tree-cfg.c (verify_types_in_gimple_reference): Verify TARGET_MEM_REF a bit.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces_d
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
443
444 if (to_mode == full_mode)
445 {
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
455
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
459 }
460
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
465 {
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
475 }
476
477 /* Now both modes are integers. */
478
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
482 {
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
490
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
494 {
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
503 }
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
508 {
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
511 {
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
515 }
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
519 }
520
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
523
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
526
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
529
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
535
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
537
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
540
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_insn (insns);
565 return;
566 }
567
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
571 {
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
581 }
582
583 /* Now follow all the conversions between integers
584 no more than a word long. */
585
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
590 {
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
603 }
604
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
607 {
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
611 {
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
614 }
615 else
616 {
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
620
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
650 }
651 }
652
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
656 {
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
660 }
661
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
665
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 {
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
674 }
675
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
678 }
679
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
686
687 rtx
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 {
690 return convert_modes (mode, VOIDmode, x, unsignedp);
691 }
692
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
697
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
700
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702
703 rtx
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 {
706 rtx temp;
707
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
710
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
715
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
718
719 if (mode == oldmode)
720 return x;
721
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
727
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
731 {
732 double_int val = uhwi_to_double_int (INTVAL (x));
733
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737
738 return immed_double_int_const (val, mode);
739 }
740
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 {
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 {
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* STORE_MAX_PIECES is the number of bytes at a time that we can
796 store efficiently. Due to internal GCC limitations, this is
797 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
798 for an immediate constant. */
799
800 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
801
802 /* Determine whether the LEN bytes can be moved by using several move
803 instructions. Return nonzero if a call to move_by_pieces should
804 succeed. */
805
806 int
807 can_move_by_pieces (unsigned HOST_WIDE_INT len,
808 unsigned int align ATTRIBUTE_UNUSED)
809 {
810 return MOVE_BY_PIECES_P (len, align);
811 }
812
813 /* Generate several move instructions to copy LEN bytes from block FROM to
814 block TO. (These are MEM rtx's with BLKmode).
815
816 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
817 used to push FROM to the stack.
818
819 ALIGN is maximum stack alignment we can assume.
820
821 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
822 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
823 stpcpy. */
824
825 rtx
826 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
827 unsigned int align, int endp)
828 {
829 struct move_by_pieces_d data;
830 enum machine_mode to_addr_mode, from_addr_mode
831 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
832 rtx to_addr, from_addr = XEXP (from, 0);
833 unsigned int max_size = MOVE_MAX_PIECES + 1;
834 enum machine_mode mode = VOIDmode, tmode;
835 enum insn_code icode;
836
837 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
838
839 data.offset = 0;
840 data.from_addr = from_addr;
841 if (to)
842 {
843 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
844 to_addr = XEXP (to, 0);
845 data.to = to;
846 data.autinc_to
847 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
848 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
849 data.reverse
850 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
851 }
852 else
853 {
854 to_addr_mode = VOIDmode;
855 to_addr = NULL_RTX;
856 data.to = NULL_RTX;
857 data.autinc_to = 1;
858 #ifdef STACK_GROWS_DOWNWARD
859 data.reverse = 1;
860 #else
861 data.reverse = 0;
862 #endif
863 }
864 data.to_addr = to_addr;
865 data.from = from;
866 data.autinc_from
867 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
868 || GET_CODE (from_addr) == POST_INC
869 || GET_CODE (from_addr) == POST_DEC);
870
871 data.explicit_inc_from = 0;
872 data.explicit_inc_to = 0;
873 if (data.reverse) data.offset = len;
874 data.len = len;
875
876 /* If copying requires more than two move insns,
877 copy addresses to registers (to make displacements shorter)
878 and use post-increment if available. */
879 if (!(data.autinc_from && data.autinc_to)
880 && move_by_pieces_ninsns (len, align, max_size) > 2)
881 {
882 /* Find the mode of the largest move... */
883 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
884 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
885 if (GET_MODE_SIZE (tmode) < max_size)
886 mode = tmode;
887
888 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
889 {
890 data.from_addr = copy_to_mode_reg (from_addr_mode,
891 plus_constant (from_addr, len));
892 data.autinc_from = 1;
893 data.explicit_inc_from = -1;
894 }
895 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
896 {
897 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
898 data.autinc_from = 1;
899 data.explicit_inc_from = 1;
900 }
901 if (!data.autinc_from && CONSTANT_P (from_addr))
902 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
903 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
904 {
905 data.to_addr = copy_to_mode_reg (to_addr_mode,
906 plus_constant (to_addr, len));
907 data.autinc_to = 1;
908 data.explicit_inc_to = -1;
909 }
910 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
911 {
912 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
913 data.autinc_to = 1;
914 data.explicit_inc_to = 1;
915 }
916 if (!data.autinc_to && CONSTANT_P (to_addr))
917 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
918 }
919
920 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
921 if (align >= GET_MODE_ALIGNMENT (tmode))
922 align = GET_MODE_ALIGNMENT (tmode);
923 else
924 {
925 enum machine_mode xmode;
926
927 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
928 tmode != VOIDmode;
929 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
930 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
931 || SLOW_UNALIGNED_ACCESS (tmode, align))
932 break;
933
934 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
935 }
936
937 /* First move what we can in the largest integer mode, then go to
938 successively smaller modes. */
939
940 while (max_size > 1)
941 {
942 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
943 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
944 if (GET_MODE_SIZE (tmode) < max_size)
945 mode = tmode;
946
947 if (mode == VOIDmode)
948 break;
949
950 icode = optab_handler (mov_optab, mode);
951 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
952 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
953
954 max_size = GET_MODE_SIZE (mode);
955 }
956
957 /* The code above should have handled everything. */
958 gcc_assert (!data.len);
959
960 if (endp)
961 {
962 rtx to1;
963
964 gcc_assert (!data.reverse);
965 if (data.autinc_to)
966 {
967 if (endp == 2)
968 {
969 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
970 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
971 else
972 data.to_addr = copy_to_mode_reg (to_addr_mode,
973 plus_constant (data.to_addr,
974 -1));
975 }
976 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
977 data.offset);
978 }
979 else
980 {
981 if (endp == 2)
982 --data.offset;
983 to1 = adjust_address (data.to, QImode, data.offset);
984 }
985 return to1;
986 }
987 else
988 return data.to;
989 }
990
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
993
994 static unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
996 unsigned int max_size)
997 {
998 unsigned HOST_WIDE_INT n_insns = 0;
999 enum machine_mode tmode;
1000
1001 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1002 if (align >= GET_MODE_ALIGNMENT (tmode))
1003 align = GET_MODE_ALIGNMENT (tmode);
1004 else
1005 {
1006 enum machine_mode tmode, xmode;
1007
1008 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1009 tmode != VOIDmode;
1010 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1011 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1012 || SLOW_UNALIGNED_ACCESS (tmode, align))
1013 break;
1014
1015 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1016 }
1017
1018 while (max_size > 1)
1019 {
1020 enum machine_mode mode = VOIDmode;
1021 enum insn_code icode;
1022
1023 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1024 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1025 if (GET_MODE_SIZE (tmode) < max_size)
1026 mode = tmode;
1027
1028 if (mode == VOIDmode)
1029 break;
1030
1031 icode = optab_handler (mov_optab, mode);
1032 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1033 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1034
1035 max_size = GET_MODE_SIZE (mode);
1036 }
1037
1038 gcc_assert (!l);
1039 return n_insns;
1040 }
1041
1042 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1043 with move instructions for mode MODE. GENFUN is the gen_... function
1044 to make a move insn for that mode. DATA has all the other info. */
1045
1046 static void
1047 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1048 struct move_by_pieces_d *data)
1049 {
1050 unsigned int size = GET_MODE_SIZE (mode);
1051 rtx to1 = NULL_RTX, from1;
1052
1053 while (data->len >= size)
1054 {
1055 if (data->reverse)
1056 data->offset -= size;
1057
1058 if (data->to)
1059 {
1060 if (data->autinc_to)
1061 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1062 data->offset);
1063 else
1064 to1 = adjust_address (data->to, mode, data->offset);
1065 }
1066
1067 if (data->autinc_from)
1068 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1069 data->offset);
1070 else
1071 from1 = adjust_address (data->from, mode, data->offset);
1072
1073 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1074 emit_insn (gen_add2_insn (data->to_addr,
1075 GEN_INT (-(HOST_WIDE_INT)size)));
1076 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1077 emit_insn (gen_add2_insn (data->from_addr,
1078 GEN_INT (-(HOST_WIDE_INT)size)));
1079
1080 if (data->to)
1081 emit_insn ((*genfun) (to1, from1));
1082 else
1083 {
1084 #ifdef PUSH_ROUNDING
1085 emit_single_push_insn (mode, from1, NULL);
1086 #else
1087 gcc_unreachable ();
1088 #endif
1089 }
1090
1091 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1092 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1094 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1095
1096 if (! data->reverse)
1097 data->offset += size;
1098
1099 data->len -= size;
1100 }
1101 }
1102 \f
1103 /* Emit code to move a block Y to a block X. This may be done with
1104 string-move instructions, with multiple scalar move instructions,
1105 or with a library call.
1106
1107 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1108 SIZE is an rtx that says how long they are.
1109 ALIGN is the maximum alignment we can assume they have.
1110 METHOD describes what kind of copy this is, and what mechanisms may be used.
1111
1112 Return the address of the new block, if memcpy is called and returns it,
1113 0 otherwise. */
1114
1115 rtx
1116 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1117 unsigned int expected_align, HOST_WIDE_INT expected_size)
1118 {
1119 bool may_use_call;
1120 rtx retval = 0;
1121 unsigned int align;
1122
1123 gcc_assert (size);
1124 if (CONST_INT_P (size)
1125 && INTVAL (size) == 0)
1126 return 0;
1127
1128 switch (method)
1129 {
1130 case BLOCK_OP_NORMAL:
1131 case BLOCK_OP_TAILCALL:
1132 may_use_call = true;
1133 break;
1134
1135 case BLOCK_OP_CALL_PARM:
1136 may_use_call = block_move_libcall_safe_for_call_parm ();
1137
1138 /* Make inhibit_defer_pop nonzero around the library call
1139 to force it to pop the arguments right away. */
1140 NO_DEFER_POP;
1141 break;
1142
1143 case BLOCK_OP_NO_LIBCALL:
1144 may_use_call = false;
1145 break;
1146
1147 default:
1148 gcc_unreachable ();
1149 }
1150
1151 gcc_assert (MEM_P (x) && MEM_P (y));
1152 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1153 gcc_assert (align >= BITS_PER_UNIT);
1154
1155 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1156 block copy is more efficient for other large modes, e.g. DCmode. */
1157 x = adjust_address (x, BLKmode, 0);
1158 y = adjust_address (y, BLKmode, 0);
1159
1160 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1161 can be incorrect is coming from __builtin_memcpy. */
1162 if (CONST_INT_P (size))
1163 {
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1168 }
1169
1170 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align,
1173 expected_align, expected_size))
1174 ;
1175 else if (may_use_call
1176 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1177 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1178 retval = emit_block_move_via_libcall (x, y, size,
1179 method == BLOCK_OP_TAILCALL);
1180 else
1181 emit_block_move_via_loop (x, y, size, align);
1182
1183 if (method == BLOCK_OP_CALL_PARM)
1184 OK_DEFER_POP;
1185
1186 return retval;
1187 }
1188
1189 rtx
1190 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1191 {
1192 return emit_block_move_hints (x, y, size, method, 0, -1);
1193 }
1194
1195 /* A subroutine of emit_block_move. Returns true if calling the
1196 block move libcall will not clobber any parameters which may have
1197 already been placed on the stack. */
1198
1199 static bool
1200 block_move_libcall_safe_for_call_parm (void)
1201 {
1202 #if defined (REG_PARM_STACK_SPACE)
1203 tree fn;
1204 #endif
1205
1206 /* If arguments are pushed on the stack, then they're safe. */
1207 if (PUSH_ARGS)
1208 return true;
1209
1210 /* If registers go on the stack anyway, any argument is sure to clobber
1211 an outgoing argument. */
1212 #if defined (REG_PARM_STACK_SPACE)
1213 fn = emit_block_move_libcall_fn (false);
1214 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1215 depend on its argument. */
1216 (void) fn;
1217 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1218 && REG_PARM_STACK_SPACE (fn) != 0)
1219 return false;
1220 #endif
1221
1222 /* If any argument goes in memory, then it might clobber an outgoing
1223 argument. */
1224 {
1225 CUMULATIVE_ARGS args_so_far;
1226 tree fn, arg;
1227
1228 fn = emit_block_move_libcall_fn (false);
1229 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1230
1231 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1232 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1233 {
1234 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1235 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1236 NULL_TREE, true);
1237 if (!tmp || !REG_P (tmp))
1238 return false;
1239 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1240 return false;
1241 targetm.calls.function_arg_advance (&args_so_far, mode,
1242 NULL_TREE, true);
1243 }
1244 }
1245 return true;
1246 }
1247
1248 /* A subroutine of emit_block_move. Expand a movmem pattern;
1249 return true if successful. */
1250
1251 static bool
1252 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1253 unsigned int expected_align, HOST_WIDE_INT expected_size)
1254 {
1255 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1256 int save_volatile_ok = volatile_ok;
1257 enum machine_mode mode;
1258
1259 if (expected_align < align)
1260 expected_align = align;
1261
1262 /* Since this is a move insn, we don't care about volatility. */
1263 volatile_ok = 1;
1264
1265 /* Try the most limited insn first, because there's no point
1266 including more than one in the machine description unless
1267 the more limited one has some advantage. */
1268
1269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1270 mode = GET_MODE_WIDER_MODE (mode))
1271 {
1272 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1273 insn_operand_predicate_fn pred;
1274
1275 if (code != CODE_FOR_nothing
1276 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1277 here because if SIZE is less than the mode mask, as it is
1278 returned by the macro, it will definitely be less than the
1279 actual mode mask. */
1280 && ((CONST_INT_P (size)
1281 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1282 <= (GET_MODE_MASK (mode) >> 1)))
1283 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1284 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1285 || (*pred) (x, BLKmode))
1286 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1287 || (*pred) (y, BLKmode))
1288 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1289 || (*pred) (opalign, VOIDmode)))
1290 {
1291 rtx op2;
1292 rtx last = get_last_insn ();
1293 rtx pat;
1294
1295 op2 = convert_to_mode (mode, size, 1);
1296 pred = insn_data[(int) code].operand[2].predicate;
1297 if (pred != 0 && ! (*pred) (op2, mode))
1298 op2 = copy_to_mode_reg (mode, op2);
1299
1300 /* ??? When called via emit_block_move_for_call, it'd be
1301 nice if there were some way to inform the backend, so
1302 that it doesn't fail the expansion because it thinks
1303 emitting the libcall would be more efficient. */
1304
1305 if (insn_data[(int) code].n_operands == 4)
1306 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1307 else
1308 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1309 GEN_INT (expected_align
1310 / BITS_PER_UNIT),
1311 GEN_INT (expected_size));
1312 if (pat)
1313 {
1314 emit_insn (pat);
1315 volatile_ok = save_volatile_ok;
1316 return true;
1317 }
1318 else
1319 delete_insns_since (last);
1320 }
1321 }
1322
1323 volatile_ok = save_volatile_ok;
1324 return false;
1325 }
1326
1327 /* A subroutine of emit_block_move. Expand a call to memcpy.
1328 Return the return value from memcpy, 0 otherwise. */
1329
1330 rtx
1331 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1332 {
1333 rtx dst_addr, src_addr;
1334 tree call_expr, fn, src_tree, dst_tree, size_tree;
1335 enum machine_mode size_mode;
1336 rtx retval;
1337
1338 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1339 pseudos. We can then place those new pseudos into a VAR_DECL and
1340 use them later. */
1341
1342 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1343 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1344
1345 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1346 src_addr = convert_memory_address (ptr_mode, src_addr);
1347
1348 dst_tree = make_tree (ptr_type_node, dst_addr);
1349 src_tree = make_tree (ptr_type_node, src_addr);
1350
1351 size_mode = TYPE_MODE (sizetype);
1352
1353 size = convert_to_mode (size_mode, size, 1);
1354 size = copy_to_mode_reg (size_mode, size);
1355
1356 /* It is incorrect to use the libcall calling conventions to call
1357 memcpy in this context. This could be a user call to memcpy and
1358 the user may wish to examine the return value from memcpy. For
1359 targets where libcalls and normal calls have different conventions
1360 for returning pointers, we could end up generating incorrect code. */
1361
1362 size_tree = make_tree (sizetype, size);
1363
1364 fn = emit_block_move_libcall_fn (true);
1365 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1366 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1367
1368 retval = expand_normal (call_expr);
1369
1370 return retval;
1371 }
1372
1373 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1374 for the function we use for block copies. The first time FOR_CALL
1375 is true, we call assemble_external. */
1376
1377 static GTY(()) tree block_move_fn;
1378
1379 void
1380 init_block_move_fn (const char *asmspec)
1381 {
1382 if (!block_move_fn)
1383 {
1384 tree args, fn;
1385
1386 fn = get_identifier ("memcpy");
1387 args = build_function_type_list (ptr_type_node, ptr_type_node,
1388 const_ptr_type_node, sizetype,
1389 NULL_TREE);
1390
1391 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1392 DECL_EXTERNAL (fn) = 1;
1393 TREE_PUBLIC (fn) = 1;
1394 DECL_ARTIFICIAL (fn) = 1;
1395 TREE_NOTHROW (fn) = 1;
1396 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1397 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1398
1399 block_move_fn = fn;
1400 }
1401
1402 if (asmspec)
1403 set_user_assembler_name (block_move_fn, asmspec);
1404 }
1405
1406 static tree
1407 emit_block_move_libcall_fn (int for_call)
1408 {
1409 static bool emitted_extern;
1410
1411 if (!block_move_fn)
1412 init_block_move_fn (NULL);
1413
1414 if (for_call && !emitted_extern)
1415 {
1416 emitted_extern = true;
1417 make_decl_rtl (block_move_fn);
1418 assemble_external (block_move_fn);
1419 }
1420
1421 return block_move_fn;
1422 }
1423
1424 /* A subroutine of emit_block_move. Copy the data via an explicit
1425 loop. This is used only when libcalls are forbidden. */
1426 /* ??? It'd be nice to copy in hunks larger than QImode. */
1427
1428 static void
1429 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1430 unsigned int align ATTRIBUTE_UNUSED)
1431 {
1432 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1433 enum machine_mode x_addr_mode
1434 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1435 enum machine_mode y_addr_mode
1436 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1437 enum machine_mode iter_mode;
1438
1439 iter_mode = GET_MODE (size);
1440 if (iter_mode == VOIDmode)
1441 iter_mode = word_mode;
1442
1443 top_label = gen_label_rtx ();
1444 cmp_label = gen_label_rtx ();
1445 iter = gen_reg_rtx (iter_mode);
1446
1447 emit_move_insn (iter, const0_rtx);
1448
1449 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1450 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1451 do_pending_stack_adjust ();
1452
1453 emit_jump (cmp_label);
1454 emit_label (top_label);
1455
1456 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1457 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1458
1459 if (x_addr_mode != y_addr_mode)
1460 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1461 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1462
1463 x = change_address (x, QImode, x_addr);
1464 y = change_address (y, QImode, y_addr);
1465
1466 emit_move_insn (x, y);
1467
1468 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1469 true, OPTAB_LIB_WIDEN);
1470 if (tmp != iter)
1471 emit_move_insn (iter, tmp);
1472
1473 emit_label (cmp_label);
1474
1475 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1476 true, top_label);
1477 }
1478 \f
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1481
1482 void
1483 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1484 {
1485 int i;
1486 #ifdef HAVE_load_multiple
1487 rtx pat;
1488 rtx last;
1489 #endif
1490
1491 if (nregs == 0)
1492 return;
1493
1494 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1495 x = validize_mem (force_const_mem (mode, x));
1496
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple)
1500 {
1501 last = get_last_insn ();
1502 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1503 GEN_INT (nregs));
1504 if (pat)
1505 {
1506 emit_insn (pat);
1507 return;
1508 }
1509 else
1510 delete_insns_since (last);
1511 }
1512 #endif
1513
1514 for (i = 0; i < nregs; i++)
1515 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1516 operand_subword_force (x, i, mode));
1517 }
1518
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1521
1522 void
1523 move_block_from_reg (int regno, rtx x, int nregs)
1524 {
1525 int i;
1526
1527 if (nregs == 0)
1528 return;
1529
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple)
1533 {
1534 rtx last = get_last_insn ();
1535 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1536 GEN_INT (nregs));
1537 if (pat)
1538 {
1539 emit_insn (pat);
1540 return;
1541 }
1542 else
1543 delete_insns_since (last);
1544 }
1545 #endif
1546
1547 for (i = 0; i < nregs; i++)
1548 {
1549 rtx tem = operand_subword (x, i, 1, BLKmode);
1550
1551 gcc_assert (tem);
1552
1553 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1554 }
1555 }
1556
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1562
1563 rtx
1564 gen_group_rtx (rtx orig)
1565 {
1566 int i, length;
1567 rtx *tmps;
1568
1569 gcc_assert (GET_CODE (orig) == PARALLEL);
1570
1571 length = XVECLEN (orig, 0);
1572 tmps = XALLOCAVEC (rtx, length);
1573
1574 /* Skip a NULL entry in first slot. */
1575 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1576
1577 if (i)
1578 tmps[0] = 0;
1579
1580 for (; i < length; i++)
1581 {
1582 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1583 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1584
1585 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1586 }
1587
1588 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1589 }
1590
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1594
1595 static void
1596 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1597 {
1598 rtx src;
1599 int start, i;
1600 enum machine_mode m = GET_MODE (orig_src);
1601
1602 gcc_assert (GET_CODE (dst) == PARALLEL);
1603
1604 if (m != VOIDmode
1605 && !SCALAR_INT_MODE_P (m)
1606 && !MEM_P (orig_src)
1607 && GET_CODE (orig_src) != CONCAT)
1608 {
1609 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1610 if (imode == BLKmode)
1611 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1612 else
1613 src = gen_reg_rtx (imode);
1614 if (imode != BLKmode)
1615 src = gen_lowpart (GET_MODE (orig_src), src);
1616 emit_move_insn (src, orig_src);
1617 /* ...and back again. */
1618 if (imode != BLKmode)
1619 src = gen_lowpart (imode, src);
1620 emit_group_load_1 (tmps, dst, src, type, ssize);
1621 return;
1622 }
1623
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst, 0, 0), 0))
1627 start = 0;
1628 else
1629 start = 1;
1630
1631 /* Process the pieces. */
1632 for (i = start; i < XVECLEN (dst, 0); i++)
1633 {
1634 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1635 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1636 unsigned int bytelen = GET_MODE_SIZE (mode);
1637 int shift = 0;
1638
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1641 {
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1644 if (
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1647 == (BYTES_BIG_ENDIAN ? upward : downward)
1648 #else
1649 BYTES_BIG_ENDIAN
1650 #endif
1651 )
1652 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1653 bytelen = ssize - bytepos;
1654 gcc_assert (bytelen > 0);
1655 }
1656
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1660 src = orig_src;
1661 if (!MEM_P (orig_src)
1662 && (!CONSTANT_P (orig_src)
1663 || (GET_MODE (orig_src) != mode
1664 && GET_MODE (orig_src) != VOIDmode)))
1665 {
1666 if (GET_MODE (orig_src) == VOIDmode)
1667 src = gen_reg_rtx (mode);
1668 else
1669 src = gen_reg_rtx (GET_MODE (orig_src));
1670
1671 emit_move_insn (src, orig_src);
1672 }
1673
1674 /* Optimize the access just a bit. */
1675 if (MEM_P (src)
1676 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1677 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1678 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1679 && bytelen == GET_MODE_SIZE (mode))
1680 {
1681 tmps[i] = gen_reg_rtx (mode);
1682 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1683 }
1684 else if (COMPLEX_MODE_P (mode)
1685 && GET_MODE (src) == mode
1686 && bytelen == GET_MODE_SIZE (mode))
1687 /* Let emit_move_complex do the bulk of the work. */
1688 tmps[i] = src;
1689 else if (GET_CODE (src) == CONCAT)
1690 {
1691 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1692 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1693
1694 if ((bytepos == 0 && bytelen == slen0)
1695 || (bytepos != 0 && bytepos + bytelen <= slen))
1696 {
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1700 to be extracted. */
1701 tmps[i] = XEXP (src, bytepos / slen0);
1702 if (! CONSTANT_P (tmps[i])
1703 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1704 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1705 (bytepos % slen0) * BITS_PER_UNIT,
1706 1, NULL_RTX, mode, mode);
1707 }
1708 else
1709 {
1710 rtx mem;
1711
1712 gcc_assert (!bytepos);
1713 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1714 emit_move_insn (mem, src);
1715 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1716 0, 1, NULL_RTX, mode, mode);
1717 }
1718 }
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst))
1723 && REG_P (src))
1724 {
1725 int slen = GET_MODE_SIZE (GET_MODE (src));
1726 rtx mem;
1727
1728 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1729 emit_move_insn (mem, src);
1730 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1731 }
1732 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1733 && XVECLEN (dst, 0) > 1)
1734 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1735 else if (CONSTANT_P (src))
1736 {
1737 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1738
1739 if (len == ssize)
1740 tmps[i] = src;
1741 else
1742 {
1743 rtx first, second;
1744
1745 gcc_assert (2 * len == ssize);
1746 split_double (src, &first, &second);
1747 if (i)
1748 tmps[i] = second;
1749 else
1750 tmps[i] = first;
1751 }
1752 }
1753 else if (REG_P (src) && GET_MODE (src) == mode)
1754 tmps[i] = src;
1755 else
1756 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1757 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1758 mode, mode);
1759
1760 if (shift)
1761 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1762 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1763 }
1764 }
1765
1766 /* Emit code to move a block SRC of type TYPE to a block DST,
1767 where DST is non-consecutive registers represented by a PARALLEL.
1768 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1769 if not known. */
1770
1771 void
1772 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1773 {
1774 rtx *tmps;
1775 int i;
1776
1777 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1778 emit_group_load_1 (tmps, dst, src, type, ssize);
1779
1780 /* Copy the extracted pieces into the proper (probable) hard regs. */
1781 for (i = 0; i < XVECLEN (dst, 0); i++)
1782 {
1783 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1784 if (d == NULL)
1785 continue;
1786 emit_move_insn (d, tmps[i]);
1787 }
1788 }
1789
1790 /* Similar, but load SRC into new pseudos in a format that looks like
1791 PARALLEL. This can later be fed to emit_group_move to get things
1792 in the right place. */
1793
1794 rtx
1795 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1796 {
1797 rtvec vec;
1798 int i;
1799
1800 vec = rtvec_alloc (XVECLEN (parallel, 0));
1801 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1802
1803 /* Convert the vector to look just like the original PARALLEL, except
1804 with the computed values. */
1805 for (i = 0; i < XVECLEN (parallel, 0); i++)
1806 {
1807 rtx e = XVECEXP (parallel, 0, i);
1808 rtx d = XEXP (e, 0);
1809
1810 if (d)
1811 {
1812 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1813 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1814 }
1815 RTVEC_ELT (vec, i) = e;
1816 }
1817
1818 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1819 }
1820
1821 /* Emit code to move a block SRC to block DST, where SRC and DST are
1822 non-consecutive groups of registers, each represented by a PARALLEL. */
1823
1824 void
1825 emit_group_move (rtx dst, rtx src)
1826 {
1827 int i;
1828
1829 gcc_assert (GET_CODE (src) == PARALLEL
1830 && GET_CODE (dst) == PARALLEL
1831 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1832
1833 /* Skip first entry if NULL. */
1834 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1835 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1836 XEXP (XVECEXP (src, 0, i), 0));
1837 }
1838
1839 /* Move a group of registers represented by a PARALLEL into pseudos. */
1840
1841 rtx
1842 emit_group_move_into_temps (rtx src)
1843 {
1844 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1845 int i;
1846
1847 for (i = 0; i < XVECLEN (src, 0); i++)
1848 {
1849 rtx e = XVECEXP (src, 0, i);
1850 rtx d = XEXP (e, 0);
1851
1852 if (d)
1853 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1854 RTVEC_ELT (vec, i) = e;
1855 }
1856
1857 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1858 }
1859
1860 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1861 where SRC is non-consecutive registers represented by a PARALLEL.
1862 SSIZE represents the total size of block ORIG_DST, or -1 if not
1863 known. */
1864
1865 void
1866 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1867 {
1868 rtx *tmps, dst;
1869 int start, finish, i;
1870 enum machine_mode m = GET_MODE (orig_dst);
1871
1872 gcc_assert (GET_CODE (src) == PARALLEL);
1873
1874 if (!SCALAR_INT_MODE_P (m)
1875 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1876 {
1877 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1878 if (imode == BLKmode)
1879 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1880 else
1881 dst = gen_reg_rtx (imode);
1882 emit_group_store (dst, src, type, ssize);
1883 if (imode != BLKmode)
1884 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1885 emit_move_insn (orig_dst, dst);
1886 return;
1887 }
1888
1889 /* Check for a NULL entry, used to indicate that the parameter goes
1890 both on the stack and in registers. */
1891 if (XEXP (XVECEXP (src, 0, 0), 0))
1892 start = 0;
1893 else
1894 start = 1;
1895 finish = XVECLEN (src, 0);
1896
1897 tmps = XALLOCAVEC (rtx, finish);
1898
1899 /* Copy the (probable) hard regs into pseudos. */
1900 for (i = start; i < finish; i++)
1901 {
1902 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1903 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1904 {
1905 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1906 emit_move_insn (tmps[i], reg);
1907 }
1908 else
1909 tmps[i] = reg;
1910 }
1911
1912 /* If we won't be storing directly into memory, protect the real destination
1913 from strange tricks we might play. */
1914 dst = orig_dst;
1915 if (GET_CODE (dst) == PARALLEL)
1916 {
1917 rtx temp;
1918
1919 /* We can get a PARALLEL dst if there is a conditional expression in
1920 a return statement. In that case, the dst and src are the same,
1921 so no action is necessary. */
1922 if (rtx_equal_p (dst, src))
1923 return;
1924
1925 /* It is unclear if we can ever reach here, but we may as well handle
1926 it. Allocate a temporary, and split this into a store/load to/from
1927 the temporary. */
1928
1929 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1930 emit_group_store (temp, src, type, ssize);
1931 emit_group_load (dst, temp, type, ssize);
1932 return;
1933 }
1934 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1935 {
1936 enum machine_mode outer = GET_MODE (dst);
1937 enum machine_mode inner;
1938 HOST_WIDE_INT bytepos;
1939 bool done = false;
1940 rtx temp;
1941
1942 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1943 dst = gen_reg_rtx (outer);
1944
1945 /* Make life a bit easier for combine. */
1946 /* If the first element of the vector is the low part
1947 of the destination mode, use a paradoxical subreg to
1948 initialize the destination. */
1949 if (start < finish)
1950 {
1951 inner = GET_MODE (tmps[start]);
1952 bytepos = subreg_lowpart_offset (inner, outer);
1953 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1954 {
1955 temp = simplify_gen_subreg (outer, tmps[start],
1956 inner, 0);
1957 if (temp)
1958 {
1959 emit_move_insn (dst, temp);
1960 done = true;
1961 start++;
1962 }
1963 }
1964 }
1965
1966 /* If the first element wasn't the low part, try the last. */
1967 if (!done
1968 && start < finish - 1)
1969 {
1970 inner = GET_MODE (tmps[finish - 1]);
1971 bytepos = subreg_lowpart_offset (inner, outer);
1972 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1973 {
1974 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1975 inner, 0);
1976 if (temp)
1977 {
1978 emit_move_insn (dst, temp);
1979 done = true;
1980 finish--;
1981 }
1982 }
1983 }
1984
1985 /* Otherwise, simply initialize the result to zero. */
1986 if (!done)
1987 emit_move_insn (dst, CONST0_RTX (outer));
1988 }
1989
1990 /* Process the pieces. */
1991 for (i = start; i < finish; i++)
1992 {
1993 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1994 enum machine_mode mode = GET_MODE (tmps[i]);
1995 unsigned int bytelen = GET_MODE_SIZE (mode);
1996 unsigned int adj_bytelen = bytelen;
1997 rtx dest = dst;
1998
1999 /* Handle trailing fragments that run over the size of the struct. */
2000 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2001 adj_bytelen = ssize - bytepos;
2002
2003 if (GET_CODE (dst) == CONCAT)
2004 {
2005 if (bytepos + adj_bytelen
2006 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2007 dest = XEXP (dst, 0);
2008 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2009 {
2010 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2011 dest = XEXP (dst, 1);
2012 }
2013 else
2014 {
2015 enum machine_mode dest_mode = GET_MODE (dest);
2016 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2017
2018 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2019
2020 if (GET_MODE_ALIGNMENT (dest_mode)
2021 >= GET_MODE_ALIGNMENT (tmp_mode))
2022 {
2023 dest = assign_stack_temp (dest_mode,
2024 GET_MODE_SIZE (dest_mode),
2025 0);
2026 emit_move_insn (adjust_address (dest,
2027 tmp_mode,
2028 bytepos),
2029 tmps[i]);
2030 dst = dest;
2031 }
2032 else
2033 {
2034 dest = assign_stack_temp (tmp_mode,
2035 GET_MODE_SIZE (tmp_mode),
2036 0);
2037 emit_move_insn (dest, tmps[i]);
2038 dst = adjust_address (dest, dest_mode, bytepos);
2039 }
2040 break;
2041 }
2042 }
2043
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2045 {
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2055 )
2056 {
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2061 }
2062 bytelen = adj_bytelen;
2063 }
2064
2065 /* Optimize the access just a bit. */
2066 if (MEM_P (dest)
2067 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2068 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2069 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2070 && bytelen == GET_MODE_SIZE (mode))
2071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2072 else
2073 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2074 mode, tmps[i]);
2075 }
2076
2077 /* Copy from the pseudo into the (probable) hard reg. */
2078 if (orig_dst != dst)
2079 emit_move_insn (orig_dst, dst);
2080 }
2081
2082 /* Generate code to copy a BLKmode object of TYPE out of a
2083 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2084 is null, a stack temporary is created. TGTBLK is returned.
2085
2086 The purpose of this routine is to handle functions that return
2087 BLKmode structures in registers. Some machines (the PA for example)
2088 want to return all small structures in registers regardless of the
2089 structure's alignment. */
2090
2091 rtx
2092 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2093 {
2094 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2095 rtx src = NULL, dst = NULL;
2096 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2097 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2098 enum machine_mode copy_mode;
2099
2100 if (tgtblk == 0)
2101 {
2102 tgtblk = assign_temp (build_qualified_type (type,
2103 (TYPE_QUALS (type)
2104 | TYPE_QUAL_CONST)),
2105 0, 1, 1);
2106 preserve_temp_slots (tgtblk);
2107 }
2108
2109 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2110 into a new pseudo which is a full word. */
2111
2112 if (GET_MODE (srcreg) != BLKmode
2113 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2114 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2115
2116 /* If the structure doesn't take up a whole number of words, see whether
2117 SRCREG is padded on the left or on the right. If it's on the left,
2118 set PADDING_CORRECTION to the number of bits to skip.
2119
2120 In most ABIs, the structure will be returned at the least end of
2121 the register, which translates to right padding on little-endian
2122 targets and left padding on big-endian targets. The opposite
2123 holds if the structure is returned at the most significant
2124 end of the register. */
2125 if (bytes % UNITS_PER_WORD != 0
2126 && (targetm.calls.return_in_msb (type)
2127 ? !BYTES_BIG_ENDIAN
2128 : BYTES_BIG_ENDIAN))
2129 padding_correction
2130 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2131
2132 /* Copy the structure BITSIZE bits at a time. If the target lives in
2133 memory, take care of not reading/writing past its end by selecting
2134 a copy mode suited to BITSIZE. This should always be possible given
2135 how it is computed.
2136
2137 We could probably emit more efficient code for machines which do not use
2138 strict alignment, but it doesn't seem worth the effort at the current
2139 time. */
2140
2141 copy_mode = word_mode;
2142 if (MEM_P (tgtblk))
2143 {
2144 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2145 if (mem_mode != BLKmode)
2146 copy_mode = mem_mode;
2147 }
2148
2149 for (bitpos = 0, xbitpos = padding_correction;
2150 bitpos < bytes * BITS_PER_UNIT;
2151 bitpos += bitsize, xbitpos += bitsize)
2152 {
2153 /* We need a new source operand each time xbitpos is on a
2154 word boundary and when xbitpos == padding_correction
2155 (the first time through). */
2156 if (xbitpos % BITS_PER_WORD == 0
2157 || xbitpos == padding_correction)
2158 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2159 GET_MODE (srcreg));
2160
2161 /* We need a new destination operand each time bitpos is on
2162 a word boundary. */
2163 if (bitpos % BITS_PER_WORD == 0)
2164 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2165
2166 /* Use xbitpos for the source extraction (right justified) and
2167 bitpos for the destination store (left justified). */
2168 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2169 extract_bit_field (src, bitsize,
2170 xbitpos % BITS_PER_WORD, 1,
2171 NULL_RTX, copy_mode, copy_mode));
2172 }
2173
2174 return tgtblk;
2175 }
2176
2177 /* Add a USE expression for REG to the (possibly empty) list pointed
2178 to by CALL_FUSAGE. REG must denote a hard register. */
2179
2180 void
2181 use_reg (rtx *call_fusage, rtx reg)
2182 {
2183 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2184
2185 *call_fusage
2186 = gen_rtx_EXPR_LIST (VOIDmode,
2187 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2188 }
2189
2190 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2191 starting at REGNO. All of these registers must be hard registers. */
2192
2193 void
2194 use_regs (rtx *call_fusage, int regno, int nregs)
2195 {
2196 int i;
2197
2198 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2199
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2202 }
2203
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2207
2208 void
2209 use_group_regs (rtx *call_fusage, rtx regs)
2210 {
2211 int i;
2212
2213 for (i = 0; i < XVECLEN (regs, 0); i++)
2214 {
2215 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2216
2217 /* A NULL entry means the parameter goes both on the stack and in
2218 registers. This can also be a MEM for targets that pass values
2219 partially on the stack and partially in registers. */
2220 if (reg != 0 && REG_P (reg))
2221 use_reg (call_fusage, reg);
2222 }
2223 }
2224
2225 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2226 assigment and the code of the expresion on the RHS is CODE. Return
2227 NULL otherwise. */
2228
2229 static gimple
2230 get_def_for_expr (tree name, enum tree_code code)
2231 {
2232 gimple def_stmt;
2233
2234 if (TREE_CODE (name) != SSA_NAME)
2235 return NULL;
2236
2237 def_stmt = get_gimple_for_ssa_name (name);
2238 if (!def_stmt
2239 || gimple_assign_rhs_code (def_stmt) != code)
2240 return NULL;
2241
2242 return def_stmt;
2243 }
2244 \f
2245
2246 /* Determine whether the LEN bytes generated by CONSTFUN can be
2247 stored to memory using several move instructions. CONSTFUNDATA is
2248 a pointer which will be passed as argument in every CONSTFUN call.
2249 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2250 a memset operation and false if it's a copy of a constant string.
2251 Return nonzero if a call to store_by_pieces should succeed. */
2252
2253 int
2254 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2255 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2256 void *constfundata, unsigned int align, bool memsetp)
2257 {
2258 unsigned HOST_WIDE_INT l;
2259 unsigned int max_size;
2260 HOST_WIDE_INT offset = 0;
2261 enum machine_mode mode, tmode;
2262 enum insn_code icode;
2263 int reverse;
2264 rtx cst;
2265
2266 if (len == 0)
2267 return 1;
2268
2269 if (! (memsetp
2270 ? SET_BY_PIECES_P (len, align)
2271 : STORE_BY_PIECES_P (len, align)))
2272 return 0;
2273
2274 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2275 if (align >= GET_MODE_ALIGNMENT (tmode))
2276 align = GET_MODE_ALIGNMENT (tmode);
2277 else
2278 {
2279 enum machine_mode xmode;
2280
2281 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2282 tmode != VOIDmode;
2283 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2284 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2285 || SLOW_UNALIGNED_ACCESS (tmode, align))
2286 break;
2287
2288 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2289 }
2290
2291 /* We would first store what we can in the largest integer mode, then go to
2292 successively smaller modes. */
2293
2294 for (reverse = 0;
2295 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2296 reverse++)
2297 {
2298 l = len;
2299 mode = VOIDmode;
2300 max_size = STORE_MAX_PIECES + 1;
2301 while (max_size > 1)
2302 {
2303 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2304 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2305 if (GET_MODE_SIZE (tmode) < max_size)
2306 mode = tmode;
2307
2308 if (mode == VOIDmode)
2309 break;
2310
2311 icode = optab_handler (mov_optab, mode);
2312 if (icode != CODE_FOR_nothing
2313 && align >= GET_MODE_ALIGNMENT (mode))
2314 {
2315 unsigned int size = GET_MODE_SIZE (mode);
2316
2317 while (l >= size)
2318 {
2319 if (reverse)
2320 offset -= size;
2321
2322 cst = (*constfun) (constfundata, offset, mode);
2323 if (!LEGITIMATE_CONSTANT_P (cst))
2324 return 0;
2325
2326 if (!reverse)
2327 offset += size;
2328
2329 l -= size;
2330 }
2331 }
2332
2333 max_size = GET_MODE_SIZE (mode);
2334 }
2335
2336 /* The code above should have handled everything. */
2337 gcc_assert (!l);
2338 }
2339
2340 return 1;
2341 }
2342
2343 /* Generate several move instructions to store LEN bytes generated by
2344 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2345 pointer which will be passed as argument in every CONSTFUN call.
2346 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2347 a memset operation and false if it's a copy of a constant string.
2348 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2349 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2350 stpcpy. */
2351
2352 rtx
2353 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2354 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2355 void *constfundata, unsigned int align, bool memsetp, int endp)
2356 {
2357 enum machine_mode to_addr_mode
2358 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2359 struct store_by_pieces_d data;
2360
2361 if (len == 0)
2362 {
2363 gcc_assert (endp != 2);
2364 return to;
2365 }
2366
2367 gcc_assert (memsetp
2368 ? SET_BY_PIECES_P (len, align)
2369 : STORE_BY_PIECES_P (len, align));
2370 data.constfun = constfun;
2371 data.constfundata = constfundata;
2372 data.len = len;
2373 data.to = to;
2374 store_by_pieces_1 (&data, align);
2375 if (endp)
2376 {
2377 rtx to1;
2378
2379 gcc_assert (!data.reverse);
2380 if (data.autinc_to)
2381 {
2382 if (endp == 2)
2383 {
2384 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2385 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2386 else
2387 data.to_addr = copy_to_mode_reg (to_addr_mode,
2388 plus_constant (data.to_addr,
2389 -1));
2390 }
2391 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2392 data.offset);
2393 }
2394 else
2395 {
2396 if (endp == 2)
2397 --data.offset;
2398 to1 = adjust_address (data.to, QImode, data.offset);
2399 }
2400 return to1;
2401 }
2402 else
2403 return data.to;
2404 }
2405
2406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2408
2409 static void
2410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2411 {
2412 struct store_by_pieces_d data;
2413
2414 if (len == 0)
2415 return;
2416
2417 data.constfun = clear_by_pieces_1;
2418 data.constfundata = NULL;
2419 data.len = len;
2420 data.to = to;
2421 store_by_pieces_1 (&data, align);
2422 }
2423
2424 /* Callback routine for clear_by_pieces.
2425 Return const0_rtx unconditionally. */
2426
2427 static rtx
2428 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2429 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2430 enum machine_mode mode ATTRIBUTE_UNUSED)
2431 {
2432 return const0_rtx;
2433 }
2434
2435 /* Subroutine of clear_by_pieces and store_by_pieces.
2436 Generate several move instructions to store LEN bytes of block TO. (A MEM
2437 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2438
2439 static void
2440 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2441 unsigned int align ATTRIBUTE_UNUSED)
2442 {
2443 enum machine_mode to_addr_mode
2444 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2445 rtx to_addr = XEXP (data->to, 0);
2446 unsigned int max_size = STORE_MAX_PIECES + 1;
2447 enum machine_mode mode = VOIDmode, tmode;
2448 enum insn_code icode;
2449
2450 data->offset = 0;
2451 data->to_addr = to_addr;
2452 data->autinc_to
2453 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2454 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2455
2456 data->explicit_inc_to = 0;
2457 data->reverse
2458 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2459 if (data->reverse)
2460 data->offset = data->len;
2461
2462 /* If storing requires more than two move insns,
2463 copy addresses to registers (to make displacements shorter)
2464 and use post-increment if available. */
2465 if (!data->autinc_to
2466 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2467 {
2468 /* Determine the main mode we'll be using. */
2469 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2470 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2471 if (GET_MODE_SIZE (tmode) < max_size)
2472 mode = tmode;
2473
2474 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2475 {
2476 data->to_addr = copy_to_mode_reg (to_addr_mode,
2477 plus_constant (to_addr, data->len));
2478 data->autinc_to = 1;
2479 data->explicit_inc_to = -1;
2480 }
2481
2482 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2483 && ! data->autinc_to)
2484 {
2485 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2486 data->autinc_to = 1;
2487 data->explicit_inc_to = 1;
2488 }
2489
2490 if ( !data->autinc_to && CONSTANT_P (to_addr))
2491 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2492 }
2493
2494 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2495 if (align >= GET_MODE_ALIGNMENT (tmode))
2496 align = GET_MODE_ALIGNMENT (tmode);
2497 else
2498 {
2499 enum machine_mode xmode;
2500
2501 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2502 tmode != VOIDmode;
2503 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2504 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2505 || SLOW_UNALIGNED_ACCESS (tmode, align))
2506 break;
2507
2508 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2509 }
2510
2511 /* First store what we can in the largest integer mode, then go to
2512 successively smaller modes. */
2513
2514 while (max_size > 1)
2515 {
2516 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2517 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2518 if (GET_MODE_SIZE (tmode) < max_size)
2519 mode = tmode;
2520
2521 if (mode == VOIDmode)
2522 break;
2523
2524 icode = optab_handler (mov_optab, mode);
2525 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2526 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2527
2528 max_size = GET_MODE_SIZE (mode);
2529 }
2530
2531 /* The code above should have handled everything. */
2532 gcc_assert (!data->len);
2533 }
2534
2535 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2536 with move instructions for mode MODE. GENFUN is the gen_... function
2537 to make a move insn for that mode. DATA has all the other info. */
2538
2539 static void
2540 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2541 struct store_by_pieces_d *data)
2542 {
2543 unsigned int size = GET_MODE_SIZE (mode);
2544 rtx to1, cst;
2545
2546 while (data->len >= size)
2547 {
2548 if (data->reverse)
2549 data->offset -= size;
2550
2551 if (data->autinc_to)
2552 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2553 data->offset);
2554 else
2555 to1 = adjust_address (data->to, mode, data->offset);
2556
2557 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2558 emit_insn (gen_add2_insn (data->to_addr,
2559 GEN_INT (-(HOST_WIDE_INT) size)));
2560
2561 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2562 emit_insn ((*genfun) (to1, cst));
2563
2564 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2565 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2566
2567 if (! data->reverse)
2568 data->offset += size;
2569
2570 data->len -= size;
2571 }
2572 }
2573 \f
2574 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2575 its length in bytes. */
2576
2577 rtx
2578 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2579 unsigned int expected_align, HOST_WIDE_INT expected_size)
2580 {
2581 enum machine_mode mode = GET_MODE (object);
2582 unsigned int align;
2583
2584 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2585
2586 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2587 just move a zero. Otherwise, do this a piece at a time. */
2588 if (mode != BLKmode
2589 && CONST_INT_P (size)
2590 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2591 {
2592 rtx zero = CONST0_RTX (mode);
2593 if (zero != NULL)
2594 {
2595 emit_move_insn (object, zero);
2596 return NULL;
2597 }
2598
2599 if (COMPLEX_MODE_P (mode))
2600 {
2601 zero = CONST0_RTX (GET_MODE_INNER (mode));
2602 if (zero != NULL)
2603 {
2604 write_complex_part (object, zero, 0);
2605 write_complex_part (object, zero, 1);
2606 return NULL;
2607 }
2608 }
2609 }
2610
2611 if (size == const0_rtx)
2612 return NULL;
2613
2614 align = MEM_ALIGN (object);
2615
2616 if (CONST_INT_P (size)
2617 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2618 clear_by_pieces (object, INTVAL (size), align);
2619 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2620 expected_align, expected_size))
2621 ;
2622 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2623 return set_storage_via_libcall (object, size, const0_rtx,
2624 method == BLOCK_OP_TAILCALL);
2625 else
2626 gcc_unreachable ();
2627
2628 return NULL;
2629 }
2630
2631 rtx
2632 clear_storage (rtx object, rtx size, enum block_op_methods method)
2633 {
2634 return clear_storage_hints (object, size, method, 0, -1);
2635 }
2636
2637
2638 /* A subroutine of clear_storage. Expand a call to memset.
2639 Return the return value of memset, 0 otherwise. */
2640
2641 rtx
2642 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2643 {
2644 tree call_expr, fn, object_tree, size_tree, val_tree;
2645 enum machine_mode size_mode;
2646 rtx retval;
2647
2648 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2649 place those into new pseudos into a VAR_DECL and use them later. */
2650
2651 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2652
2653 size_mode = TYPE_MODE (sizetype);
2654 size = convert_to_mode (size_mode, size, 1);
2655 size = copy_to_mode_reg (size_mode, size);
2656
2657 /* It is incorrect to use the libcall calling conventions to call
2658 memset in this context. This could be a user call to memset and
2659 the user may wish to examine the return value from memset. For
2660 targets where libcalls and normal calls have different conventions
2661 for returning pointers, we could end up generating incorrect code. */
2662
2663 object_tree = make_tree (ptr_type_node, object);
2664 if (!CONST_INT_P (val))
2665 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2666 size_tree = make_tree (sizetype, size);
2667 val_tree = make_tree (integer_type_node, val);
2668
2669 fn = clear_storage_libcall_fn (true);
2670 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2671 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2672
2673 retval = expand_normal (call_expr);
2674
2675 return retval;
2676 }
2677
2678 /* A subroutine of set_storage_via_libcall. Create the tree node
2679 for the function we use for block clears. The first time FOR_CALL
2680 is true, we call assemble_external. */
2681
2682 tree block_clear_fn;
2683
2684 void
2685 init_block_clear_fn (const char *asmspec)
2686 {
2687 if (!block_clear_fn)
2688 {
2689 tree fn, args;
2690
2691 fn = get_identifier ("memset");
2692 args = build_function_type_list (ptr_type_node, ptr_type_node,
2693 integer_type_node, sizetype,
2694 NULL_TREE);
2695
2696 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2697 DECL_EXTERNAL (fn) = 1;
2698 TREE_PUBLIC (fn) = 1;
2699 DECL_ARTIFICIAL (fn) = 1;
2700 TREE_NOTHROW (fn) = 1;
2701 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2702 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2703
2704 block_clear_fn = fn;
2705 }
2706
2707 if (asmspec)
2708 set_user_assembler_name (block_clear_fn, asmspec);
2709 }
2710
2711 static tree
2712 clear_storage_libcall_fn (int for_call)
2713 {
2714 static bool emitted_extern;
2715
2716 if (!block_clear_fn)
2717 init_block_clear_fn (NULL);
2718
2719 if (for_call && !emitted_extern)
2720 {
2721 emitted_extern = true;
2722 make_decl_rtl (block_clear_fn);
2723 assemble_external (block_clear_fn);
2724 }
2725
2726 return block_clear_fn;
2727 }
2728 \f
2729 /* Expand a setmem pattern; return true if successful. */
2730
2731 bool
2732 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2733 unsigned int expected_align, HOST_WIDE_INT expected_size)
2734 {
2735 /* Try the most limited insn first, because there's no point
2736 including more than one in the machine description unless
2737 the more limited one has some advantage. */
2738
2739 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2740 enum machine_mode mode;
2741
2742 if (expected_align < align)
2743 expected_align = align;
2744
2745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2746 mode = GET_MODE_WIDER_MODE (mode))
2747 {
2748 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2749 insn_operand_predicate_fn pred;
2750
2751 if (code != CODE_FOR_nothing
2752 /* We don't need MODE to be narrower than
2753 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2754 the mode mask, as it is returned by the macro, it will
2755 definitely be less than the actual mode mask. */
2756 && ((CONST_INT_P (size)
2757 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2758 <= (GET_MODE_MASK (mode) >> 1)))
2759 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2760 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2761 || (*pred) (object, BLKmode))
2762 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2763 || (*pred) (opalign, VOIDmode)))
2764 {
2765 rtx opsize, opchar;
2766 enum machine_mode char_mode;
2767 rtx last = get_last_insn ();
2768 rtx pat;
2769
2770 opsize = convert_to_mode (mode, size, 1);
2771 pred = insn_data[(int) code].operand[1].predicate;
2772 if (pred != 0 && ! (*pred) (opsize, mode))
2773 opsize = copy_to_mode_reg (mode, opsize);
2774
2775 opchar = val;
2776 char_mode = insn_data[(int) code].operand[2].mode;
2777 if (char_mode != VOIDmode)
2778 {
2779 opchar = convert_to_mode (char_mode, opchar, 1);
2780 pred = insn_data[(int) code].operand[2].predicate;
2781 if (pred != 0 && ! (*pred) (opchar, char_mode))
2782 opchar = copy_to_mode_reg (char_mode, opchar);
2783 }
2784
2785 if (insn_data[(int) code].n_operands == 4)
2786 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2787 else
2788 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2789 GEN_INT (expected_align
2790 / BITS_PER_UNIT),
2791 GEN_INT (expected_size));
2792 if (pat)
2793 {
2794 emit_insn (pat);
2795 return true;
2796 }
2797 else
2798 delete_insns_since (last);
2799 }
2800 }
2801
2802 return false;
2803 }
2804
2805 \f
2806 /* Write to one of the components of the complex value CPLX. Write VAL to
2807 the real part if IMAG_P is false, and the imaginary part if its true. */
2808
2809 static void
2810 write_complex_part (rtx cplx, rtx val, bool imag_p)
2811 {
2812 enum machine_mode cmode;
2813 enum machine_mode imode;
2814 unsigned ibitsize;
2815
2816 if (GET_CODE (cplx) == CONCAT)
2817 {
2818 emit_move_insn (XEXP (cplx, imag_p), val);
2819 return;
2820 }
2821
2822 cmode = GET_MODE (cplx);
2823 imode = GET_MODE_INNER (cmode);
2824 ibitsize = GET_MODE_BITSIZE (imode);
2825
2826 /* For MEMs simplify_gen_subreg may generate an invalid new address
2827 because, e.g., the original address is considered mode-dependent
2828 by the target, which restricts simplify_subreg from invoking
2829 adjust_address_nv. Instead of preparing fallback support for an
2830 invalid address, we call adjust_address_nv directly. */
2831 if (MEM_P (cplx))
2832 {
2833 emit_move_insn (adjust_address_nv (cplx, imode,
2834 imag_p ? GET_MODE_SIZE (imode) : 0),
2835 val);
2836 return;
2837 }
2838
2839 /* If the sub-object is at least word sized, then we know that subregging
2840 will work. This special case is important, since store_bit_field
2841 wants to operate on integer modes, and there's rarely an OImode to
2842 correspond to TCmode. */
2843 if (ibitsize >= BITS_PER_WORD
2844 /* For hard regs we have exact predicates. Assume we can split
2845 the original object if it spans an even number of hard regs.
2846 This special case is important for SCmode on 64-bit platforms
2847 where the natural size of floating-point regs is 32-bit. */
2848 || (REG_P (cplx)
2849 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2850 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2851 {
2852 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2853 imag_p ? GET_MODE_SIZE (imode) : 0);
2854 if (part)
2855 {
2856 emit_move_insn (part, val);
2857 return;
2858 }
2859 else
2860 /* simplify_gen_subreg may fail for sub-word MEMs. */
2861 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2862 }
2863
2864 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2865 }
2866
2867 /* Extract one of the components of the complex value CPLX. Extract the
2868 real part if IMAG_P is false, and the imaginary part if it's true. */
2869
2870 static rtx
2871 read_complex_part (rtx cplx, bool imag_p)
2872 {
2873 enum machine_mode cmode, imode;
2874 unsigned ibitsize;
2875
2876 if (GET_CODE (cplx) == CONCAT)
2877 return XEXP (cplx, imag_p);
2878
2879 cmode = GET_MODE (cplx);
2880 imode = GET_MODE_INNER (cmode);
2881 ibitsize = GET_MODE_BITSIZE (imode);
2882
2883 /* Special case reads from complex constants that got spilled to memory. */
2884 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2885 {
2886 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2887 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2888 {
2889 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2890 if (CONSTANT_CLASS_P (part))
2891 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2892 }
2893 }
2894
2895 /* For MEMs simplify_gen_subreg may generate an invalid new address
2896 because, e.g., the original address is considered mode-dependent
2897 by the target, which restricts simplify_subreg from invoking
2898 adjust_address_nv. Instead of preparing fallback support for an
2899 invalid address, we call adjust_address_nv directly. */
2900 if (MEM_P (cplx))
2901 return adjust_address_nv (cplx, imode,
2902 imag_p ? GET_MODE_SIZE (imode) : 0);
2903
2904 /* If the sub-object is at least word sized, then we know that subregging
2905 will work. This special case is important, since extract_bit_field
2906 wants to operate on integer modes, and there's rarely an OImode to
2907 correspond to TCmode. */
2908 if (ibitsize >= BITS_PER_WORD
2909 /* For hard regs we have exact predicates. Assume we can split
2910 the original object if it spans an even number of hard regs.
2911 This special case is important for SCmode on 64-bit platforms
2912 where the natural size of floating-point regs is 32-bit. */
2913 || (REG_P (cplx)
2914 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2915 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2916 {
2917 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2918 imag_p ? GET_MODE_SIZE (imode) : 0);
2919 if (ret)
2920 return ret;
2921 else
2922 /* simplify_gen_subreg may fail for sub-word MEMs. */
2923 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2924 }
2925
2926 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2927 true, NULL_RTX, imode, imode);
2928 }
2929 \f
2930 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2931 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2932 represented in NEW_MODE. If FORCE is true, this will never happen, as
2933 we'll force-create a SUBREG if needed. */
2934
2935 static rtx
2936 emit_move_change_mode (enum machine_mode new_mode,
2937 enum machine_mode old_mode, rtx x, bool force)
2938 {
2939 rtx ret;
2940
2941 if (push_operand (x, GET_MODE (x)))
2942 {
2943 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2944 MEM_COPY_ATTRIBUTES (ret, x);
2945 }
2946 else if (MEM_P (x))
2947 {
2948 /* We don't have to worry about changing the address since the
2949 size in bytes is supposed to be the same. */
2950 if (reload_in_progress)
2951 {
2952 /* Copy the MEM to change the mode and move any
2953 substitutions from the old MEM to the new one. */
2954 ret = adjust_address_nv (x, new_mode, 0);
2955 copy_replacements (x, ret);
2956 }
2957 else
2958 ret = adjust_address (x, new_mode, 0);
2959 }
2960 else
2961 {
2962 /* Note that we do want simplify_subreg's behavior of validating
2963 that the new mode is ok for a hard register. If we were to use
2964 simplify_gen_subreg, we would create the subreg, but would
2965 probably run into the target not being able to implement it. */
2966 /* Except, of course, when FORCE is true, when this is exactly what
2967 we want. Which is needed for CCmodes on some targets. */
2968 if (force)
2969 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2970 else
2971 ret = simplify_subreg (new_mode, x, old_mode, 0);
2972 }
2973
2974 return ret;
2975 }
2976
2977 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2978 an integer mode of the same size as MODE. Returns the instruction
2979 emitted, or NULL if such a move could not be generated. */
2980
2981 static rtx
2982 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2983 {
2984 enum machine_mode imode;
2985 enum insn_code code;
2986
2987 /* There must exist a mode of the exact size we require. */
2988 imode = int_mode_for_mode (mode);
2989 if (imode == BLKmode)
2990 return NULL_RTX;
2991
2992 /* The target must support moves in this mode. */
2993 code = optab_handler (mov_optab, imode);
2994 if (code == CODE_FOR_nothing)
2995 return NULL_RTX;
2996
2997 x = emit_move_change_mode (imode, mode, x, force);
2998 if (x == NULL_RTX)
2999 return NULL_RTX;
3000 y = emit_move_change_mode (imode, mode, y, force);
3001 if (y == NULL_RTX)
3002 return NULL_RTX;
3003 return emit_insn (GEN_FCN (code) (x, y));
3004 }
3005
3006 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3007 Return an equivalent MEM that does not use an auto-increment. */
3008
3009 static rtx
3010 emit_move_resolve_push (enum machine_mode mode, rtx x)
3011 {
3012 enum rtx_code code = GET_CODE (XEXP (x, 0));
3013 HOST_WIDE_INT adjust;
3014 rtx temp;
3015
3016 adjust = GET_MODE_SIZE (mode);
3017 #ifdef PUSH_ROUNDING
3018 adjust = PUSH_ROUNDING (adjust);
3019 #endif
3020 if (code == PRE_DEC || code == POST_DEC)
3021 adjust = -adjust;
3022 else if (code == PRE_MODIFY || code == POST_MODIFY)
3023 {
3024 rtx expr = XEXP (XEXP (x, 0), 1);
3025 HOST_WIDE_INT val;
3026
3027 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3028 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3029 val = INTVAL (XEXP (expr, 1));
3030 if (GET_CODE (expr) == MINUS)
3031 val = -val;
3032 gcc_assert (adjust == val || adjust == -val);
3033 adjust = val;
3034 }
3035
3036 /* Do not use anti_adjust_stack, since we don't want to update
3037 stack_pointer_delta. */
3038 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3039 GEN_INT (adjust), stack_pointer_rtx,
3040 0, OPTAB_LIB_WIDEN);
3041 if (temp != stack_pointer_rtx)
3042 emit_move_insn (stack_pointer_rtx, temp);
3043
3044 switch (code)
3045 {
3046 case PRE_INC:
3047 case PRE_DEC:
3048 case PRE_MODIFY:
3049 temp = stack_pointer_rtx;
3050 break;
3051 case POST_INC:
3052 case POST_DEC:
3053 case POST_MODIFY:
3054 temp = plus_constant (stack_pointer_rtx, -adjust);
3055 break;
3056 default:
3057 gcc_unreachable ();
3058 }
3059
3060 return replace_equiv_address (x, temp);
3061 }
3062
3063 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3064 X is known to satisfy push_operand, and MODE is known to be complex.
3065 Returns the last instruction emitted. */
3066
3067 rtx
3068 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3069 {
3070 enum machine_mode submode = GET_MODE_INNER (mode);
3071 bool imag_first;
3072
3073 #ifdef PUSH_ROUNDING
3074 unsigned int submodesize = GET_MODE_SIZE (submode);
3075
3076 /* In case we output to the stack, but the size is smaller than the
3077 machine can push exactly, we need to use move instructions. */
3078 if (PUSH_ROUNDING (submodesize) != submodesize)
3079 {
3080 x = emit_move_resolve_push (mode, x);
3081 return emit_move_insn (x, y);
3082 }
3083 #endif
3084
3085 /* Note that the real part always precedes the imag part in memory
3086 regardless of machine's endianness. */
3087 switch (GET_CODE (XEXP (x, 0)))
3088 {
3089 case PRE_DEC:
3090 case POST_DEC:
3091 imag_first = true;
3092 break;
3093 case PRE_INC:
3094 case POST_INC:
3095 imag_first = false;
3096 break;
3097 default:
3098 gcc_unreachable ();
3099 }
3100
3101 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3102 read_complex_part (y, imag_first));
3103 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3104 read_complex_part (y, !imag_first));
3105 }
3106
3107 /* A subroutine of emit_move_complex. Perform the move from Y to X
3108 via two moves of the parts. Returns the last instruction emitted. */
3109
3110 rtx
3111 emit_move_complex_parts (rtx x, rtx y)
3112 {
3113 /* Show the output dies here. This is necessary for SUBREGs
3114 of pseudos since we cannot track their lifetimes correctly;
3115 hard regs shouldn't appear here except as return values. */
3116 if (!reload_completed && !reload_in_progress
3117 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3118 emit_clobber (x);
3119
3120 write_complex_part (x, read_complex_part (y, false), false);
3121 write_complex_part (x, read_complex_part (y, true), true);
3122
3123 return get_last_insn ();
3124 }
3125
3126 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3127 MODE is known to be complex. Returns the last instruction emitted. */
3128
3129 static rtx
3130 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3131 {
3132 bool try_int;
3133
3134 /* Need to take special care for pushes, to maintain proper ordering
3135 of the data, and possibly extra padding. */
3136 if (push_operand (x, mode))
3137 return emit_move_complex_push (mode, x, y);
3138
3139 /* See if we can coerce the target into moving both values at once. */
3140
3141 /* Move floating point as parts. */
3142 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3143 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3144 try_int = false;
3145 /* Not possible if the values are inherently not adjacent. */
3146 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3147 try_int = false;
3148 /* Is possible if both are registers (or subregs of registers). */
3149 else if (register_operand (x, mode) && register_operand (y, mode))
3150 try_int = true;
3151 /* If one of the operands is a memory, and alignment constraints
3152 are friendly enough, we may be able to do combined memory operations.
3153 We do not attempt this if Y is a constant because that combination is
3154 usually better with the by-parts thing below. */
3155 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3156 && (!STRICT_ALIGNMENT
3157 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3158 try_int = true;
3159 else
3160 try_int = false;
3161
3162 if (try_int)
3163 {
3164 rtx ret;
3165
3166 /* For memory to memory moves, optimal behavior can be had with the
3167 existing block move logic. */
3168 if (MEM_P (x) && MEM_P (y))
3169 {
3170 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3171 BLOCK_OP_NO_LIBCALL);
3172 return get_last_insn ();
3173 }
3174
3175 ret = emit_move_via_integer (mode, x, y, true);
3176 if (ret)
3177 return ret;
3178 }
3179
3180 return emit_move_complex_parts (x, y);
3181 }
3182
3183 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3184 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3185
3186 static rtx
3187 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3188 {
3189 rtx ret;
3190
3191 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3192 if (mode != CCmode)
3193 {
3194 enum insn_code code = optab_handler (mov_optab, CCmode);
3195 if (code != CODE_FOR_nothing)
3196 {
3197 x = emit_move_change_mode (CCmode, mode, x, true);
3198 y = emit_move_change_mode (CCmode, mode, y, true);
3199 return emit_insn (GEN_FCN (code) (x, y));
3200 }
3201 }
3202
3203 /* Otherwise, find the MODE_INT mode of the same width. */
3204 ret = emit_move_via_integer (mode, x, y, false);
3205 gcc_assert (ret != NULL);
3206 return ret;
3207 }
3208
3209 /* Return true if word I of OP lies entirely in the
3210 undefined bits of a paradoxical subreg. */
3211
3212 static bool
3213 undefined_operand_subword_p (const_rtx op, int i)
3214 {
3215 enum machine_mode innermode, innermostmode;
3216 int offset;
3217 if (GET_CODE (op) != SUBREG)
3218 return false;
3219 innermode = GET_MODE (op);
3220 innermostmode = GET_MODE (SUBREG_REG (op));
3221 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3222 /* The SUBREG_BYTE represents offset, as if the value were stored in
3223 memory, except for a paradoxical subreg where we define
3224 SUBREG_BYTE to be 0; undo this exception as in
3225 simplify_subreg. */
3226 if (SUBREG_BYTE (op) == 0
3227 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3228 {
3229 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3230 if (WORDS_BIG_ENDIAN)
3231 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3232 if (BYTES_BIG_ENDIAN)
3233 offset += difference % UNITS_PER_WORD;
3234 }
3235 if (offset >= GET_MODE_SIZE (innermostmode)
3236 || offset <= -GET_MODE_SIZE (word_mode))
3237 return true;
3238 return false;
3239 }
3240
3241 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3242 MODE is any multi-word or full-word mode that lacks a move_insn
3243 pattern. Note that you will get better code if you define such
3244 patterns, even if they must turn into multiple assembler instructions. */
3245
3246 static rtx
3247 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3248 {
3249 rtx last_insn = 0;
3250 rtx seq, inner;
3251 bool need_clobber;
3252 int i;
3253
3254 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3255
3256 /* If X is a push on the stack, do the push now and replace
3257 X with a reference to the stack pointer. */
3258 if (push_operand (x, mode))
3259 x = emit_move_resolve_push (mode, x);
3260
3261 /* If we are in reload, see if either operand is a MEM whose address
3262 is scheduled for replacement. */
3263 if (reload_in_progress && MEM_P (x)
3264 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3265 x = replace_equiv_address_nv (x, inner);
3266 if (reload_in_progress && MEM_P (y)
3267 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3268 y = replace_equiv_address_nv (y, inner);
3269
3270 start_sequence ();
3271
3272 need_clobber = false;
3273 for (i = 0;
3274 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3275 i++)
3276 {
3277 rtx xpart = operand_subword (x, i, 1, mode);
3278 rtx ypart;
3279
3280 /* Do not generate code for a move if it would come entirely
3281 from the undefined bits of a paradoxical subreg. */
3282 if (undefined_operand_subword_p (y, i))
3283 continue;
3284
3285 ypart = operand_subword (y, i, 1, mode);
3286
3287 /* If we can't get a part of Y, put Y into memory if it is a
3288 constant. Otherwise, force it into a register. Then we must
3289 be able to get a part of Y. */
3290 if (ypart == 0 && CONSTANT_P (y))
3291 {
3292 y = use_anchored_address (force_const_mem (mode, y));
3293 ypart = operand_subword (y, i, 1, mode);
3294 }
3295 else if (ypart == 0)
3296 ypart = operand_subword_force (y, i, mode);
3297
3298 gcc_assert (xpart && ypart);
3299
3300 need_clobber |= (GET_CODE (xpart) == SUBREG);
3301
3302 last_insn = emit_move_insn (xpart, ypart);
3303 }
3304
3305 seq = get_insns ();
3306 end_sequence ();
3307
3308 /* Show the output dies here. This is necessary for SUBREGs
3309 of pseudos since we cannot track their lifetimes correctly;
3310 hard regs shouldn't appear here except as return values.
3311 We never want to emit such a clobber after reload. */
3312 if (x != y
3313 && ! (reload_in_progress || reload_completed)
3314 && need_clobber != 0)
3315 emit_clobber (x);
3316
3317 emit_insn (seq);
3318
3319 return last_insn;
3320 }
3321
3322 /* Low level part of emit_move_insn.
3323 Called just like emit_move_insn, but assumes X and Y
3324 are basically valid. */
3325
3326 rtx
3327 emit_move_insn_1 (rtx x, rtx y)
3328 {
3329 enum machine_mode mode = GET_MODE (x);
3330 enum insn_code code;
3331
3332 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3333
3334 code = optab_handler (mov_optab, mode);
3335 if (code != CODE_FOR_nothing)
3336 return emit_insn (GEN_FCN (code) (x, y));
3337
3338 /* Expand complex moves by moving real part and imag part. */
3339 if (COMPLEX_MODE_P (mode))
3340 return emit_move_complex (mode, x, y);
3341
3342 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3343 || ALL_FIXED_POINT_MODE_P (mode))
3344 {
3345 rtx result = emit_move_via_integer (mode, x, y, true);
3346
3347 /* If we can't find an integer mode, use multi words. */
3348 if (result)
3349 return result;
3350 else
3351 return emit_move_multi_word (mode, x, y);
3352 }
3353
3354 if (GET_MODE_CLASS (mode) == MODE_CC)
3355 return emit_move_ccmode (mode, x, y);
3356
3357 /* Try using a move pattern for the corresponding integer mode. This is
3358 only safe when simplify_subreg can convert MODE constants into integer
3359 constants. At present, it can only do this reliably if the value
3360 fits within a HOST_WIDE_INT. */
3361 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3362 {
3363 rtx ret = emit_move_via_integer (mode, x, y, false);
3364 if (ret)
3365 return ret;
3366 }
3367
3368 return emit_move_multi_word (mode, x, y);
3369 }
3370
3371 /* Generate code to copy Y into X.
3372 Both Y and X must have the same mode, except that
3373 Y can be a constant with VOIDmode.
3374 This mode cannot be BLKmode; use emit_block_move for that.
3375
3376 Return the last instruction emitted. */
3377
3378 rtx
3379 emit_move_insn (rtx x, rtx y)
3380 {
3381 enum machine_mode mode = GET_MODE (x);
3382 rtx y_cst = NULL_RTX;
3383 rtx last_insn, set;
3384
3385 gcc_assert (mode != BLKmode
3386 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3387
3388 if (CONSTANT_P (y))
3389 {
3390 if (optimize
3391 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3392 && (last_insn = compress_float_constant (x, y)))
3393 return last_insn;
3394
3395 y_cst = y;
3396
3397 if (!LEGITIMATE_CONSTANT_P (y))
3398 {
3399 y = force_const_mem (mode, y);
3400
3401 /* If the target's cannot_force_const_mem prevented the spill,
3402 assume that the target's move expanders will also take care
3403 of the non-legitimate constant. */
3404 if (!y)
3405 y = y_cst;
3406 else
3407 y = use_anchored_address (y);
3408 }
3409 }
3410
3411 /* If X or Y are memory references, verify that their addresses are valid
3412 for the machine. */
3413 if (MEM_P (x)
3414 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3415 MEM_ADDR_SPACE (x))
3416 && ! push_operand (x, GET_MODE (x))))
3417 x = validize_mem (x);
3418
3419 if (MEM_P (y)
3420 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3421 MEM_ADDR_SPACE (y)))
3422 y = validize_mem (y);
3423
3424 gcc_assert (mode != BLKmode);
3425
3426 last_insn = emit_move_insn_1 (x, y);
3427
3428 if (y_cst && REG_P (x)
3429 && (set = single_set (last_insn)) != NULL_RTX
3430 && SET_DEST (set) == x
3431 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3432 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3433
3434 return last_insn;
3435 }
3436
3437 /* If Y is representable exactly in a narrower mode, and the target can
3438 perform the extension directly from constant or memory, then emit the
3439 move as an extension. */
3440
3441 static rtx
3442 compress_float_constant (rtx x, rtx y)
3443 {
3444 enum machine_mode dstmode = GET_MODE (x);
3445 enum machine_mode orig_srcmode = GET_MODE (y);
3446 enum machine_mode srcmode;
3447 REAL_VALUE_TYPE r;
3448 int oldcost, newcost;
3449 bool speed = optimize_insn_for_speed_p ();
3450
3451 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3452
3453 if (LEGITIMATE_CONSTANT_P (y))
3454 oldcost = rtx_cost (y, SET, speed);
3455 else
3456 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3457
3458 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3459 srcmode != orig_srcmode;
3460 srcmode = GET_MODE_WIDER_MODE (srcmode))
3461 {
3462 enum insn_code ic;
3463 rtx trunc_y, last_insn;
3464
3465 /* Skip if the target can't extend this way. */
3466 ic = can_extend_p (dstmode, srcmode, 0);
3467 if (ic == CODE_FOR_nothing)
3468 continue;
3469
3470 /* Skip if the narrowed value isn't exact. */
3471 if (! exact_real_truncate (srcmode, &r))
3472 continue;
3473
3474 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3475
3476 if (LEGITIMATE_CONSTANT_P (trunc_y))
3477 {
3478 /* Skip if the target needs extra instructions to perform
3479 the extension. */
3480 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3481 continue;
3482 /* This is valid, but may not be cheaper than the original. */
3483 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3484 if (oldcost < newcost)
3485 continue;
3486 }
3487 else if (float_extend_from_mem[dstmode][srcmode])
3488 {
3489 trunc_y = force_const_mem (srcmode, trunc_y);
3490 /* This is valid, but may not be cheaper than the original. */
3491 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3492 if (oldcost < newcost)
3493 continue;
3494 trunc_y = validize_mem (trunc_y);
3495 }
3496 else
3497 continue;
3498
3499 /* For CSE's benefit, force the compressed constant pool entry
3500 into a new pseudo. This constant may be used in different modes,
3501 and if not, combine will put things back together for us. */
3502 trunc_y = force_reg (srcmode, trunc_y);
3503 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3504 last_insn = get_last_insn ();
3505
3506 if (REG_P (x))
3507 set_unique_reg_note (last_insn, REG_EQUAL, y);
3508
3509 return last_insn;
3510 }
3511
3512 return NULL_RTX;
3513 }
3514 \f
3515 /* Pushing data onto the stack. */
3516
3517 /* Push a block of length SIZE (perhaps variable)
3518 and return an rtx to address the beginning of the block.
3519 The value may be virtual_outgoing_args_rtx.
3520
3521 EXTRA is the number of bytes of padding to push in addition to SIZE.
3522 BELOW nonzero means this padding comes at low addresses;
3523 otherwise, the padding comes at high addresses. */
3524
3525 rtx
3526 push_block (rtx size, int extra, int below)
3527 {
3528 rtx temp;
3529
3530 size = convert_modes (Pmode, ptr_mode, size, 1);
3531 if (CONSTANT_P (size))
3532 anti_adjust_stack (plus_constant (size, extra));
3533 else if (REG_P (size) && extra == 0)
3534 anti_adjust_stack (size);
3535 else
3536 {
3537 temp = copy_to_mode_reg (Pmode, size);
3538 if (extra != 0)
3539 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3540 temp, 0, OPTAB_LIB_WIDEN);
3541 anti_adjust_stack (temp);
3542 }
3543
3544 #ifndef STACK_GROWS_DOWNWARD
3545 if (0)
3546 #else
3547 if (1)
3548 #endif
3549 {
3550 temp = virtual_outgoing_args_rtx;
3551 if (extra != 0 && below)
3552 temp = plus_constant (temp, extra);
3553 }
3554 else
3555 {
3556 if (CONST_INT_P (size))
3557 temp = plus_constant (virtual_outgoing_args_rtx,
3558 -INTVAL (size) - (below ? 0 : extra));
3559 else if (extra != 0 && !below)
3560 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3561 negate_rtx (Pmode, plus_constant (size, extra)));
3562 else
3563 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3564 negate_rtx (Pmode, size));
3565 }
3566
3567 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3568 }
3569
3570 #ifdef PUSH_ROUNDING
3571
3572 /* Emit single push insn. */
3573
3574 static void
3575 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3576 {
3577 rtx dest_addr;
3578 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3579 rtx dest;
3580 enum insn_code icode;
3581 insn_operand_predicate_fn pred;
3582
3583 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3584 /* If there is push pattern, use it. Otherwise try old way of throwing
3585 MEM representing push operation to move expander. */
3586 icode = optab_handler (push_optab, mode);
3587 if (icode != CODE_FOR_nothing)
3588 {
3589 if (((pred = insn_data[(int) icode].operand[0].predicate)
3590 && !((*pred) (x, mode))))
3591 x = force_reg (mode, x);
3592 emit_insn (GEN_FCN (icode) (x));
3593 return;
3594 }
3595 if (GET_MODE_SIZE (mode) == rounded_size)
3596 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3597 /* If we are to pad downward, adjust the stack pointer first and
3598 then store X into the stack location using an offset. This is
3599 because emit_move_insn does not know how to pad; it does not have
3600 access to type. */
3601 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3602 {
3603 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3604 HOST_WIDE_INT offset;
3605
3606 emit_move_insn (stack_pointer_rtx,
3607 expand_binop (Pmode,
3608 #ifdef STACK_GROWS_DOWNWARD
3609 sub_optab,
3610 #else
3611 add_optab,
3612 #endif
3613 stack_pointer_rtx,
3614 GEN_INT (rounded_size),
3615 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3616
3617 offset = (HOST_WIDE_INT) padding_size;
3618 #ifdef STACK_GROWS_DOWNWARD
3619 if (STACK_PUSH_CODE == POST_DEC)
3620 /* We have already decremented the stack pointer, so get the
3621 previous value. */
3622 offset += (HOST_WIDE_INT) rounded_size;
3623 #else
3624 if (STACK_PUSH_CODE == POST_INC)
3625 /* We have already incremented the stack pointer, so get the
3626 previous value. */
3627 offset -= (HOST_WIDE_INT) rounded_size;
3628 #endif
3629 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3630 }
3631 else
3632 {
3633 #ifdef STACK_GROWS_DOWNWARD
3634 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3635 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3636 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3637 #else
3638 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3639 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3640 GEN_INT (rounded_size));
3641 #endif
3642 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3643 }
3644
3645 dest = gen_rtx_MEM (mode, dest_addr);
3646
3647 if (type != 0)
3648 {
3649 set_mem_attributes (dest, type, 1);
3650
3651 if (flag_optimize_sibling_calls)
3652 /* Function incoming arguments may overlap with sibling call
3653 outgoing arguments and we cannot allow reordering of reads
3654 from function arguments with stores to outgoing arguments
3655 of sibling calls. */
3656 set_mem_alias_set (dest, 0);
3657 }
3658 emit_move_insn (dest, x);
3659 }
3660 #endif
3661
3662 /* Generate code to push X onto the stack, assuming it has mode MODE and
3663 type TYPE.
3664 MODE is redundant except when X is a CONST_INT (since they don't
3665 carry mode info).
3666 SIZE is an rtx for the size of data to be copied (in bytes),
3667 needed only if X is BLKmode.
3668
3669 ALIGN (in bits) is maximum alignment we can assume.
3670
3671 If PARTIAL and REG are both nonzero, then copy that many of the first
3672 bytes of X into registers starting with REG, and push the rest of X.
3673 The amount of space pushed is decreased by PARTIAL bytes.
3674 REG must be a hard register in this case.
3675 If REG is zero but PARTIAL is not, take any all others actions for an
3676 argument partially in registers, but do not actually load any
3677 registers.
3678
3679 EXTRA is the amount in bytes of extra space to leave next to this arg.
3680 This is ignored if an argument block has already been allocated.
3681
3682 On a machine that lacks real push insns, ARGS_ADDR is the address of
3683 the bottom of the argument block for this call. We use indexing off there
3684 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3685 argument block has not been preallocated.
3686
3687 ARGS_SO_FAR is the size of args previously pushed for this call.
3688
3689 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3690 for arguments passed in registers. If nonzero, it will be the number
3691 of bytes required. */
3692
3693 void
3694 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3695 unsigned int align, int partial, rtx reg, int extra,
3696 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3697 rtx alignment_pad)
3698 {
3699 rtx xinner;
3700 enum direction stack_direction
3701 #ifdef STACK_GROWS_DOWNWARD
3702 = downward;
3703 #else
3704 = upward;
3705 #endif
3706
3707 /* Decide where to pad the argument: `downward' for below,
3708 `upward' for above, or `none' for don't pad it.
3709 Default is below for small data on big-endian machines; else above. */
3710 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3711
3712 /* Invert direction if stack is post-decrement.
3713 FIXME: why? */
3714 if (STACK_PUSH_CODE == POST_DEC)
3715 if (where_pad != none)
3716 where_pad = (where_pad == downward ? upward : downward);
3717
3718 xinner = x;
3719
3720 if (mode == BLKmode
3721 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3722 {
3723 /* Copy a block into the stack, entirely or partially. */
3724
3725 rtx temp;
3726 int used;
3727 int offset;
3728 int skip;
3729
3730 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3731 used = partial - offset;
3732
3733 if (mode != BLKmode)
3734 {
3735 /* A value is to be stored in an insufficiently aligned
3736 stack slot; copy via a suitably aligned slot if
3737 necessary. */
3738 size = GEN_INT (GET_MODE_SIZE (mode));
3739 if (!MEM_P (xinner))
3740 {
3741 temp = assign_temp (type, 0, 1, 1);
3742 emit_move_insn (temp, xinner);
3743 xinner = temp;
3744 }
3745 }
3746
3747 gcc_assert (size);
3748
3749 /* USED is now the # of bytes we need not copy to the stack
3750 because registers will take care of them. */
3751
3752 if (partial != 0)
3753 xinner = adjust_address (xinner, BLKmode, used);
3754
3755 /* If the partial register-part of the arg counts in its stack size,
3756 skip the part of stack space corresponding to the registers.
3757 Otherwise, start copying to the beginning of the stack space,
3758 by setting SKIP to 0. */
3759 skip = (reg_parm_stack_space == 0) ? 0 : used;
3760
3761 #ifdef PUSH_ROUNDING
3762 /* Do it with several push insns if that doesn't take lots of insns
3763 and if there is no difficulty with push insns that skip bytes
3764 on the stack for alignment purposes. */
3765 if (args_addr == 0
3766 && PUSH_ARGS
3767 && CONST_INT_P (size)
3768 && skip == 0
3769 && MEM_ALIGN (xinner) >= align
3770 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3771 /* Here we avoid the case of a structure whose weak alignment
3772 forces many pushes of a small amount of data,
3773 and such small pushes do rounding that causes trouble. */
3774 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3775 || align >= BIGGEST_ALIGNMENT
3776 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3777 == (align / BITS_PER_UNIT)))
3778 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3779 {
3780 /* Push padding now if padding above and stack grows down,
3781 or if padding below and stack grows up.
3782 But if space already allocated, this has already been done. */
3783 if (extra && args_addr == 0
3784 && where_pad != none && where_pad != stack_direction)
3785 anti_adjust_stack (GEN_INT (extra));
3786
3787 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3788 }
3789 else
3790 #endif /* PUSH_ROUNDING */
3791 {
3792 rtx target;
3793
3794 /* Otherwise make space on the stack and copy the data
3795 to the address of that space. */
3796
3797 /* Deduct words put into registers from the size we must copy. */
3798 if (partial != 0)
3799 {
3800 if (CONST_INT_P (size))
3801 size = GEN_INT (INTVAL (size) - used);
3802 else
3803 size = expand_binop (GET_MODE (size), sub_optab, size,
3804 GEN_INT (used), NULL_RTX, 0,
3805 OPTAB_LIB_WIDEN);
3806 }
3807
3808 /* Get the address of the stack space.
3809 In this case, we do not deal with EXTRA separately.
3810 A single stack adjust will do. */
3811 if (! args_addr)
3812 {
3813 temp = push_block (size, extra, where_pad == downward);
3814 extra = 0;
3815 }
3816 else if (CONST_INT_P (args_so_far))
3817 temp = memory_address (BLKmode,
3818 plus_constant (args_addr,
3819 skip + INTVAL (args_so_far)));
3820 else
3821 temp = memory_address (BLKmode,
3822 plus_constant (gen_rtx_PLUS (Pmode,
3823 args_addr,
3824 args_so_far),
3825 skip));
3826
3827 if (!ACCUMULATE_OUTGOING_ARGS)
3828 {
3829 /* If the source is referenced relative to the stack pointer,
3830 copy it to another register to stabilize it. We do not need
3831 to do this if we know that we won't be changing sp. */
3832
3833 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3834 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3835 temp = copy_to_reg (temp);
3836 }
3837
3838 target = gen_rtx_MEM (BLKmode, temp);
3839
3840 /* We do *not* set_mem_attributes here, because incoming arguments
3841 may overlap with sibling call outgoing arguments and we cannot
3842 allow reordering of reads from function arguments with stores
3843 to outgoing arguments of sibling calls. We do, however, want
3844 to record the alignment of the stack slot. */
3845 /* ALIGN may well be better aligned than TYPE, e.g. due to
3846 PARM_BOUNDARY. Assume the caller isn't lying. */
3847 set_mem_align (target, align);
3848
3849 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3850 }
3851 }
3852 else if (partial > 0)
3853 {
3854 /* Scalar partly in registers. */
3855
3856 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3857 int i;
3858 int not_stack;
3859 /* # bytes of start of argument
3860 that we must make space for but need not store. */
3861 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3862 int args_offset = INTVAL (args_so_far);
3863 int skip;
3864
3865 /* Push padding now if padding above and stack grows down,
3866 or if padding below and stack grows up.
3867 But if space already allocated, this has already been done. */
3868 if (extra && args_addr == 0
3869 && where_pad != none && where_pad != stack_direction)
3870 anti_adjust_stack (GEN_INT (extra));
3871
3872 /* If we make space by pushing it, we might as well push
3873 the real data. Otherwise, we can leave OFFSET nonzero
3874 and leave the space uninitialized. */
3875 if (args_addr == 0)
3876 offset = 0;
3877
3878 /* Now NOT_STACK gets the number of words that we don't need to
3879 allocate on the stack. Convert OFFSET to words too. */
3880 not_stack = (partial - offset) / UNITS_PER_WORD;
3881 offset /= UNITS_PER_WORD;
3882
3883 /* If the partial register-part of the arg counts in its stack size,
3884 skip the part of stack space corresponding to the registers.
3885 Otherwise, start copying to the beginning of the stack space,
3886 by setting SKIP to 0. */
3887 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3888
3889 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3890 x = validize_mem (force_const_mem (mode, x));
3891
3892 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3893 SUBREGs of such registers are not allowed. */
3894 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3895 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3896 x = copy_to_reg (x);
3897
3898 /* Loop over all the words allocated on the stack for this arg. */
3899 /* We can do it by words, because any scalar bigger than a word
3900 has a size a multiple of a word. */
3901 #ifndef PUSH_ARGS_REVERSED
3902 for (i = not_stack; i < size; i++)
3903 #else
3904 for (i = size - 1; i >= not_stack; i--)
3905 #endif
3906 if (i >= not_stack + offset)
3907 emit_push_insn (operand_subword_force (x, i, mode),
3908 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3909 0, args_addr,
3910 GEN_INT (args_offset + ((i - not_stack + skip)
3911 * UNITS_PER_WORD)),
3912 reg_parm_stack_space, alignment_pad);
3913 }
3914 else
3915 {
3916 rtx addr;
3917 rtx dest;
3918
3919 /* Push padding now if padding above and stack grows down,
3920 or if padding below and stack grows up.
3921 But if space already allocated, this has already been done. */
3922 if (extra && args_addr == 0
3923 && where_pad != none && where_pad != stack_direction)
3924 anti_adjust_stack (GEN_INT (extra));
3925
3926 #ifdef PUSH_ROUNDING
3927 if (args_addr == 0 && PUSH_ARGS)
3928 emit_single_push_insn (mode, x, type);
3929 else
3930 #endif
3931 {
3932 if (CONST_INT_P (args_so_far))
3933 addr
3934 = memory_address (mode,
3935 plus_constant (args_addr,
3936 INTVAL (args_so_far)));
3937 else
3938 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3939 args_so_far));
3940 dest = gen_rtx_MEM (mode, addr);
3941
3942 /* We do *not* set_mem_attributes here, because incoming arguments
3943 may overlap with sibling call outgoing arguments and we cannot
3944 allow reordering of reads from function arguments with stores
3945 to outgoing arguments of sibling calls. We do, however, want
3946 to record the alignment of the stack slot. */
3947 /* ALIGN may well be better aligned than TYPE, e.g. due to
3948 PARM_BOUNDARY. Assume the caller isn't lying. */
3949 set_mem_align (dest, align);
3950
3951 emit_move_insn (dest, x);
3952 }
3953 }
3954
3955 /* If part should go in registers, copy that part
3956 into the appropriate registers. Do this now, at the end,
3957 since mem-to-mem copies above may do function calls. */
3958 if (partial > 0 && reg != 0)
3959 {
3960 /* Handle calls that pass values in multiple non-contiguous locations.
3961 The Irix 6 ABI has examples of this. */
3962 if (GET_CODE (reg) == PARALLEL)
3963 emit_group_load (reg, x, type, -1);
3964 else
3965 {
3966 gcc_assert (partial % UNITS_PER_WORD == 0);
3967 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3968 }
3969 }
3970
3971 if (extra && args_addr == 0 && where_pad == stack_direction)
3972 anti_adjust_stack (GEN_INT (extra));
3973
3974 if (alignment_pad && args_addr == 0)
3975 anti_adjust_stack (alignment_pad);
3976 }
3977 \f
3978 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3979 operations. */
3980
3981 static rtx
3982 get_subtarget (rtx x)
3983 {
3984 return (optimize
3985 || x == 0
3986 /* Only registers can be subtargets. */
3987 || !REG_P (x)
3988 /* Don't use hard regs to avoid extending their life. */
3989 || REGNO (x) < FIRST_PSEUDO_REGISTER
3990 ? 0 : x);
3991 }
3992
3993 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3994 FIELD is a bitfield. Returns true if the optimization was successful,
3995 and there's nothing else to do. */
3996
3997 static bool
3998 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3999 unsigned HOST_WIDE_INT bitpos,
4000 enum machine_mode mode1, rtx str_rtx,
4001 tree to, tree src)
4002 {
4003 enum machine_mode str_mode = GET_MODE (str_rtx);
4004 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4005 tree op0, op1;
4006 rtx value, result;
4007 optab binop;
4008
4009 if (mode1 != VOIDmode
4010 || bitsize >= BITS_PER_WORD
4011 || str_bitsize > BITS_PER_WORD
4012 || TREE_SIDE_EFFECTS (to)
4013 || TREE_THIS_VOLATILE (to))
4014 return false;
4015
4016 STRIP_NOPS (src);
4017 if (!BINARY_CLASS_P (src)
4018 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4019 return false;
4020
4021 op0 = TREE_OPERAND (src, 0);
4022 op1 = TREE_OPERAND (src, 1);
4023 STRIP_NOPS (op0);
4024
4025 if (!operand_equal_p (to, op0, 0))
4026 return false;
4027
4028 if (MEM_P (str_rtx))
4029 {
4030 unsigned HOST_WIDE_INT offset1;
4031
4032 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4033 str_mode = word_mode;
4034 str_mode = get_best_mode (bitsize, bitpos,
4035 MEM_ALIGN (str_rtx), str_mode, 0);
4036 if (str_mode == VOIDmode)
4037 return false;
4038 str_bitsize = GET_MODE_BITSIZE (str_mode);
4039
4040 offset1 = bitpos;
4041 bitpos %= str_bitsize;
4042 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4043 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4044 }
4045 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4046 return false;
4047
4048 /* If the bit field covers the whole REG/MEM, store_field
4049 will likely generate better code. */
4050 if (bitsize >= str_bitsize)
4051 return false;
4052
4053 /* We can't handle fields split across multiple entities. */
4054 if (bitpos + bitsize > str_bitsize)
4055 return false;
4056
4057 if (BYTES_BIG_ENDIAN)
4058 bitpos = str_bitsize - bitpos - bitsize;
4059
4060 switch (TREE_CODE (src))
4061 {
4062 case PLUS_EXPR:
4063 case MINUS_EXPR:
4064 /* For now, just optimize the case of the topmost bitfield
4065 where we don't need to do any masking and also
4066 1 bit bitfields where xor can be used.
4067 We might win by one instruction for the other bitfields
4068 too if insv/extv instructions aren't used, so that
4069 can be added later. */
4070 if (bitpos + bitsize != str_bitsize
4071 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4072 break;
4073
4074 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4075 value = convert_modes (str_mode,
4076 TYPE_MODE (TREE_TYPE (op1)), value,
4077 TYPE_UNSIGNED (TREE_TYPE (op1)));
4078
4079 /* We may be accessing data outside the field, which means
4080 we can alias adjacent data. */
4081 if (MEM_P (str_rtx))
4082 {
4083 str_rtx = shallow_copy_rtx (str_rtx);
4084 set_mem_alias_set (str_rtx, 0);
4085 set_mem_expr (str_rtx, 0);
4086 }
4087
4088 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4089 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4090 {
4091 value = expand_and (str_mode, value, const1_rtx, NULL);
4092 binop = xor_optab;
4093 }
4094 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4095 build_int_cst (NULL_TREE, bitpos),
4096 NULL_RTX, 1);
4097 result = expand_binop (str_mode, binop, str_rtx,
4098 value, str_rtx, 1, OPTAB_WIDEN);
4099 if (result != str_rtx)
4100 emit_move_insn (str_rtx, result);
4101 return true;
4102
4103 case BIT_IOR_EXPR:
4104 case BIT_XOR_EXPR:
4105 if (TREE_CODE (op1) != INTEGER_CST)
4106 break;
4107 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4108 value = convert_modes (GET_MODE (str_rtx),
4109 TYPE_MODE (TREE_TYPE (op1)), value,
4110 TYPE_UNSIGNED (TREE_TYPE (op1)));
4111
4112 /* We may be accessing data outside the field, which means
4113 we can alias adjacent data. */
4114 if (MEM_P (str_rtx))
4115 {
4116 str_rtx = shallow_copy_rtx (str_rtx);
4117 set_mem_alias_set (str_rtx, 0);
4118 set_mem_expr (str_rtx, 0);
4119 }
4120
4121 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4122 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4123 {
4124 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4125 - 1);
4126 value = expand_and (GET_MODE (str_rtx), value, mask,
4127 NULL_RTX);
4128 }
4129 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4130 build_int_cst (NULL_TREE, bitpos),
4131 NULL_RTX, 1);
4132 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4133 value, str_rtx, 1, OPTAB_WIDEN);
4134 if (result != str_rtx)
4135 emit_move_insn (str_rtx, result);
4136 return true;
4137
4138 default:
4139 break;
4140 }
4141
4142 return false;
4143 }
4144
4145
4146 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4147 is true, try generating a nontemporal store. */
4148
4149 void
4150 expand_assignment (tree to, tree from, bool nontemporal)
4151 {
4152 rtx to_rtx = 0;
4153 rtx result;
4154
4155 /* Don't crash if the lhs of the assignment was erroneous. */
4156 if (TREE_CODE (to) == ERROR_MARK)
4157 {
4158 result = expand_normal (from);
4159 return;
4160 }
4161
4162 /* Optimize away no-op moves without side-effects. */
4163 if (operand_equal_p (to, from, 0))
4164 return;
4165
4166 /* Assignment of a structure component needs special treatment
4167 if the structure component's rtx is not simply a MEM.
4168 Assignment of an array element at a constant index, and assignment of
4169 an array element in an unaligned packed structure field, has the same
4170 problem. */
4171 if (handled_component_p (to)
4172 /* ??? We only need to handle MEM_REF here if the access is not
4173 a full access of the base object. */
4174 || (TREE_CODE (to) == MEM_REF
4175 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4176 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4177 {
4178 enum machine_mode mode1;
4179 HOST_WIDE_INT bitsize, bitpos;
4180 tree offset;
4181 int unsignedp;
4182 int volatilep = 0;
4183 tree tem;
4184
4185 push_temp_slots ();
4186 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4187 &unsignedp, &volatilep, true);
4188
4189 /* If we are going to use store_bit_field and extract_bit_field,
4190 make sure to_rtx will be safe for multiple use. */
4191
4192 to_rtx = expand_normal (tem);
4193
4194 /* If the bitfield is volatile, we want to access it in the
4195 field's mode, not the computed mode. */
4196 if (volatilep
4197 && GET_CODE (to_rtx) == MEM
4198 && flag_strict_volatile_bitfields > 0)
4199 to_rtx = adjust_address (to_rtx, mode1, 0);
4200
4201 if (offset != 0)
4202 {
4203 enum machine_mode address_mode;
4204 rtx offset_rtx;
4205
4206 if (!MEM_P (to_rtx))
4207 {
4208 /* We can get constant negative offsets into arrays with broken
4209 user code. Translate this to a trap instead of ICEing. */
4210 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4211 expand_builtin_trap ();
4212 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4213 }
4214
4215 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4216 address_mode
4217 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4218 if (GET_MODE (offset_rtx) != address_mode)
4219 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4220
4221 /* A constant address in TO_RTX can have VOIDmode, we must not try
4222 to call force_reg for that case. Avoid that case. */
4223 if (MEM_P (to_rtx)
4224 && GET_MODE (to_rtx) == BLKmode
4225 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4226 && bitsize > 0
4227 && (bitpos % bitsize) == 0
4228 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4229 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4230 {
4231 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4232 bitpos = 0;
4233 }
4234
4235 to_rtx = offset_address (to_rtx, offset_rtx,
4236 highest_pow2_factor_for_target (to,
4237 offset));
4238 }
4239
4240 /* No action is needed if the target is not a memory and the field
4241 lies completely outside that target. This can occur if the source
4242 code contains an out-of-bounds access to a small array. */
4243 if (!MEM_P (to_rtx)
4244 && GET_MODE (to_rtx) != BLKmode
4245 && (unsigned HOST_WIDE_INT) bitpos
4246 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4247 {
4248 expand_normal (from);
4249 result = NULL;
4250 }
4251 /* Handle expand_expr of a complex value returning a CONCAT. */
4252 else if (GET_CODE (to_rtx) == CONCAT)
4253 {
4254 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4255 {
4256 gcc_assert (bitpos == 0);
4257 result = store_expr (from, to_rtx, false, nontemporal);
4258 }
4259 else
4260 {
4261 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4262 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4263 nontemporal);
4264 }
4265 }
4266 else
4267 {
4268 if (MEM_P (to_rtx))
4269 {
4270 /* If the field is at offset zero, we could have been given the
4271 DECL_RTX of the parent struct. Don't munge it. */
4272 to_rtx = shallow_copy_rtx (to_rtx);
4273
4274 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4275
4276 /* Deal with volatile and readonly fields. The former is only
4277 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4278 if (volatilep)
4279 MEM_VOLATILE_P (to_rtx) = 1;
4280 if (component_uses_parent_alias_set (to))
4281 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4282 }
4283
4284 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4285 to_rtx, to, from))
4286 result = NULL;
4287 else
4288 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4289 TREE_TYPE (tem), get_alias_set (to),
4290 nontemporal);
4291 }
4292
4293 if (result)
4294 preserve_temp_slots (result);
4295 free_temp_slots ();
4296 pop_temp_slots ();
4297 return;
4298 }
4299
4300 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4301 {
4302 addr_space_t as = ADDR_SPACE_GENERIC;
4303 enum machine_mode mode, op_mode1;
4304 enum insn_code icode;
4305 rtx reg, addr, mem, insn;
4306
4307 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4308 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4309
4310 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4311 reg = force_not_mem (reg);
4312
4313 mode = TYPE_MODE (TREE_TYPE (to));
4314 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4315 EXPAND_SUM);
4316 addr = memory_address_addr_space (mode, addr, as);
4317 mem = gen_rtx_MEM (mode, addr);
4318
4319 set_mem_attributes (mem, to, 0);
4320 set_mem_addr_space (mem, as);
4321
4322 icode = optab_handler (movmisalign_optab, mode);
4323 gcc_assert (icode != CODE_FOR_nothing);
4324
4325 op_mode1 = insn_data[icode].operand[1].mode;
4326 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4327 && op_mode1 != VOIDmode)
4328 reg = copy_to_mode_reg (op_mode1, reg);
4329
4330 insn = GEN_FCN (icode) (mem, reg);
4331 emit_insn (insn);
4332 return;
4333 }
4334
4335 /* If the rhs is a function call and its value is not an aggregate,
4336 call the function before we start to compute the lhs.
4337 This is needed for correct code for cases such as
4338 val = setjmp (buf) on machines where reference to val
4339 requires loading up part of an address in a separate insn.
4340
4341 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4342 since it might be a promoted variable where the zero- or sign- extension
4343 needs to be done. Handling this in the normal way is safe because no
4344 computation is done before the call. The same is true for SSA names. */
4345 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4346 && COMPLETE_TYPE_P (TREE_TYPE (from))
4347 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4348 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4349 && REG_P (DECL_RTL (to)))
4350 || TREE_CODE (to) == SSA_NAME))
4351 {
4352 rtx value;
4353
4354 push_temp_slots ();
4355 value = expand_normal (from);
4356 if (to_rtx == 0)
4357 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4358
4359 /* Handle calls that return values in multiple non-contiguous locations.
4360 The Irix 6 ABI has examples of this. */
4361 if (GET_CODE (to_rtx) == PARALLEL)
4362 emit_group_load (to_rtx, value, TREE_TYPE (from),
4363 int_size_in_bytes (TREE_TYPE (from)));
4364 else if (GET_MODE (to_rtx) == BLKmode)
4365 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4366 else
4367 {
4368 if (POINTER_TYPE_P (TREE_TYPE (to)))
4369 value = convert_memory_address_addr_space
4370 (GET_MODE (to_rtx), value,
4371 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4372
4373 emit_move_insn (to_rtx, value);
4374 }
4375 preserve_temp_slots (to_rtx);
4376 free_temp_slots ();
4377 pop_temp_slots ();
4378 return;
4379 }
4380
4381 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4382 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4383
4384 if (to_rtx == 0)
4385 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4386
4387 /* Don't move directly into a return register. */
4388 if (TREE_CODE (to) == RESULT_DECL
4389 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4390 {
4391 rtx temp;
4392
4393 push_temp_slots ();
4394 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4395
4396 if (GET_CODE (to_rtx) == PARALLEL)
4397 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4398 int_size_in_bytes (TREE_TYPE (from)));
4399 else
4400 emit_move_insn (to_rtx, temp);
4401
4402 preserve_temp_slots (to_rtx);
4403 free_temp_slots ();
4404 pop_temp_slots ();
4405 return;
4406 }
4407
4408 /* In case we are returning the contents of an object which overlaps
4409 the place the value is being stored, use a safe function when copying
4410 a value through a pointer into a structure value return block. */
4411 if (TREE_CODE (to) == RESULT_DECL
4412 && TREE_CODE (from) == INDIRECT_REF
4413 && ADDR_SPACE_GENERIC_P
4414 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4415 && refs_may_alias_p (to, from)
4416 && cfun->returns_struct
4417 && !cfun->returns_pcc_struct)
4418 {
4419 rtx from_rtx, size;
4420
4421 push_temp_slots ();
4422 size = expr_size (from);
4423 from_rtx = expand_normal (from);
4424
4425 emit_library_call (memmove_libfunc, LCT_NORMAL,
4426 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4427 XEXP (from_rtx, 0), Pmode,
4428 convert_to_mode (TYPE_MODE (sizetype),
4429 size, TYPE_UNSIGNED (sizetype)),
4430 TYPE_MODE (sizetype));
4431
4432 preserve_temp_slots (to_rtx);
4433 free_temp_slots ();
4434 pop_temp_slots ();
4435 return;
4436 }
4437
4438 /* Compute FROM and store the value in the rtx we got. */
4439
4440 push_temp_slots ();
4441 result = store_expr (from, to_rtx, 0, nontemporal);
4442 preserve_temp_slots (result);
4443 free_temp_slots ();
4444 pop_temp_slots ();
4445 return;
4446 }
4447
4448 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4449 succeeded, false otherwise. */
4450
4451 bool
4452 emit_storent_insn (rtx to, rtx from)
4453 {
4454 enum machine_mode mode = GET_MODE (to), imode;
4455 enum insn_code code = optab_handler (storent_optab, mode);
4456 rtx pattern;
4457
4458 if (code == CODE_FOR_nothing)
4459 return false;
4460
4461 imode = insn_data[code].operand[0].mode;
4462 if (!insn_data[code].operand[0].predicate (to, imode))
4463 return false;
4464
4465 imode = insn_data[code].operand[1].mode;
4466 if (!insn_data[code].operand[1].predicate (from, imode))
4467 {
4468 from = copy_to_mode_reg (imode, from);
4469 if (!insn_data[code].operand[1].predicate (from, imode))
4470 return false;
4471 }
4472
4473 pattern = GEN_FCN (code) (to, from);
4474 if (pattern == NULL_RTX)
4475 return false;
4476
4477 emit_insn (pattern);
4478 return true;
4479 }
4480
4481 /* Generate code for computing expression EXP,
4482 and storing the value into TARGET.
4483
4484 If the mode is BLKmode then we may return TARGET itself.
4485 It turns out that in BLKmode it doesn't cause a problem.
4486 because C has no operators that could combine two different
4487 assignments into the same BLKmode object with different values
4488 with no sequence point. Will other languages need this to
4489 be more thorough?
4490
4491 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4492 stack, and block moves may need to be treated specially.
4493
4494 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4495
4496 rtx
4497 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4498 {
4499 rtx temp;
4500 rtx alt_rtl = NULL_RTX;
4501 location_t loc = EXPR_LOCATION (exp);
4502
4503 if (VOID_TYPE_P (TREE_TYPE (exp)))
4504 {
4505 /* C++ can generate ?: expressions with a throw expression in one
4506 branch and an rvalue in the other. Here, we resolve attempts to
4507 store the throw expression's nonexistent result. */
4508 gcc_assert (!call_param_p);
4509 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4510 return NULL_RTX;
4511 }
4512 if (TREE_CODE (exp) == COMPOUND_EXPR)
4513 {
4514 /* Perform first part of compound expression, then assign from second
4515 part. */
4516 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4517 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4518 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4519 nontemporal);
4520 }
4521 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4522 {
4523 /* For conditional expression, get safe form of the target. Then
4524 test the condition, doing the appropriate assignment on either
4525 side. This avoids the creation of unnecessary temporaries.
4526 For non-BLKmode, it is more efficient not to do this. */
4527
4528 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4529
4530 do_pending_stack_adjust ();
4531 NO_DEFER_POP;
4532 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4533 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4534 nontemporal);
4535 emit_jump_insn (gen_jump (lab2));
4536 emit_barrier ();
4537 emit_label (lab1);
4538 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4539 nontemporal);
4540 emit_label (lab2);
4541 OK_DEFER_POP;
4542
4543 return NULL_RTX;
4544 }
4545 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4546 /* If this is a scalar in a register that is stored in a wider mode
4547 than the declared mode, compute the result into its declared mode
4548 and then convert to the wider mode. Our value is the computed
4549 expression. */
4550 {
4551 rtx inner_target = 0;
4552
4553 /* We can do the conversion inside EXP, which will often result
4554 in some optimizations. Do the conversion in two steps: first
4555 change the signedness, if needed, then the extend. But don't
4556 do this if the type of EXP is a subtype of something else
4557 since then the conversion might involve more than just
4558 converting modes. */
4559 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4560 && TREE_TYPE (TREE_TYPE (exp)) == 0
4561 && GET_MODE_PRECISION (GET_MODE (target))
4562 == TYPE_PRECISION (TREE_TYPE (exp)))
4563 {
4564 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4565 != SUBREG_PROMOTED_UNSIGNED_P (target))
4566 {
4567 /* Some types, e.g. Fortran's logical*4, won't have a signed
4568 version, so use the mode instead. */
4569 tree ntype
4570 = (signed_or_unsigned_type_for
4571 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4572 if (ntype == NULL)
4573 ntype = lang_hooks.types.type_for_mode
4574 (TYPE_MODE (TREE_TYPE (exp)),
4575 SUBREG_PROMOTED_UNSIGNED_P (target));
4576
4577 exp = fold_convert_loc (loc, ntype, exp);
4578 }
4579
4580 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4581 (GET_MODE (SUBREG_REG (target)),
4582 SUBREG_PROMOTED_UNSIGNED_P (target)),
4583 exp);
4584
4585 inner_target = SUBREG_REG (target);
4586 }
4587
4588 temp = expand_expr (exp, inner_target, VOIDmode,
4589 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4590
4591 /* If TEMP is a VOIDmode constant, use convert_modes to make
4592 sure that we properly convert it. */
4593 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4594 {
4595 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4596 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4597 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4598 GET_MODE (target), temp,
4599 SUBREG_PROMOTED_UNSIGNED_P (target));
4600 }
4601
4602 convert_move (SUBREG_REG (target), temp,
4603 SUBREG_PROMOTED_UNSIGNED_P (target));
4604
4605 return NULL_RTX;
4606 }
4607 else if (TREE_CODE (exp) == STRING_CST
4608 && !nontemporal && !call_param_p
4609 && TREE_STRING_LENGTH (exp) > 0
4610 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4611 {
4612 /* Optimize initialization of an array with a STRING_CST. */
4613 HOST_WIDE_INT exp_len, str_copy_len;
4614 rtx dest_mem;
4615
4616 exp_len = int_expr_size (exp);
4617 if (exp_len <= 0)
4618 goto normal_expr;
4619
4620 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4621 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4622 goto normal_expr;
4623
4624 str_copy_len = TREE_STRING_LENGTH (exp);
4625 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4626 {
4627 str_copy_len += STORE_MAX_PIECES - 1;
4628 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4629 }
4630 str_copy_len = MIN (str_copy_len, exp_len);
4631 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4632 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4633 MEM_ALIGN (target), false))
4634 goto normal_expr;
4635
4636 dest_mem = target;
4637
4638 dest_mem = store_by_pieces (dest_mem,
4639 str_copy_len, builtin_strncpy_read_str,
4640 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4641 MEM_ALIGN (target), false,
4642 exp_len > str_copy_len ? 1 : 0);
4643 if (exp_len > str_copy_len)
4644 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4645 GEN_INT (exp_len - str_copy_len),
4646 BLOCK_OP_NORMAL);
4647 return NULL_RTX;
4648 }
4649 else if (TREE_CODE (exp) == MEM_REF
4650 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4651 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == STRING_CST
4652 && integer_zerop (TREE_OPERAND (exp, 1))
4653 && !nontemporal && !call_param_p
4654 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4655 {
4656 /* Optimize initialization of an array with a STRING_CST. */
4657 HOST_WIDE_INT exp_len, str_copy_len;
4658 rtx dest_mem;
4659 tree str = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4660
4661 exp_len = int_expr_size (exp);
4662 if (exp_len <= 0)
4663 goto normal_expr;
4664
4665 str_copy_len = strlen (TREE_STRING_POINTER (str));
4666 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4667 goto normal_expr;
4668
4669 str_copy_len = TREE_STRING_LENGTH (str);
4670 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4671 {
4672 str_copy_len += STORE_MAX_PIECES - 1;
4673 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4674 }
4675 str_copy_len = MIN (str_copy_len, exp_len);
4676 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4677 CONST_CAST(char *, TREE_STRING_POINTER (str)),
4678 MEM_ALIGN (target), false))
4679 goto normal_expr;
4680
4681 dest_mem = target;
4682
4683 dest_mem = store_by_pieces (dest_mem,
4684 str_copy_len, builtin_strncpy_read_str,
4685 CONST_CAST(char *, TREE_STRING_POINTER (str)),
4686 MEM_ALIGN (target), false,
4687 exp_len > str_copy_len ? 1 : 0);
4688 if (exp_len > str_copy_len)
4689 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4690 GEN_INT (exp_len - str_copy_len),
4691 BLOCK_OP_NORMAL);
4692 return NULL_RTX;
4693 }
4694 else
4695 {
4696 rtx tmp_target;
4697
4698 normal_expr:
4699 /* If we want to use a nontemporal store, force the value to
4700 register first. */
4701 tmp_target = nontemporal ? NULL_RTX : target;
4702 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4703 (call_param_p
4704 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4705 &alt_rtl);
4706 }
4707
4708 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4709 the same as that of TARGET, adjust the constant. This is needed, for
4710 example, in case it is a CONST_DOUBLE and we want only a word-sized
4711 value. */
4712 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4713 && TREE_CODE (exp) != ERROR_MARK
4714 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4715 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4716 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4717
4718 /* If value was not generated in the target, store it there.
4719 Convert the value to TARGET's type first if necessary and emit the
4720 pending incrementations that have been queued when expanding EXP.
4721 Note that we cannot emit the whole queue blindly because this will
4722 effectively disable the POST_INC optimization later.
4723
4724 If TEMP and TARGET compare equal according to rtx_equal_p, but
4725 one or both of them are volatile memory refs, we have to distinguish
4726 two cases:
4727 - expand_expr has used TARGET. In this case, we must not generate
4728 another copy. This can be detected by TARGET being equal according
4729 to == .
4730 - expand_expr has not used TARGET - that means that the source just
4731 happens to have the same RTX form. Since temp will have been created
4732 by expand_expr, it will compare unequal according to == .
4733 We must generate a copy in this case, to reach the correct number
4734 of volatile memory references. */
4735
4736 if ((! rtx_equal_p (temp, target)
4737 || (temp != target && (side_effects_p (temp)
4738 || side_effects_p (target))))
4739 && TREE_CODE (exp) != ERROR_MARK
4740 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4741 but TARGET is not valid memory reference, TEMP will differ
4742 from TARGET although it is really the same location. */
4743 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4744 /* If there's nothing to copy, don't bother. Don't call
4745 expr_size unless necessary, because some front-ends (C++)
4746 expr_size-hook must not be given objects that are not
4747 supposed to be bit-copied or bit-initialized. */
4748 && expr_size (exp) != const0_rtx)
4749 {
4750 if (GET_MODE (temp) != GET_MODE (target)
4751 && GET_MODE (temp) != VOIDmode)
4752 {
4753 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4754 if (GET_MODE (target) == BLKmode
4755 && GET_MODE (temp) == BLKmode)
4756 emit_block_move (target, temp, expr_size (exp),
4757 (call_param_p
4758 ? BLOCK_OP_CALL_PARM
4759 : BLOCK_OP_NORMAL));
4760 else if (GET_MODE (target) == BLKmode)
4761 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4762 0, GET_MODE (temp), temp);
4763 else
4764 convert_move (target, temp, unsignedp);
4765 }
4766
4767 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4768 {
4769 /* Handle copying a string constant into an array. The string
4770 constant may be shorter than the array. So copy just the string's
4771 actual length, and clear the rest. First get the size of the data
4772 type of the string, which is actually the size of the target. */
4773 rtx size = expr_size (exp);
4774
4775 if (CONST_INT_P (size)
4776 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4777 emit_block_move (target, temp, size,
4778 (call_param_p
4779 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4780 else
4781 {
4782 enum machine_mode pointer_mode
4783 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4784 enum machine_mode address_mode
4785 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4786
4787 /* Compute the size of the data to copy from the string. */
4788 tree copy_size
4789 = size_binop_loc (loc, MIN_EXPR,
4790 make_tree (sizetype, size),
4791 size_int (TREE_STRING_LENGTH (exp)));
4792 rtx copy_size_rtx
4793 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4794 (call_param_p
4795 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4796 rtx label = 0;
4797
4798 /* Copy that much. */
4799 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4800 TYPE_UNSIGNED (sizetype));
4801 emit_block_move (target, temp, copy_size_rtx,
4802 (call_param_p
4803 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4804
4805 /* Figure out how much is left in TARGET that we have to clear.
4806 Do all calculations in pointer_mode. */
4807 if (CONST_INT_P (copy_size_rtx))
4808 {
4809 size = plus_constant (size, -INTVAL (copy_size_rtx));
4810 target = adjust_address (target, BLKmode,
4811 INTVAL (copy_size_rtx));
4812 }
4813 else
4814 {
4815 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4816 copy_size_rtx, NULL_RTX, 0,
4817 OPTAB_LIB_WIDEN);
4818
4819 if (GET_MODE (copy_size_rtx) != address_mode)
4820 copy_size_rtx = convert_to_mode (address_mode,
4821 copy_size_rtx,
4822 TYPE_UNSIGNED (sizetype));
4823
4824 target = offset_address (target, copy_size_rtx,
4825 highest_pow2_factor (copy_size));
4826 label = gen_label_rtx ();
4827 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4828 GET_MODE (size), 0, label);
4829 }
4830
4831 if (size != const0_rtx)
4832 clear_storage (target, size, BLOCK_OP_NORMAL);
4833
4834 if (label)
4835 emit_label (label);
4836 }
4837 }
4838 /* Handle calls that return values in multiple non-contiguous locations.
4839 The Irix 6 ABI has examples of this. */
4840 else if (GET_CODE (target) == PARALLEL)
4841 emit_group_load (target, temp, TREE_TYPE (exp),
4842 int_size_in_bytes (TREE_TYPE (exp)));
4843 else if (GET_MODE (temp) == BLKmode)
4844 emit_block_move (target, temp, expr_size (exp),
4845 (call_param_p
4846 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4847 else if (nontemporal
4848 && emit_storent_insn (target, temp))
4849 /* If we managed to emit a nontemporal store, there is nothing else to
4850 do. */
4851 ;
4852 else
4853 {
4854 temp = force_operand (temp, target);
4855 if (temp != target)
4856 emit_move_insn (target, temp);
4857 }
4858 }
4859
4860 return NULL_RTX;
4861 }
4862 \f
4863 /* Helper for categorize_ctor_elements. Identical interface. */
4864
4865 static bool
4866 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4867 HOST_WIDE_INT *p_elt_count,
4868 bool *p_must_clear)
4869 {
4870 unsigned HOST_WIDE_INT idx;
4871 HOST_WIDE_INT nz_elts, elt_count;
4872 tree value, purpose;
4873
4874 /* Whether CTOR is a valid constant initializer, in accordance with what
4875 initializer_constant_valid_p does. If inferred from the constructor
4876 elements, true until proven otherwise. */
4877 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4878 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4879
4880 nz_elts = 0;
4881 elt_count = 0;
4882
4883 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4884 {
4885 HOST_WIDE_INT mult = 1;
4886
4887 if (TREE_CODE (purpose) == RANGE_EXPR)
4888 {
4889 tree lo_index = TREE_OPERAND (purpose, 0);
4890 tree hi_index = TREE_OPERAND (purpose, 1);
4891
4892 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4893 mult = (tree_low_cst (hi_index, 1)
4894 - tree_low_cst (lo_index, 1) + 1);
4895 }
4896
4897 switch (TREE_CODE (value))
4898 {
4899 case CONSTRUCTOR:
4900 {
4901 HOST_WIDE_INT nz = 0, ic = 0;
4902
4903 bool const_elt_p
4904 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4905
4906 nz_elts += mult * nz;
4907 elt_count += mult * ic;
4908
4909 if (const_from_elts_p && const_p)
4910 const_p = const_elt_p;
4911 }
4912 break;
4913
4914 case INTEGER_CST:
4915 case REAL_CST:
4916 case FIXED_CST:
4917 if (!initializer_zerop (value))
4918 nz_elts += mult;
4919 elt_count += mult;
4920 break;
4921
4922 case STRING_CST:
4923 nz_elts += mult * TREE_STRING_LENGTH (value);
4924 elt_count += mult * TREE_STRING_LENGTH (value);
4925 break;
4926
4927 case COMPLEX_CST:
4928 if (!initializer_zerop (TREE_REALPART (value)))
4929 nz_elts += mult;
4930 if (!initializer_zerop (TREE_IMAGPART (value)))
4931 nz_elts += mult;
4932 elt_count += mult;
4933 break;
4934
4935 case VECTOR_CST:
4936 {
4937 tree v;
4938 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4939 {
4940 if (!initializer_zerop (TREE_VALUE (v)))
4941 nz_elts += mult;
4942 elt_count += mult;
4943 }
4944 }
4945 break;
4946
4947 default:
4948 {
4949 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4950 if (tc < 1)
4951 tc = 1;
4952 nz_elts += mult * tc;
4953 elt_count += mult * tc;
4954
4955 if (const_from_elts_p && const_p)
4956 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4957 != NULL_TREE;
4958 }
4959 break;
4960 }
4961 }
4962
4963 if (!*p_must_clear
4964 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4965 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4966 {
4967 tree init_sub_type;
4968 bool clear_this = true;
4969
4970 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4971 {
4972 /* We don't expect more than one element of the union to be
4973 initialized. Not sure what we should do otherwise... */
4974 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4975 == 1);
4976
4977 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4978 CONSTRUCTOR_ELTS (ctor),
4979 0)->value);
4980
4981 /* ??? We could look at each element of the union, and find the
4982 largest element. Which would avoid comparing the size of the
4983 initialized element against any tail padding in the union.
4984 Doesn't seem worth the effort... */
4985 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4986 TYPE_SIZE (init_sub_type)) == 1)
4987 {
4988 /* And now we have to find out if the element itself is fully
4989 constructed. E.g. for union { struct { int a, b; } s; } u
4990 = { .s = { .a = 1 } }. */
4991 if (elt_count == count_type_elements (init_sub_type, false))
4992 clear_this = false;
4993 }
4994 }
4995
4996 *p_must_clear = clear_this;
4997 }
4998
4999 *p_nz_elts += nz_elts;
5000 *p_elt_count += elt_count;
5001
5002 return const_p;
5003 }
5004
5005 /* Examine CTOR to discover:
5006 * how many scalar fields are set to nonzero values,
5007 and place it in *P_NZ_ELTS;
5008 * how many scalar fields in total are in CTOR,
5009 and place it in *P_ELT_COUNT.
5010 * if a type is a union, and the initializer from the constructor
5011 is not the largest element in the union, then set *p_must_clear.
5012
5013 Return whether or not CTOR is a valid static constant initializer, the same
5014 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5015
5016 bool
5017 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5018 HOST_WIDE_INT *p_elt_count,
5019 bool *p_must_clear)
5020 {
5021 *p_nz_elts = 0;
5022 *p_elt_count = 0;
5023 *p_must_clear = false;
5024
5025 return
5026 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5027 }
5028
5029 /* Count the number of scalars in TYPE. Return -1 on overflow or
5030 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5031 array member at the end of the structure. */
5032
5033 HOST_WIDE_INT
5034 count_type_elements (const_tree type, bool allow_flexarr)
5035 {
5036 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5037 switch (TREE_CODE (type))
5038 {
5039 case ARRAY_TYPE:
5040 {
5041 tree telts = array_type_nelts (type);
5042 if (telts && host_integerp (telts, 1))
5043 {
5044 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5045 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5046 if (n == 0)
5047 return 0;
5048 else if (max / n > m)
5049 return n * m;
5050 }
5051 return -1;
5052 }
5053
5054 case RECORD_TYPE:
5055 {
5056 HOST_WIDE_INT n = 0, t;
5057 tree f;
5058
5059 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5060 if (TREE_CODE (f) == FIELD_DECL)
5061 {
5062 t = count_type_elements (TREE_TYPE (f), false);
5063 if (t < 0)
5064 {
5065 /* Check for structures with flexible array member. */
5066 tree tf = TREE_TYPE (f);
5067 if (allow_flexarr
5068 && DECL_CHAIN (f) == NULL
5069 && TREE_CODE (tf) == ARRAY_TYPE
5070 && TYPE_DOMAIN (tf)
5071 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5072 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5073 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5074 && int_size_in_bytes (type) >= 0)
5075 break;
5076
5077 return -1;
5078 }
5079 n += t;
5080 }
5081
5082 return n;
5083 }
5084
5085 case UNION_TYPE:
5086 case QUAL_UNION_TYPE:
5087 return -1;
5088
5089 case COMPLEX_TYPE:
5090 return 2;
5091
5092 case VECTOR_TYPE:
5093 return TYPE_VECTOR_SUBPARTS (type);
5094
5095 case INTEGER_TYPE:
5096 case REAL_TYPE:
5097 case FIXED_POINT_TYPE:
5098 case ENUMERAL_TYPE:
5099 case BOOLEAN_TYPE:
5100 case POINTER_TYPE:
5101 case OFFSET_TYPE:
5102 case REFERENCE_TYPE:
5103 return 1;
5104
5105 case ERROR_MARK:
5106 return 0;
5107
5108 case VOID_TYPE:
5109 case METHOD_TYPE:
5110 case FUNCTION_TYPE:
5111 case LANG_TYPE:
5112 default:
5113 gcc_unreachable ();
5114 }
5115 }
5116
5117 /* Return 1 if EXP contains mostly (3/4) zeros. */
5118
5119 static int
5120 mostly_zeros_p (const_tree exp)
5121 {
5122 if (TREE_CODE (exp) == CONSTRUCTOR)
5123
5124 {
5125 HOST_WIDE_INT nz_elts, count, elts;
5126 bool must_clear;
5127
5128 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5129 if (must_clear)
5130 return 1;
5131
5132 elts = count_type_elements (TREE_TYPE (exp), false);
5133
5134 return nz_elts < elts / 4;
5135 }
5136
5137 return initializer_zerop (exp);
5138 }
5139
5140 /* Return 1 if EXP contains all zeros. */
5141
5142 static int
5143 all_zeros_p (const_tree exp)
5144 {
5145 if (TREE_CODE (exp) == CONSTRUCTOR)
5146
5147 {
5148 HOST_WIDE_INT nz_elts, count;
5149 bool must_clear;
5150
5151 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5152 return nz_elts == 0;
5153 }
5154
5155 return initializer_zerop (exp);
5156 }
5157 \f
5158 /* Helper function for store_constructor.
5159 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5160 TYPE is the type of the CONSTRUCTOR, not the element type.
5161 CLEARED is as for store_constructor.
5162 ALIAS_SET is the alias set to use for any stores.
5163
5164 This provides a recursive shortcut back to store_constructor when it isn't
5165 necessary to go through store_field. This is so that we can pass through
5166 the cleared field to let store_constructor know that we may not have to
5167 clear a substructure if the outer structure has already been cleared. */
5168
5169 static void
5170 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5171 HOST_WIDE_INT bitpos, enum machine_mode mode,
5172 tree exp, tree type, int cleared,
5173 alias_set_type alias_set)
5174 {
5175 if (TREE_CODE (exp) == CONSTRUCTOR
5176 /* We can only call store_constructor recursively if the size and
5177 bit position are on a byte boundary. */
5178 && bitpos % BITS_PER_UNIT == 0
5179 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5180 /* If we have a nonzero bitpos for a register target, then we just
5181 let store_field do the bitfield handling. This is unlikely to
5182 generate unnecessary clear instructions anyways. */
5183 && (bitpos == 0 || MEM_P (target)))
5184 {
5185 if (MEM_P (target))
5186 target
5187 = adjust_address (target,
5188 GET_MODE (target) == BLKmode
5189 || 0 != (bitpos
5190 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5191 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5192
5193
5194 /* Update the alias set, if required. */
5195 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5196 && MEM_ALIAS_SET (target) != 0)
5197 {
5198 target = copy_rtx (target);
5199 set_mem_alias_set (target, alias_set);
5200 }
5201
5202 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5203 }
5204 else
5205 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5206 }
5207
5208 /* Store the value of constructor EXP into the rtx TARGET.
5209 TARGET is either a REG or a MEM; we know it cannot conflict, since
5210 safe_from_p has been called.
5211 CLEARED is true if TARGET is known to have been zero'd.
5212 SIZE is the number of bytes of TARGET we are allowed to modify: this
5213 may not be the same as the size of EXP if we are assigning to a field
5214 which has been packed to exclude padding bits. */
5215
5216 static void
5217 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5218 {
5219 tree type = TREE_TYPE (exp);
5220 #ifdef WORD_REGISTER_OPERATIONS
5221 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5222 #endif
5223
5224 switch (TREE_CODE (type))
5225 {
5226 case RECORD_TYPE:
5227 case UNION_TYPE:
5228 case QUAL_UNION_TYPE:
5229 {
5230 unsigned HOST_WIDE_INT idx;
5231 tree field, value;
5232
5233 /* If size is zero or the target is already cleared, do nothing. */
5234 if (size == 0 || cleared)
5235 cleared = 1;
5236 /* We either clear the aggregate or indicate the value is dead. */
5237 else if ((TREE_CODE (type) == UNION_TYPE
5238 || TREE_CODE (type) == QUAL_UNION_TYPE)
5239 && ! CONSTRUCTOR_ELTS (exp))
5240 /* If the constructor is empty, clear the union. */
5241 {
5242 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5243 cleared = 1;
5244 }
5245
5246 /* If we are building a static constructor into a register,
5247 set the initial value as zero so we can fold the value into
5248 a constant. But if more than one register is involved,
5249 this probably loses. */
5250 else if (REG_P (target) && TREE_STATIC (exp)
5251 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5252 {
5253 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5254 cleared = 1;
5255 }
5256
5257 /* If the constructor has fewer fields than the structure or
5258 if we are initializing the structure to mostly zeros, clear
5259 the whole structure first. Don't do this if TARGET is a
5260 register whose mode size isn't equal to SIZE since
5261 clear_storage can't handle this case. */
5262 else if (size > 0
5263 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5264 != fields_length (type))
5265 || mostly_zeros_p (exp))
5266 && (!REG_P (target)
5267 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5268 == size)))
5269 {
5270 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5271 cleared = 1;
5272 }
5273
5274 if (REG_P (target) && !cleared)
5275 emit_clobber (target);
5276
5277 /* Store each element of the constructor into the
5278 corresponding field of TARGET. */
5279 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5280 {
5281 enum machine_mode mode;
5282 HOST_WIDE_INT bitsize;
5283 HOST_WIDE_INT bitpos = 0;
5284 tree offset;
5285 rtx to_rtx = target;
5286
5287 /* Just ignore missing fields. We cleared the whole
5288 structure, above, if any fields are missing. */
5289 if (field == 0)
5290 continue;
5291
5292 if (cleared && initializer_zerop (value))
5293 continue;
5294
5295 if (host_integerp (DECL_SIZE (field), 1))
5296 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5297 else
5298 bitsize = -1;
5299
5300 mode = DECL_MODE (field);
5301 if (DECL_BIT_FIELD (field))
5302 mode = VOIDmode;
5303
5304 offset = DECL_FIELD_OFFSET (field);
5305 if (host_integerp (offset, 0)
5306 && host_integerp (bit_position (field), 0))
5307 {
5308 bitpos = int_bit_position (field);
5309 offset = 0;
5310 }
5311 else
5312 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5313
5314 if (offset)
5315 {
5316 enum machine_mode address_mode;
5317 rtx offset_rtx;
5318
5319 offset
5320 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5321 make_tree (TREE_TYPE (exp),
5322 target));
5323
5324 offset_rtx = expand_normal (offset);
5325 gcc_assert (MEM_P (to_rtx));
5326
5327 address_mode
5328 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5329 if (GET_MODE (offset_rtx) != address_mode)
5330 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5331
5332 to_rtx = offset_address (to_rtx, offset_rtx,
5333 highest_pow2_factor (offset));
5334 }
5335
5336 #ifdef WORD_REGISTER_OPERATIONS
5337 /* If this initializes a field that is smaller than a
5338 word, at the start of a word, try to widen it to a full
5339 word. This special case allows us to output C++ member
5340 function initializations in a form that the optimizers
5341 can understand. */
5342 if (REG_P (target)
5343 && bitsize < BITS_PER_WORD
5344 && bitpos % BITS_PER_WORD == 0
5345 && GET_MODE_CLASS (mode) == MODE_INT
5346 && TREE_CODE (value) == INTEGER_CST
5347 && exp_size >= 0
5348 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5349 {
5350 tree type = TREE_TYPE (value);
5351
5352 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5353 {
5354 type = lang_hooks.types.type_for_size
5355 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5356 value = fold_convert (type, value);
5357 }
5358
5359 if (BYTES_BIG_ENDIAN)
5360 value
5361 = fold_build2 (LSHIFT_EXPR, type, value,
5362 build_int_cst (type,
5363 BITS_PER_WORD - bitsize));
5364 bitsize = BITS_PER_WORD;
5365 mode = word_mode;
5366 }
5367 #endif
5368
5369 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5370 && DECL_NONADDRESSABLE_P (field))
5371 {
5372 to_rtx = copy_rtx (to_rtx);
5373 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5374 }
5375
5376 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5377 value, type, cleared,
5378 get_alias_set (TREE_TYPE (field)));
5379 }
5380 break;
5381 }
5382 case ARRAY_TYPE:
5383 {
5384 tree value, index;
5385 unsigned HOST_WIDE_INT i;
5386 int need_to_clear;
5387 tree domain;
5388 tree elttype = TREE_TYPE (type);
5389 int const_bounds_p;
5390 HOST_WIDE_INT minelt = 0;
5391 HOST_WIDE_INT maxelt = 0;
5392
5393 domain = TYPE_DOMAIN (type);
5394 const_bounds_p = (TYPE_MIN_VALUE (domain)
5395 && TYPE_MAX_VALUE (domain)
5396 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5397 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5398
5399 /* If we have constant bounds for the range of the type, get them. */
5400 if (const_bounds_p)
5401 {
5402 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5403 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5404 }
5405
5406 /* If the constructor has fewer elements than the array, clear
5407 the whole array first. Similarly if this is static
5408 constructor of a non-BLKmode object. */
5409 if (cleared)
5410 need_to_clear = 0;
5411 else if (REG_P (target) && TREE_STATIC (exp))
5412 need_to_clear = 1;
5413 else
5414 {
5415 unsigned HOST_WIDE_INT idx;
5416 tree index, value;
5417 HOST_WIDE_INT count = 0, zero_count = 0;
5418 need_to_clear = ! const_bounds_p;
5419
5420 /* This loop is a more accurate version of the loop in
5421 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5422 is also needed to check for missing elements. */
5423 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5424 {
5425 HOST_WIDE_INT this_node_count;
5426
5427 if (need_to_clear)
5428 break;
5429
5430 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5431 {
5432 tree lo_index = TREE_OPERAND (index, 0);
5433 tree hi_index = TREE_OPERAND (index, 1);
5434
5435 if (! host_integerp (lo_index, 1)
5436 || ! host_integerp (hi_index, 1))
5437 {
5438 need_to_clear = 1;
5439 break;
5440 }
5441
5442 this_node_count = (tree_low_cst (hi_index, 1)
5443 - tree_low_cst (lo_index, 1) + 1);
5444 }
5445 else
5446 this_node_count = 1;
5447
5448 count += this_node_count;
5449 if (mostly_zeros_p (value))
5450 zero_count += this_node_count;
5451 }
5452
5453 /* Clear the entire array first if there are any missing
5454 elements, or if the incidence of zero elements is >=
5455 75%. */
5456 if (! need_to_clear
5457 && (count < maxelt - minelt + 1
5458 || 4 * zero_count >= 3 * count))
5459 need_to_clear = 1;
5460 }
5461
5462 if (need_to_clear && size > 0)
5463 {
5464 if (REG_P (target))
5465 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5466 else
5467 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5468 cleared = 1;
5469 }
5470
5471 if (!cleared && REG_P (target))
5472 /* Inform later passes that the old value is dead. */
5473 emit_clobber (target);
5474
5475 /* Store each element of the constructor into the
5476 corresponding element of TARGET, determined by counting the
5477 elements. */
5478 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5479 {
5480 enum machine_mode mode;
5481 HOST_WIDE_INT bitsize;
5482 HOST_WIDE_INT bitpos;
5483 rtx xtarget = target;
5484
5485 if (cleared && initializer_zerop (value))
5486 continue;
5487
5488 mode = TYPE_MODE (elttype);
5489 if (mode == BLKmode)
5490 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5491 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5492 : -1);
5493 else
5494 bitsize = GET_MODE_BITSIZE (mode);
5495
5496 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5497 {
5498 tree lo_index = TREE_OPERAND (index, 0);
5499 tree hi_index = TREE_OPERAND (index, 1);
5500 rtx index_r, pos_rtx;
5501 HOST_WIDE_INT lo, hi, count;
5502 tree position;
5503
5504 /* If the range is constant and "small", unroll the loop. */
5505 if (const_bounds_p
5506 && host_integerp (lo_index, 0)
5507 && host_integerp (hi_index, 0)
5508 && (lo = tree_low_cst (lo_index, 0),
5509 hi = tree_low_cst (hi_index, 0),
5510 count = hi - lo + 1,
5511 (!MEM_P (target)
5512 || count <= 2
5513 || (host_integerp (TYPE_SIZE (elttype), 1)
5514 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5515 <= 40 * 8)))))
5516 {
5517 lo -= minelt; hi -= minelt;
5518 for (; lo <= hi; lo++)
5519 {
5520 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5521
5522 if (MEM_P (target)
5523 && !MEM_KEEP_ALIAS_SET_P (target)
5524 && TREE_CODE (type) == ARRAY_TYPE
5525 && TYPE_NONALIASED_COMPONENT (type))
5526 {
5527 target = copy_rtx (target);
5528 MEM_KEEP_ALIAS_SET_P (target) = 1;
5529 }
5530
5531 store_constructor_field
5532 (target, bitsize, bitpos, mode, value, type, cleared,
5533 get_alias_set (elttype));
5534 }
5535 }
5536 else
5537 {
5538 rtx loop_start = gen_label_rtx ();
5539 rtx loop_end = gen_label_rtx ();
5540 tree exit_cond;
5541
5542 expand_normal (hi_index);
5543
5544 index = build_decl (EXPR_LOCATION (exp),
5545 VAR_DECL, NULL_TREE, domain);
5546 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5547 SET_DECL_RTL (index, index_r);
5548 store_expr (lo_index, index_r, 0, false);
5549
5550 /* Build the head of the loop. */
5551 do_pending_stack_adjust ();
5552 emit_label (loop_start);
5553
5554 /* Assign value to element index. */
5555 position =
5556 fold_convert (ssizetype,
5557 fold_build2 (MINUS_EXPR,
5558 TREE_TYPE (index),
5559 index,
5560 TYPE_MIN_VALUE (domain)));
5561
5562 position =
5563 size_binop (MULT_EXPR, position,
5564 fold_convert (ssizetype,
5565 TYPE_SIZE_UNIT (elttype)));
5566
5567 pos_rtx = expand_normal (position);
5568 xtarget = offset_address (target, pos_rtx,
5569 highest_pow2_factor (position));
5570 xtarget = adjust_address (xtarget, mode, 0);
5571 if (TREE_CODE (value) == CONSTRUCTOR)
5572 store_constructor (value, xtarget, cleared,
5573 bitsize / BITS_PER_UNIT);
5574 else
5575 store_expr (value, xtarget, 0, false);
5576
5577 /* Generate a conditional jump to exit the loop. */
5578 exit_cond = build2 (LT_EXPR, integer_type_node,
5579 index, hi_index);
5580 jumpif (exit_cond, loop_end, -1);
5581
5582 /* Update the loop counter, and jump to the head of
5583 the loop. */
5584 expand_assignment (index,
5585 build2 (PLUS_EXPR, TREE_TYPE (index),
5586 index, integer_one_node),
5587 false);
5588
5589 emit_jump (loop_start);
5590
5591 /* Build the end of the loop. */
5592 emit_label (loop_end);
5593 }
5594 }
5595 else if ((index != 0 && ! host_integerp (index, 0))
5596 || ! host_integerp (TYPE_SIZE (elttype), 1))
5597 {
5598 tree position;
5599
5600 if (index == 0)
5601 index = ssize_int (1);
5602
5603 if (minelt)
5604 index = fold_convert (ssizetype,
5605 fold_build2 (MINUS_EXPR,
5606 TREE_TYPE (index),
5607 index,
5608 TYPE_MIN_VALUE (domain)));
5609
5610 position =
5611 size_binop (MULT_EXPR, index,
5612 fold_convert (ssizetype,
5613 TYPE_SIZE_UNIT (elttype)));
5614 xtarget = offset_address (target,
5615 expand_normal (position),
5616 highest_pow2_factor (position));
5617 xtarget = adjust_address (xtarget, mode, 0);
5618 store_expr (value, xtarget, 0, false);
5619 }
5620 else
5621 {
5622 if (index != 0)
5623 bitpos = ((tree_low_cst (index, 0) - minelt)
5624 * tree_low_cst (TYPE_SIZE (elttype), 1));
5625 else
5626 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5627
5628 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5629 && TREE_CODE (type) == ARRAY_TYPE
5630 && TYPE_NONALIASED_COMPONENT (type))
5631 {
5632 target = copy_rtx (target);
5633 MEM_KEEP_ALIAS_SET_P (target) = 1;
5634 }
5635 store_constructor_field (target, bitsize, bitpos, mode, value,
5636 type, cleared, get_alias_set (elttype));
5637 }
5638 }
5639 break;
5640 }
5641
5642 case VECTOR_TYPE:
5643 {
5644 unsigned HOST_WIDE_INT idx;
5645 constructor_elt *ce;
5646 int i;
5647 int need_to_clear;
5648 int icode = 0;
5649 tree elttype = TREE_TYPE (type);
5650 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5651 enum machine_mode eltmode = TYPE_MODE (elttype);
5652 HOST_WIDE_INT bitsize;
5653 HOST_WIDE_INT bitpos;
5654 rtvec vector = NULL;
5655 unsigned n_elts;
5656 alias_set_type alias;
5657
5658 gcc_assert (eltmode != BLKmode);
5659
5660 n_elts = TYPE_VECTOR_SUBPARTS (type);
5661 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5662 {
5663 enum machine_mode mode = GET_MODE (target);
5664
5665 icode = (int) optab_handler (vec_init_optab, mode);
5666 if (icode != CODE_FOR_nothing)
5667 {
5668 unsigned int i;
5669
5670 vector = rtvec_alloc (n_elts);
5671 for (i = 0; i < n_elts; i++)
5672 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5673 }
5674 }
5675
5676 /* If the constructor has fewer elements than the vector,
5677 clear the whole array first. Similarly if this is static
5678 constructor of a non-BLKmode object. */
5679 if (cleared)
5680 need_to_clear = 0;
5681 else if (REG_P (target) && TREE_STATIC (exp))
5682 need_to_clear = 1;
5683 else
5684 {
5685 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5686 tree value;
5687
5688 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5689 {
5690 int n_elts_here = tree_low_cst
5691 (int_const_binop (TRUNC_DIV_EXPR,
5692 TYPE_SIZE (TREE_TYPE (value)),
5693 TYPE_SIZE (elttype), 0), 1);
5694
5695 count += n_elts_here;
5696 if (mostly_zeros_p (value))
5697 zero_count += n_elts_here;
5698 }
5699
5700 /* Clear the entire vector first if there are any missing elements,
5701 or if the incidence of zero elements is >= 75%. */
5702 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5703 }
5704
5705 if (need_to_clear && size > 0 && !vector)
5706 {
5707 if (REG_P (target))
5708 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5709 else
5710 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5711 cleared = 1;
5712 }
5713
5714 /* Inform later passes that the old value is dead. */
5715 if (!cleared && !vector && REG_P (target))
5716 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5717
5718 if (MEM_P (target))
5719 alias = MEM_ALIAS_SET (target);
5720 else
5721 alias = get_alias_set (elttype);
5722
5723 /* Store each element of the constructor into the corresponding
5724 element of TARGET, determined by counting the elements. */
5725 for (idx = 0, i = 0;
5726 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5727 idx++, i += bitsize / elt_size)
5728 {
5729 HOST_WIDE_INT eltpos;
5730 tree value = ce->value;
5731
5732 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5733 if (cleared && initializer_zerop (value))
5734 continue;
5735
5736 if (ce->index)
5737 eltpos = tree_low_cst (ce->index, 1);
5738 else
5739 eltpos = i;
5740
5741 if (vector)
5742 {
5743 /* Vector CONSTRUCTORs should only be built from smaller
5744 vectors in the case of BLKmode vectors. */
5745 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5746 RTVEC_ELT (vector, eltpos)
5747 = expand_normal (value);
5748 }
5749 else
5750 {
5751 enum machine_mode value_mode =
5752 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5753 ? TYPE_MODE (TREE_TYPE (value))
5754 : eltmode;
5755 bitpos = eltpos * elt_size;
5756 store_constructor_field (target, bitsize, bitpos,
5757 value_mode, value, type,
5758 cleared, alias);
5759 }
5760 }
5761
5762 if (vector)
5763 emit_insn (GEN_FCN (icode)
5764 (target,
5765 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5766 break;
5767 }
5768
5769 default:
5770 gcc_unreachable ();
5771 }
5772 }
5773
5774 /* Store the value of EXP (an expression tree)
5775 into a subfield of TARGET which has mode MODE and occupies
5776 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5777 If MODE is VOIDmode, it means that we are storing into a bit-field.
5778
5779 Always return const0_rtx unless we have something particular to
5780 return.
5781
5782 TYPE is the type of the underlying object,
5783
5784 ALIAS_SET is the alias set for the destination. This value will
5785 (in general) be different from that for TARGET, since TARGET is a
5786 reference to the containing structure.
5787
5788 If NONTEMPORAL is true, try generating a nontemporal store. */
5789
5790 static rtx
5791 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5792 enum machine_mode mode, tree exp, tree type,
5793 alias_set_type alias_set, bool nontemporal)
5794 {
5795 if (TREE_CODE (exp) == ERROR_MARK)
5796 return const0_rtx;
5797
5798 /* If we have nothing to store, do nothing unless the expression has
5799 side-effects. */
5800 if (bitsize == 0)
5801 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5802
5803 /* If we are storing into an unaligned field of an aligned union that is
5804 in a register, we may have the mode of TARGET being an integer mode but
5805 MODE == BLKmode. In that case, get an aligned object whose size and
5806 alignment are the same as TARGET and store TARGET into it (we can avoid
5807 the store if the field being stored is the entire width of TARGET). Then
5808 call ourselves recursively to store the field into a BLKmode version of
5809 that object. Finally, load from the object into TARGET. This is not
5810 very efficient in general, but should only be slightly more expensive
5811 than the otherwise-required unaligned accesses. Perhaps this can be
5812 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5813 twice, once with emit_move_insn and once via store_field. */
5814
5815 if (mode == BLKmode
5816 && (REG_P (target) || GET_CODE (target) == SUBREG))
5817 {
5818 rtx object = assign_temp (type, 0, 1, 1);
5819 rtx blk_object = adjust_address (object, BLKmode, 0);
5820
5821 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5822 emit_move_insn (object, target);
5823
5824 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5825 nontemporal);
5826
5827 emit_move_insn (target, object);
5828
5829 /* We want to return the BLKmode version of the data. */
5830 return blk_object;
5831 }
5832
5833 if (GET_CODE (target) == CONCAT)
5834 {
5835 /* We're storing into a struct containing a single __complex. */
5836
5837 gcc_assert (!bitpos);
5838 return store_expr (exp, target, 0, nontemporal);
5839 }
5840
5841 /* If the structure is in a register or if the component
5842 is a bit field, we cannot use addressing to access it.
5843 Use bit-field techniques or SUBREG to store in it. */
5844
5845 if (mode == VOIDmode
5846 || (mode != BLKmode && ! direct_store[(int) mode]
5847 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5848 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5849 || REG_P (target)
5850 || GET_CODE (target) == SUBREG
5851 /* If the field isn't aligned enough to store as an ordinary memref,
5852 store it as a bit field. */
5853 || (mode != BLKmode
5854 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5855 || bitpos % GET_MODE_ALIGNMENT (mode))
5856 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5857 || (bitpos % BITS_PER_UNIT != 0)))
5858 /* If the RHS and field are a constant size and the size of the
5859 RHS isn't the same size as the bitfield, we must use bitfield
5860 operations. */
5861 || (bitsize >= 0
5862 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5863 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5864 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5865 decl we must use bitfield operations. */
5866 || (bitsize >= 0
5867 && TREE_CODE (exp) == MEM_REF
5868 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5869 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5870 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5871 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5872 {
5873 rtx temp;
5874 gimple nop_def;
5875
5876 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5877 implies a mask operation. If the precision is the same size as
5878 the field we're storing into, that mask is redundant. This is
5879 particularly common with bit field assignments generated by the
5880 C front end. */
5881 nop_def = get_def_for_expr (exp, NOP_EXPR);
5882 if (nop_def)
5883 {
5884 tree type = TREE_TYPE (exp);
5885 if (INTEGRAL_TYPE_P (type)
5886 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5887 && bitsize == TYPE_PRECISION (type))
5888 {
5889 tree op = gimple_assign_rhs1 (nop_def);
5890 type = TREE_TYPE (op);
5891 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5892 exp = op;
5893 }
5894 }
5895
5896 temp = expand_normal (exp);
5897
5898 /* If BITSIZE is narrower than the size of the type of EXP
5899 we will be narrowing TEMP. Normally, what's wanted are the
5900 low-order bits. However, if EXP's type is a record and this is
5901 big-endian machine, we want the upper BITSIZE bits. */
5902 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5903 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5904 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5905 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5906 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5907 - bitsize),
5908 NULL_RTX, 1);
5909
5910 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5911 MODE. */
5912 if (mode != VOIDmode && mode != BLKmode
5913 && mode != TYPE_MODE (TREE_TYPE (exp)))
5914 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5915
5916 /* If the modes of TEMP and TARGET are both BLKmode, both
5917 must be in memory and BITPOS must be aligned on a byte
5918 boundary. If so, we simply do a block copy. Likewise
5919 for a BLKmode-like TARGET. */
5920 if (GET_MODE (temp) == BLKmode
5921 && (GET_MODE (target) == BLKmode
5922 || (MEM_P (target)
5923 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5924 && (bitpos % BITS_PER_UNIT) == 0
5925 && (bitsize % BITS_PER_UNIT) == 0)))
5926 {
5927 gcc_assert (MEM_P (target) && MEM_P (temp)
5928 && (bitpos % BITS_PER_UNIT) == 0);
5929
5930 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5931 emit_block_move (target, temp,
5932 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5933 / BITS_PER_UNIT),
5934 BLOCK_OP_NORMAL);
5935
5936 return const0_rtx;
5937 }
5938
5939 /* Store the value in the bitfield. */
5940 store_bit_field (target, bitsize, bitpos, mode, temp);
5941
5942 return const0_rtx;
5943 }
5944 else
5945 {
5946 /* Now build a reference to just the desired component. */
5947 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5948
5949 if (to_rtx == target)
5950 to_rtx = copy_rtx (to_rtx);
5951
5952 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5953 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5954 set_mem_alias_set (to_rtx, alias_set);
5955
5956 return store_expr (exp, to_rtx, 0, nontemporal);
5957 }
5958 }
5959 \f
5960 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5961 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5962 codes and find the ultimate containing object, which we return.
5963
5964 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5965 bit position, and *PUNSIGNEDP to the signedness of the field.
5966 If the position of the field is variable, we store a tree
5967 giving the variable offset (in units) in *POFFSET.
5968 This offset is in addition to the bit position.
5969 If the position is not variable, we store 0 in *POFFSET.
5970
5971 If any of the extraction expressions is volatile,
5972 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5973
5974 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5975 Otherwise, it is a mode that can be used to access the field.
5976
5977 If the field describes a variable-sized object, *PMODE is set to
5978 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5979 this case, but the address of the object can be found.
5980
5981 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5982 look through nodes that serve as markers of a greater alignment than
5983 the one that can be deduced from the expression. These nodes make it
5984 possible for front-ends to prevent temporaries from being created by
5985 the middle-end on alignment considerations. For that purpose, the
5986 normal operating mode at high-level is to always pass FALSE so that
5987 the ultimate containing object is really returned; moreover, the
5988 associated predicate handled_component_p will always return TRUE
5989 on these nodes, thus indicating that they are essentially handled
5990 by get_inner_reference. TRUE should only be passed when the caller
5991 is scanning the expression in order to build another representation
5992 and specifically knows how to handle these nodes; as such, this is
5993 the normal operating mode in the RTL expanders. */
5994
5995 tree
5996 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5997 HOST_WIDE_INT *pbitpos, tree *poffset,
5998 enum machine_mode *pmode, int *punsignedp,
5999 int *pvolatilep, bool keep_aligning)
6000 {
6001 tree size_tree = 0;
6002 enum machine_mode mode = VOIDmode;
6003 bool blkmode_bitfield = false;
6004 tree offset = size_zero_node;
6005 double_int bit_offset = double_int_zero;
6006
6007 /* First get the mode, signedness, and size. We do this from just the
6008 outermost expression. */
6009 *pbitsize = -1;
6010 if (TREE_CODE (exp) == COMPONENT_REF)
6011 {
6012 tree field = TREE_OPERAND (exp, 1);
6013 size_tree = DECL_SIZE (field);
6014 if (!DECL_BIT_FIELD (field))
6015 mode = DECL_MODE (field);
6016 else if (DECL_MODE (field) == BLKmode)
6017 blkmode_bitfield = true;
6018 else if (TREE_THIS_VOLATILE (exp)
6019 && flag_strict_volatile_bitfields > 0)
6020 /* Volatile bitfields should be accessed in the mode of the
6021 field's type, not the mode computed based on the bit
6022 size. */
6023 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6024
6025 *punsignedp = DECL_UNSIGNED (field);
6026 }
6027 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6028 {
6029 size_tree = TREE_OPERAND (exp, 1);
6030 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6031 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6032
6033 /* For vector types, with the correct size of access, use the mode of
6034 inner type. */
6035 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6036 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6037 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6038 mode = TYPE_MODE (TREE_TYPE (exp));
6039 }
6040 else
6041 {
6042 mode = TYPE_MODE (TREE_TYPE (exp));
6043 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6044
6045 if (mode == BLKmode)
6046 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6047 else
6048 *pbitsize = GET_MODE_BITSIZE (mode);
6049 }
6050
6051 if (size_tree != 0)
6052 {
6053 if (! host_integerp (size_tree, 1))
6054 mode = BLKmode, *pbitsize = -1;
6055 else
6056 *pbitsize = tree_low_cst (size_tree, 1);
6057 }
6058
6059 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6060 and find the ultimate containing object. */
6061 while (1)
6062 {
6063 switch (TREE_CODE (exp))
6064 {
6065 case BIT_FIELD_REF:
6066 bit_offset
6067 = double_int_add (bit_offset,
6068 tree_to_double_int (TREE_OPERAND (exp, 2)));
6069 break;
6070
6071 case COMPONENT_REF:
6072 {
6073 tree field = TREE_OPERAND (exp, 1);
6074 tree this_offset = component_ref_field_offset (exp);
6075
6076 /* If this field hasn't been filled in yet, don't go past it.
6077 This should only happen when folding expressions made during
6078 type construction. */
6079 if (this_offset == 0)
6080 break;
6081
6082 offset = size_binop (PLUS_EXPR, offset, this_offset);
6083 bit_offset = double_int_add (bit_offset,
6084 tree_to_double_int
6085 (DECL_FIELD_BIT_OFFSET (field)));
6086
6087 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6088 }
6089 break;
6090
6091 case ARRAY_REF:
6092 case ARRAY_RANGE_REF:
6093 {
6094 tree index = TREE_OPERAND (exp, 1);
6095 tree low_bound = array_ref_low_bound (exp);
6096 tree unit_size = array_ref_element_size (exp);
6097
6098 /* We assume all arrays have sizes that are a multiple of a byte.
6099 First subtract the lower bound, if any, in the type of the
6100 index, then convert to sizetype and multiply by the size of
6101 the array element. */
6102 if (! integer_zerop (low_bound))
6103 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6104 index, low_bound);
6105
6106 offset = size_binop (PLUS_EXPR, offset,
6107 size_binop (MULT_EXPR,
6108 fold_convert (sizetype, index),
6109 unit_size));
6110 }
6111 break;
6112
6113 case REALPART_EXPR:
6114 break;
6115
6116 case IMAGPART_EXPR:
6117 bit_offset = double_int_add (bit_offset,
6118 uhwi_to_double_int (*pbitsize));
6119 break;
6120
6121 case VIEW_CONVERT_EXPR:
6122 if (keep_aligning && STRICT_ALIGNMENT
6123 && (TYPE_ALIGN (TREE_TYPE (exp))
6124 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6125 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6126 < BIGGEST_ALIGNMENT)
6127 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6128 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6129 goto done;
6130 break;
6131
6132 case MEM_REF:
6133 /* Hand back the decl for MEM[&decl, off]. */
6134 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6135 {
6136 tree off = TREE_OPERAND (exp, 1);
6137 if (!integer_zerop (off))
6138 {
6139 double_int boff, coff = mem_ref_offset (exp);
6140 boff = double_int_lshift (coff,
6141 BITS_PER_UNIT == 8
6142 ? 3 : exact_log2 (BITS_PER_UNIT),
6143 HOST_BITS_PER_DOUBLE_INT, true);
6144 bit_offset = double_int_add (bit_offset, boff);
6145 }
6146 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6147 }
6148 goto done;
6149
6150 default:
6151 goto done;
6152 }
6153
6154 /* If any reference in the chain is volatile, the effect is volatile. */
6155 if (TREE_THIS_VOLATILE (exp))
6156 *pvolatilep = 1;
6157
6158 exp = TREE_OPERAND (exp, 0);
6159 }
6160 done:
6161
6162 /* If OFFSET is constant, see if we can return the whole thing as a
6163 constant bit position. Make sure to handle overflow during
6164 this conversion. */
6165 if (host_integerp (offset, 0))
6166 {
6167 double_int tem = double_int_lshift (tree_to_double_int (offset),
6168 BITS_PER_UNIT == 8
6169 ? 3 : exact_log2 (BITS_PER_UNIT),
6170 HOST_BITS_PER_DOUBLE_INT, true);
6171 tem = double_int_add (tem, bit_offset);
6172 if (double_int_fits_in_shwi_p (tem))
6173 {
6174 *pbitpos = double_int_to_shwi (tem);
6175 *poffset = offset = NULL_TREE;
6176 }
6177 }
6178
6179 /* Otherwise, split it up. */
6180 if (offset)
6181 {
6182 *pbitpos = double_int_to_shwi (bit_offset);
6183 *poffset = offset;
6184 }
6185
6186 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6187 if (mode == VOIDmode
6188 && blkmode_bitfield
6189 && (*pbitpos % BITS_PER_UNIT) == 0
6190 && (*pbitsize % BITS_PER_UNIT) == 0)
6191 *pmode = BLKmode;
6192 else
6193 *pmode = mode;
6194
6195 return exp;
6196 }
6197
6198 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6199 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6200 EXP is marked as PACKED. */
6201
6202 bool
6203 contains_packed_reference (const_tree exp)
6204 {
6205 bool packed_p = false;
6206
6207 while (1)
6208 {
6209 switch (TREE_CODE (exp))
6210 {
6211 case COMPONENT_REF:
6212 {
6213 tree field = TREE_OPERAND (exp, 1);
6214 packed_p = DECL_PACKED (field)
6215 || TYPE_PACKED (TREE_TYPE (field))
6216 || TYPE_PACKED (TREE_TYPE (exp));
6217 if (packed_p)
6218 goto done;
6219 }
6220 break;
6221
6222 case BIT_FIELD_REF:
6223 case ARRAY_REF:
6224 case ARRAY_RANGE_REF:
6225 case REALPART_EXPR:
6226 case IMAGPART_EXPR:
6227 case VIEW_CONVERT_EXPR:
6228 break;
6229
6230 default:
6231 goto done;
6232 }
6233 exp = TREE_OPERAND (exp, 0);
6234 }
6235 done:
6236 return packed_p;
6237 }
6238
6239 /* Return a tree of sizetype representing the size, in bytes, of the element
6240 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6241
6242 tree
6243 array_ref_element_size (tree exp)
6244 {
6245 tree aligned_size = TREE_OPERAND (exp, 3);
6246 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6247 location_t loc = EXPR_LOCATION (exp);
6248
6249 /* If a size was specified in the ARRAY_REF, it's the size measured
6250 in alignment units of the element type. So multiply by that value. */
6251 if (aligned_size)
6252 {
6253 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6254 sizetype from another type of the same width and signedness. */
6255 if (TREE_TYPE (aligned_size) != sizetype)
6256 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6257 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6258 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6259 }
6260
6261 /* Otherwise, take the size from that of the element type. Substitute
6262 any PLACEHOLDER_EXPR that we have. */
6263 else
6264 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6265 }
6266
6267 /* Return a tree representing the lower bound of the array mentioned in
6268 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6269
6270 tree
6271 array_ref_low_bound (tree exp)
6272 {
6273 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6274
6275 /* If a lower bound is specified in EXP, use it. */
6276 if (TREE_OPERAND (exp, 2))
6277 return TREE_OPERAND (exp, 2);
6278
6279 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6280 substituting for a PLACEHOLDER_EXPR as needed. */
6281 if (domain_type && TYPE_MIN_VALUE (domain_type))
6282 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6283
6284 /* Otherwise, return a zero of the appropriate type. */
6285 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6286 }
6287
6288 /* Return a tree representing the upper bound of the array mentioned in
6289 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6290
6291 tree
6292 array_ref_up_bound (tree exp)
6293 {
6294 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6295
6296 /* If there is a domain type and it has an upper bound, use it, substituting
6297 for a PLACEHOLDER_EXPR as needed. */
6298 if (domain_type && TYPE_MAX_VALUE (domain_type))
6299 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6300
6301 /* Otherwise fail. */
6302 return NULL_TREE;
6303 }
6304
6305 /* Return a tree representing the offset, in bytes, of the field referenced
6306 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6307
6308 tree
6309 component_ref_field_offset (tree exp)
6310 {
6311 tree aligned_offset = TREE_OPERAND (exp, 2);
6312 tree field = TREE_OPERAND (exp, 1);
6313 location_t loc = EXPR_LOCATION (exp);
6314
6315 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6316 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6317 value. */
6318 if (aligned_offset)
6319 {
6320 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6321 sizetype from another type of the same width and signedness. */
6322 if (TREE_TYPE (aligned_offset) != sizetype)
6323 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6324 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6325 size_int (DECL_OFFSET_ALIGN (field)
6326 / BITS_PER_UNIT));
6327 }
6328
6329 /* Otherwise, take the offset from that of the field. Substitute
6330 any PLACEHOLDER_EXPR that we have. */
6331 else
6332 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6333 }
6334
6335 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6336
6337 static unsigned HOST_WIDE_INT
6338 target_align (const_tree target)
6339 {
6340 /* We might have a chain of nested references with intermediate misaligning
6341 bitfields components, so need to recurse to find out. */
6342
6343 unsigned HOST_WIDE_INT this_align, outer_align;
6344
6345 switch (TREE_CODE (target))
6346 {
6347 case BIT_FIELD_REF:
6348 return 1;
6349
6350 case COMPONENT_REF:
6351 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6352 outer_align = target_align (TREE_OPERAND (target, 0));
6353 return MIN (this_align, outer_align);
6354
6355 case ARRAY_REF:
6356 case ARRAY_RANGE_REF:
6357 this_align = TYPE_ALIGN (TREE_TYPE (target));
6358 outer_align = target_align (TREE_OPERAND (target, 0));
6359 return MIN (this_align, outer_align);
6360
6361 CASE_CONVERT:
6362 case NON_LVALUE_EXPR:
6363 case VIEW_CONVERT_EXPR:
6364 this_align = TYPE_ALIGN (TREE_TYPE (target));
6365 outer_align = target_align (TREE_OPERAND (target, 0));
6366 return MAX (this_align, outer_align);
6367
6368 default:
6369 return TYPE_ALIGN (TREE_TYPE (target));
6370 }
6371 }
6372
6373 \f
6374 /* Given an rtx VALUE that may contain additions and multiplications, return
6375 an equivalent value that just refers to a register, memory, or constant.
6376 This is done by generating instructions to perform the arithmetic and
6377 returning a pseudo-register containing the value.
6378
6379 The returned value may be a REG, SUBREG, MEM or constant. */
6380
6381 rtx
6382 force_operand (rtx value, rtx target)
6383 {
6384 rtx op1, op2;
6385 /* Use subtarget as the target for operand 0 of a binary operation. */
6386 rtx subtarget = get_subtarget (target);
6387 enum rtx_code code = GET_CODE (value);
6388
6389 /* Check for subreg applied to an expression produced by loop optimizer. */
6390 if (code == SUBREG
6391 && !REG_P (SUBREG_REG (value))
6392 && !MEM_P (SUBREG_REG (value)))
6393 {
6394 value
6395 = simplify_gen_subreg (GET_MODE (value),
6396 force_reg (GET_MODE (SUBREG_REG (value)),
6397 force_operand (SUBREG_REG (value),
6398 NULL_RTX)),
6399 GET_MODE (SUBREG_REG (value)),
6400 SUBREG_BYTE (value));
6401 code = GET_CODE (value);
6402 }
6403
6404 /* Check for a PIC address load. */
6405 if ((code == PLUS || code == MINUS)
6406 && XEXP (value, 0) == pic_offset_table_rtx
6407 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6408 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6409 || GET_CODE (XEXP (value, 1)) == CONST))
6410 {
6411 if (!subtarget)
6412 subtarget = gen_reg_rtx (GET_MODE (value));
6413 emit_move_insn (subtarget, value);
6414 return subtarget;
6415 }
6416
6417 if (ARITHMETIC_P (value))
6418 {
6419 op2 = XEXP (value, 1);
6420 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6421 subtarget = 0;
6422 if (code == MINUS && CONST_INT_P (op2))
6423 {
6424 code = PLUS;
6425 op2 = negate_rtx (GET_MODE (value), op2);
6426 }
6427
6428 /* Check for an addition with OP2 a constant integer and our first
6429 operand a PLUS of a virtual register and something else. In that
6430 case, we want to emit the sum of the virtual register and the
6431 constant first and then add the other value. This allows virtual
6432 register instantiation to simply modify the constant rather than
6433 creating another one around this addition. */
6434 if (code == PLUS && CONST_INT_P (op2)
6435 && GET_CODE (XEXP (value, 0)) == PLUS
6436 && REG_P (XEXP (XEXP (value, 0), 0))
6437 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6438 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6439 {
6440 rtx temp = expand_simple_binop (GET_MODE (value), code,
6441 XEXP (XEXP (value, 0), 0), op2,
6442 subtarget, 0, OPTAB_LIB_WIDEN);
6443 return expand_simple_binop (GET_MODE (value), code, temp,
6444 force_operand (XEXP (XEXP (value,
6445 0), 1), 0),
6446 target, 0, OPTAB_LIB_WIDEN);
6447 }
6448
6449 op1 = force_operand (XEXP (value, 0), subtarget);
6450 op2 = force_operand (op2, NULL_RTX);
6451 switch (code)
6452 {
6453 case MULT:
6454 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6455 case DIV:
6456 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6457 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6458 target, 1, OPTAB_LIB_WIDEN);
6459 else
6460 return expand_divmod (0,
6461 FLOAT_MODE_P (GET_MODE (value))
6462 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6463 GET_MODE (value), op1, op2, target, 0);
6464 case MOD:
6465 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6466 target, 0);
6467 case UDIV:
6468 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6469 target, 1);
6470 case UMOD:
6471 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6472 target, 1);
6473 case ASHIFTRT:
6474 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6475 target, 0, OPTAB_LIB_WIDEN);
6476 default:
6477 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6478 target, 1, OPTAB_LIB_WIDEN);
6479 }
6480 }
6481 if (UNARY_P (value))
6482 {
6483 if (!target)
6484 target = gen_reg_rtx (GET_MODE (value));
6485 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6486 switch (code)
6487 {
6488 case ZERO_EXTEND:
6489 case SIGN_EXTEND:
6490 case TRUNCATE:
6491 case FLOAT_EXTEND:
6492 case FLOAT_TRUNCATE:
6493 convert_move (target, op1, code == ZERO_EXTEND);
6494 return target;
6495
6496 case FIX:
6497 case UNSIGNED_FIX:
6498 expand_fix (target, op1, code == UNSIGNED_FIX);
6499 return target;
6500
6501 case FLOAT:
6502 case UNSIGNED_FLOAT:
6503 expand_float (target, op1, code == UNSIGNED_FLOAT);
6504 return target;
6505
6506 default:
6507 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6508 }
6509 }
6510
6511 #ifdef INSN_SCHEDULING
6512 /* On machines that have insn scheduling, we want all memory reference to be
6513 explicit, so we need to deal with such paradoxical SUBREGs. */
6514 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6515 && (GET_MODE_SIZE (GET_MODE (value))
6516 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6517 value
6518 = simplify_gen_subreg (GET_MODE (value),
6519 force_reg (GET_MODE (SUBREG_REG (value)),
6520 force_operand (SUBREG_REG (value),
6521 NULL_RTX)),
6522 GET_MODE (SUBREG_REG (value)),
6523 SUBREG_BYTE (value));
6524 #endif
6525
6526 return value;
6527 }
6528 \f
6529 /* Subroutine of expand_expr: return nonzero iff there is no way that
6530 EXP can reference X, which is being modified. TOP_P is nonzero if this
6531 call is going to be used to determine whether we need a temporary
6532 for EXP, as opposed to a recursive call to this function.
6533
6534 It is always safe for this routine to return zero since it merely
6535 searches for optimization opportunities. */
6536
6537 int
6538 safe_from_p (const_rtx x, tree exp, int top_p)
6539 {
6540 rtx exp_rtl = 0;
6541 int i, nops;
6542
6543 if (x == 0
6544 /* If EXP has varying size, we MUST use a target since we currently
6545 have no way of allocating temporaries of variable size
6546 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6547 So we assume here that something at a higher level has prevented a
6548 clash. This is somewhat bogus, but the best we can do. Only
6549 do this when X is BLKmode and when we are at the top level. */
6550 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6551 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6552 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6553 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6554 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6555 != INTEGER_CST)
6556 && GET_MODE (x) == BLKmode)
6557 /* If X is in the outgoing argument area, it is always safe. */
6558 || (MEM_P (x)
6559 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6560 || (GET_CODE (XEXP (x, 0)) == PLUS
6561 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6562 return 1;
6563
6564 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6565 find the underlying pseudo. */
6566 if (GET_CODE (x) == SUBREG)
6567 {
6568 x = SUBREG_REG (x);
6569 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6570 return 0;
6571 }
6572
6573 /* Now look at our tree code and possibly recurse. */
6574 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6575 {
6576 case tcc_declaration:
6577 exp_rtl = DECL_RTL_IF_SET (exp);
6578 break;
6579
6580 case tcc_constant:
6581 return 1;
6582
6583 case tcc_exceptional:
6584 if (TREE_CODE (exp) == TREE_LIST)
6585 {
6586 while (1)
6587 {
6588 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6589 return 0;
6590 exp = TREE_CHAIN (exp);
6591 if (!exp)
6592 return 1;
6593 if (TREE_CODE (exp) != TREE_LIST)
6594 return safe_from_p (x, exp, 0);
6595 }
6596 }
6597 else if (TREE_CODE (exp) == CONSTRUCTOR)
6598 {
6599 constructor_elt *ce;
6600 unsigned HOST_WIDE_INT idx;
6601
6602 for (idx = 0;
6603 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6604 idx++)
6605 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6606 || !safe_from_p (x, ce->value, 0))
6607 return 0;
6608 return 1;
6609 }
6610 else if (TREE_CODE (exp) == ERROR_MARK)
6611 return 1; /* An already-visited SAVE_EXPR? */
6612 else
6613 return 0;
6614
6615 case tcc_statement:
6616 /* The only case we look at here is the DECL_INITIAL inside a
6617 DECL_EXPR. */
6618 return (TREE_CODE (exp) != DECL_EXPR
6619 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6620 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6621 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6622
6623 case tcc_binary:
6624 case tcc_comparison:
6625 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6626 return 0;
6627 /* Fall through. */
6628
6629 case tcc_unary:
6630 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6631
6632 case tcc_expression:
6633 case tcc_reference:
6634 case tcc_vl_exp:
6635 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6636 the expression. If it is set, we conflict iff we are that rtx or
6637 both are in memory. Otherwise, we check all operands of the
6638 expression recursively. */
6639
6640 switch (TREE_CODE (exp))
6641 {
6642 case ADDR_EXPR:
6643 /* If the operand is static or we are static, we can't conflict.
6644 Likewise if we don't conflict with the operand at all. */
6645 if (staticp (TREE_OPERAND (exp, 0))
6646 || TREE_STATIC (exp)
6647 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6648 return 1;
6649
6650 /* Otherwise, the only way this can conflict is if we are taking
6651 the address of a DECL a that address if part of X, which is
6652 very rare. */
6653 exp = TREE_OPERAND (exp, 0);
6654 if (DECL_P (exp))
6655 {
6656 if (!DECL_RTL_SET_P (exp)
6657 || !MEM_P (DECL_RTL (exp)))
6658 return 0;
6659 else
6660 exp_rtl = XEXP (DECL_RTL (exp), 0);
6661 }
6662 break;
6663
6664 case MISALIGNED_INDIRECT_REF:
6665 case INDIRECT_REF:
6666 if (MEM_P (x)
6667 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6668 get_alias_set (exp)))
6669 return 0;
6670 break;
6671
6672 case CALL_EXPR:
6673 /* Assume that the call will clobber all hard registers and
6674 all of memory. */
6675 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6676 || MEM_P (x))
6677 return 0;
6678 break;
6679
6680 case WITH_CLEANUP_EXPR:
6681 case CLEANUP_POINT_EXPR:
6682 /* Lowered by gimplify.c. */
6683 gcc_unreachable ();
6684
6685 case SAVE_EXPR:
6686 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6687
6688 default:
6689 break;
6690 }
6691
6692 /* If we have an rtx, we do not need to scan our operands. */
6693 if (exp_rtl)
6694 break;
6695
6696 nops = TREE_OPERAND_LENGTH (exp);
6697 for (i = 0; i < nops; i++)
6698 if (TREE_OPERAND (exp, i) != 0
6699 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6700 return 0;
6701
6702 break;
6703
6704 case tcc_type:
6705 /* Should never get a type here. */
6706 gcc_unreachable ();
6707 }
6708
6709 /* If we have an rtl, find any enclosed object. Then see if we conflict
6710 with it. */
6711 if (exp_rtl)
6712 {
6713 if (GET_CODE (exp_rtl) == SUBREG)
6714 {
6715 exp_rtl = SUBREG_REG (exp_rtl);
6716 if (REG_P (exp_rtl)
6717 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6718 return 0;
6719 }
6720
6721 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6722 are memory and they conflict. */
6723 return ! (rtx_equal_p (x, exp_rtl)
6724 || (MEM_P (x) && MEM_P (exp_rtl)
6725 && true_dependence (exp_rtl, VOIDmode, x,
6726 rtx_addr_varies_p)));
6727 }
6728
6729 /* If we reach here, it is safe. */
6730 return 1;
6731 }
6732
6733 \f
6734 /* Return the highest power of two that EXP is known to be a multiple of.
6735 This is used in updating alignment of MEMs in array references. */
6736
6737 unsigned HOST_WIDE_INT
6738 highest_pow2_factor (const_tree exp)
6739 {
6740 unsigned HOST_WIDE_INT c0, c1;
6741
6742 switch (TREE_CODE (exp))
6743 {
6744 case INTEGER_CST:
6745 /* We can find the lowest bit that's a one. If the low
6746 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6747 We need to handle this case since we can find it in a COND_EXPR,
6748 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6749 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6750 later ICE. */
6751 if (TREE_OVERFLOW (exp))
6752 return BIGGEST_ALIGNMENT;
6753 else
6754 {
6755 /* Note: tree_low_cst is intentionally not used here,
6756 we don't care about the upper bits. */
6757 c0 = TREE_INT_CST_LOW (exp);
6758 c0 &= -c0;
6759 return c0 ? c0 : BIGGEST_ALIGNMENT;
6760 }
6761 break;
6762
6763 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6764 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6765 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6766 return MIN (c0, c1);
6767
6768 case MULT_EXPR:
6769 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6770 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6771 return c0 * c1;
6772
6773 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6774 case CEIL_DIV_EXPR:
6775 if (integer_pow2p (TREE_OPERAND (exp, 1))
6776 && host_integerp (TREE_OPERAND (exp, 1), 1))
6777 {
6778 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6779 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6780 return MAX (1, c0 / c1);
6781 }
6782 break;
6783
6784 case BIT_AND_EXPR:
6785 /* The highest power of two of a bit-and expression is the maximum of
6786 that of its operands. We typically get here for a complex LHS and
6787 a constant negative power of two on the RHS to force an explicit
6788 alignment, so don't bother looking at the LHS. */
6789 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6790
6791 CASE_CONVERT:
6792 case SAVE_EXPR:
6793 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6794
6795 case COMPOUND_EXPR:
6796 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6797
6798 case COND_EXPR:
6799 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6800 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6801 return MIN (c0, c1);
6802
6803 default:
6804 break;
6805 }
6806
6807 return 1;
6808 }
6809
6810 /* Similar, except that the alignment requirements of TARGET are
6811 taken into account. Assume it is at least as aligned as its
6812 type, unless it is a COMPONENT_REF in which case the layout of
6813 the structure gives the alignment. */
6814
6815 static unsigned HOST_WIDE_INT
6816 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6817 {
6818 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6819 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6820
6821 return MAX (factor, talign);
6822 }
6823 \f
6824 /* Subroutine of expand_expr. Expand the two operands of a binary
6825 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6826 The value may be stored in TARGET if TARGET is nonzero. The
6827 MODIFIER argument is as documented by expand_expr. */
6828
6829 static void
6830 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6831 enum expand_modifier modifier)
6832 {
6833 if (! safe_from_p (target, exp1, 1))
6834 target = 0;
6835 if (operand_equal_p (exp0, exp1, 0))
6836 {
6837 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6838 *op1 = copy_rtx (*op0);
6839 }
6840 else
6841 {
6842 /* If we need to preserve evaluation order, copy exp0 into its own
6843 temporary variable so that it can't be clobbered by exp1. */
6844 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6845 exp0 = save_expr (exp0);
6846 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6847 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6848 }
6849 }
6850
6851 \f
6852 /* Return a MEM that contains constant EXP. DEFER is as for
6853 output_constant_def and MODIFIER is as for expand_expr. */
6854
6855 static rtx
6856 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6857 {
6858 rtx mem;
6859
6860 mem = output_constant_def (exp, defer);
6861 if (modifier != EXPAND_INITIALIZER)
6862 mem = use_anchored_address (mem);
6863 return mem;
6864 }
6865
6866 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6867 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6868
6869 static rtx
6870 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6871 enum expand_modifier modifier, addr_space_t as)
6872 {
6873 rtx result, subtarget;
6874 tree inner, offset;
6875 HOST_WIDE_INT bitsize, bitpos;
6876 int volatilep, unsignedp;
6877 enum machine_mode mode1;
6878
6879 /* If we are taking the address of a constant and are at the top level,
6880 we have to use output_constant_def since we can't call force_const_mem
6881 at top level. */
6882 /* ??? This should be considered a front-end bug. We should not be
6883 generating ADDR_EXPR of something that isn't an LVALUE. The only
6884 exception here is STRING_CST. */
6885 if (CONSTANT_CLASS_P (exp))
6886 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6887
6888 /* Everything must be something allowed by is_gimple_addressable. */
6889 switch (TREE_CODE (exp))
6890 {
6891 case INDIRECT_REF:
6892 /* This case will happen via recursion for &a->b. */
6893 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6894
6895 case MEM_REF:
6896 {
6897 tree tem = TREE_OPERAND (exp, 0);
6898 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6899 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6900 tem,
6901 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6902 return expand_expr (tem, target, tmode, modifier);
6903 }
6904
6905 case CONST_DECL:
6906 /* Expand the initializer like constants above. */
6907 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6908
6909 case REALPART_EXPR:
6910 /* The real part of the complex number is always first, therefore
6911 the address is the same as the address of the parent object. */
6912 offset = 0;
6913 bitpos = 0;
6914 inner = TREE_OPERAND (exp, 0);
6915 break;
6916
6917 case IMAGPART_EXPR:
6918 /* The imaginary part of the complex number is always second.
6919 The expression is therefore always offset by the size of the
6920 scalar type. */
6921 offset = 0;
6922 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6923 inner = TREE_OPERAND (exp, 0);
6924 break;
6925
6926 default:
6927 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6928 expand_expr, as that can have various side effects; LABEL_DECLs for
6929 example, may not have their DECL_RTL set yet. Expand the rtl of
6930 CONSTRUCTORs too, which should yield a memory reference for the
6931 constructor's contents. Assume language specific tree nodes can
6932 be expanded in some interesting way. */
6933 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6934 if (DECL_P (exp)
6935 || TREE_CODE (exp) == CONSTRUCTOR
6936 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6937 {
6938 result = expand_expr (exp, target, tmode,
6939 modifier == EXPAND_INITIALIZER
6940 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6941
6942 /* If the DECL isn't in memory, then the DECL wasn't properly
6943 marked TREE_ADDRESSABLE, which will be either a front-end
6944 or a tree optimizer bug. */
6945 gcc_assert (MEM_P (result));
6946 result = XEXP (result, 0);
6947
6948 /* ??? Is this needed anymore? */
6949 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6950 {
6951 assemble_external (exp);
6952 TREE_USED (exp) = 1;
6953 }
6954
6955 if (modifier != EXPAND_INITIALIZER
6956 && modifier != EXPAND_CONST_ADDRESS)
6957 result = force_operand (result, target);
6958 return result;
6959 }
6960
6961 /* Pass FALSE as the last argument to get_inner_reference although
6962 we are expanding to RTL. The rationale is that we know how to
6963 handle "aligning nodes" here: we can just bypass them because
6964 they won't change the final object whose address will be returned
6965 (they actually exist only for that purpose). */
6966 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6967 &mode1, &unsignedp, &volatilep, false);
6968 break;
6969 }
6970
6971 /* We must have made progress. */
6972 gcc_assert (inner != exp);
6973
6974 subtarget = offset || bitpos ? NULL_RTX : target;
6975 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6976 inner alignment, force the inner to be sufficiently aligned. */
6977 if (CONSTANT_CLASS_P (inner)
6978 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6979 {
6980 inner = copy_node (inner);
6981 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6982 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6983 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6984 }
6985 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6986
6987 if (offset)
6988 {
6989 rtx tmp;
6990
6991 if (modifier != EXPAND_NORMAL)
6992 result = force_operand (result, NULL);
6993 tmp = expand_expr (offset, NULL_RTX, tmode,
6994 modifier == EXPAND_INITIALIZER
6995 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6996
6997 result = convert_memory_address_addr_space (tmode, result, as);
6998 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6999
7000 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7001 result = gen_rtx_PLUS (tmode, result, tmp);
7002 else
7003 {
7004 subtarget = bitpos ? NULL_RTX : target;
7005 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7006 1, OPTAB_LIB_WIDEN);
7007 }
7008 }
7009
7010 if (bitpos)
7011 {
7012 /* Someone beforehand should have rejected taking the address
7013 of such an object. */
7014 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7015
7016 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7017 if (modifier < EXPAND_SUM)
7018 result = force_operand (result, target);
7019 }
7020
7021 return result;
7022 }
7023
7024 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7025 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7026
7027 static rtx
7028 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7029 enum expand_modifier modifier)
7030 {
7031 addr_space_t as = ADDR_SPACE_GENERIC;
7032 enum machine_mode address_mode = Pmode;
7033 enum machine_mode pointer_mode = ptr_mode;
7034 enum machine_mode rmode;
7035 rtx result;
7036
7037 /* Target mode of VOIDmode says "whatever's natural". */
7038 if (tmode == VOIDmode)
7039 tmode = TYPE_MODE (TREE_TYPE (exp));
7040
7041 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7042 {
7043 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7044 address_mode = targetm.addr_space.address_mode (as);
7045 pointer_mode = targetm.addr_space.pointer_mode (as);
7046 }
7047
7048 /* We can get called with some Weird Things if the user does silliness
7049 like "(short) &a". In that case, convert_memory_address won't do
7050 the right thing, so ignore the given target mode. */
7051 if (tmode != address_mode && tmode != pointer_mode)
7052 tmode = address_mode;
7053
7054 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7055 tmode, modifier, as);
7056
7057 /* Despite expand_expr claims concerning ignoring TMODE when not
7058 strictly convenient, stuff breaks if we don't honor it. Note
7059 that combined with the above, we only do this for pointer modes. */
7060 rmode = GET_MODE (result);
7061 if (rmode == VOIDmode)
7062 rmode = tmode;
7063 if (rmode != tmode)
7064 result = convert_memory_address_addr_space (tmode, result, as);
7065
7066 return result;
7067 }
7068
7069 /* Generate code for computing CONSTRUCTOR EXP.
7070 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7071 is TRUE, instead of creating a temporary variable in memory
7072 NULL is returned and the caller needs to handle it differently. */
7073
7074 static rtx
7075 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7076 bool avoid_temp_mem)
7077 {
7078 tree type = TREE_TYPE (exp);
7079 enum machine_mode mode = TYPE_MODE (type);
7080
7081 /* Try to avoid creating a temporary at all. This is possible
7082 if all of the initializer is zero.
7083 FIXME: try to handle all [0..255] initializers we can handle
7084 with memset. */
7085 if (TREE_STATIC (exp)
7086 && !TREE_ADDRESSABLE (exp)
7087 && target != 0 && mode == BLKmode
7088 && all_zeros_p (exp))
7089 {
7090 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7091 return target;
7092 }
7093
7094 /* All elts simple constants => refer to a constant in memory. But
7095 if this is a non-BLKmode mode, let it store a field at a time
7096 since that should make a CONST_INT or CONST_DOUBLE when we
7097 fold. Likewise, if we have a target we can use, it is best to
7098 store directly into the target unless the type is large enough
7099 that memcpy will be used. If we are making an initializer and
7100 all operands are constant, put it in memory as well.
7101
7102 FIXME: Avoid trying to fill vector constructors piece-meal.
7103 Output them with output_constant_def below unless we're sure
7104 they're zeros. This should go away when vector initializers
7105 are treated like VECTOR_CST instead of arrays. */
7106 if ((TREE_STATIC (exp)
7107 && ((mode == BLKmode
7108 && ! (target != 0 && safe_from_p (target, exp, 1)))
7109 || TREE_ADDRESSABLE (exp)
7110 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7111 && (! MOVE_BY_PIECES_P
7112 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7113 TYPE_ALIGN (type)))
7114 && ! mostly_zeros_p (exp))))
7115 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7116 && TREE_CONSTANT (exp)))
7117 {
7118 rtx constructor;
7119
7120 if (avoid_temp_mem)
7121 return NULL_RTX;
7122
7123 constructor = expand_expr_constant (exp, 1, modifier);
7124
7125 if (modifier != EXPAND_CONST_ADDRESS
7126 && modifier != EXPAND_INITIALIZER
7127 && modifier != EXPAND_SUM)
7128 constructor = validize_mem (constructor);
7129
7130 return constructor;
7131 }
7132
7133 /* Handle calls that pass values in multiple non-contiguous
7134 locations. The Irix 6 ABI has examples of this. */
7135 if (target == 0 || ! safe_from_p (target, exp, 1)
7136 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7137 {
7138 if (avoid_temp_mem)
7139 return NULL_RTX;
7140
7141 target
7142 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7143 | (TREE_READONLY (exp)
7144 * TYPE_QUAL_CONST))),
7145 0, TREE_ADDRESSABLE (exp), 1);
7146 }
7147
7148 store_constructor (exp, target, 0, int_expr_size (exp));
7149 return target;
7150 }
7151
7152
7153 /* expand_expr: generate code for computing expression EXP.
7154 An rtx for the computed value is returned. The value is never null.
7155 In the case of a void EXP, const0_rtx is returned.
7156
7157 The value may be stored in TARGET if TARGET is nonzero.
7158 TARGET is just a suggestion; callers must assume that
7159 the rtx returned may not be the same as TARGET.
7160
7161 If TARGET is CONST0_RTX, it means that the value will be ignored.
7162
7163 If TMODE is not VOIDmode, it suggests generating the
7164 result in mode TMODE. But this is done only when convenient.
7165 Otherwise, TMODE is ignored and the value generated in its natural mode.
7166 TMODE is just a suggestion; callers must assume that
7167 the rtx returned may not have mode TMODE.
7168
7169 Note that TARGET may have neither TMODE nor MODE. In that case, it
7170 probably will not be used.
7171
7172 If MODIFIER is EXPAND_SUM then when EXP is an addition
7173 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7174 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7175 products as above, or REG or MEM, or constant.
7176 Ordinarily in such cases we would output mul or add instructions
7177 and then return a pseudo reg containing the sum.
7178
7179 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7180 it also marks a label as absolutely required (it can't be dead).
7181 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7182 This is used for outputting expressions used in initializers.
7183
7184 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7185 with a constant address even if that address is not normally legitimate.
7186 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7187
7188 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7189 a call parameter. Such targets require special care as we haven't yet
7190 marked TARGET so that it's safe from being trashed by libcalls. We
7191 don't want to use TARGET for anything but the final result;
7192 Intermediate values must go elsewhere. Additionally, calls to
7193 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7194
7195 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7196 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7197 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7198 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7199 recursively. */
7200
7201 rtx
7202 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7203 enum expand_modifier modifier, rtx *alt_rtl)
7204 {
7205 rtx ret;
7206
7207 /* Handle ERROR_MARK before anybody tries to access its type. */
7208 if (TREE_CODE (exp) == ERROR_MARK
7209 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7210 {
7211 ret = CONST0_RTX (tmode);
7212 return ret ? ret : const0_rtx;
7213 }
7214
7215 /* If this is an expression of some kind and it has an associated line
7216 number, then emit the line number before expanding the expression.
7217
7218 We need to save and restore the file and line information so that
7219 errors discovered during expansion are emitted with the right
7220 information. It would be better of the diagnostic routines
7221 used the file/line information embedded in the tree nodes rather
7222 than globals. */
7223 if (cfun && EXPR_HAS_LOCATION (exp))
7224 {
7225 location_t saved_location = input_location;
7226 location_t saved_curr_loc = get_curr_insn_source_location ();
7227 tree saved_block = get_curr_insn_block ();
7228 input_location = EXPR_LOCATION (exp);
7229 set_curr_insn_source_location (input_location);
7230
7231 /* Record where the insns produced belong. */
7232 set_curr_insn_block (TREE_BLOCK (exp));
7233
7234 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7235
7236 input_location = saved_location;
7237 set_curr_insn_block (saved_block);
7238 set_curr_insn_source_location (saved_curr_loc);
7239 }
7240 else
7241 {
7242 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7243 }
7244
7245 return ret;
7246 }
7247
7248 rtx
7249 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7250 enum expand_modifier modifier)
7251 {
7252 rtx op0, op1, op2, temp;
7253 tree type;
7254 int unsignedp;
7255 enum machine_mode mode;
7256 enum tree_code code = ops->code;
7257 optab this_optab;
7258 rtx subtarget, original_target;
7259 int ignore;
7260 bool reduce_bit_field;
7261 location_t loc = ops->location;
7262 tree treeop0, treeop1;
7263 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7264 ? reduce_to_bit_field_precision ((expr), \
7265 target, \
7266 type) \
7267 : (expr))
7268
7269 type = ops->type;
7270 mode = TYPE_MODE (type);
7271 unsignedp = TYPE_UNSIGNED (type);
7272
7273 treeop0 = ops->op0;
7274 treeop1 = ops->op1;
7275
7276 /* We should be called only on simple (binary or unary) expressions,
7277 exactly those that are valid in gimple expressions that aren't
7278 GIMPLE_SINGLE_RHS (or invalid). */
7279 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7280 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7281 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7282
7283 ignore = (target == const0_rtx
7284 || ((CONVERT_EXPR_CODE_P (code)
7285 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7286 && TREE_CODE (type) == VOID_TYPE));
7287
7288 /* We should be called only if we need the result. */
7289 gcc_assert (!ignore);
7290
7291 /* An operation in what may be a bit-field type needs the
7292 result to be reduced to the precision of the bit-field type,
7293 which is narrower than that of the type's mode. */
7294 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7295 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7296
7297 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7298 target = 0;
7299
7300 /* Use subtarget as the target for operand 0 of a binary operation. */
7301 subtarget = get_subtarget (target);
7302 original_target = target;
7303
7304 switch (code)
7305 {
7306 case NON_LVALUE_EXPR:
7307 case PAREN_EXPR:
7308 CASE_CONVERT:
7309 if (treeop0 == error_mark_node)
7310 return const0_rtx;
7311
7312 if (TREE_CODE (type) == UNION_TYPE)
7313 {
7314 tree valtype = TREE_TYPE (treeop0);
7315
7316 /* If both input and output are BLKmode, this conversion isn't doing
7317 anything except possibly changing memory attribute. */
7318 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7319 {
7320 rtx result = expand_expr (treeop0, target, tmode,
7321 modifier);
7322
7323 result = copy_rtx (result);
7324 set_mem_attributes (result, type, 0);
7325 return result;
7326 }
7327
7328 if (target == 0)
7329 {
7330 if (TYPE_MODE (type) != BLKmode)
7331 target = gen_reg_rtx (TYPE_MODE (type));
7332 else
7333 target = assign_temp (type, 0, 1, 1);
7334 }
7335
7336 if (MEM_P (target))
7337 /* Store data into beginning of memory target. */
7338 store_expr (treeop0,
7339 adjust_address (target, TYPE_MODE (valtype), 0),
7340 modifier == EXPAND_STACK_PARM,
7341 false);
7342
7343 else
7344 {
7345 gcc_assert (REG_P (target));
7346
7347 /* Store this field into a union of the proper type. */
7348 store_field (target,
7349 MIN ((int_size_in_bytes (TREE_TYPE
7350 (treeop0))
7351 * BITS_PER_UNIT),
7352 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7353 0, TYPE_MODE (valtype), treeop0,
7354 type, 0, false);
7355 }
7356
7357 /* Return the entire union. */
7358 return target;
7359 }
7360
7361 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7362 {
7363 op0 = expand_expr (treeop0, target, VOIDmode,
7364 modifier);
7365
7366 /* If the signedness of the conversion differs and OP0 is
7367 a promoted SUBREG, clear that indication since we now
7368 have to do the proper extension. */
7369 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7370 && GET_CODE (op0) == SUBREG)
7371 SUBREG_PROMOTED_VAR_P (op0) = 0;
7372
7373 return REDUCE_BIT_FIELD (op0);
7374 }
7375
7376 op0 = expand_expr (treeop0, NULL_RTX, mode,
7377 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7378 if (GET_MODE (op0) == mode)
7379 ;
7380
7381 /* If OP0 is a constant, just convert it into the proper mode. */
7382 else if (CONSTANT_P (op0))
7383 {
7384 tree inner_type = TREE_TYPE (treeop0);
7385 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7386
7387 if (modifier == EXPAND_INITIALIZER)
7388 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7389 subreg_lowpart_offset (mode,
7390 inner_mode));
7391 else
7392 op0= convert_modes (mode, inner_mode, op0,
7393 TYPE_UNSIGNED (inner_type));
7394 }
7395
7396 else if (modifier == EXPAND_INITIALIZER)
7397 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7398
7399 else if (target == 0)
7400 op0 = convert_to_mode (mode, op0,
7401 TYPE_UNSIGNED (TREE_TYPE
7402 (treeop0)));
7403 else
7404 {
7405 convert_move (target, op0,
7406 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7407 op0 = target;
7408 }
7409
7410 return REDUCE_BIT_FIELD (op0);
7411
7412 case ADDR_SPACE_CONVERT_EXPR:
7413 {
7414 tree treeop0_type = TREE_TYPE (treeop0);
7415 addr_space_t as_to;
7416 addr_space_t as_from;
7417
7418 gcc_assert (POINTER_TYPE_P (type));
7419 gcc_assert (POINTER_TYPE_P (treeop0_type));
7420
7421 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7422 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7423
7424 /* Conversions between pointers to the same address space should
7425 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7426 gcc_assert (as_to != as_from);
7427
7428 /* Ask target code to handle conversion between pointers
7429 to overlapping address spaces. */
7430 if (targetm.addr_space.subset_p (as_to, as_from)
7431 || targetm.addr_space.subset_p (as_from, as_to))
7432 {
7433 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7434 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7435 gcc_assert (op0);
7436 return op0;
7437 }
7438
7439 /* For disjoint address spaces, converting anything but
7440 a null pointer invokes undefined behaviour. We simply
7441 always return a null pointer here. */
7442 return CONST0_RTX (mode);
7443 }
7444
7445 case POINTER_PLUS_EXPR:
7446 /* Even though the sizetype mode and the pointer's mode can be different
7447 expand is able to handle this correctly and get the correct result out
7448 of the PLUS_EXPR code. */
7449 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7450 if sizetype precision is smaller than pointer precision. */
7451 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7452 treeop1 = fold_convert_loc (loc, type,
7453 fold_convert_loc (loc, ssizetype,
7454 treeop1));
7455 case PLUS_EXPR:
7456 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7457 something else, make sure we add the register to the constant and
7458 then to the other thing. This case can occur during strength
7459 reduction and doing it this way will produce better code if the
7460 frame pointer or argument pointer is eliminated.
7461
7462 fold-const.c will ensure that the constant is always in the inner
7463 PLUS_EXPR, so the only case we need to do anything about is if
7464 sp, ap, or fp is our second argument, in which case we must swap
7465 the innermost first argument and our second argument. */
7466
7467 if (TREE_CODE (treeop0) == PLUS_EXPR
7468 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7469 && TREE_CODE (treeop1) == VAR_DECL
7470 && (DECL_RTL (treeop1) == frame_pointer_rtx
7471 || DECL_RTL (treeop1) == stack_pointer_rtx
7472 || DECL_RTL (treeop1) == arg_pointer_rtx))
7473 {
7474 tree t = treeop1;
7475
7476 treeop1 = TREE_OPERAND (treeop0, 0);
7477 TREE_OPERAND (treeop0, 0) = t;
7478 }
7479
7480 /* If the result is to be ptr_mode and we are adding an integer to
7481 something, we might be forming a constant. So try to use
7482 plus_constant. If it produces a sum and we can't accept it,
7483 use force_operand. This allows P = &ARR[const] to generate
7484 efficient code on machines where a SYMBOL_REF is not a valid
7485 address.
7486
7487 If this is an EXPAND_SUM call, always return the sum. */
7488 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7489 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7490 {
7491 if (modifier == EXPAND_STACK_PARM)
7492 target = 0;
7493 if (TREE_CODE (treeop0) == INTEGER_CST
7494 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7495 && TREE_CONSTANT (treeop1))
7496 {
7497 rtx constant_part;
7498
7499 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7500 EXPAND_SUM);
7501 /* Use immed_double_const to ensure that the constant is
7502 truncated according to the mode of OP1, then sign extended
7503 to a HOST_WIDE_INT. Using the constant directly can result
7504 in non-canonical RTL in a 64x32 cross compile. */
7505 constant_part
7506 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7507 (HOST_WIDE_INT) 0,
7508 TYPE_MODE (TREE_TYPE (treeop1)));
7509 op1 = plus_constant (op1, INTVAL (constant_part));
7510 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7511 op1 = force_operand (op1, target);
7512 return REDUCE_BIT_FIELD (op1);
7513 }
7514
7515 else if (TREE_CODE (treeop1) == INTEGER_CST
7516 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7517 && TREE_CONSTANT (treeop0))
7518 {
7519 rtx constant_part;
7520
7521 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7522 (modifier == EXPAND_INITIALIZER
7523 ? EXPAND_INITIALIZER : EXPAND_SUM));
7524 if (! CONSTANT_P (op0))
7525 {
7526 op1 = expand_expr (treeop1, NULL_RTX,
7527 VOIDmode, modifier);
7528 /* Return a PLUS if modifier says it's OK. */
7529 if (modifier == EXPAND_SUM
7530 || modifier == EXPAND_INITIALIZER)
7531 return simplify_gen_binary (PLUS, mode, op0, op1);
7532 goto binop2;
7533 }
7534 /* Use immed_double_const to ensure that the constant is
7535 truncated according to the mode of OP1, then sign extended
7536 to a HOST_WIDE_INT. Using the constant directly can result
7537 in non-canonical RTL in a 64x32 cross compile. */
7538 constant_part
7539 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7540 (HOST_WIDE_INT) 0,
7541 TYPE_MODE (TREE_TYPE (treeop0)));
7542 op0 = plus_constant (op0, INTVAL (constant_part));
7543 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7544 op0 = force_operand (op0, target);
7545 return REDUCE_BIT_FIELD (op0);
7546 }
7547 }
7548
7549 /* No sense saving up arithmetic to be done
7550 if it's all in the wrong mode to form part of an address.
7551 And force_operand won't know whether to sign-extend or
7552 zero-extend. */
7553 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7554 || mode != ptr_mode)
7555 {
7556 expand_operands (treeop0, treeop1,
7557 subtarget, &op0, &op1, EXPAND_NORMAL);
7558 if (op0 == const0_rtx)
7559 return op1;
7560 if (op1 == const0_rtx)
7561 return op0;
7562 goto binop2;
7563 }
7564
7565 expand_operands (treeop0, treeop1,
7566 subtarget, &op0, &op1, modifier);
7567 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7568
7569 case MINUS_EXPR:
7570 /* For initializers, we are allowed to return a MINUS of two
7571 symbolic constants. Here we handle all cases when both operands
7572 are constant. */
7573 /* Handle difference of two symbolic constants,
7574 for the sake of an initializer. */
7575 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7576 && really_constant_p (treeop0)
7577 && really_constant_p (treeop1))
7578 {
7579 expand_operands (treeop0, treeop1,
7580 NULL_RTX, &op0, &op1, modifier);
7581
7582 /* If the last operand is a CONST_INT, use plus_constant of
7583 the negated constant. Else make the MINUS. */
7584 if (CONST_INT_P (op1))
7585 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7586 else
7587 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7588 }
7589
7590 /* No sense saving up arithmetic to be done
7591 if it's all in the wrong mode to form part of an address.
7592 And force_operand won't know whether to sign-extend or
7593 zero-extend. */
7594 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7595 || mode != ptr_mode)
7596 goto binop;
7597
7598 expand_operands (treeop0, treeop1,
7599 subtarget, &op0, &op1, modifier);
7600
7601 /* Convert A - const to A + (-const). */
7602 if (CONST_INT_P (op1))
7603 {
7604 op1 = negate_rtx (mode, op1);
7605 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7606 }
7607
7608 goto binop2;
7609
7610 case WIDEN_MULT_PLUS_EXPR:
7611 case WIDEN_MULT_MINUS_EXPR:
7612 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7613 op2 = expand_normal (ops->op2);
7614 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7615 target, unsignedp);
7616 return target;
7617
7618 case WIDEN_MULT_EXPR:
7619 /* If first operand is constant, swap them.
7620 Thus the following special case checks need only
7621 check the second operand. */
7622 if (TREE_CODE (treeop0) == INTEGER_CST)
7623 {
7624 tree t1 = treeop0;
7625 treeop0 = treeop1;
7626 treeop1 = t1;
7627 }
7628
7629 /* First, check if we have a multiplication of one signed and one
7630 unsigned operand. */
7631 if (TREE_CODE (treeop1) != INTEGER_CST
7632 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7633 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7634 {
7635 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7636 this_optab = usmul_widen_optab;
7637 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7638 {
7639 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7640 {
7641 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7642 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7643 EXPAND_NORMAL);
7644 else
7645 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7646 EXPAND_NORMAL);
7647 goto binop3;
7648 }
7649 }
7650 }
7651 /* Check for a multiplication with matching signedness. */
7652 else if ((TREE_CODE (treeop1) == INTEGER_CST
7653 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7654 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7655 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7656 {
7657 tree op0type = TREE_TYPE (treeop0);
7658 enum machine_mode innermode = TYPE_MODE (op0type);
7659 bool zextend_p = TYPE_UNSIGNED (op0type);
7660 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7661 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7662
7663 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7664 {
7665 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7666 {
7667 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7668 EXPAND_NORMAL);
7669 temp = expand_widening_mult (mode, op0, op1, target,
7670 unsignedp, this_optab);
7671 return REDUCE_BIT_FIELD (temp);
7672 }
7673 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7674 && innermode == word_mode)
7675 {
7676 rtx htem, hipart;
7677 op0 = expand_normal (treeop0);
7678 if (TREE_CODE (treeop1) == INTEGER_CST)
7679 op1 = convert_modes (innermode, mode,
7680 expand_normal (treeop1), unsignedp);
7681 else
7682 op1 = expand_normal (treeop1);
7683 temp = expand_binop (mode, other_optab, op0, op1, target,
7684 unsignedp, OPTAB_LIB_WIDEN);
7685 hipart = gen_highpart (innermode, temp);
7686 htem = expand_mult_highpart_adjust (innermode, hipart,
7687 op0, op1, hipart,
7688 zextend_p);
7689 if (htem != hipart)
7690 emit_move_insn (hipart, htem);
7691 return REDUCE_BIT_FIELD (temp);
7692 }
7693 }
7694 }
7695 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7696 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7697 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7698 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7699
7700 case MULT_EXPR:
7701 /* If this is a fixed-point operation, then we cannot use the code
7702 below because "expand_mult" doesn't support sat/no-sat fixed-point
7703 multiplications. */
7704 if (ALL_FIXED_POINT_MODE_P (mode))
7705 goto binop;
7706
7707 /* If first operand is constant, swap them.
7708 Thus the following special case checks need only
7709 check the second operand. */
7710 if (TREE_CODE (treeop0) == INTEGER_CST)
7711 {
7712 tree t1 = treeop0;
7713 treeop0 = treeop1;
7714 treeop1 = t1;
7715 }
7716
7717 /* Attempt to return something suitable for generating an
7718 indexed address, for machines that support that. */
7719
7720 if (modifier == EXPAND_SUM && mode == ptr_mode
7721 && host_integerp (treeop1, 0))
7722 {
7723 tree exp1 = treeop1;
7724
7725 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7726 EXPAND_SUM);
7727
7728 if (!REG_P (op0))
7729 op0 = force_operand (op0, NULL_RTX);
7730 if (!REG_P (op0))
7731 op0 = copy_to_mode_reg (mode, op0);
7732
7733 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7734 gen_int_mode (tree_low_cst (exp1, 0),
7735 TYPE_MODE (TREE_TYPE (exp1)))));
7736 }
7737
7738 if (modifier == EXPAND_STACK_PARM)
7739 target = 0;
7740
7741 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7742 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7743
7744 case TRUNC_DIV_EXPR:
7745 case FLOOR_DIV_EXPR:
7746 case CEIL_DIV_EXPR:
7747 case ROUND_DIV_EXPR:
7748 case EXACT_DIV_EXPR:
7749 /* If this is a fixed-point operation, then we cannot use the code
7750 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7751 divisions. */
7752 if (ALL_FIXED_POINT_MODE_P (mode))
7753 goto binop;
7754
7755 if (modifier == EXPAND_STACK_PARM)
7756 target = 0;
7757 /* Possible optimization: compute the dividend with EXPAND_SUM
7758 then if the divisor is constant can optimize the case
7759 where some terms of the dividend have coeffs divisible by it. */
7760 expand_operands (treeop0, treeop1,
7761 subtarget, &op0, &op1, EXPAND_NORMAL);
7762 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7763
7764 case RDIV_EXPR:
7765 goto binop;
7766
7767 case TRUNC_MOD_EXPR:
7768 case FLOOR_MOD_EXPR:
7769 case CEIL_MOD_EXPR:
7770 case ROUND_MOD_EXPR:
7771 if (modifier == EXPAND_STACK_PARM)
7772 target = 0;
7773 expand_operands (treeop0, treeop1,
7774 subtarget, &op0, &op1, EXPAND_NORMAL);
7775 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7776
7777 case FIXED_CONVERT_EXPR:
7778 op0 = expand_normal (treeop0);
7779 if (target == 0 || modifier == EXPAND_STACK_PARM)
7780 target = gen_reg_rtx (mode);
7781
7782 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7783 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7784 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7785 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7786 else
7787 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7788 return target;
7789
7790 case FIX_TRUNC_EXPR:
7791 op0 = expand_normal (treeop0);
7792 if (target == 0 || modifier == EXPAND_STACK_PARM)
7793 target = gen_reg_rtx (mode);
7794 expand_fix (target, op0, unsignedp);
7795 return target;
7796
7797 case FLOAT_EXPR:
7798 op0 = expand_normal (treeop0);
7799 if (target == 0 || modifier == EXPAND_STACK_PARM)
7800 target = gen_reg_rtx (mode);
7801 /* expand_float can't figure out what to do if FROM has VOIDmode.
7802 So give it the correct mode. With -O, cse will optimize this. */
7803 if (GET_MODE (op0) == VOIDmode)
7804 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7805 op0);
7806 expand_float (target, op0,
7807 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7808 return target;
7809
7810 case NEGATE_EXPR:
7811 op0 = expand_expr (treeop0, subtarget,
7812 VOIDmode, EXPAND_NORMAL);
7813 if (modifier == EXPAND_STACK_PARM)
7814 target = 0;
7815 temp = expand_unop (mode,
7816 optab_for_tree_code (NEGATE_EXPR, type,
7817 optab_default),
7818 op0, target, 0);
7819 gcc_assert (temp);
7820 return REDUCE_BIT_FIELD (temp);
7821
7822 case ABS_EXPR:
7823 op0 = expand_expr (treeop0, subtarget,
7824 VOIDmode, EXPAND_NORMAL);
7825 if (modifier == EXPAND_STACK_PARM)
7826 target = 0;
7827
7828 /* ABS_EXPR is not valid for complex arguments. */
7829 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7830 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7831
7832 /* Unsigned abs is simply the operand. Testing here means we don't
7833 risk generating incorrect code below. */
7834 if (TYPE_UNSIGNED (type))
7835 return op0;
7836
7837 return expand_abs (mode, op0, target, unsignedp,
7838 safe_from_p (target, treeop0, 1));
7839
7840 case MAX_EXPR:
7841 case MIN_EXPR:
7842 target = original_target;
7843 if (target == 0
7844 || modifier == EXPAND_STACK_PARM
7845 || (MEM_P (target) && MEM_VOLATILE_P (target))
7846 || GET_MODE (target) != mode
7847 || (REG_P (target)
7848 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7849 target = gen_reg_rtx (mode);
7850 expand_operands (treeop0, treeop1,
7851 target, &op0, &op1, EXPAND_NORMAL);
7852
7853 /* First try to do it with a special MIN or MAX instruction.
7854 If that does not win, use a conditional jump to select the proper
7855 value. */
7856 this_optab = optab_for_tree_code (code, type, optab_default);
7857 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7858 OPTAB_WIDEN);
7859 if (temp != 0)
7860 return temp;
7861
7862 /* At this point, a MEM target is no longer useful; we will get better
7863 code without it. */
7864
7865 if (! REG_P (target))
7866 target = gen_reg_rtx (mode);
7867
7868 /* If op1 was placed in target, swap op0 and op1. */
7869 if (target != op0 && target == op1)
7870 {
7871 temp = op0;
7872 op0 = op1;
7873 op1 = temp;
7874 }
7875
7876 /* We generate better code and avoid problems with op1 mentioning
7877 target by forcing op1 into a pseudo if it isn't a constant. */
7878 if (! CONSTANT_P (op1))
7879 op1 = force_reg (mode, op1);
7880
7881 {
7882 enum rtx_code comparison_code;
7883 rtx cmpop1 = op1;
7884
7885 if (code == MAX_EXPR)
7886 comparison_code = unsignedp ? GEU : GE;
7887 else
7888 comparison_code = unsignedp ? LEU : LE;
7889
7890 /* Canonicalize to comparisons against 0. */
7891 if (op1 == const1_rtx)
7892 {
7893 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7894 or (a != 0 ? a : 1) for unsigned.
7895 For MIN we are safe converting (a <= 1 ? a : 1)
7896 into (a <= 0 ? a : 1) */
7897 cmpop1 = const0_rtx;
7898 if (code == MAX_EXPR)
7899 comparison_code = unsignedp ? NE : GT;
7900 }
7901 if (op1 == constm1_rtx && !unsignedp)
7902 {
7903 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7904 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7905 cmpop1 = const0_rtx;
7906 if (code == MIN_EXPR)
7907 comparison_code = LT;
7908 }
7909 #ifdef HAVE_conditional_move
7910 /* Use a conditional move if possible. */
7911 if (can_conditionally_move_p (mode))
7912 {
7913 rtx insn;
7914
7915 /* ??? Same problem as in expmed.c: emit_conditional_move
7916 forces a stack adjustment via compare_from_rtx, and we
7917 lose the stack adjustment if the sequence we are about
7918 to create is discarded. */
7919 do_pending_stack_adjust ();
7920
7921 start_sequence ();
7922
7923 /* Try to emit the conditional move. */
7924 insn = emit_conditional_move (target, comparison_code,
7925 op0, cmpop1, mode,
7926 op0, op1, mode,
7927 unsignedp);
7928
7929 /* If we could do the conditional move, emit the sequence,
7930 and return. */
7931 if (insn)
7932 {
7933 rtx seq = get_insns ();
7934 end_sequence ();
7935 emit_insn (seq);
7936 return target;
7937 }
7938
7939 /* Otherwise discard the sequence and fall back to code with
7940 branches. */
7941 end_sequence ();
7942 }
7943 #endif
7944 if (target != op0)
7945 emit_move_insn (target, op0);
7946
7947 temp = gen_label_rtx ();
7948 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7949 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7950 -1);
7951 }
7952 emit_move_insn (target, op1);
7953 emit_label (temp);
7954 return target;
7955
7956 case BIT_NOT_EXPR:
7957 op0 = expand_expr (treeop0, subtarget,
7958 VOIDmode, EXPAND_NORMAL);
7959 if (modifier == EXPAND_STACK_PARM)
7960 target = 0;
7961 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7962 gcc_assert (temp);
7963 return temp;
7964
7965 /* ??? Can optimize bitwise operations with one arg constant.
7966 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7967 and (a bitwise1 b) bitwise2 b (etc)
7968 but that is probably not worth while. */
7969
7970 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7971 boolean values when we want in all cases to compute both of them. In
7972 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7973 as actual zero-or-1 values and then bitwise anding. In cases where
7974 there cannot be any side effects, better code would be made by
7975 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7976 how to recognize those cases. */
7977
7978 case TRUTH_AND_EXPR:
7979 code = BIT_AND_EXPR;
7980 case BIT_AND_EXPR:
7981 goto binop;
7982
7983 case TRUTH_OR_EXPR:
7984 code = BIT_IOR_EXPR;
7985 case BIT_IOR_EXPR:
7986 goto binop;
7987
7988 case TRUTH_XOR_EXPR:
7989 code = BIT_XOR_EXPR;
7990 case BIT_XOR_EXPR:
7991 goto binop;
7992
7993 case LROTATE_EXPR:
7994 case RROTATE_EXPR:
7995 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
7996 || (GET_MODE_PRECISION (TYPE_MODE (type))
7997 == TYPE_PRECISION (type)));
7998 /* fall through */
7999
8000 case LSHIFT_EXPR:
8001 case RSHIFT_EXPR:
8002 /* If this is a fixed-point operation, then we cannot use the code
8003 below because "expand_shift" doesn't support sat/no-sat fixed-point
8004 shifts. */
8005 if (ALL_FIXED_POINT_MODE_P (mode))
8006 goto binop;
8007
8008 if (! safe_from_p (subtarget, treeop1, 1))
8009 subtarget = 0;
8010 if (modifier == EXPAND_STACK_PARM)
8011 target = 0;
8012 op0 = expand_expr (treeop0, subtarget,
8013 VOIDmode, EXPAND_NORMAL);
8014 temp = expand_shift (code, mode, op0, treeop1, target,
8015 unsignedp);
8016 if (code == LSHIFT_EXPR)
8017 temp = REDUCE_BIT_FIELD (temp);
8018 return temp;
8019
8020 /* Could determine the answer when only additive constants differ. Also,
8021 the addition of one can be handled by changing the condition. */
8022 case LT_EXPR:
8023 case LE_EXPR:
8024 case GT_EXPR:
8025 case GE_EXPR:
8026 case EQ_EXPR:
8027 case NE_EXPR:
8028 case UNORDERED_EXPR:
8029 case ORDERED_EXPR:
8030 case UNLT_EXPR:
8031 case UNLE_EXPR:
8032 case UNGT_EXPR:
8033 case UNGE_EXPR:
8034 case UNEQ_EXPR:
8035 case LTGT_EXPR:
8036 temp = do_store_flag (ops,
8037 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8038 tmode != VOIDmode ? tmode : mode);
8039 if (temp)
8040 return temp;
8041
8042 /* Use a compare and a jump for BLKmode comparisons, or for function
8043 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8044
8045 if ((target == 0
8046 || modifier == EXPAND_STACK_PARM
8047 || ! safe_from_p (target, treeop0, 1)
8048 || ! safe_from_p (target, treeop1, 1)
8049 /* Make sure we don't have a hard reg (such as function's return
8050 value) live across basic blocks, if not optimizing. */
8051 || (!optimize && REG_P (target)
8052 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8053 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8054
8055 emit_move_insn (target, const0_rtx);
8056
8057 op1 = gen_label_rtx ();
8058 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8059
8060 emit_move_insn (target, const1_rtx);
8061
8062 emit_label (op1);
8063 return target;
8064
8065 case TRUTH_NOT_EXPR:
8066 if (modifier == EXPAND_STACK_PARM)
8067 target = 0;
8068 op0 = expand_expr (treeop0, target,
8069 VOIDmode, EXPAND_NORMAL);
8070 /* The parser is careful to generate TRUTH_NOT_EXPR
8071 only with operands that are always zero or one. */
8072 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8073 target, 1, OPTAB_LIB_WIDEN);
8074 gcc_assert (temp);
8075 return temp;
8076
8077 case COMPLEX_EXPR:
8078 /* Get the rtx code of the operands. */
8079 op0 = expand_normal (treeop0);
8080 op1 = expand_normal (treeop1);
8081
8082 if (!target)
8083 target = gen_reg_rtx (TYPE_MODE (type));
8084
8085 /* Move the real (op0) and imaginary (op1) parts to their location. */
8086 write_complex_part (target, op0, false);
8087 write_complex_part (target, op1, true);
8088
8089 return target;
8090
8091 case WIDEN_SUM_EXPR:
8092 {
8093 tree oprnd0 = treeop0;
8094 tree oprnd1 = treeop1;
8095
8096 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8097 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8098 target, unsignedp);
8099 return target;
8100 }
8101
8102 case REDUC_MAX_EXPR:
8103 case REDUC_MIN_EXPR:
8104 case REDUC_PLUS_EXPR:
8105 {
8106 op0 = expand_normal (treeop0);
8107 this_optab = optab_for_tree_code (code, type, optab_default);
8108 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8109 gcc_assert (temp);
8110 return temp;
8111 }
8112
8113 case VEC_EXTRACT_EVEN_EXPR:
8114 case VEC_EXTRACT_ODD_EXPR:
8115 {
8116 expand_operands (treeop0, treeop1,
8117 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8118 this_optab = optab_for_tree_code (code, type, optab_default);
8119 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8120 OPTAB_WIDEN);
8121 gcc_assert (temp);
8122 return temp;
8123 }
8124
8125 case VEC_INTERLEAVE_HIGH_EXPR:
8126 case VEC_INTERLEAVE_LOW_EXPR:
8127 {
8128 expand_operands (treeop0, treeop1,
8129 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8130 this_optab = optab_for_tree_code (code, type, optab_default);
8131 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8132 OPTAB_WIDEN);
8133 gcc_assert (temp);
8134 return temp;
8135 }
8136
8137 case VEC_LSHIFT_EXPR:
8138 case VEC_RSHIFT_EXPR:
8139 {
8140 target = expand_vec_shift_expr (ops, target);
8141 return target;
8142 }
8143
8144 case VEC_UNPACK_HI_EXPR:
8145 case VEC_UNPACK_LO_EXPR:
8146 {
8147 op0 = expand_normal (treeop0);
8148 this_optab = optab_for_tree_code (code, type, optab_default);
8149 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8150 target, unsignedp);
8151 gcc_assert (temp);
8152 return temp;
8153 }
8154
8155 case VEC_UNPACK_FLOAT_HI_EXPR:
8156 case VEC_UNPACK_FLOAT_LO_EXPR:
8157 {
8158 op0 = expand_normal (treeop0);
8159 /* The signedness is determined from input operand. */
8160 this_optab = optab_for_tree_code (code,
8161 TREE_TYPE (treeop0),
8162 optab_default);
8163 temp = expand_widen_pattern_expr
8164 (ops, op0, NULL_RTX, NULL_RTX,
8165 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8166
8167 gcc_assert (temp);
8168 return temp;
8169 }
8170
8171 case VEC_WIDEN_MULT_HI_EXPR:
8172 case VEC_WIDEN_MULT_LO_EXPR:
8173 {
8174 tree oprnd0 = treeop0;
8175 tree oprnd1 = treeop1;
8176
8177 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8178 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8179 target, unsignedp);
8180 gcc_assert (target);
8181 return target;
8182 }
8183
8184 case VEC_PACK_TRUNC_EXPR:
8185 case VEC_PACK_SAT_EXPR:
8186 case VEC_PACK_FIX_TRUNC_EXPR:
8187 mode = TYPE_MODE (TREE_TYPE (treeop0));
8188 goto binop;
8189
8190 default:
8191 gcc_unreachable ();
8192 }
8193
8194 /* Here to do an ordinary binary operator. */
8195 binop:
8196 expand_operands (treeop0, treeop1,
8197 subtarget, &op0, &op1, EXPAND_NORMAL);
8198 binop2:
8199 this_optab = optab_for_tree_code (code, type, optab_default);
8200 binop3:
8201 if (modifier == EXPAND_STACK_PARM)
8202 target = 0;
8203 temp = expand_binop (mode, this_optab, op0, op1, target,
8204 unsignedp, OPTAB_LIB_WIDEN);
8205 gcc_assert (temp);
8206 return REDUCE_BIT_FIELD (temp);
8207 }
8208 #undef REDUCE_BIT_FIELD
8209
8210 rtx
8211 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8212 enum expand_modifier modifier, rtx *alt_rtl)
8213 {
8214 rtx op0, op1, temp, decl_rtl;
8215 tree type;
8216 int unsignedp;
8217 enum machine_mode mode;
8218 enum tree_code code = TREE_CODE (exp);
8219 optab this_optab;
8220 rtx subtarget, original_target;
8221 int ignore;
8222 tree context;
8223 bool reduce_bit_field;
8224 location_t loc = EXPR_LOCATION (exp);
8225 struct separate_ops ops;
8226 tree treeop0, treeop1, treeop2;
8227 tree ssa_name = NULL_TREE;
8228 gimple g;
8229
8230 type = TREE_TYPE (exp);
8231 mode = TYPE_MODE (type);
8232 unsignedp = TYPE_UNSIGNED (type);
8233
8234 treeop0 = treeop1 = treeop2 = NULL_TREE;
8235 if (!VL_EXP_CLASS_P (exp))
8236 switch (TREE_CODE_LENGTH (code))
8237 {
8238 default:
8239 case 3: treeop2 = TREE_OPERAND (exp, 2);
8240 case 2: treeop1 = TREE_OPERAND (exp, 1);
8241 case 1: treeop0 = TREE_OPERAND (exp, 0);
8242 case 0: break;
8243 }
8244 ops.code = code;
8245 ops.type = type;
8246 ops.op0 = treeop0;
8247 ops.op1 = treeop1;
8248 ops.op2 = treeop2;
8249 ops.location = loc;
8250
8251 ignore = (target == const0_rtx
8252 || ((CONVERT_EXPR_CODE_P (code)
8253 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8254 && TREE_CODE (type) == VOID_TYPE));
8255
8256 /* An operation in what may be a bit-field type needs the
8257 result to be reduced to the precision of the bit-field type,
8258 which is narrower than that of the type's mode. */
8259 reduce_bit_field = (!ignore
8260 && TREE_CODE (type) == INTEGER_TYPE
8261 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8262
8263 /* If we are going to ignore this result, we need only do something
8264 if there is a side-effect somewhere in the expression. If there
8265 is, short-circuit the most common cases here. Note that we must
8266 not call expand_expr with anything but const0_rtx in case this
8267 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8268
8269 if (ignore)
8270 {
8271 if (! TREE_SIDE_EFFECTS (exp))
8272 return const0_rtx;
8273
8274 /* Ensure we reference a volatile object even if value is ignored, but
8275 don't do this if all we are doing is taking its address. */
8276 if (TREE_THIS_VOLATILE (exp)
8277 && TREE_CODE (exp) != FUNCTION_DECL
8278 && mode != VOIDmode && mode != BLKmode
8279 && modifier != EXPAND_CONST_ADDRESS)
8280 {
8281 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8282 if (MEM_P (temp))
8283 temp = copy_to_reg (temp);
8284 return const0_rtx;
8285 }
8286
8287 if (TREE_CODE_CLASS (code) == tcc_unary
8288 || code == COMPONENT_REF || code == INDIRECT_REF)
8289 return expand_expr (treeop0, const0_rtx, VOIDmode,
8290 modifier);
8291
8292 else if (TREE_CODE_CLASS (code) == tcc_binary
8293 || TREE_CODE_CLASS (code) == tcc_comparison
8294 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8295 {
8296 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8297 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8298 return const0_rtx;
8299 }
8300 else if (code == BIT_FIELD_REF)
8301 {
8302 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8303 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8304 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8305 return const0_rtx;
8306 }
8307
8308 target = 0;
8309 }
8310
8311 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8312 target = 0;
8313
8314 /* Use subtarget as the target for operand 0 of a binary operation. */
8315 subtarget = get_subtarget (target);
8316 original_target = target;
8317
8318 switch (code)
8319 {
8320 case LABEL_DECL:
8321 {
8322 tree function = decl_function_context (exp);
8323
8324 temp = label_rtx (exp);
8325 temp = gen_rtx_LABEL_REF (Pmode, temp);
8326
8327 if (function != current_function_decl
8328 && function != 0)
8329 LABEL_REF_NONLOCAL_P (temp) = 1;
8330
8331 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8332 return temp;
8333 }
8334
8335 case SSA_NAME:
8336 /* ??? ivopts calls expander, without any preparation from
8337 out-of-ssa. So fake instructions as if this was an access to the
8338 base variable. This unnecessarily allocates a pseudo, see how we can
8339 reuse it, if partition base vars have it set already. */
8340 if (!currently_expanding_to_rtl)
8341 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8342 NULL);
8343
8344 g = get_gimple_for_ssa_name (exp);
8345 if (g)
8346 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8347 modifier, NULL);
8348
8349 ssa_name = exp;
8350 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8351 exp = SSA_NAME_VAR (ssa_name);
8352 goto expand_decl_rtl;
8353
8354 case PARM_DECL:
8355 case VAR_DECL:
8356 /* If a static var's type was incomplete when the decl was written,
8357 but the type is complete now, lay out the decl now. */
8358 if (DECL_SIZE (exp) == 0
8359 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8360 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8361 layout_decl (exp, 0);
8362
8363 /* ... fall through ... */
8364
8365 case FUNCTION_DECL:
8366 case RESULT_DECL:
8367 decl_rtl = DECL_RTL (exp);
8368 expand_decl_rtl:
8369 gcc_assert (decl_rtl);
8370 decl_rtl = copy_rtx (decl_rtl);
8371 /* Record writes to register variables. */
8372 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8373 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8374 {
8375 int i = REGNO (decl_rtl);
8376 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8377 while (nregs)
8378 {
8379 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8380 i++;
8381 nregs--;
8382 }
8383 }
8384
8385 /* Ensure variable marked as used even if it doesn't go through
8386 a parser. If it hasn't be used yet, write out an external
8387 definition. */
8388 if (! TREE_USED (exp))
8389 {
8390 assemble_external (exp);
8391 TREE_USED (exp) = 1;
8392 }
8393
8394 /* Show we haven't gotten RTL for this yet. */
8395 temp = 0;
8396
8397 /* Variables inherited from containing functions should have
8398 been lowered by this point. */
8399 context = decl_function_context (exp);
8400 gcc_assert (!context
8401 || context == current_function_decl
8402 || TREE_STATIC (exp)
8403 /* ??? C++ creates functions that are not TREE_STATIC. */
8404 || TREE_CODE (exp) == FUNCTION_DECL);
8405
8406 /* This is the case of an array whose size is to be determined
8407 from its initializer, while the initializer is still being parsed.
8408 See expand_decl. */
8409
8410 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8411 temp = validize_mem (decl_rtl);
8412
8413 /* If DECL_RTL is memory, we are in the normal case and the
8414 address is not valid, get the address into a register. */
8415
8416 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8417 {
8418 if (alt_rtl)
8419 *alt_rtl = decl_rtl;
8420 decl_rtl = use_anchored_address (decl_rtl);
8421 if (modifier != EXPAND_CONST_ADDRESS
8422 && modifier != EXPAND_SUM
8423 && !memory_address_addr_space_p (DECL_MODE (exp),
8424 XEXP (decl_rtl, 0),
8425 MEM_ADDR_SPACE (decl_rtl)))
8426 temp = replace_equiv_address (decl_rtl,
8427 copy_rtx (XEXP (decl_rtl, 0)));
8428 }
8429
8430 /* If we got something, return it. But first, set the alignment
8431 if the address is a register. */
8432 if (temp != 0)
8433 {
8434 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8435 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8436
8437 return temp;
8438 }
8439
8440 /* If the mode of DECL_RTL does not match that of the decl, it
8441 must be a promoted value. We return a SUBREG of the wanted mode,
8442 but mark it so that we know that it was already extended. */
8443 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8444 {
8445 enum machine_mode pmode;
8446
8447 /* Get the signedness to be used for this variable. Ensure we get
8448 the same mode we got when the variable was declared. */
8449 if (code == SSA_NAME
8450 && (g = SSA_NAME_DEF_STMT (ssa_name))
8451 && gimple_code (g) == GIMPLE_CALL)
8452 pmode = promote_function_mode (type, mode, &unsignedp,
8453 TREE_TYPE
8454 (TREE_TYPE (gimple_call_fn (g))),
8455 2);
8456 else
8457 pmode = promote_decl_mode (exp, &unsignedp);
8458 gcc_assert (GET_MODE (decl_rtl) == pmode);
8459
8460 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8461 SUBREG_PROMOTED_VAR_P (temp) = 1;
8462 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8463 return temp;
8464 }
8465
8466 return decl_rtl;
8467
8468 case INTEGER_CST:
8469 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8470 TREE_INT_CST_HIGH (exp), mode);
8471
8472 return temp;
8473
8474 case VECTOR_CST:
8475 {
8476 tree tmp = NULL_TREE;
8477 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8478 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8479 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8480 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8481 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8482 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8483 return const_vector_from_tree (exp);
8484 if (GET_MODE_CLASS (mode) == MODE_INT)
8485 {
8486 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8487 if (type_for_mode)
8488 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8489 }
8490 if (!tmp)
8491 tmp = build_constructor_from_list (type,
8492 TREE_VECTOR_CST_ELTS (exp));
8493 return expand_expr (tmp, ignore ? const0_rtx : target,
8494 tmode, modifier);
8495 }
8496
8497 case CONST_DECL:
8498 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8499
8500 case REAL_CST:
8501 /* If optimized, generate immediate CONST_DOUBLE
8502 which will be turned into memory by reload if necessary.
8503
8504 We used to force a register so that loop.c could see it. But
8505 this does not allow gen_* patterns to perform optimizations with
8506 the constants. It also produces two insns in cases like "x = 1.0;".
8507 On most machines, floating-point constants are not permitted in
8508 many insns, so we'd end up copying it to a register in any case.
8509
8510 Now, we do the copying in expand_binop, if appropriate. */
8511 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8512 TYPE_MODE (TREE_TYPE (exp)));
8513
8514 case FIXED_CST:
8515 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8516 TYPE_MODE (TREE_TYPE (exp)));
8517
8518 case COMPLEX_CST:
8519 /* Handle evaluating a complex constant in a CONCAT target. */
8520 if (original_target && GET_CODE (original_target) == CONCAT)
8521 {
8522 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8523 rtx rtarg, itarg;
8524
8525 rtarg = XEXP (original_target, 0);
8526 itarg = XEXP (original_target, 1);
8527
8528 /* Move the real and imaginary parts separately. */
8529 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8530 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8531
8532 if (op0 != rtarg)
8533 emit_move_insn (rtarg, op0);
8534 if (op1 != itarg)
8535 emit_move_insn (itarg, op1);
8536
8537 return original_target;
8538 }
8539
8540 /* ... fall through ... */
8541
8542 case STRING_CST:
8543 temp = expand_expr_constant (exp, 1, modifier);
8544
8545 /* temp contains a constant address.
8546 On RISC machines where a constant address isn't valid,
8547 make some insns to get that address into a register. */
8548 if (modifier != EXPAND_CONST_ADDRESS
8549 && modifier != EXPAND_INITIALIZER
8550 && modifier != EXPAND_SUM
8551 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8552 MEM_ADDR_SPACE (temp)))
8553 return replace_equiv_address (temp,
8554 copy_rtx (XEXP (temp, 0)));
8555 return temp;
8556
8557 case SAVE_EXPR:
8558 {
8559 tree val = treeop0;
8560 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8561
8562 if (!SAVE_EXPR_RESOLVED_P (exp))
8563 {
8564 /* We can indeed still hit this case, typically via builtin
8565 expanders calling save_expr immediately before expanding
8566 something. Assume this means that we only have to deal
8567 with non-BLKmode values. */
8568 gcc_assert (GET_MODE (ret) != BLKmode);
8569
8570 val = build_decl (EXPR_LOCATION (exp),
8571 VAR_DECL, NULL, TREE_TYPE (exp));
8572 DECL_ARTIFICIAL (val) = 1;
8573 DECL_IGNORED_P (val) = 1;
8574 treeop0 = val;
8575 TREE_OPERAND (exp, 0) = treeop0;
8576 SAVE_EXPR_RESOLVED_P (exp) = 1;
8577
8578 if (!CONSTANT_P (ret))
8579 ret = copy_to_reg (ret);
8580 SET_DECL_RTL (val, ret);
8581 }
8582
8583 return ret;
8584 }
8585
8586
8587 case CONSTRUCTOR:
8588 /* If we don't need the result, just ensure we evaluate any
8589 subexpressions. */
8590 if (ignore)
8591 {
8592 unsigned HOST_WIDE_INT idx;
8593 tree value;
8594
8595 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8596 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8597
8598 return const0_rtx;
8599 }
8600
8601 return expand_constructor (exp, target, modifier, false);
8602
8603 case MISALIGNED_INDIRECT_REF:
8604 case INDIRECT_REF:
8605 {
8606 tree exp1 = treeop0;
8607 addr_space_t as = ADDR_SPACE_GENERIC;
8608
8609 if (modifier != EXPAND_WRITE)
8610 {
8611 tree t;
8612
8613 t = fold_read_from_constant_string (exp);
8614 if (t)
8615 return expand_expr (t, target, tmode, modifier);
8616 }
8617
8618 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8619 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8620
8621 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8622 op0 = memory_address_addr_space (mode, op0, as);
8623
8624 temp = gen_rtx_MEM (mode, op0);
8625
8626 set_mem_attributes (temp, exp, 0);
8627 set_mem_addr_space (temp, as);
8628
8629 /* Resolve the misalignment now, so that we don't have to remember
8630 to resolve it later. Of course, this only works for reads. */
8631 if (code == MISALIGNED_INDIRECT_REF)
8632 {
8633 int icode;
8634 rtx reg, insn;
8635
8636 gcc_assert (modifier == EXPAND_NORMAL
8637 || modifier == EXPAND_STACK_PARM);
8638
8639 /* The vectorizer should have already checked the mode. */
8640 icode = optab_handler (movmisalign_optab, mode);
8641 gcc_assert (icode != CODE_FOR_nothing);
8642
8643 /* We've already validated the memory, and we're creating a
8644 new pseudo destination. The predicates really can't fail. */
8645 reg = gen_reg_rtx (mode);
8646
8647 /* Nor can the insn generator. */
8648 insn = GEN_FCN (icode) (reg, temp);
8649 emit_insn (insn);
8650
8651 return reg;
8652 }
8653
8654 return temp;
8655 }
8656
8657 case TARGET_MEM_REF:
8658 {
8659 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8660 struct mem_address addr;
8661
8662 get_address_description (exp, &addr);
8663 op0 = addr_for_mem_ref (&addr, as, true);
8664 op0 = memory_address_addr_space (mode, op0, as);
8665 temp = gen_rtx_MEM (mode, op0);
8666 set_mem_attributes (temp, exp, 0);
8667 set_mem_addr_space (temp, as);
8668 }
8669 return temp;
8670
8671 case MEM_REF:
8672 {
8673 addr_space_t as
8674 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8675 enum machine_mode address_mode;
8676 tree base = TREE_OPERAND (exp, 0);
8677 gimple def_stmt;
8678 /* Handle expansion of non-aliased memory with non-BLKmode. That
8679 might end up in a register. */
8680 if (TREE_CODE (base) == ADDR_EXPR)
8681 {
8682 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8683 tree bit_offset;
8684 base = TREE_OPERAND (base, 0);
8685 if (!DECL_P (base))
8686 {
8687 HOST_WIDE_INT off;
8688 base = get_addr_base_and_unit_offset (base, &off);
8689 gcc_assert (base);
8690 offset += off;
8691 }
8692 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8693 decl we must use bitfield operations. */
8694 if (DECL_P (base)
8695 && !TREE_ADDRESSABLE (base)
8696 && DECL_MODE (base) != BLKmode
8697 && DECL_RTL_SET_P (base)
8698 && !MEM_P (DECL_RTL (base)))
8699 {
8700 tree bftype;
8701 if (offset == 0
8702 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8703 && (GET_MODE_BITSIZE (DECL_MODE (base))
8704 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8705 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8706 TREE_TYPE (exp), base),
8707 target, tmode, modifier);
8708 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8709 bftype = TREE_TYPE (base);
8710 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8711 bftype = TREE_TYPE (exp);
8712 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8713 base,
8714 TYPE_SIZE (TREE_TYPE (exp)),
8715 bit_offset),
8716 target, tmode, modifier);
8717 }
8718 }
8719 address_mode = targetm.addr_space.address_mode (as);
8720 base = TREE_OPERAND (exp, 0);
8721 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8722 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8723 gimple_assign_rhs1 (def_stmt),
8724 gimple_assign_rhs2 (def_stmt));
8725 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8726 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8727 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8728 {
8729 rtx off
8730 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8731 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8732 }
8733 op0 = memory_address_addr_space (mode, op0, as);
8734 temp = gen_rtx_MEM (mode, op0);
8735 set_mem_attributes (temp, exp, 0);
8736 set_mem_addr_space (temp, as);
8737 if (TREE_THIS_VOLATILE (exp))
8738 MEM_VOLATILE_P (temp) = 1;
8739 return temp;
8740 }
8741
8742 case ARRAY_REF:
8743
8744 {
8745 tree array = treeop0;
8746 tree index = treeop1;
8747
8748 /* Fold an expression like: "foo"[2].
8749 This is not done in fold so it won't happen inside &.
8750 Don't fold if this is for wide characters since it's too
8751 difficult to do correctly and this is a very rare case. */
8752
8753 if (modifier != EXPAND_CONST_ADDRESS
8754 && modifier != EXPAND_INITIALIZER
8755 && modifier != EXPAND_MEMORY)
8756 {
8757 tree t = fold_read_from_constant_string (exp);
8758
8759 if (t)
8760 return expand_expr (t, target, tmode, modifier);
8761 }
8762
8763 /* If this is a constant index into a constant array,
8764 just get the value from the array. Handle both the cases when
8765 we have an explicit constructor and when our operand is a variable
8766 that was declared const. */
8767
8768 if (modifier != EXPAND_CONST_ADDRESS
8769 && modifier != EXPAND_INITIALIZER
8770 && modifier != EXPAND_MEMORY
8771 && TREE_CODE (array) == CONSTRUCTOR
8772 && ! TREE_SIDE_EFFECTS (array)
8773 && TREE_CODE (index) == INTEGER_CST)
8774 {
8775 unsigned HOST_WIDE_INT ix;
8776 tree field, value;
8777
8778 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8779 field, value)
8780 if (tree_int_cst_equal (field, index))
8781 {
8782 if (!TREE_SIDE_EFFECTS (value))
8783 return expand_expr (fold (value), target, tmode, modifier);
8784 break;
8785 }
8786 }
8787
8788 else if (optimize >= 1
8789 && modifier != EXPAND_CONST_ADDRESS
8790 && modifier != EXPAND_INITIALIZER
8791 && modifier != EXPAND_MEMORY
8792 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8793 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8794 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8795 && targetm.binds_local_p (array))
8796 {
8797 if (TREE_CODE (index) == INTEGER_CST)
8798 {
8799 tree init = DECL_INITIAL (array);
8800
8801 if (TREE_CODE (init) == CONSTRUCTOR)
8802 {
8803 unsigned HOST_WIDE_INT ix;
8804 tree field, value;
8805
8806 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8807 field, value)
8808 if (tree_int_cst_equal (field, index))
8809 {
8810 if (TREE_SIDE_EFFECTS (value))
8811 break;
8812
8813 if (TREE_CODE (value) == CONSTRUCTOR)
8814 {
8815 /* If VALUE is a CONSTRUCTOR, this
8816 optimization is only useful if
8817 this doesn't store the CONSTRUCTOR
8818 into memory. If it does, it is more
8819 efficient to just load the data from
8820 the array directly. */
8821 rtx ret = expand_constructor (value, target,
8822 modifier, true);
8823 if (ret == NULL_RTX)
8824 break;
8825 }
8826
8827 return expand_expr (fold (value), target, tmode,
8828 modifier);
8829 }
8830 }
8831 else if(TREE_CODE (init) == STRING_CST)
8832 {
8833 tree index1 = index;
8834 tree low_bound = array_ref_low_bound (exp);
8835 index1 = fold_convert_loc (loc, sizetype,
8836 treeop1);
8837
8838 /* Optimize the special-case of a zero lower bound.
8839
8840 We convert the low_bound to sizetype to avoid some problems
8841 with constant folding. (E.g. suppose the lower bound is 1,
8842 and its mode is QI. Without the conversion,l (ARRAY
8843 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8844 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8845
8846 if (! integer_zerop (low_bound))
8847 index1 = size_diffop_loc (loc, index1,
8848 fold_convert_loc (loc, sizetype,
8849 low_bound));
8850
8851 if (0 > compare_tree_int (index1,
8852 TREE_STRING_LENGTH (init)))
8853 {
8854 tree type = TREE_TYPE (TREE_TYPE (init));
8855 enum machine_mode mode = TYPE_MODE (type);
8856
8857 if (GET_MODE_CLASS (mode) == MODE_INT
8858 && GET_MODE_SIZE (mode) == 1)
8859 return gen_int_mode (TREE_STRING_POINTER (init)
8860 [TREE_INT_CST_LOW (index1)],
8861 mode);
8862 }
8863 }
8864 }
8865 }
8866 }
8867 goto normal_inner_ref;
8868
8869 case COMPONENT_REF:
8870 /* If the operand is a CONSTRUCTOR, we can just extract the
8871 appropriate field if it is present. */
8872 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8873 {
8874 unsigned HOST_WIDE_INT idx;
8875 tree field, value;
8876
8877 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8878 idx, field, value)
8879 if (field == treeop1
8880 /* We can normally use the value of the field in the
8881 CONSTRUCTOR. However, if this is a bitfield in
8882 an integral mode that we can fit in a HOST_WIDE_INT,
8883 we must mask only the number of bits in the bitfield,
8884 since this is done implicitly by the constructor. If
8885 the bitfield does not meet either of those conditions,
8886 we can't do this optimization. */
8887 && (! DECL_BIT_FIELD (field)
8888 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8889 && (GET_MODE_BITSIZE (DECL_MODE (field))
8890 <= HOST_BITS_PER_WIDE_INT))))
8891 {
8892 if (DECL_BIT_FIELD (field)
8893 && modifier == EXPAND_STACK_PARM)
8894 target = 0;
8895 op0 = expand_expr (value, target, tmode, modifier);
8896 if (DECL_BIT_FIELD (field))
8897 {
8898 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8899 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8900
8901 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8902 {
8903 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8904 op0 = expand_and (imode, op0, op1, target);
8905 }
8906 else
8907 {
8908 tree count
8909 = build_int_cst (NULL_TREE,
8910 GET_MODE_BITSIZE (imode) - bitsize);
8911
8912 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8913 target, 0);
8914 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8915 target, 0);
8916 }
8917 }
8918
8919 return op0;
8920 }
8921 }
8922 goto normal_inner_ref;
8923
8924 case BIT_FIELD_REF:
8925 case ARRAY_RANGE_REF:
8926 normal_inner_ref:
8927 {
8928 enum machine_mode mode1, mode2;
8929 HOST_WIDE_INT bitsize, bitpos;
8930 tree offset;
8931 int volatilep = 0, must_force_mem;
8932 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8933 &mode1, &unsignedp, &volatilep, true);
8934 rtx orig_op0, memloc;
8935
8936 /* If we got back the original object, something is wrong. Perhaps
8937 we are evaluating an expression too early. In any event, don't
8938 infinitely recurse. */
8939 gcc_assert (tem != exp);
8940
8941 /* If TEM's type is a union of variable size, pass TARGET to the inner
8942 computation, since it will need a temporary and TARGET is known
8943 to have to do. This occurs in unchecked conversion in Ada. */
8944 orig_op0 = op0
8945 = expand_expr (tem,
8946 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8947 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8948 != INTEGER_CST)
8949 && modifier != EXPAND_STACK_PARM
8950 ? target : NULL_RTX),
8951 VOIDmode,
8952 (modifier == EXPAND_INITIALIZER
8953 || modifier == EXPAND_CONST_ADDRESS
8954 || modifier == EXPAND_STACK_PARM)
8955 ? modifier : EXPAND_NORMAL);
8956
8957
8958 /* If the bitfield is volatile, we want to access it in the
8959 field's mode, not the computed mode. */
8960 if (volatilep
8961 && GET_CODE (op0) == MEM
8962 && flag_strict_volatile_bitfields > 0)
8963 op0 = adjust_address (op0, mode1, 0);
8964
8965 mode2
8966 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8967
8968 /* If we have either an offset, a BLKmode result, or a reference
8969 outside the underlying object, we must force it to memory.
8970 Such a case can occur in Ada if we have unchecked conversion
8971 of an expression from a scalar type to an aggregate type or
8972 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8973 passed a partially uninitialized object or a view-conversion
8974 to a larger size. */
8975 must_force_mem = (offset
8976 || mode1 == BLKmode
8977 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8978
8979 /* Handle CONCAT first. */
8980 if (GET_CODE (op0) == CONCAT && !must_force_mem)
8981 {
8982 if (bitpos == 0
8983 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
8984 return op0;
8985 if (bitpos == 0
8986 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8987 && bitsize)
8988 {
8989 op0 = XEXP (op0, 0);
8990 mode2 = GET_MODE (op0);
8991 }
8992 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8993 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
8994 && bitpos
8995 && bitsize)
8996 {
8997 op0 = XEXP (op0, 1);
8998 bitpos = 0;
8999 mode2 = GET_MODE (op0);
9000 }
9001 else
9002 /* Otherwise force into memory. */
9003 must_force_mem = 1;
9004 }
9005
9006 /* If this is a constant, put it in a register if it is a legitimate
9007 constant and we don't need a memory reference. */
9008 if (CONSTANT_P (op0)
9009 && mode2 != BLKmode
9010 && LEGITIMATE_CONSTANT_P (op0)
9011 && !must_force_mem)
9012 op0 = force_reg (mode2, op0);
9013
9014 /* Otherwise, if this is a constant, try to force it to the constant
9015 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9016 is a legitimate constant. */
9017 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9018 op0 = validize_mem (memloc);
9019
9020 /* Otherwise, if this is a constant or the object is not in memory
9021 and need be, put it there. */
9022 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9023 {
9024 tree nt = build_qualified_type (TREE_TYPE (tem),
9025 (TYPE_QUALS (TREE_TYPE (tem))
9026 | TYPE_QUAL_CONST));
9027 memloc = assign_temp (nt, 1, 1, 1);
9028 emit_move_insn (memloc, op0);
9029 op0 = memloc;
9030 }
9031
9032 if (offset)
9033 {
9034 enum machine_mode address_mode;
9035 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9036 EXPAND_SUM);
9037
9038 gcc_assert (MEM_P (op0));
9039
9040 address_mode
9041 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9042 if (GET_MODE (offset_rtx) != address_mode)
9043 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9044
9045 if (GET_MODE (op0) == BLKmode
9046 /* A constant address in OP0 can have VOIDmode, we must
9047 not try to call force_reg in that case. */
9048 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9049 && bitsize != 0
9050 && (bitpos % bitsize) == 0
9051 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9052 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9053 {
9054 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9055 bitpos = 0;
9056 }
9057
9058 op0 = offset_address (op0, offset_rtx,
9059 highest_pow2_factor (offset));
9060 }
9061
9062 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9063 record its alignment as BIGGEST_ALIGNMENT. */
9064 if (MEM_P (op0) && bitpos == 0 && offset != 0
9065 && is_aligning_offset (offset, tem))
9066 set_mem_align (op0, BIGGEST_ALIGNMENT);
9067
9068 /* Don't forget about volatility even if this is a bitfield. */
9069 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9070 {
9071 if (op0 == orig_op0)
9072 op0 = copy_rtx (op0);
9073
9074 MEM_VOLATILE_P (op0) = 1;
9075 }
9076
9077 /* In cases where an aligned union has an unaligned object
9078 as a field, we might be extracting a BLKmode value from
9079 an integer-mode (e.g., SImode) object. Handle this case
9080 by doing the extract into an object as wide as the field
9081 (which we know to be the width of a basic mode), then
9082 storing into memory, and changing the mode to BLKmode. */
9083 if (mode1 == VOIDmode
9084 || REG_P (op0) || GET_CODE (op0) == SUBREG
9085 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9086 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9087 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9088 && modifier != EXPAND_CONST_ADDRESS
9089 && modifier != EXPAND_INITIALIZER)
9090 /* If the field is volatile, we always want an aligned
9091 access. */
9092 || (volatilep && flag_strict_volatile_bitfields > 0)
9093 /* If the field isn't aligned enough to fetch as a memref,
9094 fetch it as a bit field. */
9095 || (mode1 != BLKmode
9096 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9097 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9098 || (MEM_P (op0)
9099 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9100 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9101 && ((modifier == EXPAND_CONST_ADDRESS
9102 || modifier == EXPAND_INITIALIZER)
9103 ? STRICT_ALIGNMENT
9104 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9105 || (bitpos % BITS_PER_UNIT != 0)))
9106 /* If the type and the field are a constant size and the
9107 size of the type isn't the same size as the bitfield,
9108 we must use bitfield operations. */
9109 || (bitsize >= 0
9110 && TYPE_SIZE (TREE_TYPE (exp))
9111 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9112 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9113 bitsize)))
9114 {
9115 enum machine_mode ext_mode = mode;
9116
9117 if (ext_mode == BLKmode
9118 && ! (target != 0 && MEM_P (op0)
9119 && MEM_P (target)
9120 && bitpos % BITS_PER_UNIT == 0))
9121 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9122
9123 if (ext_mode == BLKmode)
9124 {
9125 if (target == 0)
9126 target = assign_temp (type, 0, 1, 1);
9127
9128 if (bitsize == 0)
9129 return target;
9130
9131 /* In this case, BITPOS must start at a byte boundary and
9132 TARGET, if specified, must be a MEM. */
9133 gcc_assert (MEM_P (op0)
9134 && (!target || MEM_P (target))
9135 && !(bitpos % BITS_PER_UNIT));
9136
9137 emit_block_move (target,
9138 adjust_address (op0, VOIDmode,
9139 bitpos / BITS_PER_UNIT),
9140 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9141 / BITS_PER_UNIT),
9142 (modifier == EXPAND_STACK_PARM
9143 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9144
9145 return target;
9146 }
9147
9148 op0 = validize_mem (op0);
9149
9150 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9151 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9152
9153 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9154 (modifier == EXPAND_STACK_PARM
9155 ? NULL_RTX : target),
9156 ext_mode, ext_mode);
9157
9158 /* If the result is a record type and BITSIZE is narrower than
9159 the mode of OP0, an integral mode, and this is a big endian
9160 machine, we must put the field into the high-order bits. */
9161 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9162 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9163 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9164 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9165 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9166 - bitsize),
9167 op0, 1);
9168
9169 /* If the result type is BLKmode, store the data into a temporary
9170 of the appropriate type, but with the mode corresponding to the
9171 mode for the data we have (op0's mode). It's tempting to make
9172 this a constant type, since we know it's only being stored once,
9173 but that can cause problems if we are taking the address of this
9174 COMPONENT_REF because the MEM of any reference via that address
9175 will have flags corresponding to the type, which will not
9176 necessarily be constant. */
9177 if (mode == BLKmode)
9178 {
9179 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9180 rtx new_rtx;
9181
9182 /* If the reference doesn't use the alias set of its type,
9183 we cannot create the temporary using that type. */
9184 if (component_uses_parent_alias_set (exp))
9185 {
9186 new_rtx = assign_stack_local (ext_mode, size, 0);
9187 set_mem_alias_set (new_rtx, get_alias_set (exp));
9188 }
9189 else
9190 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9191
9192 emit_move_insn (new_rtx, op0);
9193 op0 = copy_rtx (new_rtx);
9194 PUT_MODE (op0, BLKmode);
9195 set_mem_attributes (op0, exp, 1);
9196 }
9197
9198 return op0;
9199 }
9200
9201 /* If the result is BLKmode, use that to access the object
9202 now as well. */
9203 if (mode == BLKmode)
9204 mode1 = BLKmode;
9205
9206 /* Get a reference to just this component. */
9207 if (modifier == EXPAND_CONST_ADDRESS
9208 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9209 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9210 else
9211 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9212
9213 if (op0 == orig_op0)
9214 op0 = copy_rtx (op0);
9215
9216 set_mem_attributes (op0, exp, 0);
9217 if (REG_P (XEXP (op0, 0)))
9218 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9219
9220 MEM_VOLATILE_P (op0) |= volatilep;
9221 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9222 || modifier == EXPAND_CONST_ADDRESS
9223 || modifier == EXPAND_INITIALIZER)
9224 return op0;
9225 else if (target == 0)
9226 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9227
9228 convert_move (target, op0, unsignedp);
9229 return target;
9230 }
9231
9232 case OBJ_TYPE_REF:
9233 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9234
9235 case CALL_EXPR:
9236 /* All valid uses of __builtin_va_arg_pack () are removed during
9237 inlining. */
9238 if (CALL_EXPR_VA_ARG_PACK (exp))
9239 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9240 {
9241 tree fndecl = get_callee_fndecl (exp), attr;
9242
9243 if (fndecl
9244 && (attr = lookup_attribute ("error",
9245 DECL_ATTRIBUTES (fndecl))) != NULL)
9246 error ("%Kcall to %qs declared with attribute error: %s",
9247 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9248 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9249 if (fndecl
9250 && (attr = lookup_attribute ("warning",
9251 DECL_ATTRIBUTES (fndecl))) != NULL)
9252 warning_at (tree_nonartificial_location (exp),
9253 0, "%Kcall to %qs declared with attribute warning: %s",
9254 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9255 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9256
9257 /* Check for a built-in function. */
9258 if (fndecl && DECL_BUILT_IN (fndecl))
9259 {
9260 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9261 return expand_builtin (exp, target, subtarget, tmode, ignore);
9262 }
9263 }
9264 return expand_call (exp, target, ignore);
9265
9266 case VIEW_CONVERT_EXPR:
9267 op0 = NULL_RTX;
9268
9269 /* If we are converting to BLKmode, try to avoid an intermediate
9270 temporary by fetching an inner memory reference. */
9271 if (mode == BLKmode
9272 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9273 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9274 && handled_component_p (treeop0))
9275 {
9276 enum machine_mode mode1;
9277 HOST_WIDE_INT bitsize, bitpos;
9278 tree offset;
9279 int unsignedp;
9280 int volatilep = 0;
9281 tree tem
9282 = get_inner_reference (treeop0, &bitsize, &bitpos,
9283 &offset, &mode1, &unsignedp, &volatilep,
9284 true);
9285 rtx orig_op0;
9286
9287 /* ??? We should work harder and deal with non-zero offsets. */
9288 if (!offset
9289 && (bitpos % BITS_PER_UNIT) == 0
9290 && bitsize >= 0
9291 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9292 {
9293 /* See the normal_inner_ref case for the rationale. */
9294 orig_op0
9295 = expand_expr (tem,
9296 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9297 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9298 != INTEGER_CST)
9299 && modifier != EXPAND_STACK_PARM
9300 ? target : NULL_RTX),
9301 VOIDmode,
9302 (modifier == EXPAND_INITIALIZER
9303 || modifier == EXPAND_CONST_ADDRESS
9304 || modifier == EXPAND_STACK_PARM)
9305 ? modifier : EXPAND_NORMAL);
9306
9307 if (MEM_P (orig_op0))
9308 {
9309 op0 = orig_op0;
9310
9311 /* Get a reference to just this component. */
9312 if (modifier == EXPAND_CONST_ADDRESS
9313 || modifier == EXPAND_SUM
9314 || modifier == EXPAND_INITIALIZER)
9315 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9316 else
9317 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9318
9319 if (op0 == orig_op0)
9320 op0 = copy_rtx (op0);
9321
9322 set_mem_attributes (op0, treeop0, 0);
9323 if (REG_P (XEXP (op0, 0)))
9324 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9325
9326 MEM_VOLATILE_P (op0) |= volatilep;
9327 }
9328 }
9329 }
9330
9331 if (!op0)
9332 op0 = expand_expr (treeop0,
9333 NULL_RTX, VOIDmode, modifier);
9334
9335 /* If the input and output modes are both the same, we are done. */
9336 if (mode == GET_MODE (op0))
9337 ;
9338 /* If neither mode is BLKmode, and both modes are the same size
9339 then we can use gen_lowpart. */
9340 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9341 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9342 && !COMPLEX_MODE_P (GET_MODE (op0)))
9343 {
9344 if (GET_CODE (op0) == SUBREG)
9345 op0 = force_reg (GET_MODE (op0), op0);
9346 op0 = gen_lowpart (mode, op0);
9347 }
9348 /* If both types are integral, convert from one mode to the other. */
9349 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9350 op0 = convert_modes (mode, GET_MODE (op0), op0,
9351 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9352 /* As a last resort, spill op0 to memory, and reload it in a
9353 different mode. */
9354 else if (!MEM_P (op0))
9355 {
9356 /* If the operand is not a MEM, force it into memory. Since we
9357 are going to be changing the mode of the MEM, don't call
9358 force_const_mem for constants because we don't allow pool
9359 constants to change mode. */
9360 tree inner_type = TREE_TYPE (treeop0);
9361
9362 gcc_assert (!TREE_ADDRESSABLE (exp));
9363
9364 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9365 target
9366 = assign_stack_temp_for_type
9367 (TYPE_MODE (inner_type),
9368 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9369
9370 emit_move_insn (target, op0);
9371 op0 = target;
9372 }
9373
9374 /* At this point, OP0 is in the correct mode. If the output type is
9375 such that the operand is known to be aligned, indicate that it is.
9376 Otherwise, we need only be concerned about alignment for non-BLKmode
9377 results. */
9378 if (MEM_P (op0))
9379 {
9380 op0 = copy_rtx (op0);
9381
9382 if (TYPE_ALIGN_OK (type))
9383 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9384 else if (STRICT_ALIGNMENT
9385 && mode != BLKmode
9386 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9387 {
9388 tree inner_type = TREE_TYPE (treeop0);
9389 HOST_WIDE_INT temp_size
9390 = MAX (int_size_in_bytes (inner_type),
9391 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9392 rtx new_rtx
9393 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9394 rtx new_with_op0_mode
9395 = adjust_address (new_rtx, GET_MODE (op0), 0);
9396
9397 gcc_assert (!TREE_ADDRESSABLE (exp));
9398
9399 if (GET_MODE (op0) == BLKmode)
9400 emit_block_move (new_with_op0_mode, op0,
9401 GEN_INT (GET_MODE_SIZE (mode)),
9402 (modifier == EXPAND_STACK_PARM
9403 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9404 else
9405 emit_move_insn (new_with_op0_mode, op0);
9406
9407 op0 = new_rtx;
9408 }
9409
9410 op0 = adjust_address (op0, mode, 0);
9411 }
9412
9413 return op0;
9414
9415 /* Use a compare and a jump for BLKmode comparisons, or for function
9416 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9417
9418 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9419 are occassionally created by folding during expansion. */
9420 case TRUTH_ANDIF_EXPR:
9421 case TRUTH_ORIF_EXPR:
9422 if (! ignore
9423 && (target == 0
9424 || modifier == EXPAND_STACK_PARM
9425 || ! safe_from_p (target, treeop0, 1)
9426 || ! safe_from_p (target, treeop1, 1)
9427 /* Make sure we don't have a hard reg (such as function's return
9428 value) live across basic blocks, if not optimizing. */
9429 || (!optimize && REG_P (target)
9430 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9431 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9432
9433 if (target)
9434 emit_move_insn (target, const0_rtx);
9435
9436 op1 = gen_label_rtx ();
9437 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9438
9439 if (target)
9440 emit_move_insn (target, const1_rtx);
9441
9442 emit_label (op1);
9443 return ignore ? const0_rtx : target;
9444
9445 case STATEMENT_LIST:
9446 {
9447 tree_stmt_iterator iter;
9448
9449 gcc_assert (ignore);
9450
9451 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9452 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9453 }
9454 return const0_rtx;
9455
9456 case COND_EXPR:
9457 /* A COND_EXPR with its type being VOID_TYPE represents a
9458 conditional jump and is handled in
9459 expand_gimple_cond_expr. */
9460 gcc_assert (!VOID_TYPE_P (type));
9461
9462 /* Note that COND_EXPRs whose type is a structure or union
9463 are required to be constructed to contain assignments of
9464 a temporary variable, so that we can evaluate them here
9465 for side effect only. If type is void, we must do likewise. */
9466
9467 gcc_assert (!TREE_ADDRESSABLE (type)
9468 && !ignore
9469 && TREE_TYPE (treeop1) != void_type_node
9470 && TREE_TYPE (treeop2) != void_type_node);
9471
9472 /* If we are not to produce a result, we have no target. Otherwise,
9473 if a target was specified use it; it will not be used as an
9474 intermediate target unless it is safe. If no target, use a
9475 temporary. */
9476
9477 if (modifier != EXPAND_STACK_PARM
9478 && original_target
9479 && safe_from_p (original_target, treeop0, 1)
9480 && GET_MODE (original_target) == mode
9481 #ifdef HAVE_conditional_move
9482 && (! can_conditionally_move_p (mode)
9483 || REG_P (original_target))
9484 #endif
9485 && !MEM_P (original_target))
9486 temp = original_target;
9487 else
9488 temp = assign_temp (type, 0, 0, 1);
9489
9490 do_pending_stack_adjust ();
9491 NO_DEFER_POP;
9492 op0 = gen_label_rtx ();
9493 op1 = gen_label_rtx ();
9494 jumpifnot (treeop0, op0, -1);
9495 store_expr (treeop1, temp,
9496 modifier == EXPAND_STACK_PARM,
9497 false);
9498
9499 emit_jump_insn (gen_jump (op1));
9500 emit_barrier ();
9501 emit_label (op0);
9502 store_expr (treeop2, temp,
9503 modifier == EXPAND_STACK_PARM,
9504 false);
9505
9506 emit_label (op1);
9507 OK_DEFER_POP;
9508 return temp;
9509
9510 case VEC_COND_EXPR:
9511 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9512 return target;
9513
9514 case MODIFY_EXPR:
9515 {
9516 tree lhs = treeop0;
9517 tree rhs = treeop1;
9518 gcc_assert (ignore);
9519
9520 /* Check for |= or &= of a bitfield of size one into another bitfield
9521 of size 1. In this case, (unless we need the result of the
9522 assignment) we can do this more efficiently with a
9523 test followed by an assignment, if necessary.
9524
9525 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9526 things change so we do, this code should be enhanced to
9527 support it. */
9528 if (TREE_CODE (lhs) == COMPONENT_REF
9529 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9530 || TREE_CODE (rhs) == BIT_AND_EXPR)
9531 && TREE_OPERAND (rhs, 0) == lhs
9532 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9533 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9534 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9535 {
9536 rtx label = gen_label_rtx ();
9537 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9538 do_jump (TREE_OPERAND (rhs, 1),
9539 value ? label : 0,
9540 value ? 0 : label, -1);
9541 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9542 MOVE_NONTEMPORAL (exp));
9543 do_pending_stack_adjust ();
9544 emit_label (label);
9545 return const0_rtx;
9546 }
9547
9548 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9549 return const0_rtx;
9550 }
9551
9552 case ADDR_EXPR:
9553 return expand_expr_addr_expr (exp, target, tmode, modifier);
9554
9555 case REALPART_EXPR:
9556 op0 = expand_normal (treeop0);
9557 return read_complex_part (op0, false);
9558
9559 case IMAGPART_EXPR:
9560 op0 = expand_normal (treeop0);
9561 return read_complex_part (op0, true);
9562
9563 case RETURN_EXPR:
9564 case LABEL_EXPR:
9565 case GOTO_EXPR:
9566 case SWITCH_EXPR:
9567 case ASM_EXPR:
9568 /* Expanded in cfgexpand.c. */
9569 gcc_unreachable ();
9570
9571 case TRY_CATCH_EXPR:
9572 case CATCH_EXPR:
9573 case EH_FILTER_EXPR:
9574 case TRY_FINALLY_EXPR:
9575 /* Lowered by tree-eh.c. */
9576 gcc_unreachable ();
9577
9578 case WITH_CLEANUP_EXPR:
9579 case CLEANUP_POINT_EXPR:
9580 case TARGET_EXPR:
9581 case CASE_LABEL_EXPR:
9582 case VA_ARG_EXPR:
9583 case BIND_EXPR:
9584 case INIT_EXPR:
9585 case CONJ_EXPR:
9586 case COMPOUND_EXPR:
9587 case PREINCREMENT_EXPR:
9588 case PREDECREMENT_EXPR:
9589 case POSTINCREMENT_EXPR:
9590 case POSTDECREMENT_EXPR:
9591 case LOOP_EXPR:
9592 case EXIT_EXPR:
9593 /* Lowered by gimplify.c. */
9594 gcc_unreachable ();
9595
9596 case FDESC_EXPR:
9597 /* Function descriptors are not valid except for as
9598 initialization constants, and should not be expanded. */
9599 gcc_unreachable ();
9600
9601 case WITH_SIZE_EXPR:
9602 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9603 have pulled out the size to use in whatever context it needed. */
9604 return expand_expr_real (treeop0, original_target, tmode,
9605 modifier, alt_rtl);
9606
9607 case REALIGN_LOAD_EXPR:
9608 {
9609 tree oprnd0 = treeop0;
9610 tree oprnd1 = treeop1;
9611 tree oprnd2 = treeop2;
9612 rtx op2;
9613
9614 this_optab = optab_for_tree_code (code, type, optab_default);
9615 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9616 op2 = expand_normal (oprnd2);
9617 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9618 target, unsignedp);
9619 gcc_assert (temp);
9620 return temp;
9621 }
9622
9623 case DOT_PROD_EXPR:
9624 {
9625 tree oprnd0 = treeop0;
9626 tree oprnd1 = treeop1;
9627 tree oprnd2 = treeop2;
9628 rtx op2;
9629
9630 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9631 op2 = expand_normal (oprnd2);
9632 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9633 target, unsignedp);
9634 return target;
9635 }
9636
9637 case COMPOUND_LITERAL_EXPR:
9638 {
9639 /* Initialize the anonymous variable declared in the compound
9640 literal, then return the variable. */
9641 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9642
9643 /* Create RTL for this variable. */
9644 if (!DECL_RTL_SET_P (decl))
9645 {
9646 if (DECL_HARD_REGISTER (decl))
9647 /* The user specified an assembler name for this variable.
9648 Set that up now. */
9649 rest_of_decl_compilation (decl, 0, 0);
9650 else
9651 expand_decl (decl);
9652 }
9653
9654 return expand_expr_real (decl, original_target, tmode,
9655 modifier, alt_rtl);
9656 }
9657
9658 default:
9659 return expand_expr_real_2 (&ops, target, tmode, modifier);
9660 }
9661 }
9662 \f
9663 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9664 signedness of TYPE), possibly returning the result in TARGET. */
9665 static rtx
9666 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9667 {
9668 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9669 if (target && GET_MODE (target) != GET_MODE (exp))
9670 target = 0;
9671 /* For constant values, reduce using build_int_cst_type. */
9672 if (CONST_INT_P (exp))
9673 {
9674 HOST_WIDE_INT value = INTVAL (exp);
9675 tree t = build_int_cst_type (type, value);
9676 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9677 }
9678 else if (TYPE_UNSIGNED (type))
9679 {
9680 rtx mask = immed_double_int_const (double_int_mask (prec),
9681 GET_MODE (exp));
9682 return expand_and (GET_MODE (exp), exp, mask, target);
9683 }
9684 else
9685 {
9686 tree count = build_int_cst (NULL_TREE,
9687 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9688 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9689 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9690 }
9691 }
9692 \f
9693 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9694 when applied to the address of EXP produces an address known to be
9695 aligned more than BIGGEST_ALIGNMENT. */
9696
9697 static int
9698 is_aligning_offset (const_tree offset, const_tree exp)
9699 {
9700 /* Strip off any conversions. */
9701 while (CONVERT_EXPR_P (offset))
9702 offset = TREE_OPERAND (offset, 0);
9703
9704 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9705 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9706 if (TREE_CODE (offset) != BIT_AND_EXPR
9707 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9708 || compare_tree_int (TREE_OPERAND (offset, 1),
9709 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9710 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9711 return 0;
9712
9713 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9714 It must be NEGATE_EXPR. Then strip any more conversions. */
9715 offset = TREE_OPERAND (offset, 0);
9716 while (CONVERT_EXPR_P (offset))
9717 offset = TREE_OPERAND (offset, 0);
9718
9719 if (TREE_CODE (offset) != NEGATE_EXPR)
9720 return 0;
9721
9722 offset = TREE_OPERAND (offset, 0);
9723 while (CONVERT_EXPR_P (offset))
9724 offset = TREE_OPERAND (offset, 0);
9725
9726 /* This must now be the address of EXP. */
9727 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9728 }
9729 \f
9730 /* Return the tree node if an ARG corresponds to a string constant or zero
9731 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9732 in bytes within the string that ARG is accessing. The type of the
9733 offset will be `sizetype'. */
9734
9735 tree
9736 string_constant (tree arg, tree *ptr_offset)
9737 {
9738 tree array, offset, lower_bound;
9739 STRIP_NOPS (arg);
9740
9741 if (TREE_CODE (arg) == ADDR_EXPR)
9742 {
9743 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9744 {
9745 *ptr_offset = size_zero_node;
9746 return TREE_OPERAND (arg, 0);
9747 }
9748 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9749 {
9750 array = TREE_OPERAND (arg, 0);
9751 offset = size_zero_node;
9752 }
9753 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9754 {
9755 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9756 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9757 if (TREE_CODE (array) != STRING_CST
9758 && TREE_CODE (array) != VAR_DECL)
9759 return 0;
9760
9761 /* Check if the array has a nonzero lower bound. */
9762 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9763 if (!integer_zerop (lower_bound))
9764 {
9765 /* If the offset and base aren't both constants, return 0. */
9766 if (TREE_CODE (lower_bound) != INTEGER_CST)
9767 return 0;
9768 if (TREE_CODE (offset) != INTEGER_CST)
9769 return 0;
9770 /* Adjust offset by the lower bound. */
9771 offset = size_diffop (fold_convert (sizetype, offset),
9772 fold_convert (sizetype, lower_bound));
9773 }
9774 }
9775 else
9776 return 0;
9777 }
9778 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9779 {
9780 tree arg0 = TREE_OPERAND (arg, 0);
9781 tree arg1 = TREE_OPERAND (arg, 1);
9782
9783 STRIP_NOPS (arg0);
9784 STRIP_NOPS (arg1);
9785
9786 if (TREE_CODE (arg0) == ADDR_EXPR
9787 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9788 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9789 {
9790 array = TREE_OPERAND (arg0, 0);
9791 offset = arg1;
9792 }
9793 else if (TREE_CODE (arg1) == ADDR_EXPR
9794 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9795 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9796 {
9797 array = TREE_OPERAND (arg1, 0);
9798 offset = arg0;
9799 }
9800 else
9801 return 0;
9802 }
9803 else
9804 return 0;
9805
9806 if (TREE_CODE (array) == STRING_CST)
9807 {
9808 *ptr_offset = fold_convert (sizetype, offset);
9809 return array;
9810 }
9811 else if (TREE_CODE (array) == VAR_DECL)
9812 {
9813 int length;
9814
9815 /* Variables initialized to string literals can be handled too. */
9816 if (DECL_INITIAL (array) == NULL_TREE
9817 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9818 return 0;
9819
9820 /* If they are read-only, non-volatile and bind locally. */
9821 if (! TREE_READONLY (array)
9822 || TREE_SIDE_EFFECTS (array)
9823 || ! targetm.binds_local_p (array))
9824 return 0;
9825
9826 /* Avoid const char foo[4] = "abcde"; */
9827 if (DECL_SIZE_UNIT (array) == NULL_TREE
9828 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9829 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9830 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9831 return 0;
9832
9833 /* If variable is bigger than the string literal, OFFSET must be constant
9834 and inside of the bounds of the string literal. */
9835 offset = fold_convert (sizetype, offset);
9836 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9837 && (! host_integerp (offset, 1)
9838 || compare_tree_int (offset, length) >= 0))
9839 return 0;
9840
9841 *ptr_offset = offset;
9842 return DECL_INITIAL (array);
9843 }
9844
9845 return 0;
9846 }
9847 \f
9848 /* Generate code to calculate OPS, and exploded expression
9849 using a store-flag instruction and return an rtx for the result.
9850 OPS reflects a comparison.
9851
9852 If TARGET is nonzero, store the result there if convenient.
9853
9854 Return zero if there is no suitable set-flag instruction
9855 available on this machine.
9856
9857 Once expand_expr has been called on the arguments of the comparison,
9858 we are committed to doing the store flag, since it is not safe to
9859 re-evaluate the expression. We emit the store-flag insn by calling
9860 emit_store_flag, but only expand the arguments if we have a reason
9861 to believe that emit_store_flag will be successful. If we think that
9862 it will, but it isn't, we have to simulate the store-flag with a
9863 set/jump/set sequence. */
9864
9865 static rtx
9866 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9867 {
9868 enum rtx_code code;
9869 tree arg0, arg1, type;
9870 tree tem;
9871 enum machine_mode operand_mode;
9872 int unsignedp;
9873 rtx op0, op1;
9874 rtx subtarget = target;
9875 location_t loc = ops->location;
9876
9877 arg0 = ops->op0;
9878 arg1 = ops->op1;
9879
9880 /* Don't crash if the comparison was erroneous. */
9881 if (arg0 == error_mark_node || arg1 == error_mark_node)
9882 return const0_rtx;
9883
9884 type = TREE_TYPE (arg0);
9885 operand_mode = TYPE_MODE (type);
9886 unsignedp = TYPE_UNSIGNED (type);
9887
9888 /* We won't bother with BLKmode store-flag operations because it would mean
9889 passing a lot of information to emit_store_flag. */
9890 if (operand_mode == BLKmode)
9891 return 0;
9892
9893 /* We won't bother with store-flag operations involving function pointers
9894 when function pointers must be canonicalized before comparisons. */
9895 #ifdef HAVE_canonicalize_funcptr_for_compare
9896 if (HAVE_canonicalize_funcptr_for_compare
9897 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9898 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9899 == FUNCTION_TYPE))
9900 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9901 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9902 == FUNCTION_TYPE))))
9903 return 0;
9904 #endif
9905
9906 STRIP_NOPS (arg0);
9907 STRIP_NOPS (arg1);
9908
9909 /* Get the rtx comparison code to use. We know that EXP is a comparison
9910 operation of some type. Some comparisons against 1 and -1 can be
9911 converted to comparisons with zero. Do so here so that the tests
9912 below will be aware that we have a comparison with zero. These
9913 tests will not catch constants in the first operand, but constants
9914 are rarely passed as the first operand. */
9915
9916 switch (ops->code)
9917 {
9918 case EQ_EXPR:
9919 code = EQ;
9920 break;
9921 case NE_EXPR:
9922 code = NE;
9923 break;
9924 case LT_EXPR:
9925 if (integer_onep (arg1))
9926 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9927 else
9928 code = unsignedp ? LTU : LT;
9929 break;
9930 case LE_EXPR:
9931 if (! unsignedp && integer_all_onesp (arg1))
9932 arg1 = integer_zero_node, code = LT;
9933 else
9934 code = unsignedp ? LEU : LE;
9935 break;
9936 case GT_EXPR:
9937 if (! unsignedp && integer_all_onesp (arg1))
9938 arg1 = integer_zero_node, code = GE;
9939 else
9940 code = unsignedp ? GTU : GT;
9941 break;
9942 case GE_EXPR:
9943 if (integer_onep (arg1))
9944 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9945 else
9946 code = unsignedp ? GEU : GE;
9947 break;
9948
9949 case UNORDERED_EXPR:
9950 code = UNORDERED;
9951 break;
9952 case ORDERED_EXPR:
9953 code = ORDERED;
9954 break;
9955 case UNLT_EXPR:
9956 code = UNLT;
9957 break;
9958 case UNLE_EXPR:
9959 code = UNLE;
9960 break;
9961 case UNGT_EXPR:
9962 code = UNGT;
9963 break;
9964 case UNGE_EXPR:
9965 code = UNGE;
9966 break;
9967 case UNEQ_EXPR:
9968 code = UNEQ;
9969 break;
9970 case LTGT_EXPR:
9971 code = LTGT;
9972 break;
9973
9974 default:
9975 gcc_unreachable ();
9976 }
9977
9978 /* Put a constant second. */
9979 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9980 || TREE_CODE (arg0) == FIXED_CST)
9981 {
9982 tem = arg0; arg0 = arg1; arg1 = tem;
9983 code = swap_condition (code);
9984 }
9985
9986 /* If this is an equality or inequality test of a single bit, we can
9987 do this by shifting the bit being tested to the low-order bit and
9988 masking the result with the constant 1. If the condition was EQ,
9989 we xor it with 1. This does not require an scc insn and is faster
9990 than an scc insn even if we have it.
9991
9992 The code to make this transformation was moved into fold_single_bit_test,
9993 so we just call into the folder and expand its result. */
9994
9995 if ((code == NE || code == EQ)
9996 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9997 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9998 {
9999 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10000 return expand_expr (fold_single_bit_test (loc,
10001 code == NE ? NE_EXPR : EQ_EXPR,
10002 arg0, arg1, type),
10003 target, VOIDmode, EXPAND_NORMAL);
10004 }
10005
10006 if (! get_subtarget (target)
10007 || GET_MODE (subtarget) != operand_mode)
10008 subtarget = 0;
10009
10010 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10011
10012 if (target == 0)
10013 target = gen_reg_rtx (mode);
10014
10015 /* Try a cstore if possible. */
10016 return emit_store_flag_force (target, code, op0, op1,
10017 operand_mode, unsignedp, 1);
10018 }
10019 \f
10020
10021 /* Stubs in case we haven't got a casesi insn. */
10022 #ifndef HAVE_casesi
10023 # define HAVE_casesi 0
10024 # define gen_casesi(a, b, c, d, e) (0)
10025 # define CODE_FOR_casesi CODE_FOR_nothing
10026 #endif
10027
10028 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10029 0 otherwise (i.e. if there is no casesi instruction). */
10030 int
10031 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10032 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10033 rtx fallback_label ATTRIBUTE_UNUSED)
10034 {
10035 enum machine_mode index_mode = SImode;
10036 int index_bits = GET_MODE_BITSIZE (index_mode);
10037 rtx op1, op2, index;
10038 enum machine_mode op_mode;
10039
10040 if (! HAVE_casesi)
10041 return 0;
10042
10043 /* Convert the index to SImode. */
10044 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10045 {
10046 enum machine_mode omode = TYPE_MODE (index_type);
10047 rtx rangertx = expand_normal (range);
10048
10049 /* We must handle the endpoints in the original mode. */
10050 index_expr = build2 (MINUS_EXPR, index_type,
10051 index_expr, minval);
10052 minval = integer_zero_node;
10053 index = expand_normal (index_expr);
10054 if (default_label)
10055 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10056 omode, 1, default_label);
10057 /* Now we can safely truncate. */
10058 index = convert_to_mode (index_mode, index, 0);
10059 }
10060 else
10061 {
10062 if (TYPE_MODE (index_type) != index_mode)
10063 {
10064 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10065 index_expr = fold_convert (index_type, index_expr);
10066 }
10067
10068 index = expand_normal (index_expr);
10069 }
10070
10071 do_pending_stack_adjust ();
10072
10073 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10074 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10075 (index, op_mode))
10076 index = copy_to_mode_reg (op_mode, index);
10077
10078 op1 = expand_normal (minval);
10079
10080 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10081 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10082 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10083 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10084 (op1, op_mode))
10085 op1 = copy_to_mode_reg (op_mode, op1);
10086
10087 op2 = expand_normal (range);
10088
10089 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10090 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10091 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10092 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10093 (op2, op_mode))
10094 op2 = copy_to_mode_reg (op_mode, op2);
10095
10096 emit_jump_insn (gen_casesi (index, op1, op2,
10097 table_label, !default_label
10098 ? fallback_label : default_label));
10099 return 1;
10100 }
10101
10102 /* Attempt to generate a tablejump instruction; same concept. */
10103 #ifndef HAVE_tablejump
10104 #define HAVE_tablejump 0
10105 #define gen_tablejump(x, y) (0)
10106 #endif
10107
10108 /* Subroutine of the next function.
10109
10110 INDEX is the value being switched on, with the lowest value
10111 in the table already subtracted.
10112 MODE is its expected mode (needed if INDEX is constant).
10113 RANGE is the length of the jump table.
10114 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10115
10116 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10117 index value is out of range. */
10118
10119 static void
10120 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10121 rtx default_label)
10122 {
10123 rtx temp, vector;
10124
10125 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10126 cfun->cfg->max_jumptable_ents = INTVAL (range);
10127
10128 /* Do an unsigned comparison (in the proper mode) between the index
10129 expression and the value which represents the length of the range.
10130 Since we just finished subtracting the lower bound of the range
10131 from the index expression, this comparison allows us to simultaneously
10132 check that the original index expression value is both greater than
10133 or equal to the minimum value of the range and less than or equal to
10134 the maximum value of the range. */
10135
10136 if (default_label)
10137 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10138 default_label);
10139
10140 /* If index is in range, it must fit in Pmode.
10141 Convert to Pmode so we can index with it. */
10142 if (mode != Pmode)
10143 index = convert_to_mode (Pmode, index, 1);
10144
10145 /* Don't let a MEM slip through, because then INDEX that comes
10146 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10147 and break_out_memory_refs will go to work on it and mess it up. */
10148 #ifdef PIC_CASE_VECTOR_ADDRESS
10149 if (flag_pic && !REG_P (index))
10150 index = copy_to_mode_reg (Pmode, index);
10151 #endif
10152
10153 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10154 GET_MODE_SIZE, because this indicates how large insns are. The other
10155 uses should all be Pmode, because they are addresses. This code
10156 could fail if addresses and insns are not the same size. */
10157 index = gen_rtx_PLUS (Pmode,
10158 gen_rtx_MULT (Pmode, index,
10159 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10160 gen_rtx_LABEL_REF (Pmode, table_label));
10161 #ifdef PIC_CASE_VECTOR_ADDRESS
10162 if (flag_pic)
10163 index = PIC_CASE_VECTOR_ADDRESS (index);
10164 else
10165 #endif
10166 index = memory_address (CASE_VECTOR_MODE, index);
10167 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10168 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10169 convert_move (temp, vector, 0);
10170
10171 emit_jump_insn (gen_tablejump (temp, table_label));
10172
10173 /* If we are generating PIC code or if the table is PC-relative, the
10174 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10175 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10176 emit_barrier ();
10177 }
10178
10179 int
10180 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10181 rtx table_label, rtx default_label)
10182 {
10183 rtx index;
10184
10185 if (! HAVE_tablejump)
10186 return 0;
10187
10188 index_expr = fold_build2 (MINUS_EXPR, index_type,
10189 fold_convert (index_type, index_expr),
10190 fold_convert (index_type, minval));
10191 index = expand_normal (index_expr);
10192 do_pending_stack_adjust ();
10193
10194 do_tablejump (index, TYPE_MODE (index_type),
10195 convert_modes (TYPE_MODE (index_type),
10196 TYPE_MODE (TREE_TYPE (range)),
10197 expand_normal (range),
10198 TYPE_UNSIGNED (TREE_TYPE (range))),
10199 table_label, default_label);
10200 return 1;
10201 }
10202
10203 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10204 static rtx
10205 const_vector_from_tree (tree exp)
10206 {
10207 rtvec v;
10208 int units, i;
10209 tree link, elt;
10210 enum machine_mode inner, mode;
10211
10212 mode = TYPE_MODE (TREE_TYPE (exp));
10213
10214 if (initializer_zerop (exp))
10215 return CONST0_RTX (mode);
10216
10217 units = GET_MODE_NUNITS (mode);
10218 inner = GET_MODE_INNER (mode);
10219
10220 v = rtvec_alloc (units);
10221
10222 link = TREE_VECTOR_CST_ELTS (exp);
10223 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10224 {
10225 elt = TREE_VALUE (link);
10226
10227 if (TREE_CODE (elt) == REAL_CST)
10228 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10229 inner);
10230 else if (TREE_CODE (elt) == FIXED_CST)
10231 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10232 inner);
10233 else
10234 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10235 inner);
10236 }
10237
10238 /* Initialize remaining elements to 0. */
10239 for (; i < units; ++i)
10240 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10241
10242 return gen_rtx_CONST_VECTOR (mode, v);
10243 }
10244
10245
10246 /* Build a decl for a EH personality function named NAME. */
10247
10248 tree
10249 build_personality_function (const char *name)
10250 {
10251 tree decl, type;
10252
10253 type = build_function_type_list (integer_type_node, integer_type_node,
10254 long_long_unsigned_type_node,
10255 ptr_type_node, ptr_type_node, NULL_TREE);
10256 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10257 get_identifier (name), type);
10258 DECL_ARTIFICIAL (decl) = 1;
10259 DECL_EXTERNAL (decl) = 1;
10260 TREE_PUBLIC (decl) = 1;
10261
10262 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10263 are the flags assigned by targetm.encode_section_info. */
10264 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10265
10266 return decl;
10267 }
10268
10269 /* Extracts the personality function of DECL and returns the corresponding
10270 libfunc. */
10271
10272 rtx
10273 get_personality_function (tree decl)
10274 {
10275 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10276 enum eh_personality_kind pk;
10277
10278 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10279 if (pk == eh_personality_none)
10280 return NULL;
10281
10282 if (!personality
10283 && pk == eh_personality_any)
10284 personality = lang_hooks.eh_personality ();
10285
10286 if (pk == eh_personality_lang)
10287 gcc_assert (personality != NULL_TREE);
10288
10289 return XEXP (DECL_RTL (personality), 0);
10290 }
10291
10292 #include "gt-expr.h"