807 that object. Finally, load from the object into TARGET. This is not
5808 very efficient in general, but should only be slightly more expensive
5809 than the otherwise-required unaligned accesses. Perhaps this can be
5810 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5811 twice, once with emit_move_insn and once via store_field. */
5812
5813 if (mode == BLKmode
5814 && (REG_P (target) || GET_CODE (target) == SUBREG))
5815 {
5816 rtx object = assign_temp (type, 0, 1, 1);
5817 rtx blk_object = adjust_address (object, BLKmode, 0);
5818
5819 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5820 emit_move_insn (object, target);
5821
5822 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5823 nontemporal);
5824
5825 emit_move_insn (target, object);
5826
5827 /* We want to return the BLKmode version of the data. */
5828 return blk_object;
5829 }
5830
5831 if (GET_CODE (target) == CONCAT)
5832 {
5833 /* We're storing into a struct containing a single __complex. */
5834
5835 gcc_assert (!bitpos);
5836 return store_expr (exp, target, 0, nontemporal);
5837 }
5838
5839 /* If the structure is in a register or if the component
5840 is a bit field, we cannot use addressing to access it.
5841 Use bit-field techniques or SUBREG to store in it. */
5842
5843 if (mode == VOIDmode
5844 || (mode != BLKmode && ! direct_store[(int) mode]
5845 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5846 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5847 || REG_P (target)
5848 || GET_CODE (target) == SUBREG
5849 /* If the field isn't aligned enough to store as an ordinary memref,
5850 store it as a bit field. */
5851 || (mode != BLKmode
5852 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5853 || bitpos % GET_MODE_ALIGNMENT (mode))
5854 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5855 || (bitpos % BITS_PER_UNIT != 0)))
5856 /* If the RHS and field are a constant size and the size of the
5857 RHS isn't the same size as the bitfield, we must use bitfield
5858 operations. */
5859 || (bitsize >= 0
5860 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5861 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5862 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5863 decl we must use bitfield operations. */
5864 || (bitsize >= 0
5865 && TREE_CODE (exp) == MEM_REF
5866 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5867 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5868 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5869 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5870 {
5871 rtx temp;
5872 gimple nop_def;
5873
5874 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5875 implies a mask operation. If the precision is the same size as
5876 the field we're storing into, that mask is redundant. This is
5877 particularly common with bit field assignments generated by the
5878 C front end. */
5879 nop_def = get_def_for_expr (exp, NOP_EXPR);
5880 if (nop_def)
5881 {
5882 tree type = TREE_TYPE (exp);
5883 if (INTEGRAL_TYPE_P (type)
5884 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5885 && bitsize == TYPE_PRECISION (type))
5886 {
5887 tree op = gimple_assign_rhs1 (nop_def);
5888 type = TREE_TYPE (op);
5889 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5890 exp = op;
5891 }
5892 }
5893
5894 temp = expand_normal (exp);
5895
5896 /* If BITSIZE is narrower than the size of the type of EXP
5897 we will be narrowing TEMP. Normally, what's wanted are the
5898 low-order bits. However, if EXP's type is a record and this is
5899 big-endian machine, we want the upper BITSIZE bits. */
5900 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5901 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5902 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5903 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5904 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5905 - bitsize),
5906 NULL_RTX, 1);
5907
5908 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5909 MODE. */
5910 if (mode != VOIDmode && mode != BLKmode
5911 && mode != TYPE_MODE (TREE_TYPE (exp)))
5912 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5913
5914 /* If the modes of TEMP and TARGET are both BLKmode, both
5915 must be in memory and BITPOS must be aligned on a byte
5916 boundary. If so, we simply do a block copy. Likewise
5917 for a BLKmode-like TARGET. */
5918 if (GET_MODE (temp) == BLKmode
5919 && (GET_MODE (target) == BLKmode
5920 || (MEM_P (target)
5921 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5922 && (bitpos % BITS_PER_UNIT) == 0
5923 && (bitsize % BITS_PER_UNIT) == 0)))
5924 {
5925 gcc_assert (MEM_P (target) && MEM_P (temp)
5926 && (bitpos % BITS_PER_UNIT) == 0);
5927
5928 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5929 emit_block_move (target, temp,
5930 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5931 / BITS_PER_UNIT),
5932 BLOCK_OP_NORMAL);
5933
5934 return const0_rtx;
5935 }
5936
5937 /* Store the value in the bitfield. */
5938 store_bit_field (target, bitsize, bitpos, mode, temp);
5939
5940 return const0_rtx;
5941 }
5942 else
5943 {
5944 /* Now build a reference to just the desired component. */
5945 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5946
5947 if (to_rtx == target)
5948 to_rtx = copy_rtx (to_rtx);
5949
5950 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5951 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5952 set_mem_alias_set (to_rtx, alias_set);
5953
5954 return store_expr (exp, to_rtx, 0, nontemporal);
5955 }
5956 }
5957 \f
5958 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5959 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5960 codes and find the ultimate containing object, which we return.
5961
5962 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5963 bit position, and *PUNSIGNEDP to the signedness of the field.
5964 If the position of the field is variable, we store a tree
5965 giving the variable offset (in units) in *POFFSET.
5966 This offset is in addition to the bit position.
5967 If the position is not variable, we store 0 in *POFFSET.
5968
5969 If any of the extraction expressions is volatile,
5970 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5971
5972 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5973 Otherwise, it is a mode that can be used to access the field.
5974
5975 If the field describes a variable-sized object, *PMODE is set to
5976 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5977 this case, but the address of the object can be found.
5978
5979 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5980 look through nodes that serve as markers of a greater alignment than
5981 the one that can be deduced from the expression. These nodes make it
5982 possible for front-ends to prevent temporaries from being created by
5983 the middle-end on alignment considerations. For that purpose, the
5984 normal operating mode at high-level is to always pass FALSE so that
5985 the ultimate containing object is really returned; moreover, the
5986 associated predicate handled_component_p will always return TRUE
5987 on these nodes, thus indicating that they are essentially handled
5988 by get_inner_reference. TRUE should only be passed when the caller
5989 is scanning the expression in order to build another representation
5990 and specifically knows how to handle these nodes; as such, this is
5991 the normal operating mode in the RTL expanders. */
5992
5993 tree
5994 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5995 HOST_WIDE_INT *pbitpos, tree *poffset,
5996 enum machine_mode *pmode, int *punsignedp,
5997 int *pvolatilep, bool keep_aligning)
5998 {
5999 tree size_tree = 0;
6000 enum machine_mode mode = VOIDmode;
6001 bool blkmode_bitfield = false;
6002 tree offset = size_zero_node;
6003 double_int bit_offset = double_int_zero;
6004
6005 /* First get the mode, signedness, and size. We do this from just the
6006 outermost expression. */
6007 *pbitsize = -1;
6008 if (TREE_CODE (exp) == COMPONENT_REF)
6009 {
6010 tree field = TREE_OPERAND (exp, 1);
6011 size_tree = DECL_SIZE (field);
6012 if (!DECL_BIT_FIELD (field))
6013 mode = DECL_MODE (field);
6014 else if (DECL_MODE (field) == BLKmode)
6015 blkmode_bitfield = true;
6016 else if (TREE_THIS_VOLATILE (exp)
6017 && flag_strict_volatile_bitfields > 0)
6018 /* Volatile bitfields should be accessed in the mode of the
6019 field's type, not the mode computed based on the bit
6020 size. */
6021 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6022
6023 *punsignedp = DECL_UNSIGNED (field);
6024 }
6025 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6026 {
6027 size_tree = TREE_OPERAND (exp, 1);
6028 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6029 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6030
6031 /* For vector types, with the correct size of access, use the mode of
6032 inner type. */
6033 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6034 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6035 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6036 mode = TYPE_MODE (TREE_TYPE (exp));
6037 }
6038 else
6039 {
6040 mode = TYPE_MODE (TREE_TYPE (exp));
6041 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6042
6043 if (mode == BLKmode)
6044 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6045 else
6046 *pbitsize = GET_MODE_BITSIZE (mode);
6047 }
6048
6049 if (size_tree != 0)
6050 {
6051 if (! host_integerp (size_tree, 1))
6052 mode = BLKmode, *pbitsize = -1;
6053 else
6054 *pbitsize = tree_low_cst (size_tree, 1);
6055 }
6056
6057 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6058 and find the ultimate containing object. */
6059 while (1)
6060 {
6061 switch (TREE_CODE (exp))
6062 {
6063 case BIT_FIELD_REF:
6064 bit_offset
6065 = double_int_add (bit_offset,
6066 tree_to_double_int (TREE_OPERAND (exp, 2)));
6067 break;
6068
6069 case COMPONENT_REF:
6070 {
6071 tree field = TREE_OPERAND (exp, 1);
6072 tree this_offset = component_ref_field_offset (exp);
6073
6074 /* If this field hasn't been filled in yet, don't go past it.
6075 This should only happen when folding expressions made during
6076 type construction. */
6077 if (this_offset == 0)
6078 break;
6079
6080 offset = size_binop (PLUS_EXPR, offset, this_offset);
6081 bit_offset = double_int_add (bit_offset,
6082 tree_to_double_int
6083 (DECL_FIELD_BIT_OFFSET (field)));
6084
6085 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6086 }
6087 break;
6088
6089 case ARRAY_REF:
6090 case ARRAY_RANGE_REF:
6091 {
6092 tree index = TREE_OPERAND (exp, 1);
6093 tree low_bound = array_ref_low_bound (exp);
6094 tree unit_size = array_ref_element_size (exp);
6095
6096 /* We assume all arrays have sizes that are a multiple of a byte.
6097 First subtract the lower bound, if any, in the type of the
6098 index, then convert to sizetype and multiply by the size of
6099 the array element. */
6100 if (! integer_zerop (low_bound))
6101 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6102 index, low_bound);
6103
6104 offset = size_binop (PLUS_EXPR, offset,
6105 size_binop (MULT_EXPR,
6106 fold_convert (sizetype, index),
6107 unit_size));
6108 }
6109 break;
6110
6111 case REALPART_EXPR:
6112 break;
6113
6114 case IMAGPART_EXPR:
6115 bit_offset = double_int_add (bit_offset,
6116 uhwi_to_double_int (*pbitsize));
6117 break;
6118
6119 case VIEW_CONVERT_EXPR:
6120 if (keep_aligning && STRICT_ALIGNMENT
6121 && (TYPE_ALIGN (TREE_TYPE (exp))
6122 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6123 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6124 < BIGGEST_ALIGNMENT)
6125 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6126 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6127 goto done;
6128 break;
6129
6130 case MEM_REF:
6131 /* Hand back the decl for MEM[&decl, off]. */
6132 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6133 {
6134 tree off = TREE_OPERAND (exp, 1);
6135 if (!integer_zerop (off))
6136 {
6137 double_int boff, coff = mem_ref_offset (exp);
6138 boff = double_int_lshift (coff,
6139 BITS_PER_UNIT == 8
6140 ? 3 : exact_log2 (BITS_PER_UNIT),
6141 HOST_BITS_PER_DOUBLE_INT, true);
6142 bit_offset = double_int_add (bit_offset, boff);
6143 }
6144 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6145 }
6146 goto done;
6147
6148 default:
6149 goto done;
6150 }
6151
6152 /* If any reference in the chain is volatile, the effect is volatile. */
6153 if (TREE_THIS_VOLATILE (exp))
6154 *pvolatilep = 1;
6155
6156 exp = TREE_OPERAND (exp, 0);
6157 }
6158 done:
6159
6160 /* If OFFSET is constant, see if we can return the whole thing as a
6161 constant bit position. Make sure to handle overflow during
6162 this conversion. */
6163 if (host_integerp (offset, 0))
6164 {
6165 double_int tem = double_int_lshift (tree_to_double_int (offset),
6166 BITS_PER_UNIT == 8
6167 ? 3 : exact_log2 (BITS_PER_UNIT),
6168 HOST_BITS_PER_DOUBLE_INT, true);
6169 tem = double_int_add (tem, bit_offset);
6170 if (double_int_fits_in_shwi_p (tem))
6171 {
6172 *pbitpos = double_int_to_shwi (tem);
6173 *poffset = offset = NULL_TREE;
6174 }
6175 }
6176
6177 /* Otherwise, split it up. */
6178 if (offset)
6179 {
6180 *pbitpos = double_int_to_shwi (bit_offset);
6181 *poffset = offset;
6182 }
6183
6184 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6185 if (mode == VOIDmode
6186 && blkmode_bitfield
6187 && (*pbitpos % BITS_PER_UNIT) == 0
6188 && (*pbitsize % BITS_PER_UNIT) == 0)
6189 *pmode = BLKmode;
6190 else
6191 *pmode = mode;
6192
6193 return exp;
6194 }
6195
6196 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6197 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6198 EXP is marked as PACKED. */
6199
6200 bool
6201 contains_packed_reference (const_tree exp)
6202 {
6203 bool packed_p = false;
6204
6205 while (1)
6206 {
6207 switch (TREE_CODE (exp))
6208 {
6209 case COMPONENT_REF:
6210 {
6211 tree field = TREE_OPERAND (exp, 1);
6212 packed_p = DECL_PACKED (field)
6213 || TYPE_PACKED (TREE_TYPE (field))
6214 || TYPE_PACKED (TREE_TYPE (exp));
6215 if (packed_p)
6216 goto done;
6217 }
6218 break;
6219
6220 case BIT_FIELD_REF:
6221 case ARRAY_REF:
6222 case ARRAY_RANGE_REF:
6223 case REALPART_EXPR:
6224 case IMAGPART_EXPR:
6225 case VIEW_CONVERT_EXPR:
6226 break;
6227
6228 default:
6229 goto done;
6230 }
6231 exp = TREE_OPERAND (exp, 0);
6232 }
6233 done:
6234 return packed_p;
6235 }
6236
6237 /* Return a tree of sizetype representing the size, in bytes, of the element
6238 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6239
6240 tree
6241 array_ref_element_size (tree exp)
6242 {
6243 tree aligned_size = TREE_OPERAND (exp, 3);
6244 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6245 location_t loc = EXPR_LOCATION (exp);
6246
6247 /* If a size was specified in the ARRAY_REF, it's the size measured
6248 in alignment units of the element type. So multiply by that value. */
6249 if (aligned_size)
6250 {
6251 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6252 sizetype from another type of the same width and signedness. */
6253 if (TREE_TYPE (aligned_size) != sizetype)
6254 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6255 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6256 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6257 }
6258
6259 /* Otherwise, take the size from that of the element type. Substitute
6260 any PLACEHOLDER_EXPR that we have. */
6261 else
6262 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6263 }
6264
6265 /* Return a tree representing the lower bound of the array mentioned in
6266 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6267
6268 tree
6269 array_ref_low_bound (tree exp)
6270 {
6271 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6272
6273 /* If a lower bound is specified in EXP, use it. */
6274 if (TREE_OPERAND (exp, 2))
6275 return TREE_OPERAND (exp, 2);
6276
6277 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6278 substituting for a PLACEHOLDER_EXPR as needed. */
6279 if (domain_type && TYPE_MIN_VALUE (domain_type))
6280 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6281
6282 /* Otherwise, return a zero of the appropriate type. */
6283 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6284 }
6285
6286 /* Return a tree representing the upper bound of the array mentioned in
6287 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6288
6289 tree
6290 array_ref_up_bound (tree exp)
6291 {
6292 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6293
6294 /* If there is a domain type and it has an upper bound, use it, substituting
6295 for a PLACEHOLDER_EXPR as needed. */
6296 if (domain_type && TYPE_MAX_VALUE (domain_type))
6297 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6298
6299 /* Otherwise fail. */
6300 return NULL_TREE;
6301 }
6302
6303 /* Return a tree representing the offset, in bytes, of the field referenced
6304 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6305
6306 tree
6307 component_ref_field_offset (tree exp)
6308 {
6309 tree aligned_offset = TREE_OPERAND (exp, 2);
6310 tree field = TREE_OPERAND (exp, 1);
6311 location_t loc = EXPR_LOCATION (exp);
6312
6313 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6314 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6315 value. */
6316 if (aligned_offset)
6317 {
6318 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6319 sizetype from another type of the same width and signedness. */
6320 if (TREE_TYPE (aligned_offset) != sizetype)
6321 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6322 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6323 size_int (DECL_OFFSET_ALIGN (field)
6324 / BITS_PER_UNIT));
6325 }
6326
6327 /* Otherwise, take the offset from that of the field. Substitute
6328 any PLACEHOLDER_EXPR that we have. */
6329 else
6330 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6331 }
6332
6333 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6334
6335 static unsigned HOST_WIDE_INT
6336 target_align (const_tree target)
6337 {
6338 /* We might have a chain of nested references with intermediate misaligning
6339 bitfields components, so need to recurse to find out. */
6340
6341 unsigned HOST_WIDE_INT this_align, outer_align;
6342
6343 switch (TREE_CODE (target))
6344 {
6345 case BIT_FIELD_REF:
6346 return 1;
6347
6348 case COMPONENT_REF:
6349 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6350 outer_align = target_align (TREE_OPERAND (target, 0));
6351 return MIN (this_align, outer_align);
6352
6353 case ARRAY_REF:
6354 case ARRAY_RANGE_REF:
6355 this_align = TYPE_ALIGN (TREE_TYPE (target));
6356 outer_align = target_align (TREE_OPERAND (target, 0));
6357 return MIN (this_align, outer_align);
6358
6359 CASE_CONVERT:
6360 case NON_LVALUE_EXPR:
6361 case VIEW_CONVERT_EXPR:
6362 this_align = TYPE_ALIGN (TREE_TYPE (target));
6363 outer_align = target_align (TREE_OPERAND (target, 0));
6364 return MAX (this_align, outer_align);
6365
6366 default:
6367 return TYPE_ALIGN (TREE_TYPE (target));
6368 }
6369 }
6370
6371 \f
6372 /* Given an rtx VALUE that may contain additions and multiplications, return
6373 an equivalent value that just refers to a register, memory, or constant.
6374 This is done by generating instructions to perform the arithmetic and
6375 returning a pseudo-register containing the value.
6376
6377 The returned value may be a REG, SUBREG, MEM or constant. */
6378
6379 rtx
6380 force_operand (rtx value, rtx target)
6381 {
6382 rtx op1, op2;
6383 /* Use subtarget as the target for operand 0 of a binary operation. */
6384 rtx subtarget = get_subtarget (target);
6385 enum rtx_code code = GET_CODE (value);
6386
6387 /* Check for subreg applied to an expression produced by loop optimizer. */
6388 if (code == SUBREG
6389 && !REG_P (SUBREG_REG (value))
6390 && !MEM_P (SUBREG_REG (value)))
6391 {
6392 value
6393 = simplify_gen_subreg (GET_MODE (value),
6394 force_reg (GET_MODE (SUBREG_REG (value)),
6395 force_operand (SUBREG_REG (value),
6396 NULL_RTX)),
6397 GET_MODE (SUBREG_REG (value)),
6398 SUBREG_BYTE (value));
6399 code = GET_CODE (value);
6400 }
6401
6402 /* Check for a PIC address load. */
6403 if ((code == PLUS || code == MINUS)
6404 && XEXP (value, 0) == pic_offset_table_rtx
6405 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6406 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6407 || GET_CODE (XEXP (value, 1)) == CONST))
6408 {
6409 if (!subtarget)
6410 subtarget = gen_reg_rtx (GET_MODE (value));
6411 emit_move_insn (subtarget, value);
6412 return subtarget;
6413 }
6414
6415 if (ARITHMETIC_P (value))
6416 {
6417 op2 = XEXP (value, 1);
6418 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6419 subtarget = 0;
6420 if (code == MINUS && CONST_INT_P (op2))
6421 {
6422 code = PLUS;
6423 op2 = negate_rtx (GET_MODE (value), op2);
6424 }
6425
6426 /* Check for an addition with OP2 a constant integer and our first
6427 operand a PLUS of a virtual register and something else. In that
6428 case, we want to emit the sum of the virtual register and the
6429 constant first and then add the other value. This allows virtual
6430 register instantiation to simply modify the constant rather than
6431 creating another one around this addition. */
6432 if (code == PLUS && CONST_INT_P (op2)
6433 && GET_CODE (XEXP (value, 0)) == PLUS
6434 && REG_P (XEXP (XEXP (value, 0), 0))
6435 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6436 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6437 {
6438 rtx temp = expand_simple_binop (GET_MODE (value), code,
6439 XEXP (XEXP (value, 0), 0), op2,
6440 subtarget, 0, OPTAB_LIB_WIDEN);
6441 return expand_simple_binop (GET_MODE (value), code, temp,
6442 force_operand (XEXP (XEXP (value,
6443 0), 1), 0),
6444 target, 0, OPTAB_LIB_WIDEN);
6445 }
6446
6447 op1 = force_operand (XEXP (value, 0), subtarget);
6448 op2 = force_operand (op2, NULL_RTX);
6449 switch (code)
6450 {
6451 case MULT:
6452 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6453 case DIV:
6454 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6455 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6456 target, 1, OPTAB_LIB_WIDEN);
6457 else
6458 return expand_divmod (0,
6459 FLOAT_MODE_P (GET_MODE (value))
6460 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6461 GET_MODE (value), op1, op2, target, 0);
6462 case MOD:
6463 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6464 target, 0);
6465 case UDIV:
6466 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6467 target, 1);
6468 case UMOD:
6469 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6470 target, 1);
6471 case ASHIFTRT:
6472 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6473 target, 0, OPTAB_LIB_WIDEN);
6474 default:
6475 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6476 target, 1, OPTAB_LIB_WIDEN);
6477 }
6478 }
6479 if (UNARY_P (value))
6480 {
6481 if (!target)
6482 target = gen_reg_rtx (GET_MODE (value));
6483 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6484 switch (code)
6485 {
6486 case ZERO_EXTEND:
6487 case SIGN_EXTEND:
6488 case TRUNCATE:
6489 case FLOAT_EXTEND:
6490 case FLOAT_TRUNCATE:
6491 convert_move (target, op1, code == ZERO_EXTEND);
6492 return target;
6493
6494 case FIX:
6495 case UNSIGNED_FIX:
6496 expand_fix (target, op1, code == UNSIGNED_FIX);
6497 return target;
6498
6499 case FLOAT:
6500 case UNSIGNED_FLOAT:
6501 expand_float (target, op1, code == UNSIGNED_FLOAT);
6502 return target;
6503
6504 default:
6505 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6506 }
6507 }
6508
6509 #ifdef INSN_SCHEDULING
6510 /* On machines that have insn scheduling, we want all memory reference to be
6511 explicit, so we need to deal with such paradoxical SUBREGs. */
6512 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6513 && (GET_MODE_SIZE (GET_MODE (value))
6514 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6515 value
6516 = simplify_gen_subreg (GET_MODE (value),
6517 force_reg (GET_MODE (SUBREG_REG (value)),
6518 force_operand (SUBREG_REG (value),
6519 NULL_RTX)),
6520 GET_MODE (SUBREG_REG (value)),
6521 SUBREG_BYTE (value));
6522 #endif
6523
6524 return value;
6525 }
6526 \f
6527 /* Subroutine of expand_expr: return nonzero iff there is no way that
6528 EXP can reference X, which is being modified. TOP_P is nonzero if this
6529 call is going to be used to determine whether we need a temporary
6530 for EXP, as opposed to a recursive call to this function.
6531
6532 It is always safe for this routine to return zero since it merely
6533 searches for optimization opportunities. */
6534
6535 int
6536 safe_from_p (const_rtx x, tree exp, int top_p)
6537 {
6538 rtx exp_rtl = 0;
6539 int i, nops;
6540
6541 if (x == 0
6542 /* If EXP has varying size, we MUST use a target since we currently
6543 have no way of allocating temporaries of variable size
6544 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6545 So we assume here that something at a higher level has prevented a
6546 clash. This is somewhat bogus, but the best we can do. Only
6547 do this when X is BLKmode and when we are at the top level. */
6548 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6549 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6550 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6551 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6552 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6553 != INTEGER_CST)
6554 && GET_MODE (x) == BLKmode)
6555 /* If X is in the outgoing argument area, it is always safe. */
6556 || (MEM_P (x)
6557 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6558 || (GET_CODE (XEXP (x, 0)) == PLUS
6559 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6560 return 1;
6561
6562 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6563 find the underlying pseudo. */
6564 if (GET_CODE (x) == SUBREG)
6565 {
6566 x = SUBREG_REG (x);
6567 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6568 return 0;
6569 }
6570
6571 /* Now look at our tree code and possibly recurse. */
6572 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6573 {
6574 case tcc_declaration:
6575 exp_rtl = DECL_RTL_IF_SET (exp);
6576 break;
6577
6578 case tcc_constant:
6579 return 1;
6580
6581 case tcc_exceptional:
6582 if (TREE_CODE (exp) == TREE_LIST)
6583 {
6584 while (1)
6585 {
6586 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6587 return 0;
6588 exp = TREE_CHAIN (exp);
6589 if (!exp)
6590 return 1;
6591 if (TREE_CODE (exp) != TREE_LIST)
6592 return safe_from_p (x, exp, 0);
6593 }
6594 }
6595 else if (TREE_CODE (exp) == CONSTRUCTOR)
6596 {
6597 constructor_elt *ce;
6598 unsigned HOST_WIDE_INT idx;
6599
6600 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6601 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6602 || !safe_from_p (x, ce->value, 0))
6603 return 0;
6604 return 1;
6605 }
6606 else if (TREE_CODE (exp) == ERROR_MARK)
6607 return 1; /* An already-visited SAVE_EXPR? */
6608 else
6609 return 0;
6610
6611 case tcc_statement:
6612 /* The only case we look at here is the DECL_INITIAL inside a
6613 DECL_EXPR. */
6614 return (TREE_CODE (exp) != DECL_EXPR
6615 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6616 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6617 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6618
6619 case tcc_binary:
6620 case tcc_comparison:
6621 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6622 return 0;
6623 /* Fall through. */
6624
6625 case tcc_unary:
6626 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6627
6628 case tcc_expression:
6629 case tcc_reference:
6630 case tcc_vl_exp:
6631 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6632 the expression. If it is set, we conflict iff we are that rtx or
6633 both are in memory. Otherwise, we check all operands of the
6634 expression recursively. */
6635
6636 switch (TREE_CODE (exp))
6637 {
6638 case ADDR_EXPR:
6639 /* If the operand is static or we are static, we can't conflict.
6640 Likewise if we don't conflict with the operand at all. */
6641 if (staticp (TREE_OPERAND (exp, 0))
6642 || TREE_STATIC (exp)
6643 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6644 return 1;
6645
6646 /* Otherwise, the only way this can conflict is if we are taking
6647 the address of a DECL a that address if part of X, which is
6648 very rare. */
6649 exp = TREE_OPERAND (exp, 0);
6650 if (DECL_P (exp))
6651 {
6652 if (!DECL_RTL_SET_P (exp)
6653 || !MEM_P (DECL_RTL (exp)))
6654 return 0;
6655 else
6656 exp_rtl = XEXP (DECL_RTL (exp), 0);
6657 }
6658 break;
6659
6660 case MEM_REF:
6661 if (MEM_P (x)
6662 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6663 get_alias_set (exp)))
6664 return 0;
6665 break;
6666
6667 case CALL_EXPR:
6668 /* Assume that the call will clobber all hard registers and
6669 all of memory. */
6670 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6671 || MEM_P (x))
6672 return 0;
6673 break;
6674
6675 case WITH_CLEANUP_EXPR:
6676 case CLEANUP_POINT_EXPR:
6677 /* Lowered by gimplify.c. */
6678 gcc_unreachable ();
6679
6680 case SAVE_EXPR:
6681 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6682
6683 default:
6684 break;
6685 }
6686
6687 /* If we have an rtx, we do not need to scan our operands. */
6688 if (exp_rtl)
6689 break;
6690
6691 nops = TREE_OPERAND_LENGTH (exp);
6692 for (i = 0; i < nops; i++)
6693 if (TREE_OPERAND (exp, i) != 0
6694 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6695 return 0;
6696
6697 break;
6698
6699 case tcc_type:
6700 /* Should never get a type here. */
6701 gcc_unreachable ();
6702 }
6703
6704 /* If we have an rtl, find any enclosed object. Then see if we conflict
6705 with it. */
6706 if (exp_rtl)
6707 {
6708 if (GET_CODE (exp_rtl) == SUBREG)
6709 {
6710 exp_rtl = SUBREG_REG (exp_rtl);
6711 if (REG_P (exp_rtl)
6712 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6713 return 0;
6714 }
6715
6716 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6717 are memory and they conflict. */
6718 return ! (rtx_equal_p (x, exp_rtl)
6719 || (MEM_P (x) && MEM_P (exp_rtl)
6720 && true_dependence (exp_rtl, VOIDmode, x,
6721 rtx_addr_varies_p)));
6722 }
6723
6724 /* If we reach here, it is safe. */
6725 return 1;
6726 }
6727
6728 \f
6729 /* Return the highest power of two that EXP is known to be a multiple of.
6730 This is used in updating alignment of MEMs in array references. */
6731
6732 unsigned HOST_WIDE_INT
6733 highest_pow2_factor (const_tree exp)
6734 {
6735 unsigned HOST_WIDE_INT c0, c1;
6736
6737 switch (TREE_CODE (exp))
6738 {
6739 case INTEGER_CST:
6740 /* We can find the lowest bit that's a one. If the low
6741 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6742 We need to handle this case since we can find it in a COND_EXPR,
6743 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6744 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6745 later ICE. */
6746 if (TREE_OVERFLOW (exp))
6747 return BIGGEST_ALIGNMENT;
6748 else
6749 {
6750 /* Note: tree_low_cst is intentionally not used here,
6751 we don't care about the upper bits. */
6752 c0 = TREE_INT_CST_LOW (exp);
6753 c0 &= -c0;
6754 return c0 ? c0 : BIGGEST_ALIGNMENT;
6755 }
6756 break;
6757
6758 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6759 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6760 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6761 return MIN (c0, c1);
6762
6763 case MULT_EXPR:
6764 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6765 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6766 return c0 * c1;
6767
6768 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6769 case CEIL_DIV_EXPR:
6770 if (integer_pow2p (TREE_OPERAND (exp, 1))
6771 && host_integerp (TREE_OPERAND (exp, 1), 1))
6772 {
6773 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6774 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6775 return MAX (1, c0 / c1);
6776 }
6777 break;
6778
6779 case BIT_AND_EXPR:
6780 /* The highest power of two of a bit-and expression is the maximum of
6781 that of its operands. We typically get here for a complex LHS and
6782 a constant negative power of two on the RHS to force an explicit
6783 alignment, so don't bother looking at the LHS. */
6784 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6785
6786 CASE_CONVERT:
6787 case SAVE_EXPR:
6788 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6789
6790 case COMPOUND_EXPR:
6791 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6792
6793 case COND_EXPR:
6794 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6795 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6796 return MIN (c0, c1);
6797
6798 default:
6799 break;
6800 }
6801
6802 return 1;
6803 }
6804
6805 /* Similar, except that the alignment requirements of TARGET are
6806 taken into account. Assume it is at least as aligned as its
6807 type, unless it is a COMPONENT_REF in which case the layout of
6808 the structure gives the alignment. */
6809
6810 static unsigned HOST_WIDE_INT
6811 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6812 {
6813 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6814 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6815
6816 return MAX (factor, talign);
6817 }
6818 \f
6819 /* Subroutine of expand_expr. Expand the two operands of a binary
6820 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6821 The value may be stored in TARGET if TARGET is nonzero. The
6822 MODIFIER argument is as documented by expand_expr. */
6823
6824 static void
6825 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6826 enum expand_modifier modifier)
6827 {
6828 if (! safe_from_p (target, exp1, 1))
6829 target = 0;
6830 if (operand_equal_p (exp0, exp1, 0))
6831 {
6832 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6833 *op1 = copy_rtx (*op0);
6834 }
6835 else
6836 {
6837 /* If we need to preserve evaluation order, copy exp0 into its own
6838 temporary variable so that it can't be clobbered by exp1. */
6839 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6840 exp0 = save_expr (exp0);
6841 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6842 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6843 }
6844 }
6845
6846 \f
6847 /* Return a MEM that contains constant EXP. DEFER is as for
6848 output_constant_def and MODIFIER is as for expand_expr. */
6849
6850 static rtx
6851 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6852 {
6853 rtx mem;
6854
6855 mem = output_constant_def (exp, defer);
6856 if (modifier != EXPAND_INITIALIZER)
6857 mem = use_anchored_address (mem);
6858 return mem;
6859 }
6860
6861 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6862 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6863
6864 static rtx
6865 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6866 enum expand_modifier modifier, addr_space_t as)
6867 {
6868 rtx result, subtarget;
6869 tree inner, offset;
6870 HOST_WIDE_INT bitsize, bitpos;
6871 int volatilep, unsignedp;
6872 enum machine_mode mode1;
6873
6874 /* If we are taking the address of a constant and are at the top level,
6875 we have to use output_constant_def since we can't call force_const_mem
6876 at top level. */
6877 /* ??? This should be considered a front-end bug. We should not be
6878 generating ADDR_EXPR of something that isn't an LVALUE. The only
6879 exception here is STRING_CST. */
6880 if (CONSTANT_CLASS_P (exp))
6881 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6882
6883 /* Everything must be something allowed by is_gimple_addressable. */
6884 switch (TREE_CODE (exp))
6885 {
6886 case INDIRECT_REF:
6887 /* This case will happen via recursion for &a->b. */
6888 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6889
6890 case MEM_REF:
6891 {
6892 tree tem = TREE_OPERAND (exp, 0);
6893 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6894 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6895 tem,
6896 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6897 return expand_expr (tem, target, tmode, modifier);
6898 }
6899
6900 case CONST_DECL:
6901 /* Expand the initializer like constants above. */
6902 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6903
6904 case REALPART_EXPR:
6905 /* The real part of the complex number is always first, therefore
6906 the address is the same as the address of the parent object. */
6907 offset = 0;
6908 bitpos = 0;
6909 inner = TREE_OPERAND (exp, 0);
6910 break;
6911
6912 case IMAGPART_EXPR:
6913 /* The imaginary part of the complex number is always second.
6914 The expression is therefore always offset by the size of the
6915 scalar type. */
6916 offset = 0;
6917 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6918 inner = TREE_OPERAND (exp, 0);
6919 break;
6920
6921 default:
6922 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6923 expand_expr, as that can have various side effects; LABEL_DECLs for
6924 example, may not have their DECL_RTL set yet. Expand the rtl of
6925 CONSTRUCTORs too, which should yield a memory reference for the
6926 constructor's contents. Assume language specific tree nodes can
6927 be expanded in some interesting way. */
6928 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6929 if (DECL_P (exp)
6930 || TREE_CODE (exp) == CONSTRUCTOR
6931 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6932 {
6933 result = expand_expr (exp, target, tmode,
6934 modifier == EXPAND_INITIALIZER
6935 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6936
6937 /* If the DECL isn't in memory, then the DECL wasn't properly
6938 marked TREE_ADDRESSABLE, which will be either a front-end
6939 or a tree optimizer bug. */
6940 gcc_assert (MEM_P (result));
6941 result = XEXP (result, 0);
6942
6943 /* ??? Is this needed anymore? */
6944 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6945 {
6946 assemble_external (exp);
6947 TREE_USED (exp) = 1;
6948 }
6949
6950 if (modifier != EXPAND_INITIALIZER
6951 && modifier != EXPAND_CONST_ADDRESS)
6952 result = force_operand (result, target);
6953 return result;
6954 }
6955
6956 /* Pass FALSE as the last argument to get_inner_reference although
6957 we are expanding to RTL. The rationale is that we know how to
6958 handle "aligning nodes" here: we can just bypass them because
6959 they won't change the final object whose address will be returned
6960 (they actually exist only for that purpose). */
6961 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6962 &mode1, &unsignedp, &volatilep, false);
6963 break;
6964 }
6965
6966 /* We must have made progress. */
6967 gcc_assert (inner != exp);
6968
6969 subtarget = offset || bitpos ? NULL_RTX : target;
6970 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6971 inner alignment, force the inner to be sufficiently aligned. */
6972 if (CONSTANT_CLASS_P (inner)
6973 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6974 {
6975 inner = copy_node (inner);
6976 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6977 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6978 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6979 }
6980 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6981
6982 if (offset)
6983 {
6984 rtx tmp;
6985
6986 if (modifier != EXPAND_NORMAL)
6987 result = force_operand (result, NULL);
6988 tmp = expand_expr (offset, NULL_RTX, tmode,
6989 modifier == EXPAND_INITIALIZER
6990 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6991
6992 result = convert_memory_address_addr_space (tmode, result, as);
6993 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6994
6995 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6996 result = gen_rtx_PLUS (tmode, result, tmp);
6997 else
6998 {
6999 subtarget = bitpos ? NULL_RTX : target;
7000 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7001 1, OPTAB_LIB_WIDEN);
7002 }
7003 }
7004
7005 if (bitpos)
7006 {
7007 /* Someone beforehand should have rejected taking the address
7008 of such an object. */
7009 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7010
7011 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7012 if (modifier < EXPAND_SUM)
7013 result = force_operand (result, target);
7014 }
7015
7016 return result;
7017 }
7018
7019 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7020 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7021
7022 static rtx
7023 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7024 enum expand_modifier modifier)
7025 {
7026 addr_space_t as = ADDR_SPACE_GENERIC;
7027 enum machine_mode address_mode = Pmode;
7028 enum machine_mode pointer_mode = ptr_mode;
7029 enum machine_mode rmode;
7030 rtx result;
7031
7032 /* Target mode of VOIDmode says "whatever's natural". */
7033 if (tmode == VOIDmode)
7034 tmode = TYPE_MODE (TREE_TYPE (exp));
7035
7036 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7037 {
7038 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7039 address_mode = targetm.addr_space.address_mode (as);
7040 pointer_mode = targetm.addr_space.pointer_mode (as);
7041 }
7042
7043 /* We can get called with some Weird Things if the user does silliness
7044 like "(short) &a". In that case, convert_memory_address won't do
7045 the right thing, so ignore the given target mode. */
7046 if (tmode != address_mode && tmode != pointer_mode)
7047 tmode = address_mode;
7048
7049 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7050 tmode, modifier, as);
7051
7052 /* Despite expand_expr claims concerning ignoring TMODE when not
7053 strictly convenient, stuff breaks if we don't honor it. Note
7054 that combined with the above, we only do this for pointer modes. */
7055 rmode = GET_MODE (result);
7056 if (rmode == VOIDmode)
7057 rmode = tmode;
7058 if (rmode != tmode)
7059 result = convert_memory_address_addr_space (tmode, result, as);
7060
7061 return result;
7062 }
7063
7064 /* Generate code for computing CONSTRUCTOR EXP.
7065 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7066 is TRUE, instead of creating a temporary variable in memory
7067 NULL is returned and the caller needs to handle it differently. */
7068
7069 static rtx
7070 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7071 bool avoid_temp_mem)
7072 {
7073 tree type = TREE_TYPE (exp);
7074 enum machine_mode mode = TYPE_MODE (type);
7075
7076 /* Try to avoid creating a temporary at all. This is possible
7077 if all of the initializer is zero.
7078 FIXME: try to handle all [0..255] initializers we can handle
7079 with memset. */
7080 if (TREE_STATIC (exp)
7081 && !TREE_ADDRESSABLE (exp)
7082 && target != 0 && mode == BLKmode
7083 && all_zeros_p (exp))
7084 {
7085 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7086 return target;
7087 }
7088
7089 /* All elts simple constants => refer to a constant in memory. But
7090 if this is a non-BLKmode mode, let it store a field at a time
7091 since that should make a CONST_INT or CONST_DOUBLE when we
7092 fold. Likewise, if we have a target we can use, it is best to
7093 store directly into the target unless the type is large enough
7094 that memcpy will be used. If we are making an initializer and
7095 all operands are constant, put it in memory as well.
7096
7097 FIXME: Avoid trying to fill vector constructors piece-meal.
7098 Output them with output_constant_def below unless we're sure
7099 they're zeros. This should go away when vector initializers
7100 are treated like VECTOR_CST instead of arrays. */
7101 if ((TREE_STATIC (exp)
7102 && ((mode == BLKmode
7103 && ! (target != 0 && safe_from_p (target, exp, 1)))
7104 || TREE_ADDRESSABLE (exp)
7105 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7106 && (! MOVE_BY_PIECES_P
7107 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7108 TYPE_ALIGN (type)))
7109 && ! mostly_zeros_p (exp))))
7110 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7111 && TREE_CONSTANT (exp)))
7112 {
7113 rtx constructor;
7114
7115 if (avoid_temp_mem)
7116 return NULL_RTX;
7117
7118 constructor = expand_expr_constant (exp, 1, modifier);
7119
7120 if (modifier != EXPAND_CONST_ADDRESS
7121 && modifier != EXPAND_INITIALIZER
7122 && modifier != EXPAND_SUM)
7123 constructor = validize_mem (constructor);
7124
7125 return constructor;
7126 }
7127
7128 /* Handle calls that pass values in multiple non-contiguous
7129 locations. The Irix 6 ABI has examples of this. */
7130 if (target == 0 || ! safe_from_p (target, exp, 1)
7131 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7132 {
7133 if (avoid_temp_mem)
7134 return NULL_RTX;
7135
7136 target
7137 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7138 | (TREE_READONLY (exp)
7139 * TYPE_QUAL_CONST))),
7140 0, TREE_ADDRESSABLE (exp), 1);
7141 }
7142
7143 store_constructor (exp, target, 0, int_expr_size (exp));
7144 return target;
7145 }
7146
7147
7148 /* expand_expr: generate code for computing expression EXP.
7149 An rtx for the computed value is returned. The value is never null.
7150 In the case of a void EXP, const0_rtx is returned.
7151
7152 The value may be stored in TARGET if TARGET is nonzero.
7153 TARGET is just a suggestion; callers must assume that
7154 the rtx returned may not be the same as TARGET.
7155
7156 If TARGET is CONST0_RTX, it means that the value will be ignored.
7157
7158 If TMODE is not VOIDmode, it suggests generating the
7159 result in mode TMODE. But this is done only when convenient.
7160 Otherwise, TMODE is ignored and the value generated in its natural mode.
7161 TMODE is just a suggestion; callers must assume that
7162 the rtx returned may not have mode TMODE.
7163
7164 Note that TARGET may have neither TMODE nor MODE. In that case, it
7165 probably will not be used.
7166
7167 If MODIFIER is EXPAND_SUM then when EXP is an addition
7168 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7169 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7170 products as above, or REG or MEM, or constant.
7171 Ordinarily in such cases we would output mul or add instructions
7172 and then return a pseudo reg containing the sum.
7173
7174 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7175 it also marks a label as absolutely required (it can't be dead).
7176 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7177 This is used for outputting expressions used in initializers.
7178
7179 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7180 with a constant address even if that address is not normally legitimate.
7181 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7182
7183 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7184 a call parameter. Such targets require special care as we haven't yet
7185 marked TARGET so that it's safe from being trashed by libcalls. We
7186 don't want to use TARGET for anything but the final result;
7187 Intermediate values must go elsewhere. Additionally, calls to
7188 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7189
7190 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7191 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7192 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7193 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7194 recursively. */
7195
7196 rtx
7197 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7198 enum expand_modifier modifier, rtx *alt_rtl)
7199 {
7200 rtx ret;
7201
7202 /* Handle ERROR_MARK before anybody tries to access its type. */
7203 if (TREE_CODE (exp) == ERROR_MARK
7204 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7205 {
7206 ret = CONST0_RTX (tmode);
7207 return ret ? ret : const0_rtx;
7208 }
7209
7210 /* If this is an expression of some kind and it has an associated line
7211 number, then emit the line number before expanding the expression.
7212
7213 We need to save and restore the file and line information so that
7214 errors discovered during expansion are emitted with the right
7215 information. It would be better of the diagnostic routines
7216 used the file/line information embedded in the tree nodes rather
7217 than globals. */
7218 if (cfun && EXPR_HAS_LOCATION (exp))
7219 {
7220 location_t saved_location = input_location;
7221 location_t saved_curr_loc = get_curr_insn_source_location ();
7222 tree saved_block = get_curr_insn_block ();
7223 input_location = EXPR_LOCATION (exp);
7224 set_curr_insn_source_location (input_location);
7225
7226 /* Record where the insns produced belong. */
7227 set_curr_insn_block (TREE_BLOCK (exp));
7228
7229 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7230
7231 input_location = saved_location;
7232 set_curr_insn_block (saved_block);
7233 set_curr_insn_source_location (saved_curr_loc);
7234 }
7235 else
7236 {
7237 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7238 }
7239
7240 return ret;
7241 }
7242
7243 rtx
7244 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7245 enum expand_modifier modifier)
7246 {
7247 rtx op0, op1, op2, temp;
7248 tree type;
7249 int unsignedp;
7250 enum machine_mode mode;
7251 enum tree_code code = ops->code;
7252 optab this_optab;
7253 rtx subtarget, original_target;
7254 int ignore;
7255 bool reduce_bit_field;
7256 location_t loc = ops->location;
7257 tree treeop0, treeop1, treeop2;
7258 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7259 ? reduce_to_bit_field_precision ((expr), \
7260 target, \
7261 type) \
7262 : (expr))
7263
7264 type = ops->type;
7265 mode = TYPE_MODE (type);
7266 unsignedp = TYPE_UNSIGNED (type);
7267
7268 treeop0 = ops->op0;
7269 treeop1 = ops->op1;
7270 treeop2 = ops->op2;
7271
7272 /* We should be called only on simple (binary or unary) expressions,
7273 exactly those that are valid in gimple expressions that aren't
7274 GIMPLE_SINGLE_RHS (or invalid). */
7275 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7276 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7277 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7278
7279 ignore = (target == const0_rtx
7280 || ((CONVERT_EXPR_CODE_P (code)
7281 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7282 && TREE_CODE (type) == VOID_TYPE));
7283
7284 /* We should be called only if we need the result. */
7285 gcc_assert (!ignore);
7286
7287 /* An operation in what may be a bit-field type needs the
7288 result to be reduced to the precision of the bit-field type,
7289 which is narrower than that of the type's mode. */
7290 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7291 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7292
7293 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7294 target = 0;
7295
7296 /* Use subtarget as the target for operand 0 of a binary operation. */
7297 subtarget = get_subtarget (target);
7298 original_target = target;
7299
7300 switch (code)
7301 {
7302 case NON_LVALUE_EXPR:
7303 case PAREN_EXPR:
7304 CASE_CONVERT:
7305 if (treeop0 == error_mark_node)
7306 return const0_rtx;
7307
7308 if (TREE_CODE (type) == UNION_TYPE)
7309 {
7310 tree valtype = TREE_TYPE (treeop0);
7311
7312 /* If both input and output are BLKmode, this conversion isn't doing
7313 anything except possibly changing memory attribute. */
7314 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7315 {
7316 rtx result = expand_expr (treeop0, target, tmode,
7317 modifier);
7318
7319 result = copy_rtx (result);
7320 set_mem_attributes (result, type, 0);
7321 return result;
7322 }
7323
7324 if (target == 0)
7325 {
7326 if (TYPE_MODE (type) != BLKmode)
7327 target = gen_reg_rtx (TYPE_MODE (type));
7328 else
7329 target = assign_temp (type, 0, 1, 1);
7330 }
7331
7332 if (MEM_P (target))
7333 /* Store data into beginning of memory target. */
7334 store_expr (treeop0,
7335 adjust_address (target, TYPE_MODE (valtype), 0),
7336 modifier == EXPAND_STACK_PARM,
7337 false);
7338
7339 else
7340 {
7341 gcc_assert (REG_P (target));
7342
7343 /* Store this field into a union of the proper type. */
7344 store_field (target,
7345 MIN ((int_size_in_bytes (TREE_TYPE
7346 (treeop0))
7347 * BITS_PER_UNIT),
7348 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7349 0, TYPE_MODE (valtype), treeop0,
7350 type, 0, false);
7351 }
7352
7353 /* Return the entire union. */
7354 return target;
7355 }
7356
7357 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7358 {
7359 op0 = expand_expr (treeop0, target, VOIDmode,
7360 modifier);
7361
7362 /* If the signedness of the conversion differs and OP0 is
7363 a promoted SUBREG, clear that indication since we now
7364 have to do the proper extension. */
7365 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7366 && GET_CODE (op0) == SUBREG)
7367 SUBREG_PROMOTED_VAR_P (op0) = 0;
7368
7369 return REDUCE_BIT_FIELD (op0);
7370 }
7371
7372 op0 = expand_expr (treeop0, NULL_RTX, mode,
7373 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7374 if (GET_MODE (op0) == mode)
7375 ;
7376
7377 /* If OP0 is a constant, just convert it into the proper mode. */
7378 else if (CONSTANT_P (op0))
7379 {
7380 tree inner_type = TREE_TYPE (treeop0);
7381 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7382
7383 if (modifier == EXPAND_INITIALIZER)
7384 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7385 subreg_lowpart_offset (mode,
7386 inner_mode));
7387 else
7388 op0= convert_modes (mode, inner_mode, op0,
7389 TYPE_UNSIGNED (inner_type));
7390 }
7391
7392 else if (modifier == EXPAND_INITIALIZER)
7393 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7394
7395 else if (target == 0)
7396 op0 = convert_to_mode (mode, op0,
7397 TYPE_UNSIGNED (TREE_TYPE
7398 (treeop0)));
7399 else
7400 {
7401 convert_move (target, op0,
7402 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7403 op0 = target;
7404 }
7405
7406 return REDUCE_BIT_FIELD (op0);
7407
7408 case ADDR_SPACE_CONVERT_EXPR:
7409 {
7410 tree treeop0_type = TREE_TYPE (treeop0);
7411 addr_space_t as_to;
7412 addr_space_t as_from;
7413
7414 gcc_assert (POINTER_TYPE_P (type));
7415 gcc_assert (POINTER_TYPE_P (treeop0_type));
7416
7417 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7418 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7419
7420 /* Conversions between pointers to the same address space should
7421 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7422 gcc_assert (as_to != as_from);
7423
7424 /* Ask target code to handle conversion between pointers
7425 to overlapping address spaces. */
7426 if (targetm.addr_space.subset_p (as_to, as_from)
7427 || targetm.addr_space.subset_p (as_from, as_to))
7428 {
7429 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7430 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7431 gcc_assert (op0);
7432 return op0;
7433 }
7434
7435 /* For disjoint address spaces, converting anything but
7436 a null pointer invokes undefined behaviour. We simply
7437 always return a null pointer here. */
7438 return CONST0_RTX (mode);
7439 }
7440
7441 case POINTER_PLUS_EXPR:
7442 /* Even though the sizetype mode and the pointer's mode can be different
7443 expand is able to handle this correctly and get the correct result out
7444 of the PLUS_EXPR code. */
7445 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7446 if sizetype precision is smaller than pointer precision. */
7447 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7448 treeop1 = fold_convert_loc (loc, type,
7449 fold_convert_loc (loc, ssizetype,
7450 treeop1));
7451 case PLUS_EXPR:
7452 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7453 something else, make sure we add the register to the constant and
7454 then to the other thing. This case can occur during strength
7455 reduction and doing it this way will produce better code if the
7456 frame pointer or argument pointer is eliminated.
7457
7458 fold-const.c will ensure that the constant is always in the inner
7459 PLUS_EXPR, so the only case we need to do anything about is if
7460 sp, ap, or fp is our second argument, in which case we must swap
7461 the innermost first argument and our second argument. */
7462
7463 if (TREE_CODE (treeop0) == PLUS_EXPR
7464 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7465 && TREE_CODE (treeop1) == VAR_DECL
7466 && (DECL_RTL (treeop1) == frame_pointer_rtx
7467 || DECL_RTL (treeop1) == stack_pointer_rtx
7468 || DECL_RTL (treeop1) == arg_pointer_rtx))
7469 {
7470 tree t = treeop1;
7471
7472 treeop1 = TREE_OPERAND (treeop0, 0);
7473 TREE_OPERAND (treeop0, 0) = t;
7474 }
7475
7476 /* If the result is to be ptr_mode and we are adding an integer to
7477 something, we might be forming a constant. So try to use
7478 plus_constant. If it produces a sum and we can't accept it,
7479 use force_operand. This allows P = &ARR[const] to generate
7480 efficient code on machines where a SYMBOL_REF is not a valid
7481 address.
7482
7483 If this is an EXPAND_SUM call, always return the sum. */
7484 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7485 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7486 {
7487 if (modifier == EXPAND_STACK_PARM)
7488 target = 0;
7489 if (TREE_CODE (treeop0) == INTEGER_CST
7490 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7491 && TREE_CONSTANT (treeop1))
7492 {
7493 rtx constant_part;
7494
7495 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7496 EXPAND_SUM);
7497 /* Use immed_double_const to ensure that the constant is
7498 truncated according to the mode of OP1, then sign extended
7499 to a HOST_WIDE_INT. Using the constant directly can result
7500 in non-canonical RTL in a 64x32 cross compile. */
7501 constant_part
7502 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7503 (HOST_WIDE_INT) 0,
7504 TYPE_MODE (TREE_TYPE (treeop1)));
7505 op1 = plus_constant (op1, INTVAL (constant_part));
7506 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7507 op1 = force_operand (op1, target);
7508 return REDUCE_BIT_FIELD (op1);
7509 }
7510
7511 else if (TREE_CODE (treeop1) == INTEGER_CST
7512 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7513 && TREE_CONSTANT (treeop0))
7514 {
7515 rtx constant_part;
7516
7517 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7518 (modifier == EXPAND_INITIALIZER
7519 ? EXPAND_INITIALIZER : EXPAND_SUM));
7520 if (! CONSTANT_P (op0))
7521 {
7522 op1 = expand_expr (treeop1, NULL_RTX,
7523 VOIDmode, modifier);
7524 /* Return a PLUS if modifier says it's OK. */
7525 if (modifier == EXPAND_SUM
7526 || modifier == EXPAND_INITIALIZER)
7527 return simplify_gen_binary (PLUS, mode, op0, op1);
7528 goto binop2;
7529 }
7530 /* Use immed_double_const to ensure that the constant is
7531 truncated according to the mode of OP1, then sign extended
7532 to a HOST_WIDE_INT. Using the constant directly can result
7533 in non-canonical RTL in a 64x32 cross compile. */
7534 constant_part
7535 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7536 (HOST_WIDE_INT) 0,
7537 TYPE_MODE (TREE_TYPE (treeop0)));
7538 op0 = plus_constant (op0, INTVAL (constant_part));
7539 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7540 op0 = force_operand (op0, target);
7541 return REDUCE_BIT_FIELD (op0);
7542 }
7543 }
7544
7545 /* Use TER to expand pointer addition of a negated value
7546 as pointer subtraction. */
7547 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7548 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7549 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7550 && TREE_CODE (treeop1) == SSA_NAME
7551 && TYPE_MODE (TREE_TYPE (treeop0))
7552 == TYPE_MODE (TREE_TYPE (treeop1)))
7553 {
7554 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7555 if (def)
7556 {
7557 treeop1 = gimple_assign_rhs1 (def);
7558 code = MINUS_EXPR;
7559 goto do_minus;
7560 }
7561 }
7562
7563 /* No sense saving up arithmetic to be done
7564 if it's all in the wrong mode to form part of an address.
7565 And force_operand won't know whether to sign-extend or
7566 zero-extend. */
7567 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7568 || mode != ptr_mode)
7569 {
7570 expand_operands (treeop0, treeop1,
7571 subtarget, &op0, &op1, EXPAND_NORMAL);
7572 if (op0 == const0_rtx)
7573 return op1;
7574 if (op1 == const0_rtx)
7575 return op0;
7576 goto binop2;
7577 }
7578
7579 expand_operands (treeop0, treeop1,
7580 subtarget, &op0, &op1, modifier);
7581 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7582
7583 case MINUS_EXPR:
7584 do_minus:
7585 /* For initializers, we are allowed to return a MINUS of two
7586 symbolic constants. Here we handle all cases when both operands
7587 are constant. */
7588 /* Handle difference of two symbolic constants,
7589 for the sake of an initializer. */
7590 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7591 && really_constant_p (treeop0)
7592 && really_constant_p (treeop1))
7593 {
7594 expand_operands (treeop0, treeop1,
7595 NULL_RTX, &op0, &op1, modifier);
7596
7597 /* If the last operand is a CONST_INT, use plus_constant of
7598 the negated constant. Else make the MINUS. */
7599 if (CONST_INT_P (op1))
7600 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7601 else
7602 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7603 }
7604
7605 /* No sense saving up arithmetic to be done
7606 if it's all in the wrong mode to form part of an address.
7607 And force_operand won't know whether to sign-extend or
7608 zero-extend. */
7609 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7610 || mode != ptr_mode)
7611 goto binop;
7612
7613 expand_operands (treeop0, treeop1,
7614 subtarget, &op0, &op1, modifier);
7615
7616 /* Convert A - const to A + (-const). */
7617 if (CONST_INT_P (op1))
7618 {
7619 op1 = negate_rtx (mode, op1);
7620 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7621 }
7622
7623 goto binop2;
7624
7625 case WIDEN_MULT_PLUS_EXPR:
7626 case WIDEN_MULT_MINUS_EXPR:
7627 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7628 op2 = expand_normal (treeop2);
7629 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7630 target, unsignedp);
7631 return target;
7632
7633 case WIDEN_MULT_EXPR:
7634 /* If first operand is constant, swap them.
7635 Thus the following special case checks need only
7636 check the second operand. */
7637 if (TREE_CODE (treeop0) == INTEGER_CST)
7638 {
7639 tree t1 = treeop0;
7640 treeop0 = treeop1;
7641 treeop1 = t1;
7642 }
7643
7644 /* First, check if we have a multiplication of one signed and one
7645 unsigned operand. */
7646 if (TREE_CODE (treeop1) != INTEGER_CST
7647 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7648 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7649 {
7650 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7651 this_optab = usmul_widen_optab;
7652 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7653 {
7654 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7655 {
7656 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7657 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7658 EXPAND_NORMAL);
7659 else
7660 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7661 EXPAND_NORMAL);
7662 goto binop3;
7663 }
7664 }
7665 }
7666 /* Check for a multiplication with matching signedness. */
7667 else if ((TREE_CODE (treeop1) == INTEGER_CST
7668 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7669 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7670 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7671 {
7672 tree op0type = TREE_TYPE (treeop0);
7673 enum machine_mode innermode = TYPE_MODE (op0type);
7674 bool zextend_p = TYPE_UNSIGNED (op0type);
7675 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7676 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7677
7678 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7679 {
7680 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7681 {
7682 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7683 EXPAND_NORMAL);
7684 temp = expand_widening_mult (mode, op0, op1, target,
7685 unsignedp, this_optab);
7686 return REDUCE_BIT_FIELD (temp);
7687 }
7688 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7689 && innermode == word_mode)
7690 {
7691 rtx htem, hipart;
7692 op0 = expand_normal (treeop0);
7693 if (TREE_CODE (treeop1) == INTEGER_CST)
7694 op1 = convert_modes (innermode, mode,
7695 expand_normal (treeop1), unsignedp);
7696 else
7697 op1 = expand_normal (treeop1);
7698 temp = expand_binop (mode, other_optab, op0, op1, target,
7699 unsignedp, OPTAB_LIB_WIDEN);
7700 hipart = gen_highpart (innermode, temp);
7701 htem = expand_mult_highpart_adjust (innermode, hipart,
7702 op0, op1, hipart,
7703 zextend_p);
7704 if (htem != hipart)
7705 emit_move_insn (hipart, htem);
7706 return REDUCE_BIT_FIELD (temp);
7707 }
7708 }
7709 }
7710 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7711 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7712 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7713 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7714
7715 case FMA_EXPR:
7716 {
7717 optab opt = fma_optab;
7718 gimple def0, def2;
7719
7720 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7721 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7722
7723 op0 = op2 = NULL;
7724
7725 if (def0 && def2
7726 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7727 {
7728 opt = fnms_optab;
7729 op0 = expand_normal (gimple_assign_rhs1 (def0));
7730 op2 = expand_normal (gimple_assign_rhs1 (def2));
7731 }
7732 else if (def0
7733 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7734 {
7735 opt = fnma_optab;
7736 op0 = expand_normal (gimple_assign_rhs1 (def0));
7737 }
7738 else if (def2
7739 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7740 {
7741 opt = fms_optab;
7742 op2 = expand_normal (gimple_assign_rhs1 (def2));
7743 }
7744
7745 if (op0 == NULL)
7746 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7747 if (op2 == NULL)
7748 op2 = expand_normal (treeop2);
7749 op1 = expand_normal (treeop1);
7750
7751 return expand_ternary_op (TYPE_MODE (type), opt,
7752 op0, op1, op2, target, 0);
7753 }
7754
7755 case MULT_EXPR:
7756 /* If this is a fixed-point operation, then we cannot use the code
7757 below because "expand_mult" doesn't support sat/no-sat fixed-point
7758 multiplications. */
7759 if (ALL_FIXED_POINT_MODE_P (mode))
7760 goto binop;
7761
7762 /* If first operand is constant, swap them.
7763 Thus the following special case checks need only
7764 check the second operand. */
7765 if (TREE_CODE (treeop0) == INTEGER_CST)
7766 {
7767 tree t1 = treeop0;
7768 treeop0 = treeop1;
7769 treeop1 = t1;
7770 }
7771
7772 /* Attempt to return something suitable for generating an
7773 indexed address, for machines that support that. */
7774
7775 if (modifier == EXPAND_SUM && mode == ptr_mode
7776 && host_integerp (treeop1, 0))
7777 {
7778 tree exp1 = treeop1;
7779
7780 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7781 EXPAND_SUM);
7782
7783 if (!REG_P (op0))
7784 op0 = force_operand (op0, NULL_RTX);
7785 if (!REG_P (op0))
7786 op0 = copy_to_mode_reg (mode, op0);
7787
7788 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7789 gen_int_mode (tree_low_cst (exp1, 0),
7790 TYPE_MODE (TREE_TYPE (exp1)))));
7791 }
7792
7793 if (modifier == EXPAND_STACK_PARM)
7794 target = 0;
7795
7796 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7797 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7798
7799 case TRUNC_DIV_EXPR:
7800 case FLOOR_DIV_EXPR:
7801 case CEIL_DIV_EXPR:
7802 case ROUND_DIV_EXPR:
7803 case EXACT_DIV_EXPR:
7804 /* If this is a fixed-point operation, then we cannot use the code
7805 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7806 divisions. */
7807 if (ALL_FIXED_POINT_MODE_P (mode))
7808 goto binop;
7809
7810 if (modifier == EXPAND_STACK_PARM)
7811 target = 0;
7812 /* Possible optimization: compute the dividend with EXPAND_SUM
7813 then if the divisor is constant can optimize the case
7814 where some terms of the dividend have coeffs divisible by it. */
7815 expand_operands (treeop0, treeop1,
7816 subtarget, &op0, &op1, EXPAND_NORMAL);
7817 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7818
7819 case RDIV_EXPR:
7820 goto binop;
7821
7822 case TRUNC_MOD_EXPR:
7823 case FLOOR_MOD_EXPR:
7824 case CEIL_MOD_EXPR:
7825 case ROUND_MOD_EXPR:
7826 if (modifier == EXPAND_STACK_PARM)
7827 target = 0;
7828 expand_operands (treeop0, treeop1,
7829 subtarget, &op0, &op1, EXPAND_NORMAL);
7830 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7831
7832 case FIXED_CONVERT_EXPR:
7833 op0 = expand_normal (treeop0);
7834 if (target == 0 || modifier == EXPAND_STACK_PARM)
7835 target = gen_reg_rtx (mode);
7836
7837 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7838 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7839 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7840 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7841 else
7842 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7843 return target;
7844
7845 case FIX_TRUNC_EXPR:
7846 op0 = expand_normal (treeop0);
7847 if (target == 0 || modifier == EXPAND_STACK_PARM)
7848 target = gen_reg_rtx (mode);
7849 expand_fix (target, op0, unsignedp);
7850 return target;
7851
7852 case FLOAT_EXPR:
7853 op0 = expand_normal (treeop0);
7854 if (target == 0 || modifier == EXPAND_STACK_PARM)
7855 target = gen_reg_rtx (mode);
7856 /* expand_float can't figure out what to do if FROM has VOIDmode.
7857 So give it the correct mode. With -O, cse will optimize this. */
7858 if (GET_MODE (op0) == VOIDmode)
7859 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7860 op0);
7861 expand_float (target, op0,
7862 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7863 return target;
7864
7865 case NEGATE_EXPR:
7866 op0 = expand_expr (treeop0, subtarget,
7867 VOIDmode, EXPAND_NORMAL);
7868 if (modifier == EXPAND_STACK_PARM)
7869 target = 0;
7870 temp = expand_unop (mode,
7871 optab_for_tree_code (NEGATE_EXPR, type,
7872 optab_default),
7873 op0, target, 0);
7874 gcc_assert (temp);
7875 return REDUCE_BIT_FIELD (temp);
7876
7877 case ABS_EXPR:
7878 op0 = expand_expr (treeop0, subtarget,
7879 VOIDmode, EXPAND_NORMAL);
7880 if (modifier == EXPAND_STACK_PARM)
7881 target = 0;
7882
7883 /* ABS_EXPR is not valid for complex arguments. */
7884 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7885 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7886
7887 /* Unsigned abs is simply the operand. Testing here means we don't
7888 risk generating incorrect code below. */
7889 if (TYPE_UNSIGNED (type))
7890 return op0;
7891
7892 return expand_abs (mode, op0, target, unsignedp,
7893 safe_from_p (target, treeop0, 1));
7894
7895 case MAX_EXPR:
7896 case MIN_EXPR:
7897 target = original_target;
7898 if (target == 0
7899 || modifier == EXPAND_STACK_PARM
7900 || (MEM_P (target) && MEM_VOLATILE_P (target))
7901 || GET_MODE (target) != mode
7902 || (REG_P (target)
7903 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7904 target = gen_reg_rtx (mode);
7905 expand_operands (treeop0, treeop1,
7906 target, &op0, &op1, EXPAND_NORMAL);
7907
7908 /* First try to do it with a special MIN or MAX instruction.
7909 If that does not win, use a conditional jump to select the proper
7910 value. */
7911 this_optab = optab_for_tree_code (code, type, optab_default);
7912 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7913 OPTAB_WIDEN);
7914 if (temp != 0)
7915 return temp;
7916
7917 /* At this point, a MEM target is no longer useful; we will get better
7918 code without it. */
7919
7920 if (! REG_P (target))
7921 target = gen_reg_rtx (mode);
7922
7923 /* If op1 was placed in target, swap op0 and op1. */
7924 if (target != op0 && target == op1)
7925 {
7926 temp = op0;
7927 op0 = op1;
7928 op1 = temp;
7929 }
7930
7931 /* We generate better code and avoid problems with op1 mentioning
7932 target by forcing op1 into a pseudo if it isn't a constant. */
7933 if (! CONSTANT_P (op1))
7934 op1 = force_reg (mode, op1);
7935
7936 {
7937 enum rtx_code comparison_code;
7938 rtx cmpop1 = op1;
7939
7940 if (code == MAX_EXPR)
7941 comparison_code = unsignedp ? GEU : GE;
7942 else
7943 comparison_code = unsignedp ? LEU : LE;
7944
7945 /* Canonicalize to comparisons against 0. */
7946 if (op1 == const1_rtx)
7947 {
7948 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7949 or (a != 0 ? a : 1) for unsigned.
7950 For MIN we are safe converting (a <= 1 ? a : 1)
7951 into (a <= 0 ? a : 1) */
7952 cmpop1 = const0_rtx;
7953 if (code == MAX_EXPR)
7954 comparison_code = unsignedp ? NE : GT;
7955 }
7956 if (op1 == constm1_rtx && !unsignedp)
7957 {
7958 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7959 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7960 cmpop1 = const0_rtx;
7961 if (code == MIN_EXPR)
7962 comparison_code = LT;
7963 }
7964 #ifdef HAVE_conditional_move
7965 /* Use a conditional move if possible. */
7966 if (can_conditionally_move_p (mode))
7967 {
7968 rtx insn;
7969
7970 /* ??? Same problem as in expmed.c: emit_conditional_move
7971 forces a stack adjustment via compare_from_rtx, and we
7972 lose the stack adjustment if the sequence we are about
7973 to create is discarded. */
7974 do_pending_stack_adjust ();
7975
7976 start_sequence ();
7977
7978 /* Try to emit the conditional move. */
7979 insn = emit_conditional_move (target, comparison_code,
7980 op0, cmpop1, mode,
7981 op0, op1, mode,
7982 unsignedp);
7983
7984 /* If we could do the conditional move, emit the sequence,
7985 and return. */
7986 if (insn)
7987 {
7988 rtx seq = get_insns ();
7989 end_sequence ();
7990 emit_insn (seq);
7991 return target;
7992 }
7993
7994 /* Otherwise discard the sequence and fall back to code with
7995 branches. */
7996 end_sequence ();
7997 }
7998 #endif
7999 if (target != op0)
8000 emit_move_insn (target, op0);
8001
8002 temp = gen_label_rtx ();
8003 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8004 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8005 -1);
8006 }
8007 emit_move_insn (target, op1);
8008 emit_label (temp);
8009 return target;
8010
8011 case BIT_NOT_EXPR:
8012 op0 = expand_expr (treeop0, subtarget,
8013 VOIDmode, EXPAND_NORMAL);
8014 if (modifier == EXPAND_STACK_PARM)
8015 target = 0;
8016 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8017 gcc_assert (temp);
8018 return temp;
8019
8020 /* ??? Can optimize bitwise operations with one arg constant.
8021 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8022 and (a bitwise1 b) bitwise2 b (etc)
8023 but that is probably not worth while. */
8024
8025 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8026 boolean values when we want in all cases to compute both of them. In
8027 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8028 as actual zero-or-1 values and then bitwise anding. In cases where
8029 there cannot be any side effects, better code would be made by
8030 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8031 how to recognize those cases. */
8032
8033 case TRUTH_AND_EXPR:
8034 code = BIT_AND_EXPR;
8035 case BIT_AND_EXPR:
8036 goto binop;
8037
8038 case TRUTH_OR_EXPR:
8039 code = BIT_IOR_EXPR;
8040 case BIT_IOR_EXPR:
8041 goto binop;
8042
8043 case TRUTH_XOR_EXPR:
8044 code = BIT_XOR_EXPR;
8045 case BIT_XOR_EXPR:
8046 goto binop;
8047
8048 case LROTATE_EXPR:
8049 case RROTATE_EXPR:
8050 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8051 || (GET_MODE_PRECISION (TYPE_MODE (type))
8052 == TYPE_PRECISION (type)));
8053 /* fall through */
8054
8055 case LSHIFT_EXPR:
8056 case RSHIFT_EXPR:
8057 /* If this is a fixed-point operation, then we cannot use the code
8058 below because "expand_shift" doesn't support sat/no-sat fixed-point
8059 shifts. */
8060 if (ALL_FIXED_POINT_MODE_P (mode))
8061 goto binop;
8062
8063 if (! safe_from_p (subtarget, treeop1, 1))
8064 subtarget = 0;
8065 if (modifier == EXPAND_STACK_PARM)
8066 target = 0;
8067 op0 = expand_expr (treeop0, subtarget,
8068 VOIDmode, EXPAND_NORMAL);
8069 temp = expand_shift (code, mode, op0, treeop1, target,
8070 unsignedp);
8071 if (code == LSHIFT_EXPR)
8072 temp = REDUCE_BIT_FIELD (temp);
8073 return temp;
8074
8075 /* Could determine the answer when only additive constants differ. Also,
8076 the addition of one can be handled by changing the condition. */
8077 case LT_EXPR:
8078 case LE_EXPR:
8079 case GT_EXPR:
8080 case GE_EXPR:
8081 case EQ_EXPR:
8082 case NE_EXPR:
8083 case UNORDERED_EXPR:
8084 case ORDERED_EXPR:
8085 case UNLT_EXPR:
8086 case UNLE_EXPR:
8087 case UNGT_EXPR:
8088 case UNGE_EXPR:
8089 case UNEQ_EXPR:
8090 case LTGT_EXPR:
8091 temp = do_store_flag (ops,
8092 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8093 tmode != VOIDmode ? tmode : mode);
8094 if (temp)
8095 return temp;
8096
8097 /* Use a compare and a jump for BLKmode comparisons, or for function
8098 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8099
8100 if ((target == 0
8101 || modifier == EXPAND_STACK_PARM
8102 || ! safe_from_p (target, treeop0, 1)
8103 || ! safe_from_p (target, treeop1, 1)
8104 /* Make sure we don't have a hard reg (such as function's return
8105 value) live across basic blocks, if not optimizing. */
8106 || (!optimize && REG_P (target)
8107 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8108 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8109
8110 emit_move_insn (target, const0_rtx);
8111
8112 op1 = gen_label_rtx ();
8113 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8114
8115 emit_move_insn (target, const1_rtx);
8116
8117 emit_label (op1);
8118 return target;
8119
8120 case TRUTH_NOT_EXPR:
8121 if (modifier == EXPAND_STACK_PARM)
8122 target = 0;
8123 op0 = expand_expr (treeop0, target,
8124 VOIDmode, EXPAND_NORMAL);
8125 /* The parser is careful to generate TRUTH_NOT_EXPR
8126 only with operands that are always zero or one. */
8127 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8128 target, 1, OPTAB_LIB_WIDEN);
8129 gcc_assert (temp);
8130 return temp;
8131
8132 case COMPLEX_EXPR:
8133 /* Get the rtx code of the operands. */
8134 op0 = expand_normal (treeop0);
8135 op1 = expand_normal (treeop1);
8136
8137 if (!target)
8138 target = gen_reg_rtx (TYPE_MODE (type));
8139
8140 /* Move the real (op0) and imaginary (op1) parts to their location. */
8141 write_complex_part (target, op0, false);
8142 write_complex_part (target, op1, true);
8143
8144 return target;
8145
8146 case WIDEN_SUM_EXPR:
8147 {
8148 tree oprnd0 = treeop0;
8149 tree oprnd1 = treeop1;
8150
8151 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8152 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8153 target, unsignedp);
8154 return target;
8155 }
8156
8157 case REDUC_MAX_EXPR:
8158 case REDUC_MIN_EXPR:
8159 case REDUC_PLUS_EXPR:
8160 {
8161 op0 = expand_normal (treeop0);
8162 this_optab = optab_for_tree_code (code, type, optab_default);
8163 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8164 gcc_assert (temp);
8165 return temp;
8166 }
8167
8168 case VEC_EXTRACT_EVEN_EXPR:
8169 case VEC_EXTRACT_ODD_EXPR:
8170 {
8171 expand_operands (treeop0, treeop1,
8172 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8173 this_optab = optab_for_tree_code (code, type, optab_default);
8174 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8175 OPTAB_WIDEN);
8176 gcc_assert (temp);
8177 return temp;
8178 }
8179
8180 case VEC_INTERLEAVE_HIGH_EXPR:
8181 case VEC_INTERLEAVE_LOW_EXPR:
8182 {
8183 expand_operands (treeop0, treeop1,
8184 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8185 this_optab = optab_for_tree_code (code, type, optab_default);
8186 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8187 OPTAB_WIDEN);
8188 gcc_assert (temp);
8189 return temp;
8190 }
8191
8192 case VEC_LSHIFT_EXPR:
8193 case VEC_RSHIFT_EXPR:
8194 {
8195 target = expand_vec_shift_expr (ops, target);
8196 return target;
8197 }
8198
8199 case VEC_UNPACK_HI_EXPR:
8200 case VEC_UNPACK_LO_EXPR:
8201 {
8202 op0 = expand_normal (treeop0);
8203 this_optab = optab_for_tree_code (code, type, optab_default);
8204 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8205 target, unsignedp);
8206 gcc_assert (temp);
8207 return temp;
8208 }
8209
8210 case VEC_UNPACK_FLOAT_HI_EXPR:
8211 case VEC_UNPACK_FLOAT_LO_EXPR:
8212 {
8213 op0 = expand_normal (treeop0);
8214 /* The signedness is determined from input operand. */
8215 this_optab = optab_for_tree_code (code,
8216 TREE_TYPE (treeop0),
8217 optab_default);
8218 temp = expand_widen_pattern_expr
8219 (ops, op0, NULL_RTX, NULL_RTX,
8220 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8221
8222 gcc_assert (temp);
8223 return temp;
8224 }
8225
8226 case VEC_WIDEN_MULT_HI_EXPR:
8227 case VEC_WIDEN_MULT_LO_EXPR:
8228 {
8229 tree oprnd0 = treeop0;
8230 tree oprnd1 = treeop1;
8231
8232 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8233 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8234 target, unsignedp);
8235 gcc_assert (target);
8236 return target;
8237 }
8238
8239 case VEC_PACK_TRUNC_EXPR:
8240 case VEC_PACK_SAT_EXPR:
8241 case VEC_PACK_FIX_TRUNC_EXPR:
8242 mode = TYPE_MODE (TREE_TYPE (treeop0));
8243 goto binop;
8244
8245 default:
8246 gcc_unreachable ();
8247 }
8248
8249 /* Here to do an ordinary binary operator. */
8250 binop:
8251 expand_operands (treeop0, treeop1,
8252 subtarget, &op0, &op1, EXPAND_NORMAL);
8253 binop2:
8254 this_optab = optab_for_tree_code (code, type, optab_default);
8255 binop3:
8256 if (modifier == EXPAND_STACK_PARM)
8257 target = 0;
8258 temp = expand_binop (mode, this_optab, op0, op1, target,
8259 unsignedp, OPTAB_LIB_WIDEN);
8260 gcc_assert (temp);
8261 return REDUCE_BIT_FIELD (temp);
8262 }
8263 #undef REDUCE_BIT_FIELD
8264
8265 rtx
8266 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8267 enum expand_modifier modifier, rtx *alt_rtl)
8268 {
8269 rtx op0, op1, temp, decl_rtl;
8270 tree type;
8271 int unsignedp;
8272 enum machine_mode mode;
8273 enum tree_code code = TREE_CODE (exp);
8274 optab this_optab;
8275 rtx subtarget, original_target;
8276 int ignore;
8277 tree context;
8278 bool reduce_bit_field;
8279 location_t loc = EXPR_LOCATION (exp);
8280 struct separate_ops ops;
8281 tree treeop0, treeop1, treeop2;
8282 tree ssa_name = NULL_TREE;
8283 gimple g;
8284
8285 type = TREE_TYPE (exp);
8286 mode = TYPE_MODE (type);
8287 unsignedp = TYPE_UNSIGNED (type);
8288
8289 treeop0 = treeop1 = treeop2 = NULL_TREE;
8290 if (!VL_EXP_CLASS_P (exp))
8291 switch (TREE_CODE_LENGTH (code))
8292 {
8293 default:
8294 case 3: treeop2 = TREE_OPERAND (exp, 2);
8295 case 2: treeop1 = TREE_OPERAND (exp, 1);
8296 case 1: treeop0 = TREE_OPERAND (exp, 0);
8297 case 0: break;
8298 }
8299 ops.code = code;
8300 ops.type = type;
8301 ops.op0 = treeop0;
8302 ops.op1 = treeop1;
8303 ops.op2 = treeop2;
8304 ops.location = loc;
8305
8306 ignore = (target == const0_rtx
8307 || ((CONVERT_EXPR_CODE_P (code)
8308 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8309 && TREE_CODE (type) == VOID_TYPE));
8310
8311 /* An operation in what may be a bit-field type needs the
8312 result to be reduced to the precision of the bit-field type,
8313 which is narrower than that of the type's mode. */
8314 reduce_bit_field = (!ignore
8315 && TREE_CODE (type) == INTEGER_TYPE
8316 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8317
8318 /* If we are going to ignore this result, we need only do something
8319 if there is a side-effect somewhere in the expression. If there
8320 is, short-circuit the most common cases here. Note that we must
8321 not call expand_expr with anything but const0_rtx in case this
8322 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8323
8324 if (ignore)
8325 {
8326 if (! TREE_SIDE_EFFECTS (exp))
8327 return const0_rtx;
8328
8329 /* Ensure we reference a volatile object even if value is ignored, but
8330 don't do this if all we are doing is taking its address. */
8331 if (TREE_THIS_VOLATILE (exp)
8332 && TREE_CODE (exp) != FUNCTION_DECL
8333 && mode != VOIDmode && mode != BLKmode
8334 && modifier != EXPAND_CONST_ADDRESS)
8335 {
8336 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8337 if (MEM_P (temp))
8338 temp = copy_to_reg (temp);
8339 return const0_rtx;
8340 }
8341
8342 if (TREE_CODE_CLASS (code) == tcc_unary
8343 || code == COMPONENT_REF || code == INDIRECT_REF)
8344 return expand_expr (treeop0, const0_rtx, VOIDmode,
8345 modifier);
8346
8347 else if (TREE_CODE_CLASS (code) == tcc_binary
8348 || TREE_CODE_CLASS (code) == tcc_comparison
8349 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8350 {
8351 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8352 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8353 return const0_rtx;
8354 }
8355 else if (code == BIT_FIELD_REF)
8356 {
8357 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8358 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8359 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8360 return const0_rtx;
8361 }
8362
8363 target = 0;
8364 }
8365
8366 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8367 target = 0;
8368
8369 /* Use subtarget as the target for operand 0 of a binary operation. */
8370 subtarget = get_subtarget (target);
8371 original_target = target;
8372
8373 switch (code)
8374 {
8375 case LABEL_DECL:
8376 {
8377 tree function = decl_function_context (exp);
8378
8379 temp = label_rtx (exp);
8380 temp = gen_rtx_LABEL_REF (Pmode, temp);
8381
8382 if (function != current_function_decl
8383 && function != 0)
8384 LABEL_REF_NONLOCAL_P (temp) = 1;
8385
8386 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8387 return temp;
8388 }
8389
8390 case SSA_NAME:
8391 /* ??? ivopts calls expander, without any preparation from
8392 out-of-ssa. So fake instructions as if this was an access to the
8393 base variable. This unnecessarily allocates a pseudo, see how we can
8394 reuse it, if partition base vars have it set already. */
8395 if (!currently_expanding_to_rtl)
8396 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8397 NULL);
8398
8399 g = get_gimple_for_ssa_name (exp);
8400 if (g)
8401 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8402 modifier, NULL);
8403
8404 ssa_name = exp;
8405 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8406 exp = SSA_NAME_VAR (ssa_name);
8407 goto expand_decl_rtl;
8408
8409 case PARM_DECL:
8410 case VAR_DECL:
8411 /* If a static var's type was incomplete when the decl was written,
8412 but the type is complete now, lay out the decl now. */
8413 if (DECL_SIZE (exp) == 0
8414 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8415 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8416 layout_decl (exp, 0);
8417
8418 /* ... fall through ... */
8419
8420 case FUNCTION_DECL:
8421 case RESULT_DECL:
8422 decl_rtl = DECL_RTL (exp);
8423 expand_decl_rtl:
8424 gcc_assert (decl_rtl);
8425 decl_rtl = copy_rtx (decl_rtl);
8426 /* Record writes to register variables. */
8427 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8428 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8429 {
8430 int i = REGNO (decl_rtl);
8431 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8432 while (nregs)
8433 {
8434 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8435 i++;
8436 nregs--;
8437 }
8438 }
8439
8440 /* Ensure variable marked as used even if it doesn't go through
8441 a parser. If it hasn't be used yet, write out an external
8442 definition. */
8443 if (! TREE_USED (exp))
8444 {
8445 assemble_external (exp);
8446 TREE_USED (exp) = 1;
8447 }
8448
8449 /* Show we haven't gotten RTL for this yet. */
8450 temp = 0;
8451
8452 /* Variables inherited from containing functions should have
8453 been lowered by this point. */
8454 context = decl_function_context (exp);
8455 gcc_assert (!context
8456 || context == current_function_decl
8457 || TREE_STATIC (exp)
8458 || DECL_EXTERNAL (exp)
8459 /* ??? C++ creates functions that are not TREE_STATIC. */
8460 || TREE_CODE (exp) == FUNCTION_DECL);
8461
8462 /* This is the case of an array whose size is to be determined
8463 from its initializer, while the initializer is still being parsed.
8464 See expand_decl. */
8465
8466 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8467 temp = validize_mem (decl_rtl);
8468
8469 /* If DECL_RTL is memory, we are in the normal case and the
8470 address is not valid, get the address into a register. */
8471
8472 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8473 {
8474 if (alt_rtl)
8475 *alt_rtl = decl_rtl;
8476 decl_rtl = use_anchored_address (decl_rtl);
8477 if (modifier != EXPAND_CONST_ADDRESS
8478 && modifier != EXPAND_SUM
8479 && !memory_address_addr_space_p (DECL_MODE (exp),
8480 XEXP (decl_rtl, 0),
8481 MEM_ADDR_SPACE (decl_rtl)))
8482 temp = replace_equiv_address (decl_rtl,
8483 copy_rtx (XEXP (decl_rtl, 0)));
8484 }
8485
8486 /* If we got something, return it. But first, set the alignment
8487 if the address is a register. */
8488 if (temp != 0)
8489 {
8490 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8491 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8492
8493 return temp;
8494 }
8495
8496 /* If the mode of DECL_RTL does not match that of the decl, it
8497 must be a promoted value. We return a SUBREG of the wanted mode,
8498 but mark it so that we know that it was already extended. */
8499 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8500 {
8501 enum machine_mode pmode;
8502
8503 /* Get the signedness to be used for this variable. Ensure we get
8504 the same mode we got when the variable was declared. */
8505 if (code == SSA_NAME
8506 && (g = SSA_NAME_DEF_STMT (ssa_name))
8507 && gimple_code (g) == GIMPLE_CALL)
8508 pmode = promote_function_mode (type, mode, &unsignedp,
8509 TREE_TYPE
8510 (TREE_TYPE (gimple_call_fn (g))),
8511 2);
8512 else
8513 pmode = promote_decl_mode (exp, &unsignedp);
8514 gcc_assert (GET_MODE (decl_rtl) == pmode);
8515
8516 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8517 SUBREG_PROMOTED_VAR_P (temp) = 1;
8518 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8519 return temp;
8520 }
8521
8522 return decl_rtl;
8523
8524 case INTEGER_CST:
8525 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8526 TREE_INT_CST_HIGH (exp), mode);
8527
8528 return temp;
8529
8530 case VECTOR_CST:
8531 {
8532 tree tmp = NULL_TREE;
8533 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8534 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8535 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8536 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8537 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8538 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8539 return const_vector_from_tree (exp);
8540 if (GET_MODE_CLASS (mode) == MODE_INT)
8541 {
8542 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8543 if (type_for_mode)
8544 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8545 }
8546 if (!tmp)
8547 tmp = build_constructor_from_list (type,
8548 TREE_VECTOR_CST_ELTS (exp));
8549 return expand_expr (tmp, ignore ? const0_rtx : target,
8550 tmode, modifier);
8551 }
8552
8553 case CONST_DECL:
8554 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8555
8556 case REAL_CST:
8557 /* If optimized, generate immediate CONST_DOUBLE
8558 which will be turned into memory by reload if necessary.
8559
8560 We used to force a register so that loop.c could see it. But
8561 this does not allow gen_* patterns to perform optimizations with
8562 the constants. It also produces two insns in cases like "x = 1.0;".
8563 On most machines, floating-point constants are not permitted in
8564 many insns, so we'd end up copying it to a register in any case.
8565
8566 Now, we do the copying in expand_binop, if appropriate. */
8567 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8568 TYPE_MODE (TREE_TYPE (exp)));
8569
8570 case FIXED_CST:
8571 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8572 TYPE_MODE (TREE_TYPE (exp)));
8573
8574 case COMPLEX_CST:
8575 /* Handle evaluating a complex constant in a CONCAT target. */
8576 if (original_target && GET_CODE (original_target) == CONCAT)
8577 {
8578 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8579 rtx rtarg, itarg;
8580
8581 rtarg = XEXP (original_target, 0);
8582 itarg = XEXP (original_target, 1);
8583
8584 /* Move the real and imaginary parts separately. */
8585 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8586 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8587
8588 if (op0 != rtarg)
8589 emit_move_insn (rtarg, op0);
8590 if (op1 != itarg)
8591 emit_move_insn (itarg, op1);
8592
8593 return original_target;
8594 }
8595
8596 /* ... fall through ... */
8597
8598 case STRING_CST:
8599 temp = expand_expr_constant (exp, 1, modifier);
8600
8601 /* temp contains a constant address.
8602 On RISC machines where a constant address isn't valid,
8603 make some insns to get that address into a register. */
8604 if (modifier != EXPAND_CONST_ADDRESS
8605 && modifier != EXPAND_INITIALIZER
8606 && modifier != EXPAND_SUM
8607 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8608 MEM_ADDR_SPACE (temp)))
8609 return replace_equiv_address (temp,
8610 copy_rtx (XEXP (temp, 0)));
8611 return temp;
8612
8613 case SAVE_EXPR:
8614 {
8615 tree val = treeop0;
8616 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8617
8618 if (!SAVE_EXPR_RESOLVED_P (exp))
8619 {
8620 /* We can indeed still hit this case, typically via builtin
8621 expanders calling save_expr immediately before expanding
8622 something. Assume this means that we only have to deal
8623 with non-BLKmode values. */
8624 gcc_assert (GET_MODE (ret) != BLKmode);
8625
8626 val = build_decl (EXPR_LOCATION (exp),
8627 VAR_DECL, NULL, TREE_TYPE (exp));
8628 DECL_ARTIFICIAL (val) = 1;
8629 DECL_IGNORED_P (val) = 1;
8630 treeop0 = val;
8631 TREE_OPERAND (exp, 0) = treeop0;
8632 SAVE_EXPR_RESOLVED_P (exp) = 1;
8633
8634 if (!CONSTANT_P (ret))
8635 ret = copy_to_reg (ret);
8636 SET_DECL_RTL (val, ret);
8637 }
8638
8639 return ret;
8640 }
8641
8642
8643 case CONSTRUCTOR:
8644 /* If we don't need the result, just ensure we evaluate any
8645 subexpressions. */
8646 if (ignore)
8647 {
8648 unsigned HOST_WIDE_INT idx;
8649 tree value;
8650
8651 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8652 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8653
8654 return const0_rtx;
8655 }
8656
8657 return expand_constructor (exp, target, modifier, false);
8658
8659 case TARGET_MEM_REF:
8660 {
8661 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8662 struct mem_address addr;
8663 int icode, align;
8664
8665 get_address_description (exp, &addr);
8666 op0 = addr_for_mem_ref (&addr, as, true);
8667 op0 = memory_address_addr_space (mode, op0, as);
8668 temp = gen_rtx_MEM (mode, op0);
8669 set_mem_attributes (temp, exp, 0);
8670 set_mem_addr_space (temp, as);
8671 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8672 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8673 if (mode != BLKmode
8674 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8675 /* If the target does not have special handling for unaligned
8676 loads of mode then it can use regular moves for them. */
8677 && ((icode = optab_handler (movmisalign_optab, mode))
8678 != CODE_FOR_nothing))
8679 {
8680 rtx reg, insn;
8681
8682 /* We've already validated the memory, and we're creating a
8683 new pseudo destination. The predicates really can't fail. */
8684 reg = gen_reg_rtx (mode);
8685
8686 /* Nor can the insn generator. */
8687 insn = GEN_FCN (icode) (reg, temp);
8688 gcc_assert (insn != NULL_RTX);
8689 emit_insn (insn);
8690
8691 return reg;
8692 }
8693 return temp;
8694 }
8695
8696 case MEM_REF:
8697 {
8698 addr_space_t as
8699 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8700 enum machine_mode address_mode;
8701 tree base = TREE_OPERAND (exp, 0);
8702 gimple def_stmt;
8703 int icode, align;
8704 /* Handle expansion of non-aliased memory with non-BLKmode. That
8705 might end up in a register. */
8706 if (TREE_CODE (base) == ADDR_EXPR)
8707 {
8708 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8709 tree bit_offset;
8710 base = TREE_OPERAND (base, 0);
8711 if (!DECL_P (base))
8712 {
8713 HOST_WIDE_INT off;
8714 base = get_addr_base_and_unit_offset (base, &off);
8715 gcc_assert (base);
8716 offset += off;
8717 }
8718 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8719 decl we must use bitfield operations. */
8720 if (DECL_P (base)
8721 && !TREE_ADDRESSABLE (base)
8722 && DECL_MODE (base) != BLKmode
8723 && DECL_RTL_SET_P (base)
8724 && !MEM_P (DECL_RTL (base)))
8725 {
8726 tree bftype;
8727 if (offset == 0
8728 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8729 && (GET_MODE_BITSIZE (DECL_MODE (base))
8730 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8731 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8732 TREE_TYPE (exp), base),
8733 target, tmode, modifier);
8734 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8735 bftype = TREE_TYPE (base);
8736 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8737 bftype = TREE_TYPE (exp);
8738 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8739 base,
8740 TYPE_SIZE (TREE_TYPE (exp)),
8741 bit_offset),
8742 target, tmode, modifier);
8743 }
8744 }
8745 address_mode = targetm.addr_space.address_mode (as);
8746 base = TREE_OPERAND (exp, 0);
8747 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8748 {
8749 tree mask = gimple_assign_rhs2 (def_stmt);
8750 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8751 gimple_assign_rhs1 (def_stmt), mask);
8752 TREE_OPERAND (exp, 0) = base;
8753 }
8754 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8755 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8756 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8757 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8758 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8759 {
8760 rtx off
8761 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8762 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8763 }
8764 op0 = memory_address_addr_space (mode, op0, as);
8765 temp = gen_rtx_MEM (mode, op0);
8766 set_mem_attributes (temp, exp, 0);
8767 set_mem_addr_space (temp, as);
8768 if (TREE_THIS_VOLATILE (exp))
8769 MEM_VOLATILE_P (temp) = 1;
8770 if (mode != BLKmode
8771 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8772 /* If the target does not have special handling for unaligned
8773 loads of mode then it can use regular moves for them. */
8774 && ((icode = optab_handler (movmisalign_optab, mode))
8775 != CODE_FOR_nothing))
8776 {
8777 rtx reg, insn;
8778
8779 /* We've already validated the memory, and we're creating a
8780 new pseudo destination. The predicates really can't fail. */
8781 reg = gen_reg_rtx (mode);
8782
8783 /* Nor can the insn generator. */
8784 insn = GEN_FCN (icode) (reg, temp);
8785 emit_insn (insn);
8786
8787 return reg;
8788 }
8789 return temp;
8790 }
8791
8792 case ARRAY_REF:
8793
8794 {
8795 tree array = treeop0;
8796 tree index = treeop1;
8797
8798 /* Fold an expression like: "foo"[2].
8799 This is not done in fold so it won't happen inside &.
8800 Don't fold if this is for wide characters since it's too
8801 difficult to do correctly and this is a very rare case. */
8802
8803 if (modifier != EXPAND_CONST_ADDRESS
8804 && modifier != EXPAND_INITIALIZER
8805 && modifier != EXPAND_MEMORY)
8806 {
8807 tree t = fold_read_from_constant_string (exp);
8808
8809 if (t)
8810 return expand_expr (t, target, tmode, modifier);
8811 }
8812
8813 /* If this is a constant index into a constant array,
8814 just get the value from the array. Handle both the cases when
8815 we have an explicit constructor and when our operand is a variable
8816 that was declared const. */
8817
8818 if (modifier != EXPAND_CONST_ADDRESS
8819 && modifier != EXPAND_INITIALIZER
8820 && modifier != EXPAND_MEMORY
8821 && TREE_CODE (array) == CONSTRUCTOR
8822 && ! TREE_SIDE_EFFECTS (array)
8823 && TREE_CODE (index) == INTEGER_CST)
8824 {
8825 unsigned HOST_WIDE_INT ix;
8826 tree field, value;
8827
8828 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8829 field, value)
8830 if (tree_int_cst_equal (field, index))
8831 {
8832 if (!TREE_SIDE_EFFECTS (value))
8833 return expand_expr (fold (value), target, tmode, modifier);
8834 break;
8835 }
8836 }
8837
8838 else if (optimize >= 1
8839 && modifier != EXPAND_CONST_ADDRESS
8840 && modifier != EXPAND_INITIALIZER
8841 && modifier != EXPAND_MEMORY
8842 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8843 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8844 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8845 && const_value_known_p (array))
8846 {
8847 if (TREE_CODE (index) == INTEGER_CST)
8848 {
8849 tree init = DECL_INITIAL (array);
8850
8851 if (TREE_CODE (init) == CONSTRUCTOR)
8852 {
8853 unsigned HOST_WIDE_INT ix;
8854 tree field, value;
8855
8856 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8857 field, value)
8858 if (tree_int_cst_equal (field, index))
8859 {
8860 if (TREE_SIDE_EFFECTS (value))
8861 break;
8862
8863 if (TREE_CODE (value) == CONSTRUCTOR)
8864 {
8865 /* If VALUE is a CONSTRUCTOR, this
8866 optimization is only useful if
8867 this doesn't store the CONSTRUCTOR
8868 into memory. If it does, it is more
8869 efficient to just load the data from
8870 the array directly. */
8871 rtx ret = expand_constructor (value, target,
8872 modifier, true);
8873 if (ret == NULL_RTX)
8874 break;
8875 }
8876
8877 return expand_expr (fold (value), target, tmode,
8878 modifier);
8879 }
8880 }
8881 else if(TREE_CODE (init) == STRING_CST)
8882 {
8883 tree index1 = index;
8884 tree low_bound = array_ref_low_bound (exp);
8885 index1 = fold_convert_loc (loc, sizetype,
8886 treeop1);
8887
8888 /* Optimize the special-case of a zero lower bound.
8889
8890 We convert the low_bound to sizetype to avoid some problems
8891 with constant folding. (E.g. suppose the lower bound is 1,
8892 and its mode is QI. Without the conversion,l (ARRAY
8893 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8894 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8895
8896 if (! integer_zerop (low_bound))
8897 index1 = size_diffop_loc (loc, index1,
8898 fold_convert_loc (loc, sizetype,
8899 low_bound));
8900
8901 if (0 > compare_tree_int (index1,
8902 TREE_STRING_LENGTH (init)))
8903 {
8904 tree type = TREE_TYPE (TREE_TYPE (init));
8905 enum machine_mode mode = TYPE_MODE (type);
8906
8907 if (GET_MODE_CLASS (mode) == MODE_INT
8908 && GET_MODE_SIZE (mode) == 1)
8909 return gen_int_mode (TREE_STRING_POINTER (init)
8910 [TREE_INT_CST_LOW (index1)],
8911 mode);
8912 }
8913 }
8914 }
8915 }
8916 }
8917 goto normal_inner_ref;
8918
8919 case COMPONENT_REF:
8920 /* If the operand is a CONSTRUCTOR, we can just extract the
8921 appropriate field if it is present. */
8922 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8923 {
8924 unsigned HOST_WIDE_INT idx;
8925 tree field, value;
8926
8927 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8928 idx, field, value)
8929 if (field == treeop1
8930 /* We can normally use the value of the field in the
8931 CONSTRUCTOR. However, if this is a bitfield in
8932 an integral mode that we can fit in a HOST_WIDE_INT,
8933 we must mask only the number of bits in the bitfield,
8934 since this is done implicitly by the constructor. If
8935 the bitfield does not meet either of those conditions,
8936 we can't do this optimization. */
8937 && (! DECL_BIT_FIELD (field)
8938 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8939 && (GET_MODE_BITSIZE (DECL_MODE (field))
8940 <= HOST_BITS_PER_WIDE_INT))))
8941 {
8942 if (DECL_BIT_FIELD (field)
8943 && modifier == EXPAND_STACK_PARM)
8944 target = 0;
8945 op0 = expand_expr (value, target, tmode, modifier);
8946 if (DECL_BIT_FIELD (field))
8947 {
8948 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8949 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8950
8951 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8952 {
8953 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8954 op0 = expand_and (imode, op0, op1, target);
8955 }
8956 else
8957 {
8958 tree count
8959 = build_int_cst (NULL_TREE,
8960 GET_MODE_BITSIZE (imode) - bitsize);
8961
8962 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8963 target, 0);
8964 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8965 target, 0);
8966 }
8967 }
8968
8969 return op0;
8970 }
8971 }
8972 goto normal_inner_ref;
8973
8974 case BIT_FIELD_REF:
8975 case ARRAY_RANGE_REF:
8976 normal_inner_ref:
8977 {
8978 enum machine_mode mode1, mode2;
8979 HOST_WIDE_INT bitsize, bitpos;
8980 tree offset;
8981 int volatilep = 0, must_force_mem;
8982 bool packedp = false;
8983 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8984 &mode1, &unsignedp, &volatilep, true);
8985 rtx orig_op0, memloc;
8986
8987 /* If we got back the original object, something is wrong. Perhaps
8988 we are evaluating an expression too early. In any event, don't
8989 infinitely recurse. */
8990 gcc_assert (tem != exp);
8991
8992 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
8993 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
8994 && DECL_PACKED (TREE_OPERAND (exp, 1))))
8995 packedp = true;
8996
8997 /* If TEM's type is a union of variable size, pass TARGET to the inner
8998 computation, since it will need a temporary and TARGET is known
8999 to have to do. This occurs in unchecked conversion in Ada. */
9000 orig_op0 = op0
9001 = expand_expr (tem,
9002 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9003 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9004 != INTEGER_CST)
9005 && modifier != EXPAND_STACK_PARM
9006 ? target : NULL_RTX),
9007 VOIDmode,
9008 (modifier == EXPAND_INITIALIZER
9009 || modifier == EXPAND_CONST_ADDRESS
9010 || modifier == EXPAND_STACK_PARM)
9011 ? modifier : EXPAND_NORMAL);
9012
9013
9014 /* If the bitfield is volatile, we want to access it in the
9015 field's mode, not the computed mode. */
9016 if (volatilep
9017 && GET_CODE (op0) == MEM
9018 && flag_strict_volatile_bitfields > 0)
9019 op0 = adjust_address (op0, mode1, 0);
9020
9021 mode2
9022 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9023
9024 /* If we have either an offset, a BLKmode result, or a reference
9025 outside the underlying object, we must force it to memory.
9026 Such a case can occur in Ada if we have unchecked conversion
9027 of an expression from a scalar type to an aggregate type or
9028 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9029 passed a partially uninitialized object or a view-conversion
9030 to a larger size. */
9031 must_force_mem = (offset
9032 || mode1 == BLKmode
9033 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9034
9035 /* Handle CONCAT first. */
9036 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9037 {
9038 if (bitpos == 0
9039 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9040 return op0;
9041 if (bitpos == 0
9042 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9043 && bitsize)
9044 {
9045 op0 = XEXP (op0, 0);
9046 mode2 = GET_MODE (op0);
9047 }
9048 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9049 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9050 && bitpos
9051 && bitsize)
9052 {
9053 op0 = XEXP (op0, 1);
9054 bitpos = 0;
9055 mode2 = GET_MODE (op0);
9056 }
9057 else
9058 /* Otherwise force into memory. */
9059 must_force_mem = 1;
9060 }
9061
9062 /* If this is a constant, put it in a register if it is a legitimate
9063 constant and we don't need a memory reference. */
9064 if (CONSTANT_P (op0)
9065 && mode2 != BLKmode
9066 && LEGITIMATE_CONSTANT_P (op0)
9067 && !must_force_mem)
9068 op0 = force_reg (mode2, op0);
9069
9070 /* Otherwise, if this is a constant, try to force it to the constant
9071 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9072 is a legitimate constant. */
9073 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9074 op0 = validize_mem (memloc);
9075
9076 /* Otherwise, if this is a constant or the object is not in memory
9077 and need be, put it there. */
9078 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9079 {
9080 tree nt = build_qualified_type (TREE_TYPE (tem),
9081 (TYPE_QUALS (TREE_TYPE (tem))
9082 | TYPE_QUAL_CONST));
9083 memloc = assign_temp (nt, 1, 1, 1);
9084 emit_move_insn (memloc, op0);
9085 op0 = memloc;
9086 }
9087
9088 if (offset)
9089 {
9090 enum machine_mode address_mode;
9091 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9092 EXPAND_SUM);
9093
9094 gcc_assert (MEM_P (op0));
9095
9096 address_mode
9097 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9098 if (GET_MODE (offset_rtx) != address_mode)
9099 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9100
9101 if (GET_MODE (op0) == BLKmode
9102 /* A constant address in OP0 can have VOIDmode, we must
9103 not try to call force_reg in that case. */
9104 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9105 && bitsize != 0
9106 && (bitpos % bitsize) == 0
9107 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9108 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9109 {
9110 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9111 bitpos = 0;
9112 }
9113
9114 op0 = offset_address (op0, offset_rtx,
9115 highest_pow2_factor (offset));
9116 }
9117
9118 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9119 record its alignment as BIGGEST_ALIGNMENT. */
9120 if (MEM_P (op0) && bitpos == 0 && offset != 0
9121 && is_aligning_offset (offset, tem))
9122 set_mem_align (op0, BIGGEST_ALIGNMENT);
9123
9124 /* Don't forget about volatility even if this is a bitfield. */
9125 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9126 {
9127 if (op0 == orig_op0)
9128 op0 = copy_rtx (op0);
9129
9130 MEM_VOLATILE_P (op0) = 1;
9131 }
9132
9133 /* In cases where an aligned union has an unaligned object
9134 as a field, we might be extracting a BLKmode value from
9135 an integer-mode (e.g., SImode) object. Handle this case
9136 by doing the extract into an object as wide as the field
9137 (which we know to be the width of a basic mode), then
9138 storing into memory, and changing the mode to BLKmode. */
9139 if (mode1 == VOIDmode
9140 || REG_P (op0) || GET_CODE (op0) == SUBREG
9141 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9142 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9143 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9144 && modifier != EXPAND_CONST_ADDRESS
9145 && modifier != EXPAND_INITIALIZER)
9146 /* If the field is volatile, we always want an aligned
9147 access. */
9148 || (volatilep && flag_strict_volatile_bitfields > 0)
9149 /* If the field isn't aligned enough to fetch as a memref,
9150 fetch it as a bit field. */
9151 || (mode1 != BLKmode
9152 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9153 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9154 || (MEM_P (op0)
9155 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9156 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9157 && ((modifier == EXPAND_CONST_ADDRESS
9158 || modifier == EXPAND_INITIALIZER)
9159 ? STRICT_ALIGNMENT
9160 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9161 || (bitpos % BITS_PER_UNIT != 0)))
9162 /* If the type and the field are a constant size and the
9163 size of the type isn't the same size as the bitfield,
9164 we must use bitfield operations. */
9165 || (bitsize >= 0
9166 && TYPE_SIZE (TREE_TYPE (exp))
9167 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9168 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9169 bitsize)))
9170 {
9171 enum machine_mode ext_mode = mode;
9172
9173 if (ext_mode == BLKmode
9174 && ! (target != 0 && MEM_P (op0)
9175 && MEM_P (target)
9176 && bitpos % BITS_PER_UNIT == 0))
9177 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9178
9179 if (ext_mode == BLKmode)
9180 {
9181 if (target == 0)
9182 target = assign_temp (type, 0, 1, 1);
9183
9184 if (bitsize == 0)
9185 return target;
9186
9187 /* In this case, BITPOS must start at a byte boundary and
9188 TARGET, if specified, must be a MEM. */
9189 gcc_assert (MEM_P (op0)
9190 && (!target || MEM_P (target))
9191 && !(bitpos % BITS_PER_UNIT));
9192
9193 emit_block_move (target,
9194 adjust_address (op0, VOIDmode,
9195 bitpos / BITS_PER_UNIT),
9196 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9197 / BITS_PER_UNIT),
9198 (modifier == EXPAND_STACK_PARM
9199 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9200
9201 return target;
9202 }
9203
9204 op0 = validize_mem (op0);
9205
9206 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9207 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9208
9209 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9210 (modifier == EXPAND_STACK_PARM
9211 ? NULL_RTX : target),
9212 ext_mode, ext_mode);
9213
9214 /* If the result is a record type and BITSIZE is narrower than
9215 the mode of OP0, an integral mode, and this is a big endian
9216 machine, we must put the field into the high-order bits. */
9217 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9218 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9219 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9220 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9221 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9222 - bitsize),
9223 op0, 1);
9224
9225 /* If the result type is BLKmode, store the data into a temporary
9226 of the appropriate type, but with the mode corresponding to the
9227 mode for the data we have (op0's mode). It's tempting to make
9228 this a constant type, since we know it's only being stored once,
9229 but that can cause problems if we are taking the address of this
9230 COMPONENT_REF because the MEM of any reference via that address
9231 will have flags corresponding to the type, which will not
9232 necessarily be constant. */
9233 if (mode == BLKmode)
9234 {
9235 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9236 rtx new_rtx;
9237
9238 /* If the reference doesn't use the alias set of its type,
9239 we cannot create the temporary using that type. */
9240 if (component_uses_parent_alias_set (exp))
9241 {
9242 new_rtx = assign_stack_local (ext_mode, size, 0);
9243 set_mem_alias_set (new_rtx, get_alias_set (exp));
9244 }
9245 else
9246 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9247
9248 emit_move_insn (new_rtx, op0);
9249 op0 = copy_rtx (new_rtx);
9250 PUT_MODE (op0, BLKmode);
9251 set_mem_attributes (op0, exp, 1);
9252 }
9253
9254 return op0;
9255 }
9256
9257 /* If the result is BLKmode, use that to access the object
9258 now as well. */
9259 if (mode == BLKmode)
9260 mode1 = BLKmode;
9261
9262 /* Get a reference to just this component. */
9263 if (modifier == EXPAND_CONST_ADDRESS
9264 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9265 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9266 else
9267 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9268
9269 if (op0 == orig_op0)
9270 op0 = copy_rtx (op0);
9271
9272 set_mem_attributes (op0, exp, 0);
9273 if (REG_P (XEXP (op0, 0)))
9274 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9275
9276 MEM_VOLATILE_P (op0) |= volatilep;
9277 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9278 || modifier == EXPAND_CONST_ADDRESS
9279 || modifier == EXPAND_INITIALIZER)
9280 return op0;
9281 else if (target == 0)
9282 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9283
9284 convert_move (target, op0, unsignedp);
9285 return target;
9286 }
9287
9288 case OBJ_TYPE_REF:
9289 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9290
9291 case CALL_EXPR:
9292 /* All valid uses of __builtin_va_arg_pack () are removed during
9293 inlining. */
9294 if (CALL_EXPR_VA_ARG_PACK (exp))
9295 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9296 {
9297 tree fndecl = get_callee_fndecl (exp), attr;
9298
9299 if (fndecl
9300 && (attr = lookup_attribute ("error",
9301 DECL_ATTRIBUTES (fndecl))) != NULL)
9302 error ("%Kcall to %qs declared with attribute error: %s",
9303 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9304 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9305 if (fndecl
9306 && (attr = lookup_attribute ("warning",
9307 DECL_ATTRIBUTES (fndecl))) != NULL)
9308 warning_at (tree_nonartificial_location (exp),
9309 0, "%Kcall to %qs declared with attribute warning: %s",
9310 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9311 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9312
9313 /* Check for a built-in function. */
9314 if (fndecl && DECL_BUILT_IN (fndecl))
9315 {
9316 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9317 return expand_builtin (exp, target, subtarget, tmode, ignore);
9318 }
9319 }
9320 return expand_call (exp, target, ignore);
9321
9322 case VIEW_CONVERT_EXPR:
9323 op0 = NULL_RTX;
9324
9325 /* If we are converting to BLKmode, try to avoid an intermediate
9326 temporary by fetching an inner memory reference. */
9327 if (mode == BLKmode
9328 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9329 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9330 && handled_component_p (treeop0))
9331 {
9332 enum machine_mode mode1;
9333 HOST_WIDE_INT bitsize, bitpos;
9334 tree offset;
9335 int unsignedp;
9336 int volatilep = 0;
9337 tree tem
9338 = get_inner_reference (treeop0, &bitsize, &bitpos,
9339 &offset, &mode1, &unsignedp, &volatilep,
9340 true);
9341 rtx orig_op0;
9342
9343 /* ??? We should work harder and deal with non-zero offsets. */
9344 if (!offset
9345 && (bitpos % BITS_PER_UNIT) == 0
9346 && bitsize >= 0
9347 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9348 {
9349 /* See the normal_inner_ref case for the rationale. */
9350 orig_op0
9351 = expand_expr (tem,
9352 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9353 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9354 != INTEGER_CST)
9355 && modifier != EXPAND_STACK_PARM
9356 ? target : NULL_RTX),
9357 VOIDmode,
9358 (modifier == EXPAND_INITIALIZER
9359 || modifier == EXPAND_CONST_ADDRESS
9360 || modifier == EXPAND_STACK_PARM)
9361 ? modifier : EXPAND_NORMAL);
9362
9363 if (MEM_P (orig_op0))
9364 {
9365 op0 = orig_op0;
9366
9367 /* Get a reference to just this component. */
9368 if (modifier == EXPAND_CONST_ADDRESS
9369 || modifier == EXPAND_SUM
9370 || modifier == EXPAND_INITIALIZER)
9371 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9372 else
9373 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9374
9375 if (op0 == orig_op0)
9376 op0 = copy_rtx (op0);
9377
9378 set_mem_attributes (op0, treeop0, 0);
9379 if (REG_P (XEXP (op0, 0)))
9380 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9381
9382 MEM_VOLATILE_P (op0) |= volatilep;
9383 }
9384 }
9385 }
9386
9387 if (!op0)
9388 op0 = expand_expr (treeop0,
9389 NULL_RTX, VOIDmode, modifier);
9390
9391 /* If the input and output modes are both the same, we are done. */
9392 if (mode == GET_MODE (op0))
9393 ;
9394 /* If neither mode is BLKmode, and both modes are the same size
9395 then we can use gen_lowpart. */
9396 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9397 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9398 && !COMPLEX_MODE_P (GET_MODE (op0)))
9399 {
9400 if (GET_CODE (op0) == SUBREG)
9401 op0 = force_reg (GET_MODE (op0), op0);
9402 temp = gen_lowpart_common (mode, op0);
9403 if (temp)
9404 op0 = temp;
9405 else
9406 {
9407 if (!REG_P (op0) && !MEM_P (op0))
9408 op0 = force_reg (GET_MODE (op0), op0);
9409 op0 = gen_lowpart (mode, op0);
9410 }
9411 }
9412 /* If both types are integral, convert from one mode to the other. */
9413 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9414 op0 = convert_modes (mode, GET_MODE (op0), op0,
9415 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9416 /* As a last resort, spill op0 to memory, and reload it in a
9417 different mode. */
9418 else if (!MEM_P (op0))
9419 {
9420 /* If the operand is not a MEM, force it into memory. Since we
9421 are going to be changing the mode of the MEM, don't call
9422 force_const_mem for constants because we don't allow pool
9423 constants to change mode. */
9424 tree inner_type = TREE_TYPE (treeop0);
9425
9426 gcc_assert (!TREE_ADDRESSABLE (exp));
9427
9428 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9429 target
9430 = assign_stack_temp_for_type
9431 (TYPE_MODE (inner_type),
9432 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9433
9434 emit_move_insn (target, op0);
9435 op0 = target;
9436 }
9437
9438 /* At this point, OP0 is in the correct mode. If the output type is
9439 such that the operand is known to be aligned, indicate that it is.
9440 Otherwise, we need only be concerned about alignment for non-BLKmode
9441 results. */
9442 if (MEM_P (op0))
9443 {
9444 op0 = copy_rtx (op0);
9445
9446 if (TYPE_ALIGN_OK (type))
9447 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9448 else if (STRICT_ALIGNMENT
9449 && mode != BLKmode
9450 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9451 {
9452 tree inner_type = TREE_TYPE (treeop0);
9453 HOST_WIDE_INT temp_size
9454 = MAX (int_size_in_bytes (inner_type),
9455 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9456 rtx new_rtx
9457 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9458 rtx new_with_op0_mode
9459 = adjust_address (new_rtx, GET_MODE (op0), 0);
9460
9461 gcc_assert (!TREE_ADDRESSABLE (exp));
9462
9463 if (GET_MODE (op0) == BLKmode)
9464 emit_block_move (new_with_op0_mode, op0,
9465 GEN_INT (GET_MODE_SIZE (mode)),
9466 (modifier == EXPAND_STACK_PARM
9467 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9468 else
9469 emit_move_insn (new_with_op0_mode, op0);
9470
9471 op0 = new_rtx;
9472 }
9473
9474 op0 = adjust_address (op0, mode, 0);
9475 }
9476
9477 return op0;
9478
9479 /* Use a compare and a jump for BLKmode comparisons, or for function
9480 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9481
9482 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9483 are occassionally created by folding during expansion. */
9484 case TRUTH_ANDIF_EXPR:
9485 case TRUTH_ORIF_EXPR:
9486 if (! ignore
9487 && (target == 0
9488 || modifier == EXPAND_STACK_PARM
9489 || ! safe_from_p (target, treeop0, 1)
9490 || ! safe_from_p (target, treeop1, 1)
9491 /* Make sure we don't have a hard reg (such as function's return
9492 value) live across basic blocks, if not optimizing. */
9493 || (!optimize && REG_P (target)
9494 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9495 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9496
9497 if (target)
9498 emit_move_insn (target, const0_rtx);
9499
9500 op1 = gen_label_rtx ();
9501 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9502
9503 if (target)
9504 emit_move_insn (target, const1_rtx);
9505
9506 emit_label (op1);
9507 return ignore ? const0_rtx : target;
9508
9509 case STATEMENT_LIST:
9510 {
9511 tree_stmt_iterator iter;
9512
9513 gcc_assert (ignore);
9514
9515 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9516 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9517 }
9518 return const0_rtx;
9519
9520 case COND_EXPR:
9521 /* A COND_EXPR with its type being VOID_TYPE represents a
9522 conditional jump and is handled in
9523 expand_gimple_cond_expr. */
9524 gcc_assert (!VOID_TYPE_P (type));
9525
9526 /* Note that COND_EXPRs whose type is a structure or union
9527 are required to be constructed to contain assignments of
9528 a temporary variable, so that we can evaluate them here
9529 for side effect only. If type is void, we must do likewise. */
9530
9531 gcc_assert (!TREE_ADDRESSABLE (type)
9532 && !ignore
9533 && TREE_TYPE (treeop1) != void_type_node
9534 && TREE_TYPE (treeop2) != void_type_node);
9535
9536 /* If we are not to produce a result, we have no target. Otherwise,
9537 if a target was specified use it; it will not be used as an
9538 intermediate target unless it is safe. If no target, use a
9539 temporary. */
9540
9541 if (modifier != EXPAND_STACK_PARM
9542 && original_target
9543 && safe_from_p (original_target, treeop0, 1)
9544 && GET_MODE (original_target) == mode
9545 #ifdef HAVE_conditional_move
9546 && (! can_conditionally_move_p (mode)
9547 || REG_P (original_target))
9548 #endif
9549 && !MEM_P (original_target))
9550 temp = original_target;
9551 else
9552 temp = assign_temp (type, 0, 0, 1);
9553
9554 do_pending_stack_adjust ();
9555 NO_DEFER_POP;
9556 op0 = gen_label_rtx ();
9557 op1 = gen_label_rtx ();
9558 jumpifnot (treeop0, op0, -1);
9559 store_expr (treeop1, temp,
9560 modifier == EXPAND_STACK_PARM,
9561 false);
9562
9563 emit_jump_insn (gen_jump (op1));
9564 emit_barrier ();
9565 emit_label (op0);
9566 store_expr (treeop2, temp,
9567 modifier == EXPAND_STACK_PARM,
9568 false);
9569
9570 emit_label (op1);
9571 OK_DEFER_POP;
9572 return temp;
9573
9574 case VEC_COND_EXPR:
9575 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9576 return target;
9577
9578 case MODIFY_EXPR:
9579 {
9580 tree lhs = treeop0;
9581 tree rhs = treeop1;
9582 gcc_assert (ignore);
9583
9584 /* Check for |= or &= of a bitfield of size one into another bitfield
9585 of size 1. In this case, (unless we need the result of the
9586 assignment) we can do this more efficiently with a
9587 test followed by an assignment, if necessary.
9588
9589 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9590 things change so we do, this code should be enhanced to
9591 support it. */
9592 if (TREE_CODE (lhs) == COMPONENT_REF
9593 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9594 || TREE_CODE (rhs) == BIT_AND_EXPR)
9595 && TREE_OPERAND (rhs, 0) == lhs
9596 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9597 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9598 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9599 {
9600 rtx label = gen_label_rtx ();
9601 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9602 do_jump (TREE_OPERAND (rhs, 1),
9603 value ? label : 0,
9604 value ? 0 : label, -1);
9605 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9606 MOVE_NONTEMPORAL (exp));
9607 do_pending_stack_adjust ();
9608 emit_label (label);
9609 return const0_rtx;
9610 }
9611
9612 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9613 return const0_rtx;
9614 }
9615
9616 case ADDR_EXPR:
9617 return expand_expr_addr_expr (exp, target, tmode, modifier);
9618
9619 case REALPART_EXPR:
9620 op0 = expand_normal (treeop0);
9621 return read_complex_part (op0, false);
9622
9623 case IMAGPART_EXPR:
9624 op0 = expand_normal (treeop0);
9625 return read_complex_part (op0, true);
9626
9627 case RETURN_EXPR:
9628 case LABEL_EXPR:
9629 case GOTO_EXPR:
9630 case SWITCH_EXPR:
9631 case ASM_EXPR:
9632 /* Expanded in cfgexpand.c. */
9633 gcc_unreachable ();
9634
9635 case TRY_CATCH_EXPR:
9636 case CATCH_EXPR:
9637 case EH_FILTER_EXPR:
9638 case TRY_FINALLY_EXPR:
9639 /* Lowered by tree-eh.c. */
9640 gcc_unreachable ();
9641
9642 case WITH_CLEANUP_EXPR:
9643 case CLEANUP_POINT_EXPR:
9644 case TARGET_EXPR:
9645 case CASE_LABEL_EXPR:
9646 case VA_ARG_EXPR:
9647 case BIND_EXPR:
9648 case INIT_EXPR:
9649 case CONJ_EXPR:
9650 case COMPOUND_EXPR:
9651 case PREINCREMENT_EXPR:
9652 case PREDECREMENT_EXPR:
9653 case POSTINCREMENT_EXPR:
9654 case POSTDECREMENT_EXPR:
9655 case LOOP_EXPR:
9656 case EXIT_EXPR:
9657 /* Lowered by gimplify.c. */
9658 gcc_unreachable ();
9659
9660 case FDESC_EXPR:
9661 /* Function descriptors are not valid except for as
9662 initialization constants, and should not be expanded. */
9663 gcc_unreachable ();
9664
9665 case WITH_SIZE_EXPR:
9666 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9667 have pulled out the size to use in whatever context it needed. */
9668 return expand_expr_real (treeop0, original_target, tmode,
9669 modifier, alt_rtl);
9670
9671 case REALIGN_LOAD_EXPR:
9672 {
9673 tree oprnd0 = treeop0;
9674 tree oprnd1 = treeop1;
9675 tree oprnd2 = treeop2;
9676 rtx op2;
9677
9678 this_optab = optab_for_tree_code (code, type, optab_default);
9679 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9680 op2 = expand_normal (oprnd2);
9681 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9682 target, unsignedp);
9683 gcc_assert (temp);
9684 return temp;
9685 }
9686
9687 case DOT_PROD_EXPR:
9688 {
9689 tree oprnd0 = treeop0;
9690 tree oprnd1 = treeop1;
9691 tree oprnd2 = treeop2;
9692 rtx op2;
9693
9694 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9695 op2 = expand_normal (oprnd2);
9696 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9697 target, unsignedp);
9698 return target;
9699 }
9700
9701 case COMPOUND_LITERAL_EXPR:
9702 {
9703 /* Initialize the anonymous variable declared in the compound
9704 literal, then return the variable. */
9705 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9706
9707 /* Create RTL for this variable. */
9708 if (!DECL_RTL_SET_P (decl))
9709 {
9710 if (DECL_HARD_REGISTER (decl))
9711 /* The user specified an assembler name for this variable.
9712 Set that up now. */
9713 rest_of_decl_compilation (decl, 0, 0);
9714 else
9715 expand_decl (decl);
9716 }
9717
9718 return expand_expr_real (decl, original_target, tmode,
9719 modifier, alt_rtl);
9720 }
9721
9722 default:
9723 return expand_expr_real_2 (&ops, target, tmode, modifier);
9724 }
9725 }
9726 \f
9727 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9728 signedness of TYPE), possibly returning the result in TARGET. */
9729 static rtx
9730 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9731 {
9732 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9733 if (target && GET_MODE (target) != GET_MODE (exp))
9734 target = 0;
9735 /* For constant values, reduce using build_int_cst_type. */
9736 if (CONST_INT_P (exp))
9737 {
9738 HOST_WIDE_INT value = INTVAL (exp);
9739 tree t = build_int_cst_type (type, value);
9740 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9741 }
9742 else if (TYPE_UNSIGNED (type))
9743 {
9744 rtx mask = immed_double_int_const (double_int_mask (prec),
9745 GET_MODE (exp));
9746 return expand_and (GET_MODE (exp), exp, mask, target);
9747 }
9748 else
9749 {
9750 tree count = build_int_cst (NULL_TREE,
9751 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9752 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9753 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9754 }
9755 }
9756 \f
9757 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9758 when applied to the address of EXP produces an address known to be
9759 aligned more than BIGGEST_ALIGNMENT. */
9760
9761 static int
9762 is_aligning_offset (const_tree offset, const_tree exp)
9763 {
9764 /* Strip off any conversions. */
9765 while (CONVERT_EXPR_P (offset))
9766 offset = TREE_OPERAND (offset, 0);
9767
9768 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9769 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9770 if (TREE_CODE (offset) != BIT_AND_EXPR
9771 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9772 || compare_tree_int (TREE_OPERAND (offset, 1),
9773 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9774 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9775 return 0;
9776
9777 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9778 It must be NEGATE_EXPR. Then strip any more conversions. */
9779 offset = TREE_OPERAND (offset, 0);
9780 while (CONVERT_EXPR_P (offset))
9781 offset = TREE_OPERAND (offset, 0);
9782
9783 if (TREE_CODE (offset) != NEGATE_EXPR)
9784 return 0;
9785
9786 offset = TREE_OPERAND (offset, 0);
9787 while (CONVERT_EXPR_P (offset))
9788 offset = TREE_OPERAND (offset, 0);
9789
9790 /* This must now be the address of EXP. */
9791 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9792 }
9793 \f
9794 /* Return the tree node if an ARG corresponds to a string constant or zero
9795 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9796 in bytes within the string that ARG is accessing. The type of the
9797 offset will be `sizetype'. */
9798
9799 tree
9800 string_constant (tree arg, tree *ptr_offset)
9801 {
9802 tree array, offset, lower_bound;
9803 STRIP_NOPS (arg);
9804
9805 if (TREE_CODE (arg) == ADDR_EXPR)
9806 {
9807 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9808 {
9809 *ptr_offset = size_zero_node;
9810 return TREE_OPERAND (arg, 0);
9811 }
9812 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9813 {
9814 array = TREE_OPERAND (arg, 0);
9815 offset = size_zero_node;
9816 }
9817 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9818 {
9819 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9820 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9821 if (TREE_CODE (array) != STRING_CST
9822 && TREE_CODE (array) != VAR_DECL)
9823 return 0;
9824
9825 /* Check if the array has a nonzero lower bound. */
9826 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9827 if (!integer_zerop (lower_bound))
9828 {
9829 /* If the offset and base aren't both constants, return 0. */
9830 if (TREE_CODE (lower_bound) != INTEGER_CST)
9831 return 0;
9832 if (TREE_CODE (offset) != INTEGER_CST)
9833 return 0;
9834 /* Adjust offset by the lower bound. */
9835 offset = size_diffop (fold_convert (sizetype, offset),
9836 fold_convert (sizetype, lower_bound));
9837 }
9838 }
9839 else
9840 return 0;
9841 }
9842 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9843 {
9844 tree arg0 = TREE_OPERAND (arg, 0);
9845 tree arg1 = TREE_OPERAND (arg, 1);
9846
9847 STRIP_NOPS (arg0);
9848 STRIP_NOPS (arg1);
9849
9850 if (TREE_CODE (arg0) == ADDR_EXPR
9851 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9852 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9853 {
9854 array = TREE_OPERAND (arg0, 0);
9855 offset = arg1;
9856 }
9857 else if (TREE_CODE (arg1) == ADDR_EXPR
9858 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9859 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9860 {
9861 array = TREE_OPERAND (arg1, 0);
9862 offset = arg0;
9863 }
9864 else
9865 return 0;
9866 }
9867 else
9868 return 0;
9869
9870 if (TREE_CODE (array) == STRING_CST)
9871 {
9872 *ptr_offset = fold_convert (sizetype, offset);
9873 return array;
9874 }
9875 else if (TREE_CODE (array) == VAR_DECL
9876 || TREE_CODE (array) == CONST_DECL)
9877 {
9878 int length;
9879
9880 /* Variables initialized to string literals can be handled too. */
9881 if (!const_value_known_p (array)
9882 || !DECL_INITIAL (array)
9883 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9884 return 0;
9885
9886 /* Avoid const char foo[4] = "abcde"; */
9887 if (DECL_SIZE_UNIT (array) == NULL_TREE
9888 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9889 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9890 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9891 return 0;
9892
9893 /* If variable is bigger than the string literal, OFFSET must be constant
9894 and inside of the bounds of the string literal. */
9895 offset = fold_convert (sizetype, offset);
9896 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9897 && (! host_integerp (offset, 1)
9898 || compare_tree_int (offset, length) >= 0))
9899 return 0;
9900
9901 *ptr_offset = offset;
9902 return DECL_INITIAL (array);
9903 }
9904
9905 return 0;
9906 }
9907 \f
9908 /* Generate code to calculate OPS, and exploded expression
9909 using a store-flag instruction and return an rtx for the result.
9910 OPS reflects a comparison.
9911
9912 If TARGET is nonzero, store the result there if convenient.
9913
9914 Return zero if there is no suitable set-flag instruction
9915 available on this machine.
9916
9917 Once expand_expr has been called on the arguments of the comparison,
9918 we are committed to doing the store flag, since it is not safe to
9919 re-evaluate the expression. We emit the store-flag insn by calling
9920 emit_store_flag, but only expand the arguments if we have a reason
9921 to believe that emit_store_flag will be successful. If we think that
9922 it will, but it isn't, we have to simulate the store-flag with a
9923 set/jump/set sequence. */
9924
9925 static rtx
9926 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9927 {
9928 enum rtx_code code;
9929 tree arg0, arg1, type;
9930 tree tem;
9931 enum machine_mode operand_mode;
9932 int unsignedp;
9933 rtx op0, op1;
9934 rtx subtarget = target;
9935 location_t loc = ops->location;
9936
9937 arg0 = ops->op0;
9938 arg1 = ops->op1;
9939
9940 /* Don't crash if the comparison was erroneous. */
9941 if (arg0 == error_mark_node || arg1 == error_mark_node)
9942 return const0_rtx;
9943
9944 type = TREE_TYPE (arg0);
9945 operand_mode = TYPE_MODE (type);
9946 unsignedp = TYPE_UNSIGNED (type);
9947
9948 /* We won't bother with BLKmode store-flag operations because it would mean
9949 passing a lot of information to emit_store_flag. */
9950 if (operand_mode == BLKmode)
9951 return 0;
9952
9953 /* We won't bother with store-flag operations involving function pointers
9954 when function pointers must be canonicalized before comparisons. */
9955 #ifdef HAVE_canonicalize_funcptr_for_compare
9956 if (HAVE_canonicalize_funcptr_for_compare
9957 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9958 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9959 == FUNCTION_TYPE))
9960 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9961 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9962 == FUNCTION_TYPE))))
9963 return 0;
9964 #endif
9965
9966 STRIP_NOPS (arg0);
9967 STRIP_NOPS (arg1);
9968
9969 /* Get the rtx comparison code to use. We know that EXP is a comparison
9970 operation of some type. Some comparisons against 1 and -1 can be
9971 converted to comparisons with zero. Do so here so that the tests
9972 below will be aware that we have a comparison with zero. These
9973 tests will not catch constants in the first operand, but constants
9974 are rarely passed as the first operand. */
9975
9976 switch (ops->code)
9977 {
9978 case EQ_EXPR:
9979 code = EQ;
9980 break;
9981 case NE_EXPR:
9982 code = NE;
9983 break;
9984 case LT_EXPR:
9985 if (integer_onep (arg1))
9986 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9987 else
9988 code = unsignedp ? LTU : LT;
9989 break;
9990 case LE_EXPR:
9991 if (! unsignedp && integer_all_onesp (arg1))
9992 arg1 = integer_zero_node, code = LT;
9993 else
9994 code = unsignedp ? LEU : LE;
9995 break;
9996 case GT_EXPR:
9997 if (! unsignedp && integer_all_onesp (arg1))
9998 arg1 = integer_zero_node, code = GE;
9999 else
10000 code = unsignedp ? GTU : GT;
10001 break;
10002 case GE_EXPR:
10003 if (integer_onep (arg1))
10004 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10005 else
10006 code = unsignedp ? GEU : GE;
10007 break;
10008
10009 case UNORDERED_EXPR:
10010 code = UNORDERED;
10011 break;
10012 case ORDERED_EXPR:
10013 code = ORDERED;
10014 break;
10015 case UNLT_EXPR:
10016 code = UNLT;
10017 break;
10018 case UNLE_EXPR:
10019 code = UNLE;
10020 break;
10021 case UNGT_EXPR:
10022 code = UNGT;
10023 break;
10024 case UNGE_EXPR:
10025 code = UNGE;
10026 break;
10027 case UNEQ_EXPR:
10028 code = UNEQ;
10029 break;
10030 case LTGT_EXPR:
10031 code = LTGT;
10032 break;
10033
10034 default:
10035 gcc_unreachable ();
10036 }
10037
10038 /* Put a constant second. */
10039 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10040 || TREE_CODE (arg0) == FIXED_CST)
10041 {
10042 tem = arg0; arg0 = arg1; arg1 = tem;
10043 code = swap_condition (code);
10044 }
10045
10046 /* If this is an equality or inequality test of a single bit, we can
10047 do this by shifting the bit being tested to the low-order bit and
10048 masking the result with the constant 1. If the condition was EQ,
10049 we xor it with 1. This does not require an scc insn and is faster
10050 than an scc insn even if we have it.
10051
10052 The code to make this transformation was moved into fold_single_bit_test,
10053 so we just call into the folder and expand its result. */
10054
10055 if ((code == NE || code == EQ)
10056 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10057 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10058 {
10059 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10060 return expand_expr (fold_single_bit_test (loc,
10061 code == NE ? NE_EXPR : EQ_EXPR,
10062 arg0, arg1, type),
10063 target, VOIDmode, EXPAND_NORMAL);
10064 }
10065
10066 if (! get_subtarget (target)
10067 || GET_MODE (subtarget) != operand_mode)
10068 subtarget = 0;
10069
10070 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10071
10072 if (target == 0)
10073 target = gen_reg_rtx (mode);
10074
10075 /* Try a cstore if possible. */
10076 return emit_store_flag_force (target, code, op0, op1,
10077 operand_mode, unsignedp, 1);
10078 }
10079 \f
10080
10081 /* Stubs in case we haven't got a casesi insn. */
10082 #ifndef HAVE_casesi
10083 # define HAVE_casesi 0
10084 # define gen_casesi(a, b, c, d, e) (0)
10085 # define CODE_FOR_casesi CODE_FOR_nothing
10086 #endif
10087
10088 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10089 0 otherwise (i.e. if there is no casesi instruction). */
10090 int
10091 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10092 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10093 rtx fallback_label ATTRIBUTE_UNUSED)
10094 {
10095 enum machine_mode index_mode = SImode;
10096 int index_bits = GET_MODE_BITSIZE (index_mode);
10097 rtx op1, op2, index;
10098 enum machine_mode op_mode;
10099
10100 if (! HAVE_casesi)
10101 return 0;
10102
10103 /* Convert the index to SImode. */
10104 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10105 {
10106 enum machine_mode omode = TYPE_MODE (index_type);
10107 rtx rangertx = expand_normal (range);
10108
10109 /* We must handle the endpoints in the original mode. */
10110 index_expr = build2 (MINUS_EXPR, index_type,
10111 index_expr, minval);
10112 minval = integer_zero_node;
10113 index = expand_normal (index_expr);
10114 if (default_label)
10115 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10116 omode, 1, default_label);
10117 /* Now we can safely truncate. */
10118 index = convert_to_mode (index_mode, index, 0);
10119 }
10120 else
10121 {
10122 if (TYPE_MODE (index_type) != index_mode)
10123 {
10124 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10125 index_expr = fold_convert (index_type, index_expr);
10126 }
10127
10128 index = expand_normal (index_expr);
10129 }
10130
10131 do_pending_stack_adjust ();
10132
10133 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10134 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10135 (index, op_mode))
10136 index = copy_to_mode_reg (op_mode, index);
10137
10138 op1 = expand_normal (minval);
10139
10140 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10141 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10142 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10143 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10144 (op1, op_mode))
10145 op1 = copy_to_mode_reg (op_mode, op1);
10146
10147 op2 = expand_normal (range);
10148
10149 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10150 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10151 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10152 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10153 (op2, op_mode))
10154 op2 = copy_to_mode_reg (op_mode, op2);
10155
10156 emit_jump_insn (gen_casesi (index, op1, op2,
10157 table_label, !default_label
10158 ? fallback_label : default_label));
10159 return 1;
10160 }
10161
10162 /* Attempt to generate a tablejump instruction; same concept. */
10163 #ifndef HAVE_tablejump
10164 #define HAVE_tablejump 0
10165 #define gen_tablejump(x, y) (0)
10166 #endif
10167
10168 /* Subroutine of the next function.
10169
10170 INDEX is the value being switched on, with the lowest value
10171 in the table already subtracted.
10172 MODE is its expected mode (needed if INDEX is constant).
10173 RANGE is the length of the jump table.
10174 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10175
10176 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10177 index value is out of range. */
10178
10179 static void
10180 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10181 rtx default_label)
10182 {
10183 rtx temp, vector;
10184
10185 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10186 cfun->cfg->max_jumptable_ents = INTVAL (range);
10187
10188 /* Do an unsigned comparison (in the proper mode) between the index
10189 expression and the value which represents the length of the range.
10190 Since we just finished subtracting the lower bound of the range
10191 from the index expression, this comparison allows us to simultaneously
10192 check that the original index expression value is both greater than
10193 or equal to the minimum value of the range and less than or equal to
10194 the maximum value of the range. */
10195
10196 if (default_label)
10197 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10198 default_label);
10199
10200 /* If index is in range, it must fit in Pmode.
10201 Convert to Pmode so we can index with it. */
10202 if (mode != Pmode)
10203 index = convert_to_mode (Pmode, index, 1);
10204
10205 /* Don't let a MEM slip through, because then INDEX that comes
10206 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10207 and break_out_memory_refs will go to work on it and mess it up. */
10208 #ifdef PIC_CASE_VECTOR_ADDRESS
10209 if (flag_pic && !REG_P (index))
10210 index = copy_to_mode_reg (Pmode, index);
10211 #endif
10212
10213 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10214 GET_MODE_SIZE, because this indicates how large insns are. The other
10215 uses should all be Pmode, because they are addresses. This code
10216 could fail if addresses and insns are not the same size. */
10217 index = gen_rtx_PLUS (Pmode,
10218 gen_rtx_MULT (Pmode, index,
10219 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10220 gen_rtx_LABEL_REF (Pmode, table_label));
10221 #ifdef PIC_CASE_VECTOR_ADDRESS
10222 if (flag_pic)
10223 index = PIC_CASE_VECTOR_ADDRESS (index);
10224 else
10225 #endif
10226 index = memory_address (CASE_VECTOR_MODE, index);
10227 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10228 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10229 convert_move (temp, vector, 0);
10230
10231 emit_jump_insn (gen_tablejump (temp, table_label));
10232
10233 /* If we are generating PIC code or if the table is PC-relative, the
10234 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10235 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10236 emit_barrier ();
10237 }
10238
10239 int
10240 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10241 rtx table_label, rtx default_label)
10242 {
10243 rtx index;
10244
10245 if (! HAVE_tablejump)
10246 return 0;
10247
10248 index_expr = fold_build2 (MINUS_EXPR, index_type,
10249 fold_convert (index_type, index_expr),
10250 fold_convert (index_type, minval));
10251 index = expand_normal (index_expr);
10252 do_pending_stack_adjust ();
10253
10254 do_tablejump (index, TYPE_MODE (index_type),
10255 convert_modes (TYPE_MODE (index_type),
10256 TYPE_MODE (TREE_TYPE (range)),
10257 expand_normal (range),
10258 TYPE_UNSIGNED (TREE_TYPE (range))),
10259 table_label, default_label);
10260 return 1;
10261 }
10262
10263 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10264 static rtx
10265 const_vector_from_tree (tree exp)
10266 {
10267 rtvec v;
10268 int units, i;
10269 tree link, elt;
10270 enum machine_mode inner, mode;
10271
10272 mode = TYPE_MODE (TREE_TYPE (exp));
10273
10274 if (initializer_zerop (exp))
10275 return CONST0_RTX (mode);
10276
10277 units = GET_MODE_NUNITS (mode);
10278 inner = GET_MODE_INNER (mode);
10279
10280 v = rtvec_alloc (units);
10281
10282 link = TREE_VECTOR_CST_ELTS (exp);
10283 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10284 {
10285 elt = TREE_VALUE (link);
10286
10287 if (TREE_CODE (elt) == REAL_CST)
10288 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10289 inner);
10290 else if (TREE_CODE (elt) == FIXED_CST)
10291 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10292 inner);
10293 else
10294 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10295 inner);
10296 }
10297
10298 /* Initialize remaining elements to 0. */
10299 for (; i < units; ++i)
10300 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10301
10302 return gen_rtx_CONST_VECTOR (mode, v);
10303 }
10304
10305 /* Build a decl for a personality function given a language prefix. */
10306
10307 tree
10308 build_personality_function (const char *lang)
10309 {
10310 const char *unwind_and_version;
10311 tree decl, type;
10312 char *name;
10313
10314 switch (targetm.except_unwind_info ())
10315 {
10316 case UI_NONE:
10317 return NULL;
10318 case UI_SJLJ:
10319 unwind_and_version = "_sj0";
10320 break;
10321 case UI_DWARF2:
10322 case UI_TARGET:
10323 unwind_and_version = "_v0";
10324 break;
10325 default:
10326 gcc_unreachable ();
10327 }
10328
10329 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10330
10331 type = build_function_type_list (integer_type_node, integer_type_node,
10332 long_long_unsigned_type_node,
10333 ptr_type_node, ptr_type_node, NULL_TREE);
10334 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10335 get_identifier (name), type);
10336 DECL_ARTIFICIAL (decl) = 1;
10337 DECL_EXTERNAL (decl) = 1;
10338 TREE_PUBLIC (decl) = 1;
10339
10340 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10341 are the flags assigned by targetm.encode_section_info. */
10342 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10343
10344 return decl;
10345 }
10346
10347 /* Extracts the personality function of DECL and returns the corresponding
10348 libfunc. */
10349
10350 rtx
10351 get_personality_function (tree decl)
10352 {
10353 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10354 enum eh_personality_kind pk;
10355
10356 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10357 if (pk == eh_personality_none)
10358 return NULL;
10359
10360 if (!personality
10361 && pk == eh_personality_any)
10362 personality = lang_hooks.eh_personality ();
10363
10364 if (pk == eh_personality_lang)
10365 gcc_assert (personality != NULL_TREE);
10366
10367 return XEXP (DECL_RTL (personality), 0);
10368 }
10369
10370 #include "gt-expr.h"