re PR debug/50299 (entryval: bigendian 32bit->64bit extension breaks address match)
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "common/common-target.h"
53 #include "timevar.h"
54 #include "df.h"
55 #include "diagnostic.h"
56 #include "ssaexpand.h"
57 #include "target-globals.h"
58 #include "params.h"
59
60 /* Decide whether a function's arguments should be processed
61 from first to last or from last to first.
62
63 They should if the stack and args grow in opposite directions, but
64 only if we have push insns. */
65
66 #ifdef PUSH_ROUNDING
67
68 #ifndef PUSH_ARGS_REVERSED
69 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
70 #define PUSH_ARGS_REVERSED /* If it's last to first. */
71 #endif
72 #endif
73
74 #endif
75
76 #ifndef STACK_PUSH_CODE
77 #ifdef STACK_GROWS_DOWNWARD
78 #define STACK_PUSH_CODE PRE_DEC
79 #else
80 #define STACK_PUSH_CODE PRE_INC
81 #endif
82 #endif
83
84
85 /* If this is nonzero, we do not bother generating VOLATILE
86 around volatile memory references, and we are willing to
87 output indirect addresses. If cse is to follow, we reject
88 indirect addresses so a useful potential cse is generated;
89 if it is used only once, instruction combination will produce
90 the same indirect address eventually. */
91 int cse_not_expected;
92
93 /* This structure is used by move_by_pieces to describe the move to
94 be performed. */
95 struct move_by_pieces_d
96 {
97 rtx to;
98 rtx to_addr;
99 int autinc_to;
100 int explicit_inc_to;
101 rtx from;
102 rtx from_addr;
103 int autinc_from;
104 int explicit_inc_from;
105 unsigned HOST_WIDE_INT len;
106 HOST_WIDE_INT offset;
107 int reverse;
108 };
109
110 /* This structure is used by store_by_pieces to describe the clear to
111 be performed. */
112
113 struct store_by_pieces_d
114 {
115 rtx to;
116 rtx to_addr;
117 int autinc_to;
118 int explicit_inc_to;
119 unsigned HOST_WIDE_INT len;
120 HOST_WIDE_INT offset;
121 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
122 void *constfundata;
123 int reverse;
124 };
125
126 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
127 unsigned int,
128 unsigned int);
129 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
130 struct move_by_pieces_d *);
131 static bool block_move_libcall_safe_for_call_parm (void);
132 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
133 static tree emit_block_move_libcall_fn (int);
134 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
135 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
136 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
137 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
138 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
139 struct store_by_pieces_d *);
140 static tree clear_storage_libcall_fn (int);
141 static rtx compress_float_constant (rtx, rtx);
142 static rtx get_subtarget (rtx);
143 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
144 HOST_WIDE_INT, enum machine_mode,
145 tree, tree, int, alias_set_type);
146 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
147 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
148 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
149 enum machine_mode,
150 tree, tree, alias_set_type, bool);
151
152 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
153
154 static int is_aligning_offset (const_tree, const_tree);
155 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
156 enum expand_modifier);
157 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
158 static rtx do_store_flag (sepops, rtx, enum machine_mode);
159 #ifdef PUSH_ROUNDING
160 static void emit_single_push_insn (enum machine_mode, rtx, tree);
161 #endif
162 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
163 static rtx const_vector_from_tree (tree);
164 static void write_complex_part (rtx, rtx, bool);
165
166 /* This macro is used to determine whether move_by_pieces should be called
167 to perform a structure copy. */
168 #ifndef MOVE_BY_PIECES_P
169 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
170 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
171 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
172 #endif
173
174 /* This macro is used to determine whether clear_by_pieces should be
175 called to clear storage. */
176 #ifndef CLEAR_BY_PIECES_P
177 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
179 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
180 #endif
181
182 /* This macro is used to determine whether store_by_pieces should be
183 called to "memset" storage with byte values other than zero. */
184 #ifndef SET_BY_PIECES_P
185 #define SET_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
188 #endif
189
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memcpy" storage when the source is a constant string. */
192 #ifndef STORE_BY_PIECES_P
193 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
196 #endif
197
198 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
199
200 #ifndef SLOW_UNALIGNED_ACCESS
201 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
202 #endif
203 \f
204 /* This is run to set up which modes can be used
205 directly in memory and to initialize the block move optab. It is run
206 at the beginning of compilation and when the target is reinitialized. */
207
208 void
209 init_expr_target (void)
210 {
211 rtx insn, pat;
212 enum machine_mode mode;
213 int num_clobbers;
214 rtx mem, mem1;
215 rtx reg;
216
217 /* Try indexing by frame ptr and try by stack ptr.
218 It is known that on the Convex the stack ptr isn't a valid index.
219 With luck, one or the other is valid on any machine. */
220 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
221 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
222
223 /* A scratch register we can modify in-place below to avoid
224 useless RTL allocations. */
225 reg = gen_rtx_REG (VOIDmode, -1);
226
227 insn = rtx_alloc (INSN);
228 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
229 PATTERN (insn) = pat;
230
231 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
232 mode = (enum machine_mode) ((int) mode + 1))
233 {
234 int regno;
235
236 direct_load[(int) mode] = direct_store[(int) mode] = 0;
237 PUT_MODE (mem, mode);
238 PUT_MODE (mem1, mode);
239 PUT_MODE (reg, mode);
240
241 /* See if there is some register that can be used in this mode and
242 directly loaded or stored from memory. */
243
244 if (mode != VOIDmode && mode != BLKmode)
245 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
246 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
247 regno++)
248 {
249 if (! HARD_REGNO_MODE_OK (regno, mode))
250 continue;
251
252 SET_REGNO (reg, regno);
253
254 SET_SRC (pat) = mem;
255 SET_DEST (pat) = reg;
256 if (recog (pat, insn, &num_clobbers) >= 0)
257 direct_load[(int) mode] = 1;
258
259 SET_SRC (pat) = mem1;
260 SET_DEST (pat) = reg;
261 if (recog (pat, insn, &num_clobbers) >= 0)
262 direct_load[(int) mode] = 1;
263
264 SET_SRC (pat) = reg;
265 SET_DEST (pat) = mem;
266 if (recog (pat, insn, &num_clobbers) >= 0)
267 direct_store[(int) mode] = 1;
268
269 SET_SRC (pat) = reg;
270 SET_DEST (pat) = mem1;
271 if (recog (pat, insn, &num_clobbers) >= 0)
272 direct_store[(int) mode] = 1;
273 }
274 }
275
276 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
277
278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
279 mode = GET_MODE_WIDER_MODE (mode))
280 {
281 enum machine_mode srcmode;
282 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
283 srcmode = GET_MODE_WIDER_MODE (srcmode))
284 {
285 enum insn_code ic;
286
287 ic = can_extend_p (mode, srcmode, 0);
288 if (ic == CODE_FOR_nothing)
289 continue;
290
291 PUT_MODE (mem, srcmode);
292
293 if (insn_operand_matches (ic, 1, mem))
294 float_extend_from_mem[mode][srcmode] = true;
295 }
296 }
297 }
298
299 /* This is run at the start of compiling a function. */
300
301 void
302 init_expr (void)
303 {
304 memset (&crtl->expr, 0, sizeof (crtl->expr));
305 }
306 \f
307 /* Copy data from FROM to TO, where the machine modes are not the same.
308 Both modes may be integer, or both may be floating, or both may be
309 fixed-point.
310 UNSIGNEDP should be nonzero if FROM is an unsigned type.
311 This causes zero-extension instead of sign-extension. */
312
313 void
314 convert_move (rtx to, rtx from, int unsignedp)
315 {
316 enum machine_mode to_mode = GET_MODE (to);
317 enum machine_mode from_mode = GET_MODE (from);
318 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
319 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
320 enum insn_code code;
321 rtx libcall;
322
323 /* rtx code for making an equivalent value. */
324 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
325 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
326
327
328 gcc_assert (to_real == from_real);
329 gcc_assert (to_mode != BLKmode);
330 gcc_assert (from_mode != BLKmode);
331
332 /* If the source and destination are already the same, then there's
333 nothing to do. */
334 if (to == from)
335 return;
336
337 /* If FROM is a SUBREG that indicates that we have already done at least
338 the required extension, strip it. We don't handle such SUBREGs as
339 TO here. */
340
341 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
342 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
343 >= GET_MODE_PRECISION (to_mode))
344 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
345 from = gen_lowpart (to_mode, from), from_mode = to_mode;
346
347 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
348
349 if (to_mode == from_mode
350 || (from_mode == VOIDmode && CONSTANT_P (from)))
351 {
352 emit_move_insn (to, from);
353 return;
354 }
355
356 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
357 {
358 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
359
360 if (VECTOR_MODE_P (to_mode))
361 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
362 else
363 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
364
365 emit_move_insn (to, from);
366 return;
367 }
368
369 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
370 {
371 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
372 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
373 return;
374 }
375
376 if (to_real)
377 {
378 rtx value, insns;
379 convert_optab tab;
380
381 gcc_assert ((GET_MODE_PRECISION (from_mode)
382 != GET_MODE_PRECISION (to_mode))
383 || (DECIMAL_FLOAT_MODE_P (from_mode)
384 != DECIMAL_FLOAT_MODE_P (to_mode)));
385
386 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
387 /* Conversion between decimal float and binary float, same size. */
388 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
389 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
390 tab = sext_optab;
391 else
392 tab = trunc_optab;
393
394 /* Try converting directly if the insn is supported. */
395
396 code = convert_optab_handler (tab, to_mode, from_mode);
397 if (code != CODE_FOR_nothing)
398 {
399 emit_unop_insn (code, to, from,
400 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
401 return;
402 }
403
404 /* Otherwise use a libcall. */
405 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
406
407 /* Is this conversion implemented yet? */
408 gcc_assert (libcall);
409
410 start_sequence ();
411 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
412 1, from, from_mode);
413 insns = get_insns ();
414 end_sequence ();
415 emit_libcall_block (insns, to, value,
416 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
417 from)
418 : gen_rtx_FLOAT_EXTEND (to_mode, from));
419 return;
420 }
421
422 /* Handle pointer conversion. */ /* SPEE 900220. */
423 /* Targets are expected to provide conversion insns between PxImode and
424 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
425 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
426 {
427 enum machine_mode full_mode
428 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
429
430 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
431 != CODE_FOR_nothing);
432
433 if (full_mode != from_mode)
434 from = convert_to_mode (full_mode, from, unsignedp);
435 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
436 to, from, UNKNOWN);
437 return;
438 }
439 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
440 {
441 rtx new_from;
442 enum machine_mode full_mode
443 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
444
445 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
446 != CODE_FOR_nothing);
447
448 if (to_mode == full_mode)
449 {
450 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
451 from_mode),
452 to, from, UNKNOWN);
453 return;
454 }
455
456 new_from = gen_reg_rtx (full_mode);
457 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
458 new_from, from, UNKNOWN);
459
460 /* else proceed to integer conversions below. */
461 from_mode = full_mode;
462 from = new_from;
463 }
464
465 /* Make sure both are fixed-point modes or both are not. */
466 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
467 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
468 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
469 {
470 /* If we widen from_mode to to_mode and they are in the same class,
471 we won't saturate the result.
472 Otherwise, always saturate the result to play safe. */
473 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
474 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
475 expand_fixed_convert (to, from, 0, 0);
476 else
477 expand_fixed_convert (to, from, 0, 1);
478 return;
479 }
480
481 /* Now both modes are integers. */
482
483 /* Handle expanding beyond a word. */
484 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
485 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
486 {
487 rtx insns;
488 rtx lowpart;
489 rtx fill_value;
490 rtx lowfrom;
491 int i;
492 enum machine_mode lowpart_mode;
493 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
494
495 /* Try converting directly if the insn is supported. */
496 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
497 != CODE_FOR_nothing)
498 {
499 /* If FROM is a SUBREG, put it into a register. Do this
500 so that we always generate the same set of insns for
501 better cse'ing; if an intermediate assignment occurred,
502 we won't be doing the operation directly on the SUBREG. */
503 if (optimize > 0 && GET_CODE (from) == SUBREG)
504 from = force_reg (from_mode, from);
505 emit_unop_insn (code, to, from, equiv_code);
506 return;
507 }
508 /* Next, try converting via full word. */
509 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
510 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
511 != CODE_FOR_nothing))
512 {
513 rtx word_to = gen_reg_rtx (word_mode);
514 if (REG_P (to))
515 {
516 if (reg_overlap_mentioned_p (to, from))
517 from = force_reg (from_mode, from);
518 emit_clobber (to);
519 }
520 convert_move (word_to, from, unsignedp);
521 emit_unop_insn (code, to, word_to, equiv_code);
522 return;
523 }
524
525 /* No special multiword conversion insn; do it by hand. */
526 start_sequence ();
527
528 /* Since we will turn this into a no conflict block, we must ensure
529 that the source does not overlap the target. */
530
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533
534 /* Get a copy of FROM widened to a word, if necessary. */
535 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
536 lowpart_mode = word_mode;
537 else
538 lowpart_mode = from_mode;
539
540 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
541
542 lowpart = gen_lowpart (lowpart_mode, to);
543 emit_move_insn (lowpart, lowfrom);
544
545 /* Compute the value to put in each remaining word. */
546 if (unsignedp)
547 fill_value = const0_rtx;
548 else
549 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
550 LT, lowfrom, const0_rtx,
551 VOIDmode, 0, -1);
552
553 /* Fill the remaining words. */
554 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
555 {
556 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
557 rtx subword = operand_subword (to, index, 1, to_mode);
558
559 gcc_assert (subword);
560
561 if (fill_value != subword)
562 emit_move_insn (subword, fill_value);
563 }
564
565 insns = get_insns ();
566 end_sequence ();
567
568 emit_insn (insns);
569 return;
570 }
571
572 /* Truncating multi-word to a word or less. */
573 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
574 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
575 {
576 if (!((MEM_P (from)
577 && ! MEM_VOLATILE_P (from)
578 && direct_load[(int) to_mode]
579 && ! mode_dependent_address_p (XEXP (from, 0)))
580 || REG_P (from)
581 || GET_CODE (from) == SUBREG))
582 from = force_reg (from_mode, from);
583 convert_move (to, gen_lowpart (word_mode, from), 0);
584 return;
585 }
586
587 /* Now follow all the conversions between integers
588 no more than a word long. */
589
590 /* For truncation, usually we can just refer to FROM in a narrower mode. */
591 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
592 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
593 {
594 if (!((MEM_P (from)
595 && ! MEM_VOLATILE_P (from)
596 && direct_load[(int) to_mode]
597 && ! mode_dependent_address_p (XEXP (from, 0)))
598 || REG_P (from)
599 || GET_CODE (from) == SUBREG))
600 from = force_reg (from_mode, from);
601 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
602 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
603 from = copy_to_reg (from);
604 emit_move_insn (to, gen_lowpart (to_mode, from));
605 return;
606 }
607
608 /* Handle extension. */
609 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
610 {
611 /* Convert directly if that works. */
612 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
613 != CODE_FOR_nothing)
614 {
615 emit_unop_insn (code, to, from, equiv_code);
616 return;
617 }
618 else
619 {
620 enum machine_mode intermediate;
621 rtx tmp;
622 int shift_amount;
623
624 /* Search for a mode to convert via. */
625 for (intermediate = from_mode; intermediate != VOIDmode;
626 intermediate = GET_MODE_WIDER_MODE (intermediate))
627 if (((can_extend_p (to_mode, intermediate, unsignedp)
628 != CODE_FOR_nothing)
629 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
630 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
631 && (can_extend_p (intermediate, from_mode, unsignedp)
632 != CODE_FOR_nothing))
633 {
634 convert_move (to, convert_to_mode (intermediate, from,
635 unsignedp), unsignedp);
636 return;
637 }
638
639 /* No suitable intermediate mode.
640 Generate what we need with shifts. */
641 shift_amount = (GET_MODE_PRECISION (to_mode)
642 - GET_MODE_PRECISION (from_mode));
643 from = gen_lowpart (to_mode, force_reg (from_mode, from));
644 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
645 to, unsignedp);
646 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
647 to, unsignedp);
648 if (tmp != to)
649 emit_move_insn (to, tmp);
650 return;
651 }
652 }
653
654 /* Support special truncate insns for certain modes. */
655 if (convert_optab_handler (trunc_optab, to_mode,
656 from_mode) != CODE_FOR_nothing)
657 {
658 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
659 to, from, UNKNOWN);
660 return;
661 }
662
663 /* Handle truncation of volatile memrefs, and so on;
664 the things that couldn't be truncated directly,
665 and for which there was no special instruction.
666
667 ??? Code above formerly short-circuited this, for most integer
668 mode pairs, with a force_reg in from_mode followed by a recursive
669 call to this routine. Appears always to have been wrong. */
670 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
671 {
672 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
673 emit_move_insn (to, temp);
674 return;
675 }
676
677 /* Mode combination is not recognized. */
678 gcc_unreachable ();
679 }
680
681 /* Return an rtx for a value that would result
682 from converting X to mode MODE.
683 Both X and MODE may be floating, or both integer.
684 UNSIGNEDP is nonzero if X is an unsigned value.
685 This can be done by referring to a part of X in place
686 or by copying to a new temporary with conversion. */
687
688 rtx
689 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
690 {
691 return convert_modes (mode, VOIDmode, x, unsignedp);
692 }
693
694 /* Return an rtx for a value that would result
695 from converting X from mode OLDMODE to mode MODE.
696 Both modes may be floating, or both integer.
697 UNSIGNEDP is nonzero if X is an unsigned value.
698
699 This can be done by referring to a part of X in place
700 or by copying to a new temporary with conversion.
701
702 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
703
704 rtx
705 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
706 {
707 rtx temp;
708
709 /* If FROM is a SUBREG that indicates that we have already done at least
710 the required extension, strip it. */
711
712 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
713 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
714 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
715 x = gen_lowpart (mode, x);
716
717 if (GET_MODE (x) != VOIDmode)
718 oldmode = GET_MODE (x);
719
720 if (mode == oldmode)
721 return x;
722
723 /* There is one case that we must handle specially: If we are converting
724 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
725 we are to interpret the constant as unsigned, gen_lowpart will do
726 the wrong if the constant appears negative. What we want to do is
727 make the high-order word of the constant zero, not all ones. */
728
729 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
730 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
731 && CONST_INT_P (x) && INTVAL (x) < 0)
732 {
733 double_int val = uhwi_to_double_int (INTVAL (x));
734
735 /* We need to zero extend VAL. */
736 if (oldmode != VOIDmode)
737 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
738
739 return immed_double_int_const (val, mode);
740 }
741
742 /* We can do this with a gen_lowpart if both desired and current modes
743 are integer, and this is either a constant integer, a register, or a
744 non-volatile MEM. Except for the constant case where MODE is no
745 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
746
747 if ((CONST_INT_P (x)
748 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
749 || (GET_MODE_CLASS (mode) == MODE_INT
750 && GET_MODE_CLASS (oldmode) == MODE_INT
751 && (GET_CODE (x) == CONST_DOUBLE
752 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
753 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
754 && direct_load[(int) mode])
755 || (REG_P (x)
756 && (! HARD_REGISTER_P (x)
757 || HARD_REGNO_MODE_OK (REGNO (x), mode))
758 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
759 GET_MODE (x))))))))
760 {
761 /* ?? If we don't know OLDMODE, we have to assume here that
762 X does not need sign- or zero-extension. This may not be
763 the case, but it's the best we can do. */
764 if (CONST_INT_P (x) && oldmode != VOIDmode
765 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
766 {
767 HOST_WIDE_INT val = INTVAL (x);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= GET_MODE_MASK (oldmode);
772 if (! unsignedp
773 && val_signbit_known_set_p (oldmode, val))
774 val |= ~GET_MODE_MASK (oldmode);
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* Return the largest alignment we can use for doing a move (or store)
796 of MAX_PIECES. ALIGN is the largest alignment we could use. */
797
798 static unsigned int
799 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
800 {
801 enum machine_mode tmode;
802
803 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
804 if (align >= GET_MODE_ALIGNMENT (tmode))
805 align = GET_MODE_ALIGNMENT (tmode);
806 else
807 {
808 enum machine_mode tmode, xmode;
809
810 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
811 tmode != VOIDmode;
812 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
813 if (GET_MODE_SIZE (tmode) > max_pieces
814 || SLOW_UNALIGNED_ACCESS (tmode, align))
815 break;
816
817 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
818 }
819
820 return align;
821 }
822
823 /* Return the widest integer mode no wider than SIZE. If no such mode
824 can be found, return VOIDmode. */
825
826 static enum machine_mode
827 widest_int_mode_for_size (unsigned int size)
828 {
829 enum machine_mode tmode, mode = VOIDmode;
830
831 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
832 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
833 if (GET_MODE_SIZE (tmode) < size)
834 mode = tmode;
835
836 return mode;
837 }
838
839 /* STORE_MAX_PIECES is the number of bytes at a time that we can
840 store efficiently. Due to internal GCC limitations, this is
841 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
842 for an immediate constant. */
843
844 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845
846 /* Determine whether the LEN bytes can be moved by using several move
847 instructions. Return nonzero if a call to move_by_pieces should
848 succeed. */
849
850 int
851 can_move_by_pieces (unsigned HOST_WIDE_INT len,
852 unsigned int align ATTRIBUTE_UNUSED)
853 {
854 return MOVE_BY_PIECES_P (len, align);
855 }
856
857 /* Generate several move instructions to copy LEN bytes from block FROM to
858 block TO. (These are MEM rtx's with BLKmode).
859
860 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
861 used to push FROM to the stack.
862
863 ALIGN is maximum stack alignment we can assume.
864
865 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
866 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 stpcpy. */
868
869 rtx
870 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
871 unsigned int align, int endp)
872 {
873 struct move_by_pieces_d data;
874 enum machine_mode to_addr_mode, from_addr_mode
875 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
876 rtx to_addr, from_addr = XEXP (from, 0);
877 unsigned int max_size = MOVE_MAX_PIECES + 1;
878 enum insn_code icode;
879
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
881
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
885 {
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
894 }
895 else
896 {
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
906 }
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
913
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
918
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
924 {
925 /* Find the mode of the largest move...
926 MODE might not be used depending on the definitions of the
927 USE_* macros below. */
928 enum machine_mode mode ATTRIBUTE_UNUSED
929 = widest_int_mode_for_size (max_size);
930
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
932 {
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
937 }
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
939 {
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
943 }
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
947 {
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
952 }
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
954 {
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
958 }
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
961 }
962
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
964
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
967
968 while (max_size > 1)
969 {
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
971
972 if (mode == VOIDmode)
973 break;
974
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
978
979 max_size = GET_MODE_SIZE (mode);
980 }
981
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
984
985 if (endp)
986 {
987 rtx to1;
988
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
991 {
992 if (endp == 2)
993 {
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (data.to_addr,
999 -1));
1000 }
1001 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1002 data.offset);
1003 }
1004 else
1005 {
1006 if (endp == 2)
1007 --data.offset;
1008 to1 = adjust_address (data.to, QImode, data.offset);
1009 }
1010 return to1;
1011 }
1012 else
1013 return data.to;
1014 }
1015
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1018
1019 static unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1021 unsigned int max_size)
1022 {
1023 unsigned HOST_WIDE_INT n_insns = 0;
1024
1025 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1026
1027 while (max_size > 1)
1028 {
1029 enum machine_mode mode;
1030 enum insn_code icode;
1031
1032 mode = widest_int_mode_for_size (max_size);
1033
1034 if (mode == VOIDmode)
1035 break;
1036
1037 icode = optab_handler (mov_optab, mode);
1038 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1039 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1040
1041 max_size = GET_MODE_SIZE (mode);
1042 }
1043
1044 gcc_assert (!l);
1045 return n_insns;
1046 }
1047
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1051
1052 static void
1053 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1054 struct move_by_pieces_d *data)
1055 {
1056 unsigned int size = GET_MODE_SIZE (mode);
1057 rtx to1 = NULL_RTX, from1;
1058
1059 while (data->len >= size)
1060 {
1061 if (data->reverse)
1062 data->offset -= size;
1063
1064 if (data->to)
1065 {
1066 if (data->autinc_to)
1067 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1068 data->offset);
1069 else
1070 to1 = adjust_address (data->to, mode, data->offset);
1071 }
1072
1073 if (data->autinc_from)
1074 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1075 data->offset);
1076 else
1077 from1 = adjust_address (data->from, mode, data->offset);
1078
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1080 emit_insn (gen_add2_insn (data->to_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1083 emit_insn (gen_add2_insn (data->from_addr,
1084 GEN_INT (-(HOST_WIDE_INT)size)));
1085
1086 if (data->to)
1087 emit_insn ((*genfun) (to1, from1));
1088 else
1089 {
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode, from1, NULL);
1092 #else
1093 gcc_unreachable ();
1094 #endif
1095 }
1096
1097 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1098 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1099 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1100 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1101
1102 if (! data->reverse)
1103 data->offset += size;
1104
1105 data->len -= size;
1106 }
1107 }
1108 \f
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1112
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1117
1118 Return the address of the new block, if memcpy is called and returns it,
1119 0 otherwise. */
1120
1121 rtx
1122 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1123 unsigned int expected_align, HOST_WIDE_INT expected_size)
1124 {
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1128
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1133
1134 switch (method)
1135 {
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1140
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1143
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1148
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1152
1153 default:
1154 gcc_unreachable ();
1155 }
1156
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1160
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1165
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1169 {
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, INTVAL (size));
1173 set_mem_size (y, INTVAL (size));
1174 }
1175
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size))
1180 ;
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1184 {
1185 /* Since x and y are passed to a libcall, mark the corresponding
1186 tree EXPR as addressable. */
1187 tree y_expr = MEM_EXPR (y);
1188 tree x_expr = MEM_EXPR (x);
1189 if (y_expr)
1190 mark_addressable (y_expr);
1191 if (x_expr)
1192 mark_addressable (x_expr);
1193 retval = emit_block_move_via_libcall (x, y, size,
1194 method == BLOCK_OP_TAILCALL);
1195 }
1196
1197 else
1198 emit_block_move_via_loop (x, y, size, align);
1199
1200 if (method == BLOCK_OP_CALL_PARM)
1201 OK_DEFER_POP;
1202
1203 return retval;
1204 }
1205
1206 rtx
1207 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1208 {
1209 return emit_block_move_hints (x, y, size, method, 0, -1);
1210 }
1211
1212 /* A subroutine of emit_block_move. Returns true if calling the
1213 block move libcall will not clobber any parameters which may have
1214 already been placed on the stack. */
1215
1216 static bool
1217 block_move_libcall_safe_for_call_parm (void)
1218 {
1219 #if defined (REG_PARM_STACK_SPACE)
1220 tree fn;
1221 #endif
1222
1223 /* If arguments are pushed on the stack, then they're safe. */
1224 if (PUSH_ARGS)
1225 return true;
1226
1227 /* If registers go on the stack anyway, any argument is sure to clobber
1228 an outgoing argument. */
1229 #if defined (REG_PARM_STACK_SPACE)
1230 fn = emit_block_move_libcall_fn (false);
1231 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1232 depend on its argument. */
1233 (void) fn;
1234 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1235 && REG_PARM_STACK_SPACE (fn) != 0)
1236 return false;
1237 #endif
1238
1239 /* If any argument goes in memory, then it might clobber an outgoing
1240 argument. */
1241 {
1242 CUMULATIVE_ARGS args_so_far_v;
1243 cumulative_args_t args_so_far;
1244 tree fn, arg;
1245
1246 fn = emit_block_move_libcall_fn (false);
1247 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1248 args_so_far = pack_cumulative_args (&args_so_far_v);
1249
1250 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1251 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1252 {
1253 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1254 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1255 NULL_TREE, true);
1256 if (!tmp || !REG_P (tmp))
1257 return false;
1258 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1259 return false;
1260 targetm.calls.function_arg_advance (args_so_far, mode,
1261 NULL_TREE, true);
1262 }
1263 }
1264 return true;
1265 }
1266
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1269
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1272 unsigned int expected_align, HOST_WIDE_INT expected_size)
1273 {
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1276
1277 if (expected_align < align)
1278 expected_align = align;
1279
1280 /* Since this is a move insn, we don't care about volatility. */
1281 volatile_ok = 1;
1282
1283 /* Try the most limited insn first, because there's no point
1284 including more than one in the machine description unless
1285 the more limited one has some advantage. */
1286
1287 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1288 mode = GET_MODE_WIDER_MODE (mode))
1289 {
1290 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1291
1292 if (code != CODE_FOR_nothing
1293 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1294 here because if SIZE is less than the mode mask, as it is
1295 returned by the macro, it will definitely be less than the
1296 actual mode mask. */
1297 && ((CONST_INT_P (size)
1298 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1299 <= (GET_MODE_MASK (mode) >> 1)))
1300 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1301 {
1302 struct expand_operand ops[6];
1303 unsigned int nops;
1304
1305 /* ??? When called via emit_block_move_for_call, it'd be
1306 nice if there were some way to inform the backend, so
1307 that it doesn't fail the expansion because it thinks
1308 emitting the libcall would be more efficient. */
1309 nops = insn_data[(int) code].n_generator_args;
1310 gcc_assert (nops == 4 || nops == 6);
1311
1312 create_fixed_operand (&ops[0], x);
1313 create_fixed_operand (&ops[1], y);
1314 /* The check above guarantees that this size conversion is valid. */
1315 create_convert_operand_to (&ops[2], size, mode, true);
1316 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1317 if (nops == 6)
1318 {
1319 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1320 create_integer_operand (&ops[5], expected_size);
1321 }
1322 if (maybe_expand_insn (code, nops, ops))
1323 {
1324 volatile_ok = save_volatile_ok;
1325 return true;
1326 }
1327 }
1328 }
1329
1330 volatile_ok = save_volatile_ok;
1331 return false;
1332 }
1333
1334 /* A subroutine of emit_block_move. Expand a call to memcpy.
1335 Return the return value from memcpy, 0 otherwise. */
1336
1337 rtx
1338 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1339 {
1340 rtx dst_addr, src_addr;
1341 tree call_expr, fn, src_tree, dst_tree, size_tree;
1342 enum machine_mode size_mode;
1343 rtx retval;
1344
1345 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1346 pseudos. We can then place those new pseudos into a VAR_DECL and
1347 use them later. */
1348
1349 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1350 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1351
1352 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1353 src_addr = convert_memory_address (ptr_mode, src_addr);
1354
1355 dst_tree = make_tree (ptr_type_node, dst_addr);
1356 src_tree = make_tree (ptr_type_node, src_addr);
1357
1358 size_mode = TYPE_MODE (sizetype);
1359
1360 size = convert_to_mode (size_mode, size, 1);
1361 size = copy_to_mode_reg (size_mode, size);
1362
1363 /* It is incorrect to use the libcall calling conventions to call
1364 memcpy in this context. This could be a user call to memcpy and
1365 the user may wish to examine the return value from memcpy. For
1366 targets where libcalls and normal calls have different conventions
1367 for returning pointers, we could end up generating incorrect code. */
1368
1369 size_tree = make_tree (sizetype, size);
1370
1371 fn = emit_block_move_libcall_fn (true);
1372 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1373 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1374
1375 retval = expand_normal (call_expr);
1376
1377 return retval;
1378 }
1379
1380 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1381 for the function we use for block copies. The first time FOR_CALL
1382 is true, we call assemble_external. */
1383
1384 static GTY(()) tree block_move_fn;
1385
1386 void
1387 init_block_move_fn (const char *asmspec)
1388 {
1389 if (!block_move_fn)
1390 {
1391 tree args, fn;
1392
1393 fn = get_identifier ("memcpy");
1394 args = build_function_type_list (ptr_type_node, ptr_type_node,
1395 const_ptr_type_node, sizetype,
1396 NULL_TREE);
1397
1398 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1399 DECL_EXTERNAL (fn) = 1;
1400 TREE_PUBLIC (fn) = 1;
1401 DECL_ARTIFICIAL (fn) = 1;
1402 TREE_NOTHROW (fn) = 1;
1403 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1404 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1405
1406 block_move_fn = fn;
1407 }
1408
1409 if (asmspec)
1410 set_user_assembler_name (block_move_fn, asmspec);
1411 }
1412
1413 static tree
1414 emit_block_move_libcall_fn (int for_call)
1415 {
1416 static bool emitted_extern;
1417
1418 if (!block_move_fn)
1419 init_block_move_fn (NULL);
1420
1421 if (for_call && !emitted_extern)
1422 {
1423 emitted_extern = true;
1424 make_decl_rtl (block_move_fn);
1425 assemble_external (block_move_fn);
1426 }
1427
1428 return block_move_fn;
1429 }
1430
1431 /* A subroutine of emit_block_move. Copy the data via an explicit
1432 loop. This is used only when libcalls are forbidden. */
1433 /* ??? It'd be nice to copy in hunks larger than QImode. */
1434
1435 static void
1436 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1437 unsigned int align ATTRIBUTE_UNUSED)
1438 {
1439 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1440 enum machine_mode x_addr_mode
1441 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1442 enum machine_mode y_addr_mode
1443 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1444 enum machine_mode iter_mode;
1445
1446 iter_mode = GET_MODE (size);
1447 if (iter_mode == VOIDmode)
1448 iter_mode = word_mode;
1449
1450 top_label = gen_label_rtx ();
1451 cmp_label = gen_label_rtx ();
1452 iter = gen_reg_rtx (iter_mode);
1453
1454 emit_move_insn (iter, const0_rtx);
1455
1456 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1457 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1458 do_pending_stack_adjust ();
1459
1460 emit_jump (cmp_label);
1461 emit_label (top_label);
1462
1463 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1464 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1465
1466 if (x_addr_mode != y_addr_mode)
1467 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1468 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1469
1470 x = change_address (x, QImode, x_addr);
1471 y = change_address (y, QImode, y_addr);
1472
1473 emit_move_insn (x, y);
1474
1475 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1476 true, OPTAB_LIB_WIDEN);
1477 if (tmp != iter)
1478 emit_move_insn (iter, tmp);
1479
1480 emit_label (cmp_label);
1481
1482 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1483 true, top_label);
1484 }
1485 \f
1486 /* Copy all or part of a value X into registers starting at REGNO.
1487 The number of registers to be filled is NREGS. */
1488
1489 void
1490 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1491 {
1492 int i;
1493 #ifdef HAVE_load_multiple
1494 rtx pat;
1495 rtx last;
1496 #endif
1497
1498 if (nregs == 0)
1499 return;
1500
1501 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1502 x = validize_mem (force_const_mem (mode, x));
1503
1504 /* See if the machine can do this with a load multiple insn. */
1505 #ifdef HAVE_load_multiple
1506 if (HAVE_load_multiple)
1507 {
1508 last = get_last_insn ();
1509 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1510 GEN_INT (nregs));
1511 if (pat)
1512 {
1513 emit_insn (pat);
1514 return;
1515 }
1516 else
1517 delete_insns_since (last);
1518 }
1519 #endif
1520
1521 for (i = 0; i < nregs; i++)
1522 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1523 operand_subword_force (x, i, mode));
1524 }
1525
1526 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1527 The number of registers to be filled is NREGS. */
1528
1529 void
1530 move_block_from_reg (int regno, rtx x, int nregs)
1531 {
1532 int i;
1533
1534 if (nregs == 0)
1535 return;
1536
1537 /* See if the machine can do this with a store multiple insn. */
1538 #ifdef HAVE_store_multiple
1539 if (HAVE_store_multiple)
1540 {
1541 rtx last = get_last_insn ();
1542 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1543 GEN_INT (nregs));
1544 if (pat)
1545 {
1546 emit_insn (pat);
1547 return;
1548 }
1549 else
1550 delete_insns_since (last);
1551 }
1552 #endif
1553
1554 for (i = 0; i < nregs; i++)
1555 {
1556 rtx tem = operand_subword (x, i, 1, BLKmode);
1557
1558 gcc_assert (tem);
1559
1560 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1561 }
1562 }
1563
1564 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1565 ORIG, where ORIG is a non-consecutive group of registers represented by
1566 a PARALLEL. The clone is identical to the original except in that the
1567 original set of registers is replaced by a new set of pseudo registers.
1568 The new set has the same modes as the original set. */
1569
1570 rtx
1571 gen_group_rtx (rtx orig)
1572 {
1573 int i, length;
1574 rtx *tmps;
1575
1576 gcc_assert (GET_CODE (orig) == PARALLEL);
1577
1578 length = XVECLEN (orig, 0);
1579 tmps = XALLOCAVEC (rtx, length);
1580
1581 /* Skip a NULL entry in first slot. */
1582 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1583
1584 if (i)
1585 tmps[0] = 0;
1586
1587 for (; i < length; i++)
1588 {
1589 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1590 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1591
1592 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1593 }
1594
1595 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1596 }
1597
1598 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1599 except that values are placed in TMPS[i], and must later be moved
1600 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1601
1602 static void
1603 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1604 {
1605 rtx src;
1606 int start, i;
1607 enum machine_mode m = GET_MODE (orig_src);
1608
1609 gcc_assert (GET_CODE (dst) == PARALLEL);
1610
1611 if (m != VOIDmode
1612 && !SCALAR_INT_MODE_P (m)
1613 && !MEM_P (orig_src)
1614 && GET_CODE (orig_src) != CONCAT)
1615 {
1616 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1617 if (imode == BLKmode)
1618 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1619 else
1620 src = gen_reg_rtx (imode);
1621 if (imode != BLKmode)
1622 src = gen_lowpart (GET_MODE (orig_src), src);
1623 emit_move_insn (src, orig_src);
1624 /* ...and back again. */
1625 if (imode != BLKmode)
1626 src = gen_lowpart (imode, src);
1627 emit_group_load_1 (tmps, dst, src, type, ssize);
1628 return;
1629 }
1630
1631 /* Check for a NULL entry, used to indicate that the parameter goes
1632 both on the stack and in registers. */
1633 if (XEXP (XVECEXP (dst, 0, 0), 0))
1634 start = 0;
1635 else
1636 start = 1;
1637
1638 /* Process the pieces. */
1639 for (i = start; i < XVECLEN (dst, 0); i++)
1640 {
1641 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1642 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1643 unsigned int bytelen = GET_MODE_SIZE (mode);
1644 int shift = 0;
1645
1646 /* Handle trailing fragments that run over the size of the struct. */
1647 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1648 {
1649 /* Arrange to shift the fragment to where it belongs.
1650 extract_bit_field loads to the lsb of the reg. */
1651 if (
1652 #ifdef BLOCK_REG_PADDING
1653 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1654 == (BYTES_BIG_ENDIAN ? upward : downward)
1655 #else
1656 BYTES_BIG_ENDIAN
1657 #endif
1658 )
1659 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1660 bytelen = ssize - bytepos;
1661 gcc_assert (bytelen > 0);
1662 }
1663
1664 /* If we won't be loading directly from memory, protect the real source
1665 from strange tricks we might play; but make sure that the source can
1666 be loaded directly into the destination. */
1667 src = orig_src;
1668 if (!MEM_P (orig_src)
1669 && (!CONSTANT_P (orig_src)
1670 || (GET_MODE (orig_src) != mode
1671 && GET_MODE (orig_src) != VOIDmode)))
1672 {
1673 if (GET_MODE (orig_src) == VOIDmode)
1674 src = gen_reg_rtx (mode);
1675 else
1676 src = gen_reg_rtx (GET_MODE (orig_src));
1677
1678 emit_move_insn (src, orig_src);
1679 }
1680
1681 /* Optimize the access just a bit. */
1682 if (MEM_P (src)
1683 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1684 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1685 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1686 && bytelen == GET_MODE_SIZE (mode))
1687 {
1688 tmps[i] = gen_reg_rtx (mode);
1689 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1690 }
1691 else if (COMPLEX_MODE_P (mode)
1692 && GET_MODE (src) == mode
1693 && bytelen == GET_MODE_SIZE (mode))
1694 /* Let emit_move_complex do the bulk of the work. */
1695 tmps[i] = src;
1696 else if (GET_CODE (src) == CONCAT)
1697 {
1698 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1699 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1700
1701 if ((bytepos == 0 && bytelen == slen0)
1702 || (bytepos != 0 && bytepos + bytelen <= slen))
1703 {
1704 /* The following assumes that the concatenated objects all
1705 have the same size. In this case, a simple calculation
1706 can be used to determine the object and the bit field
1707 to be extracted. */
1708 tmps[i] = XEXP (src, bytepos / slen0);
1709 if (! CONSTANT_P (tmps[i])
1710 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1711 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1712 (bytepos % slen0) * BITS_PER_UNIT,
1713 1, false, NULL_RTX, mode, mode);
1714 }
1715 else
1716 {
1717 rtx mem;
1718
1719 gcc_assert (!bytepos);
1720 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1721 emit_move_insn (mem, src);
1722 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1723 0, 1, false, NULL_RTX, mode, mode);
1724 }
1725 }
1726 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1727 SIMD register, which is currently broken. While we get GCC
1728 to emit proper RTL for these cases, let's dump to memory. */
1729 else if (VECTOR_MODE_P (GET_MODE (dst))
1730 && REG_P (src))
1731 {
1732 int slen = GET_MODE_SIZE (GET_MODE (src));
1733 rtx mem;
1734
1735 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1736 emit_move_insn (mem, src);
1737 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1738 }
1739 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1740 && XVECLEN (dst, 0) > 1)
1741 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1742 else if (CONSTANT_P (src))
1743 {
1744 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1745
1746 if (len == ssize)
1747 tmps[i] = src;
1748 else
1749 {
1750 rtx first, second;
1751
1752 gcc_assert (2 * len == ssize);
1753 split_double (src, &first, &second);
1754 if (i)
1755 tmps[i] = second;
1756 else
1757 tmps[i] = first;
1758 }
1759 }
1760 else if (REG_P (src) && GET_MODE (src) == mode)
1761 tmps[i] = src;
1762 else
1763 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1764 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1765 mode, mode);
1766
1767 if (shift)
1768 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1769 shift, tmps[i], 0);
1770 }
1771 }
1772
1773 /* Emit code to move a block SRC of type TYPE to a block DST,
1774 where DST is non-consecutive registers represented by a PARALLEL.
1775 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1776 if not known. */
1777
1778 void
1779 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1780 {
1781 rtx *tmps;
1782 int i;
1783
1784 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1785 emit_group_load_1 (tmps, dst, src, type, ssize);
1786
1787 /* Copy the extracted pieces into the proper (probable) hard regs. */
1788 for (i = 0; i < XVECLEN (dst, 0); i++)
1789 {
1790 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1791 if (d == NULL)
1792 continue;
1793 emit_move_insn (d, tmps[i]);
1794 }
1795 }
1796
1797 /* Similar, but load SRC into new pseudos in a format that looks like
1798 PARALLEL. This can later be fed to emit_group_move to get things
1799 in the right place. */
1800
1801 rtx
1802 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1803 {
1804 rtvec vec;
1805 int i;
1806
1807 vec = rtvec_alloc (XVECLEN (parallel, 0));
1808 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1809
1810 /* Convert the vector to look just like the original PARALLEL, except
1811 with the computed values. */
1812 for (i = 0; i < XVECLEN (parallel, 0); i++)
1813 {
1814 rtx e = XVECEXP (parallel, 0, i);
1815 rtx d = XEXP (e, 0);
1816
1817 if (d)
1818 {
1819 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1820 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1821 }
1822 RTVEC_ELT (vec, i) = e;
1823 }
1824
1825 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1826 }
1827
1828 /* Emit code to move a block SRC to block DST, where SRC and DST are
1829 non-consecutive groups of registers, each represented by a PARALLEL. */
1830
1831 void
1832 emit_group_move (rtx dst, rtx src)
1833 {
1834 int i;
1835
1836 gcc_assert (GET_CODE (src) == PARALLEL
1837 && GET_CODE (dst) == PARALLEL
1838 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1839
1840 /* Skip first entry if NULL. */
1841 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1842 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1843 XEXP (XVECEXP (src, 0, i), 0));
1844 }
1845
1846 /* Move a group of registers represented by a PARALLEL into pseudos. */
1847
1848 rtx
1849 emit_group_move_into_temps (rtx src)
1850 {
1851 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1852 int i;
1853
1854 for (i = 0; i < XVECLEN (src, 0); i++)
1855 {
1856 rtx e = XVECEXP (src, 0, i);
1857 rtx d = XEXP (e, 0);
1858
1859 if (d)
1860 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1861 RTVEC_ELT (vec, i) = e;
1862 }
1863
1864 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1865 }
1866
1867 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1868 where SRC is non-consecutive registers represented by a PARALLEL.
1869 SSIZE represents the total size of block ORIG_DST, or -1 if not
1870 known. */
1871
1872 void
1873 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1874 {
1875 rtx *tmps, dst;
1876 int start, finish, i;
1877 enum machine_mode m = GET_MODE (orig_dst);
1878
1879 gcc_assert (GET_CODE (src) == PARALLEL);
1880
1881 if (!SCALAR_INT_MODE_P (m)
1882 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1883 {
1884 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1885 if (imode == BLKmode)
1886 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1887 else
1888 dst = gen_reg_rtx (imode);
1889 emit_group_store (dst, src, type, ssize);
1890 if (imode != BLKmode)
1891 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1892 emit_move_insn (orig_dst, dst);
1893 return;
1894 }
1895
1896 /* Check for a NULL entry, used to indicate that the parameter goes
1897 both on the stack and in registers. */
1898 if (XEXP (XVECEXP (src, 0, 0), 0))
1899 start = 0;
1900 else
1901 start = 1;
1902 finish = XVECLEN (src, 0);
1903
1904 tmps = XALLOCAVEC (rtx, finish);
1905
1906 /* Copy the (probable) hard regs into pseudos. */
1907 for (i = start; i < finish; i++)
1908 {
1909 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1910 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1911 {
1912 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1913 emit_move_insn (tmps[i], reg);
1914 }
1915 else
1916 tmps[i] = reg;
1917 }
1918
1919 /* If we won't be storing directly into memory, protect the real destination
1920 from strange tricks we might play. */
1921 dst = orig_dst;
1922 if (GET_CODE (dst) == PARALLEL)
1923 {
1924 rtx temp;
1925
1926 /* We can get a PARALLEL dst if there is a conditional expression in
1927 a return statement. In that case, the dst and src are the same,
1928 so no action is necessary. */
1929 if (rtx_equal_p (dst, src))
1930 return;
1931
1932 /* It is unclear if we can ever reach here, but we may as well handle
1933 it. Allocate a temporary, and split this into a store/load to/from
1934 the temporary. */
1935
1936 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1937 emit_group_store (temp, src, type, ssize);
1938 emit_group_load (dst, temp, type, ssize);
1939 return;
1940 }
1941 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1942 {
1943 enum machine_mode outer = GET_MODE (dst);
1944 enum machine_mode inner;
1945 HOST_WIDE_INT bytepos;
1946 bool done = false;
1947 rtx temp;
1948
1949 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1950 dst = gen_reg_rtx (outer);
1951
1952 /* Make life a bit easier for combine. */
1953 /* If the first element of the vector is the low part
1954 of the destination mode, use a paradoxical subreg to
1955 initialize the destination. */
1956 if (start < finish)
1957 {
1958 inner = GET_MODE (tmps[start]);
1959 bytepos = subreg_lowpart_offset (inner, outer);
1960 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1961 {
1962 temp = simplify_gen_subreg (outer, tmps[start],
1963 inner, 0);
1964 if (temp)
1965 {
1966 emit_move_insn (dst, temp);
1967 done = true;
1968 start++;
1969 }
1970 }
1971 }
1972
1973 /* If the first element wasn't the low part, try the last. */
1974 if (!done
1975 && start < finish - 1)
1976 {
1977 inner = GET_MODE (tmps[finish - 1]);
1978 bytepos = subreg_lowpart_offset (inner, outer);
1979 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1980 {
1981 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1982 inner, 0);
1983 if (temp)
1984 {
1985 emit_move_insn (dst, temp);
1986 done = true;
1987 finish--;
1988 }
1989 }
1990 }
1991
1992 /* Otherwise, simply initialize the result to zero. */
1993 if (!done)
1994 emit_move_insn (dst, CONST0_RTX (outer));
1995 }
1996
1997 /* Process the pieces. */
1998 for (i = start; i < finish; i++)
1999 {
2000 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2001 enum machine_mode mode = GET_MODE (tmps[i]);
2002 unsigned int bytelen = GET_MODE_SIZE (mode);
2003 unsigned int adj_bytelen = bytelen;
2004 rtx dest = dst;
2005
2006 /* Handle trailing fragments that run over the size of the struct. */
2007 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2008 adj_bytelen = ssize - bytepos;
2009
2010 if (GET_CODE (dst) == CONCAT)
2011 {
2012 if (bytepos + adj_bytelen
2013 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2014 dest = XEXP (dst, 0);
2015 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2016 {
2017 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2018 dest = XEXP (dst, 1);
2019 }
2020 else
2021 {
2022 enum machine_mode dest_mode = GET_MODE (dest);
2023 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2024
2025 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2026
2027 if (GET_MODE_ALIGNMENT (dest_mode)
2028 >= GET_MODE_ALIGNMENT (tmp_mode))
2029 {
2030 dest = assign_stack_temp (dest_mode,
2031 GET_MODE_SIZE (dest_mode),
2032 0);
2033 emit_move_insn (adjust_address (dest,
2034 tmp_mode,
2035 bytepos),
2036 tmps[i]);
2037 dst = dest;
2038 }
2039 else
2040 {
2041 dest = assign_stack_temp (tmp_mode,
2042 GET_MODE_SIZE (tmp_mode),
2043 0);
2044 emit_move_insn (dest, tmps[i]);
2045 dst = adjust_address (dest, dest_mode, bytepos);
2046 }
2047 break;
2048 }
2049 }
2050
2051 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2052 {
2053 /* store_bit_field always takes its value from the lsb.
2054 Move the fragment to the lsb if it's not already there. */
2055 if (
2056 #ifdef BLOCK_REG_PADDING
2057 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2058 == (BYTES_BIG_ENDIAN ? upward : downward)
2059 #else
2060 BYTES_BIG_ENDIAN
2061 #endif
2062 )
2063 {
2064 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2065 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2066 shift, tmps[i], 0);
2067 }
2068 bytelen = adj_bytelen;
2069 }
2070
2071 /* Optimize the access just a bit. */
2072 if (MEM_P (dest)
2073 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2074 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2075 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2076 && bytelen == GET_MODE_SIZE (mode))
2077 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2078 else
2079 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2080 0, 0, mode, tmps[i]);
2081 }
2082
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst != dst)
2085 emit_move_insn (orig_dst, dst);
2086 }
2087
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2091
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2096
2097 rtx
2098 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2099 {
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 enum machine_mode copy_mode;
2105
2106 if (tgtblk == 0)
2107 {
2108 tgtblk = assign_temp (build_qualified_type (type,
2109 (TYPE_QUALS (type)
2110 | TYPE_QUAL_CONST)),
2111 0, 1, 1);
2112 preserve_temp_slots (tgtblk);
2113 }
2114
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2117
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2121
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2125
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes % UNITS_PER_WORD != 0
2132 && (targetm.calls.return_in_msb (type)
2133 ? !BYTES_BIG_ENDIAN
2134 : BYTES_BIG_ENDIAN))
2135 padding_correction
2136 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2137
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2141 how it is computed.
2142
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2145 time. */
2146
2147 copy_mode = word_mode;
2148 if (MEM_P (tgtblk))
2149 {
2150 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2151 if (mem_mode != BLKmode)
2152 copy_mode = mem_mode;
2153 }
2154
2155 for (bitpos = 0, xbitpos = padding_correction;
2156 bitpos < bytes * BITS_PER_UNIT;
2157 bitpos += bitsize, xbitpos += bitsize)
2158 {
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos % BITS_PER_WORD == 0
2163 || xbitpos == padding_correction)
2164 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2165 GET_MODE (srcreg));
2166
2167 /* We need a new destination operand each time bitpos is on
2168 a word boundary. */
2169 if (bitpos % BITS_PER_WORD == 0)
2170 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2171
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2175 extract_bit_field (src, bitsize,
2176 xbitpos % BITS_PER_WORD, 1, false,
2177 NULL_RTX, copy_mode, copy_mode));
2178 }
2179
2180 return tgtblk;
2181 }
2182
2183 /* Add a USE expression for REG to the (possibly empty) list pointed
2184 to by CALL_FUSAGE. REG must denote a hard register. */
2185
2186 void
2187 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2188 {
2189 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2190
2191 *call_fusage
2192 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2193 }
2194
2195 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2196 starting at REGNO. All of these registers must be hard registers. */
2197
2198 void
2199 use_regs (rtx *call_fusage, int regno, int nregs)
2200 {
2201 int i;
2202
2203 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2204
2205 for (i = 0; i < nregs; i++)
2206 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2207 }
2208
2209 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2210 PARALLEL REGS. This is for calls that pass values in multiple
2211 non-contiguous locations. The Irix 6 ABI has examples of this. */
2212
2213 void
2214 use_group_regs (rtx *call_fusage, rtx regs)
2215 {
2216 int i;
2217
2218 for (i = 0; i < XVECLEN (regs, 0); i++)
2219 {
2220 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2221
2222 /* A NULL entry means the parameter goes both on the stack and in
2223 registers. This can also be a MEM for targets that pass values
2224 partially on the stack and partially in registers. */
2225 if (reg != 0 && REG_P (reg))
2226 use_reg (call_fusage, reg);
2227 }
2228 }
2229
2230 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2231 assigment and the code of the expresion on the RHS is CODE. Return
2232 NULL otherwise. */
2233
2234 static gimple
2235 get_def_for_expr (tree name, enum tree_code code)
2236 {
2237 gimple def_stmt;
2238
2239 if (TREE_CODE (name) != SSA_NAME)
2240 return NULL;
2241
2242 def_stmt = get_gimple_for_ssa_name (name);
2243 if (!def_stmt
2244 || gimple_assign_rhs_code (def_stmt) != code)
2245 return NULL;
2246
2247 return def_stmt;
2248 }
2249 \f
2250
2251 /* Determine whether the LEN bytes generated by CONSTFUN can be
2252 stored to memory using several move instructions. CONSTFUNDATA is
2253 a pointer which will be passed as argument in every CONSTFUN call.
2254 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2255 a memset operation and false if it's a copy of a constant string.
2256 Return nonzero if a call to store_by_pieces should succeed. */
2257
2258 int
2259 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2260 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2261 void *constfundata, unsigned int align, bool memsetp)
2262 {
2263 unsigned HOST_WIDE_INT l;
2264 unsigned int max_size;
2265 HOST_WIDE_INT offset = 0;
2266 enum machine_mode mode;
2267 enum insn_code icode;
2268 int reverse;
2269 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2270 rtx cst ATTRIBUTE_UNUSED;
2271
2272 if (len == 0)
2273 return 1;
2274
2275 if (! (memsetp
2276 ? SET_BY_PIECES_P (len, align)
2277 : STORE_BY_PIECES_P (len, align)))
2278 return 0;
2279
2280 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2281
2282 /* We would first store what we can in the largest integer mode, then go to
2283 successively smaller modes. */
2284
2285 for (reverse = 0;
2286 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2287 reverse++)
2288 {
2289 l = len;
2290 max_size = STORE_MAX_PIECES + 1;
2291 while (max_size > 1)
2292 {
2293 mode = widest_int_mode_for_size (max_size);
2294
2295 if (mode == VOIDmode)
2296 break;
2297
2298 icode = optab_handler (mov_optab, mode);
2299 if (icode != CODE_FOR_nothing
2300 && align >= GET_MODE_ALIGNMENT (mode))
2301 {
2302 unsigned int size = GET_MODE_SIZE (mode);
2303
2304 while (l >= size)
2305 {
2306 if (reverse)
2307 offset -= size;
2308
2309 cst = (*constfun) (constfundata, offset, mode);
2310 if (!targetm.legitimate_constant_p (mode, cst))
2311 return 0;
2312
2313 if (!reverse)
2314 offset += size;
2315
2316 l -= size;
2317 }
2318 }
2319
2320 max_size = GET_MODE_SIZE (mode);
2321 }
2322
2323 /* The code above should have handled everything. */
2324 gcc_assert (!l);
2325 }
2326
2327 return 1;
2328 }
2329
2330 /* Generate several move instructions to store LEN bytes generated by
2331 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2332 pointer which will be passed as argument in every CONSTFUN call.
2333 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2334 a memset operation and false if it's a copy of a constant string.
2335 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2336 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2337 stpcpy. */
2338
2339 rtx
2340 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2341 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2342 void *constfundata, unsigned int align, bool memsetp, int endp)
2343 {
2344 enum machine_mode to_addr_mode
2345 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2346 struct store_by_pieces_d data;
2347
2348 if (len == 0)
2349 {
2350 gcc_assert (endp != 2);
2351 return to;
2352 }
2353
2354 gcc_assert (memsetp
2355 ? SET_BY_PIECES_P (len, align)
2356 : STORE_BY_PIECES_P (len, align));
2357 data.constfun = constfun;
2358 data.constfundata = constfundata;
2359 data.len = len;
2360 data.to = to;
2361 store_by_pieces_1 (&data, align);
2362 if (endp)
2363 {
2364 rtx to1;
2365
2366 gcc_assert (!data.reverse);
2367 if (data.autinc_to)
2368 {
2369 if (endp == 2)
2370 {
2371 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2372 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2373 else
2374 data.to_addr = copy_to_mode_reg (to_addr_mode,
2375 plus_constant (data.to_addr,
2376 -1));
2377 }
2378 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2379 data.offset);
2380 }
2381 else
2382 {
2383 if (endp == 2)
2384 --data.offset;
2385 to1 = adjust_address (data.to, QImode, data.offset);
2386 }
2387 return to1;
2388 }
2389 else
2390 return data.to;
2391 }
2392
2393 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2394 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2395
2396 static void
2397 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2398 {
2399 struct store_by_pieces_d data;
2400
2401 if (len == 0)
2402 return;
2403
2404 data.constfun = clear_by_pieces_1;
2405 data.constfundata = NULL;
2406 data.len = len;
2407 data.to = to;
2408 store_by_pieces_1 (&data, align);
2409 }
2410
2411 /* Callback routine for clear_by_pieces.
2412 Return const0_rtx unconditionally. */
2413
2414 static rtx
2415 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2416 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2417 enum machine_mode mode ATTRIBUTE_UNUSED)
2418 {
2419 return const0_rtx;
2420 }
2421
2422 /* Subroutine of clear_by_pieces and store_by_pieces.
2423 Generate several move instructions to store LEN bytes of block TO. (A MEM
2424 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2425
2426 static void
2427 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2428 unsigned int align ATTRIBUTE_UNUSED)
2429 {
2430 enum machine_mode to_addr_mode
2431 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2432 rtx to_addr = XEXP (data->to, 0);
2433 unsigned int max_size = STORE_MAX_PIECES + 1;
2434 enum insn_code icode;
2435
2436 data->offset = 0;
2437 data->to_addr = to_addr;
2438 data->autinc_to
2439 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2440 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2441
2442 data->explicit_inc_to = 0;
2443 data->reverse
2444 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2445 if (data->reverse)
2446 data->offset = data->len;
2447
2448 /* If storing requires more than two move insns,
2449 copy addresses to registers (to make displacements shorter)
2450 and use post-increment if available. */
2451 if (!data->autinc_to
2452 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2453 {
2454 /* Determine the main mode we'll be using.
2455 MODE might not be used depending on the definitions of the
2456 USE_* macros below. */
2457 enum machine_mode mode ATTRIBUTE_UNUSED
2458 = widest_int_mode_for_size (max_size);
2459
2460 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2461 {
2462 data->to_addr = copy_to_mode_reg (to_addr_mode,
2463 plus_constant (to_addr, data->len));
2464 data->autinc_to = 1;
2465 data->explicit_inc_to = -1;
2466 }
2467
2468 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2469 && ! data->autinc_to)
2470 {
2471 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2472 data->autinc_to = 1;
2473 data->explicit_inc_to = 1;
2474 }
2475
2476 if ( !data->autinc_to && CONSTANT_P (to_addr))
2477 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2478 }
2479
2480 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2481
2482 /* First store what we can in the largest integer mode, then go to
2483 successively smaller modes. */
2484
2485 while (max_size > 1)
2486 {
2487 enum machine_mode mode = widest_int_mode_for_size (max_size);
2488
2489 if (mode == VOIDmode)
2490 break;
2491
2492 icode = optab_handler (mov_optab, mode);
2493 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2494 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2495
2496 max_size = GET_MODE_SIZE (mode);
2497 }
2498
2499 /* The code above should have handled everything. */
2500 gcc_assert (!data->len);
2501 }
2502
2503 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2504 with move instructions for mode MODE. GENFUN is the gen_... function
2505 to make a move insn for that mode. DATA has all the other info. */
2506
2507 static void
2508 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2509 struct store_by_pieces_d *data)
2510 {
2511 unsigned int size = GET_MODE_SIZE (mode);
2512 rtx to1, cst;
2513
2514 while (data->len >= size)
2515 {
2516 if (data->reverse)
2517 data->offset -= size;
2518
2519 if (data->autinc_to)
2520 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2521 data->offset);
2522 else
2523 to1 = adjust_address (data->to, mode, data->offset);
2524
2525 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2526 emit_insn (gen_add2_insn (data->to_addr,
2527 GEN_INT (-(HOST_WIDE_INT) size)));
2528
2529 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2530 emit_insn ((*genfun) (to1, cst));
2531
2532 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2533 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2534
2535 if (! data->reverse)
2536 data->offset += size;
2537
2538 data->len -= size;
2539 }
2540 }
2541 \f
2542 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2543 its length in bytes. */
2544
2545 rtx
2546 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2547 unsigned int expected_align, HOST_WIDE_INT expected_size)
2548 {
2549 enum machine_mode mode = GET_MODE (object);
2550 unsigned int align;
2551
2552 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2553
2554 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2555 just move a zero. Otherwise, do this a piece at a time. */
2556 if (mode != BLKmode
2557 && CONST_INT_P (size)
2558 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2559 {
2560 rtx zero = CONST0_RTX (mode);
2561 if (zero != NULL)
2562 {
2563 emit_move_insn (object, zero);
2564 return NULL;
2565 }
2566
2567 if (COMPLEX_MODE_P (mode))
2568 {
2569 zero = CONST0_RTX (GET_MODE_INNER (mode));
2570 if (zero != NULL)
2571 {
2572 write_complex_part (object, zero, 0);
2573 write_complex_part (object, zero, 1);
2574 return NULL;
2575 }
2576 }
2577 }
2578
2579 if (size == const0_rtx)
2580 return NULL;
2581
2582 align = MEM_ALIGN (object);
2583
2584 if (CONST_INT_P (size)
2585 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2586 clear_by_pieces (object, INTVAL (size), align);
2587 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2588 expected_align, expected_size))
2589 ;
2590 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2591 return set_storage_via_libcall (object, size, const0_rtx,
2592 method == BLOCK_OP_TAILCALL);
2593 else
2594 gcc_unreachable ();
2595
2596 return NULL;
2597 }
2598
2599 rtx
2600 clear_storage (rtx object, rtx size, enum block_op_methods method)
2601 {
2602 return clear_storage_hints (object, size, method, 0, -1);
2603 }
2604
2605
2606 /* A subroutine of clear_storage. Expand a call to memset.
2607 Return the return value of memset, 0 otherwise. */
2608
2609 rtx
2610 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2611 {
2612 tree call_expr, fn, object_tree, size_tree, val_tree;
2613 enum machine_mode size_mode;
2614 rtx retval;
2615
2616 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2617 place those into new pseudos into a VAR_DECL and use them later. */
2618
2619 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2620
2621 size_mode = TYPE_MODE (sizetype);
2622 size = convert_to_mode (size_mode, size, 1);
2623 size = copy_to_mode_reg (size_mode, size);
2624
2625 /* It is incorrect to use the libcall calling conventions to call
2626 memset in this context. This could be a user call to memset and
2627 the user may wish to examine the return value from memset. For
2628 targets where libcalls and normal calls have different conventions
2629 for returning pointers, we could end up generating incorrect code. */
2630
2631 object_tree = make_tree (ptr_type_node, object);
2632 if (!CONST_INT_P (val))
2633 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2634 size_tree = make_tree (sizetype, size);
2635 val_tree = make_tree (integer_type_node, val);
2636
2637 fn = clear_storage_libcall_fn (true);
2638 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2639 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2640
2641 retval = expand_normal (call_expr);
2642
2643 return retval;
2644 }
2645
2646 /* A subroutine of set_storage_via_libcall. Create the tree node
2647 for the function we use for block clears. The first time FOR_CALL
2648 is true, we call assemble_external. */
2649
2650 tree block_clear_fn;
2651
2652 void
2653 init_block_clear_fn (const char *asmspec)
2654 {
2655 if (!block_clear_fn)
2656 {
2657 tree fn, args;
2658
2659 fn = get_identifier ("memset");
2660 args = build_function_type_list (ptr_type_node, ptr_type_node,
2661 integer_type_node, sizetype,
2662 NULL_TREE);
2663
2664 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2665 DECL_EXTERNAL (fn) = 1;
2666 TREE_PUBLIC (fn) = 1;
2667 DECL_ARTIFICIAL (fn) = 1;
2668 TREE_NOTHROW (fn) = 1;
2669 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2670 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2671
2672 block_clear_fn = fn;
2673 }
2674
2675 if (asmspec)
2676 set_user_assembler_name (block_clear_fn, asmspec);
2677 }
2678
2679 static tree
2680 clear_storage_libcall_fn (int for_call)
2681 {
2682 static bool emitted_extern;
2683
2684 if (!block_clear_fn)
2685 init_block_clear_fn (NULL);
2686
2687 if (for_call && !emitted_extern)
2688 {
2689 emitted_extern = true;
2690 make_decl_rtl (block_clear_fn);
2691 assemble_external (block_clear_fn);
2692 }
2693
2694 return block_clear_fn;
2695 }
2696 \f
2697 /* Expand a setmem pattern; return true if successful. */
2698
2699 bool
2700 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2701 unsigned int expected_align, HOST_WIDE_INT expected_size)
2702 {
2703 /* Try the most limited insn first, because there's no point
2704 including more than one in the machine description unless
2705 the more limited one has some advantage. */
2706
2707 enum machine_mode mode;
2708
2709 if (expected_align < align)
2710 expected_align = align;
2711
2712 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2713 mode = GET_MODE_WIDER_MODE (mode))
2714 {
2715 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2716
2717 if (code != CODE_FOR_nothing
2718 /* We don't need MODE to be narrower than
2719 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2720 the mode mask, as it is returned by the macro, it will
2721 definitely be less than the actual mode mask. */
2722 && ((CONST_INT_P (size)
2723 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2724 <= (GET_MODE_MASK (mode) >> 1)))
2725 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2726 {
2727 struct expand_operand ops[6];
2728 unsigned int nops;
2729
2730 nops = insn_data[(int) code].n_generator_args;
2731 gcc_assert (nops == 4 || nops == 6);
2732
2733 create_fixed_operand (&ops[0], object);
2734 /* The check above guarantees that this size conversion is valid. */
2735 create_convert_operand_to (&ops[1], size, mode, true);
2736 create_convert_operand_from (&ops[2], val, byte_mode, true);
2737 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2738 if (nops == 6)
2739 {
2740 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2741 create_integer_operand (&ops[5], expected_size);
2742 }
2743 if (maybe_expand_insn (code, nops, ops))
2744 return true;
2745 }
2746 }
2747
2748 return false;
2749 }
2750
2751 \f
2752 /* Write to one of the components of the complex value CPLX. Write VAL to
2753 the real part if IMAG_P is false, and the imaginary part if its true. */
2754
2755 static void
2756 write_complex_part (rtx cplx, rtx val, bool imag_p)
2757 {
2758 enum machine_mode cmode;
2759 enum machine_mode imode;
2760 unsigned ibitsize;
2761
2762 if (GET_CODE (cplx) == CONCAT)
2763 {
2764 emit_move_insn (XEXP (cplx, imag_p), val);
2765 return;
2766 }
2767
2768 cmode = GET_MODE (cplx);
2769 imode = GET_MODE_INNER (cmode);
2770 ibitsize = GET_MODE_BITSIZE (imode);
2771
2772 /* For MEMs simplify_gen_subreg may generate an invalid new address
2773 because, e.g., the original address is considered mode-dependent
2774 by the target, which restricts simplify_subreg from invoking
2775 adjust_address_nv. Instead of preparing fallback support for an
2776 invalid address, we call adjust_address_nv directly. */
2777 if (MEM_P (cplx))
2778 {
2779 emit_move_insn (adjust_address_nv (cplx, imode,
2780 imag_p ? GET_MODE_SIZE (imode) : 0),
2781 val);
2782 return;
2783 }
2784
2785 /* If the sub-object is at least word sized, then we know that subregging
2786 will work. This special case is important, since store_bit_field
2787 wants to operate on integer modes, and there's rarely an OImode to
2788 correspond to TCmode. */
2789 if (ibitsize >= BITS_PER_WORD
2790 /* For hard regs we have exact predicates. Assume we can split
2791 the original object if it spans an even number of hard regs.
2792 This special case is important for SCmode on 64-bit platforms
2793 where the natural size of floating-point regs is 32-bit. */
2794 || (REG_P (cplx)
2795 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2796 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2797 {
2798 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2799 imag_p ? GET_MODE_SIZE (imode) : 0);
2800 if (part)
2801 {
2802 emit_move_insn (part, val);
2803 return;
2804 }
2805 else
2806 /* simplify_gen_subreg may fail for sub-word MEMs. */
2807 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2808 }
2809
2810 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
2811 }
2812
2813 /* Extract one of the components of the complex value CPLX. Extract the
2814 real part if IMAG_P is false, and the imaginary part if it's true. */
2815
2816 static rtx
2817 read_complex_part (rtx cplx, bool imag_p)
2818 {
2819 enum machine_mode cmode, imode;
2820 unsigned ibitsize;
2821
2822 if (GET_CODE (cplx) == CONCAT)
2823 return XEXP (cplx, imag_p);
2824
2825 cmode = GET_MODE (cplx);
2826 imode = GET_MODE_INNER (cmode);
2827 ibitsize = GET_MODE_BITSIZE (imode);
2828
2829 /* Special case reads from complex constants that got spilled to memory. */
2830 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2831 {
2832 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2833 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2834 {
2835 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2836 if (CONSTANT_CLASS_P (part))
2837 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2838 }
2839 }
2840
2841 /* For MEMs simplify_gen_subreg may generate an invalid new address
2842 because, e.g., the original address is considered mode-dependent
2843 by the target, which restricts simplify_subreg from invoking
2844 adjust_address_nv. Instead of preparing fallback support for an
2845 invalid address, we call adjust_address_nv directly. */
2846 if (MEM_P (cplx))
2847 return adjust_address_nv (cplx, imode,
2848 imag_p ? GET_MODE_SIZE (imode) : 0);
2849
2850 /* If the sub-object is at least word sized, then we know that subregging
2851 will work. This special case is important, since extract_bit_field
2852 wants to operate on integer modes, and there's rarely an OImode to
2853 correspond to TCmode. */
2854 if (ibitsize >= BITS_PER_WORD
2855 /* For hard regs we have exact predicates. Assume we can split
2856 the original object if it spans an even number of hard regs.
2857 This special case is important for SCmode on 64-bit platforms
2858 where the natural size of floating-point regs is 32-bit. */
2859 || (REG_P (cplx)
2860 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2861 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2862 {
2863 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2864 imag_p ? GET_MODE_SIZE (imode) : 0);
2865 if (ret)
2866 return ret;
2867 else
2868 /* simplify_gen_subreg may fail for sub-word MEMs. */
2869 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2870 }
2871
2872 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2873 true, false, NULL_RTX, imode, imode);
2874 }
2875 \f
2876 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2877 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2878 represented in NEW_MODE. If FORCE is true, this will never happen, as
2879 we'll force-create a SUBREG if needed. */
2880
2881 static rtx
2882 emit_move_change_mode (enum machine_mode new_mode,
2883 enum machine_mode old_mode, rtx x, bool force)
2884 {
2885 rtx ret;
2886
2887 if (push_operand (x, GET_MODE (x)))
2888 {
2889 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2890 MEM_COPY_ATTRIBUTES (ret, x);
2891 }
2892 else if (MEM_P (x))
2893 {
2894 /* We don't have to worry about changing the address since the
2895 size in bytes is supposed to be the same. */
2896 if (reload_in_progress)
2897 {
2898 /* Copy the MEM to change the mode and move any
2899 substitutions from the old MEM to the new one. */
2900 ret = adjust_address_nv (x, new_mode, 0);
2901 copy_replacements (x, ret);
2902 }
2903 else
2904 ret = adjust_address (x, new_mode, 0);
2905 }
2906 else
2907 {
2908 /* Note that we do want simplify_subreg's behavior of validating
2909 that the new mode is ok for a hard register. If we were to use
2910 simplify_gen_subreg, we would create the subreg, but would
2911 probably run into the target not being able to implement it. */
2912 /* Except, of course, when FORCE is true, when this is exactly what
2913 we want. Which is needed for CCmodes on some targets. */
2914 if (force)
2915 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2916 else
2917 ret = simplify_subreg (new_mode, x, old_mode, 0);
2918 }
2919
2920 return ret;
2921 }
2922
2923 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2924 an integer mode of the same size as MODE. Returns the instruction
2925 emitted, or NULL if such a move could not be generated. */
2926
2927 static rtx
2928 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2929 {
2930 enum machine_mode imode;
2931 enum insn_code code;
2932
2933 /* There must exist a mode of the exact size we require. */
2934 imode = int_mode_for_mode (mode);
2935 if (imode == BLKmode)
2936 return NULL_RTX;
2937
2938 /* The target must support moves in this mode. */
2939 code = optab_handler (mov_optab, imode);
2940 if (code == CODE_FOR_nothing)
2941 return NULL_RTX;
2942
2943 x = emit_move_change_mode (imode, mode, x, force);
2944 if (x == NULL_RTX)
2945 return NULL_RTX;
2946 y = emit_move_change_mode (imode, mode, y, force);
2947 if (y == NULL_RTX)
2948 return NULL_RTX;
2949 return emit_insn (GEN_FCN (code) (x, y));
2950 }
2951
2952 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2953 Return an equivalent MEM that does not use an auto-increment. */
2954
2955 static rtx
2956 emit_move_resolve_push (enum machine_mode mode, rtx x)
2957 {
2958 enum rtx_code code = GET_CODE (XEXP (x, 0));
2959 HOST_WIDE_INT adjust;
2960 rtx temp;
2961
2962 adjust = GET_MODE_SIZE (mode);
2963 #ifdef PUSH_ROUNDING
2964 adjust = PUSH_ROUNDING (adjust);
2965 #endif
2966 if (code == PRE_DEC || code == POST_DEC)
2967 adjust = -adjust;
2968 else if (code == PRE_MODIFY || code == POST_MODIFY)
2969 {
2970 rtx expr = XEXP (XEXP (x, 0), 1);
2971 HOST_WIDE_INT val;
2972
2973 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2974 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2975 val = INTVAL (XEXP (expr, 1));
2976 if (GET_CODE (expr) == MINUS)
2977 val = -val;
2978 gcc_assert (adjust == val || adjust == -val);
2979 adjust = val;
2980 }
2981
2982 /* Do not use anti_adjust_stack, since we don't want to update
2983 stack_pointer_delta. */
2984 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2985 GEN_INT (adjust), stack_pointer_rtx,
2986 0, OPTAB_LIB_WIDEN);
2987 if (temp != stack_pointer_rtx)
2988 emit_move_insn (stack_pointer_rtx, temp);
2989
2990 switch (code)
2991 {
2992 case PRE_INC:
2993 case PRE_DEC:
2994 case PRE_MODIFY:
2995 temp = stack_pointer_rtx;
2996 break;
2997 case POST_INC:
2998 case POST_DEC:
2999 case POST_MODIFY:
3000 temp = plus_constant (stack_pointer_rtx, -adjust);
3001 break;
3002 default:
3003 gcc_unreachable ();
3004 }
3005
3006 return replace_equiv_address (x, temp);
3007 }
3008
3009 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3010 X is known to satisfy push_operand, and MODE is known to be complex.
3011 Returns the last instruction emitted. */
3012
3013 rtx
3014 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3015 {
3016 enum machine_mode submode = GET_MODE_INNER (mode);
3017 bool imag_first;
3018
3019 #ifdef PUSH_ROUNDING
3020 unsigned int submodesize = GET_MODE_SIZE (submode);
3021
3022 /* In case we output to the stack, but the size is smaller than the
3023 machine can push exactly, we need to use move instructions. */
3024 if (PUSH_ROUNDING (submodesize) != submodesize)
3025 {
3026 x = emit_move_resolve_push (mode, x);
3027 return emit_move_insn (x, y);
3028 }
3029 #endif
3030
3031 /* Note that the real part always precedes the imag part in memory
3032 regardless of machine's endianness. */
3033 switch (GET_CODE (XEXP (x, 0)))
3034 {
3035 case PRE_DEC:
3036 case POST_DEC:
3037 imag_first = true;
3038 break;
3039 case PRE_INC:
3040 case POST_INC:
3041 imag_first = false;
3042 break;
3043 default:
3044 gcc_unreachable ();
3045 }
3046
3047 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3048 read_complex_part (y, imag_first));
3049 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3050 read_complex_part (y, !imag_first));
3051 }
3052
3053 /* A subroutine of emit_move_complex. Perform the move from Y to X
3054 via two moves of the parts. Returns the last instruction emitted. */
3055
3056 rtx
3057 emit_move_complex_parts (rtx x, rtx y)
3058 {
3059 /* Show the output dies here. This is necessary for SUBREGs
3060 of pseudos since we cannot track their lifetimes correctly;
3061 hard regs shouldn't appear here except as return values. */
3062 if (!reload_completed && !reload_in_progress
3063 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3064 emit_clobber (x);
3065
3066 write_complex_part (x, read_complex_part (y, false), false);
3067 write_complex_part (x, read_complex_part (y, true), true);
3068
3069 return get_last_insn ();
3070 }
3071
3072 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3073 MODE is known to be complex. Returns the last instruction emitted. */
3074
3075 static rtx
3076 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3077 {
3078 bool try_int;
3079
3080 /* Need to take special care for pushes, to maintain proper ordering
3081 of the data, and possibly extra padding. */
3082 if (push_operand (x, mode))
3083 return emit_move_complex_push (mode, x, y);
3084
3085 /* See if we can coerce the target into moving both values at once. */
3086
3087 /* Move floating point as parts. */
3088 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3089 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3090 try_int = false;
3091 /* Not possible if the values are inherently not adjacent. */
3092 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3093 try_int = false;
3094 /* Is possible if both are registers (or subregs of registers). */
3095 else if (register_operand (x, mode) && register_operand (y, mode))
3096 try_int = true;
3097 /* If one of the operands is a memory, and alignment constraints
3098 are friendly enough, we may be able to do combined memory operations.
3099 We do not attempt this if Y is a constant because that combination is
3100 usually better with the by-parts thing below. */
3101 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3102 && (!STRICT_ALIGNMENT
3103 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3104 try_int = true;
3105 else
3106 try_int = false;
3107
3108 if (try_int)
3109 {
3110 rtx ret;
3111
3112 /* For memory to memory moves, optimal behavior can be had with the
3113 existing block move logic. */
3114 if (MEM_P (x) && MEM_P (y))
3115 {
3116 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3117 BLOCK_OP_NO_LIBCALL);
3118 return get_last_insn ();
3119 }
3120
3121 ret = emit_move_via_integer (mode, x, y, true);
3122 if (ret)
3123 return ret;
3124 }
3125
3126 return emit_move_complex_parts (x, y);
3127 }
3128
3129 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3130 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3131
3132 static rtx
3133 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3134 {
3135 rtx ret;
3136
3137 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3138 if (mode != CCmode)
3139 {
3140 enum insn_code code = optab_handler (mov_optab, CCmode);
3141 if (code != CODE_FOR_nothing)
3142 {
3143 x = emit_move_change_mode (CCmode, mode, x, true);
3144 y = emit_move_change_mode (CCmode, mode, y, true);
3145 return emit_insn (GEN_FCN (code) (x, y));
3146 }
3147 }
3148
3149 /* Otherwise, find the MODE_INT mode of the same width. */
3150 ret = emit_move_via_integer (mode, x, y, false);
3151 gcc_assert (ret != NULL);
3152 return ret;
3153 }
3154
3155 /* Return true if word I of OP lies entirely in the
3156 undefined bits of a paradoxical subreg. */
3157
3158 static bool
3159 undefined_operand_subword_p (const_rtx op, int i)
3160 {
3161 enum machine_mode innermode, innermostmode;
3162 int offset;
3163 if (GET_CODE (op) != SUBREG)
3164 return false;
3165 innermode = GET_MODE (op);
3166 innermostmode = GET_MODE (SUBREG_REG (op));
3167 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3168 /* The SUBREG_BYTE represents offset, as if the value were stored in
3169 memory, except for a paradoxical subreg where we define
3170 SUBREG_BYTE to be 0; undo this exception as in
3171 simplify_subreg. */
3172 if (SUBREG_BYTE (op) == 0
3173 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3174 {
3175 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3176 if (WORDS_BIG_ENDIAN)
3177 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3178 if (BYTES_BIG_ENDIAN)
3179 offset += difference % UNITS_PER_WORD;
3180 }
3181 if (offset >= GET_MODE_SIZE (innermostmode)
3182 || offset <= -GET_MODE_SIZE (word_mode))
3183 return true;
3184 return false;
3185 }
3186
3187 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3188 MODE is any multi-word or full-word mode that lacks a move_insn
3189 pattern. Note that you will get better code if you define such
3190 patterns, even if they must turn into multiple assembler instructions. */
3191
3192 static rtx
3193 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3194 {
3195 rtx last_insn = 0;
3196 rtx seq, inner;
3197 bool need_clobber;
3198 int i;
3199
3200 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3201
3202 /* If X is a push on the stack, do the push now and replace
3203 X with a reference to the stack pointer. */
3204 if (push_operand (x, mode))
3205 x = emit_move_resolve_push (mode, x);
3206
3207 /* If we are in reload, see if either operand is a MEM whose address
3208 is scheduled for replacement. */
3209 if (reload_in_progress && MEM_P (x)
3210 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3211 x = replace_equiv_address_nv (x, inner);
3212 if (reload_in_progress && MEM_P (y)
3213 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3214 y = replace_equiv_address_nv (y, inner);
3215
3216 start_sequence ();
3217
3218 need_clobber = false;
3219 for (i = 0;
3220 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3221 i++)
3222 {
3223 rtx xpart = operand_subword (x, i, 1, mode);
3224 rtx ypart;
3225
3226 /* Do not generate code for a move if it would come entirely
3227 from the undefined bits of a paradoxical subreg. */
3228 if (undefined_operand_subword_p (y, i))
3229 continue;
3230
3231 ypart = operand_subword (y, i, 1, mode);
3232
3233 /* If we can't get a part of Y, put Y into memory if it is a
3234 constant. Otherwise, force it into a register. Then we must
3235 be able to get a part of Y. */
3236 if (ypart == 0 && CONSTANT_P (y))
3237 {
3238 y = use_anchored_address (force_const_mem (mode, y));
3239 ypart = operand_subword (y, i, 1, mode);
3240 }
3241 else if (ypart == 0)
3242 ypart = operand_subword_force (y, i, mode);
3243
3244 gcc_assert (xpart && ypart);
3245
3246 need_clobber |= (GET_CODE (xpart) == SUBREG);
3247
3248 last_insn = emit_move_insn (xpart, ypart);
3249 }
3250
3251 seq = get_insns ();
3252 end_sequence ();
3253
3254 /* Show the output dies here. This is necessary for SUBREGs
3255 of pseudos since we cannot track their lifetimes correctly;
3256 hard regs shouldn't appear here except as return values.
3257 We never want to emit such a clobber after reload. */
3258 if (x != y
3259 && ! (reload_in_progress || reload_completed)
3260 && need_clobber != 0)
3261 emit_clobber (x);
3262
3263 emit_insn (seq);
3264
3265 return last_insn;
3266 }
3267
3268 /* Low level part of emit_move_insn.
3269 Called just like emit_move_insn, but assumes X and Y
3270 are basically valid. */
3271
3272 rtx
3273 emit_move_insn_1 (rtx x, rtx y)
3274 {
3275 enum machine_mode mode = GET_MODE (x);
3276 enum insn_code code;
3277
3278 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3279
3280 code = optab_handler (mov_optab, mode);
3281 if (code != CODE_FOR_nothing)
3282 return emit_insn (GEN_FCN (code) (x, y));
3283
3284 /* Expand complex moves by moving real part and imag part. */
3285 if (COMPLEX_MODE_P (mode))
3286 return emit_move_complex (mode, x, y);
3287
3288 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3289 || ALL_FIXED_POINT_MODE_P (mode))
3290 {
3291 rtx result = emit_move_via_integer (mode, x, y, true);
3292
3293 /* If we can't find an integer mode, use multi words. */
3294 if (result)
3295 return result;
3296 else
3297 return emit_move_multi_word (mode, x, y);
3298 }
3299
3300 if (GET_MODE_CLASS (mode) == MODE_CC)
3301 return emit_move_ccmode (mode, x, y);
3302
3303 /* Try using a move pattern for the corresponding integer mode. This is
3304 only safe when simplify_subreg can convert MODE constants into integer
3305 constants. At present, it can only do this reliably if the value
3306 fits within a HOST_WIDE_INT. */
3307 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3308 {
3309 rtx ret = emit_move_via_integer (mode, x, y, false);
3310 if (ret)
3311 return ret;
3312 }
3313
3314 return emit_move_multi_word (mode, x, y);
3315 }
3316
3317 /* Generate code to copy Y into X.
3318 Both Y and X must have the same mode, except that
3319 Y can be a constant with VOIDmode.
3320 This mode cannot be BLKmode; use emit_block_move for that.
3321
3322 Return the last instruction emitted. */
3323
3324 rtx
3325 emit_move_insn (rtx x, rtx y)
3326 {
3327 enum machine_mode mode = GET_MODE (x);
3328 rtx y_cst = NULL_RTX;
3329 rtx last_insn, set;
3330
3331 gcc_assert (mode != BLKmode
3332 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3333
3334 if (CONSTANT_P (y))
3335 {
3336 if (optimize
3337 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3338 && (last_insn = compress_float_constant (x, y)))
3339 return last_insn;
3340
3341 y_cst = y;
3342
3343 if (!targetm.legitimate_constant_p (mode, y))
3344 {
3345 y = force_const_mem (mode, y);
3346
3347 /* If the target's cannot_force_const_mem prevented the spill,
3348 assume that the target's move expanders will also take care
3349 of the non-legitimate constant. */
3350 if (!y)
3351 y = y_cst;
3352 else
3353 y = use_anchored_address (y);
3354 }
3355 }
3356
3357 /* If X or Y are memory references, verify that their addresses are valid
3358 for the machine. */
3359 if (MEM_P (x)
3360 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3361 MEM_ADDR_SPACE (x))
3362 && ! push_operand (x, GET_MODE (x))))
3363 x = validize_mem (x);
3364
3365 if (MEM_P (y)
3366 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3367 MEM_ADDR_SPACE (y)))
3368 y = validize_mem (y);
3369
3370 gcc_assert (mode != BLKmode);
3371
3372 last_insn = emit_move_insn_1 (x, y);
3373
3374 if (y_cst && REG_P (x)
3375 && (set = single_set (last_insn)) != NULL_RTX
3376 && SET_DEST (set) == x
3377 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3378 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3379
3380 return last_insn;
3381 }
3382
3383 /* If Y is representable exactly in a narrower mode, and the target can
3384 perform the extension directly from constant or memory, then emit the
3385 move as an extension. */
3386
3387 static rtx
3388 compress_float_constant (rtx x, rtx y)
3389 {
3390 enum machine_mode dstmode = GET_MODE (x);
3391 enum machine_mode orig_srcmode = GET_MODE (y);
3392 enum machine_mode srcmode;
3393 REAL_VALUE_TYPE r;
3394 int oldcost, newcost;
3395 bool speed = optimize_insn_for_speed_p ();
3396
3397 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3398
3399 if (targetm.legitimate_constant_p (dstmode, y))
3400 oldcost = set_src_cost (y, speed);
3401 else
3402 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3403
3404 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3405 srcmode != orig_srcmode;
3406 srcmode = GET_MODE_WIDER_MODE (srcmode))
3407 {
3408 enum insn_code ic;
3409 rtx trunc_y, last_insn;
3410
3411 /* Skip if the target can't extend this way. */
3412 ic = can_extend_p (dstmode, srcmode, 0);
3413 if (ic == CODE_FOR_nothing)
3414 continue;
3415
3416 /* Skip if the narrowed value isn't exact. */
3417 if (! exact_real_truncate (srcmode, &r))
3418 continue;
3419
3420 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3421
3422 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3423 {
3424 /* Skip if the target needs extra instructions to perform
3425 the extension. */
3426 if (!insn_operand_matches (ic, 1, trunc_y))
3427 continue;
3428 /* This is valid, but may not be cheaper than the original. */
3429 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3430 speed);
3431 if (oldcost < newcost)
3432 continue;
3433 }
3434 else if (float_extend_from_mem[dstmode][srcmode])
3435 {
3436 trunc_y = force_const_mem (srcmode, trunc_y);
3437 /* This is valid, but may not be cheaper than the original. */
3438 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3439 speed);
3440 if (oldcost < newcost)
3441 continue;
3442 trunc_y = validize_mem (trunc_y);
3443 }
3444 else
3445 continue;
3446
3447 /* For CSE's benefit, force the compressed constant pool entry
3448 into a new pseudo. This constant may be used in different modes,
3449 and if not, combine will put things back together for us. */
3450 trunc_y = force_reg (srcmode, trunc_y);
3451 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3452 last_insn = get_last_insn ();
3453
3454 if (REG_P (x))
3455 set_unique_reg_note (last_insn, REG_EQUAL, y);
3456
3457 return last_insn;
3458 }
3459
3460 return NULL_RTX;
3461 }
3462 \f
3463 /* Pushing data onto the stack. */
3464
3465 /* Push a block of length SIZE (perhaps variable)
3466 and return an rtx to address the beginning of the block.
3467 The value may be virtual_outgoing_args_rtx.
3468
3469 EXTRA is the number of bytes of padding to push in addition to SIZE.
3470 BELOW nonzero means this padding comes at low addresses;
3471 otherwise, the padding comes at high addresses. */
3472
3473 rtx
3474 push_block (rtx size, int extra, int below)
3475 {
3476 rtx temp;
3477
3478 size = convert_modes (Pmode, ptr_mode, size, 1);
3479 if (CONSTANT_P (size))
3480 anti_adjust_stack (plus_constant (size, extra));
3481 else if (REG_P (size) && extra == 0)
3482 anti_adjust_stack (size);
3483 else
3484 {
3485 temp = copy_to_mode_reg (Pmode, size);
3486 if (extra != 0)
3487 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3488 temp, 0, OPTAB_LIB_WIDEN);
3489 anti_adjust_stack (temp);
3490 }
3491
3492 #ifndef STACK_GROWS_DOWNWARD
3493 if (0)
3494 #else
3495 if (1)
3496 #endif
3497 {
3498 temp = virtual_outgoing_args_rtx;
3499 if (extra != 0 && below)
3500 temp = plus_constant (temp, extra);
3501 }
3502 else
3503 {
3504 if (CONST_INT_P (size))
3505 temp = plus_constant (virtual_outgoing_args_rtx,
3506 -INTVAL (size) - (below ? 0 : extra));
3507 else if (extra != 0 && !below)
3508 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3509 negate_rtx (Pmode, plus_constant (size, extra)));
3510 else
3511 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3512 negate_rtx (Pmode, size));
3513 }
3514
3515 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3516 }
3517
3518 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3519
3520 static rtx
3521 mem_autoinc_base (rtx mem)
3522 {
3523 if (MEM_P (mem))
3524 {
3525 rtx addr = XEXP (mem, 0);
3526 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3527 return XEXP (addr, 0);
3528 }
3529 return NULL;
3530 }
3531
3532 /* A utility routine used here, in reload, and in try_split. The insns
3533 after PREV up to and including LAST are known to adjust the stack,
3534 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3535 placing notes as appropriate. PREV may be NULL, indicating the
3536 entire insn sequence prior to LAST should be scanned.
3537
3538 The set of allowed stack pointer modifications is small:
3539 (1) One or more auto-inc style memory references (aka pushes),
3540 (2) One or more addition/subtraction with the SP as destination,
3541 (3) A single move insn with the SP as destination,
3542 (4) A call_pop insn.
3543
3544 Insns in the sequence that do not modify the SP are ignored.
3545
3546 The return value is the amount of adjustment that can be trivially
3547 verified, via immediate operand or auto-inc. If the adjustment
3548 cannot be trivially extracted, the return value is INT_MIN. */
3549
3550 HOST_WIDE_INT
3551 find_args_size_adjust (rtx insn)
3552 {
3553 rtx dest, set, pat;
3554 int i;
3555
3556 pat = PATTERN (insn);
3557 set = NULL;
3558
3559 /* Look for a call_pop pattern. */
3560 if (CALL_P (insn))
3561 {
3562 /* We have to allow non-call_pop patterns for the case
3563 of emit_single_push_insn of a TLS address. */
3564 if (GET_CODE (pat) != PARALLEL)
3565 return 0;
3566
3567 /* All call_pop have a stack pointer adjust in the parallel.
3568 The call itself is always first, and the stack adjust is
3569 usually last, so search from the end. */
3570 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3571 {
3572 set = XVECEXP (pat, 0, i);
3573 if (GET_CODE (set) != SET)
3574 continue;
3575 dest = SET_DEST (set);
3576 if (dest == stack_pointer_rtx)
3577 break;
3578 }
3579 /* We'd better have found the stack pointer adjust. */
3580 if (i == 0)
3581 return 0;
3582 /* Fall through to process the extracted SET and DEST
3583 as if it was a standalone insn. */
3584 }
3585 else if (GET_CODE (pat) == SET)
3586 set = pat;
3587 else if ((set = single_set (insn)) != NULL)
3588 ;
3589 else if (GET_CODE (pat) == PARALLEL)
3590 {
3591 /* ??? Some older ports use a parallel with a stack adjust
3592 and a store for a PUSH_ROUNDING pattern, rather than a
3593 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3594 /* ??? See h8300 and m68k, pushqi1. */
3595 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3596 {
3597 set = XVECEXP (pat, 0, i);
3598 if (GET_CODE (set) != SET)
3599 continue;
3600 dest = SET_DEST (set);
3601 if (dest == stack_pointer_rtx)
3602 break;
3603
3604 /* We do not expect an auto-inc of the sp in the parallel. */
3605 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3606 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3607 != stack_pointer_rtx);
3608 }
3609 if (i < 0)
3610 return 0;
3611 }
3612 else
3613 return 0;
3614
3615 dest = SET_DEST (set);
3616
3617 /* Look for direct modifications of the stack pointer. */
3618 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3619 {
3620 /* Look for a trivial adjustment, otherwise assume nothing. */
3621 /* Note that the SPU restore_stack_block pattern refers to
3622 the stack pointer in V4SImode. Consider that non-trivial. */
3623 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3624 && GET_CODE (SET_SRC (set)) == PLUS
3625 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3626 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3627 return INTVAL (XEXP (SET_SRC (set), 1));
3628 /* ??? Reload can generate no-op moves, which will be cleaned
3629 up later. Recognize it and continue searching. */
3630 else if (rtx_equal_p (dest, SET_SRC (set)))
3631 return 0;
3632 else
3633 return HOST_WIDE_INT_MIN;
3634 }
3635 else
3636 {
3637 rtx mem, addr;
3638
3639 /* Otherwise only think about autoinc patterns. */
3640 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3641 {
3642 mem = dest;
3643 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3644 != stack_pointer_rtx);
3645 }
3646 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3647 mem = SET_SRC (set);
3648 else
3649 return 0;
3650
3651 addr = XEXP (mem, 0);
3652 switch (GET_CODE (addr))
3653 {
3654 case PRE_INC:
3655 case POST_INC:
3656 return GET_MODE_SIZE (GET_MODE (mem));
3657 case PRE_DEC:
3658 case POST_DEC:
3659 return -GET_MODE_SIZE (GET_MODE (mem));
3660 case PRE_MODIFY:
3661 case POST_MODIFY:
3662 addr = XEXP (addr, 1);
3663 gcc_assert (GET_CODE (addr) == PLUS);
3664 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3665 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3666 return INTVAL (XEXP (addr, 1));
3667 default:
3668 gcc_unreachable ();
3669 }
3670 }
3671 }
3672
3673 int
3674 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3675 {
3676 int args_size = end_args_size;
3677 bool saw_unknown = false;
3678 rtx insn;
3679
3680 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3681 {
3682 HOST_WIDE_INT this_delta;
3683
3684 if (!NONDEBUG_INSN_P (insn))
3685 continue;
3686
3687 this_delta = find_args_size_adjust (insn);
3688 if (this_delta == 0)
3689 continue;
3690
3691 gcc_assert (!saw_unknown);
3692 if (this_delta == HOST_WIDE_INT_MIN)
3693 saw_unknown = true;
3694
3695 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3696 #ifdef STACK_GROWS_DOWNWARD
3697 this_delta = -this_delta;
3698 #endif
3699 args_size -= this_delta;
3700 }
3701
3702 return saw_unknown ? INT_MIN : args_size;
3703 }
3704
3705 #ifdef PUSH_ROUNDING
3706 /* Emit single push insn. */
3707
3708 static void
3709 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3710 {
3711 rtx dest_addr;
3712 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3713 rtx dest;
3714 enum insn_code icode;
3715
3716 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3717 /* If there is push pattern, use it. Otherwise try old way of throwing
3718 MEM representing push operation to move expander. */
3719 icode = optab_handler (push_optab, mode);
3720 if (icode != CODE_FOR_nothing)
3721 {
3722 struct expand_operand ops[1];
3723
3724 create_input_operand (&ops[0], x, mode);
3725 if (maybe_expand_insn (icode, 1, ops))
3726 return;
3727 }
3728 if (GET_MODE_SIZE (mode) == rounded_size)
3729 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3730 /* If we are to pad downward, adjust the stack pointer first and
3731 then store X into the stack location using an offset. This is
3732 because emit_move_insn does not know how to pad; it does not have
3733 access to type. */
3734 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3735 {
3736 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3737 HOST_WIDE_INT offset;
3738
3739 emit_move_insn (stack_pointer_rtx,
3740 expand_binop (Pmode,
3741 #ifdef STACK_GROWS_DOWNWARD
3742 sub_optab,
3743 #else
3744 add_optab,
3745 #endif
3746 stack_pointer_rtx,
3747 GEN_INT (rounded_size),
3748 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3749
3750 offset = (HOST_WIDE_INT) padding_size;
3751 #ifdef STACK_GROWS_DOWNWARD
3752 if (STACK_PUSH_CODE == POST_DEC)
3753 /* We have already decremented the stack pointer, so get the
3754 previous value. */
3755 offset += (HOST_WIDE_INT) rounded_size;
3756 #else
3757 if (STACK_PUSH_CODE == POST_INC)
3758 /* We have already incremented the stack pointer, so get the
3759 previous value. */
3760 offset -= (HOST_WIDE_INT) rounded_size;
3761 #endif
3762 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3763 }
3764 else
3765 {
3766 #ifdef STACK_GROWS_DOWNWARD
3767 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3768 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3769 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3770 #else
3771 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3772 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3773 GEN_INT (rounded_size));
3774 #endif
3775 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3776 }
3777
3778 dest = gen_rtx_MEM (mode, dest_addr);
3779
3780 if (type != 0)
3781 {
3782 set_mem_attributes (dest, type, 1);
3783
3784 if (flag_optimize_sibling_calls)
3785 /* Function incoming arguments may overlap with sibling call
3786 outgoing arguments and we cannot allow reordering of reads
3787 from function arguments with stores to outgoing arguments
3788 of sibling calls. */
3789 set_mem_alias_set (dest, 0);
3790 }
3791 emit_move_insn (dest, x);
3792 }
3793
3794 /* Emit and annotate a single push insn. */
3795
3796 static void
3797 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3798 {
3799 int delta, old_delta = stack_pointer_delta;
3800 rtx prev = get_last_insn ();
3801 rtx last;
3802
3803 emit_single_push_insn_1 (mode, x, type);
3804
3805 last = get_last_insn ();
3806
3807 /* Notice the common case where we emitted exactly one insn. */
3808 if (PREV_INSN (last) == prev)
3809 {
3810 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
3811 return;
3812 }
3813
3814 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
3815 gcc_assert (delta == INT_MIN || delta == old_delta);
3816 }
3817 #endif
3818
3819 /* Generate code to push X onto the stack, assuming it has mode MODE and
3820 type TYPE.
3821 MODE is redundant except when X is a CONST_INT (since they don't
3822 carry mode info).
3823 SIZE is an rtx for the size of data to be copied (in bytes),
3824 needed only if X is BLKmode.
3825
3826 ALIGN (in bits) is maximum alignment we can assume.
3827
3828 If PARTIAL and REG are both nonzero, then copy that many of the first
3829 bytes of X into registers starting with REG, and push the rest of X.
3830 The amount of space pushed is decreased by PARTIAL bytes.
3831 REG must be a hard register in this case.
3832 If REG is zero but PARTIAL is not, take any all others actions for an
3833 argument partially in registers, but do not actually load any
3834 registers.
3835
3836 EXTRA is the amount in bytes of extra space to leave next to this arg.
3837 This is ignored if an argument block has already been allocated.
3838
3839 On a machine that lacks real push insns, ARGS_ADDR is the address of
3840 the bottom of the argument block for this call. We use indexing off there
3841 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3842 argument block has not been preallocated.
3843
3844 ARGS_SO_FAR is the size of args previously pushed for this call.
3845
3846 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3847 for arguments passed in registers. If nonzero, it will be the number
3848 of bytes required. */
3849
3850 void
3851 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3852 unsigned int align, int partial, rtx reg, int extra,
3853 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3854 rtx alignment_pad)
3855 {
3856 rtx xinner;
3857 enum direction stack_direction
3858 #ifdef STACK_GROWS_DOWNWARD
3859 = downward;
3860 #else
3861 = upward;
3862 #endif
3863
3864 /* Decide where to pad the argument: `downward' for below,
3865 `upward' for above, or `none' for don't pad it.
3866 Default is below for small data on big-endian machines; else above. */
3867 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3868
3869 /* Invert direction if stack is post-decrement.
3870 FIXME: why? */
3871 if (STACK_PUSH_CODE == POST_DEC)
3872 if (where_pad != none)
3873 where_pad = (where_pad == downward ? upward : downward);
3874
3875 xinner = x;
3876
3877 if (mode == BLKmode
3878 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3879 {
3880 /* Copy a block into the stack, entirely or partially. */
3881
3882 rtx temp;
3883 int used;
3884 int offset;
3885 int skip;
3886
3887 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3888 used = partial - offset;
3889
3890 if (mode != BLKmode)
3891 {
3892 /* A value is to be stored in an insufficiently aligned
3893 stack slot; copy via a suitably aligned slot if
3894 necessary. */
3895 size = GEN_INT (GET_MODE_SIZE (mode));
3896 if (!MEM_P (xinner))
3897 {
3898 temp = assign_temp (type, 0, 1, 1);
3899 emit_move_insn (temp, xinner);
3900 xinner = temp;
3901 }
3902 }
3903
3904 gcc_assert (size);
3905
3906 /* USED is now the # of bytes we need not copy to the stack
3907 because registers will take care of them. */
3908
3909 if (partial != 0)
3910 xinner = adjust_address (xinner, BLKmode, used);
3911
3912 /* If the partial register-part of the arg counts in its stack size,
3913 skip the part of stack space corresponding to the registers.
3914 Otherwise, start copying to the beginning of the stack space,
3915 by setting SKIP to 0. */
3916 skip = (reg_parm_stack_space == 0) ? 0 : used;
3917
3918 #ifdef PUSH_ROUNDING
3919 /* Do it with several push insns if that doesn't take lots of insns
3920 and if there is no difficulty with push insns that skip bytes
3921 on the stack for alignment purposes. */
3922 if (args_addr == 0
3923 && PUSH_ARGS
3924 && CONST_INT_P (size)
3925 && skip == 0
3926 && MEM_ALIGN (xinner) >= align
3927 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3928 /* Here we avoid the case of a structure whose weak alignment
3929 forces many pushes of a small amount of data,
3930 and such small pushes do rounding that causes trouble. */
3931 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3932 || align >= BIGGEST_ALIGNMENT
3933 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3934 == (align / BITS_PER_UNIT)))
3935 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3936 {
3937 /* Push padding now if padding above and stack grows down,
3938 or if padding below and stack grows up.
3939 But if space already allocated, this has already been done. */
3940 if (extra && args_addr == 0
3941 && where_pad != none && where_pad != stack_direction)
3942 anti_adjust_stack (GEN_INT (extra));
3943
3944 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3945 }
3946 else
3947 #endif /* PUSH_ROUNDING */
3948 {
3949 rtx target;
3950
3951 /* Otherwise make space on the stack and copy the data
3952 to the address of that space. */
3953
3954 /* Deduct words put into registers from the size we must copy. */
3955 if (partial != 0)
3956 {
3957 if (CONST_INT_P (size))
3958 size = GEN_INT (INTVAL (size) - used);
3959 else
3960 size = expand_binop (GET_MODE (size), sub_optab, size,
3961 GEN_INT (used), NULL_RTX, 0,
3962 OPTAB_LIB_WIDEN);
3963 }
3964
3965 /* Get the address of the stack space.
3966 In this case, we do not deal with EXTRA separately.
3967 A single stack adjust will do. */
3968 if (! args_addr)
3969 {
3970 temp = push_block (size, extra, where_pad == downward);
3971 extra = 0;
3972 }
3973 else if (CONST_INT_P (args_so_far))
3974 temp = memory_address (BLKmode,
3975 plus_constant (args_addr,
3976 skip + INTVAL (args_so_far)));
3977 else
3978 temp = memory_address (BLKmode,
3979 plus_constant (gen_rtx_PLUS (Pmode,
3980 args_addr,
3981 args_so_far),
3982 skip));
3983
3984 if (!ACCUMULATE_OUTGOING_ARGS)
3985 {
3986 /* If the source is referenced relative to the stack pointer,
3987 copy it to another register to stabilize it. We do not need
3988 to do this if we know that we won't be changing sp. */
3989
3990 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3991 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3992 temp = copy_to_reg (temp);
3993 }
3994
3995 target = gen_rtx_MEM (BLKmode, temp);
3996
3997 /* We do *not* set_mem_attributes here, because incoming arguments
3998 may overlap with sibling call outgoing arguments and we cannot
3999 allow reordering of reads from function arguments with stores
4000 to outgoing arguments of sibling calls. We do, however, want
4001 to record the alignment of the stack slot. */
4002 /* ALIGN may well be better aligned than TYPE, e.g. due to
4003 PARM_BOUNDARY. Assume the caller isn't lying. */
4004 set_mem_align (target, align);
4005
4006 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4007 }
4008 }
4009 else if (partial > 0)
4010 {
4011 /* Scalar partly in registers. */
4012
4013 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4014 int i;
4015 int not_stack;
4016 /* # bytes of start of argument
4017 that we must make space for but need not store. */
4018 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4019 int args_offset = INTVAL (args_so_far);
4020 int skip;
4021
4022 /* Push padding now if padding above and stack grows down,
4023 or if padding below and stack grows up.
4024 But if space already allocated, this has already been done. */
4025 if (extra && args_addr == 0
4026 && where_pad != none && where_pad != stack_direction)
4027 anti_adjust_stack (GEN_INT (extra));
4028
4029 /* If we make space by pushing it, we might as well push
4030 the real data. Otherwise, we can leave OFFSET nonzero
4031 and leave the space uninitialized. */
4032 if (args_addr == 0)
4033 offset = 0;
4034
4035 /* Now NOT_STACK gets the number of words that we don't need to
4036 allocate on the stack. Convert OFFSET to words too. */
4037 not_stack = (partial - offset) / UNITS_PER_WORD;
4038 offset /= UNITS_PER_WORD;
4039
4040 /* If the partial register-part of the arg counts in its stack size,
4041 skip the part of stack space corresponding to the registers.
4042 Otherwise, start copying to the beginning of the stack space,
4043 by setting SKIP to 0. */
4044 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4045
4046 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4047 x = validize_mem (force_const_mem (mode, x));
4048
4049 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4050 SUBREGs of such registers are not allowed. */
4051 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4052 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4053 x = copy_to_reg (x);
4054
4055 /* Loop over all the words allocated on the stack for this arg. */
4056 /* We can do it by words, because any scalar bigger than a word
4057 has a size a multiple of a word. */
4058 #ifndef PUSH_ARGS_REVERSED
4059 for (i = not_stack; i < size; i++)
4060 #else
4061 for (i = size - 1; i >= not_stack; i--)
4062 #endif
4063 if (i >= not_stack + offset)
4064 emit_push_insn (operand_subword_force (x, i, mode),
4065 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4066 0, args_addr,
4067 GEN_INT (args_offset + ((i - not_stack + skip)
4068 * UNITS_PER_WORD)),
4069 reg_parm_stack_space, alignment_pad);
4070 }
4071 else
4072 {
4073 rtx addr;
4074 rtx dest;
4075
4076 /* Push padding now if padding above and stack grows down,
4077 or if padding below and stack grows up.
4078 But if space already allocated, this has already been done. */
4079 if (extra && args_addr == 0
4080 && where_pad != none && where_pad != stack_direction)
4081 anti_adjust_stack (GEN_INT (extra));
4082
4083 #ifdef PUSH_ROUNDING
4084 if (args_addr == 0 && PUSH_ARGS)
4085 emit_single_push_insn (mode, x, type);
4086 else
4087 #endif
4088 {
4089 if (CONST_INT_P (args_so_far))
4090 addr
4091 = memory_address (mode,
4092 plus_constant (args_addr,
4093 INTVAL (args_so_far)));
4094 else
4095 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4096 args_so_far));
4097 dest = gen_rtx_MEM (mode, addr);
4098
4099 /* We do *not* set_mem_attributes here, because incoming arguments
4100 may overlap with sibling call outgoing arguments and we cannot
4101 allow reordering of reads from function arguments with stores
4102 to outgoing arguments of sibling calls. We do, however, want
4103 to record the alignment of the stack slot. */
4104 /* ALIGN may well be better aligned than TYPE, e.g. due to
4105 PARM_BOUNDARY. Assume the caller isn't lying. */
4106 set_mem_align (dest, align);
4107
4108 emit_move_insn (dest, x);
4109 }
4110 }
4111
4112 /* If part should go in registers, copy that part
4113 into the appropriate registers. Do this now, at the end,
4114 since mem-to-mem copies above may do function calls. */
4115 if (partial > 0 && reg != 0)
4116 {
4117 /* Handle calls that pass values in multiple non-contiguous locations.
4118 The Irix 6 ABI has examples of this. */
4119 if (GET_CODE (reg) == PARALLEL)
4120 emit_group_load (reg, x, type, -1);
4121 else
4122 {
4123 gcc_assert (partial % UNITS_PER_WORD == 0);
4124 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4125 }
4126 }
4127
4128 if (extra && args_addr == 0 && where_pad == stack_direction)
4129 anti_adjust_stack (GEN_INT (extra));
4130
4131 if (alignment_pad && args_addr == 0)
4132 anti_adjust_stack (alignment_pad);
4133 }
4134 \f
4135 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4136 operations. */
4137
4138 static rtx
4139 get_subtarget (rtx x)
4140 {
4141 return (optimize
4142 || x == 0
4143 /* Only registers can be subtargets. */
4144 || !REG_P (x)
4145 /* Don't use hard regs to avoid extending their life. */
4146 || REGNO (x) < FIRST_PSEUDO_REGISTER
4147 ? 0 : x);
4148 }
4149
4150 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4151 FIELD is a bitfield. Returns true if the optimization was successful,
4152 and there's nothing else to do. */
4153
4154 static bool
4155 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4156 unsigned HOST_WIDE_INT bitpos,
4157 unsigned HOST_WIDE_INT bitregion_start,
4158 unsigned HOST_WIDE_INT bitregion_end,
4159 enum machine_mode mode1, rtx str_rtx,
4160 tree to, tree src)
4161 {
4162 enum machine_mode str_mode = GET_MODE (str_rtx);
4163 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4164 tree op0, op1;
4165 rtx value, result;
4166 optab binop;
4167 gimple srcstmt;
4168 enum tree_code code;
4169
4170 if (mode1 != VOIDmode
4171 || bitsize >= BITS_PER_WORD
4172 || str_bitsize > BITS_PER_WORD
4173 || TREE_SIDE_EFFECTS (to)
4174 || TREE_THIS_VOLATILE (to))
4175 return false;
4176
4177 STRIP_NOPS (src);
4178 if (TREE_CODE (src) != SSA_NAME)
4179 return false;
4180 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4181 return false;
4182
4183 srcstmt = get_gimple_for_ssa_name (src);
4184 if (!srcstmt
4185 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4186 return false;
4187
4188 code = gimple_assign_rhs_code (srcstmt);
4189
4190 op0 = gimple_assign_rhs1 (srcstmt);
4191
4192 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4193 to find its initialization. Hopefully the initialization will
4194 be from a bitfield load. */
4195 if (TREE_CODE (op0) == SSA_NAME)
4196 {
4197 gimple op0stmt = get_gimple_for_ssa_name (op0);
4198
4199 /* We want to eventually have OP0 be the same as TO, which
4200 should be a bitfield. */
4201 if (!op0stmt
4202 || !is_gimple_assign (op0stmt)
4203 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4204 return false;
4205 op0 = gimple_assign_rhs1 (op0stmt);
4206 }
4207
4208 op1 = gimple_assign_rhs2 (srcstmt);
4209
4210 if (!operand_equal_p (to, op0, 0))
4211 return false;
4212
4213 if (MEM_P (str_rtx))
4214 {
4215 unsigned HOST_WIDE_INT offset1;
4216
4217 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4218 str_mode = word_mode;
4219 str_mode = get_best_mode (bitsize, bitpos,
4220 bitregion_start, bitregion_end,
4221 MEM_ALIGN (str_rtx), str_mode, 0);
4222 if (str_mode == VOIDmode)
4223 return false;
4224 str_bitsize = GET_MODE_BITSIZE (str_mode);
4225
4226 offset1 = bitpos;
4227 bitpos %= str_bitsize;
4228 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4229 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4230 }
4231 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4232 return false;
4233
4234 /* If the bit field covers the whole REG/MEM, store_field
4235 will likely generate better code. */
4236 if (bitsize >= str_bitsize)
4237 return false;
4238
4239 /* We can't handle fields split across multiple entities. */
4240 if (bitpos + bitsize > str_bitsize)
4241 return false;
4242
4243 if (BYTES_BIG_ENDIAN)
4244 bitpos = str_bitsize - bitpos - bitsize;
4245
4246 switch (code)
4247 {
4248 case PLUS_EXPR:
4249 case MINUS_EXPR:
4250 /* For now, just optimize the case of the topmost bitfield
4251 where we don't need to do any masking and also
4252 1 bit bitfields where xor can be used.
4253 We might win by one instruction for the other bitfields
4254 too if insv/extv instructions aren't used, so that
4255 can be added later. */
4256 if (bitpos + bitsize != str_bitsize
4257 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4258 break;
4259
4260 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4261 value = convert_modes (str_mode,
4262 TYPE_MODE (TREE_TYPE (op1)), value,
4263 TYPE_UNSIGNED (TREE_TYPE (op1)));
4264
4265 /* We may be accessing data outside the field, which means
4266 we can alias adjacent data. */
4267 if (MEM_P (str_rtx))
4268 {
4269 str_rtx = shallow_copy_rtx (str_rtx);
4270 set_mem_alias_set (str_rtx, 0);
4271 set_mem_expr (str_rtx, 0);
4272 }
4273
4274 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4275 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4276 {
4277 value = expand_and (str_mode, value, const1_rtx, NULL);
4278 binop = xor_optab;
4279 }
4280 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4281 bitpos, NULL_RTX, 1);
4282 result = expand_binop (str_mode, binop, str_rtx,
4283 value, str_rtx, 1, OPTAB_WIDEN);
4284 if (result != str_rtx)
4285 emit_move_insn (str_rtx, result);
4286 return true;
4287
4288 case BIT_IOR_EXPR:
4289 case BIT_XOR_EXPR:
4290 if (TREE_CODE (op1) != INTEGER_CST)
4291 break;
4292 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4293 value = convert_modes (GET_MODE (str_rtx),
4294 TYPE_MODE (TREE_TYPE (op1)), value,
4295 TYPE_UNSIGNED (TREE_TYPE (op1)));
4296
4297 /* We may be accessing data outside the field, which means
4298 we can alias adjacent data. */
4299 if (MEM_P (str_rtx))
4300 {
4301 str_rtx = shallow_copy_rtx (str_rtx);
4302 set_mem_alias_set (str_rtx, 0);
4303 set_mem_expr (str_rtx, 0);
4304 }
4305
4306 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4307 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4308 {
4309 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4310 - 1);
4311 value = expand_and (GET_MODE (str_rtx), value, mask,
4312 NULL_RTX);
4313 }
4314 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4315 bitpos, NULL_RTX, 1);
4316 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4317 value, str_rtx, 1, OPTAB_WIDEN);
4318 if (result != str_rtx)
4319 emit_move_insn (str_rtx, result);
4320 return true;
4321
4322 default:
4323 break;
4324 }
4325
4326 return false;
4327 }
4328
4329 /* In the C++ memory model, consecutive bit fields in a structure are
4330 considered one memory location.
4331
4332 Given a COMPONENT_REF, this function returns the bit range of
4333 consecutive bits in which this COMPONENT_REF belongs in. The
4334 values are returned in *BITSTART and *BITEND. If either the C++
4335 memory model is not activated, or this memory access is not thread
4336 visible, 0 is returned in *BITSTART and *BITEND.
4337
4338 EXP is the COMPONENT_REF.
4339 INNERDECL is the actual object being referenced.
4340 BITPOS is the position in bits where the bit starts within the structure.
4341 BITSIZE is size in bits of the field being referenced in EXP.
4342
4343 For example, while storing into FOO.A here...
4344
4345 struct {
4346 BIT 0:
4347 unsigned int a : 4;
4348 unsigned int b : 1;
4349 BIT 8:
4350 unsigned char c;
4351 unsigned int d : 6;
4352 } foo;
4353
4354 ...we are not allowed to store past <b>, so for the layout above, a
4355 range of 0..7 (because no one cares if we store into the
4356 padding). */
4357
4358 static void
4359 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4360 unsigned HOST_WIDE_INT *bitend,
4361 tree exp, tree innerdecl,
4362 HOST_WIDE_INT bitpos, HOST_WIDE_INT bitsize)
4363 {
4364 tree field, record_type, fld;
4365 bool found_field = false;
4366 bool prev_field_is_bitfield;
4367
4368 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4369
4370 /* If other threads can't see this value, no need to restrict stores. */
4371 if (ALLOW_STORE_DATA_RACES
4372 || ((TREE_CODE (innerdecl) == MEM_REF
4373 || TREE_CODE (innerdecl) == TARGET_MEM_REF)
4374 && !ptr_deref_may_alias_global_p (TREE_OPERAND (innerdecl, 0)))
4375 || (DECL_P (innerdecl)
4376 && ((TREE_CODE (innerdecl) == VAR_DECL
4377 && DECL_THREAD_LOCAL_P (innerdecl))
4378 || !TREE_STATIC (innerdecl))))
4379 {
4380 *bitstart = *bitend = 0;
4381 return;
4382 }
4383
4384 /* Bit field we're storing into. */
4385 field = TREE_OPERAND (exp, 1);
4386 record_type = DECL_FIELD_CONTEXT (field);
4387
4388 /* Count the contiguous bitfields for the memory location that
4389 contains FIELD. */
4390 *bitstart = 0;
4391 prev_field_is_bitfield = true;
4392 for (fld = TYPE_FIELDS (record_type); fld; fld = DECL_CHAIN (fld))
4393 {
4394 tree t, offset;
4395 enum machine_mode mode;
4396 int unsignedp, volatilep;
4397
4398 if (TREE_CODE (fld) != FIELD_DECL)
4399 continue;
4400
4401 t = build3 (COMPONENT_REF, TREE_TYPE (exp),
4402 unshare_expr (TREE_OPERAND (exp, 0)),
4403 fld, NULL_TREE);
4404 get_inner_reference (t, &bitsize, &bitpos, &offset,
4405 &mode, &unsignedp, &volatilep, true);
4406
4407 if (field == fld)
4408 found_field = true;
4409
4410 if (DECL_BIT_FIELD_TYPE (fld) && bitsize > 0)
4411 {
4412 if (prev_field_is_bitfield == false)
4413 {
4414 *bitstart = bitpos;
4415 prev_field_is_bitfield = true;
4416 }
4417 }
4418 else
4419 {
4420 prev_field_is_bitfield = false;
4421 if (found_field)
4422 break;
4423 }
4424 }
4425 gcc_assert (found_field);
4426
4427 if (fld)
4428 {
4429 /* We found the end of the bit field sequence. Include the
4430 padding up to the next field and be done. */
4431 *bitend = bitpos - 1;
4432 }
4433 else
4434 {
4435 /* If this is the last element in the structure, include the padding
4436 at the end of structure. */
4437 *bitend = TREE_INT_CST_LOW (TYPE_SIZE (record_type)) - 1;
4438 }
4439 }
4440
4441 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4442 is true, try generating a nontemporal store. */
4443
4444 void
4445 expand_assignment (tree to, tree from, bool nontemporal)
4446 {
4447 rtx to_rtx = 0;
4448 rtx result;
4449 enum machine_mode mode;
4450 int align;
4451 enum insn_code icode;
4452
4453 /* Don't crash if the lhs of the assignment was erroneous. */
4454 if (TREE_CODE (to) == ERROR_MARK)
4455 {
4456 expand_normal (from);
4457 return;
4458 }
4459
4460 /* Optimize away no-op moves without side-effects. */
4461 if (operand_equal_p (to, from, 0))
4462 return;
4463
4464 mode = TYPE_MODE (TREE_TYPE (to));
4465 if ((TREE_CODE (to) == MEM_REF
4466 || TREE_CODE (to) == TARGET_MEM_REF)
4467 && mode != BLKmode
4468 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)), get_object_alignment (to)))
4469 < (signed) GET_MODE_ALIGNMENT (mode))
4470 && ((icode = optab_handler (movmisalign_optab, mode))
4471 != CODE_FOR_nothing))
4472 {
4473 struct expand_operand ops[2];
4474 enum machine_mode address_mode;
4475 rtx reg, op0, mem;
4476
4477 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4478 reg = force_not_mem (reg);
4479
4480 if (TREE_CODE (to) == MEM_REF)
4481 {
4482 addr_space_t as
4483 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4484 tree base = TREE_OPERAND (to, 0);
4485 address_mode = targetm.addr_space.address_mode (as);
4486 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4487 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4488 if (!integer_zerop (TREE_OPERAND (to, 1)))
4489 {
4490 rtx off
4491 = immed_double_int_const (mem_ref_offset (to), address_mode);
4492 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4493 }
4494 op0 = memory_address_addr_space (mode, op0, as);
4495 mem = gen_rtx_MEM (mode, op0);
4496 set_mem_attributes (mem, to, 0);
4497 set_mem_addr_space (mem, as);
4498 }
4499 else if (TREE_CODE (to) == TARGET_MEM_REF)
4500 {
4501 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4502 struct mem_address addr;
4503
4504 get_address_description (to, &addr);
4505 op0 = addr_for_mem_ref (&addr, as, true);
4506 op0 = memory_address_addr_space (mode, op0, as);
4507 mem = gen_rtx_MEM (mode, op0);
4508 set_mem_attributes (mem, to, 0);
4509 set_mem_addr_space (mem, as);
4510 }
4511 else
4512 gcc_unreachable ();
4513 if (TREE_THIS_VOLATILE (to))
4514 MEM_VOLATILE_P (mem) = 1;
4515
4516 create_fixed_operand (&ops[0], mem);
4517 create_input_operand (&ops[1], reg, mode);
4518 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4519 silently be omitted. */
4520 expand_insn (icode, 2, ops);
4521 return;
4522 }
4523
4524 /* Assignment of a structure component needs special treatment
4525 if the structure component's rtx is not simply a MEM.
4526 Assignment of an array element at a constant index, and assignment of
4527 an array element in an unaligned packed structure field, has the same
4528 problem. */
4529 if (handled_component_p (to)
4530 /* ??? We only need to handle MEM_REF here if the access is not
4531 a full access of the base object. */
4532 || (TREE_CODE (to) == MEM_REF
4533 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4534 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4535 {
4536 enum machine_mode mode1;
4537 HOST_WIDE_INT bitsize, bitpos;
4538 unsigned HOST_WIDE_INT bitregion_start = 0;
4539 unsigned HOST_WIDE_INT bitregion_end = 0;
4540 tree offset;
4541 int unsignedp;
4542 int volatilep = 0;
4543 tree tem;
4544
4545 push_temp_slots ();
4546 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4547 &unsignedp, &volatilep, true);
4548
4549 if (TREE_CODE (to) == COMPONENT_REF
4550 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4551 get_bit_range (&bitregion_start, &bitregion_end,
4552 to, tem, bitpos, bitsize);
4553
4554 /* If we are going to use store_bit_field and extract_bit_field,
4555 make sure to_rtx will be safe for multiple use. */
4556
4557 to_rtx = expand_normal (tem);
4558
4559 /* If the bitfield is volatile, we want to access it in the
4560 field's mode, not the computed mode.
4561 If a MEM has VOIDmode (external with incomplete type),
4562 use BLKmode for it instead. */
4563 if (MEM_P (to_rtx))
4564 {
4565 if (volatilep && flag_strict_volatile_bitfields > 0)
4566 to_rtx = adjust_address (to_rtx, mode1, 0);
4567 else if (GET_MODE (to_rtx) == VOIDmode)
4568 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4569 }
4570
4571 if (offset != 0)
4572 {
4573 enum machine_mode address_mode;
4574 rtx offset_rtx;
4575
4576 if (!MEM_P (to_rtx))
4577 {
4578 /* We can get constant negative offsets into arrays with broken
4579 user code. Translate this to a trap instead of ICEing. */
4580 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4581 expand_builtin_trap ();
4582 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4583 }
4584
4585 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4586 address_mode
4587 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4588 if (GET_MODE (offset_rtx) != address_mode)
4589 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4590
4591 /* A constant address in TO_RTX can have VOIDmode, we must not try
4592 to call force_reg for that case. Avoid that case. */
4593 if (MEM_P (to_rtx)
4594 && GET_MODE (to_rtx) == BLKmode
4595 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4596 && bitsize > 0
4597 && (bitpos % bitsize) == 0
4598 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4599 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4600 {
4601 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4602 bitpos = 0;
4603 }
4604
4605 to_rtx = offset_address (to_rtx, offset_rtx,
4606 highest_pow2_factor_for_target (to,
4607 offset));
4608 }
4609
4610 /* No action is needed if the target is not a memory and the field
4611 lies completely outside that target. This can occur if the source
4612 code contains an out-of-bounds access to a small array. */
4613 if (!MEM_P (to_rtx)
4614 && GET_MODE (to_rtx) != BLKmode
4615 && (unsigned HOST_WIDE_INT) bitpos
4616 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4617 {
4618 expand_normal (from);
4619 result = NULL;
4620 }
4621 /* Handle expand_expr of a complex value returning a CONCAT. */
4622 else if (GET_CODE (to_rtx) == CONCAT)
4623 {
4624 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4625 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4626 && bitpos == 0
4627 && bitsize == mode_bitsize)
4628 result = store_expr (from, to_rtx, false, nontemporal);
4629 else if (bitsize == mode_bitsize / 2
4630 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4631 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4632 nontemporal);
4633 else if (bitpos + bitsize <= mode_bitsize / 2)
4634 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4635 bitregion_start, bitregion_end,
4636 mode1, from, TREE_TYPE (tem),
4637 get_alias_set (to), nontemporal);
4638 else if (bitpos >= mode_bitsize / 2)
4639 result = store_field (XEXP (to_rtx, 1), bitsize,
4640 bitpos - mode_bitsize / 2,
4641 bitregion_start, bitregion_end,
4642 mode1, from,
4643 TREE_TYPE (tem), get_alias_set (to),
4644 nontemporal);
4645 else if (bitpos == 0 && bitsize == mode_bitsize)
4646 {
4647 rtx from_rtx;
4648 result = expand_normal (from);
4649 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4650 TYPE_MODE (TREE_TYPE (from)), 0);
4651 emit_move_insn (XEXP (to_rtx, 0),
4652 read_complex_part (from_rtx, false));
4653 emit_move_insn (XEXP (to_rtx, 1),
4654 read_complex_part (from_rtx, true));
4655 }
4656 else
4657 {
4658 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4659 GET_MODE_SIZE (GET_MODE (to_rtx)),
4660 0);
4661 write_complex_part (temp, XEXP (to_rtx, 0), false);
4662 write_complex_part (temp, XEXP (to_rtx, 1), true);
4663 result = store_field (temp, bitsize, bitpos,
4664 bitregion_start, bitregion_end,
4665 mode1, from,
4666 TREE_TYPE (tem), get_alias_set (to),
4667 nontemporal);
4668 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4669 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4670 }
4671 }
4672 else
4673 {
4674 if (MEM_P (to_rtx))
4675 {
4676 /* If the field is at offset zero, we could have been given the
4677 DECL_RTX of the parent struct. Don't munge it. */
4678 to_rtx = shallow_copy_rtx (to_rtx);
4679
4680 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4681
4682 /* Deal with volatile and readonly fields. The former is only
4683 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4684 if (volatilep)
4685 MEM_VOLATILE_P (to_rtx) = 1;
4686 if (component_uses_parent_alias_set (to))
4687 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4688 }
4689
4690 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4691 bitregion_start, bitregion_end,
4692 mode1,
4693 to_rtx, to, from))
4694 result = NULL;
4695 else
4696 result = store_field (to_rtx, bitsize, bitpos,
4697 bitregion_start, bitregion_end,
4698 mode1, from,
4699 TREE_TYPE (tem), get_alias_set (to),
4700 nontemporal);
4701 }
4702
4703 if (result)
4704 preserve_temp_slots (result);
4705 free_temp_slots ();
4706 pop_temp_slots ();
4707 return;
4708 }
4709
4710 /* If the rhs is a function call and its value is not an aggregate,
4711 call the function before we start to compute the lhs.
4712 This is needed for correct code for cases such as
4713 val = setjmp (buf) on machines where reference to val
4714 requires loading up part of an address in a separate insn.
4715
4716 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4717 since it might be a promoted variable where the zero- or sign- extension
4718 needs to be done. Handling this in the normal way is safe because no
4719 computation is done before the call. The same is true for SSA names. */
4720 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4721 && COMPLETE_TYPE_P (TREE_TYPE (from))
4722 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4723 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4724 && REG_P (DECL_RTL (to)))
4725 || TREE_CODE (to) == SSA_NAME))
4726 {
4727 rtx value;
4728
4729 push_temp_slots ();
4730 value = expand_normal (from);
4731 if (to_rtx == 0)
4732 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4733
4734 /* Handle calls that return values in multiple non-contiguous locations.
4735 The Irix 6 ABI has examples of this. */
4736 if (GET_CODE (to_rtx) == PARALLEL)
4737 emit_group_load (to_rtx, value, TREE_TYPE (from),
4738 int_size_in_bytes (TREE_TYPE (from)));
4739 else if (GET_MODE (to_rtx) == BLKmode)
4740 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4741 else
4742 {
4743 if (POINTER_TYPE_P (TREE_TYPE (to)))
4744 value = convert_memory_address_addr_space
4745 (GET_MODE (to_rtx), value,
4746 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4747
4748 emit_move_insn (to_rtx, value);
4749 }
4750 preserve_temp_slots (to_rtx);
4751 free_temp_slots ();
4752 pop_temp_slots ();
4753 return;
4754 }
4755
4756 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4757 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4758
4759 if (to_rtx == 0)
4760 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4761
4762 /* Don't move directly into a return register. */
4763 if (TREE_CODE (to) == RESULT_DECL
4764 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4765 {
4766 rtx temp;
4767
4768 push_temp_slots ();
4769 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4770
4771 if (GET_CODE (to_rtx) == PARALLEL)
4772 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4773 int_size_in_bytes (TREE_TYPE (from)));
4774 else
4775 emit_move_insn (to_rtx, temp);
4776
4777 preserve_temp_slots (to_rtx);
4778 free_temp_slots ();
4779 pop_temp_slots ();
4780 return;
4781 }
4782
4783 /* In case we are returning the contents of an object which overlaps
4784 the place the value is being stored, use a safe function when copying
4785 a value through a pointer into a structure value return block. */
4786 if (TREE_CODE (to) == RESULT_DECL
4787 && TREE_CODE (from) == INDIRECT_REF
4788 && ADDR_SPACE_GENERIC_P
4789 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4790 && refs_may_alias_p (to, from)
4791 && cfun->returns_struct
4792 && !cfun->returns_pcc_struct)
4793 {
4794 rtx from_rtx, size;
4795
4796 push_temp_slots ();
4797 size = expr_size (from);
4798 from_rtx = expand_normal (from);
4799
4800 emit_library_call (memmove_libfunc, LCT_NORMAL,
4801 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4802 XEXP (from_rtx, 0), Pmode,
4803 convert_to_mode (TYPE_MODE (sizetype),
4804 size, TYPE_UNSIGNED (sizetype)),
4805 TYPE_MODE (sizetype));
4806
4807 preserve_temp_slots (to_rtx);
4808 free_temp_slots ();
4809 pop_temp_slots ();
4810 return;
4811 }
4812
4813 /* Compute FROM and store the value in the rtx we got. */
4814
4815 push_temp_slots ();
4816 result = store_expr (from, to_rtx, 0, nontemporal);
4817 preserve_temp_slots (result);
4818 free_temp_slots ();
4819 pop_temp_slots ();
4820 return;
4821 }
4822
4823 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4824 succeeded, false otherwise. */
4825
4826 bool
4827 emit_storent_insn (rtx to, rtx from)
4828 {
4829 struct expand_operand ops[2];
4830 enum machine_mode mode = GET_MODE (to);
4831 enum insn_code code = optab_handler (storent_optab, mode);
4832
4833 if (code == CODE_FOR_nothing)
4834 return false;
4835
4836 create_fixed_operand (&ops[0], to);
4837 create_input_operand (&ops[1], from, mode);
4838 return maybe_expand_insn (code, 2, ops);
4839 }
4840
4841 /* Generate code for computing expression EXP,
4842 and storing the value into TARGET.
4843
4844 If the mode is BLKmode then we may return TARGET itself.
4845 It turns out that in BLKmode it doesn't cause a problem.
4846 because C has no operators that could combine two different
4847 assignments into the same BLKmode object with different values
4848 with no sequence point. Will other languages need this to
4849 be more thorough?
4850
4851 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4852 stack, and block moves may need to be treated specially.
4853
4854 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4855
4856 rtx
4857 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4858 {
4859 rtx temp;
4860 rtx alt_rtl = NULL_RTX;
4861 location_t loc = EXPR_LOCATION (exp);
4862
4863 if (VOID_TYPE_P (TREE_TYPE (exp)))
4864 {
4865 /* C++ can generate ?: expressions with a throw expression in one
4866 branch and an rvalue in the other. Here, we resolve attempts to
4867 store the throw expression's nonexistent result. */
4868 gcc_assert (!call_param_p);
4869 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4870 return NULL_RTX;
4871 }
4872 if (TREE_CODE (exp) == COMPOUND_EXPR)
4873 {
4874 /* Perform first part of compound expression, then assign from second
4875 part. */
4876 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4877 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4878 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4879 nontemporal);
4880 }
4881 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4882 {
4883 /* For conditional expression, get safe form of the target. Then
4884 test the condition, doing the appropriate assignment on either
4885 side. This avoids the creation of unnecessary temporaries.
4886 For non-BLKmode, it is more efficient not to do this. */
4887
4888 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4889
4890 do_pending_stack_adjust ();
4891 NO_DEFER_POP;
4892 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4893 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4894 nontemporal);
4895 emit_jump_insn (gen_jump (lab2));
4896 emit_barrier ();
4897 emit_label (lab1);
4898 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4899 nontemporal);
4900 emit_label (lab2);
4901 OK_DEFER_POP;
4902
4903 return NULL_RTX;
4904 }
4905 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4906 /* If this is a scalar in a register that is stored in a wider mode
4907 than the declared mode, compute the result into its declared mode
4908 and then convert to the wider mode. Our value is the computed
4909 expression. */
4910 {
4911 rtx inner_target = 0;
4912
4913 /* We can do the conversion inside EXP, which will often result
4914 in some optimizations. Do the conversion in two steps: first
4915 change the signedness, if needed, then the extend. But don't
4916 do this if the type of EXP is a subtype of something else
4917 since then the conversion might involve more than just
4918 converting modes. */
4919 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4920 && TREE_TYPE (TREE_TYPE (exp)) == 0
4921 && GET_MODE_PRECISION (GET_MODE (target))
4922 == TYPE_PRECISION (TREE_TYPE (exp)))
4923 {
4924 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4925 != SUBREG_PROMOTED_UNSIGNED_P (target))
4926 {
4927 /* Some types, e.g. Fortran's logical*4, won't have a signed
4928 version, so use the mode instead. */
4929 tree ntype
4930 = (signed_or_unsigned_type_for
4931 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4932 if (ntype == NULL)
4933 ntype = lang_hooks.types.type_for_mode
4934 (TYPE_MODE (TREE_TYPE (exp)),
4935 SUBREG_PROMOTED_UNSIGNED_P (target));
4936
4937 exp = fold_convert_loc (loc, ntype, exp);
4938 }
4939
4940 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4941 (GET_MODE (SUBREG_REG (target)),
4942 SUBREG_PROMOTED_UNSIGNED_P (target)),
4943 exp);
4944
4945 inner_target = SUBREG_REG (target);
4946 }
4947
4948 temp = expand_expr (exp, inner_target, VOIDmode,
4949 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4950
4951 /* If TEMP is a VOIDmode constant, use convert_modes to make
4952 sure that we properly convert it. */
4953 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4954 {
4955 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4956 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4957 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4958 GET_MODE (target), temp,
4959 SUBREG_PROMOTED_UNSIGNED_P (target));
4960 }
4961
4962 convert_move (SUBREG_REG (target), temp,
4963 SUBREG_PROMOTED_UNSIGNED_P (target));
4964
4965 return NULL_RTX;
4966 }
4967 else if ((TREE_CODE (exp) == STRING_CST
4968 || (TREE_CODE (exp) == MEM_REF
4969 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4970 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4971 == STRING_CST
4972 && integer_zerop (TREE_OPERAND (exp, 1))))
4973 && !nontemporal && !call_param_p
4974 && MEM_P (target))
4975 {
4976 /* Optimize initialization of an array with a STRING_CST. */
4977 HOST_WIDE_INT exp_len, str_copy_len;
4978 rtx dest_mem;
4979 tree str = TREE_CODE (exp) == STRING_CST
4980 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4981
4982 exp_len = int_expr_size (exp);
4983 if (exp_len <= 0)
4984 goto normal_expr;
4985
4986 if (TREE_STRING_LENGTH (str) <= 0)
4987 goto normal_expr;
4988
4989 str_copy_len = strlen (TREE_STRING_POINTER (str));
4990 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4991 goto normal_expr;
4992
4993 str_copy_len = TREE_STRING_LENGTH (str);
4994 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4995 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4996 {
4997 str_copy_len += STORE_MAX_PIECES - 1;
4998 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4999 }
5000 str_copy_len = MIN (str_copy_len, exp_len);
5001 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5002 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5003 MEM_ALIGN (target), false))
5004 goto normal_expr;
5005
5006 dest_mem = target;
5007
5008 dest_mem = store_by_pieces (dest_mem,
5009 str_copy_len, builtin_strncpy_read_str,
5010 CONST_CAST (char *,
5011 TREE_STRING_POINTER (str)),
5012 MEM_ALIGN (target), false,
5013 exp_len > str_copy_len ? 1 : 0);
5014 if (exp_len > str_copy_len)
5015 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5016 GEN_INT (exp_len - str_copy_len),
5017 BLOCK_OP_NORMAL);
5018 return NULL_RTX;
5019 }
5020 else
5021 {
5022 rtx tmp_target;
5023
5024 normal_expr:
5025 /* If we want to use a nontemporal store, force the value to
5026 register first. */
5027 tmp_target = nontemporal ? NULL_RTX : target;
5028 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5029 (call_param_p
5030 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5031 &alt_rtl);
5032 }
5033
5034 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5035 the same as that of TARGET, adjust the constant. This is needed, for
5036 example, in case it is a CONST_DOUBLE and we want only a word-sized
5037 value. */
5038 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5039 && TREE_CODE (exp) != ERROR_MARK
5040 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5041 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5042 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5043
5044 /* If value was not generated in the target, store it there.
5045 Convert the value to TARGET's type first if necessary and emit the
5046 pending incrementations that have been queued when expanding EXP.
5047 Note that we cannot emit the whole queue blindly because this will
5048 effectively disable the POST_INC optimization later.
5049
5050 If TEMP and TARGET compare equal according to rtx_equal_p, but
5051 one or both of them are volatile memory refs, we have to distinguish
5052 two cases:
5053 - expand_expr has used TARGET. In this case, we must not generate
5054 another copy. This can be detected by TARGET being equal according
5055 to == .
5056 - expand_expr has not used TARGET - that means that the source just
5057 happens to have the same RTX form. Since temp will have been created
5058 by expand_expr, it will compare unequal according to == .
5059 We must generate a copy in this case, to reach the correct number
5060 of volatile memory references. */
5061
5062 if ((! rtx_equal_p (temp, target)
5063 || (temp != target && (side_effects_p (temp)
5064 || side_effects_p (target))))
5065 && TREE_CODE (exp) != ERROR_MARK
5066 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5067 but TARGET is not valid memory reference, TEMP will differ
5068 from TARGET although it is really the same location. */
5069 && !(alt_rtl
5070 && rtx_equal_p (alt_rtl, target)
5071 && !side_effects_p (alt_rtl)
5072 && !side_effects_p (target))
5073 /* If there's nothing to copy, don't bother. Don't call
5074 expr_size unless necessary, because some front-ends (C++)
5075 expr_size-hook must not be given objects that are not
5076 supposed to be bit-copied or bit-initialized. */
5077 && expr_size (exp) != const0_rtx)
5078 {
5079 if (GET_MODE (temp) != GET_MODE (target)
5080 && GET_MODE (temp) != VOIDmode)
5081 {
5082 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5083 if (GET_MODE (target) == BLKmode
5084 && GET_MODE (temp) == BLKmode)
5085 emit_block_move (target, temp, expr_size (exp),
5086 (call_param_p
5087 ? BLOCK_OP_CALL_PARM
5088 : BLOCK_OP_NORMAL));
5089 else if (GET_MODE (target) == BLKmode)
5090 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5091 0, 0, 0, GET_MODE (temp), temp);
5092 else
5093 convert_move (target, temp, unsignedp);
5094 }
5095
5096 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5097 {
5098 /* Handle copying a string constant into an array. The string
5099 constant may be shorter than the array. So copy just the string's
5100 actual length, and clear the rest. First get the size of the data
5101 type of the string, which is actually the size of the target. */
5102 rtx size = expr_size (exp);
5103
5104 if (CONST_INT_P (size)
5105 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5106 emit_block_move (target, temp, size,
5107 (call_param_p
5108 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5109 else
5110 {
5111 enum machine_mode pointer_mode
5112 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5113 enum machine_mode address_mode
5114 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
5115
5116 /* Compute the size of the data to copy from the string. */
5117 tree copy_size
5118 = size_binop_loc (loc, MIN_EXPR,
5119 make_tree (sizetype, size),
5120 size_int (TREE_STRING_LENGTH (exp)));
5121 rtx copy_size_rtx
5122 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5123 (call_param_p
5124 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5125 rtx label = 0;
5126
5127 /* Copy that much. */
5128 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5129 TYPE_UNSIGNED (sizetype));
5130 emit_block_move (target, temp, copy_size_rtx,
5131 (call_param_p
5132 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5133
5134 /* Figure out how much is left in TARGET that we have to clear.
5135 Do all calculations in pointer_mode. */
5136 if (CONST_INT_P (copy_size_rtx))
5137 {
5138 size = plus_constant (size, -INTVAL (copy_size_rtx));
5139 target = adjust_address (target, BLKmode,
5140 INTVAL (copy_size_rtx));
5141 }
5142 else
5143 {
5144 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5145 copy_size_rtx, NULL_RTX, 0,
5146 OPTAB_LIB_WIDEN);
5147
5148 if (GET_MODE (copy_size_rtx) != address_mode)
5149 copy_size_rtx = convert_to_mode (address_mode,
5150 copy_size_rtx,
5151 TYPE_UNSIGNED (sizetype));
5152
5153 target = offset_address (target, copy_size_rtx,
5154 highest_pow2_factor (copy_size));
5155 label = gen_label_rtx ();
5156 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5157 GET_MODE (size), 0, label);
5158 }
5159
5160 if (size != const0_rtx)
5161 clear_storage (target, size, BLOCK_OP_NORMAL);
5162
5163 if (label)
5164 emit_label (label);
5165 }
5166 }
5167 /* Handle calls that return values in multiple non-contiguous locations.
5168 The Irix 6 ABI has examples of this. */
5169 else if (GET_CODE (target) == PARALLEL)
5170 emit_group_load (target, temp, TREE_TYPE (exp),
5171 int_size_in_bytes (TREE_TYPE (exp)));
5172 else if (GET_MODE (temp) == BLKmode)
5173 emit_block_move (target, temp, expr_size (exp),
5174 (call_param_p
5175 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5176 else if (nontemporal
5177 && emit_storent_insn (target, temp))
5178 /* If we managed to emit a nontemporal store, there is nothing else to
5179 do. */
5180 ;
5181 else
5182 {
5183 temp = force_operand (temp, target);
5184 if (temp != target)
5185 emit_move_insn (target, temp);
5186 }
5187 }
5188
5189 return NULL_RTX;
5190 }
5191 \f
5192 /* Return true if field F of structure TYPE is a flexible array. */
5193
5194 static bool
5195 flexible_array_member_p (const_tree f, const_tree type)
5196 {
5197 const_tree tf;
5198
5199 tf = TREE_TYPE (f);
5200 return (DECL_CHAIN (f) == NULL
5201 && TREE_CODE (tf) == ARRAY_TYPE
5202 && TYPE_DOMAIN (tf)
5203 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5204 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5205 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5206 && int_size_in_bytes (type) >= 0);
5207 }
5208
5209 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5210 must have in order for it to completely initialize a value of type TYPE.
5211 Return -1 if the number isn't known.
5212
5213 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5214
5215 static HOST_WIDE_INT
5216 count_type_elements (const_tree type, bool for_ctor_p)
5217 {
5218 switch (TREE_CODE (type))
5219 {
5220 case ARRAY_TYPE:
5221 {
5222 tree nelts;
5223
5224 nelts = array_type_nelts (type);
5225 if (nelts && host_integerp (nelts, 1))
5226 {
5227 unsigned HOST_WIDE_INT n;
5228
5229 n = tree_low_cst (nelts, 1) + 1;
5230 if (n == 0 || for_ctor_p)
5231 return n;
5232 else
5233 return n * count_type_elements (TREE_TYPE (type), false);
5234 }
5235 return for_ctor_p ? -1 : 1;
5236 }
5237
5238 case RECORD_TYPE:
5239 {
5240 unsigned HOST_WIDE_INT n;
5241 tree f;
5242
5243 n = 0;
5244 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5245 if (TREE_CODE (f) == FIELD_DECL)
5246 {
5247 if (!for_ctor_p)
5248 n += count_type_elements (TREE_TYPE (f), false);
5249 else if (!flexible_array_member_p (f, type))
5250 /* Don't count flexible arrays, which are not supposed
5251 to be initialized. */
5252 n += 1;
5253 }
5254
5255 return n;
5256 }
5257
5258 case UNION_TYPE:
5259 case QUAL_UNION_TYPE:
5260 {
5261 tree f;
5262 HOST_WIDE_INT n, m;
5263
5264 gcc_assert (!for_ctor_p);
5265 /* Estimate the number of scalars in each field and pick the
5266 maximum. Other estimates would do instead; the idea is simply
5267 to make sure that the estimate is not sensitive to the ordering
5268 of the fields. */
5269 n = 1;
5270 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5271 if (TREE_CODE (f) == FIELD_DECL)
5272 {
5273 m = count_type_elements (TREE_TYPE (f), false);
5274 /* If the field doesn't span the whole union, add an extra
5275 scalar for the rest. */
5276 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5277 TYPE_SIZE (type)) != 1)
5278 m++;
5279 if (n < m)
5280 n = m;
5281 }
5282 return n;
5283 }
5284
5285 case COMPLEX_TYPE:
5286 return 2;
5287
5288 case VECTOR_TYPE:
5289 return TYPE_VECTOR_SUBPARTS (type);
5290
5291 case INTEGER_TYPE:
5292 case REAL_TYPE:
5293 case FIXED_POINT_TYPE:
5294 case ENUMERAL_TYPE:
5295 case BOOLEAN_TYPE:
5296 case POINTER_TYPE:
5297 case OFFSET_TYPE:
5298 case REFERENCE_TYPE:
5299 return 1;
5300
5301 case ERROR_MARK:
5302 return 0;
5303
5304 case VOID_TYPE:
5305 case METHOD_TYPE:
5306 case FUNCTION_TYPE:
5307 case LANG_TYPE:
5308 default:
5309 gcc_unreachable ();
5310 }
5311 }
5312
5313 /* Helper for categorize_ctor_elements. Identical interface. */
5314
5315 static bool
5316 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5317 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5318 {
5319 unsigned HOST_WIDE_INT idx;
5320 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5321 tree value, purpose, elt_type;
5322
5323 /* Whether CTOR is a valid constant initializer, in accordance with what
5324 initializer_constant_valid_p does. If inferred from the constructor
5325 elements, true until proven otherwise. */
5326 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5327 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5328
5329 nz_elts = 0;
5330 init_elts = 0;
5331 num_fields = 0;
5332 elt_type = NULL_TREE;
5333
5334 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5335 {
5336 HOST_WIDE_INT mult = 1;
5337
5338 if (TREE_CODE (purpose) == RANGE_EXPR)
5339 {
5340 tree lo_index = TREE_OPERAND (purpose, 0);
5341 tree hi_index = TREE_OPERAND (purpose, 1);
5342
5343 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
5344 mult = (tree_low_cst (hi_index, 1)
5345 - tree_low_cst (lo_index, 1) + 1);
5346 }
5347 num_fields += mult;
5348 elt_type = TREE_TYPE (value);
5349
5350 switch (TREE_CODE (value))
5351 {
5352 case CONSTRUCTOR:
5353 {
5354 HOST_WIDE_INT nz = 0, ic = 0;
5355
5356 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5357 p_complete);
5358
5359 nz_elts += mult * nz;
5360 init_elts += mult * ic;
5361
5362 if (const_from_elts_p && const_p)
5363 const_p = const_elt_p;
5364 }
5365 break;
5366
5367 case INTEGER_CST:
5368 case REAL_CST:
5369 case FIXED_CST:
5370 if (!initializer_zerop (value))
5371 nz_elts += mult;
5372 init_elts += mult;
5373 break;
5374
5375 case STRING_CST:
5376 nz_elts += mult * TREE_STRING_LENGTH (value);
5377 init_elts += mult * TREE_STRING_LENGTH (value);
5378 break;
5379
5380 case COMPLEX_CST:
5381 if (!initializer_zerop (TREE_REALPART (value)))
5382 nz_elts += mult;
5383 if (!initializer_zerop (TREE_IMAGPART (value)))
5384 nz_elts += mult;
5385 init_elts += mult;
5386 break;
5387
5388 case VECTOR_CST:
5389 {
5390 tree v;
5391 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
5392 {
5393 if (!initializer_zerop (TREE_VALUE (v)))
5394 nz_elts += mult;
5395 init_elts += mult;
5396 }
5397 }
5398 break;
5399
5400 default:
5401 {
5402 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5403 nz_elts += mult * tc;
5404 init_elts += mult * tc;
5405
5406 if (const_from_elts_p && const_p)
5407 const_p = initializer_constant_valid_p (value, elt_type)
5408 != NULL_TREE;
5409 }
5410 break;
5411 }
5412 }
5413
5414 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5415 num_fields, elt_type))
5416 *p_complete = false;
5417
5418 *p_nz_elts += nz_elts;
5419 *p_init_elts += init_elts;
5420
5421 return const_p;
5422 }
5423
5424 /* Examine CTOR to discover:
5425 * how many scalar fields are set to nonzero values,
5426 and place it in *P_NZ_ELTS;
5427 * how many scalar fields in total are in CTOR,
5428 and place it in *P_ELT_COUNT.
5429 * whether the constructor is complete -- in the sense that every
5430 meaningful byte is explicitly given a value --
5431 and place it in *P_COMPLETE.
5432
5433 Return whether or not CTOR is a valid static constant initializer, the same
5434 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5435
5436 bool
5437 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5438 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5439 {
5440 *p_nz_elts = 0;
5441 *p_init_elts = 0;
5442 *p_complete = true;
5443
5444 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5445 }
5446
5447 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5448 of which had type LAST_TYPE. Each element was itself a complete
5449 initializer, in the sense that every meaningful byte was explicitly
5450 given a value. Return true if the same is true for the constructor
5451 as a whole. */
5452
5453 bool
5454 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5455 const_tree last_type)
5456 {
5457 if (TREE_CODE (type) == UNION_TYPE
5458 || TREE_CODE (type) == QUAL_UNION_TYPE)
5459 {
5460 if (num_elts == 0)
5461 return false;
5462
5463 gcc_assert (num_elts == 1 && last_type);
5464
5465 /* ??? We could look at each element of the union, and find the
5466 largest element. Which would avoid comparing the size of the
5467 initialized element against any tail padding in the union.
5468 Doesn't seem worth the effort... */
5469 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5470 }
5471
5472 return count_type_elements (type, true) == num_elts;
5473 }
5474
5475 /* Return 1 if EXP contains mostly (3/4) zeros. */
5476
5477 static int
5478 mostly_zeros_p (const_tree exp)
5479 {
5480 if (TREE_CODE (exp) == CONSTRUCTOR)
5481 {
5482 HOST_WIDE_INT nz_elts, init_elts;
5483 bool complete_p;
5484
5485 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5486 return !complete_p || nz_elts < init_elts / 4;
5487 }
5488
5489 return initializer_zerop (exp);
5490 }
5491
5492 /* Return 1 if EXP contains all zeros. */
5493
5494 static int
5495 all_zeros_p (const_tree exp)
5496 {
5497 if (TREE_CODE (exp) == CONSTRUCTOR)
5498 {
5499 HOST_WIDE_INT nz_elts, init_elts;
5500 bool complete_p;
5501
5502 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5503 return nz_elts == 0;
5504 }
5505
5506 return initializer_zerop (exp);
5507 }
5508 \f
5509 /* Helper function for store_constructor.
5510 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5511 TYPE is the type of the CONSTRUCTOR, not the element type.
5512 CLEARED is as for store_constructor.
5513 ALIAS_SET is the alias set to use for any stores.
5514
5515 This provides a recursive shortcut back to store_constructor when it isn't
5516 necessary to go through store_field. This is so that we can pass through
5517 the cleared field to let store_constructor know that we may not have to
5518 clear a substructure if the outer structure has already been cleared. */
5519
5520 static void
5521 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5522 HOST_WIDE_INT bitpos, enum machine_mode mode,
5523 tree exp, tree type, int cleared,
5524 alias_set_type alias_set)
5525 {
5526 if (TREE_CODE (exp) == CONSTRUCTOR
5527 /* We can only call store_constructor recursively if the size and
5528 bit position are on a byte boundary. */
5529 && bitpos % BITS_PER_UNIT == 0
5530 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5531 /* If we have a nonzero bitpos for a register target, then we just
5532 let store_field do the bitfield handling. This is unlikely to
5533 generate unnecessary clear instructions anyways. */
5534 && (bitpos == 0 || MEM_P (target)))
5535 {
5536 if (MEM_P (target))
5537 target
5538 = adjust_address (target,
5539 GET_MODE (target) == BLKmode
5540 || 0 != (bitpos
5541 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5542 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5543
5544
5545 /* Update the alias set, if required. */
5546 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5547 && MEM_ALIAS_SET (target) != 0)
5548 {
5549 target = copy_rtx (target);
5550 set_mem_alias_set (target, alias_set);
5551 }
5552
5553 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5554 }
5555 else
5556 store_field (target, bitsize, bitpos, 0, 0, mode, exp, type, alias_set,
5557 false);
5558 }
5559
5560 /* Store the value of constructor EXP into the rtx TARGET.
5561 TARGET is either a REG or a MEM; we know it cannot conflict, since
5562 safe_from_p has been called.
5563 CLEARED is true if TARGET is known to have been zero'd.
5564 SIZE is the number of bytes of TARGET we are allowed to modify: this
5565 may not be the same as the size of EXP if we are assigning to a field
5566 which has been packed to exclude padding bits. */
5567
5568 static void
5569 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5570 {
5571 tree type = TREE_TYPE (exp);
5572 #ifdef WORD_REGISTER_OPERATIONS
5573 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5574 #endif
5575
5576 switch (TREE_CODE (type))
5577 {
5578 case RECORD_TYPE:
5579 case UNION_TYPE:
5580 case QUAL_UNION_TYPE:
5581 {
5582 unsigned HOST_WIDE_INT idx;
5583 tree field, value;
5584
5585 /* If size is zero or the target is already cleared, do nothing. */
5586 if (size == 0 || cleared)
5587 cleared = 1;
5588 /* We either clear the aggregate or indicate the value is dead. */
5589 else if ((TREE_CODE (type) == UNION_TYPE
5590 || TREE_CODE (type) == QUAL_UNION_TYPE)
5591 && ! CONSTRUCTOR_ELTS (exp))
5592 /* If the constructor is empty, clear the union. */
5593 {
5594 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5595 cleared = 1;
5596 }
5597
5598 /* If we are building a static constructor into a register,
5599 set the initial value as zero so we can fold the value into
5600 a constant. But if more than one register is involved,
5601 this probably loses. */
5602 else if (REG_P (target) && TREE_STATIC (exp)
5603 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5604 {
5605 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5606 cleared = 1;
5607 }
5608
5609 /* If the constructor has fewer fields than the structure or
5610 if we are initializing the structure to mostly zeros, clear
5611 the whole structure first. Don't do this if TARGET is a
5612 register whose mode size isn't equal to SIZE since
5613 clear_storage can't handle this case. */
5614 else if (size > 0
5615 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5616 != fields_length (type))
5617 || mostly_zeros_p (exp))
5618 && (!REG_P (target)
5619 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5620 == size)))
5621 {
5622 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5623 cleared = 1;
5624 }
5625
5626 if (REG_P (target) && !cleared)
5627 emit_clobber (target);
5628
5629 /* Store each element of the constructor into the
5630 corresponding field of TARGET. */
5631 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5632 {
5633 enum machine_mode mode;
5634 HOST_WIDE_INT bitsize;
5635 HOST_WIDE_INT bitpos = 0;
5636 tree offset;
5637 rtx to_rtx = target;
5638
5639 /* Just ignore missing fields. We cleared the whole
5640 structure, above, if any fields are missing. */
5641 if (field == 0)
5642 continue;
5643
5644 if (cleared && initializer_zerop (value))
5645 continue;
5646
5647 if (host_integerp (DECL_SIZE (field), 1))
5648 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5649 else
5650 bitsize = -1;
5651
5652 mode = DECL_MODE (field);
5653 if (DECL_BIT_FIELD (field))
5654 mode = VOIDmode;
5655
5656 offset = DECL_FIELD_OFFSET (field);
5657 if (host_integerp (offset, 0)
5658 && host_integerp (bit_position (field), 0))
5659 {
5660 bitpos = int_bit_position (field);
5661 offset = 0;
5662 }
5663 else
5664 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5665
5666 if (offset)
5667 {
5668 enum machine_mode address_mode;
5669 rtx offset_rtx;
5670
5671 offset
5672 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5673 make_tree (TREE_TYPE (exp),
5674 target));
5675
5676 offset_rtx = expand_normal (offset);
5677 gcc_assert (MEM_P (to_rtx));
5678
5679 address_mode
5680 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5681 if (GET_MODE (offset_rtx) != address_mode)
5682 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5683
5684 to_rtx = offset_address (to_rtx, offset_rtx,
5685 highest_pow2_factor (offset));
5686 }
5687
5688 #ifdef WORD_REGISTER_OPERATIONS
5689 /* If this initializes a field that is smaller than a
5690 word, at the start of a word, try to widen it to a full
5691 word. This special case allows us to output C++ member
5692 function initializations in a form that the optimizers
5693 can understand. */
5694 if (REG_P (target)
5695 && bitsize < BITS_PER_WORD
5696 && bitpos % BITS_PER_WORD == 0
5697 && GET_MODE_CLASS (mode) == MODE_INT
5698 && TREE_CODE (value) == INTEGER_CST
5699 && exp_size >= 0
5700 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5701 {
5702 tree type = TREE_TYPE (value);
5703
5704 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5705 {
5706 type = lang_hooks.types.type_for_size
5707 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5708 value = fold_convert (type, value);
5709 }
5710
5711 if (BYTES_BIG_ENDIAN)
5712 value
5713 = fold_build2 (LSHIFT_EXPR, type, value,
5714 build_int_cst (type,
5715 BITS_PER_WORD - bitsize));
5716 bitsize = BITS_PER_WORD;
5717 mode = word_mode;
5718 }
5719 #endif
5720
5721 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5722 && DECL_NONADDRESSABLE_P (field))
5723 {
5724 to_rtx = copy_rtx (to_rtx);
5725 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5726 }
5727
5728 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5729 value, type, cleared,
5730 get_alias_set (TREE_TYPE (field)));
5731 }
5732 break;
5733 }
5734 case ARRAY_TYPE:
5735 {
5736 tree value, index;
5737 unsigned HOST_WIDE_INT i;
5738 int need_to_clear;
5739 tree domain;
5740 tree elttype = TREE_TYPE (type);
5741 int const_bounds_p;
5742 HOST_WIDE_INT minelt = 0;
5743 HOST_WIDE_INT maxelt = 0;
5744
5745 domain = TYPE_DOMAIN (type);
5746 const_bounds_p = (TYPE_MIN_VALUE (domain)
5747 && TYPE_MAX_VALUE (domain)
5748 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5749 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5750
5751 /* If we have constant bounds for the range of the type, get them. */
5752 if (const_bounds_p)
5753 {
5754 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5755 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5756 }
5757
5758 /* If the constructor has fewer elements than the array, clear
5759 the whole array first. Similarly if this is static
5760 constructor of a non-BLKmode object. */
5761 if (cleared)
5762 need_to_clear = 0;
5763 else if (REG_P (target) && TREE_STATIC (exp))
5764 need_to_clear = 1;
5765 else
5766 {
5767 unsigned HOST_WIDE_INT idx;
5768 tree index, value;
5769 HOST_WIDE_INT count = 0, zero_count = 0;
5770 need_to_clear = ! const_bounds_p;
5771
5772 /* This loop is a more accurate version of the loop in
5773 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5774 is also needed to check for missing elements. */
5775 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5776 {
5777 HOST_WIDE_INT this_node_count;
5778
5779 if (need_to_clear)
5780 break;
5781
5782 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5783 {
5784 tree lo_index = TREE_OPERAND (index, 0);
5785 tree hi_index = TREE_OPERAND (index, 1);
5786
5787 if (! host_integerp (lo_index, 1)
5788 || ! host_integerp (hi_index, 1))
5789 {
5790 need_to_clear = 1;
5791 break;
5792 }
5793
5794 this_node_count = (tree_low_cst (hi_index, 1)
5795 - tree_low_cst (lo_index, 1) + 1);
5796 }
5797 else
5798 this_node_count = 1;
5799
5800 count += this_node_count;
5801 if (mostly_zeros_p (value))
5802 zero_count += this_node_count;
5803 }
5804
5805 /* Clear the entire array first if there are any missing
5806 elements, or if the incidence of zero elements is >=
5807 75%. */
5808 if (! need_to_clear
5809 && (count < maxelt - minelt + 1
5810 || 4 * zero_count >= 3 * count))
5811 need_to_clear = 1;
5812 }
5813
5814 if (need_to_clear && size > 0)
5815 {
5816 if (REG_P (target))
5817 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5818 else
5819 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5820 cleared = 1;
5821 }
5822
5823 if (!cleared && REG_P (target))
5824 /* Inform later passes that the old value is dead. */
5825 emit_clobber (target);
5826
5827 /* Store each element of the constructor into the
5828 corresponding element of TARGET, determined by counting the
5829 elements. */
5830 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5831 {
5832 enum machine_mode mode;
5833 HOST_WIDE_INT bitsize;
5834 HOST_WIDE_INT bitpos;
5835 rtx xtarget = target;
5836
5837 if (cleared && initializer_zerop (value))
5838 continue;
5839
5840 mode = TYPE_MODE (elttype);
5841 if (mode == BLKmode)
5842 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5843 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5844 : -1);
5845 else
5846 bitsize = GET_MODE_BITSIZE (mode);
5847
5848 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5849 {
5850 tree lo_index = TREE_OPERAND (index, 0);
5851 tree hi_index = TREE_OPERAND (index, 1);
5852 rtx index_r, pos_rtx;
5853 HOST_WIDE_INT lo, hi, count;
5854 tree position;
5855
5856 /* If the range is constant and "small", unroll the loop. */
5857 if (const_bounds_p
5858 && host_integerp (lo_index, 0)
5859 && host_integerp (hi_index, 0)
5860 && (lo = tree_low_cst (lo_index, 0),
5861 hi = tree_low_cst (hi_index, 0),
5862 count = hi - lo + 1,
5863 (!MEM_P (target)
5864 || count <= 2
5865 || (host_integerp (TYPE_SIZE (elttype), 1)
5866 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5867 <= 40 * 8)))))
5868 {
5869 lo -= minelt; hi -= minelt;
5870 for (; lo <= hi; lo++)
5871 {
5872 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5873
5874 if (MEM_P (target)
5875 && !MEM_KEEP_ALIAS_SET_P (target)
5876 && TREE_CODE (type) == ARRAY_TYPE
5877 && TYPE_NONALIASED_COMPONENT (type))
5878 {
5879 target = copy_rtx (target);
5880 MEM_KEEP_ALIAS_SET_P (target) = 1;
5881 }
5882
5883 store_constructor_field
5884 (target, bitsize, bitpos, mode, value, type, cleared,
5885 get_alias_set (elttype));
5886 }
5887 }
5888 else
5889 {
5890 rtx loop_start = gen_label_rtx ();
5891 rtx loop_end = gen_label_rtx ();
5892 tree exit_cond;
5893
5894 expand_normal (hi_index);
5895
5896 index = build_decl (EXPR_LOCATION (exp),
5897 VAR_DECL, NULL_TREE, domain);
5898 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5899 SET_DECL_RTL (index, index_r);
5900 store_expr (lo_index, index_r, 0, false);
5901
5902 /* Build the head of the loop. */
5903 do_pending_stack_adjust ();
5904 emit_label (loop_start);
5905
5906 /* Assign value to element index. */
5907 position =
5908 fold_convert (ssizetype,
5909 fold_build2 (MINUS_EXPR,
5910 TREE_TYPE (index),
5911 index,
5912 TYPE_MIN_VALUE (domain)));
5913
5914 position =
5915 size_binop (MULT_EXPR, position,
5916 fold_convert (ssizetype,
5917 TYPE_SIZE_UNIT (elttype)));
5918
5919 pos_rtx = expand_normal (position);
5920 xtarget = offset_address (target, pos_rtx,
5921 highest_pow2_factor (position));
5922 xtarget = adjust_address (xtarget, mode, 0);
5923 if (TREE_CODE (value) == CONSTRUCTOR)
5924 store_constructor (value, xtarget, cleared,
5925 bitsize / BITS_PER_UNIT);
5926 else
5927 store_expr (value, xtarget, 0, false);
5928
5929 /* Generate a conditional jump to exit the loop. */
5930 exit_cond = build2 (LT_EXPR, integer_type_node,
5931 index, hi_index);
5932 jumpif (exit_cond, loop_end, -1);
5933
5934 /* Update the loop counter, and jump to the head of
5935 the loop. */
5936 expand_assignment (index,
5937 build2 (PLUS_EXPR, TREE_TYPE (index),
5938 index, integer_one_node),
5939 false);
5940
5941 emit_jump (loop_start);
5942
5943 /* Build the end of the loop. */
5944 emit_label (loop_end);
5945 }
5946 }
5947 else if ((index != 0 && ! host_integerp (index, 0))
5948 || ! host_integerp (TYPE_SIZE (elttype), 1))
5949 {
5950 tree position;
5951
5952 if (index == 0)
5953 index = ssize_int (1);
5954
5955 if (minelt)
5956 index = fold_convert (ssizetype,
5957 fold_build2 (MINUS_EXPR,
5958 TREE_TYPE (index),
5959 index,
5960 TYPE_MIN_VALUE (domain)));
5961
5962 position =
5963 size_binop (MULT_EXPR, index,
5964 fold_convert (ssizetype,
5965 TYPE_SIZE_UNIT (elttype)));
5966 xtarget = offset_address (target,
5967 expand_normal (position),
5968 highest_pow2_factor (position));
5969 xtarget = adjust_address (xtarget, mode, 0);
5970 store_expr (value, xtarget, 0, false);
5971 }
5972 else
5973 {
5974 if (index != 0)
5975 bitpos = ((tree_low_cst (index, 0) - minelt)
5976 * tree_low_cst (TYPE_SIZE (elttype), 1));
5977 else
5978 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5979
5980 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5981 && TREE_CODE (type) == ARRAY_TYPE
5982 && TYPE_NONALIASED_COMPONENT (type))
5983 {
5984 target = copy_rtx (target);
5985 MEM_KEEP_ALIAS_SET_P (target) = 1;
5986 }
5987 store_constructor_field (target, bitsize, bitpos, mode, value,
5988 type, cleared, get_alias_set (elttype));
5989 }
5990 }
5991 break;
5992 }
5993
5994 case VECTOR_TYPE:
5995 {
5996 unsigned HOST_WIDE_INT idx;
5997 constructor_elt *ce;
5998 int i;
5999 int need_to_clear;
6000 int icode = 0;
6001 tree elttype = TREE_TYPE (type);
6002 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
6003 enum machine_mode eltmode = TYPE_MODE (elttype);
6004 HOST_WIDE_INT bitsize;
6005 HOST_WIDE_INT bitpos;
6006 rtvec vector = NULL;
6007 unsigned n_elts;
6008 alias_set_type alias;
6009
6010 gcc_assert (eltmode != BLKmode);
6011
6012 n_elts = TYPE_VECTOR_SUBPARTS (type);
6013 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6014 {
6015 enum machine_mode mode = GET_MODE (target);
6016
6017 icode = (int) optab_handler (vec_init_optab, mode);
6018 if (icode != CODE_FOR_nothing)
6019 {
6020 unsigned int i;
6021
6022 vector = rtvec_alloc (n_elts);
6023 for (i = 0; i < n_elts; i++)
6024 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6025 }
6026 }
6027
6028 /* If the constructor has fewer elements than the vector,
6029 clear the whole array first. Similarly if this is static
6030 constructor of a non-BLKmode object. */
6031 if (cleared)
6032 need_to_clear = 0;
6033 else if (REG_P (target) && TREE_STATIC (exp))
6034 need_to_clear = 1;
6035 else
6036 {
6037 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6038 tree value;
6039
6040 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6041 {
6042 int n_elts_here = tree_low_cst
6043 (int_const_binop (TRUNC_DIV_EXPR,
6044 TYPE_SIZE (TREE_TYPE (value)),
6045 TYPE_SIZE (elttype)), 1);
6046
6047 count += n_elts_here;
6048 if (mostly_zeros_p (value))
6049 zero_count += n_elts_here;
6050 }
6051
6052 /* Clear the entire vector first if there are any missing elements,
6053 or if the incidence of zero elements is >= 75%. */
6054 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6055 }
6056
6057 if (need_to_clear && size > 0 && !vector)
6058 {
6059 if (REG_P (target))
6060 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6061 else
6062 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6063 cleared = 1;
6064 }
6065
6066 /* Inform later passes that the old value is dead. */
6067 if (!cleared && !vector && REG_P (target))
6068 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6069
6070 if (MEM_P (target))
6071 alias = MEM_ALIAS_SET (target);
6072 else
6073 alias = get_alias_set (elttype);
6074
6075 /* Store each element of the constructor into the corresponding
6076 element of TARGET, determined by counting the elements. */
6077 for (idx = 0, i = 0;
6078 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6079 idx++, i += bitsize / elt_size)
6080 {
6081 HOST_WIDE_INT eltpos;
6082 tree value = ce->value;
6083
6084 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
6085 if (cleared && initializer_zerop (value))
6086 continue;
6087
6088 if (ce->index)
6089 eltpos = tree_low_cst (ce->index, 1);
6090 else
6091 eltpos = i;
6092
6093 if (vector)
6094 {
6095 /* Vector CONSTRUCTORs should only be built from smaller
6096 vectors in the case of BLKmode vectors. */
6097 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6098 RTVEC_ELT (vector, eltpos)
6099 = expand_normal (value);
6100 }
6101 else
6102 {
6103 enum machine_mode value_mode =
6104 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6105 ? TYPE_MODE (TREE_TYPE (value))
6106 : eltmode;
6107 bitpos = eltpos * elt_size;
6108 store_constructor_field (target, bitsize, bitpos,
6109 value_mode, value, type,
6110 cleared, alias);
6111 }
6112 }
6113
6114 if (vector)
6115 emit_insn (GEN_FCN (icode)
6116 (target,
6117 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6118 break;
6119 }
6120
6121 default:
6122 gcc_unreachable ();
6123 }
6124 }
6125
6126 /* Store the value of EXP (an expression tree)
6127 into a subfield of TARGET which has mode MODE and occupies
6128 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6129 If MODE is VOIDmode, it means that we are storing into a bit-field.
6130
6131 BITREGION_START is bitpos of the first bitfield in this region.
6132 BITREGION_END is the bitpos of the ending bitfield in this region.
6133 These two fields are 0, if the C++ memory model does not apply,
6134 or we are not interested in keeping track of bitfield regions.
6135
6136 Always return const0_rtx unless we have something particular to
6137 return.
6138
6139 TYPE is the type of the underlying object,
6140
6141 ALIAS_SET is the alias set for the destination. This value will
6142 (in general) be different from that for TARGET, since TARGET is a
6143 reference to the containing structure.
6144
6145 If NONTEMPORAL is true, try generating a nontemporal store. */
6146
6147 static rtx
6148 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6149 unsigned HOST_WIDE_INT bitregion_start,
6150 unsigned HOST_WIDE_INT bitregion_end,
6151 enum machine_mode mode, tree exp, tree type,
6152 alias_set_type alias_set, bool nontemporal)
6153 {
6154 if (TREE_CODE (exp) == ERROR_MARK)
6155 return const0_rtx;
6156
6157 /* If we have nothing to store, do nothing unless the expression has
6158 side-effects. */
6159 if (bitsize == 0)
6160 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6161
6162 /* If we are storing into an unaligned field of an aligned union that is
6163 in a register, we may have the mode of TARGET being an integer mode but
6164 MODE == BLKmode. In that case, get an aligned object whose size and
6165 alignment are the same as TARGET and store TARGET into it (we can avoid
6166 the store if the field being stored is the entire width of TARGET). Then
6167 call ourselves recursively to store the field into a BLKmode version of
6168 that object. Finally, load from the object into TARGET. This is not
6169 very efficient in general, but should only be slightly more expensive
6170 than the otherwise-required unaligned accesses. Perhaps this can be
6171 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6172 twice, once with emit_move_insn and once via store_field. */
6173
6174 if (mode == BLKmode
6175 && (REG_P (target) || GET_CODE (target) == SUBREG))
6176 {
6177 rtx object = assign_temp (type, 0, 1, 1);
6178 rtx blk_object = adjust_address (object, BLKmode, 0);
6179
6180 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
6181 emit_move_insn (object, target);
6182
6183 store_field (blk_object, bitsize, bitpos,
6184 bitregion_start, bitregion_end,
6185 mode, exp, type, alias_set, nontemporal);
6186
6187 emit_move_insn (target, object);
6188
6189 /* We want to return the BLKmode version of the data. */
6190 return blk_object;
6191 }
6192
6193 if (GET_CODE (target) == CONCAT)
6194 {
6195 /* We're storing into a struct containing a single __complex. */
6196
6197 gcc_assert (!bitpos);
6198 return store_expr (exp, target, 0, nontemporal);
6199 }
6200
6201 /* If the structure is in a register or if the component
6202 is a bit field, we cannot use addressing to access it.
6203 Use bit-field techniques or SUBREG to store in it. */
6204
6205 if (mode == VOIDmode
6206 || (mode != BLKmode && ! direct_store[(int) mode]
6207 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6208 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6209 || REG_P (target)
6210 || GET_CODE (target) == SUBREG
6211 /* If the field isn't aligned enough to store as an ordinary memref,
6212 store it as a bit field. */
6213 || (mode != BLKmode
6214 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6215 || bitpos % GET_MODE_ALIGNMENT (mode))
6216 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6217 || (bitpos % BITS_PER_UNIT != 0)))
6218 /* If the RHS and field are a constant size and the size of the
6219 RHS isn't the same size as the bitfield, we must use bitfield
6220 operations. */
6221 || (bitsize >= 0
6222 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6223 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6224 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6225 decl we must use bitfield operations. */
6226 || (bitsize >= 0
6227 && TREE_CODE (exp) == MEM_REF
6228 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6229 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6230 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6231 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6232 {
6233 rtx temp;
6234 gimple nop_def;
6235
6236 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6237 implies a mask operation. If the precision is the same size as
6238 the field we're storing into, that mask is redundant. This is
6239 particularly common with bit field assignments generated by the
6240 C front end. */
6241 nop_def = get_def_for_expr (exp, NOP_EXPR);
6242 if (nop_def)
6243 {
6244 tree type = TREE_TYPE (exp);
6245 if (INTEGRAL_TYPE_P (type)
6246 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6247 && bitsize == TYPE_PRECISION (type))
6248 {
6249 tree op = gimple_assign_rhs1 (nop_def);
6250 type = TREE_TYPE (op);
6251 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6252 exp = op;
6253 }
6254 }
6255
6256 temp = expand_normal (exp);
6257
6258 /* If BITSIZE is narrower than the size of the type of EXP
6259 we will be narrowing TEMP. Normally, what's wanted are the
6260 low-order bits. However, if EXP's type is a record and this is
6261 big-endian machine, we want the upper BITSIZE bits. */
6262 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6263 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6264 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6265 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6266 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6267 NULL_RTX, 1);
6268
6269 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
6270 MODE. */
6271 if (mode != VOIDmode && mode != BLKmode
6272 && mode != TYPE_MODE (TREE_TYPE (exp)))
6273 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6274
6275 /* If the modes of TEMP and TARGET are both BLKmode, both
6276 must be in memory and BITPOS must be aligned on a byte
6277 boundary. If so, we simply do a block copy. Likewise
6278 for a BLKmode-like TARGET. */
6279 if (GET_MODE (temp) == BLKmode
6280 && (GET_MODE (target) == BLKmode
6281 || (MEM_P (target)
6282 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6283 && (bitpos % BITS_PER_UNIT) == 0
6284 && (bitsize % BITS_PER_UNIT) == 0)))
6285 {
6286 gcc_assert (MEM_P (target) && MEM_P (temp)
6287 && (bitpos % BITS_PER_UNIT) == 0);
6288
6289 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6290 emit_block_move (target, temp,
6291 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6292 / BITS_PER_UNIT),
6293 BLOCK_OP_NORMAL);
6294
6295 return const0_rtx;
6296 }
6297
6298 /* Store the value in the bitfield. */
6299 store_bit_field (target, bitsize, bitpos,
6300 bitregion_start, bitregion_end,
6301 mode, temp);
6302
6303 return const0_rtx;
6304 }
6305 else
6306 {
6307 /* Now build a reference to just the desired component. */
6308 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6309
6310 if (to_rtx == target)
6311 to_rtx = copy_rtx (to_rtx);
6312
6313 if (!MEM_SCALAR_P (to_rtx))
6314 MEM_IN_STRUCT_P (to_rtx) = 1;
6315 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6316 set_mem_alias_set (to_rtx, alias_set);
6317
6318 return store_expr (exp, to_rtx, 0, nontemporal);
6319 }
6320 }
6321 \f
6322 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6323 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6324 codes and find the ultimate containing object, which we return.
6325
6326 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6327 bit position, and *PUNSIGNEDP to the signedness of the field.
6328 If the position of the field is variable, we store a tree
6329 giving the variable offset (in units) in *POFFSET.
6330 This offset is in addition to the bit position.
6331 If the position is not variable, we store 0 in *POFFSET.
6332
6333 If any of the extraction expressions is volatile,
6334 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6335
6336 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6337 Otherwise, it is a mode that can be used to access the field.
6338
6339 If the field describes a variable-sized object, *PMODE is set to
6340 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6341 this case, but the address of the object can be found.
6342
6343 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6344 look through nodes that serve as markers of a greater alignment than
6345 the one that can be deduced from the expression. These nodes make it
6346 possible for front-ends to prevent temporaries from being created by
6347 the middle-end on alignment considerations. For that purpose, the
6348 normal operating mode at high-level is to always pass FALSE so that
6349 the ultimate containing object is really returned; moreover, the
6350 associated predicate handled_component_p will always return TRUE
6351 on these nodes, thus indicating that they are essentially handled
6352 by get_inner_reference. TRUE should only be passed when the caller
6353 is scanning the expression in order to build another representation
6354 and specifically knows how to handle these nodes; as such, this is
6355 the normal operating mode in the RTL expanders. */
6356
6357 tree
6358 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6359 HOST_WIDE_INT *pbitpos, tree *poffset,
6360 enum machine_mode *pmode, int *punsignedp,
6361 int *pvolatilep, bool keep_aligning)
6362 {
6363 tree size_tree = 0;
6364 enum machine_mode mode = VOIDmode;
6365 bool blkmode_bitfield = false;
6366 tree offset = size_zero_node;
6367 double_int bit_offset = double_int_zero;
6368
6369 /* First get the mode, signedness, and size. We do this from just the
6370 outermost expression. */
6371 *pbitsize = -1;
6372 if (TREE_CODE (exp) == COMPONENT_REF)
6373 {
6374 tree field = TREE_OPERAND (exp, 1);
6375 size_tree = DECL_SIZE (field);
6376 if (!DECL_BIT_FIELD (field))
6377 mode = DECL_MODE (field);
6378 else if (DECL_MODE (field) == BLKmode)
6379 blkmode_bitfield = true;
6380 else if (TREE_THIS_VOLATILE (exp)
6381 && flag_strict_volatile_bitfields > 0)
6382 /* Volatile bitfields should be accessed in the mode of the
6383 field's type, not the mode computed based on the bit
6384 size. */
6385 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6386
6387 *punsignedp = DECL_UNSIGNED (field);
6388 }
6389 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6390 {
6391 size_tree = TREE_OPERAND (exp, 1);
6392 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6393 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6394
6395 /* For vector types, with the correct size of access, use the mode of
6396 inner type. */
6397 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6398 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6399 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6400 mode = TYPE_MODE (TREE_TYPE (exp));
6401 }
6402 else
6403 {
6404 mode = TYPE_MODE (TREE_TYPE (exp));
6405 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6406
6407 if (mode == BLKmode)
6408 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6409 else
6410 *pbitsize = GET_MODE_BITSIZE (mode);
6411 }
6412
6413 if (size_tree != 0)
6414 {
6415 if (! host_integerp (size_tree, 1))
6416 mode = BLKmode, *pbitsize = -1;
6417 else
6418 *pbitsize = tree_low_cst (size_tree, 1);
6419 }
6420
6421 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6422 and find the ultimate containing object. */
6423 while (1)
6424 {
6425 switch (TREE_CODE (exp))
6426 {
6427 case BIT_FIELD_REF:
6428 bit_offset
6429 = double_int_add (bit_offset,
6430 tree_to_double_int (TREE_OPERAND (exp, 2)));
6431 break;
6432
6433 case COMPONENT_REF:
6434 {
6435 tree field = TREE_OPERAND (exp, 1);
6436 tree this_offset = component_ref_field_offset (exp);
6437
6438 /* If this field hasn't been filled in yet, don't go past it.
6439 This should only happen when folding expressions made during
6440 type construction. */
6441 if (this_offset == 0)
6442 break;
6443
6444 offset = size_binop (PLUS_EXPR, offset, this_offset);
6445 bit_offset = double_int_add (bit_offset,
6446 tree_to_double_int
6447 (DECL_FIELD_BIT_OFFSET (field)));
6448
6449 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6450 }
6451 break;
6452
6453 case ARRAY_REF:
6454 case ARRAY_RANGE_REF:
6455 {
6456 tree index = TREE_OPERAND (exp, 1);
6457 tree low_bound = array_ref_low_bound (exp);
6458 tree unit_size = array_ref_element_size (exp);
6459
6460 /* We assume all arrays have sizes that are a multiple of a byte.
6461 First subtract the lower bound, if any, in the type of the
6462 index, then convert to sizetype and multiply by the size of
6463 the array element. */
6464 if (! integer_zerop (low_bound))
6465 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6466 index, low_bound);
6467
6468 offset = size_binop (PLUS_EXPR, offset,
6469 size_binop (MULT_EXPR,
6470 fold_convert (sizetype, index),
6471 unit_size));
6472 }
6473 break;
6474
6475 case REALPART_EXPR:
6476 break;
6477
6478 case IMAGPART_EXPR:
6479 bit_offset = double_int_add (bit_offset,
6480 uhwi_to_double_int (*pbitsize));
6481 break;
6482
6483 case VIEW_CONVERT_EXPR:
6484 if (keep_aligning && STRICT_ALIGNMENT
6485 && (TYPE_ALIGN (TREE_TYPE (exp))
6486 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6487 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6488 < BIGGEST_ALIGNMENT)
6489 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6490 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6491 goto done;
6492 break;
6493
6494 case MEM_REF:
6495 /* Hand back the decl for MEM[&decl, off]. */
6496 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6497 {
6498 tree off = TREE_OPERAND (exp, 1);
6499 if (!integer_zerop (off))
6500 {
6501 double_int boff, coff = mem_ref_offset (exp);
6502 boff = double_int_lshift (coff,
6503 BITS_PER_UNIT == 8
6504 ? 3 : exact_log2 (BITS_PER_UNIT),
6505 HOST_BITS_PER_DOUBLE_INT, true);
6506 bit_offset = double_int_add (bit_offset, boff);
6507 }
6508 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6509 }
6510 goto done;
6511
6512 default:
6513 goto done;
6514 }
6515
6516 /* If any reference in the chain is volatile, the effect is volatile. */
6517 if (TREE_THIS_VOLATILE (exp))
6518 *pvolatilep = 1;
6519
6520 exp = TREE_OPERAND (exp, 0);
6521 }
6522 done:
6523
6524 /* If OFFSET is constant, see if we can return the whole thing as a
6525 constant bit position. Make sure to handle overflow during
6526 this conversion. */
6527 if (TREE_CODE (offset) == INTEGER_CST)
6528 {
6529 double_int tem = tree_to_double_int (offset);
6530 tem = double_int_sext (tem, TYPE_PRECISION (sizetype));
6531 tem = double_int_lshift (tem,
6532 BITS_PER_UNIT == 8
6533 ? 3 : exact_log2 (BITS_PER_UNIT),
6534 HOST_BITS_PER_DOUBLE_INT, true);
6535 tem = double_int_add (tem, bit_offset);
6536 if (double_int_fits_in_shwi_p (tem))
6537 {
6538 *pbitpos = double_int_to_shwi (tem);
6539 *poffset = offset = NULL_TREE;
6540 }
6541 }
6542
6543 /* Otherwise, split it up. */
6544 if (offset)
6545 {
6546 *pbitpos = double_int_to_shwi (bit_offset);
6547 *poffset = offset;
6548 }
6549
6550 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6551 if (mode == VOIDmode
6552 && blkmode_bitfield
6553 && (*pbitpos % BITS_PER_UNIT) == 0
6554 && (*pbitsize % BITS_PER_UNIT) == 0)
6555 *pmode = BLKmode;
6556 else
6557 *pmode = mode;
6558
6559 return exp;
6560 }
6561
6562 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6563 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6564 EXP is marked as PACKED. */
6565
6566 bool
6567 contains_packed_reference (const_tree exp)
6568 {
6569 bool packed_p = false;
6570
6571 while (1)
6572 {
6573 switch (TREE_CODE (exp))
6574 {
6575 case COMPONENT_REF:
6576 {
6577 tree field = TREE_OPERAND (exp, 1);
6578 packed_p = DECL_PACKED (field)
6579 || TYPE_PACKED (TREE_TYPE (field))
6580 || TYPE_PACKED (TREE_TYPE (exp));
6581 if (packed_p)
6582 goto done;
6583 }
6584 break;
6585
6586 case BIT_FIELD_REF:
6587 case ARRAY_REF:
6588 case ARRAY_RANGE_REF:
6589 case REALPART_EXPR:
6590 case IMAGPART_EXPR:
6591 case VIEW_CONVERT_EXPR:
6592 break;
6593
6594 default:
6595 goto done;
6596 }
6597 exp = TREE_OPERAND (exp, 0);
6598 }
6599 done:
6600 return packed_p;
6601 }
6602
6603 /* Return a tree of sizetype representing the size, in bytes, of the element
6604 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6605
6606 tree
6607 array_ref_element_size (tree exp)
6608 {
6609 tree aligned_size = TREE_OPERAND (exp, 3);
6610 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6611 location_t loc = EXPR_LOCATION (exp);
6612
6613 /* If a size was specified in the ARRAY_REF, it's the size measured
6614 in alignment units of the element type. So multiply by that value. */
6615 if (aligned_size)
6616 {
6617 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6618 sizetype from another type of the same width and signedness. */
6619 if (TREE_TYPE (aligned_size) != sizetype)
6620 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6621 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6622 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6623 }
6624
6625 /* Otherwise, take the size from that of the element type. Substitute
6626 any PLACEHOLDER_EXPR that we have. */
6627 else
6628 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6629 }
6630
6631 /* Return a tree representing the lower bound of the array mentioned in
6632 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6633
6634 tree
6635 array_ref_low_bound (tree exp)
6636 {
6637 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6638
6639 /* If a lower bound is specified in EXP, use it. */
6640 if (TREE_OPERAND (exp, 2))
6641 return TREE_OPERAND (exp, 2);
6642
6643 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6644 substituting for a PLACEHOLDER_EXPR as needed. */
6645 if (domain_type && TYPE_MIN_VALUE (domain_type))
6646 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6647
6648 /* Otherwise, return a zero of the appropriate type. */
6649 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6650 }
6651
6652 /* Return a tree representing the upper bound of the array mentioned in
6653 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6654
6655 tree
6656 array_ref_up_bound (tree exp)
6657 {
6658 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6659
6660 /* If there is a domain type and it has an upper bound, use it, substituting
6661 for a PLACEHOLDER_EXPR as needed. */
6662 if (domain_type && TYPE_MAX_VALUE (domain_type))
6663 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6664
6665 /* Otherwise fail. */
6666 return NULL_TREE;
6667 }
6668
6669 /* Return a tree representing the offset, in bytes, of the field referenced
6670 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6671
6672 tree
6673 component_ref_field_offset (tree exp)
6674 {
6675 tree aligned_offset = TREE_OPERAND (exp, 2);
6676 tree field = TREE_OPERAND (exp, 1);
6677 location_t loc = EXPR_LOCATION (exp);
6678
6679 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6680 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6681 value. */
6682 if (aligned_offset)
6683 {
6684 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6685 sizetype from another type of the same width and signedness. */
6686 if (TREE_TYPE (aligned_offset) != sizetype)
6687 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6688 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6689 size_int (DECL_OFFSET_ALIGN (field)
6690 / BITS_PER_UNIT));
6691 }
6692
6693 /* Otherwise, take the offset from that of the field. Substitute
6694 any PLACEHOLDER_EXPR that we have. */
6695 else
6696 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6697 }
6698
6699 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6700
6701 static unsigned HOST_WIDE_INT
6702 target_align (const_tree target)
6703 {
6704 /* We might have a chain of nested references with intermediate misaligning
6705 bitfields components, so need to recurse to find out. */
6706
6707 unsigned HOST_WIDE_INT this_align, outer_align;
6708
6709 switch (TREE_CODE (target))
6710 {
6711 case BIT_FIELD_REF:
6712 return 1;
6713
6714 case COMPONENT_REF:
6715 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6716 outer_align = target_align (TREE_OPERAND (target, 0));
6717 return MIN (this_align, outer_align);
6718
6719 case ARRAY_REF:
6720 case ARRAY_RANGE_REF:
6721 this_align = TYPE_ALIGN (TREE_TYPE (target));
6722 outer_align = target_align (TREE_OPERAND (target, 0));
6723 return MIN (this_align, outer_align);
6724
6725 CASE_CONVERT:
6726 case NON_LVALUE_EXPR:
6727 case VIEW_CONVERT_EXPR:
6728 this_align = TYPE_ALIGN (TREE_TYPE (target));
6729 outer_align = target_align (TREE_OPERAND (target, 0));
6730 return MAX (this_align, outer_align);
6731
6732 default:
6733 return TYPE_ALIGN (TREE_TYPE (target));
6734 }
6735 }
6736
6737 \f
6738 /* Given an rtx VALUE that may contain additions and multiplications, return
6739 an equivalent value that just refers to a register, memory, or constant.
6740 This is done by generating instructions to perform the arithmetic and
6741 returning a pseudo-register containing the value.
6742
6743 The returned value may be a REG, SUBREG, MEM or constant. */
6744
6745 rtx
6746 force_operand (rtx value, rtx target)
6747 {
6748 rtx op1, op2;
6749 /* Use subtarget as the target for operand 0 of a binary operation. */
6750 rtx subtarget = get_subtarget (target);
6751 enum rtx_code code = GET_CODE (value);
6752
6753 /* Check for subreg applied to an expression produced by loop optimizer. */
6754 if (code == SUBREG
6755 && !REG_P (SUBREG_REG (value))
6756 && !MEM_P (SUBREG_REG (value)))
6757 {
6758 value
6759 = simplify_gen_subreg (GET_MODE (value),
6760 force_reg (GET_MODE (SUBREG_REG (value)),
6761 force_operand (SUBREG_REG (value),
6762 NULL_RTX)),
6763 GET_MODE (SUBREG_REG (value)),
6764 SUBREG_BYTE (value));
6765 code = GET_CODE (value);
6766 }
6767
6768 /* Check for a PIC address load. */
6769 if ((code == PLUS || code == MINUS)
6770 && XEXP (value, 0) == pic_offset_table_rtx
6771 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6772 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6773 || GET_CODE (XEXP (value, 1)) == CONST))
6774 {
6775 if (!subtarget)
6776 subtarget = gen_reg_rtx (GET_MODE (value));
6777 emit_move_insn (subtarget, value);
6778 return subtarget;
6779 }
6780
6781 if (ARITHMETIC_P (value))
6782 {
6783 op2 = XEXP (value, 1);
6784 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6785 subtarget = 0;
6786 if (code == MINUS && CONST_INT_P (op2))
6787 {
6788 code = PLUS;
6789 op2 = negate_rtx (GET_MODE (value), op2);
6790 }
6791
6792 /* Check for an addition with OP2 a constant integer and our first
6793 operand a PLUS of a virtual register and something else. In that
6794 case, we want to emit the sum of the virtual register and the
6795 constant first and then add the other value. This allows virtual
6796 register instantiation to simply modify the constant rather than
6797 creating another one around this addition. */
6798 if (code == PLUS && CONST_INT_P (op2)
6799 && GET_CODE (XEXP (value, 0)) == PLUS
6800 && REG_P (XEXP (XEXP (value, 0), 0))
6801 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6802 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6803 {
6804 rtx temp = expand_simple_binop (GET_MODE (value), code,
6805 XEXP (XEXP (value, 0), 0), op2,
6806 subtarget, 0, OPTAB_LIB_WIDEN);
6807 return expand_simple_binop (GET_MODE (value), code, temp,
6808 force_operand (XEXP (XEXP (value,
6809 0), 1), 0),
6810 target, 0, OPTAB_LIB_WIDEN);
6811 }
6812
6813 op1 = force_operand (XEXP (value, 0), subtarget);
6814 op2 = force_operand (op2, NULL_RTX);
6815 switch (code)
6816 {
6817 case MULT:
6818 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6819 case DIV:
6820 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6821 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6822 target, 1, OPTAB_LIB_WIDEN);
6823 else
6824 return expand_divmod (0,
6825 FLOAT_MODE_P (GET_MODE (value))
6826 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6827 GET_MODE (value), op1, op2, target, 0);
6828 case MOD:
6829 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6830 target, 0);
6831 case UDIV:
6832 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6833 target, 1);
6834 case UMOD:
6835 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6836 target, 1);
6837 case ASHIFTRT:
6838 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6839 target, 0, OPTAB_LIB_WIDEN);
6840 default:
6841 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6842 target, 1, OPTAB_LIB_WIDEN);
6843 }
6844 }
6845 if (UNARY_P (value))
6846 {
6847 if (!target)
6848 target = gen_reg_rtx (GET_MODE (value));
6849 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6850 switch (code)
6851 {
6852 case ZERO_EXTEND:
6853 case SIGN_EXTEND:
6854 case TRUNCATE:
6855 case FLOAT_EXTEND:
6856 case FLOAT_TRUNCATE:
6857 convert_move (target, op1, code == ZERO_EXTEND);
6858 return target;
6859
6860 case FIX:
6861 case UNSIGNED_FIX:
6862 expand_fix (target, op1, code == UNSIGNED_FIX);
6863 return target;
6864
6865 case FLOAT:
6866 case UNSIGNED_FLOAT:
6867 expand_float (target, op1, code == UNSIGNED_FLOAT);
6868 return target;
6869
6870 default:
6871 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6872 }
6873 }
6874
6875 #ifdef INSN_SCHEDULING
6876 /* On machines that have insn scheduling, we want all memory reference to be
6877 explicit, so we need to deal with such paradoxical SUBREGs. */
6878 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
6879 value
6880 = simplify_gen_subreg (GET_MODE (value),
6881 force_reg (GET_MODE (SUBREG_REG (value)),
6882 force_operand (SUBREG_REG (value),
6883 NULL_RTX)),
6884 GET_MODE (SUBREG_REG (value)),
6885 SUBREG_BYTE (value));
6886 #endif
6887
6888 return value;
6889 }
6890 \f
6891 /* Subroutine of expand_expr: return nonzero iff there is no way that
6892 EXP can reference X, which is being modified. TOP_P is nonzero if this
6893 call is going to be used to determine whether we need a temporary
6894 for EXP, as opposed to a recursive call to this function.
6895
6896 It is always safe for this routine to return zero since it merely
6897 searches for optimization opportunities. */
6898
6899 int
6900 safe_from_p (const_rtx x, tree exp, int top_p)
6901 {
6902 rtx exp_rtl = 0;
6903 int i, nops;
6904
6905 if (x == 0
6906 /* If EXP has varying size, we MUST use a target since we currently
6907 have no way of allocating temporaries of variable size
6908 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6909 So we assume here that something at a higher level has prevented a
6910 clash. This is somewhat bogus, but the best we can do. Only
6911 do this when X is BLKmode and when we are at the top level. */
6912 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6913 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6914 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6915 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6916 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6917 != INTEGER_CST)
6918 && GET_MODE (x) == BLKmode)
6919 /* If X is in the outgoing argument area, it is always safe. */
6920 || (MEM_P (x)
6921 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6922 || (GET_CODE (XEXP (x, 0)) == PLUS
6923 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6924 return 1;
6925
6926 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6927 find the underlying pseudo. */
6928 if (GET_CODE (x) == SUBREG)
6929 {
6930 x = SUBREG_REG (x);
6931 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6932 return 0;
6933 }
6934
6935 /* Now look at our tree code and possibly recurse. */
6936 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6937 {
6938 case tcc_declaration:
6939 exp_rtl = DECL_RTL_IF_SET (exp);
6940 break;
6941
6942 case tcc_constant:
6943 return 1;
6944
6945 case tcc_exceptional:
6946 if (TREE_CODE (exp) == TREE_LIST)
6947 {
6948 while (1)
6949 {
6950 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6951 return 0;
6952 exp = TREE_CHAIN (exp);
6953 if (!exp)
6954 return 1;
6955 if (TREE_CODE (exp) != TREE_LIST)
6956 return safe_from_p (x, exp, 0);
6957 }
6958 }
6959 else if (TREE_CODE (exp) == CONSTRUCTOR)
6960 {
6961 constructor_elt *ce;
6962 unsigned HOST_WIDE_INT idx;
6963
6964 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6965 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6966 || !safe_from_p (x, ce->value, 0))
6967 return 0;
6968 return 1;
6969 }
6970 else if (TREE_CODE (exp) == ERROR_MARK)
6971 return 1; /* An already-visited SAVE_EXPR? */
6972 else
6973 return 0;
6974
6975 case tcc_statement:
6976 /* The only case we look at here is the DECL_INITIAL inside a
6977 DECL_EXPR. */
6978 return (TREE_CODE (exp) != DECL_EXPR
6979 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6980 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6981 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6982
6983 case tcc_binary:
6984 case tcc_comparison:
6985 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6986 return 0;
6987 /* Fall through. */
6988
6989 case tcc_unary:
6990 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6991
6992 case tcc_expression:
6993 case tcc_reference:
6994 case tcc_vl_exp:
6995 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6996 the expression. If it is set, we conflict iff we are that rtx or
6997 both are in memory. Otherwise, we check all operands of the
6998 expression recursively. */
6999
7000 switch (TREE_CODE (exp))
7001 {
7002 case ADDR_EXPR:
7003 /* If the operand is static or we are static, we can't conflict.
7004 Likewise if we don't conflict with the operand at all. */
7005 if (staticp (TREE_OPERAND (exp, 0))
7006 || TREE_STATIC (exp)
7007 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7008 return 1;
7009
7010 /* Otherwise, the only way this can conflict is if we are taking
7011 the address of a DECL a that address if part of X, which is
7012 very rare. */
7013 exp = TREE_OPERAND (exp, 0);
7014 if (DECL_P (exp))
7015 {
7016 if (!DECL_RTL_SET_P (exp)
7017 || !MEM_P (DECL_RTL (exp)))
7018 return 0;
7019 else
7020 exp_rtl = XEXP (DECL_RTL (exp), 0);
7021 }
7022 break;
7023
7024 case MEM_REF:
7025 if (MEM_P (x)
7026 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7027 get_alias_set (exp)))
7028 return 0;
7029 break;
7030
7031 case CALL_EXPR:
7032 /* Assume that the call will clobber all hard registers and
7033 all of memory. */
7034 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7035 || MEM_P (x))
7036 return 0;
7037 break;
7038
7039 case WITH_CLEANUP_EXPR:
7040 case CLEANUP_POINT_EXPR:
7041 /* Lowered by gimplify.c. */
7042 gcc_unreachable ();
7043
7044 case SAVE_EXPR:
7045 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7046
7047 default:
7048 break;
7049 }
7050
7051 /* If we have an rtx, we do not need to scan our operands. */
7052 if (exp_rtl)
7053 break;
7054
7055 nops = TREE_OPERAND_LENGTH (exp);
7056 for (i = 0; i < nops; i++)
7057 if (TREE_OPERAND (exp, i) != 0
7058 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7059 return 0;
7060
7061 break;
7062
7063 case tcc_type:
7064 /* Should never get a type here. */
7065 gcc_unreachable ();
7066 }
7067
7068 /* If we have an rtl, find any enclosed object. Then see if we conflict
7069 with it. */
7070 if (exp_rtl)
7071 {
7072 if (GET_CODE (exp_rtl) == SUBREG)
7073 {
7074 exp_rtl = SUBREG_REG (exp_rtl);
7075 if (REG_P (exp_rtl)
7076 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7077 return 0;
7078 }
7079
7080 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7081 are memory and they conflict. */
7082 return ! (rtx_equal_p (x, exp_rtl)
7083 || (MEM_P (x) && MEM_P (exp_rtl)
7084 && true_dependence (exp_rtl, VOIDmode, x,
7085 rtx_addr_varies_p)));
7086 }
7087
7088 /* If we reach here, it is safe. */
7089 return 1;
7090 }
7091
7092 \f
7093 /* Return the highest power of two that EXP is known to be a multiple of.
7094 This is used in updating alignment of MEMs in array references. */
7095
7096 unsigned HOST_WIDE_INT
7097 highest_pow2_factor (const_tree exp)
7098 {
7099 unsigned HOST_WIDE_INT c0, c1;
7100
7101 switch (TREE_CODE (exp))
7102 {
7103 case INTEGER_CST:
7104 /* We can find the lowest bit that's a one. If the low
7105 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7106 We need to handle this case since we can find it in a COND_EXPR,
7107 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7108 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7109 later ICE. */
7110 if (TREE_OVERFLOW (exp))
7111 return BIGGEST_ALIGNMENT;
7112 else
7113 {
7114 /* Note: tree_low_cst is intentionally not used here,
7115 we don't care about the upper bits. */
7116 c0 = TREE_INT_CST_LOW (exp);
7117 c0 &= -c0;
7118 return c0 ? c0 : BIGGEST_ALIGNMENT;
7119 }
7120 break;
7121
7122 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
7123 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7124 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7125 return MIN (c0, c1);
7126
7127 case MULT_EXPR:
7128 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7129 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7130 return c0 * c1;
7131
7132 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
7133 case CEIL_DIV_EXPR:
7134 if (integer_pow2p (TREE_OPERAND (exp, 1))
7135 && host_integerp (TREE_OPERAND (exp, 1), 1))
7136 {
7137 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7138 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
7139 return MAX (1, c0 / c1);
7140 }
7141 break;
7142
7143 case BIT_AND_EXPR:
7144 /* The highest power of two of a bit-and expression is the maximum of
7145 that of its operands. We typically get here for a complex LHS and
7146 a constant negative power of two on the RHS to force an explicit
7147 alignment, so don't bother looking at the LHS. */
7148 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7149
7150 CASE_CONVERT:
7151 case SAVE_EXPR:
7152 return highest_pow2_factor (TREE_OPERAND (exp, 0));
7153
7154 case COMPOUND_EXPR:
7155 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7156
7157 case COND_EXPR:
7158 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7159 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
7160 return MIN (c0, c1);
7161
7162 default:
7163 break;
7164 }
7165
7166 return 1;
7167 }
7168
7169 /* Similar, except that the alignment requirements of TARGET are
7170 taken into account. Assume it is at least as aligned as its
7171 type, unless it is a COMPONENT_REF in which case the layout of
7172 the structure gives the alignment. */
7173
7174 static unsigned HOST_WIDE_INT
7175 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7176 {
7177 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7178 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7179
7180 return MAX (factor, talign);
7181 }
7182 \f
7183 /* Subroutine of expand_expr. Expand the two operands of a binary
7184 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7185 The value may be stored in TARGET if TARGET is nonzero. The
7186 MODIFIER argument is as documented by expand_expr. */
7187
7188 static void
7189 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7190 enum expand_modifier modifier)
7191 {
7192 if (! safe_from_p (target, exp1, 1))
7193 target = 0;
7194 if (operand_equal_p (exp0, exp1, 0))
7195 {
7196 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7197 *op1 = copy_rtx (*op0);
7198 }
7199 else
7200 {
7201 /* If we need to preserve evaluation order, copy exp0 into its own
7202 temporary variable so that it can't be clobbered by exp1. */
7203 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7204 exp0 = save_expr (exp0);
7205 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7206 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7207 }
7208 }
7209
7210 \f
7211 /* Return a MEM that contains constant EXP. DEFER is as for
7212 output_constant_def and MODIFIER is as for expand_expr. */
7213
7214 static rtx
7215 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7216 {
7217 rtx mem;
7218
7219 mem = output_constant_def (exp, defer);
7220 if (modifier != EXPAND_INITIALIZER)
7221 mem = use_anchored_address (mem);
7222 return mem;
7223 }
7224
7225 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7226 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7227
7228 static rtx
7229 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7230 enum expand_modifier modifier, addr_space_t as)
7231 {
7232 rtx result, subtarget;
7233 tree inner, offset;
7234 HOST_WIDE_INT bitsize, bitpos;
7235 int volatilep, unsignedp;
7236 enum machine_mode mode1;
7237
7238 /* If we are taking the address of a constant and are at the top level,
7239 we have to use output_constant_def since we can't call force_const_mem
7240 at top level. */
7241 /* ??? This should be considered a front-end bug. We should not be
7242 generating ADDR_EXPR of something that isn't an LVALUE. The only
7243 exception here is STRING_CST. */
7244 if (CONSTANT_CLASS_P (exp))
7245 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
7246
7247 /* Everything must be something allowed by is_gimple_addressable. */
7248 switch (TREE_CODE (exp))
7249 {
7250 case INDIRECT_REF:
7251 /* This case will happen via recursion for &a->b. */
7252 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7253
7254 case MEM_REF:
7255 {
7256 tree tem = TREE_OPERAND (exp, 0);
7257 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7258 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7259 return expand_expr (tem, target, tmode, modifier);
7260 }
7261
7262 case CONST_DECL:
7263 /* Expand the initializer like constants above. */
7264 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
7265
7266 case REALPART_EXPR:
7267 /* The real part of the complex number is always first, therefore
7268 the address is the same as the address of the parent object. */
7269 offset = 0;
7270 bitpos = 0;
7271 inner = TREE_OPERAND (exp, 0);
7272 break;
7273
7274 case IMAGPART_EXPR:
7275 /* The imaginary part of the complex number is always second.
7276 The expression is therefore always offset by the size of the
7277 scalar type. */
7278 offset = 0;
7279 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7280 inner = TREE_OPERAND (exp, 0);
7281 break;
7282
7283 default:
7284 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7285 expand_expr, as that can have various side effects; LABEL_DECLs for
7286 example, may not have their DECL_RTL set yet. Expand the rtl of
7287 CONSTRUCTORs too, which should yield a memory reference for the
7288 constructor's contents. Assume language specific tree nodes can
7289 be expanded in some interesting way. */
7290 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7291 if (DECL_P (exp)
7292 || TREE_CODE (exp) == CONSTRUCTOR
7293 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7294 {
7295 result = expand_expr (exp, target, tmode,
7296 modifier == EXPAND_INITIALIZER
7297 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7298
7299 /* If the DECL isn't in memory, then the DECL wasn't properly
7300 marked TREE_ADDRESSABLE, which will be either a front-end
7301 or a tree optimizer bug. */
7302
7303 if (TREE_ADDRESSABLE (exp)
7304 && ! MEM_P (result)
7305 && ! targetm.calls.allocate_stack_slots_for_args())
7306 {
7307 error ("local frame unavailable (naked function?)");
7308 return result;
7309 }
7310 else
7311 gcc_assert (MEM_P (result));
7312 result = XEXP (result, 0);
7313
7314 /* ??? Is this needed anymore? */
7315 if (DECL_P (exp) && !TREE_USED (exp) == 0)
7316 {
7317 assemble_external (exp);
7318 TREE_USED (exp) = 1;
7319 }
7320
7321 if (modifier != EXPAND_INITIALIZER
7322 && modifier != EXPAND_CONST_ADDRESS)
7323 result = force_operand (result, target);
7324 return result;
7325 }
7326
7327 /* Pass FALSE as the last argument to get_inner_reference although
7328 we are expanding to RTL. The rationale is that we know how to
7329 handle "aligning nodes" here: we can just bypass them because
7330 they won't change the final object whose address will be returned
7331 (they actually exist only for that purpose). */
7332 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7333 &mode1, &unsignedp, &volatilep, false);
7334 break;
7335 }
7336
7337 /* We must have made progress. */
7338 gcc_assert (inner != exp);
7339
7340 subtarget = offset || bitpos ? NULL_RTX : target;
7341 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7342 inner alignment, force the inner to be sufficiently aligned. */
7343 if (CONSTANT_CLASS_P (inner)
7344 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7345 {
7346 inner = copy_node (inner);
7347 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7348 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7349 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7350 }
7351 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7352
7353 if (offset)
7354 {
7355 rtx tmp;
7356
7357 if (modifier != EXPAND_NORMAL)
7358 result = force_operand (result, NULL);
7359 tmp = expand_expr (offset, NULL_RTX, tmode,
7360 modifier == EXPAND_INITIALIZER
7361 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7362
7363 result = convert_memory_address_addr_space (tmode, result, as);
7364 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7365
7366 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7367 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7368 else
7369 {
7370 subtarget = bitpos ? NULL_RTX : target;
7371 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7372 1, OPTAB_LIB_WIDEN);
7373 }
7374 }
7375
7376 if (bitpos)
7377 {
7378 /* Someone beforehand should have rejected taking the address
7379 of such an object. */
7380 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7381
7382 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7383 if (modifier < EXPAND_SUM)
7384 result = force_operand (result, target);
7385 }
7386
7387 return result;
7388 }
7389
7390 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7391 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7392
7393 static rtx
7394 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7395 enum expand_modifier modifier)
7396 {
7397 addr_space_t as = ADDR_SPACE_GENERIC;
7398 enum machine_mode address_mode = Pmode;
7399 enum machine_mode pointer_mode = ptr_mode;
7400 enum machine_mode rmode;
7401 rtx result;
7402
7403 /* Target mode of VOIDmode says "whatever's natural". */
7404 if (tmode == VOIDmode)
7405 tmode = TYPE_MODE (TREE_TYPE (exp));
7406
7407 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7408 {
7409 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7410 address_mode = targetm.addr_space.address_mode (as);
7411 pointer_mode = targetm.addr_space.pointer_mode (as);
7412 }
7413
7414 /* We can get called with some Weird Things if the user does silliness
7415 like "(short) &a". In that case, convert_memory_address won't do
7416 the right thing, so ignore the given target mode. */
7417 if (tmode != address_mode && tmode != pointer_mode)
7418 tmode = address_mode;
7419
7420 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7421 tmode, modifier, as);
7422
7423 /* Despite expand_expr claims concerning ignoring TMODE when not
7424 strictly convenient, stuff breaks if we don't honor it. Note
7425 that combined with the above, we only do this for pointer modes. */
7426 rmode = GET_MODE (result);
7427 if (rmode == VOIDmode)
7428 rmode = tmode;
7429 if (rmode != tmode)
7430 result = convert_memory_address_addr_space (tmode, result, as);
7431
7432 return result;
7433 }
7434
7435 /* Generate code for computing CONSTRUCTOR EXP.
7436 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7437 is TRUE, instead of creating a temporary variable in memory
7438 NULL is returned and the caller needs to handle it differently. */
7439
7440 static rtx
7441 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7442 bool avoid_temp_mem)
7443 {
7444 tree type = TREE_TYPE (exp);
7445 enum machine_mode mode = TYPE_MODE (type);
7446
7447 /* Try to avoid creating a temporary at all. This is possible
7448 if all of the initializer is zero.
7449 FIXME: try to handle all [0..255] initializers we can handle
7450 with memset. */
7451 if (TREE_STATIC (exp)
7452 && !TREE_ADDRESSABLE (exp)
7453 && target != 0 && mode == BLKmode
7454 && all_zeros_p (exp))
7455 {
7456 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7457 return target;
7458 }
7459
7460 /* All elts simple constants => refer to a constant in memory. But
7461 if this is a non-BLKmode mode, let it store a field at a time
7462 since that should make a CONST_INT or CONST_DOUBLE when we
7463 fold. Likewise, if we have a target we can use, it is best to
7464 store directly into the target unless the type is large enough
7465 that memcpy will be used. If we are making an initializer and
7466 all operands are constant, put it in memory as well.
7467
7468 FIXME: Avoid trying to fill vector constructors piece-meal.
7469 Output them with output_constant_def below unless we're sure
7470 they're zeros. This should go away when vector initializers
7471 are treated like VECTOR_CST instead of arrays. */
7472 if ((TREE_STATIC (exp)
7473 && ((mode == BLKmode
7474 && ! (target != 0 && safe_from_p (target, exp, 1)))
7475 || TREE_ADDRESSABLE (exp)
7476 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7477 && (! MOVE_BY_PIECES_P
7478 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7479 TYPE_ALIGN (type)))
7480 && ! mostly_zeros_p (exp))))
7481 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7482 && TREE_CONSTANT (exp)))
7483 {
7484 rtx constructor;
7485
7486 if (avoid_temp_mem)
7487 return NULL_RTX;
7488
7489 constructor = expand_expr_constant (exp, 1, modifier);
7490
7491 if (modifier != EXPAND_CONST_ADDRESS
7492 && modifier != EXPAND_INITIALIZER
7493 && modifier != EXPAND_SUM)
7494 constructor = validize_mem (constructor);
7495
7496 return constructor;
7497 }
7498
7499 /* Handle calls that pass values in multiple non-contiguous
7500 locations. The Irix 6 ABI has examples of this. */
7501 if (target == 0 || ! safe_from_p (target, exp, 1)
7502 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7503 {
7504 if (avoid_temp_mem)
7505 return NULL_RTX;
7506
7507 target
7508 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7509 | (TREE_READONLY (exp)
7510 * TYPE_QUAL_CONST))),
7511 0, TREE_ADDRESSABLE (exp), 1);
7512 }
7513
7514 store_constructor (exp, target, 0, int_expr_size (exp));
7515 return target;
7516 }
7517
7518
7519 /* expand_expr: generate code for computing expression EXP.
7520 An rtx for the computed value is returned. The value is never null.
7521 In the case of a void EXP, const0_rtx is returned.
7522
7523 The value may be stored in TARGET if TARGET is nonzero.
7524 TARGET is just a suggestion; callers must assume that
7525 the rtx returned may not be the same as TARGET.
7526
7527 If TARGET is CONST0_RTX, it means that the value will be ignored.
7528
7529 If TMODE is not VOIDmode, it suggests generating the
7530 result in mode TMODE. But this is done only when convenient.
7531 Otherwise, TMODE is ignored and the value generated in its natural mode.
7532 TMODE is just a suggestion; callers must assume that
7533 the rtx returned may not have mode TMODE.
7534
7535 Note that TARGET may have neither TMODE nor MODE. In that case, it
7536 probably will not be used.
7537
7538 If MODIFIER is EXPAND_SUM then when EXP is an addition
7539 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7540 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7541 products as above, or REG or MEM, or constant.
7542 Ordinarily in such cases we would output mul or add instructions
7543 and then return a pseudo reg containing the sum.
7544
7545 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7546 it also marks a label as absolutely required (it can't be dead).
7547 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7548 This is used for outputting expressions used in initializers.
7549
7550 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7551 with a constant address even if that address is not normally legitimate.
7552 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7553
7554 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7555 a call parameter. Such targets require special care as we haven't yet
7556 marked TARGET so that it's safe from being trashed by libcalls. We
7557 don't want to use TARGET for anything but the final result;
7558 Intermediate values must go elsewhere. Additionally, calls to
7559 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7560
7561 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7562 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7563 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7564 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7565 recursively. */
7566
7567 rtx
7568 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7569 enum expand_modifier modifier, rtx *alt_rtl)
7570 {
7571 rtx ret;
7572
7573 /* Handle ERROR_MARK before anybody tries to access its type. */
7574 if (TREE_CODE (exp) == ERROR_MARK
7575 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7576 {
7577 ret = CONST0_RTX (tmode);
7578 return ret ? ret : const0_rtx;
7579 }
7580
7581 /* If this is an expression of some kind and it has an associated line
7582 number, then emit the line number before expanding the expression.
7583
7584 We need to save and restore the file and line information so that
7585 errors discovered during expansion are emitted with the right
7586 information. It would be better of the diagnostic routines
7587 used the file/line information embedded in the tree nodes rather
7588 than globals. */
7589 if (cfun && EXPR_HAS_LOCATION (exp))
7590 {
7591 location_t saved_location = input_location;
7592 location_t saved_curr_loc = get_curr_insn_source_location ();
7593 tree saved_block = get_curr_insn_block ();
7594 input_location = EXPR_LOCATION (exp);
7595 set_curr_insn_source_location (input_location);
7596
7597 /* Record where the insns produced belong. */
7598 set_curr_insn_block (TREE_BLOCK (exp));
7599
7600 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7601
7602 input_location = saved_location;
7603 set_curr_insn_block (saved_block);
7604 set_curr_insn_source_location (saved_curr_loc);
7605 }
7606 else
7607 {
7608 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7609 }
7610
7611 return ret;
7612 }
7613
7614 rtx
7615 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7616 enum expand_modifier modifier)
7617 {
7618 rtx op0, op1, op2, temp;
7619 tree type;
7620 int unsignedp;
7621 enum machine_mode mode;
7622 enum tree_code code = ops->code;
7623 optab this_optab;
7624 rtx subtarget, original_target;
7625 int ignore;
7626 bool reduce_bit_field;
7627 location_t loc = ops->location;
7628 tree treeop0, treeop1, treeop2;
7629 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7630 ? reduce_to_bit_field_precision ((expr), \
7631 target, \
7632 type) \
7633 : (expr))
7634
7635 type = ops->type;
7636 mode = TYPE_MODE (type);
7637 unsignedp = TYPE_UNSIGNED (type);
7638
7639 treeop0 = ops->op0;
7640 treeop1 = ops->op1;
7641 treeop2 = ops->op2;
7642
7643 /* We should be called only on simple (binary or unary) expressions,
7644 exactly those that are valid in gimple expressions that aren't
7645 GIMPLE_SINGLE_RHS (or invalid). */
7646 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7647 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7648 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7649
7650 ignore = (target == const0_rtx
7651 || ((CONVERT_EXPR_CODE_P (code)
7652 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7653 && TREE_CODE (type) == VOID_TYPE));
7654
7655 /* We should be called only if we need the result. */
7656 gcc_assert (!ignore);
7657
7658 /* An operation in what may be a bit-field type needs the
7659 result to be reduced to the precision of the bit-field type,
7660 which is narrower than that of the type's mode. */
7661 reduce_bit_field = (INTEGRAL_TYPE_P (type)
7662 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7663
7664 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7665 target = 0;
7666
7667 /* Use subtarget as the target for operand 0 of a binary operation. */
7668 subtarget = get_subtarget (target);
7669 original_target = target;
7670
7671 switch (code)
7672 {
7673 case NON_LVALUE_EXPR:
7674 case PAREN_EXPR:
7675 CASE_CONVERT:
7676 if (treeop0 == error_mark_node)
7677 return const0_rtx;
7678
7679 if (TREE_CODE (type) == UNION_TYPE)
7680 {
7681 tree valtype = TREE_TYPE (treeop0);
7682
7683 /* If both input and output are BLKmode, this conversion isn't doing
7684 anything except possibly changing memory attribute. */
7685 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7686 {
7687 rtx result = expand_expr (treeop0, target, tmode,
7688 modifier);
7689
7690 result = copy_rtx (result);
7691 set_mem_attributes (result, type, 0);
7692 return result;
7693 }
7694
7695 if (target == 0)
7696 {
7697 if (TYPE_MODE (type) != BLKmode)
7698 target = gen_reg_rtx (TYPE_MODE (type));
7699 else
7700 target = assign_temp (type, 0, 1, 1);
7701 }
7702
7703 if (MEM_P (target))
7704 /* Store data into beginning of memory target. */
7705 store_expr (treeop0,
7706 adjust_address (target, TYPE_MODE (valtype), 0),
7707 modifier == EXPAND_STACK_PARM,
7708 false);
7709
7710 else
7711 {
7712 gcc_assert (REG_P (target));
7713
7714 /* Store this field into a union of the proper type. */
7715 store_field (target,
7716 MIN ((int_size_in_bytes (TREE_TYPE
7717 (treeop0))
7718 * BITS_PER_UNIT),
7719 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7720 0, 0, 0, TYPE_MODE (valtype), treeop0,
7721 type, 0, false);
7722 }
7723
7724 /* Return the entire union. */
7725 return target;
7726 }
7727
7728 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7729 {
7730 op0 = expand_expr (treeop0, target, VOIDmode,
7731 modifier);
7732
7733 /* If the signedness of the conversion differs and OP0 is
7734 a promoted SUBREG, clear that indication since we now
7735 have to do the proper extension. */
7736 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7737 && GET_CODE (op0) == SUBREG)
7738 SUBREG_PROMOTED_VAR_P (op0) = 0;
7739
7740 return REDUCE_BIT_FIELD (op0);
7741 }
7742
7743 op0 = expand_expr (treeop0, NULL_RTX, mode,
7744 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7745 if (GET_MODE (op0) == mode)
7746 ;
7747
7748 /* If OP0 is a constant, just convert it into the proper mode. */
7749 else if (CONSTANT_P (op0))
7750 {
7751 tree inner_type = TREE_TYPE (treeop0);
7752 enum machine_mode inner_mode = GET_MODE (op0);
7753
7754 if (inner_mode == VOIDmode)
7755 inner_mode = TYPE_MODE (inner_type);
7756
7757 if (modifier == EXPAND_INITIALIZER)
7758 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7759 subreg_lowpart_offset (mode,
7760 inner_mode));
7761 else
7762 op0= convert_modes (mode, inner_mode, op0,
7763 TYPE_UNSIGNED (inner_type));
7764 }
7765
7766 else if (modifier == EXPAND_INITIALIZER)
7767 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7768
7769 else if (target == 0)
7770 op0 = convert_to_mode (mode, op0,
7771 TYPE_UNSIGNED (TREE_TYPE
7772 (treeop0)));
7773 else
7774 {
7775 convert_move (target, op0,
7776 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7777 op0 = target;
7778 }
7779
7780 return REDUCE_BIT_FIELD (op0);
7781
7782 case ADDR_SPACE_CONVERT_EXPR:
7783 {
7784 tree treeop0_type = TREE_TYPE (treeop0);
7785 addr_space_t as_to;
7786 addr_space_t as_from;
7787
7788 gcc_assert (POINTER_TYPE_P (type));
7789 gcc_assert (POINTER_TYPE_P (treeop0_type));
7790
7791 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7792 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7793
7794 /* Conversions between pointers to the same address space should
7795 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7796 gcc_assert (as_to != as_from);
7797
7798 /* Ask target code to handle conversion between pointers
7799 to overlapping address spaces. */
7800 if (targetm.addr_space.subset_p (as_to, as_from)
7801 || targetm.addr_space.subset_p (as_from, as_to))
7802 {
7803 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7804 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7805 gcc_assert (op0);
7806 return op0;
7807 }
7808
7809 /* For disjoint address spaces, converting anything but
7810 a null pointer invokes undefined behaviour. We simply
7811 always return a null pointer here. */
7812 return CONST0_RTX (mode);
7813 }
7814
7815 case POINTER_PLUS_EXPR:
7816 /* Even though the sizetype mode and the pointer's mode can be different
7817 expand is able to handle this correctly and get the correct result out
7818 of the PLUS_EXPR code. */
7819 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7820 if sizetype precision is smaller than pointer precision. */
7821 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7822 treeop1 = fold_convert_loc (loc, type,
7823 fold_convert_loc (loc, ssizetype,
7824 treeop1));
7825 case PLUS_EXPR:
7826 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7827 something else, make sure we add the register to the constant and
7828 then to the other thing. This case can occur during strength
7829 reduction and doing it this way will produce better code if the
7830 frame pointer or argument pointer is eliminated.
7831
7832 fold-const.c will ensure that the constant is always in the inner
7833 PLUS_EXPR, so the only case we need to do anything about is if
7834 sp, ap, or fp is our second argument, in which case we must swap
7835 the innermost first argument and our second argument. */
7836
7837 if (TREE_CODE (treeop0) == PLUS_EXPR
7838 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7839 && TREE_CODE (treeop1) == VAR_DECL
7840 && (DECL_RTL (treeop1) == frame_pointer_rtx
7841 || DECL_RTL (treeop1) == stack_pointer_rtx
7842 || DECL_RTL (treeop1) == arg_pointer_rtx))
7843 {
7844 tree t = treeop1;
7845
7846 treeop1 = TREE_OPERAND (treeop0, 0);
7847 TREE_OPERAND (treeop0, 0) = t;
7848 }
7849
7850 /* If the result is to be ptr_mode and we are adding an integer to
7851 something, we might be forming a constant. So try to use
7852 plus_constant. If it produces a sum and we can't accept it,
7853 use force_operand. This allows P = &ARR[const] to generate
7854 efficient code on machines where a SYMBOL_REF is not a valid
7855 address.
7856
7857 If this is an EXPAND_SUM call, always return the sum. */
7858 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7859 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7860 {
7861 if (modifier == EXPAND_STACK_PARM)
7862 target = 0;
7863 if (TREE_CODE (treeop0) == INTEGER_CST
7864 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
7865 && TREE_CONSTANT (treeop1))
7866 {
7867 rtx constant_part;
7868
7869 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7870 EXPAND_SUM);
7871 /* Use immed_double_const to ensure that the constant is
7872 truncated according to the mode of OP1, then sign extended
7873 to a HOST_WIDE_INT. Using the constant directly can result
7874 in non-canonical RTL in a 64x32 cross compile. */
7875 constant_part
7876 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7877 (HOST_WIDE_INT) 0,
7878 TYPE_MODE (TREE_TYPE (treeop1)));
7879 op1 = plus_constant (op1, INTVAL (constant_part));
7880 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7881 op1 = force_operand (op1, target);
7882 return REDUCE_BIT_FIELD (op1);
7883 }
7884
7885 else if (TREE_CODE (treeop1) == INTEGER_CST
7886 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
7887 && TREE_CONSTANT (treeop0))
7888 {
7889 rtx constant_part;
7890
7891 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7892 (modifier == EXPAND_INITIALIZER
7893 ? EXPAND_INITIALIZER : EXPAND_SUM));
7894 if (! CONSTANT_P (op0))
7895 {
7896 op1 = expand_expr (treeop1, NULL_RTX,
7897 VOIDmode, modifier);
7898 /* Return a PLUS if modifier says it's OK. */
7899 if (modifier == EXPAND_SUM
7900 || modifier == EXPAND_INITIALIZER)
7901 return simplify_gen_binary (PLUS, mode, op0, op1);
7902 goto binop2;
7903 }
7904 /* Use immed_double_const to ensure that the constant is
7905 truncated according to the mode of OP1, then sign extended
7906 to a HOST_WIDE_INT. Using the constant directly can result
7907 in non-canonical RTL in a 64x32 cross compile. */
7908 constant_part
7909 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7910 (HOST_WIDE_INT) 0,
7911 TYPE_MODE (TREE_TYPE (treeop0)));
7912 op0 = plus_constant (op0, INTVAL (constant_part));
7913 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7914 op0 = force_operand (op0, target);
7915 return REDUCE_BIT_FIELD (op0);
7916 }
7917 }
7918
7919 /* Use TER to expand pointer addition of a negated value
7920 as pointer subtraction. */
7921 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7922 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7923 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7924 && TREE_CODE (treeop1) == SSA_NAME
7925 && TYPE_MODE (TREE_TYPE (treeop0))
7926 == TYPE_MODE (TREE_TYPE (treeop1)))
7927 {
7928 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7929 if (def)
7930 {
7931 treeop1 = gimple_assign_rhs1 (def);
7932 code = MINUS_EXPR;
7933 goto do_minus;
7934 }
7935 }
7936
7937 /* No sense saving up arithmetic to be done
7938 if it's all in the wrong mode to form part of an address.
7939 And force_operand won't know whether to sign-extend or
7940 zero-extend. */
7941 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7942 || mode != ptr_mode)
7943 {
7944 expand_operands (treeop0, treeop1,
7945 subtarget, &op0, &op1, EXPAND_NORMAL);
7946 if (op0 == const0_rtx)
7947 return op1;
7948 if (op1 == const0_rtx)
7949 return op0;
7950 goto binop2;
7951 }
7952
7953 expand_operands (treeop0, treeop1,
7954 subtarget, &op0, &op1, modifier);
7955 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7956
7957 case MINUS_EXPR:
7958 do_minus:
7959 /* For initializers, we are allowed to return a MINUS of two
7960 symbolic constants. Here we handle all cases when both operands
7961 are constant. */
7962 /* Handle difference of two symbolic constants,
7963 for the sake of an initializer. */
7964 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7965 && really_constant_p (treeop0)
7966 && really_constant_p (treeop1))
7967 {
7968 expand_operands (treeop0, treeop1,
7969 NULL_RTX, &op0, &op1, modifier);
7970
7971 /* If the last operand is a CONST_INT, use plus_constant of
7972 the negated constant. Else make the MINUS. */
7973 if (CONST_INT_P (op1))
7974 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7975 else
7976 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7977 }
7978
7979 /* No sense saving up arithmetic to be done
7980 if it's all in the wrong mode to form part of an address.
7981 And force_operand won't know whether to sign-extend or
7982 zero-extend. */
7983 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7984 || mode != ptr_mode)
7985 goto binop;
7986
7987 expand_operands (treeop0, treeop1,
7988 subtarget, &op0, &op1, modifier);
7989
7990 /* Convert A - const to A + (-const). */
7991 if (CONST_INT_P (op1))
7992 {
7993 op1 = negate_rtx (mode, op1);
7994 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7995 }
7996
7997 goto binop2;
7998
7999 case WIDEN_MULT_PLUS_EXPR:
8000 case WIDEN_MULT_MINUS_EXPR:
8001 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8002 op2 = expand_normal (treeop2);
8003 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8004 target, unsignedp);
8005 return target;
8006
8007 case WIDEN_MULT_EXPR:
8008 /* If first operand is constant, swap them.
8009 Thus the following special case checks need only
8010 check the second operand. */
8011 if (TREE_CODE (treeop0) == INTEGER_CST)
8012 {
8013 tree t1 = treeop0;
8014 treeop0 = treeop1;
8015 treeop1 = t1;
8016 }
8017
8018 /* First, check if we have a multiplication of one signed and one
8019 unsigned operand. */
8020 if (TREE_CODE (treeop1) != INTEGER_CST
8021 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8022 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8023 {
8024 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8025 this_optab = usmul_widen_optab;
8026 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8027 != CODE_FOR_nothing)
8028 {
8029 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8030 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8031 EXPAND_NORMAL);
8032 else
8033 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8034 EXPAND_NORMAL);
8035 goto binop3;
8036 }
8037 }
8038 /* Check for a multiplication with matching signedness. */
8039 else if ((TREE_CODE (treeop1) == INTEGER_CST
8040 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8041 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8042 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8043 {
8044 tree op0type = TREE_TYPE (treeop0);
8045 enum machine_mode innermode = TYPE_MODE (op0type);
8046 bool zextend_p = TYPE_UNSIGNED (op0type);
8047 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8048 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8049
8050 if (TREE_CODE (treeop0) != INTEGER_CST)
8051 {
8052 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8053 != CODE_FOR_nothing)
8054 {
8055 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8056 EXPAND_NORMAL);
8057 temp = expand_widening_mult (mode, op0, op1, target,
8058 unsignedp, this_optab);
8059 return REDUCE_BIT_FIELD (temp);
8060 }
8061 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8062 != CODE_FOR_nothing
8063 && innermode == word_mode)
8064 {
8065 rtx htem, hipart;
8066 op0 = expand_normal (treeop0);
8067 if (TREE_CODE (treeop1) == INTEGER_CST)
8068 op1 = convert_modes (innermode, mode,
8069 expand_normal (treeop1), unsignedp);
8070 else
8071 op1 = expand_normal (treeop1);
8072 temp = expand_binop (mode, other_optab, op0, op1, target,
8073 unsignedp, OPTAB_LIB_WIDEN);
8074 hipart = gen_highpart (innermode, temp);
8075 htem = expand_mult_highpart_adjust (innermode, hipart,
8076 op0, op1, hipart,
8077 zextend_p);
8078 if (htem != hipart)
8079 emit_move_insn (hipart, htem);
8080 return REDUCE_BIT_FIELD (temp);
8081 }
8082 }
8083 }
8084 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8085 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8086 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8087 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8088
8089 case FMA_EXPR:
8090 {
8091 optab opt = fma_optab;
8092 gimple def0, def2;
8093
8094 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8095 call. */
8096 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8097 {
8098 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8099 tree call_expr;
8100
8101 gcc_assert (fn != NULL_TREE);
8102 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8103 return expand_builtin (call_expr, target, subtarget, mode, false);
8104 }
8105
8106 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8107 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8108
8109 op0 = op2 = NULL;
8110
8111 if (def0 && def2
8112 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8113 {
8114 opt = fnms_optab;
8115 op0 = expand_normal (gimple_assign_rhs1 (def0));
8116 op2 = expand_normal (gimple_assign_rhs1 (def2));
8117 }
8118 else if (def0
8119 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8120 {
8121 opt = fnma_optab;
8122 op0 = expand_normal (gimple_assign_rhs1 (def0));
8123 }
8124 else if (def2
8125 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8126 {
8127 opt = fms_optab;
8128 op2 = expand_normal (gimple_assign_rhs1 (def2));
8129 }
8130
8131 if (op0 == NULL)
8132 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8133 if (op2 == NULL)
8134 op2 = expand_normal (treeop2);
8135 op1 = expand_normal (treeop1);
8136
8137 return expand_ternary_op (TYPE_MODE (type), opt,
8138 op0, op1, op2, target, 0);
8139 }
8140
8141 case MULT_EXPR:
8142 /* If this is a fixed-point operation, then we cannot use the code
8143 below because "expand_mult" doesn't support sat/no-sat fixed-point
8144 multiplications. */
8145 if (ALL_FIXED_POINT_MODE_P (mode))
8146 goto binop;
8147
8148 /* If first operand is constant, swap them.
8149 Thus the following special case checks need only
8150 check the second operand. */
8151 if (TREE_CODE (treeop0) == INTEGER_CST)
8152 {
8153 tree t1 = treeop0;
8154 treeop0 = treeop1;
8155 treeop1 = t1;
8156 }
8157
8158 /* Attempt to return something suitable for generating an
8159 indexed address, for machines that support that. */
8160
8161 if (modifier == EXPAND_SUM && mode == ptr_mode
8162 && host_integerp (treeop1, 0))
8163 {
8164 tree exp1 = treeop1;
8165
8166 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8167 EXPAND_SUM);
8168
8169 if (!REG_P (op0))
8170 op0 = force_operand (op0, NULL_RTX);
8171 if (!REG_P (op0))
8172 op0 = copy_to_mode_reg (mode, op0);
8173
8174 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8175 gen_int_mode (tree_low_cst (exp1, 0),
8176 TYPE_MODE (TREE_TYPE (exp1)))));
8177 }
8178
8179 if (modifier == EXPAND_STACK_PARM)
8180 target = 0;
8181
8182 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8183 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8184
8185 case TRUNC_DIV_EXPR:
8186 case FLOOR_DIV_EXPR:
8187 case CEIL_DIV_EXPR:
8188 case ROUND_DIV_EXPR:
8189 case EXACT_DIV_EXPR:
8190 /* If this is a fixed-point operation, then we cannot use the code
8191 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8192 divisions. */
8193 if (ALL_FIXED_POINT_MODE_P (mode))
8194 goto binop;
8195
8196 if (modifier == EXPAND_STACK_PARM)
8197 target = 0;
8198 /* Possible optimization: compute the dividend with EXPAND_SUM
8199 then if the divisor is constant can optimize the case
8200 where some terms of the dividend have coeffs divisible by it. */
8201 expand_operands (treeop0, treeop1,
8202 subtarget, &op0, &op1, EXPAND_NORMAL);
8203 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8204
8205 case RDIV_EXPR:
8206 goto binop;
8207
8208 case TRUNC_MOD_EXPR:
8209 case FLOOR_MOD_EXPR:
8210 case CEIL_MOD_EXPR:
8211 case ROUND_MOD_EXPR:
8212 if (modifier == EXPAND_STACK_PARM)
8213 target = 0;
8214 expand_operands (treeop0, treeop1,
8215 subtarget, &op0, &op1, EXPAND_NORMAL);
8216 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8217
8218 case FIXED_CONVERT_EXPR:
8219 op0 = expand_normal (treeop0);
8220 if (target == 0 || modifier == EXPAND_STACK_PARM)
8221 target = gen_reg_rtx (mode);
8222
8223 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8224 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8225 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8226 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8227 else
8228 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8229 return target;
8230
8231 case FIX_TRUNC_EXPR:
8232 op0 = expand_normal (treeop0);
8233 if (target == 0 || modifier == EXPAND_STACK_PARM)
8234 target = gen_reg_rtx (mode);
8235 expand_fix (target, op0, unsignedp);
8236 return target;
8237
8238 case FLOAT_EXPR:
8239 op0 = expand_normal (treeop0);
8240 if (target == 0 || modifier == EXPAND_STACK_PARM)
8241 target = gen_reg_rtx (mode);
8242 /* expand_float can't figure out what to do if FROM has VOIDmode.
8243 So give it the correct mode. With -O, cse will optimize this. */
8244 if (GET_MODE (op0) == VOIDmode)
8245 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8246 op0);
8247 expand_float (target, op0,
8248 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8249 return target;
8250
8251 case NEGATE_EXPR:
8252 op0 = expand_expr (treeop0, subtarget,
8253 VOIDmode, EXPAND_NORMAL);
8254 if (modifier == EXPAND_STACK_PARM)
8255 target = 0;
8256 temp = expand_unop (mode,
8257 optab_for_tree_code (NEGATE_EXPR, type,
8258 optab_default),
8259 op0, target, 0);
8260 gcc_assert (temp);
8261 return REDUCE_BIT_FIELD (temp);
8262
8263 case ABS_EXPR:
8264 op0 = expand_expr (treeop0, subtarget,
8265 VOIDmode, EXPAND_NORMAL);
8266 if (modifier == EXPAND_STACK_PARM)
8267 target = 0;
8268
8269 /* ABS_EXPR is not valid for complex arguments. */
8270 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8271 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8272
8273 /* Unsigned abs is simply the operand. Testing here means we don't
8274 risk generating incorrect code below. */
8275 if (TYPE_UNSIGNED (type))
8276 return op0;
8277
8278 return expand_abs (mode, op0, target, unsignedp,
8279 safe_from_p (target, treeop0, 1));
8280
8281 case MAX_EXPR:
8282 case MIN_EXPR:
8283 target = original_target;
8284 if (target == 0
8285 || modifier == EXPAND_STACK_PARM
8286 || (MEM_P (target) && MEM_VOLATILE_P (target))
8287 || GET_MODE (target) != mode
8288 || (REG_P (target)
8289 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8290 target = gen_reg_rtx (mode);
8291 expand_operands (treeop0, treeop1,
8292 target, &op0, &op1, EXPAND_NORMAL);
8293
8294 /* First try to do it with a special MIN or MAX instruction.
8295 If that does not win, use a conditional jump to select the proper
8296 value. */
8297 this_optab = optab_for_tree_code (code, type, optab_default);
8298 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8299 OPTAB_WIDEN);
8300 if (temp != 0)
8301 return temp;
8302
8303 /* At this point, a MEM target is no longer useful; we will get better
8304 code without it. */
8305
8306 if (! REG_P (target))
8307 target = gen_reg_rtx (mode);
8308
8309 /* If op1 was placed in target, swap op0 and op1. */
8310 if (target != op0 && target == op1)
8311 {
8312 temp = op0;
8313 op0 = op1;
8314 op1 = temp;
8315 }
8316
8317 /* We generate better code and avoid problems with op1 mentioning
8318 target by forcing op1 into a pseudo if it isn't a constant. */
8319 if (! CONSTANT_P (op1))
8320 op1 = force_reg (mode, op1);
8321
8322 {
8323 enum rtx_code comparison_code;
8324 rtx cmpop1 = op1;
8325
8326 if (code == MAX_EXPR)
8327 comparison_code = unsignedp ? GEU : GE;
8328 else
8329 comparison_code = unsignedp ? LEU : LE;
8330
8331 /* Canonicalize to comparisons against 0. */
8332 if (op1 == const1_rtx)
8333 {
8334 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8335 or (a != 0 ? a : 1) for unsigned.
8336 For MIN we are safe converting (a <= 1 ? a : 1)
8337 into (a <= 0 ? a : 1) */
8338 cmpop1 = const0_rtx;
8339 if (code == MAX_EXPR)
8340 comparison_code = unsignedp ? NE : GT;
8341 }
8342 if (op1 == constm1_rtx && !unsignedp)
8343 {
8344 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8345 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8346 cmpop1 = const0_rtx;
8347 if (code == MIN_EXPR)
8348 comparison_code = LT;
8349 }
8350 #ifdef HAVE_conditional_move
8351 /* Use a conditional move if possible. */
8352 if (can_conditionally_move_p (mode))
8353 {
8354 rtx insn;
8355
8356 /* ??? Same problem as in expmed.c: emit_conditional_move
8357 forces a stack adjustment via compare_from_rtx, and we
8358 lose the stack adjustment if the sequence we are about
8359 to create is discarded. */
8360 do_pending_stack_adjust ();
8361
8362 start_sequence ();
8363
8364 /* Try to emit the conditional move. */
8365 insn = emit_conditional_move (target, comparison_code,
8366 op0, cmpop1, mode,
8367 op0, op1, mode,
8368 unsignedp);
8369
8370 /* If we could do the conditional move, emit the sequence,
8371 and return. */
8372 if (insn)
8373 {
8374 rtx seq = get_insns ();
8375 end_sequence ();
8376 emit_insn (seq);
8377 return target;
8378 }
8379
8380 /* Otherwise discard the sequence and fall back to code with
8381 branches. */
8382 end_sequence ();
8383 }
8384 #endif
8385 if (target != op0)
8386 emit_move_insn (target, op0);
8387
8388 temp = gen_label_rtx ();
8389 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8390 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8391 -1);
8392 }
8393 emit_move_insn (target, op1);
8394 emit_label (temp);
8395 return target;
8396
8397 case BIT_NOT_EXPR:
8398 op0 = expand_expr (treeop0, subtarget,
8399 VOIDmode, EXPAND_NORMAL);
8400 if (modifier == EXPAND_STACK_PARM)
8401 target = 0;
8402 /* In case we have to reduce the result to bitfield precision
8403 expand this as XOR with a proper constant instead. */
8404 if (reduce_bit_field)
8405 temp = expand_binop (mode, xor_optab, op0,
8406 immed_double_int_const
8407 (double_int_mask (TYPE_PRECISION (type)), mode),
8408 target, 1, OPTAB_LIB_WIDEN);
8409 else
8410 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8411 gcc_assert (temp);
8412 return temp;
8413
8414 /* ??? Can optimize bitwise operations with one arg constant.
8415 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8416 and (a bitwise1 b) bitwise2 b (etc)
8417 but that is probably not worth while. */
8418
8419 case BIT_AND_EXPR:
8420 case BIT_IOR_EXPR:
8421 case BIT_XOR_EXPR:
8422 goto binop;
8423
8424 case LROTATE_EXPR:
8425 case RROTATE_EXPR:
8426 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8427 || (GET_MODE_PRECISION (TYPE_MODE (type))
8428 == TYPE_PRECISION (type)));
8429 /* fall through */
8430
8431 case LSHIFT_EXPR:
8432 case RSHIFT_EXPR:
8433 /* If this is a fixed-point operation, then we cannot use the code
8434 below because "expand_shift" doesn't support sat/no-sat fixed-point
8435 shifts. */
8436 if (ALL_FIXED_POINT_MODE_P (mode))
8437 goto binop;
8438
8439 if (! safe_from_p (subtarget, treeop1, 1))
8440 subtarget = 0;
8441 if (modifier == EXPAND_STACK_PARM)
8442 target = 0;
8443 op0 = expand_expr (treeop0, subtarget,
8444 VOIDmode, EXPAND_NORMAL);
8445 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8446 unsignedp);
8447 if (code == LSHIFT_EXPR)
8448 temp = REDUCE_BIT_FIELD (temp);
8449 return temp;
8450
8451 /* Could determine the answer when only additive constants differ. Also,
8452 the addition of one can be handled by changing the condition. */
8453 case LT_EXPR:
8454 case LE_EXPR:
8455 case GT_EXPR:
8456 case GE_EXPR:
8457 case EQ_EXPR:
8458 case NE_EXPR:
8459 case UNORDERED_EXPR:
8460 case ORDERED_EXPR:
8461 case UNLT_EXPR:
8462 case UNLE_EXPR:
8463 case UNGT_EXPR:
8464 case UNGE_EXPR:
8465 case UNEQ_EXPR:
8466 case LTGT_EXPR:
8467 temp = do_store_flag (ops,
8468 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8469 tmode != VOIDmode ? tmode : mode);
8470 if (temp)
8471 return temp;
8472
8473 /* Use a compare and a jump for BLKmode comparisons, or for function
8474 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8475
8476 if ((target == 0
8477 || modifier == EXPAND_STACK_PARM
8478 || ! safe_from_p (target, treeop0, 1)
8479 || ! safe_from_p (target, treeop1, 1)
8480 /* Make sure we don't have a hard reg (such as function's return
8481 value) live across basic blocks, if not optimizing. */
8482 || (!optimize && REG_P (target)
8483 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8484 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8485
8486 emit_move_insn (target, const0_rtx);
8487
8488 op1 = gen_label_rtx ();
8489 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8490
8491 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8492 emit_move_insn (target, constm1_rtx);
8493 else
8494 emit_move_insn (target, const1_rtx);
8495
8496 emit_label (op1);
8497 return target;
8498
8499 case COMPLEX_EXPR:
8500 /* Get the rtx code of the operands. */
8501 op0 = expand_normal (treeop0);
8502 op1 = expand_normal (treeop1);
8503
8504 if (!target)
8505 target = gen_reg_rtx (TYPE_MODE (type));
8506
8507 /* Move the real (op0) and imaginary (op1) parts to their location. */
8508 write_complex_part (target, op0, false);
8509 write_complex_part (target, op1, true);
8510
8511 return target;
8512
8513 case WIDEN_SUM_EXPR:
8514 {
8515 tree oprnd0 = treeop0;
8516 tree oprnd1 = treeop1;
8517
8518 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8519 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8520 target, unsignedp);
8521 return target;
8522 }
8523
8524 case REDUC_MAX_EXPR:
8525 case REDUC_MIN_EXPR:
8526 case REDUC_PLUS_EXPR:
8527 {
8528 op0 = expand_normal (treeop0);
8529 this_optab = optab_for_tree_code (code, type, optab_default);
8530 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8531 gcc_assert (temp);
8532 return temp;
8533 }
8534
8535 case VEC_EXTRACT_EVEN_EXPR:
8536 case VEC_EXTRACT_ODD_EXPR:
8537 {
8538 expand_operands (treeop0, treeop1,
8539 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8540 this_optab = optab_for_tree_code (code, type, optab_default);
8541 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8542 OPTAB_WIDEN);
8543 gcc_assert (temp);
8544 return temp;
8545 }
8546
8547 case VEC_INTERLEAVE_HIGH_EXPR:
8548 case VEC_INTERLEAVE_LOW_EXPR:
8549 {
8550 expand_operands (treeop0, treeop1,
8551 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8552 this_optab = optab_for_tree_code (code, type, optab_default);
8553 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8554 OPTAB_WIDEN);
8555 gcc_assert (temp);
8556 return temp;
8557 }
8558
8559 case VEC_LSHIFT_EXPR:
8560 case VEC_RSHIFT_EXPR:
8561 {
8562 target = expand_vec_shift_expr (ops, target);
8563 return target;
8564 }
8565
8566 case VEC_UNPACK_HI_EXPR:
8567 case VEC_UNPACK_LO_EXPR:
8568 {
8569 op0 = expand_normal (treeop0);
8570 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8571 target, unsignedp);
8572 gcc_assert (temp);
8573 return temp;
8574 }
8575
8576 case VEC_UNPACK_FLOAT_HI_EXPR:
8577 case VEC_UNPACK_FLOAT_LO_EXPR:
8578 {
8579 op0 = expand_normal (treeop0);
8580 /* The signedness is determined from input operand. */
8581 temp = expand_widen_pattern_expr
8582 (ops, op0, NULL_RTX, NULL_RTX,
8583 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8584
8585 gcc_assert (temp);
8586 return temp;
8587 }
8588
8589 case VEC_WIDEN_MULT_HI_EXPR:
8590 case VEC_WIDEN_MULT_LO_EXPR:
8591 {
8592 tree oprnd0 = treeop0;
8593 tree oprnd1 = treeop1;
8594
8595 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8596 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8597 target, unsignedp);
8598 gcc_assert (target);
8599 return target;
8600 }
8601
8602 case VEC_PACK_TRUNC_EXPR:
8603 case VEC_PACK_SAT_EXPR:
8604 case VEC_PACK_FIX_TRUNC_EXPR:
8605 mode = TYPE_MODE (TREE_TYPE (treeop0));
8606 goto binop;
8607
8608 case DOT_PROD_EXPR:
8609 {
8610 tree oprnd0 = treeop0;
8611 tree oprnd1 = treeop1;
8612 tree oprnd2 = treeop2;
8613 rtx op2;
8614
8615 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8616 op2 = expand_normal (oprnd2);
8617 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8618 target, unsignedp);
8619 return target;
8620 }
8621
8622 case REALIGN_LOAD_EXPR:
8623 {
8624 tree oprnd0 = treeop0;
8625 tree oprnd1 = treeop1;
8626 tree oprnd2 = treeop2;
8627 rtx op2;
8628
8629 this_optab = optab_for_tree_code (code, type, optab_default);
8630 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8631 op2 = expand_normal (oprnd2);
8632 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8633 target, unsignedp);
8634 gcc_assert (temp);
8635 return temp;
8636 }
8637
8638 case COND_EXPR:
8639 /* A COND_EXPR with its type being VOID_TYPE represents a
8640 conditional jump and is handled in
8641 expand_gimple_cond_expr. */
8642 gcc_assert (!VOID_TYPE_P (type));
8643
8644 /* Note that COND_EXPRs whose type is a structure or union
8645 are required to be constructed to contain assignments of
8646 a temporary variable, so that we can evaluate them here
8647 for side effect only. If type is void, we must do likewise. */
8648
8649 gcc_assert (!TREE_ADDRESSABLE (type)
8650 && !ignore
8651 && TREE_TYPE (treeop1) != void_type_node
8652 && TREE_TYPE (treeop2) != void_type_node);
8653
8654 /* If we are not to produce a result, we have no target. Otherwise,
8655 if a target was specified use it; it will not be used as an
8656 intermediate target unless it is safe. If no target, use a
8657 temporary. */
8658
8659 if (modifier != EXPAND_STACK_PARM
8660 && original_target
8661 && safe_from_p (original_target, treeop0, 1)
8662 && GET_MODE (original_target) == mode
8663 #ifdef HAVE_conditional_move
8664 && (! can_conditionally_move_p (mode)
8665 || REG_P (original_target))
8666 #endif
8667 && !MEM_P (original_target))
8668 temp = original_target;
8669 else
8670 temp = assign_temp (type, 0, 0, 1);
8671
8672 do_pending_stack_adjust ();
8673 NO_DEFER_POP;
8674 op0 = gen_label_rtx ();
8675 op1 = gen_label_rtx ();
8676 jumpifnot (treeop0, op0, -1);
8677 store_expr (treeop1, temp,
8678 modifier == EXPAND_STACK_PARM,
8679 false);
8680
8681 emit_jump_insn (gen_jump (op1));
8682 emit_barrier ();
8683 emit_label (op0);
8684 store_expr (treeop2, temp,
8685 modifier == EXPAND_STACK_PARM,
8686 false);
8687
8688 emit_label (op1);
8689 OK_DEFER_POP;
8690 return temp;
8691
8692 case VEC_COND_EXPR:
8693 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
8694 return target;
8695
8696 default:
8697 gcc_unreachable ();
8698 }
8699
8700 /* Here to do an ordinary binary operator. */
8701 binop:
8702 expand_operands (treeop0, treeop1,
8703 subtarget, &op0, &op1, EXPAND_NORMAL);
8704 binop2:
8705 this_optab = optab_for_tree_code (code, type, optab_default);
8706 binop3:
8707 if (modifier == EXPAND_STACK_PARM)
8708 target = 0;
8709 temp = expand_binop (mode, this_optab, op0, op1, target,
8710 unsignedp, OPTAB_LIB_WIDEN);
8711 gcc_assert (temp);
8712 /* Bitwise operations do not need bitfield reduction as we expect their
8713 operands being properly truncated. */
8714 if (code == BIT_XOR_EXPR
8715 || code == BIT_AND_EXPR
8716 || code == BIT_IOR_EXPR)
8717 return temp;
8718 return REDUCE_BIT_FIELD (temp);
8719 }
8720 #undef REDUCE_BIT_FIELD
8721
8722 rtx
8723 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8724 enum expand_modifier modifier, rtx *alt_rtl)
8725 {
8726 rtx op0, op1, temp, decl_rtl;
8727 tree type;
8728 int unsignedp;
8729 enum machine_mode mode;
8730 enum tree_code code = TREE_CODE (exp);
8731 rtx subtarget, original_target;
8732 int ignore;
8733 tree context;
8734 bool reduce_bit_field;
8735 location_t loc = EXPR_LOCATION (exp);
8736 struct separate_ops ops;
8737 tree treeop0, treeop1, treeop2;
8738 tree ssa_name = NULL_TREE;
8739 gimple g;
8740
8741 type = TREE_TYPE (exp);
8742 mode = TYPE_MODE (type);
8743 unsignedp = TYPE_UNSIGNED (type);
8744
8745 treeop0 = treeop1 = treeop2 = NULL_TREE;
8746 if (!VL_EXP_CLASS_P (exp))
8747 switch (TREE_CODE_LENGTH (code))
8748 {
8749 default:
8750 case 3: treeop2 = TREE_OPERAND (exp, 2);
8751 case 2: treeop1 = TREE_OPERAND (exp, 1);
8752 case 1: treeop0 = TREE_OPERAND (exp, 0);
8753 case 0: break;
8754 }
8755 ops.code = code;
8756 ops.type = type;
8757 ops.op0 = treeop0;
8758 ops.op1 = treeop1;
8759 ops.op2 = treeop2;
8760 ops.location = loc;
8761
8762 ignore = (target == const0_rtx
8763 || ((CONVERT_EXPR_CODE_P (code)
8764 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8765 && TREE_CODE (type) == VOID_TYPE));
8766
8767 /* An operation in what may be a bit-field type needs the
8768 result to be reduced to the precision of the bit-field type,
8769 which is narrower than that of the type's mode. */
8770 reduce_bit_field = (!ignore
8771 && INTEGRAL_TYPE_P (type)
8772 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8773
8774 /* If we are going to ignore this result, we need only do something
8775 if there is a side-effect somewhere in the expression. If there
8776 is, short-circuit the most common cases here. Note that we must
8777 not call expand_expr with anything but const0_rtx in case this
8778 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8779
8780 if (ignore)
8781 {
8782 if (! TREE_SIDE_EFFECTS (exp))
8783 return const0_rtx;
8784
8785 /* Ensure we reference a volatile object even if value is ignored, but
8786 don't do this if all we are doing is taking its address. */
8787 if (TREE_THIS_VOLATILE (exp)
8788 && TREE_CODE (exp) != FUNCTION_DECL
8789 && mode != VOIDmode && mode != BLKmode
8790 && modifier != EXPAND_CONST_ADDRESS)
8791 {
8792 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8793 if (MEM_P (temp))
8794 copy_to_reg (temp);
8795 return const0_rtx;
8796 }
8797
8798 if (TREE_CODE_CLASS (code) == tcc_unary
8799 || code == COMPONENT_REF || code == INDIRECT_REF)
8800 return expand_expr (treeop0, const0_rtx, VOIDmode,
8801 modifier);
8802
8803 else if (TREE_CODE_CLASS (code) == tcc_binary
8804 || TREE_CODE_CLASS (code) == tcc_comparison
8805 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8806 {
8807 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8808 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8809 return const0_rtx;
8810 }
8811 else if (code == BIT_FIELD_REF)
8812 {
8813 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8814 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8815 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8816 return const0_rtx;
8817 }
8818
8819 target = 0;
8820 }
8821
8822 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8823 target = 0;
8824
8825 /* Use subtarget as the target for operand 0 of a binary operation. */
8826 subtarget = get_subtarget (target);
8827 original_target = target;
8828
8829 switch (code)
8830 {
8831 case LABEL_DECL:
8832 {
8833 tree function = decl_function_context (exp);
8834
8835 temp = label_rtx (exp);
8836 temp = gen_rtx_LABEL_REF (Pmode, temp);
8837
8838 if (function != current_function_decl
8839 && function != 0)
8840 LABEL_REF_NONLOCAL_P (temp) = 1;
8841
8842 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8843 return temp;
8844 }
8845
8846 case SSA_NAME:
8847 /* ??? ivopts calls expander, without any preparation from
8848 out-of-ssa. So fake instructions as if this was an access to the
8849 base variable. This unnecessarily allocates a pseudo, see how we can
8850 reuse it, if partition base vars have it set already. */
8851 if (!currently_expanding_to_rtl)
8852 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8853 NULL);
8854
8855 g = get_gimple_for_ssa_name (exp);
8856 /* For EXPAND_INITIALIZER try harder to get something simpler. */
8857 if (g == NULL
8858 && modifier == EXPAND_INITIALIZER
8859 && !SSA_NAME_IS_DEFAULT_DEF (exp)
8860 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
8861 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
8862 g = SSA_NAME_DEF_STMT (exp);
8863 if (g)
8864 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8865 modifier, NULL);
8866
8867 ssa_name = exp;
8868 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8869 exp = SSA_NAME_VAR (ssa_name);
8870 goto expand_decl_rtl;
8871
8872 case PARM_DECL:
8873 case VAR_DECL:
8874 /* If a static var's type was incomplete when the decl was written,
8875 but the type is complete now, lay out the decl now. */
8876 if (DECL_SIZE (exp) == 0
8877 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8878 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8879 layout_decl (exp, 0);
8880
8881 /* ... fall through ... */
8882
8883 case FUNCTION_DECL:
8884 case RESULT_DECL:
8885 decl_rtl = DECL_RTL (exp);
8886 expand_decl_rtl:
8887 gcc_assert (decl_rtl);
8888 decl_rtl = copy_rtx (decl_rtl);
8889 /* Record writes to register variables. */
8890 if (modifier == EXPAND_WRITE
8891 && REG_P (decl_rtl)
8892 && HARD_REGISTER_P (decl_rtl))
8893 add_to_hard_reg_set (&crtl->asm_clobbers,
8894 GET_MODE (decl_rtl), REGNO (decl_rtl));
8895
8896 /* Ensure variable marked as used even if it doesn't go through
8897 a parser. If it hasn't be used yet, write out an external
8898 definition. */
8899 if (! TREE_USED (exp))
8900 {
8901 assemble_external (exp);
8902 TREE_USED (exp) = 1;
8903 }
8904
8905 /* Show we haven't gotten RTL for this yet. */
8906 temp = 0;
8907
8908 /* Variables inherited from containing functions should have
8909 been lowered by this point. */
8910 context = decl_function_context (exp);
8911 gcc_assert (!context
8912 || context == current_function_decl
8913 || TREE_STATIC (exp)
8914 || DECL_EXTERNAL (exp)
8915 /* ??? C++ creates functions that are not TREE_STATIC. */
8916 || TREE_CODE (exp) == FUNCTION_DECL);
8917
8918 /* This is the case of an array whose size is to be determined
8919 from its initializer, while the initializer is still being parsed.
8920 See expand_decl. */
8921
8922 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8923 temp = validize_mem (decl_rtl);
8924
8925 /* If DECL_RTL is memory, we are in the normal case and the
8926 address is not valid, get the address into a register. */
8927
8928 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8929 {
8930 if (alt_rtl)
8931 *alt_rtl = decl_rtl;
8932 decl_rtl = use_anchored_address (decl_rtl);
8933 if (modifier != EXPAND_CONST_ADDRESS
8934 && modifier != EXPAND_SUM
8935 && !memory_address_addr_space_p (DECL_MODE (exp),
8936 XEXP (decl_rtl, 0),
8937 MEM_ADDR_SPACE (decl_rtl)))
8938 temp = replace_equiv_address (decl_rtl,
8939 copy_rtx (XEXP (decl_rtl, 0)));
8940 }
8941
8942 /* If we got something, return it. But first, set the alignment
8943 if the address is a register. */
8944 if (temp != 0)
8945 {
8946 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8947 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8948
8949 return temp;
8950 }
8951
8952 /* If the mode of DECL_RTL does not match that of the decl, it
8953 must be a promoted value. We return a SUBREG of the wanted mode,
8954 but mark it so that we know that it was already extended. */
8955 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8956 {
8957 enum machine_mode pmode;
8958
8959 /* Get the signedness to be used for this variable. Ensure we get
8960 the same mode we got when the variable was declared. */
8961 if (code == SSA_NAME
8962 && (g = SSA_NAME_DEF_STMT (ssa_name))
8963 && gimple_code (g) == GIMPLE_CALL)
8964 {
8965 gcc_assert (!gimple_call_internal_p (g));
8966 pmode = promote_function_mode (type, mode, &unsignedp,
8967 gimple_call_fntype (g),
8968 2);
8969 }
8970 else
8971 pmode = promote_decl_mode (exp, &unsignedp);
8972 gcc_assert (GET_MODE (decl_rtl) == pmode);
8973
8974 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8975 SUBREG_PROMOTED_VAR_P (temp) = 1;
8976 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8977 return temp;
8978 }
8979
8980 return decl_rtl;
8981
8982 case INTEGER_CST:
8983 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8984 TREE_INT_CST_HIGH (exp), mode);
8985
8986 return temp;
8987
8988 case VECTOR_CST:
8989 {
8990 tree tmp = NULL_TREE;
8991 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8992 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8993 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8994 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8995 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8996 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8997 return const_vector_from_tree (exp);
8998 if (GET_MODE_CLASS (mode) == MODE_INT)
8999 {
9000 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9001 if (type_for_mode)
9002 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9003 }
9004 if (!tmp)
9005 tmp = build_constructor_from_list (type,
9006 TREE_VECTOR_CST_ELTS (exp));
9007 return expand_expr (tmp, ignore ? const0_rtx : target,
9008 tmode, modifier);
9009 }
9010
9011 case CONST_DECL:
9012 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9013
9014 case REAL_CST:
9015 /* If optimized, generate immediate CONST_DOUBLE
9016 which will be turned into memory by reload if necessary.
9017
9018 We used to force a register so that loop.c could see it. But
9019 this does not allow gen_* patterns to perform optimizations with
9020 the constants. It also produces two insns in cases like "x = 1.0;".
9021 On most machines, floating-point constants are not permitted in
9022 many insns, so we'd end up copying it to a register in any case.
9023
9024 Now, we do the copying in expand_binop, if appropriate. */
9025 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9026 TYPE_MODE (TREE_TYPE (exp)));
9027
9028 case FIXED_CST:
9029 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9030 TYPE_MODE (TREE_TYPE (exp)));
9031
9032 case COMPLEX_CST:
9033 /* Handle evaluating a complex constant in a CONCAT target. */
9034 if (original_target && GET_CODE (original_target) == CONCAT)
9035 {
9036 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9037 rtx rtarg, itarg;
9038
9039 rtarg = XEXP (original_target, 0);
9040 itarg = XEXP (original_target, 1);
9041
9042 /* Move the real and imaginary parts separately. */
9043 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9044 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9045
9046 if (op0 != rtarg)
9047 emit_move_insn (rtarg, op0);
9048 if (op1 != itarg)
9049 emit_move_insn (itarg, op1);
9050
9051 return original_target;
9052 }
9053
9054 /* ... fall through ... */
9055
9056 case STRING_CST:
9057 temp = expand_expr_constant (exp, 1, modifier);
9058
9059 /* temp contains a constant address.
9060 On RISC machines where a constant address isn't valid,
9061 make some insns to get that address into a register. */
9062 if (modifier != EXPAND_CONST_ADDRESS
9063 && modifier != EXPAND_INITIALIZER
9064 && modifier != EXPAND_SUM
9065 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9066 MEM_ADDR_SPACE (temp)))
9067 return replace_equiv_address (temp,
9068 copy_rtx (XEXP (temp, 0)));
9069 return temp;
9070
9071 case SAVE_EXPR:
9072 {
9073 tree val = treeop0;
9074 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
9075
9076 if (!SAVE_EXPR_RESOLVED_P (exp))
9077 {
9078 /* We can indeed still hit this case, typically via builtin
9079 expanders calling save_expr immediately before expanding
9080 something. Assume this means that we only have to deal
9081 with non-BLKmode values. */
9082 gcc_assert (GET_MODE (ret) != BLKmode);
9083
9084 val = build_decl (EXPR_LOCATION (exp),
9085 VAR_DECL, NULL, TREE_TYPE (exp));
9086 DECL_ARTIFICIAL (val) = 1;
9087 DECL_IGNORED_P (val) = 1;
9088 treeop0 = val;
9089 TREE_OPERAND (exp, 0) = treeop0;
9090 SAVE_EXPR_RESOLVED_P (exp) = 1;
9091
9092 if (!CONSTANT_P (ret))
9093 ret = copy_to_reg (ret);
9094 SET_DECL_RTL (val, ret);
9095 }
9096
9097 return ret;
9098 }
9099
9100
9101 case CONSTRUCTOR:
9102 /* If we don't need the result, just ensure we evaluate any
9103 subexpressions. */
9104 if (ignore)
9105 {
9106 unsigned HOST_WIDE_INT idx;
9107 tree value;
9108
9109 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9110 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9111
9112 return const0_rtx;
9113 }
9114
9115 return expand_constructor (exp, target, modifier, false);
9116
9117 case TARGET_MEM_REF:
9118 {
9119 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
9120 struct mem_address addr;
9121 enum insn_code icode;
9122 int align;
9123
9124 get_address_description (exp, &addr);
9125 op0 = addr_for_mem_ref (&addr, as, true);
9126 op0 = memory_address_addr_space (mode, op0, as);
9127 temp = gen_rtx_MEM (mode, op0);
9128 set_mem_attributes (temp, exp, 0);
9129 set_mem_addr_space (temp, as);
9130 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)), get_object_alignment (exp));
9131 if (mode != BLKmode
9132 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
9133 /* If the target does not have special handling for unaligned
9134 loads of mode then it can use regular moves for them. */
9135 && ((icode = optab_handler (movmisalign_optab, mode))
9136 != CODE_FOR_nothing))
9137 {
9138 struct expand_operand ops[2];
9139
9140 /* We've already validated the memory, and we're creating a
9141 new pseudo destination. The predicates really can't fail,
9142 nor can the generator. */
9143 create_output_operand (&ops[0], NULL_RTX, mode);
9144 create_fixed_operand (&ops[1], temp);
9145 expand_insn (icode, 2, ops);
9146 return ops[0].value;
9147 }
9148 return temp;
9149 }
9150
9151 case MEM_REF:
9152 {
9153 addr_space_t as
9154 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
9155 enum machine_mode address_mode;
9156 tree base = TREE_OPERAND (exp, 0);
9157 gimple def_stmt;
9158 enum insn_code icode;
9159 int align;
9160 /* Handle expansion of non-aliased memory with non-BLKmode. That
9161 might end up in a register. */
9162 if (TREE_CODE (base) == ADDR_EXPR)
9163 {
9164 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9165 tree bit_offset;
9166 base = TREE_OPERAND (base, 0);
9167 if (!DECL_P (base))
9168 {
9169 HOST_WIDE_INT off;
9170 base = get_addr_base_and_unit_offset (base, &off);
9171 gcc_assert (base);
9172 offset += off;
9173 }
9174 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
9175 decl we must use bitfield operations. */
9176 if (DECL_P (base)
9177 && !TREE_ADDRESSABLE (base)
9178 && DECL_MODE (base) != BLKmode
9179 && DECL_RTL_SET_P (base)
9180 && !MEM_P (DECL_RTL (base)))
9181 {
9182 tree bftype;
9183 if (offset == 0
9184 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
9185 && (GET_MODE_BITSIZE (DECL_MODE (base))
9186 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
9187 return expand_expr (build1 (VIEW_CONVERT_EXPR,
9188 TREE_TYPE (exp), base),
9189 target, tmode, modifier);
9190 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
9191 bftype = TREE_TYPE (base);
9192 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
9193 bftype = TREE_TYPE (exp);
9194 return expand_expr (build3 (BIT_FIELD_REF, bftype,
9195 base,
9196 TYPE_SIZE (TREE_TYPE (exp)),
9197 bit_offset),
9198 target, tmode, modifier);
9199 }
9200 }
9201 address_mode = targetm.addr_space.address_mode (as);
9202 base = TREE_OPERAND (exp, 0);
9203 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9204 {
9205 tree mask = gimple_assign_rhs2 (def_stmt);
9206 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9207 gimple_assign_rhs1 (def_stmt), mask);
9208 TREE_OPERAND (exp, 0) = base;
9209 }
9210 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)), get_object_alignment (exp));
9211 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9212 op0 = memory_address_addr_space (address_mode, op0, as);
9213 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9214 {
9215 rtx off
9216 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9217 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9218 }
9219 op0 = memory_address_addr_space (mode, op0, as);
9220 temp = gen_rtx_MEM (mode, op0);
9221 set_mem_attributes (temp, exp, 0);
9222 set_mem_addr_space (temp, as);
9223 if (TREE_THIS_VOLATILE (exp))
9224 MEM_VOLATILE_P (temp) = 1;
9225 if (mode != BLKmode
9226 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
9227 /* If the target does not have special handling for unaligned
9228 loads of mode then it can use regular moves for them. */
9229 && ((icode = optab_handler (movmisalign_optab, mode))
9230 != CODE_FOR_nothing))
9231 {
9232 struct expand_operand ops[2];
9233
9234 /* We've already validated the memory, and we're creating a
9235 new pseudo destination. The predicates really can't fail,
9236 nor can the generator. */
9237 create_output_operand (&ops[0], NULL_RTX, mode);
9238 create_fixed_operand (&ops[1], temp);
9239 expand_insn (icode, 2, ops);
9240 return ops[0].value;
9241 }
9242 return temp;
9243 }
9244
9245 case ARRAY_REF:
9246
9247 {
9248 tree array = treeop0;
9249 tree index = treeop1;
9250
9251 /* Fold an expression like: "foo"[2].
9252 This is not done in fold so it won't happen inside &.
9253 Don't fold if this is for wide characters since it's too
9254 difficult to do correctly and this is a very rare case. */
9255
9256 if (modifier != EXPAND_CONST_ADDRESS
9257 && modifier != EXPAND_INITIALIZER
9258 && modifier != EXPAND_MEMORY)
9259 {
9260 tree t = fold_read_from_constant_string (exp);
9261
9262 if (t)
9263 return expand_expr (t, target, tmode, modifier);
9264 }
9265
9266 /* If this is a constant index into a constant array,
9267 just get the value from the array. Handle both the cases when
9268 we have an explicit constructor and when our operand is a variable
9269 that was declared const. */
9270
9271 if (modifier != EXPAND_CONST_ADDRESS
9272 && modifier != EXPAND_INITIALIZER
9273 && modifier != EXPAND_MEMORY
9274 && TREE_CODE (array) == CONSTRUCTOR
9275 && ! TREE_SIDE_EFFECTS (array)
9276 && TREE_CODE (index) == INTEGER_CST)
9277 {
9278 unsigned HOST_WIDE_INT ix;
9279 tree field, value;
9280
9281 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9282 field, value)
9283 if (tree_int_cst_equal (field, index))
9284 {
9285 if (!TREE_SIDE_EFFECTS (value))
9286 return expand_expr (fold (value), target, tmode, modifier);
9287 break;
9288 }
9289 }
9290
9291 else if (optimize >= 1
9292 && modifier != EXPAND_CONST_ADDRESS
9293 && modifier != EXPAND_INITIALIZER
9294 && modifier != EXPAND_MEMORY
9295 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9296 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
9297 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
9298 && const_value_known_p (array))
9299 {
9300 if (TREE_CODE (index) == INTEGER_CST)
9301 {
9302 tree init = DECL_INITIAL (array);
9303
9304 if (TREE_CODE (init) == CONSTRUCTOR)
9305 {
9306 unsigned HOST_WIDE_INT ix;
9307 tree field, value;
9308
9309 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9310 field, value)
9311 if (tree_int_cst_equal (field, index))
9312 {
9313 if (TREE_SIDE_EFFECTS (value))
9314 break;
9315
9316 if (TREE_CODE (value) == CONSTRUCTOR)
9317 {
9318 /* If VALUE is a CONSTRUCTOR, this
9319 optimization is only useful if
9320 this doesn't store the CONSTRUCTOR
9321 into memory. If it does, it is more
9322 efficient to just load the data from
9323 the array directly. */
9324 rtx ret = expand_constructor (value, target,
9325 modifier, true);
9326 if (ret == NULL_RTX)
9327 break;
9328 }
9329
9330 return expand_expr (fold (value), target, tmode,
9331 modifier);
9332 }
9333 }
9334 else if(TREE_CODE (init) == STRING_CST)
9335 {
9336 tree index1 = index;
9337 tree low_bound = array_ref_low_bound (exp);
9338 index1 = fold_convert_loc (loc, sizetype,
9339 treeop1);
9340
9341 /* Optimize the special-case of a zero lower bound.
9342
9343 We convert the low_bound to sizetype to avoid some problems
9344 with constant folding. (E.g. suppose the lower bound is 1,
9345 and its mode is QI. Without the conversion,l (ARRAY
9346 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9347 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9348
9349 if (! integer_zerop (low_bound))
9350 index1 = size_diffop_loc (loc, index1,
9351 fold_convert_loc (loc, sizetype,
9352 low_bound));
9353
9354 if (0 > compare_tree_int (index1,
9355 TREE_STRING_LENGTH (init)))
9356 {
9357 tree type = TREE_TYPE (TREE_TYPE (init));
9358 enum machine_mode mode = TYPE_MODE (type);
9359
9360 if (GET_MODE_CLASS (mode) == MODE_INT
9361 && GET_MODE_SIZE (mode) == 1)
9362 return gen_int_mode (TREE_STRING_POINTER (init)
9363 [TREE_INT_CST_LOW (index1)],
9364 mode);
9365 }
9366 }
9367 }
9368 }
9369 }
9370 goto normal_inner_ref;
9371
9372 case COMPONENT_REF:
9373 /* If the operand is a CONSTRUCTOR, we can just extract the
9374 appropriate field if it is present. */
9375 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9376 {
9377 unsigned HOST_WIDE_INT idx;
9378 tree field, value;
9379
9380 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9381 idx, field, value)
9382 if (field == treeop1
9383 /* We can normally use the value of the field in the
9384 CONSTRUCTOR. However, if this is a bitfield in
9385 an integral mode that we can fit in a HOST_WIDE_INT,
9386 we must mask only the number of bits in the bitfield,
9387 since this is done implicitly by the constructor. If
9388 the bitfield does not meet either of those conditions,
9389 we can't do this optimization. */
9390 && (! DECL_BIT_FIELD (field)
9391 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9392 && (GET_MODE_PRECISION (DECL_MODE (field))
9393 <= HOST_BITS_PER_WIDE_INT))))
9394 {
9395 if (DECL_BIT_FIELD (field)
9396 && modifier == EXPAND_STACK_PARM)
9397 target = 0;
9398 op0 = expand_expr (value, target, tmode, modifier);
9399 if (DECL_BIT_FIELD (field))
9400 {
9401 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9402 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9403
9404 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9405 {
9406 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
9407 op0 = expand_and (imode, op0, op1, target);
9408 }
9409 else
9410 {
9411 int count = GET_MODE_PRECISION (imode) - bitsize;
9412
9413 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9414 target, 0);
9415 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9416 target, 0);
9417 }
9418 }
9419
9420 return op0;
9421 }
9422 }
9423 goto normal_inner_ref;
9424
9425 case BIT_FIELD_REF:
9426 case ARRAY_RANGE_REF:
9427 normal_inner_ref:
9428 {
9429 enum machine_mode mode1, mode2;
9430 HOST_WIDE_INT bitsize, bitpos;
9431 tree offset;
9432 int volatilep = 0, must_force_mem;
9433 bool packedp = false;
9434 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9435 &mode1, &unsignedp, &volatilep, true);
9436 rtx orig_op0, memloc;
9437
9438 /* If we got back the original object, something is wrong. Perhaps
9439 we are evaluating an expression too early. In any event, don't
9440 infinitely recurse. */
9441 gcc_assert (tem != exp);
9442
9443 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
9444 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9445 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9446 packedp = true;
9447
9448 /* If TEM's type is a union of variable size, pass TARGET to the inner
9449 computation, since it will need a temporary and TARGET is known
9450 to have to do. This occurs in unchecked conversion in Ada. */
9451 orig_op0 = op0
9452 = expand_expr (tem,
9453 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9454 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9455 != INTEGER_CST)
9456 && modifier != EXPAND_STACK_PARM
9457 ? target : NULL_RTX),
9458 VOIDmode,
9459 (modifier == EXPAND_INITIALIZER
9460 || modifier == EXPAND_CONST_ADDRESS
9461 || modifier == EXPAND_STACK_PARM)
9462 ? modifier : EXPAND_NORMAL);
9463
9464
9465 /* If the bitfield is volatile, we want to access it in the
9466 field's mode, not the computed mode.
9467 If a MEM has VOIDmode (external with incomplete type),
9468 use BLKmode for it instead. */
9469 if (MEM_P (op0))
9470 {
9471 if (volatilep && flag_strict_volatile_bitfields > 0)
9472 op0 = adjust_address (op0, mode1, 0);
9473 else if (GET_MODE (op0) == VOIDmode)
9474 op0 = adjust_address (op0, BLKmode, 0);
9475 }
9476
9477 mode2
9478 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9479
9480 /* If we have either an offset, a BLKmode result, or a reference
9481 outside the underlying object, we must force it to memory.
9482 Such a case can occur in Ada if we have unchecked conversion
9483 of an expression from a scalar type to an aggregate type or
9484 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9485 passed a partially uninitialized object or a view-conversion
9486 to a larger size. */
9487 must_force_mem = (offset
9488 || mode1 == BLKmode
9489 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9490
9491 /* Handle CONCAT first. */
9492 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9493 {
9494 if (bitpos == 0
9495 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9496 return op0;
9497 if (bitpos == 0
9498 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9499 && bitsize)
9500 {
9501 op0 = XEXP (op0, 0);
9502 mode2 = GET_MODE (op0);
9503 }
9504 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9505 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9506 && bitpos
9507 && bitsize)
9508 {
9509 op0 = XEXP (op0, 1);
9510 bitpos = 0;
9511 mode2 = GET_MODE (op0);
9512 }
9513 else
9514 /* Otherwise force into memory. */
9515 must_force_mem = 1;
9516 }
9517
9518 /* If this is a constant, put it in a register if it is a legitimate
9519 constant and we don't need a memory reference. */
9520 if (CONSTANT_P (op0)
9521 && mode2 != BLKmode
9522 && targetm.legitimate_constant_p (mode2, op0)
9523 && !must_force_mem)
9524 op0 = force_reg (mode2, op0);
9525
9526 /* Otherwise, if this is a constant, try to force it to the constant
9527 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9528 is a legitimate constant. */
9529 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9530 op0 = validize_mem (memloc);
9531
9532 /* Otherwise, if this is a constant or the object is not in memory
9533 and need be, put it there. */
9534 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9535 {
9536 tree nt = build_qualified_type (TREE_TYPE (tem),
9537 (TYPE_QUALS (TREE_TYPE (tem))
9538 | TYPE_QUAL_CONST));
9539 memloc = assign_temp (nt, 1, 1, 1);
9540 emit_move_insn (memloc, op0);
9541 op0 = memloc;
9542 }
9543
9544 if (offset)
9545 {
9546 enum machine_mode address_mode;
9547 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9548 EXPAND_SUM);
9549
9550 gcc_assert (MEM_P (op0));
9551
9552 address_mode
9553 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9554 if (GET_MODE (offset_rtx) != address_mode)
9555 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9556
9557 if (GET_MODE (op0) == BLKmode
9558 /* A constant address in OP0 can have VOIDmode, we must
9559 not try to call force_reg in that case. */
9560 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9561 && bitsize != 0
9562 && (bitpos % bitsize) == 0
9563 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9564 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9565 {
9566 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9567 bitpos = 0;
9568 }
9569
9570 op0 = offset_address (op0, offset_rtx,
9571 highest_pow2_factor (offset));
9572 }
9573
9574 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9575 record its alignment as BIGGEST_ALIGNMENT. */
9576 if (MEM_P (op0) && bitpos == 0 && offset != 0
9577 && is_aligning_offset (offset, tem))
9578 set_mem_align (op0, BIGGEST_ALIGNMENT);
9579
9580 /* Don't forget about volatility even if this is a bitfield. */
9581 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9582 {
9583 if (op0 == orig_op0)
9584 op0 = copy_rtx (op0);
9585
9586 MEM_VOLATILE_P (op0) = 1;
9587 }
9588
9589 /* In cases where an aligned union has an unaligned object
9590 as a field, we might be extracting a BLKmode value from
9591 an integer-mode (e.g., SImode) object. Handle this case
9592 by doing the extract into an object as wide as the field
9593 (which we know to be the width of a basic mode), then
9594 storing into memory, and changing the mode to BLKmode. */
9595 if (mode1 == VOIDmode
9596 || REG_P (op0) || GET_CODE (op0) == SUBREG
9597 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9598 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9599 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9600 && modifier != EXPAND_CONST_ADDRESS
9601 && modifier != EXPAND_INITIALIZER)
9602 /* If the field is volatile, we always want an aligned
9603 access. Only do this if the access is not already naturally
9604 aligned, otherwise "normal" (non-bitfield) volatile fields
9605 become non-addressable. */
9606 || (volatilep && flag_strict_volatile_bitfields > 0
9607 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
9608 /* If the field isn't aligned enough to fetch as a memref,
9609 fetch it as a bit field. */
9610 || (mode1 != BLKmode
9611 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9612 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9613 || (MEM_P (op0)
9614 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9615 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9616 && ((modifier == EXPAND_CONST_ADDRESS
9617 || modifier == EXPAND_INITIALIZER)
9618 ? STRICT_ALIGNMENT
9619 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9620 || (bitpos % BITS_PER_UNIT != 0)))
9621 /* If the type and the field are a constant size and the
9622 size of the type isn't the same size as the bitfield,
9623 we must use bitfield operations. */
9624 || (bitsize >= 0
9625 && TYPE_SIZE (TREE_TYPE (exp))
9626 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9627 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9628 bitsize)))
9629 {
9630 enum machine_mode ext_mode = mode;
9631
9632 if (ext_mode == BLKmode
9633 && ! (target != 0 && MEM_P (op0)
9634 && MEM_P (target)
9635 && bitpos % BITS_PER_UNIT == 0))
9636 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9637
9638 if (ext_mode == BLKmode)
9639 {
9640 if (target == 0)
9641 target = assign_temp (type, 0, 1, 1);
9642
9643 if (bitsize == 0)
9644 return target;
9645
9646 /* In this case, BITPOS must start at a byte boundary and
9647 TARGET, if specified, must be a MEM. */
9648 gcc_assert (MEM_P (op0)
9649 && (!target || MEM_P (target))
9650 && !(bitpos % BITS_PER_UNIT));
9651
9652 emit_block_move (target,
9653 adjust_address (op0, VOIDmode,
9654 bitpos / BITS_PER_UNIT),
9655 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9656 / BITS_PER_UNIT),
9657 (modifier == EXPAND_STACK_PARM
9658 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9659
9660 return target;
9661 }
9662
9663 op0 = validize_mem (op0);
9664
9665 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9666 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9667
9668 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9669 (modifier == EXPAND_STACK_PARM
9670 ? NULL_RTX : target),
9671 ext_mode, ext_mode);
9672
9673 /* If the result is a record type and BITSIZE is narrower than
9674 the mode of OP0, an integral mode, and this is a big endian
9675 machine, we must put the field into the high-order bits. */
9676 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9677 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9678 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9679 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9680 GET_MODE_BITSIZE (GET_MODE (op0))
9681 - bitsize, op0, 1);
9682
9683 /* If the result type is BLKmode, store the data into a temporary
9684 of the appropriate type, but with the mode corresponding to the
9685 mode for the data we have (op0's mode). It's tempting to make
9686 this a constant type, since we know it's only being stored once,
9687 but that can cause problems if we are taking the address of this
9688 COMPONENT_REF because the MEM of any reference via that address
9689 will have flags corresponding to the type, which will not
9690 necessarily be constant. */
9691 if (mode == BLKmode)
9692 {
9693 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9694 rtx new_rtx;
9695
9696 /* If the reference doesn't use the alias set of its type,
9697 we cannot create the temporary using that type. */
9698 if (component_uses_parent_alias_set (exp))
9699 {
9700 new_rtx = assign_stack_local (ext_mode, size, 0);
9701 set_mem_alias_set (new_rtx, get_alias_set (exp));
9702 }
9703 else
9704 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9705
9706 emit_move_insn (new_rtx, op0);
9707 op0 = copy_rtx (new_rtx);
9708 PUT_MODE (op0, BLKmode);
9709 set_mem_attributes (op0, exp, 1);
9710 }
9711
9712 return op0;
9713 }
9714
9715 /* If the result is BLKmode, use that to access the object
9716 now as well. */
9717 if (mode == BLKmode)
9718 mode1 = BLKmode;
9719
9720 /* Get a reference to just this component. */
9721 if (modifier == EXPAND_CONST_ADDRESS
9722 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9723 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9724 else
9725 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9726
9727 if (op0 == orig_op0)
9728 op0 = copy_rtx (op0);
9729
9730 set_mem_attributes (op0, exp, 0);
9731 if (REG_P (XEXP (op0, 0)))
9732 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9733
9734 MEM_VOLATILE_P (op0) |= volatilep;
9735 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9736 || modifier == EXPAND_CONST_ADDRESS
9737 || modifier == EXPAND_INITIALIZER)
9738 return op0;
9739 else if (target == 0)
9740 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9741
9742 convert_move (target, op0, unsignedp);
9743 return target;
9744 }
9745
9746 case OBJ_TYPE_REF:
9747 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9748
9749 case CALL_EXPR:
9750 /* All valid uses of __builtin_va_arg_pack () are removed during
9751 inlining. */
9752 if (CALL_EXPR_VA_ARG_PACK (exp))
9753 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9754 {
9755 tree fndecl = get_callee_fndecl (exp), attr;
9756
9757 if (fndecl
9758 && (attr = lookup_attribute ("error",
9759 DECL_ATTRIBUTES (fndecl))) != NULL)
9760 error ("%Kcall to %qs declared with attribute error: %s",
9761 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9762 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9763 if (fndecl
9764 && (attr = lookup_attribute ("warning",
9765 DECL_ATTRIBUTES (fndecl))) != NULL)
9766 warning_at (tree_nonartificial_location (exp),
9767 0, "%Kcall to %qs declared with attribute warning: %s",
9768 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9769 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9770
9771 /* Check for a built-in function. */
9772 if (fndecl && DECL_BUILT_IN (fndecl))
9773 {
9774 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9775 return expand_builtin (exp, target, subtarget, tmode, ignore);
9776 }
9777 }
9778 return expand_call (exp, target, ignore);
9779
9780 case VIEW_CONVERT_EXPR:
9781 op0 = NULL_RTX;
9782
9783 /* If we are converting to BLKmode, try to avoid an intermediate
9784 temporary by fetching an inner memory reference. */
9785 if (mode == BLKmode
9786 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9787 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9788 && handled_component_p (treeop0))
9789 {
9790 enum machine_mode mode1;
9791 HOST_WIDE_INT bitsize, bitpos;
9792 tree offset;
9793 int unsignedp;
9794 int volatilep = 0;
9795 tree tem
9796 = get_inner_reference (treeop0, &bitsize, &bitpos,
9797 &offset, &mode1, &unsignedp, &volatilep,
9798 true);
9799 rtx orig_op0;
9800
9801 /* ??? We should work harder and deal with non-zero offsets. */
9802 if (!offset
9803 && (bitpos % BITS_PER_UNIT) == 0
9804 && bitsize >= 0
9805 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9806 {
9807 /* See the normal_inner_ref case for the rationale. */
9808 orig_op0
9809 = expand_expr (tem,
9810 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9811 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9812 != INTEGER_CST)
9813 && modifier != EXPAND_STACK_PARM
9814 ? target : NULL_RTX),
9815 VOIDmode,
9816 (modifier == EXPAND_INITIALIZER
9817 || modifier == EXPAND_CONST_ADDRESS
9818 || modifier == EXPAND_STACK_PARM)
9819 ? modifier : EXPAND_NORMAL);
9820
9821 if (MEM_P (orig_op0))
9822 {
9823 op0 = orig_op0;
9824
9825 /* Get a reference to just this component. */
9826 if (modifier == EXPAND_CONST_ADDRESS
9827 || modifier == EXPAND_SUM
9828 || modifier == EXPAND_INITIALIZER)
9829 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9830 else
9831 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9832
9833 if (op0 == orig_op0)
9834 op0 = copy_rtx (op0);
9835
9836 set_mem_attributes (op0, treeop0, 0);
9837 if (REG_P (XEXP (op0, 0)))
9838 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9839
9840 MEM_VOLATILE_P (op0) |= volatilep;
9841 }
9842 }
9843 }
9844
9845 if (!op0)
9846 op0 = expand_expr (treeop0,
9847 NULL_RTX, VOIDmode, modifier);
9848
9849 /* If the input and output modes are both the same, we are done. */
9850 if (mode == GET_MODE (op0))
9851 ;
9852 /* If neither mode is BLKmode, and both modes are the same size
9853 then we can use gen_lowpart. */
9854 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9855 && (GET_MODE_PRECISION (mode)
9856 == GET_MODE_PRECISION (GET_MODE (op0)))
9857 && !COMPLEX_MODE_P (GET_MODE (op0)))
9858 {
9859 if (GET_CODE (op0) == SUBREG)
9860 op0 = force_reg (GET_MODE (op0), op0);
9861 temp = gen_lowpart_common (mode, op0);
9862 if (temp)
9863 op0 = temp;
9864 else
9865 {
9866 if (!REG_P (op0) && !MEM_P (op0))
9867 op0 = force_reg (GET_MODE (op0), op0);
9868 op0 = gen_lowpart (mode, op0);
9869 }
9870 }
9871 /* If both types are integral, convert from one mode to the other. */
9872 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9873 op0 = convert_modes (mode, GET_MODE (op0), op0,
9874 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9875 /* As a last resort, spill op0 to memory, and reload it in a
9876 different mode. */
9877 else if (!MEM_P (op0))
9878 {
9879 /* If the operand is not a MEM, force it into memory. Since we
9880 are going to be changing the mode of the MEM, don't call
9881 force_const_mem for constants because we don't allow pool
9882 constants to change mode. */
9883 tree inner_type = TREE_TYPE (treeop0);
9884
9885 gcc_assert (!TREE_ADDRESSABLE (exp));
9886
9887 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9888 target
9889 = assign_stack_temp_for_type
9890 (TYPE_MODE (inner_type),
9891 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9892
9893 emit_move_insn (target, op0);
9894 op0 = target;
9895 }
9896
9897 /* At this point, OP0 is in the correct mode. If the output type is
9898 such that the operand is known to be aligned, indicate that it is.
9899 Otherwise, we need only be concerned about alignment for non-BLKmode
9900 results. */
9901 if (MEM_P (op0))
9902 {
9903 op0 = copy_rtx (op0);
9904
9905 if (TYPE_ALIGN_OK (type))
9906 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9907 else if (STRICT_ALIGNMENT
9908 && mode != BLKmode
9909 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9910 {
9911 tree inner_type = TREE_TYPE (treeop0);
9912 HOST_WIDE_INT temp_size
9913 = MAX (int_size_in_bytes (inner_type),
9914 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9915 rtx new_rtx
9916 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9917 rtx new_with_op0_mode
9918 = adjust_address (new_rtx, GET_MODE (op0), 0);
9919
9920 gcc_assert (!TREE_ADDRESSABLE (exp));
9921
9922 if (GET_MODE (op0) == BLKmode)
9923 emit_block_move (new_with_op0_mode, op0,
9924 GEN_INT (GET_MODE_SIZE (mode)),
9925 (modifier == EXPAND_STACK_PARM
9926 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9927 else
9928 emit_move_insn (new_with_op0_mode, op0);
9929
9930 op0 = new_rtx;
9931 }
9932
9933 op0 = adjust_address (op0, mode, 0);
9934 }
9935
9936 return op0;
9937
9938 case MODIFY_EXPR:
9939 {
9940 tree lhs = treeop0;
9941 tree rhs = treeop1;
9942 gcc_assert (ignore);
9943
9944 /* Check for |= or &= of a bitfield of size one into another bitfield
9945 of size 1. In this case, (unless we need the result of the
9946 assignment) we can do this more efficiently with a
9947 test followed by an assignment, if necessary.
9948
9949 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9950 things change so we do, this code should be enhanced to
9951 support it. */
9952 if (TREE_CODE (lhs) == COMPONENT_REF
9953 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9954 || TREE_CODE (rhs) == BIT_AND_EXPR)
9955 && TREE_OPERAND (rhs, 0) == lhs
9956 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9957 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9958 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9959 {
9960 rtx label = gen_label_rtx ();
9961 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9962 do_jump (TREE_OPERAND (rhs, 1),
9963 value ? label : 0,
9964 value ? 0 : label, -1);
9965 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9966 MOVE_NONTEMPORAL (exp));
9967 do_pending_stack_adjust ();
9968 emit_label (label);
9969 return const0_rtx;
9970 }
9971
9972 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9973 return const0_rtx;
9974 }
9975
9976 case ADDR_EXPR:
9977 return expand_expr_addr_expr (exp, target, tmode, modifier);
9978
9979 case REALPART_EXPR:
9980 op0 = expand_normal (treeop0);
9981 return read_complex_part (op0, false);
9982
9983 case IMAGPART_EXPR:
9984 op0 = expand_normal (treeop0);
9985 return read_complex_part (op0, true);
9986
9987 case RETURN_EXPR:
9988 case LABEL_EXPR:
9989 case GOTO_EXPR:
9990 case SWITCH_EXPR:
9991 case ASM_EXPR:
9992 /* Expanded in cfgexpand.c. */
9993 gcc_unreachable ();
9994
9995 case TRY_CATCH_EXPR:
9996 case CATCH_EXPR:
9997 case EH_FILTER_EXPR:
9998 case TRY_FINALLY_EXPR:
9999 /* Lowered by tree-eh.c. */
10000 gcc_unreachable ();
10001
10002 case WITH_CLEANUP_EXPR:
10003 case CLEANUP_POINT_EXPR:
10004 case TARGET_EXPR:
10005 case CASE_LABEL_EXPR:
10006 case VA_ARG_EXPR:
10007 case BIND_EXPR:
10008 case INIT_EXPR:
10009 case CONJ_EXPR:
10010 case COMPOUND_EXPR:
10011 case PREINCREMENT_EXPR:
10012 case PREDECREMENT_EXPR:
10013 case POSTINCREMENT_EXPR:
10014 case POSTDECREMENT_EXPR:
10015 case LOOP_EXPR:
10016 case EXIT_EXPR:
10017 /* Lowered by gimplify.c. */
10018 gcc_unreachable ();
10019
10020 case FDESC_EXPR:
10021 /* Function descriptors are not valid except for as
10022 initialization constants, and should not be expanded. */
10023 gcc_unreachable ();
10024
10025 case WITH_SIZE_EXPR:
10026 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10027 have pulled out the size to use in whatever context it needed. */
10028 return expand_expr_real (treeop0, original_target, tmode,
10029 modifier, alt_rtl);
10030
10031 case COMPOUND_LITERAL_EXPR:
10032 {
10033 /* Initialize the anonymous variable declared in the compound
10034 literal, then return the variable. */
10035 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
10036
10037 /* Create RTL for this variable. */
10038 if (!DECL_RTL_SET_P (decl))
10039 {
10040 if (DECL_HARD_REGISTER (decl))
10041 /* The user specified an assembler name for this variable.
10042 Set that up now. */
10043 rest_of_decl_compilation (decl, 0, 0);
10044 else
10045 expand_decl (decl);
10046 }
10047
10048 return expand_expr_real (decl, original_target, tmode,
10049 modifier, alt_rtl);
10050 }
10051
10052 default:
10053 return expand_expr_real_2 (&ops, target, tmode, modifier);
10054 }
10055 }
10056 \f
10057 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10058 signedness of TYPE), possibly returning the result in TARGET. */
10059 static rtx
10060 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10061 {
10062 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10063 if (target && GET_MODE (target) != GET_MODE (exp))
10064 target = 0;
10065 /* For constant values, reduce using build_int_cst_type. */
10066 if (CONST_INT_P (exp))
10067 {
10068 HOST_WIDE_INT value = INTVAL (exp);
10069 tree t = build_int_cst_type (type, value);
10070 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10071 }
10072 else if (TYPE_UNSIGNED (type))
10073 {
10074 rtx mask = immed_double_int_const (double_int_mask (prec),
10075 GET_MODE (exp));
10076 return expand_and (GET_MODE (exp), exp, mask, target);
10077 }
10078 else
10079 {
10080 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10081 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10082 exp, count, target, 0);
10083 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10084 exp, count, target, 0);
10085 }
10086 }
10087 \f
10088 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10089 when applied to the address of EXP produces an address known to be
10090 aligned more than BIGGEST_ALIGNMENT. */
10091
10092 static int
10093 is_aligning_offset (const_tree offset, const_tree exp)
10094 {
10095 /* Strip off any conversions. */
10096 while (CONVERT_EXPR_P (offset))
10097 offset = TREE_OPERAND (offset, 0);
10098
10099 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10100 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10101 if (TREE_CODE (offset) != BIT_AND_EXPR
10102 || !host_integerp (TREE_OPERAND (offset, 1), 1)
10103 || compare_tree_int (TREE_OPERAND (offset, 1),
10104 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10105 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
10106 return 0;
10107
10108 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10109 It must be NEGATE_EXPR. Then strip any more conversions. */
10110 offset = TREE_OPERAND (offset, 0);
10111 while (CONVERT_EXPR_P (offset))
10112 offset = TREE_OPERAND (offset, 0);
10113
10114 if (TREE_CODE (offset) != NEGATE_EXPR)
10115 return 0;
10116
10117 offset = TREE_OPERAND (offset, 0);
10118 while (CONVERT_EXPR_P (offset))
10119 offset = TREE_OPERAND (offset, 0);
10120
10121 /* This must now be the address of EXP. */
10122 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10123 }
10124 \f
10125 /* Return the tree node if an ARG corresponds to a string constant or zero
10126 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10127 in bytes within the string that ARG is accessing. The type of the
10128 offset will be `sizetype'. */
10129
10130 tree
10131 string_constant (tree arg, tree *ptr_offset)
10132 {
10133 tree array, offset, lower_bound;
10134 STRIP_NOPS (arg);
10135
10136 if (TREE_CODE (arg) == ADDR_EXPR)
10137 {
10138 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10139 {
10140 *ptr_offset = size_zero_node;
10141 return TREE_OPERAND (arg, 0);
10142 }
10143 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10144 {
10145 array = TREE_OPERAND (arg, 0);
10146 offset = size_zero_node;
10147 }
10148 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10149 {
10150 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10151 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10152 if (TREE_CODE (array) != STRING_CST
10153 && TREE_CODE (array) != VAR_DECL)
10154 return 0;
10155
10156 /* Check if the array has a nonzero lower bound. */
10157 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10158 if (!integer_zerop (lower_bound))
10159 {
10160 /* If the offset and base aren't both constants, return 0. */
10161 if (TREE_CODE (lower_bound) != INTEGER_CST)
10162 return 0;
10163 if (TREE_CODE (offset) != INTEGER_CST)
10164 return 0;
10165 /* Adjust offset by the lower bound. */
10166 offset = size_diffop (fold_convert (sizetype, offset),
10167 fold_convert (sizetype, lower_bound));
10168 }
10169 }
10170 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10171 {
10172 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10173 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10174 if (TREE_CODE (array) != ADDR_EXPR)
10175 return 0;
10176 array = TREE_OPERAND (array, 0);
10177 if (TREE_CODE (array) != STRING_CST
10178 && TREE_CODE (array) != VAR_DECL)
10179 return 0;
10180 }
10181 else
10182 return 0;
10183 }
10184 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10185 {
10186 tree arg0 = TREE_OPERAND (arg, 0);
10187 tree arg1 = TREE_OPERAND (arg, 1);
10188
10189 STRIP_NOPS (arg0);
10190 STRIP_NOPS (arg1);
10191
10192 if (TREE_CODE (arg0) == ADDR_EXPR
10193 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10194 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10195 {
10196 array = TREE_OPERAND (arg0, 0);
10197 offset = arg1;
10198 }
10199 else if (TREE_CODE (arg1) == ADDR_EXPR
10200 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10201 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10202 {
10203 array = TREE_OPERAND (arg1, 0);
10204 offset = arg0;
10205 }
10206 else
10207 return 0;
10208 }
10209 else
10210 return 0;
10211
10212 if (TREE_CODE (array) == STRING_CST)
10213 {
10214 *ptr_offset = fold_convert (sizetype, offset);
10215 return array;
10216 }
10217 else if (TREE_CODE (array) == VAR_DECL
10218 || TREE_CODE (array) == CONST_DECL)
10219 {
10220 int length;
10221
10222 /* Variables initialized to string literals can be handled too. */
10223 if (!const_value_known_p (array)
10224 || !DECL_INITIAL (array)
10225 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
10226 return 0;
10227
10228 /* Avoid const char foo[4] = "abcde"; */
10229 if (DECL_SIZE_UNIT (array) == NULL_TREE
10230 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10231 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
10232 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10233 return 0;
10234
10235 /* If variable is bigger than the string literal, OFFSET must be constant
10236 and inside of the bounds of the string literal. */
10237 offset = fold_convert (sizetype, offset);
10238 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10239 && (! host_integerp (offset, 1)
10240 || compare_tree_int (offset, length) >= 0))
10241 return 0;
10242
10243 *ptr_offset = offset;
10244 return DECL_INITIAL (array);
10245 }
10246
10247 return 0;
10248 }
10249 \f
10250 /* Generate code to calculate OPS, and exploded expression
10251 using a store-flag instruction and return an rtx for the result.
10252 OPS reflects a comparison.
10253
10254 If TARGET is nonzero, store the result there if convenient.
10255
10256 Return zero if there is no suitable set-flag instruction
10257 available on this machine.
10258
10259 Once expand_expr has been called on the arguments of the comparison,
10260 we are committed to doing the store flag, since it is not safe to
10261 re-evaluate the expression. We emit the store-flag insn by calling
10262 emit_store_flag, but only expand the arguments if we have a reason
10263 to believe that emit_store_flag will be successful. If we think that
10264 it will, but it isn't, we have to simulate the store-flag with a
10265 set/jump/set sequence. */
10266
10267 static rtx
10268 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10269 {
10270 enum rtx_code code;
10271 tree arg0, arg1, type;
10272 tree tem;
10273 enum machine_mode operand_mode;
10274 int unsignedp;
10275 rtx op0, op1;
10276 rtx subtarget = target;
10277 location_t loc = ops->location;
10278
10279 arg0 = ops->op0;
10280 arg1 = ops->op1;
10281
10282 /* Don't crash if the comparison was erroneous. */
10283 if (arg0 == error_mark_node || arg1 == error_mark_node)
10284 return const0_rtx;
10285
10286 type = TREE_TYPE (arg0);
10287 operand_mode = TYPE_MODE (type);
10288 unsignedp = TYPE_UNSIGNED (type);
10289
10290 /* We won't bother with BLKmode store-flag operations because it would mean
10291 passing a lot of information to emit_store_flag. */
10292 if (operand_mode == BLKmode)
10293 return 0;
10294
10295 /* We won't bother with store-flag operations involving function pointers
10296 when function pointers must be canonicalized before comparisons. */
10297 #ifdef HAVE_canonicalize_funcptr_for_compare
10298 if (HAVE_canonicalize_funcptr_for_compare
10299 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10300 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10301 == FUNCTION_TYPE))
10302 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10303 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10304 == FUNCTION_TYPE))))
10305 return 0;
10306 #endif
10307
10308 STRIP_NOPS (arg0);
10309 STRIP_NOPS (arg1);
10310
10311 /* Get the rtx comparison code to use. We know that EXP is a comparison
10312 operation of some type. Some comparisons against 1 and -1 can be
10313 converted to comparisons with zero. Do so here so that the tests
10314 below will be aware that we have a comparison with zero. These
10315 tests will not catch constants in the first operand, but constants
10316 are rarely passed as the first operand. */
10317
10318 switch (ops->code)
10319 {
10320 case EQ_EXPR:
10321 code = EQ;
10322 break;
10323 case NE_EXPR:
10324 code = NE;
10325 break;
10326 case LT_EXPR:
10327 if (integer_onep (arg1))
10328 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10329 else
10330 code = unsignedp ? LTU : LT;
10331 break;
10332 case LE_EXPR:
10333 if (! unsignedp && integer_all_onesp (arg1))
10334 arg1 = integer_zero_node, code = LT;
10335 else
10336 code = unsignedp ? LEU : LE;
10337 break;
10338 case GT_EXPR:
10339 if (! unsignedp && integer_all_onesp (arg1))
10340 arg1 = integer_zero_node, code = GE;
10341 else
10342 code = unsignedp ? GTU : GT;
10343 break;
10344 case GE_EXPR:
10345 if (integer_onep (arg1))
10346 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10347 else
10348 code = unsignedp ? GEU : GE;
10349 break;
10350
10351 case UNORDERED_EXPR:
10352 code = UNORDERED;
10353 break;
10354 case ORDERED_EXPR:
10355 code = ORDERED;
10356 break;
10357 case UNLT_EXPR:
10358 code = UNLT;
10359 break;
10360 case UNLE_EXPR:
10361 code = UNLE;
10362 break;
10363 case UNGT_EXPR:
10364 code = UNGT;
10365 break;
10366 case UNGE_EXPR:
10367 code = UNGE;
10368 break;
10369 case UNEQ_EXPR:
10370 code = UNEQ;
10371 break;
10372 case LTGT_EXPR:
10373 code = LTGT;
10374 break;
10375
10376 default:
10377 gcc_unreachable ();
10378 }
10379
10380 /* Put a constant second. */
10381 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10382 || TREE_CODE (arg0) == FIXED_CST)
10383 {
10384 tem = arg0; arg0 = arg1; arg1 = tem;
10385 code = swap_condition (code);
10386 }
10387
10388 /* If this is an equality or inequality test of a single bit, we can
10389 do this by shifting the bit being tested to the low-order bit and
10390 masking the result with the constant 1. If the condition was EQ,
10391 we xor it with 1. This does not require an scc insn and is faster
10392 than an scc insn even if we have it.
10393
10394 The code to make this transformation was moved into fold_single_bit_test,
10395 so we just call into the folder and expand its result. */
10396
10397 if ((code == NE || code == EQ)
10398 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10399 && integer_pow2p (TREE_OPERAND (arg0, 1))
10400 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10401 {
10402 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10403 return expand_expr (fold_single_bit_test (loc,
10404 code == NE ? NE_EXPR : EQ_EXPR,
10405 arg0, arg1, type),
10406 target, VOIDmode, EXPAND_NORMAL);
10407 }
10408
10409 if (! get_subtarget (target)
10410 || GET_MODE (subtarget) != operand_mode)
10411 subtarget = 0;
10412
10413 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10414
10415 if (target == 0)
10416 target = gen_reg_rtx (mode);
10417
10418 /* Try a cstore if possible. */
10419 return emit_store_flag_force (target, code, op0, op1,
10420 operand_mode, unsignedp,
10421 (TYPE_PRECISION (ops->type) == 1
10422 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
10423 }
10424 \f
10425
10426 /* Stubs in case we haven't got a casesi insn. */
10427 #ifndef HAVE_casesi
10428 # define HAVE_casesi 0
10429 # define gen_casesi(a, b, c, d, e) (0)
10430 # define CODE_FOR_casesi CODE_FOR_nothing
10431 #endif
10432
10433 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10434 0 otherwise (i.e. if there is no casesi instruction). */
10435 int
10436 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10437 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10438 rtx fallback_label ATTRIBUTE_UNUSED)
10439 {
10440 struct expand_operand ops[5];
10441 enum machine_mode index_mode = SImode;
10442 int index_bits = GET_MODE_BITSIZE (index_mode);
10443 rtx op1, op2, index;
10444
10445 if (! HAVE_casesi)
10446 return 0;
10447
10448 /* Convert the index to SImode. */
10449 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10450 {
10451 enum machine_mode omode = TYPE_MODE (index_type);
10452 rtx rangertx = expand_normal (range);
10453
10454 /* We must handle the endpoints in the original mode. */
10455 index_expr = build2 (MINUS_EXPR, index_type,
10456 index_expr, minval);
10457 minval = integer_zero_node;
10458 index = expand_normal (index_expr);
10459 if (default_label)
10460 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10461 omode, 1, default_label);
10462 /* Now we can safely truncate. */
10463 index = convert_to_mode (index_mode, index, 0);
10464 }
10465 else
10466 {
10467 if (TYPE_MODE (index_type) != index_mode)
10468 {
10469 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10470 index_expr = fold_convert (index_type, index_expr);
10471 }
10472
10473 index = expand_normal (index_expr);
10474 }
10475
10476 do_pending_stack_adjust ();
10477
10478 op1 = expand_normal (minval);
10479 op2 = expand_normal (range);
10480
10481 create_input_operand (&ops[0], index, index_mode);
10482 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10483 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10484 create_fixed_operand (&ops[3], table_label);
10485 create_fixed_operand (&ops[4], (default_label
10486 ? default_label
10487 : fallback_label));
10488 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10489 return 1;
10490 }
10491
10492 /* Attempt to generate a tablejump instruction; same concept. */
10493 #ifndef HAVE_tablejump
10494 #define HAVE_tablejump 0
10495 #define gen_tablejump(x, y) (0)
10496 #endif
10497
10498 /* Subroutine of the next function.
10499
10500 INDEX is the value being switched on, with the lowest value
10501 in the table already subtracted.
10502 MODE is its expected mode (needed if INDEX is constant).
10503 RANGE is the length of the jump table.
10504 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10505
10506 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10507 index value is out of range. */
10508
10509 static void
10510 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10511 rtx default_label)
10512 {
10513 rtx temp, vector;
10514
10515 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10516 cfun->cfg->max_jumptable_ents = INTVAL (range);
10517
10518 /* Do an unsigned comparison (in the proper mode) between the index
10519 expression and the value which represents the length of the range.
10520 Since we just finished subtracting the lower bound of the range
10521 from the index expression, this comparison allows us to simultaneously
10522 check that the original index expression value is both greater than
10523 or equal to the minimum value of the range and less than or equal to
10524 the maximum value of the range. */
10525
10526 if (default_label)
10527 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10528 default_label);
10529
10530 /* If index is in range, it must fit in Pmode.
10531 Convert to Pmode so we can index with it. */
10532 if (mode != Pmode)
10533 index = convert_to_mode (Pmode, index, 1);
10534
10535 /* Don't let a MEM slip through, because then INDEX that comes
10536 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10537 and break_out_memory_refs will go to work on it and mess it up. */
10538 #ifdef PIC_CASE_VECTOR_ADDRESS
10539 if (flag_pic && !REG_P (index))
10540 index = copy_to_mode_reg (Pmode, index);
10541 #endif
10542
10543 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10544 GET_MODE_SIZE, because this indicates how large insns are. The other
10545 uses should all be Pmode, because they are addresses. This code
10546 could fail if addresses and insns are not the same size. */
10547 index = gen_rtx_PLUS (Pmode,
10548 gen_rtx_MULT (Pmode, index,
10549 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10550 gen_rtx_LABEL_REF (Pmode, table_label));
10551 #ifdef PIC_CASE_VECTOR_ADDRESS
10552 if (flag_pic)
10553 index = PIC_CASE_VECTOR_ADDRESS (index);
10554 else
10555 #endif
10556 index = memory_address (CASE_VECTOR_MODE, index);
10557 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10558 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10559 convert_move (temp, vector, 0);
10560
10561 emit_jump_insn (gen_tablejump (temp, table_label));
10562
10563 /* If we are generating PIC code or if the table is PC-relative, the
10564 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10565 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10566 emit_barrier ();
10567 }
10568
10569 int
10570 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10571 rtx table_label, rtx default_label)
10572 {
10573 rtx index;
10574
10575 if (! HAVE_tablejump)
10576 return 0;
10577
10578 index_expr = fold_build2 (MINUS_EXPR, index_type,
10579 fold_convert (index_type, index_expr),
10580 fold_convert (index_type, minval));
10581 index = expand_normal (index_expr);
10582 do_pending_stack_adjust ();
10583
10584 do_tablejump (index, TYPE_MODE (index_type),
10585 convert_modes (TYPE_MODE (index_type),
10586 TYPE_MODE (TREE_TYPE (range)),
10587 expand_normal (range),
10588 TYPE_UNSIGNED (TREE_TYPE (range))),
10589 table_label, default_label);
10590 return 1;
10591 }
10592
10593 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10594 static rtx
10595 const_vector_from_tree (tree exp)
10596 {
10597 rtvec v;
10598 int units, i;
10599 tree link, elt;
10600 enum machine_mode inner, mode;
10601
10602 mode = TYPE_MODE (TREE_TYPE (exp));
10603
10604 if (initializer_zerop (exp))
10605 return CONST0_RTX (mode);
10606
10607 units = GET_MODE_NUNITS (mode);
10608 inner = GET_MODE_INNER (mode);
10609
10610 v = rtvec_alloc (units);
10611
10612 link = TREE_VECTOR_CST_ELTS (exp);
10613 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10614 {
10615 elt = TREE_VALUE (link);
10616
10617 if (TREE_CODE (elt) == REAL_CST)
10618 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10619 inner);
10620 else if (TREE_CODE (elt) == FIXED_CST)
10621 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10622 inner);
10623 else
10624 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10625 inner);
10626 }
10627
10628 /* Initialize remaining elements to 0. */
10629 for (; i < units; ++i)
10630 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10631
10632 return gen_rtx_CONST_VECTOR (mode, v);
10633 }
10634
10635 /* Build a decl for a personality function given a language prefix. */
10636
10637 tree
10638 build_personality_function (const char *lang)
10639 {
10640 const char *unwind_and_version;
10641 tree decl, type;
10642 char *name;
10643
10644 switch (targetm_common.except_unwind_info (&global_options))
10645 {
10646 case UI_NONE:
10647 return NULL;
10648 case UI_SJLJ:
10649 unwind_and_version = "_sj0";
10650 break;
10651 case UI_DWARF2:
10652 case UI_TARGET:
10653 unwind_and_version = "_v0";
10654 break;
10655 default:
10656 gcc_unreachable ();
10657 }
10658
10659 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10660
10661 type = build_function_type_list (integer_type_node, integer_type_node,
10662 long_long_unsigned_type_node,
10663 ptr_type_node, ptr_type_node, NULL_TREE);
10664 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10665 get_identifier (name), type);
10666 DECL_ARTIFICIAL (decl) = 1;
10667 DECL_EXTERNAL (decl) = 1;
10668 TREE_PUBLIC (decl) = 1;
10669
10670 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10671 are the flags assigned by targetm.encode_section_info. */
10672 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10673
10674 return decl;
10675 }
10676
10677 /* Extracts the personality function of DECL and returns the corresponding
10678 libfunc. */
10679
10680 rtx
10681 get_personality_function (tree decl)
10682 {
10683 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10684 enum eh_personality_kind pk;
10685
10686 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10687 if (pk == eh_personality_none)
10688 return NULL;
10689
10690 if (!personality
10691 && pk == eh_personality_any)
10692 personality = lang_hooks.eh_personality ();
10693
10694 if (pk == eh_personality_lang)
10695 gcc_assert (personality != NULL_TREE);
10696
10697 return XEXP (DECL_RTL (personality), 0);
10698 }
10699
10700 #include "gt-expr.h"