expr.c (expand_expr_real_1): Always return 0 for the extraction of a bit-field of...
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
29 #include "attribs.h"
30 #include "varasm.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "langhooks.h"
47 #include "intl.h"
48 #include "tm_p.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
54 #include "is-a.h"
55 #include "gimple.h"
56 #include "gimple-ssa.h"
57 #include "cgraph.h"
58 #include "tree-ssanames.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "timevar.h"
62 #include "df.h"
63 #include "diagnostic.h"
64 #include "tree-ssa-live.h"
65 #include "tree-outof-ssa.h"
66 #include "target-globals.h"
67 #include "params.h"
68 #include "tree-ssa-address.h"
69 #include "cfgexpand.h"
70
71 /* Decide whether a function's arguments should be processed
72 from first to last or from last to first.
73
74 They should if the stack and args grow in opposite directions, but
75 only if we have push insns. */
76
77 #ifdef PUSH_ROUNDING
78
79 #ifndef PUSH_ARGS_REVERSED
80 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
81 #define PUSH_ARGS_REVERSED /* If it's last to first. */
82 #endif
83 #endif
84
85 #endif
86
87 #ifndef STACK_PUSH_CODE
88 #ifdef STACK_GROWS_DOWNWARD
89 #define STACK_PUSH_CODE PRE_DEC
90 #else
91 #define STACK_PUSH_CODE PRE_INC
92 #endif
93 #endif
94
95
96 /* If this is nonzero, we do not bother generating VOLATILE
97 around volatile memory references, and we are willing to
98 output indirect addresses. If cse is to follow, we reject
99 indirect addresses so a useful potential cse is generated;
100 if it is used only once, instruction combination will produce
101 the same indirect address eventually. */
102 int cse_not_expected;
103
104 /* This structure is used by move_by_pieces to describe the move to
105 be performed. */
106 struct move_by_pieces_d
107 {
108 rtx to;
109 rtx to_addr;
110 int autinc_to;
111 int explicit_inc_to;
112 rtx from;
113 rtx from_addr;
114 int autinc_from;
115 int explicit_inc_from;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 int reverse;
119 };
120
121 /* This structure is used by store_by_pieces to describe the clear to
122 be performed. */
123
124 struct store_by_pieces_d
125 {
126 rtx to;
127 rtx to_addr;
128 int autinc_to;
129 int explicit_inc_to;
130 unsigned HOST_WIDE_INT len;
131 HOST_WIDE_INT offset;
132 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
133 void *constfundata;
134 int reverse;
135 };
136
137 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
138 struct move_by_pieces_d *);
139 static bool block_move_libcall_safe_for_call_parm (void);
140 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
141 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
142 unsigned HOST_WIDE_INT);
143 static tree emit_block_move_libcall_fn (int);
144 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
145 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
146 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
147 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
148 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
149 struct store_by_pieces_d *);
150 static tree clear_storage_libcall_fn (int);
151 static rtx compress_float_constant (rtx, rtx);
152 static rtx get_subtarget (rtx);
153 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
154 HOST_WIDE_INT, enum machine_mode,
155 tree, int, alias_set_type);
156 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
157 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
158 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
159 enum machine_mode, tree, alias_set_type, bool);
160
161 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
162
163 static int is_aligning_offset (const_tree, const_tree);
164 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
165 enum expand_modifier);
166 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
167 static rtx do_store_flag (sepops, rtx, enum machine_mode);
168 #ifdef PUSH_ROUNDING
169 static void emit_single_push_insn (enum machine_mode, rtx, tree);
170 #endif
171 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx, int);
172 static rtx const_vector_from_tree (tree);
173 static void write_complex_part (rtx, rtx, bool);
174
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
181 #endif
182
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
189 #endif
190
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero. */
193 #ifndef SET_BY_PIECES_P
194 #define SET_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
197 #endif
198
199 /* This macro is used to determine whether store_by_pieces should be
200 called to "memcpy" storage when the source is a constant string. */
201 #ifndef STORE_BY_PIECES_P
202 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
203 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
204 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
205 #endif
206 \f
207 /* This is run to set up which modes can be used
208 directly in memory and to initialize the block move optab. It is run
209 at the beginning of compilation and when the target is reinitialized. */
210
211 void
212 init_expr_target (void)
213 {
214 rtx insn, pat;
215 enum machine_mode mode;
216 int num_clobbers;
217 rtx mem, mem1;
218 rtx reg;
219
220 /* Try indexing by frame ptr and try by stack ptr.
221 It is known that on the Convex the stack ptr isn't a valid index.
222 With luck, one or the other is valid on any machine. */
223 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
224 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
225
226 /* A scratch register we can modify in-place below to avoid
227 useless RTL allocations. */
228 reg = gen_rtx_REG (VOIDmode, -1);
229
230 insn = rtx_alloc (INSN);
231 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
232 PATTERN (insn) = pat;
233
234 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
235 mode = (enum machine_mode) ((int) mode + 1))
236 {
237 int regno;
238
239 direct_load[(int) mode] = direct_store[(int) mode] = 0;
240 PUT_MODE (mem, mode);
241 PUT_MODE (mem1, mode);
242 PUT_MODE (reg, mode);
243
244 /* See if there is some register that can be used in this mode and
245 directly loaded or stored from memory. */
246
247 if (mode != VOIDmode && mode != BLKmode)
248 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
249 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
250 regno++)
251 {
252 if (! HARD_REGNO_MODE_OK (regno, mode))
253 continue;
254
255 SET_REGNO (reg, regno);
256
257 SET_SRC (pat) = mem;
258 SET_DEST (pat) = reg;
259 if (recog (pat, insn, &num_clobbers) >= 0)
260 direct_load[(int) mode] = 1;
261
262 SET_SRC (pat) = mem1;
263 SET_DEST (pat) = reg;
264 if (recog (pat, insn, &num_clobbers) >= 0)
265 direct_load[(int) mode] = 1;
266
267 SET_SRC (pat) = reg;
268 SET_DEST (pat) = mem;
269 if (recog (pat, insn, &num_clobbers) >= 0)
270 direct_store[(int) mode] = 1;
271
272 SET_SRC (pat) = reg;
273 SET_DEST (pat) = mem1;
274 if (recog (pat, insn, &num_clobbers) >= 0)
275 direct_store[(int) mode] = 1;
276 }
277 }
278
279 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
280
281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
282 mode = GET_MODE_WIDER_MODE (mode))
283 {
284 enum machine_mode srcmode;
285 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
286 srcmode = GET_MODE_WIDER_MODE (srcmode))
287 {
288 enum insn_code ic;
289
290 ic = can_extend_p (mode, srcmode, 0);
291 if (ic == CODE_FOR_nothing)
292 continue;
293
294 PUT_MODE (mem, srcmode);
295
296 if (insn_operand_matches (ic, 1, mem))
297 float_extend_from_mem[mode][srcmode] = true;
298 }
299 }
300 }
301
302 /* This is run at the start of compiling a function. */
303
304 void
305 init_expr (void)
306 {
307 memset (&crtl->expr, 0, sizeof (crtl->expr));
308 }
309 \f
310 /* Copy data from FROM to TO, where the machine modes are not the same.
311 Both modes may be integer, or both may be floating, or both may be
312 fixed-point.
313 UNSIGNEDP should be nonzero if FROM is an unsigned type.
314 This causes zero-extension instead of sign-extension. */
315
316 void
317 convert_move (rtx to, rtx from, int unsignedp)
318 {
319 enum machine_mode to_mode = GET_MODE (to);
320 enum machine_mode from_mode = GET_MODE (from);
321 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
322 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
323 enum insn_code code;
324 rtx libcall;
325
326 /* rtx code for making an equivalent value. */
327 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
328 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
329
330
331 gcc_assert (to_real == from_real);
332 gcc_assert (to_mode != BLKmode);
333 gcc_assert (from_mode != BLKmode);
334
335 /* If the source and destination are already the same, then there's
336 nothing to do. */
337 if (to == from)
338 return;
339
340 /* If FROM is a SUBREG that indicates that we have already done at least
341 the required extension, strip it. We don't handle such SUBREGs as
342 TO here. */
343
344 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
345 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
346 >= GET_MODE_PRECISION (to_mode))
347 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
348 from = gen_lowpart (to_mode, from), from_mode = to_mode;
349
350 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
351
352 if (to_mode == from_mode
353 || (from_mode == VOIDmode && CONSTANT_P (from)))
354 {
355 emit_move_insn (to, from);
356 return;
357 }
358
359 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
360 {
361 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
362
363 if (VECTOR_MODE_P (to_mode))
364 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
365 else
366 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
367
368 emit_move_insn (to, from);
369 return;
370 }
371
372 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
373 {
374 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
375 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
376 return;
377 }
378
379 if (to_real)
380 {
381 rtx value, insns;
382 convert_optab tab;
383
384 gcc_assert ((GET_MODE_PRECISION (from_mode)
385 != GET_MODE_PRECISION (to_mode))
386 || (DECIMAL_FLOAT_MODE_P (from_mode)
387 != DECIMAL_FLOAT_MODE_P (to_mode)));
388
389 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
390 /* Conversion between decimal float and binary float, same size. */
391 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
392 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
393 tab = sext_optab;
394 else
395 tab = trunc_optab;
396
397 /* Try converting directly if the insn is supported. */
398
399 code = convert_optab_handler (tab, to_mode, from_mode);
400 if (code != CODE_FOR_nothing)
401 {
402 emit_unop_insn (code, to, from,
403 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
404 return;
405 }
406
407 /* Otherwise use a libcall. */
408 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
409
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall);
412
413 start_sequence ();
414 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
415 1, from, from_mode);
416 insns = get_insns ();
417 end_sequence ();
418 emit_libcall_block (insns, to, value,
419 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
420 from)
421 : gen_rtx_FLOAT_EXTEND (to_mode, from));
422 return;
423 }
424
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
429 {
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
432
433 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
434 != CODE_FOR_nothing);
435
436 if (full_mode != from_mode)
437 from = convert_to_mode (full_mode, from, unsignedp);
438 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
439 to, from, UNKNOWN);
440 return;
441 }
442 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
443 {
444 rtx new_from;
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
447 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
448 enum insn_code icode;
449
450 icode = convert_optab_handler (ctab, full_mode, from_mode);
451 gcc_assert (icode != CODE_FOR_nothing);
452
453 if (to_mode == full_mode)
454 {
455 emit_unop_insn (icode, to, from, UNKNOWN);
456 return;
457 }
458
459 new_from = gen_reg_rtx (full_mode);
460 emit_unop_insn (icode, new_from, from, UNKNOWN);
461
462 /* else proceed to integer conversions below. */
463 from_mode = full_mode;
464 from = new_from;
465 }
466
467 /* Make sure both are fixed-point modes or both are not. */
468 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
469 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
470 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
471 {
472 /* If we widen from_mode to to_mode and they are in the same class,
473 we won't saturate the result.
474 Otherwise, always saturate the result to play safe. */
475 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
476 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
477 expand_fixed_convert (to, from, 0, 0);
478 else
479 expand_fixed_convert (to, from, 0, 1);
480 return;
481 }
482
483 /* Now both modes are integers. */
484
485 /* Handle expanding beyond a word. */
486 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
487 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
488 {
489 rtx insns;
490 rtx lowpart;
491 rtx fill_value;
492 rtx lowfrom;
493 int i;
494 enum machine_mode lowpart_mode;
495 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
496
497 /* Try converting directly if the insn is supported. */
498 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
499 != CODE_FOR_nothing)
500 {
501 /* If FROM is a SUBREG, put it into a register. Do this
502 so that we always generate the same set of insns for
503 better cse'ing; if an intermediate assignment occurred,
504 we won't be doing the operation directly on the SUBREG. */
505 if (optimize > 0 && GET_CODE (from) == SUBREG)
506 from = force_reg (from_mode, from);
507 emit_unop_insn (code, to, from, equiv_code);
508 return;
509 }
510 /* Next, try converting via full word. */
511 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
512 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
513 != CODE_FOR_nothing))
514 {
515 rtx word_to = gen_reg_rtx (word_mode);
516 if (REG_P (to))
517 {
518 if (reg_overlap_mentioned_p (to, from))
519 from = force_reg (from_mode, from);
520 emit_clobber (to);
521 }
522 convert_move (word_to, from, unsignedp);
523 emit_unop_insn (code, to, word_to, equiv_code);
524 return;
525 }
526
527 /* No special multiword conversion insn; do it by hand. */
528 start_sequence ();
529
530 /* Since we will turn this into a no conflict block, we must ensure the
531 the source does not overlap the target so force it into an isolated
532 register when maybe so. Likewise for any MEM input, since the
533 conversion sequence might require several references to it and we
534 must ensure we're getting the same value every time. */
535
536 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
537 from = force_reg (from_mode, from);
538
539 /* Get a copy of FROM widened to a word, if necessary. */
540 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
541 lowpart_mode = word_mode;
542 else
543 lowpart_mode = from_mode;
544
545 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
546
547 lowpart = gen_lowpart (lowpart_mode, to);
548 emit_move_insn (lowpart, lowfrom);
549
550 /* Compute the value to put in each remaining word. */
551 if (unsignedp)
552 fill_value = const0_rtx;
553 else
554 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
555 LT, lowfrom, const0_rtx,
556 VOIDmode, 0, -1);
557
558 /* Fill the remaining words. */
559 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
560 {
561 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
562 rtx subword = operand_subword (to, index, 1, to_mode);
563
564 gcc_assert (subword);
565
566 if (fill_value != subword)
567 emit_move_insn (subword, fill_value);
568 }
569
570 insns = get_insns ();
571 end_sequence ();
572
573 emit_insn (insns);
574 return;
575 }
576
577 /* Truncating multi-word to a word or less. */
578 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
579 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
580 {
581 if (!((MEM_P (from)
582 && ! MEM_VOLATILE_P (from)
583 && direct_load[(int) to_mode]
584 && ! mode_dependent_address_p (XEXP (from, 0),
585 MEM_ADDR_SPACE (from)))
586 || REG_P (from)
587 || GET_CODE (from) == SUBREG))
588 from = force_reg (from_mode, from);
589 convert_move (to, gen_lowpart (word_mode, from), 0);
590 return;
591 }
592
593 /* Now follow all the conversions between integers
594 no more than a word long. */
595
596 /* For truncation, usually we can just refer to FROM in a narrower mode. */
597 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
598 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
599 {
600 if (!((MEM_P (from)
601 && ! MEM_VOLATILE_P (from)
602 && direct_load[(int) to_mode]
603 && ! mode_dependent_address_p (XEXP (from, 0),
604 MEM_ADDR_SPACE (from)))
605 || REG_P (from)
606 || GET_CODE (from) == SUBREG))
607 from = force_reg (from_mode, from);
608 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
609 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
610 from = copy_to_reg (from);
611 emit_move_insn (to, gen_lowpart (to_mode, from));
612 return;
613 }
614
615 /* Handle extension. */
616 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
617 {
618 /* Convert directly if that works. */
619 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
620 != CODE_FOR_nothing)
621 {
622 emit_unop_insn (code, to, from, equiv_code);
623 return;
624 }
625 else
626 {
627 enum machine_mode intermediate;
628 rtx tmp;
629 int shift_amount;
630
631 /* Search for a mode to convert via. */
632 for (intermediate = from_mode; intermediate != VOIDmode;
633 intermediate = GET_MODE_WIDER_MODE (intermediate))
634 if (((can_extend_p (to_mode, intermediate, unsignedp)
635 != CODE_FOR_nothing)
636 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
637 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
638 && (can_extend_p (intermediate, from_mode, unsignedp)
639 != CODE_FOR_nothing))
640 {
641 convert_move (to, convert_to_mode (intermediate, from,
642 unsignedp), unsignedp);
643 return;
644 }
645
646 /* No suitable intermediate mode.
647 Generate what we need with shifts. */
648 shift_amount = (GET_MODE_PRECISION (to_mode)
649 - GET_MODE_PRECISION (from_mode));
650 from = gen_lowpart (to_mode, force_reg (from_mode, from));
651 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
652 to, unsignedp);
653 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
654 to, unsignedp);
655 if (tmp != to)
656 emit_move_insn (to, tmp);
657 return;
658 }
659 }
660
661 /* Support special truncate insns for certain modes. */
662 if (convert_optab_handler (trunc_optab, to_mode,
663 from_mode) != CODE_FOR_nothing)
664 {
665 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
666 to, from, UNKNOWN);
667 return;
668 }
669
670 /* Handle truncation of volatile memrefs, and so on;
671 the things that couldn't be truncated directly,
672 and for which there was no special instruction.
673
674 ??? Code above formerly short-circuited this, for most integer
675 mode pairs, with a force_reg in from_mode followed by a recursive
676 call to this routine. Appears always to have been wrong. */
677 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
678 {
679 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
680 emit_move_insn (to, temp);
681 return;
682 }
683
684 /* Mode combination is not recognized. */
685 gcc_unreachable ();
686 }
687
688 /* Return an rtx for a value that would result
689 from converting X to mode MODE.
690 Both X and MODE may be floating, or both integer.
691 UNSIGNEDP is nonzero if X is an unsigned value.
692 This can be done by referring to a part of X in place
693 or by copying to a new temporary with conversion. */
694
695 rtx
696 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
697 {
698 return convert_modes (mode, VOIDmode, x, unsignedp);
699 }
700
701 /* Return an rtx for a value that would result
702 from converting X from mode OLDMODE to mode MODE.
703 Both modes may be floating, or both integer.
704 UNSIGNEDP is nonzero if X is an unsigned value.
705
706 This can be done by referring to a part of X in place
707 or by copying to a new temporary with conversion.
708
709 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
710
711 rtx
712 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
713 {
714 rtx temp;
715
716 /* If FROM is a SUBREG that indicates that we have already done at least
717 the required extension, strip it. */
718
719 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
720 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
721 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
722 x = gen_lowpart (mode, x);
723
724 if (GET_MODE (x) != VOIDmode)
725 oldmode = GET_MODE (x);
726
727 if (mode == oldmode)
728 return x;
729
730 /* There is one case that we must handle specially: If we are converting
731 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
732 we are to interpret the constant as unsigned, gen_lowpart will do
733 the wrong if the constant appears negative. What we want to do is
734 make the high-order word of the constant zero, not all ones. */
735
736 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
737 && GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT
738 && CONST_INT_P (x) && INTVAL (x) < 0)
739 {
740 double_int val = double_int::from_uhwi (INTVAL (x));
741
742 /* We need to zero extend VAL. */
743 if (oldmode != VOIDmode)
744 val = val.zext (GET_MODE_BITSIZE (oldmode));
745
746 return immed_double_int_const (val, mode);
747 }
748
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
753
754 if ((CONST_INT_P (x)
755 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
756 || (GET_MODE_CLASS (mode) == MODE_INT
757 && GET_MODE_CLASS (oldmode) == MODE_INT
758 && (CONST_DOUBLE_AS_INT_P (x)
759 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
760 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
761 && direct_load[(int) mode])
762 || (REG_P (x)
763 && (! HARD_REGISTER_P (x)
764 || HARD_REGNO_MODE_OK (REGNO (x), mode))
765 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
766 GET_MODE (x))))))))
767 {
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (CONST_INT_P (x) && oldmode != VOIDmode
772 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
773 {
774 HOST_WIDE_INT val = INTVAL (x);
775
776 /* We must sign or zero-extend in this case. Start by
777 zero-extending, then sign extend if we need to. */
778 val &= GET_MODE_MASK (oldmode);
779 if (! unsignedp
780 && val_signbit_known_set_p (oldmode, val))
781 val |= ~GET_MODE_MASK (oldmode);
782
783 return gen_int_mode (val, mode);
784 }
785
786 return gen_lowpart (mode, x);
787 }
788
789 /* Converting from integer constant into mode is always equivalent to an
790 subreg operation. */
791 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
792 {
793 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
794 return simplify_gen_subreg (mode, x, oldmode, 0);
795 }
796
797 temp = gen_reg_rtx (mode);
798 convert_move (temp, x, unsignedp);
799 return temp;
800 }
801 \f
802 /* Return the largest alignment we can use for doing a move (or store)
803 of MAX_PIECES. ALIGN is the largest alignment we could use. */
804
805 static unsigned int
806 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
807 {
808 enum machine_mode tmode;
809
810 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
811 if (align >= GET_MODE_ALIGNMENT (tmode))
812 align = GET_MODE_ALIGNMENT (tmode);
813 else
814 {
815 enum machine_mode tmode, xmode;
816
817 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
818 tmode != VOIDmode;
819 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
820 if (GET_MODE_SIZE (tmode) > max_pieces
821 || SLOW_UNALIGNED_ACCESS (tmode, align))
822 break;
823
824 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
825 }
826
827 return align;
828 }
829
830 /* Return the widest integer mode no wider than SIZE. If no such mode
831 can be found, return VOIDmode. */
832
833 static enum machine_mode
834 widest_int_mode_for_size (unsigned int size)
835 {
836 enum machine_mode tmode, mode = VOIDmode;
837
838 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
839 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
840 if (GET_MODE_SIZE (tmode) < size)
841 mode = tmode;
842
843 return mode;
844 }
845
846 /* STORE_MAX_PIECES is the number of bytes at a time that we can
847 store efficiently. Due to internal GCC limitations, this is
848 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
849 for an immediate constant. */
850
851 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
852
853 /* Determine whether the LEN bytes can be moved by using several move
854 instructions. Return nonzero if a call to move_by_pieces should
855 succeed. */
856
857 int
858 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED,
859 unsigned int align ATTRIBUTE_UNUSED)
860 {
861 return MOVE_BY_PIECES_P (len, align);
862 }
863
864 /* Generate several move instructions to copy LEN bytes from block FROM to
865 block TO. (These are MEM rtx's with BLKmode).
866
867 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
868 used to push FROM to the stack.
869
870 ALIGN is maximum stack alignment we can assume.
871
872 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
873 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
874 stpcpy. */
875
876 rtx
877 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
878 unsigned int align, int endp)
879 {
880 struct move_by_pieces_d data;
881 enum machine_mode to_addr_mode;
882 enum machine_mode from_addr_mode = get_address_mode (from);
883 rtx to_addr, from_addr = XEXP (from, 0);
884 unsigned int max_size = MOVE_MAX_PIECES + 1;
885 enum insn_code icode;
886
887 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
888
889 data.offset = 0;
890 data.from_addr = from_addr;
891 if (to)
892 {
893 to_addr_mode = get_address_mode (to);
894 to_addr = XEXP (to, 0);
895 data.to = to;
896 data.autinc_to
897 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
898 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
899 data.reverse
900 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
901 }
902 else
903 {
904 to_addr_mode = VOIDmode;
905 to_addr = NULL_RTX;
906 data.to = NULL_RTX;
907 data.autinc_to = 1;
908 #ifdef STACK_GROWS_DOWNWARD
909 data.reverse = 1;
910 #else
911 data.reverse = 0;
912 #endif
913 }
914 data.to_addr = to_addr;
915 data.from = from;
916 data.autinc_from
917 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
918 || GET_CODE (from_addr) == POST_INC
919 || GET_CODE (from_addr) == POST_DEC);
920
921 data.explicit_inc_from = 0;
922 data.explicit_inc_to = 0;
923 if (data.reverse) data.offset = len;
924 data.len = len;
925
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data.autinc_from && data.autinc_to)
930 && move_by_pieces_ninsns (len, align, max_size) > 2)
931 {
932 /* Find the mode of the largest move...
933 MODE might not be used depending on the definitions of the
934 USE_* macros below. */
935 enum machine_mode mode ATTRIBUTE_UNUSED
936 = widest_int_mode_for_size (max_size);
937
938 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
939 {
940 data.from_addr = copy_to_mode_reg (from_addr_mode,
941 plus_constant (from_addr_mode,
942 from_addr, len));
943 data.autinc_from = 1;
944 data.explicit_inc_from = -1;
945 }
946 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
947 {
948 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
949 data.autinc_from = 1;
950 data.explicit_inc_from = 1;
951 }
952 if (!data.autinc_from && CONSTANT_P (from_addr))
953 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
954 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
955 {
956 data.to_addr = copy_to_mode_reg (to_addr_mode,
957 plus_constant (to_addr_mode,
958 to_addr, len));
959 data.autinc_to = 1;
960 data.explicit_inc_to = -1;
961 }
962 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
963 {
964 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
965 data.autinc_to = 1;
966 data.explicit_inc_to = 1;
967 }
968 if (!data.autinc_to && CONSTANT_P (to_addr))
969 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
970 }
971
972 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
973
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
976
977 while (max_size > 1 && data.len > 0)
978 {
979 enum machine_mode mode = widest_int_mode_for_size (max_size);
980
981 if (mode == VOIDmode)
982 break;
983
984 icode = optab_handler (mov_optab, mode);
985 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
986 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
987
988 max_size = GET_MODE_SIZE (mode);
989 }
990
991 /* The code above should have handled everything. */
992 gcc_assert (!data.len);
993
994 if (endp)
995 {
996 rtx to1;
997
998 gcc_assert (!data.reverse);
999 if (data.autinc_to)
1000 {
1001 if (endp == 2)
1002 {
1003 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1004 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1005 else
1006 data.to_addr = copy_to_mode_reg (to_addr_mode,
1007 plus_constant (to_addr_mode,
1008 data.to_addr,
1009 -1));
1010 }
1011 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1012 data.offset);
1013 }
1014 else
1015 {
1016 if (endp == 2)
1017 --data.offset;
1018 to1 = adjust_address (data.to, QImode, data.offset);
1019 }
1020 return to1;
1021 }
1022 else
1023 return data.to;
1024 }
1025
1026 /* Return number of insns required to move L bytes by pieces.
1027 ALIGN (in bits) is maximum alignment we can assume. */
1028
1029 unsigned HOST_WIDE_INT
1030 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1031 unsigned int max_size)
1032 {
1033 unsigned HOST_WIDE_INT n_insns = 0;
1034
1035 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1036
1037 while (max_size > 1 && l > 0)
1038 {
1039 enum machine_mode mode;
1040 enum insn_code icode;
1041
1042 mode = widest_int_mode_for_size (max_size);
1043
1044 if (mode == VOIDmode)
1045 break;
1046
1047 icode = optab_handler (mov_optab, mode);
1048 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1049 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1050
1051 max_size = GET_MODE_SIZE (mode);
1052 }
1053
1054 gcc_assert (!l);
1055 return n_insns;
1056 }
1057
1058 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1059 with move instructions for mode MODE. GENFUN is the gen_... function
1060 to make a move insn for that mode. DATA has all the other info. */
1061
1062 static void
1063 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
1064 struct move_by_pieces_d *data)
1065 {
1066 unsigned int size = GET_MODE_SIZE (mode);
1067 rtx to1 = NULL_RTX, from1;
1068
1069 while (data->len >= size)
1070 {
1071 if (data->reverse)
1072 data->offset -= size;
1073
1074 if (data->to)
1075 {
1076 if (data->autinc_to)
1077 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1078 data->offset);
1079 else
1080 to1 = adjust_address (data->to, mode, data->offset);
1081 }
1082
1083 if (data->autinc_from)
1084 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1085 data->offset);
1086 else
1087 from1 = adjust_address (data->from, mode, data->offset);
1088
1089 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1090 emit_insn (gen_add2_insn (data->to_addr,
1091 gen_int_mode (-(HOST_WIDE_INT) size,
1092 GET_MODE (data->to_addr))));
1093 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1094 emit_insn (gen_add2_insn (data->from_addr,
1095 gen_int_mode (-(HOST_WIDE_INT) size,
1096 GET_MODE (data->from_addr))));
1097
1098 if (data->to)
1099 emit_insn ((*genfun) (to1, from1));
1100 else
1101 {
1102 #ifdef PUSH_ROUNDING
1103 emit_single_push_insn (mode, from1, NULL);
1104 #else
1105 gcc_unreachable ();
1106 #endif
1107 }
1108
1109 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 gen_int_mode (size,
1112 GET_MODE (data->to_addr))));
1113 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1114 emit_insn (gen_add2_insn (data->from_addr,
1115 gen_int_mode (size,
1116 GET_MODE (data->from_addr))));
1117
1118 if (! data->reverse)
1119 data->offset += size;
1120
1121 data->len -= size;
1122 }
1123 }
1124 \f
1125 /* Emit code to move a block Y to a block X. This may be done with
1126 string-move instructions, with multiple scalar move instructions,
1127 or with a library call.
1128
1129 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1130 SIZE is an rtx that says how long they are.
1131 ALIGN is the maximum alignment we can assume they have.
1132 METHOD describes what kind of copy this is, and what mechanisms may be used.
1133 MIN_SIZE is the minimal size of block to move
1134 MAX_SIZE is the maximal size of block to move, if it can not be represented
1135 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1136
1137 Return the address of the new block, if memcpy is called and returns it,
1138 0 otherwise. */
1139
1140 rtx
1141 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1142 unsigned int expected_align, HOST_WIDE_INT expected_size,
1143 unsigned HOST_WIDE_INT min_size,
1144 unsigned HOST_WIDE_INT max_size,
1145 unsigned HOST_WIDE_INT probable_max_size)
1146 {
1147 bool may_use_call;
1148 rtx retval = 0;
1149 unsigned int align;
1150
1151 gcc_assert (size);
1152 if (CONST_INT_P (size)
1153 && INTVAL (size) == 0)
1154 return 0;
1155
1156 switch (method)
1157 {
1158 case BLOCK_OP_NORMAL:
1159 case BLOCK_OP_TAILCALL:
1160 may_use_call = true;
1161 break;
1162
1163 case BLOCK_OP_CALL_PARM:
1164 may_use_call = block_move_libcall_safe_for_call_parm ();
1165
1166 /* Make inhibit_defer_pop nonzero around the library call
1167 to force it to pop the arguments right away. */
1168 NO_DEFER_POP;
1169 break;
1170
1171 case BLOCK_OP_NO_LIBCALL:
1172 may_use_call = false;
1173 break;
1174
1175 default:
1176 gcc_unreachable ();
1177 }
1178
1179 gcc_assert (MEM_P (x) && MEM_P (y));
1180 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1181 gcc_assert (align >= BITS_PER_UNIT);
1182
1183 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1184 block copy is more efficient for other large modes, e.g. DCmode. */
1185 x = adjust_address (x, BLKmode, 0);
1186 y = adjust_address (y, BLKmode, 0);
1187
1188 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1189 can be incorrect is coming from __builtin_memcpy. */
1190 if (CONST_INT_P (size))
1191 {
1192 x = shallow_copy_rtx (x);
1193 y = shallow_copy_rtx (y);
1194 set_mem_size (x, INTVAL (size));
1195 set_mem_size (y, INTVAL (size));
1196 }
1197
1198 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1199 move_by_pieces (x, y, INTVAL (size), align, 0);
1200 else if (emit_block_move_via_movmem (x, y, size, align,
1201 expected_align, expected_size,
1202 min_size, max_size, probable_max_size))
1203 ;
1204 else if (may_use_call
1205 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1206 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1207 {
1208 /* Since x and y are passed to a libcall, mark the corresponding
1209 tree EXPR as addressable. */
1210 tree y_expr = MEM_EXPR (y);
1211 tree x_expr = MEM_EXPR (x);
1212 if (y_expr)
1213 mark_addressable (y_expr);
1214 if (x_expr)
1215 mark_addressable (x_expr);
1216 retval = emit_block_move_via_libcall (x, y, size,
1217 method == BLOCK_OP_TAILCALL);
1218 }
1219
1220 else
1221 emit_block_move_via_loop (x, y, size, align);
1222
1223 if (method == BLOCK_OP_CALL_PARM)
1224 OK_DEFER_POP;
1225
1226 return retval;
1227 }
1228
1229 rtx
1230 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1231 {
1232 unsigned HOST_WIDE_INT max, min = 0;
1233 if (GET_CODE (size) == CONST_INT)
1234 min = max = UINTVAL (size);
1235 else
1236 max = GET_MODE_MASK (GET_MODE (size));
1237 return emit_block_move_hints (x, y, size, method, 0, -1,
1238 min, max, max);
1239 }
1240
1241 /* A subroutine of emit_block_move. Returns true if calling the
1242 block move libcall will not clobber any parameters which may have
1243 already been placed on the stack. */
1244
1245 static bool
1246 block_move_libcall_safe_for_call_parm (void)
1247 {
1248 #if defined (REG_PARM_STACK_SPACE)
1249 tree fn;
1250 #endif
1251
1252 /* If arguments are pushed on the stack, then they're safe. */
1253 if (PUSH_ARGS)
1254 return true;
1255
1256 /* If registers go on the stack anyway, any argument is sure to clobber
1257 an outgoing argument. */
1258 #if defined (REG_PARM_STACK_SPACE)
1259 fn = emit_block_move_libcall_fn (false);
1260 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1261 depend on its argument. */
1262 (void) fn;
1263 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1264 && REG_PARM_STACK_SPACE (fn) != 0)
1265 return false;
1266 #endif
1267
1268 /* If any argument goes in memory, then it might clobber an outgoing
1269 argument. */
1270 {
1271 CUMULATIVE_ARGS args_so_far_v;
1272 cumulative_args_t args_so_far;
1273 tree fn, arg;
1274
1275 fn = emit_block_move_libcall_fn (false);
1276 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1277 args_so_far = pack_cumulative_args (&args_so_far_v);
1278
1279 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1280 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1281 {
1282 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1283 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1284 NULL_TREE, true);
1285 if (!tmp || !REG_P (tmp))
1286 return false;
1287 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1288 return false;
1289 targetm.calls.function_arg_advance (args_so_far, mode,
1290 NULL_TREE, true);
1291 }
1292 }
1293 return true;
1294 }
1295
1296 /* A subroutine of emit_block_move. Expand a movmem pattern;
1297 return true if successful. */
1298
1299 static bool
1300 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1301 unsigned int expected_align, HOST_WIDE_INT expected_size,
1302 unsigned HOST_WIDE_INT min_size,
1303 unsigned HOST_WIDE_INT max_size,
1304 unsigned HOST_WIDE_INT probable_max_size)
1305 {
1306 int save_volatile_ok = volatile_ok;
1307 enum machine_mode mode;
1308
1309 if (expected_align < align)
1310 expected_align = align;
1311 if (expected_size != -1)
1312 {
1313 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1314 expected_size = probable_max_size;
1315 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1316 expected_size = min_size;
1317 }
1318
1319 /* Since this is a move insn, we don't care about volatility. */
1320 volatile_ok = 1;
1321
1322 /* Try the most limited insn first, because there's no point
1323 including more than one in the machine description unless
1324 the more limited one has some advantage. */
1325
1326 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1327 mode = GET_MODE_WIDER_MODE (mode))
1328 {
1329 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1330
1331 if (code != CODE_FOR_nothing
1332 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1333 here because if SIZE is less than the mode mask, as it is
1334 returned by the macro, it will definitely be less than the
1335 actual mode mask. Since SIZE is within the Pmode address
1336 space, we limit MODE to Pmode. */
1337 && ((CONST_INT_P (size)
1338 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1339 <= (GET_MODE_MASK (mode) >> 1)))
1340 || max_size <= (GET_MODE_MASK (mode) >> 1)
1341 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1342 {
1343 struct expand_operand ops[9];
1344 unsigned int nops;
1345
1346 /* ??? When called via emit_block_move_for_call, it'd be
1347 nice if there were some way to inform the backend, so
1348 that it doesn't fail the expansion because it thinks
1349 emitting the libcall would be more efficient. */
1350 nops = insn_data[(int) code].n_generator_args;
1351 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1352
1353 create_fixed_operand (&ops[0], x);
1354 create_fixed_operand (&ops[1], y);
1355 /* The check above guarantees that this size conversion is valid. */
1356 create_convert_operand_to (&ops[2], size, mode, true);
1357 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1358 if (nops >= 6)
1359 {
1360 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1361 create_integer_operand (&ops[5], expected_size);
1362 }
1363 if (nops >= 8)
1364 {
1365 create_integer_operand (&ops[6], min_size);
1366 /* If we can not represent the maximal size,
1367 make parameter NULL. */
1368 if ((HOST_WIDE_INT) max_size != -1)
1369 create_integer_operand (&ops[7], max_size);
1370 else
1371 create_fixed_operand (&ops[7], NULL);
1372 }
1373 if (nops == 9)
1374 {
1375 /* If we can not represent the maximal size,
1376 make parameter NULL. */
1377 if ((HOST_WIDE_INT) probable_max_size != -1)
1378 create_integer_operand (&ops[8], probable_max_size);
1379 else
1380 create_fixed_operand (&ops[8], NULL);
1381 }
1382 if (maybe_expand_insn (code, nops, ops))
1383 {
1384 volatile_ok = save_volatile_ok;
1385 return true;
1386 }
1387 }
1388 }
1389
1390 volatile_ok = save_volatile_ok;
1391 return false;
1392 }
1393
1394 /* A subroutine of emit_block_move. Expand a call to memcpy.
1395 Return the return value from memcpy, 0 otherwise. */
1396
1397 rtx
1398 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1399 {
1400 rtx dst_addr, src_addr;
1401 tree call_expr, fn, src_tree, dst_tree, size_tree;
1402 enum machine_mode size_mode;
1403 rtx retval;
1404
1405 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1406 pseudos. We can then place those new pseudos into a VAR_DECL and
1407 use them later. */
1408
1409 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1410 src_addr = copy_addr_to_reg (XEXP (src, 0));
1411
1412 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1413 src_addr = convert_memory_address (ptr_mode, src_addr);
1414
1415 dst_tree = make_tree (ptr_type_node, dst_addr);
1416 src_tree = make_tree (ptr_type_node, src_addr);
1417
1418 size_mode = TYPE_MODE (sizetype);
1419
1420 size = convert_to_mode (size_mode, size, 1);
1421 size = copy_to_mode_reg (size_mode, size);
1422
1423 /* It is incorrect to use the libcall calling conventions to call
1424 memcpy in this context. This could be a user call to memcpy and
1425 the user may wish to examine the return value from memcpy. For
1426 targets where libcalls and normal calls have different conventions
1427 for returning pointers, we could end up generating incorrect code. */
1428
1429 size_tree = make_tree (sizetype, size);
1430
1431 fn = emit_block_move_libcall_fn (true);
1432 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1433 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1434
1435 retval = expand_normal (call_expr);
1436
1437 return retval;
1438 }
1439
1440 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1441 for the function we use for block copies. */
1442
1443 static GTY(()) tree block_move_fn;
1444
1445 void
1446 init_block_move_fn (const char *asmspec)
1447 {
1448 if (!block_move_fn)
1449 {
1450 tree args, fn, attrs, attr_args;
1451
1452 fn = get_identifier ("memcpy");
1453 args = build_function_type_list (ptr_type_node, ptr_type_node,
1454 const_ptr_type_node, sizetype,
1455 NULL_TREE);
1456
1457 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1458 DECL_EXTERNAL (fn) = 1;
1459 TREE_PUBLIC (fn) = 1;
1460 DECL_ARTIFICIAL (fn) = 1;
1461 TREE_NOTHROW (fn) = 1;
1462 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1463 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1464
1465 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1466 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1467
1468 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1469
1470 block_move_fn = fn;
1471 }
1472
1473 if (asmspec)
1474 set_user_assembler_name (block_move_fn, asmspec);
1475 }
1476
1477 static tree
1478 emit_block_move_libcall_fn (int for_call)
1479 {
1480 static bool emitted_extern;
1481
1482 if (!block_move_fn)
1483 init_block_move_fn (NULL);
1484
1485 if (for_call && !emitted_extern)
1486 {
1487 emitted_extern = true;
1488 make_decl_rtl (block_move_fn);
1489 }
1490
1491 return block_move_fn;
1492 }
1493
1494 /* A subroutine of emit_block_move. Copy the data via an explicit
1495 loop. This is used only when libcalls are forbidden. */
1496 /* ??? It'd be nice to copy in hunks larger than QImode. */
1497
1498 static void
1499 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1500 unsigned int align ATTRIBUTE_UNUSED)
1501 {
1502 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1503 enum machine_mode x_addr_mode = get_address_mode (x);
1504 enum machine_mode y_addr_mode = get_address_mode (y);
1505 enum machine_mode iter_mode;
1506
1507 iter_mode = GET_MODE (size);
1508 if (iter_mode == VOIDmode)
1509 iter_mode = word_mode;
1510
1511 top_label = gen_label_rtx ();
1512 cmp_label = gen_label_rtx ();
1513 iter = gen_reg_rtx (iter_mode);
1514
1515 emit_move_insn (iter, const0_rtx);
1516
1517 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1518 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1519 do_pending_stack_adjust ();
1520
1521 emit_jump (cmp_label);
1522 emit_label (top_label);
1523
1524 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1525 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1526
1527 if (x_addr_mode != y_addr_mode)
1528 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1529 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1530
1531 x = change_address (x, QImode, x_addr);
1532 y = change_address (y, QImode, y_addr);
1533
1534 emit_move_insn (x, y);
1535
1536 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1537 true, OPTAB_LIB_WIDEN);
1538 if (tmp != iter)
1539 emit_move_insn (iter, tmp);
1540
1541 emit_label (cmp_label);
1542
1543 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1544 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1545 }
1546 \f
1547 /* Copy all or part of a value X into registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1549
1550 void
1551 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1552 {
1553 int i;
1554 #ifdef HAVE_load_multiple
1555 rtx pat;
1556 rtx last;
1557 #endif
1558
1559 if (nregs == 0)
1560 return;
1561
1562 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1563 x = validize_mem (force_const_mem (mode, x));
1564
1565 /* See if the machine can do this with a load multiple insn. */
1566 #ifdef HAVE_load_multiple
1567 if (HAVE_load_multiple)
1568 {
1569 last = get_last_insn ();
1570 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1571 GEN_INT (nregs));
1572 if (pat)
1573 {
1574 emit_insn (pat);
1575 return;
1576 }
1577 else
1578 delete_insns_since (last);
1579 }
1580 #endif
1581
1582 for (i = 0; i < nregs; i++)
1583 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1584 operand_subword_force (x, i, mode));
1585 }
1586
1587 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1588 The number of registers to be filled is NREGS. */
1589
1590 void
1591 move_block_from_reg (int regno, rtx x, int nregs)
1592 {
1593 int i;
1594
1595 if (nregs == 0)
1596 return;
1597
1598 /* See if the machine can do this with a store multiple insn. */
1599 #ifdef HAVE_store_multiple
1600 if (HAVE_store_multiple)
1601 {
1602 rtx last = get_last_insn ();
1603 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1604 GEN_INT (nregs));
1605 if (pat)
1606 {
1607 emit_insn (pat);
1608 return;
1609 }
1610 else
1611 delete_insns_since (last);
1612 }
1613 #endif
1614
1615 for (i = 0; i < nregs; i++)
1616 {
1617 rtx tem = operand_subword (x, i, 1, BLKmode);
1618
1619 gcc_assert (tem);
1620
1621 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1622 }
1623 }
1624
1625 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1626 ORIG, where ORIG is a non-consecutive group of registers represented by
1627 a PARALLEL. The clone is identical to the original except in that the
1628 original set of registers is replaced by a new set of pseudo registers.
1629 The new set has the same modes as the original set. */
1630
1631 rtx
1632 gen_group_rtx (rtx orig)
1633 {
1634 int i, length;
1635 rtx *tmps;
1636
1637 gcc_assert (GET_CODE (orig) == PARALLEL);
1638
1639 length = XVECLEN (orig, 0);
1640 tmps = XALLOCAVEC (rtx, length);
1641
1642 /* Skip a NULL entry in first slot. */
1643 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1644
1645 if (i)
1646 tmps[0] = 0;
1647
1648 for (; i < length; i++)
1649 {
1650 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1651 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1652
1653 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1654 }
1655
1656 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1657 }
1658
1659 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1660 except that values are placed in TMPS[i], and must later be moved
1661 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1662
1663 static void
1664 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1665 {
1666 rtx src;
1667 int start, i;
1668 enum machine_mode m = GET_MODE (orig_src);
1669
1670 gcc_assert (GET_CODE (dst) == PARALLEL);
1671
1672 if (m != VOIDmode
1673 && !SCALAR_INT_MODE_P (m)
1674 && !MEM_P (orig_src)
1675 && GET_CODE (orig_src) != CONCAT)
1676 {
1677 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1678 if (imode == BLKmode)
1679 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1680 else
1681 src = gen_reg_rtx (imode);
1682 if (imode != BLKmode)
1683 src = gen_lowpart (GET_MODE (orig_src), src);
1684 emit_move_insn (src, orig_src);
1685 /* ...and back again. */
1686 if (imode != BLKmode)
1687 src = gen_lowpart (imode, src);
1688 emit_group_load_1 (tmps, dst, src, type, ssize);
1689 return;
1690 }
1691
1692 /* Check for a NULL entry, used to indicate that the parameter goes
1693 both on the stack and in registers. */
1694 if (XEXP (XVECEXP (dst, 0, 0), 0))
1695 start = 0;
1696 else
1697 start = 1;
1698
1699 /* Process the pieces. */
1700 for (i = start; i < XVECLEN (dst, 0); i++)
1701 {
1702 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1703 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1704 unsigned int bytelen = GET_MODE_SIZE (mode);
1705 int shift = 0;
1706
1707 /* Handle trailing fragments that run over the size of the struct. */
1708 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1709 {
1710 /* Arrange to shift the fragment to where it belongs.
1711 extract_bit_field loads to the lsb of the reg. */
1712 if (
1713 #ifdef BLOCK_REG_PADDING
1714 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1715 == (BYTES_BIG_ENDIAN ? upward : downward)
1716 #else
1717 BYTES_BIG_ENDIAN
1718 #endif
1719 )
1720 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1721 bytelen = ssize - bytepos;
1722 gcc_assert (bytelen > 0);
1723 }
1724
1725 /* If we won't be loading directly from memory, protect the real source
1726 from strange tricks we might play; but make sure that the source can
1727 be loaded directly into the destination. */
1728 src = orig_src;
1729 if (!MEM_P (orig_src)
1730 && (!CONSTANT_P (orig_src)
1731 || (GET_MODE (orig_src) != mode
1732 && GET_MODE (orig_src) != VOIDmode)))
1733 {
1734 if (GET_MODE (orig_src) == VOIDmode)
1735 src = gen_reg_rtx (mode);
1736 else
1737 src = gen_reg_rtx (GET_MODE (orig_src));
1738
1739 emit_move_insn (src, orig_src);
1740 }
1741
1742 /* Optimize the access just a bit. */
1743 if (MEM_P (src)
1744 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1745 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1746 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1747 && bytelen == GET_MODE_SIZE (mode))
1748 {
1749 tmps[i] = gen_reg_rtx (mode);
1750 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1751 }
1752 else if (COMPLEX_MODE_P (mode)
1753 && GET_MODE (src) == mode
1754 && bytelen == GET_MODE_SIZE (mode))
1755 /* Let emit_move_complex do the bulk of the work. */
1756 tmps[i] = src;
1757 else if (GET_CODE (src) == CONCAT)
1758 {
1759 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1760 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1761
1762 if ((bytepos == 0 && bytelen == slen0)
1763 || (bytepos != 0 && bytepos + bytelen <= slen))
1764 {
1765 /* The following assumes that the concatenated objects all
1766 have the same size. In this case, a simple calculation
1767 can be used to determine the object and the bit field
1768 to be extracted. */
1769 tmps[i] = XEXP (src, bytepos / slen0);
1770 if (! CONSTANT_P (tmps[i])
1771 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1772 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1773 (bytepos % slen0) * BITS_PER_UNIT,
1774 1, NULL_RTX, mode, mode);
1775 }
1776 else
1777 {
1778 rtx mem;
1779
1780 gcc_assert (!bytepos);
1781 mem = assign_stack_temp (GET_MODE (src), slen);
1782 emit_move_insn (mem, src);
1783 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1784 0, 1, NULL_RTX, mode, mode);
1785 }
1786 }
1787 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1788 SIMD register, which is currently broken. While we get GCC
1789 to emit proper RTL for these cases, let's dump to memory. */
1790 else if (VECTOR_MODE_P (GET_MODE (dst))
1791 && REG_P (src))
1792 {
1793 int slen = GET_MODE_SIZE (GET_MODE (src));
1794 rtx mem;
1795
1796 mem = assign_stack_temp (GET_MODE (src), slen);
1797 emit_move_insn (mem, src);
1798 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1799 }
1800 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1801 && XVECLEN (dst, 0) > 1)
1802 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1803 else if (CONSTANT_P (src))
1804 {
1805 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1806
1807 if (len == ssize)
1808 tmps[i] = src;
1809 else
1810 {
1811 rtx first, second;
1812
1813 gcc_assert (2 * len == ssize);
1814 split_double (src, &first, &second);
1815 if (i)
1816 tmps[i] = second;
1817 else
1818 tmps[i] = first;
1819 }
1820 }
1821 else if (REG_P (src) && GET_MODE (src) == mode)
1822 tmps[i] = src;
1823 else
1824 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1825 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1826 mode, mode);
1827
1828 if (shift)
1829 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1830 shift, tmps[i], 0);
1831 }
1832 }
1833
1834 /* Emit code to move a block SRC of type TYPE to a block DST,
1835 where DST is non-consecutive registers represented by a PARALLEL.
1836 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1837 if not known. */
1838
1839 void
1840 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1841 {
1842 rtx *tmps;
1843 int i;
1844
1845 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1846 emit_group_load_1 (tmps, dst, src, type, ssize);
1847
1848 /* Copy the extracted pieces into the proper (probable) hard regs. */
1849 for (i = 0; i < XVECLEN (dst, 0); i++)
1850 {
1851 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1852 if (d == NULL)
1853 continue;
1854 emit_move_insn (d, tmps[i]);
1855 }
1856 }
1857
1858 /* Similar, but load SRC into new pseudos in a format that looks like
1859 PARALLEL. This can later be fed to emit_group_move to get things
1860 in the right place. */
1861
1862 rtx
1863 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1864 {
1865 rtvec vec;
1866 int i;
1867
1868 vec = rtvec_alloc (XVECLEN (parallel, 0));
1869 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1870
1871 /* Convert the vector to look just like the original PARALLEL, except
1872 with the computed values. */
1873 for (i = 0; i < XVECLEN (parallel, 0); i++)
1874 {
1875 rtx e = XVECEXP (parallel, 0, i);
1876 rtx d = XEXP (e, 0);
1877
1878 if (d)
1879 {
1880 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1881 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1882 }
1883 RTVEC_ELT (vec, i) = e;
1884 }
1885
1886 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1887 }
1888
1889 /* Emit code to move a block SRC to block DST, where SRC and DST are
1890 non-consecutive groups of registers, each represented by a PARALLEL. */
1891
1892 void
1893 emit_group_move (rtx dst, rtx src)
1894 {
1895 int i;
1896
1897 gcc_assert (GET_CODE (src) == PARALLEL
1898 && GET_CODE (dst) == PARALLEL
1899 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1900
1901 /* Skip first entry if NULL. */
1902 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1903 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1904 XEXP (XVECEXP (src, 0, i), 0));
1905 }
1906
1907 /* Move a group of registers represented by a PARALLEL into pseudos. */
1908
1909 rtx
1910 emit_group_move_into_temps (rtx src)
1911 {
1912 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1913 int i;
1914
1915 for (i = 0; i < XVECLEN (src, 0); i++)
1916 {
1917 rtx e = XVECEXP (src, 0, i);
1918 rtx d = XEXP (e, 0);
1919
1920 if (d)
1921 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1922 RTVEC_ELT (vec, i) = e;
1923 }
1924
1925 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1926 }
1927
1928 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1929 where SRC is non-consecutive registers represented by a PARALLEL.
1930 SSIZE represents the total size of block ORIG_DST, or -1 if not
1931 known. */
1932
1933 void
1934 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1935 {
1936 rtx *tmps, dst;
1937 int start, finish, i;
1938 enum machine_mode m = GET_MODE (orig_dst);
1939
1940 gcc_assert (GET_CODE (src) == PARALLEL);
1941
1942 if (!SCALAR_INT_MODE_P (m)
1943 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1944 {
1945 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1946 if (imode == BLKmode)
1947 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1948 else
1949 dst = gen_reg_rtx (imode);
1950 emit_group_store (dst, src, type, ssize);
1951 if (imode != BLKmode)
1952 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1953 emit_move_insn (orig_dst, dst);
1954 return;
1955 }
1956
1957 /* Check for a NULL entry, used to indicate that the parameter goes
1958 both on the stack and in registers. */
1959 if (XEXP (XVECEXP (src, 0, 0), 0))
1960 start = 0;
1961 else
1962 start = 1;
1963 finish = XVECLEN (src, 0);
1964
1965 tmps = XALLOCAVEC (rtx, finish);
1966
1967 /* Copy the (probable) hard regs into pseudos. */
1968 for (i = start; i < finish; i++)
1969 {
1970 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1971 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1972 {
1973 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1974 emit_move_insn (tmps[i], reg);
1975 }
1976 else
1977 tmps[i] = reg;
1978 }
1979
1980 /* If we won't be storing directly into memory, protect the real destination
1981 from strange tricks we might play. */
1982 dst = orig_dst;
1983 if (GET_CODE (dst) == PARALLEL)
1984 {
1985 rtx temp;
1986
1987 /* We can get a PARALLEL dst if there is a conditional expression in
1988 a return statement. In that case, the dst and src are the same,
1989 so no action is necessary. */
1990 if (rtx_equal_p (dst, src))
1991 return;
1992
1993 /* It is unclear if we can ever reach here, but we may as well handle
1994 it. Allocate a temporary, and split this into a store/load to/from
1995 the temporary. */
1996
1997 temp = assign_stack_temp (GET_MODE (dst), ssize);
1998 emit_group_store (temp, src, type, ssize);
1999 emit_group_load (dst, temp, type, ssize);
2000 return;
2001 }
2002 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2003 {
2004 enum machine_mode outer = GET_MODE (dst);
2005 enum machine_mode inner;
2006 HOST_WIDE_INT bytepos;
2007 bool done = false;
2008 rtx temp;
2009
2010 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2011 dst = gen_reg_rtx (outer);
2012
2013 /* Make life a bit easier for combine. */
2014 /* If the first element of the vector is the low part
2015 of the destination mode, use a paradoxical subreg to
2016 initialize the destination. */
2017 if (start < finish)
2018 {
2019 inner = GET_MODE (tmps[start]);
2020 bytepos = subreg_lowpart_offset (inner, outer);
2021 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2022 {
2023 temp = simplify_gen_subreg (outer, tmps[start],
2024 inner, 0);
2025 if (temp)
2026 {
2027 emit_move_insn (dst, temp);
2028 done = true;
2029 start++;
2030 }
2031 }
2032 }
2033
2034 /* If the first element wasn't the low part, try the last. */
2035 if (!done
2036 && start < finish - 1)
2037 {
2038 inner = GET_MODE (tmps[finish - 1]);
2039 bytepos = subreg_lowpart_offset (inner, outer);
2040 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2041 {
2042 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2043 inner, 0);
2044 if (temp)
2045 {
2046 emit_move_insn (dst, temp);
2047 done = true;
2048 finish--;
2049 }
2050 }
2051 }
2052
2053 /* Otherwise, simply initialize the result to zero. */
2054 if (!done)
2055 emit_move_insn (dst, CONST0_RTX (outer));
2056 }
2057
2058 /* Process the pieces. */
2059 for (i = start; i < finish; i++)
2060 {
2061 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2062 enum machine_mode mode = GET_MODE (tmps[i]);
2063 unsigned int bytelen = GET_MODE_SIZE (mode);
2064 unsigned int adj_bytelen;
2065 rtx dest = dst;
2066
2067 /* Handle trailing fragments that run over the size of the struct. */
2068 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2069 adj_bytelen = ssize - bytepos;
2070 else
2071 adj_bytelen = bytelen;
2072
2073 if (GET_CODE (dst) == CONCAT)
2074 {
2075 if (bytepos + adj_bytelen
2076 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2077 dest = XEXP (dst, 0);
2078 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2079 {
2080 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2081 dest = XEXP (dst, 1);
2082 }
2083 else
2084 {
2085 enum machine_mode dest_mode = GET_MODE (dest);
2086 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2087
2088 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2089
2090 if (GET_MODE_ALIGNMENT (dest_mode)
2091 >= GET_MODE_ALIGNMENT (tmp_mode))
2092 {
2093 dest = assign_stack_temp (dest_mode,
2094 GET_MODE_SIZE (dest_mode));
2095 emit_move_insn (adjust_address (dest,
2096 tmp_mode,
2097 bytepos),
2098 tmps[i]);
2099 dst = dest;
2100 }
2101 else
2102 {
2103 dest = assign_stack_temp (tmp_mode,
2104 GET_MODE_SIZE (tmp_mode));
2105 emit_move_insn (dest, tmps[i]);
2106 dst = adjust_address (dest, dest_mode, bytepos);
2107 }
2108 break;
2109 }
2110 }
2111
2112 /* Handle trailing fragments that run over the size of the struct. */
2113 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2114 {
2115 /* store_bit_field always takes its value from the lsb.
2116 Move the fragment to the lsb if it's not already there. */
2117 if (
2118 #ifdef BLOCK_REG_PADDING
2119 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2120 == (BYTES_BIG_ENDIAN ? upward : downward)
2121 #else
2122 BYTES_BIG_ENDIAN
2123 #endif
2124 )
2125 {
2126 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2127 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2128 shift, tmps[i], 0);
2129 }
2130
2131 /* Make sure not to write past the end of the struct. */
2132 store_bit_field (dest,
2133 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2134 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2135 VOIDmode, tmps[i]);
2136 }
2137
2138 /* Optimize the access just a bit. */
2139 else if (MEM_P (dest)
2140 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2141 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2142 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2143 && bytelen == GET_MODE_SIZE (mode))
2144 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2145
2146 else
2147 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2148 0, 0, mode, tmps[i]);
2149 }
2150
2151 /* Copy from the pseudo into the (probable) hard reg. */
2152 if (orig_dst != dst)
2153 emit_move_insn (orig_dst, dst);
2154 }
2155
2156 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2157 of the value stored in X. */
2158
2159 rtx
2160 maybe_emit_group_store (rtx x, tree type)
2161 {
2162 enum machine_mode mode = TYPE_MODE (type);
2163 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2164 if (GET_CODE (x) == PARALLEL)
2165 {
2166 rtx result = gen_reg_rtx (mode);
2167 emit_group_store (result, x, type, int_size_in_bytes (type));
2168 return result;
2169 }
2170 return x;
2171 }
2172
2173 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2174
2175 This is used on targets that return BLKmode values in registers. */
2176
2177 void
2178 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2179 {
2180 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2181 rtx src = NULL, dst = NULL;
2182 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2183 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2184 enum machine_mode mode = GET_MODE (srcreg);
2185 enum machine_mode tmode = GET_MODE (target);
2186 enum machine_mode copy_mode;
2187
2188 /* BLKmode registers created in the back-end shouldn't have survived. */
2189 gcc_assert (mode != BLKmode);
2190
2191 /* If the structure doesn't take up a whole number of words, see whether
2192 SRCREG is padded on the left or on the right. If it's on the left,
2193 set PADDING_CORRECTION to the number of bits to skip.
2194
2195 In most ABIs, the structure will be returned at the least end of
2196 the register, which translates to right padding on little-endian
2197 targets and left padding on big-endian targets. The opposite
2198 holds if the structure is returned at the most significant
2199 end of the register. */
2200 if (bytes % UNITS_PER_WORD != 0
2201 && (targetm.calls.return_in_msb (type)
2202 ? !BYTES_BIG_ENDIAN
2203 : BYTES_BIG_ENDIAN))
2204 padding_correction
2205 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2206
2207 /* We can use a single move if we have an exact mode for the size. */
2208 else if (MEM_P (target)
2209 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2210 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2211 && bytes == GET_MODE_SIZE (mode))
2212 {
2213 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2214 return;
2215 }
2216
2217 /* And if we additionally have the same mode for a register. */
2218 else if (REG_P (target)
2219 && GET_MODE (target) == mode
2220 && bytes == GET_MODE_SIZE (mode))
2221 {
2222 emit_move_insn (target, srcreg);
2223 return;
2224 }
2225
2226 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2227 into a new pseudo which is a full word. */
2228 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2229 {
2230 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2231 mode = word_mode;
2232 }
2233
2234 /* Copy the structure BITSIZE bits at a time. If the target lives in
2235 memory, take care of not reading/writing past its end by selecting
2236 a copy mode suited to BITSIZE. This should always be possible given
2237 how it is computed.
2238
2239 If the target lives in register, make sure not to select a copy mode
2240 larger than the mode of the register.
2241
2242 We could probably emit more efficient code for machines which do not use
2243 strict alignment, but it doesn't seem worth the effort at the current
2244 time. */
2245
2246 copy_mode = word_mode;
2247 if (MEM_P (target))
2248 {
2249 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2250 if (mem_mode != BLKmode)
2251 copy_mode = mem_mode;
2252 }
2253 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2254 copy_mode = tmode;
2255
2256 for (bitpos = 0, xbitpos = padding_correction;
2257 bitpos < bytes * BITS_PER_UNIT;
2258 bitpos += bitsize, xbitpos += bitsize)
2259 {
2260 /* We need a new source operand each time xbitpos is on a
2261 word boundary and when xbitpos == padding_correction
2262 (the first time through). */
2263 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2264 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2265
2266 /* We need a new destination operand each time bitpos is on
2267 a word boundary. */
2268 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2269 dst = target;
2270 else if (bitpos % BITS_PER_WORD == 0)
2271 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2272
2273 /* Use xbitpos for the source extraction (right justified) and
2274 bitpos for the destination store (left justified). */
2275 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2276 extract_bit_field (src, bitsize,
2277 xbitpos % BITS_PER_WORD, 1,
2278 NULL_RTX, copy_mode, copy_mode));
2279 }
2280 }
2281
2282 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2283 register if it contains any data, otherwise return null.
2284
2285 This is used on targets that return BLKmode values in registers. */
2286
2287 rtx
2288 copy_blkmode_to_reg (enum machine_mode mode, tree src)
2289 {
2290 int i, n_regs;
2291 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2292 unsigned int bitsize;
2293 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2294 enum machine_mode dst_mode;
2295
2296 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2297
2298 x = expand_normal (src);
2299
2300 bytes = int_size_in_bytes (TREE_TYPE (src));
2301 if (bytes == 0)
2302 return NULL_RTX;
2303
2304 /* If the structure doesn't take up a whole number of words, see
2305 whether the register value should be padded on the left or on
2306 the right. Set PADDING_CORRECTION to the number of padding
2307 bits needed on the left side.
2308
2309 In most ABIs, the structure will be returned at the least end of
2310 the register, which translates to right padding on little-endian
2311 targets and left padding on big-endian targets. The opposite
2312 holds if the structure is returned at the most significant
2313 end of the register. */
2314 if (bytes % UNITS_PER_WORD != 0
2315 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2316 ? !BYTES_BIG_ENDIAN
2317 : BYTES_BIG_ENDIAN))
2318 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2319 * BITS_PER_UNIT));
2320
2321 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2322 dst_words = XALLOCAVEC (rtx, n_regs);
2323 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2324
2325 /* Copy the structure BITSIZE bits at a time. */
2326 for (bitpos = 0, xbitpos = padding_correction;
2327 bitpos < bytes * BITS_PER_UNIT;
2328 bitpos += bitsize, xbitpos += bitsize)
2329 {
2330 /* We need a new destination pseudo each time xbitpos is
2331 on a word boundary and when xbitpos == padding_correction
2332 (the first time through). */
2333 if (xbitpos % BITS_PER_WORD == 0
2334 || xbitpos == padding_correction)
2335 {
2336 /* Generate an appropriate register. */
2337 dst_word = gen_reg_rtx (word_mode);
2338 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2339
2340 /* Clear the destination before we move anything into it. */
2341 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2342 }
2343
2344 /* We need a new source operand each time bitpos is on a word
2345 boundary. */
2346 if (bitpos % BITS_PER_WORD == 0)
2347 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2348
2349 /* Use bitpos for the source extraction (left justified) and
2350 xbitpos for the destination store (right justified). */
2351 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2352 0, 0, word_mode,
2353 extract_bit_field (src_word, bitsize,
2354 bitpos % BITS_PER_WORD, 1,
2355 NULL_RTX, word_mode, word_mode));
2356 }
2357
2358 if (mode == BLKmode)
2359 {
2360 /* Find the smallest integer mode large enough to hold the
2361 entire structure. */
2362 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2363 mode != VOIDmode;
2364 mode = GET_MODE_WIDER_MODE (mode))
2365 /* Have we found a large enough mode? */
2366 if (GET_MODE_SIZE (mode) >= bytes)
2367 break;
2368
2369 /* A suitable mode should have been found. */
2370 gcc_assert (mode != VOIDmode);
2371 }
2372
2373 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2374 dst_mode = word_mode;
2375 else
2376 dst_mode = mode;
2377 dst = gen_reg_rtx (dst_mode);
2378
2379 for (i = 0; i < n_regs; i++)
2380 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2381
2382 if (mode != dst_mode)
2383 dst = gen_lowpart (mode, dst);
2384
2385 return dst;
2386 }
2387
2388 /* Add a USE expression for REG to the (possibly empty) list pointed
2389 to by CALL_FUSAGE. REG must denote a hard register. */
2390
2391 void
2392 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2393 {
2394 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2395
2396 *call_fusage
2397 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2398 }
2399
2400 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2401 starting at REGNO. All of these registers must be hard registers. */
2402
2403 void
2404 use_regs (rtx *call_fusage, int regno, int nregs)
2405 {
2406 int i;
2407
2408 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2409
2410 for (i = 0; i < nregs; i++)
2411 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2412 }
2413
2414 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2415 PARALLEL REGS. This is for calls that pass values in multiple
2416 non-contiguous locations. The Irix 6 ABI has examples of this. */
2417
2418 void
2419 use_group_regs (rtx *call_fusage, rtx regs)
2420 {
2421 int i;
2422
2423 for (i = 0; i < XVECLEN (regs, 0); i++)
2424 {
2425 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2426
2427 /* A NULL entry means the parameter goes both on the stack and in
2428 registers. This can also be a MEM for targets that pass values
2429 partially on the stack and partially in registers. */
2430 if (reg != 0 && REG_P (reg))
2431 use_reg (call_fusage, reg);
2432 }
2433 }
2434
2435 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2436 assigment and the code of the expresion on the RHS is CODE. Return
2437 NULL otherwise. */
2438
2439 static gimple
2440 get_def_for_expr (tree name, enum tree_code code)
2441 {
2442 gimple def_stmt;
2443
2444 if (TREE_CODE (name) != SSA_NAME)
2445 return NULL;
2446
2447 def_stmt = get_gimple_for_ssa_name (name);
2448 if (!def_stmt
2449 || gimple_assign_rhs_code (def_stmt) != code)
2450 return NULL;
2451
2452 return def_stmt;
2453 }
2454
2455 #ifdef HAVE_conditional_move
2456 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2457 assigment and the class of the expresion on the RHS is CLASS. Return
2458 NULL otherwise. */
2459
2460 static gimple
2461 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2462 {
2463 gimple def_stmt;
2464
2465 if (TREE_CODE (name) != SSA_NAME)
2466 return NULL;
2467
2468 def_stmt = get_gimple_for_ssa_name (name);
2469 if (!def_stmt
2470 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2471 return NULL;
2472
2473 return def_stmt;
2474 }
2475 #endif
2476 \f
2477
2478 /* Determine whether the LEN bytes generated by CONSTFUN can be
2479 stored to memory using several move instructions. CONSTFUNDATA is
2480 a pointer which will be passed as argument in every CONSTFUN call.
2481 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2482 a memset operation and false if it's a copy of a constant string.
2483 Return nonzero if a call to store_by_pieces should succeed. */
2484
2485 int
2486 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2487 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2488 void *constfundata, unsigned int align, bool memsetp)
2489 {
2490 unsigned HOST_WIDE_INT l;
2491 unsigned int max_size;
2492 HOST_WIDE_INT offset = 0;
2493 enum machine_mode mode;
2494 enum insn_code icode;
2495 int reverse;
2496 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2497 rtx cst ATTRIBUTE_UNUSED;
2498
2499 if (len == 0)
2500 return 1;
2501
2502 if (! (memsetp
2503 ? SET_BY_PIECES_P (len, align)
2504 : STORE_BY_PIECES_P (len, align)))
2505 return 0;
2506
2507 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2508
2509 /* We would first store what we can in the largest integer mode, then go to
2510 successively smaller modes. */
2511
2512 for (reverse = 0;
2513 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2514 reverse++)
2515 {
2516 l = len;
2517 max_size = STORE_MAX_PIECES + 1;
2518 while (max_size > 1 && l > 0)
2519 {
2520 mode = widest_int_mode_for_size (max_size);
2521
2522 if (mode == VOIDmode)
2523 break;
2524
2525 icode = optab_handler (mov_optab, mode);
2526 if (icode != CODE_FOR_nothing
2527 && align >= GET_MODE_ALIGNMENT (mode))
2528 {
2529 unsigned int size = GET_MODE_SIZE (mode);
2530
2531 while (l >= size)
2532 {
2533 if (reverse)
2534 offset -= size;
2535
2536 cst = (*constfun) (constfundata, offset, mode);
2537 if (!targetm.legitimate_constant_p (mode, cst))
2538 return 0;
2539
2540 if (!reverse)
2541 offset += size;
2542
2543 l -= size;
2544 }
2545 }
2546
2547 max_size = GET_MODE_SIZE (mode);
2548 }
2549
2550 /* The code above should have handled everything. */
2551 gcc_assert (!l);
2552 }
2553
2554 return 1;
2555 }
2556
2557 /* Generate several move instructions to store LEN bytes generated by
2558 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2559 pointer which will be passed as argument in every CONSTFUN call.
2560 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2561 a memset operation and false if it's a copy of a constant string.
2562 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2563 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2564 stpcpy. */
2565
2566 rtx
2567 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2568 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2569 void *constfundata, unsigned int align, bool memsetp, int endp)
2570 {
2571 enum machine_mode to_addr_mode = get_address_mode (to);
2572 struct store_by_pieces_d data;
2573
2574 if (len == 0)
2575 {
2576 gcc_assert (endp != 2);
2577 return to;
2578 }
2579
2580 gcc_assert (memsetp
2581 ? SET_BY_PIECES_P (len, align)
2582 : STORE_BY_PIECES_P (len, align));
2583 data.constfun = constfun;
2584 data.constfundata = constfundata;
2585 data.len = len;
2586 data.to = to;
2587 store_by_pieces_1 (&data, align);
2588 if (endp)
2589 {
2590 rtx to1;
2591
2592 gcc_assert (!data.reverse);
2593 if (data.autinc_to)
2594 {
2595 if (endp == 2)
2596 {
2597 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2598 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2599 else
2600 data.to_addr = copy_to_mode_reg (to_addr_mode,
2601 plus_constant (to_addr_mode,
2602 data.to_addr,
2603 -1));
2604 }
2605 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2606 data.offset);
2607 }
2608 else
2609 {
2610 if (endp == 2)
2611 --data.offset;
2612 to1 = adjust_address (data.to, QImode, data.offset);
2613 }
2614 return to1;
2615 }
2616 else
2617 return data.to;
2618 }
2619
2620 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2621 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2622
2623 static void
2624 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2625 {
2626 struct store_by_pieces_d data;
2627
2628 if (len == 0)
2629 return;
2630
2631 data.constfun = clear_by_pieces_1;
2632 data.constfundata = NULL;
2633 data.len = len;
2634 data.to = to;
2635 store_by_pieces_1 (&data, align);
2636 }
2637
2638 /* Callback routine for clear_by_pieces.
2639 Return const0_rtx unconditionally. */
2640
2641 static rtx
2642 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2643 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2644 enum machine_mode mode ATTRIBUTE_UNUSED)
2645 {
2646 return const0_rtx;
2647 }
2648
2649 /* Subroutine of clear_by_pieces and store_by_pieces.
2650 Generate several move instructions to store LEN bytes of block TO. (A MEM
2651 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2652
2653 static void
2654 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2655 unsigned int align ATTRIBUTE_UNUSED)
2656 {
2657 enum machine_mode to_addr_mode = get_address_mode (data->to);
2658 rtx to_addr = XEXP (data->to, 0);
2659 unsigned int max_size = STORE_MAX_PIECES + 1;
2660 enum insn_code icode;
2661
2662 data->offset = 0;
2663 data->to_addr = to_addr;
2664 data->autinc_to
2665 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2666 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2667
2668 data->explicit_inc_to = 0;
2669 data->reverse
2670 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2671 if (data->reverse)
2672 data->offset = data->len;
2673
2674 /* If storing requires more than two move insns,
2675 copy addresses to registers (to make displacements shorter)
2676 and use post-increment if available. */
2677 if (!data->autinc_to
2678 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2679 {
2680 /* Determine the main mode we'll be using.
2681 MODE might not be used depending on the definitions of the
2682 USE_* macros below. */
2683 enum machine_mode mode ATTRIBUTE_UNUSED
2684 = widest_int_mode_for_size (max_size);
2685
2686 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2687 {
2688 data->to_addr = copy_to_mode_reg (to_addr_mode,
2689 plus_constant (to_addr_mode,
2690 to_addr,
2691 data->len));
2692 data->autinc_to = 1;
2693 data->explicit_inc_to = -1;
2694 }
2695
2696 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2697 && ! data->autinc_to)
2698 {
2699 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2700 data->autinc_to = 1;
2701 data->explicit_inc_to = 1;
2702 }
2703
2704 if ( !data->autinc_to && CONSTANT_P (to_addr))
2705 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2706 }
2707
2708 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2709
2710 /* First store what we can in the largest integer mode, then go to
2711 successively smaller modes. */
2712
2713 while (max_size > 1 && data->len > 0)
2714 {
2715 enum machine_mode mode = widest_int_mode_for_size (max_size);
2716
2717 if (mode == VOIDmode)
2718 break;
2719
2720 icode = optab_handler (mov_optab, mode);
2721 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2722 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2723
2724 max_size = GET_MODE_SIZE (mode);
2725 }
2726
2727 /* The code above should have handled everything. */
2728 gcc_assert (!data->len);
2729 }
2730
2731 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2732 with move instructions for mode MODE. GENFUN is the gen_... function
2733 to make a move insn for that mode. DATA has all the other info. */
2734
2735 static void
2736 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2737 struct store_by_pieces_d *data)
2738 {
2739 unsigned int size = GET_MODE_SIZE (mode);
2740 rtx to1, cst;
2741
2742 while (data->len >= size)
2743 {
2744 if (data->reverse)
2745 data->offset -= size;
2746
2747 if (data->autinc_to)
2748 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2749 data->offset);
2750 else
2751 to1 = adjust_address (data->to, mode, data->offset);
2752
2753 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2754 emit_insn (gen_add2_insn (data->to_addr,
2755 gen_int_mode (-(HOST_WIDE_INT) size,
2756 GET_MODE (data->to_addr))));
2757
2758 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2759 emit_insn ((*genfun) (to1, cst));
2760
2761 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2762 emit_insn (gen_add2_insn (data->to_addr,
2763 gen_int_mode (size,
2764 GET_MODE (data->to_addr))));
2765
2766 if (! data->reverse)
2767 data->offset += size;
2768
2769 data->len -= size;
2770 }
2771 }
2772 \f
2773 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2774 its length in bytes. */
2775
2776 rtx
2777 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2778 unsigned int expected_align, HOST_WIDE_INT expected_size,
2779 unsigned HOST_WIDE_INT min_size,
2780 unsigned HOST_WIDE_INT max_size,
2781 unsigned HOST_WIDE_INT probable_max_size)
2782 {
2783 enum machine_mode mode = GET_MODE (object);
2784 unsigned int align;
2785
2786 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2787
2788 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2789 just move a zero. Otherwise, do this a piece at a time. */
2790 if (mode != BLKmode
2791 && CONST_INT_P (size)
2792 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2793 {
2794 rtx zero = CONST0_RTX (mode);
2795 if (zero != NULL)
2796 {
2797 emit_move_insn (object, zero);
2798 return NULL;
2799 }
2800
2801 if (COMPLEX_MODE_P (mode))
2802 {
2803 zero = CONST0_RTX (GET_MODE_INNER (mode));
2804 if (zero != NULL)
2805 {
2806 write_complex_part (object, zero, 0);
2807 write_complex_part (object, zero, 1);
2808 return NULL;
2809 }
2810 }
2811 }
2812
2813 if (size == const0_rtx)
2814 return NULL;
2815
2816 align = MEM_ALIGN (object);
2817
2818 if (CONST_INT_P (size)
2819 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2820 clear_by_pieces (object, INTVAL (size), align);
2821 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2822 expected_align, expected_size,
2823 min_size, max_size, probable_max_size))
2824 ;
2825 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2826 return set_storage_via_libcall (object, size, const0_rtx,
2827 method == BLOCK_OP_TAILCALL);
2828 else
2829 gcc_unreachable ();
2830
2831 return NULL;
2832 }
2833
2834 rtx
2835 clear_storage (rtx object, rtx size, enum block_op_methods method)
2836 {
2837 unsigned HOST_WIDE_INT max, min = 0;
2838 if (GET_CODE (size) == CONST_INT)
2839 min = max = UINTVAL (size);
2840 else
2841 max = GET_MODE_MASK (GET_MODE (size));
2842 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2843 }
2844
2845
2846 /* A subroutine of clear_storage. Expand a call to memset.
2847 Return the return value of memset, 0 otherwise. */
2848
2849 rtx
2850 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2851 {
2852 tree call_expr, fn, object_tree, size_tree, val_tree;
2853 enum machine_mode size_mode;
2854 rtx retval;
2855
2856 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2857 place those into new pseudos into a VAR_DECL and use them later. */
2858
2859 object = copy_addr_to_reg (XEXP (object, 0));
2860
2861 size_mode = TYPE_MODE (sizetype);
2862 size = convert_to_mode (size_mode, size, 1);
2863 size = copy_to_mode_reg (size_mode, size);
2864
2865 /* It is incorrect to use the libcall calling conventions to call
2866 memset in this context. This could be a user call to memset and
2867 the user may wish to examine the return value from memset. For
2868 targets where libcalls and normal calls have different conventions
2869 for returning pointers, we could end up generating incorrect code. */
2870
2871 object_tree = make_tree (ptr_type_node, object);
2872 if (!CONST_INT_P (val))
2873 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2874 size_tree = make_tree (sizetype, size);
2875 val_tree = make_tree (integer_type_node, val);
2876
2877 fn = clear_storage_libcall_fn (true);
2878 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2879 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2880
2881 retval = expand_normal (call_expr);
2882
2883 return retval;
2884 }
2885
2886 /* A subroutine of set_storage_via_libcall. Create the tree node
2887 for the function we use for block clears. */
2888
2889 tree block_clear_fn;
2890
2891 void
2892 init_block_clear_fn (const char *asmspec)
2893 {
2894 if (!block_clear_fn)
2895 {
2896 tree fn, args;
2897
2898 fn = get_identifier ("memset");
2899 args = build_function_type_list (ptr_type_node, ptr_type_node,
2900 integer_type_node, sizetype,
2901 NULL_TREE);
2902
2903 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2904 DECL_EXTERNAL (fn) = 1;
2905 TREE_PUBLIC (fn) = 1;
2906 DECL_ARTIFICIAL (fn) = 1;
2907 TREE_NOTHROW (fn) = 1;
2908 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2909 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2910
2911 block_clear_fn = fn;
2912 }
2913
2914 if (asmspec)
2915 set_user_assembler_name (block_clear_fn, asmspec);
2916 }
2917
2918 static tree
2919 clear_storage_libcall_fn (int for_call)
2920 {
2921 static bool emitted_extern;
2922
2923 if (!block_clear_fn)
2924 init_block_clear_fn (NULL);
2925
2926 if (for_call && !emitted_extern)
2927 {
2928 emitted_extern = true;
2929 make_decl_rtl (block_clear_fn);
2930 }
2931
2932 return block_clear_fn;
2933 }
2934 \f
2935 /* Expand a setmem pattern; return true if successful. */
2936
2937 bool
2938 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2939 unsigned int expected_align, HOST_WIDE_INT expected_size,
2940 unsigned HOST_WIDE_INT min_size,
2941 unsigned HOST_WIDE_INT max_size,
2942 unsigned HOST_WIDE_INT probable_max_size)
2943 {
2944 /* Try the most limited insn first, because there's no point
2945 including more than one in the machine description unless
2946 the more limited one has some advantage. */
2947
2948 enum machine_mode mode;
2949
2950 if (expected_align < align)
2951 expected_align = align;
2952 if (expected_size != -1)
2953 {
2954 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2955 expected_size = max_size;
2956 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2957 expected_size = min_size;
2958 }
2959
2960 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2961 mode = GET_MODE_WIDER_MODE (mode))
2962 {
2963 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2964
2965 if (code != CODE_FOR_nothing
2966 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2967 here because if SIZE is less than the mode mask, as it is
2968 returned by the macro, it will definitely be less than the
2969 actual mode mask. Since SIZE is within the Pmode address
2970 space, we limit MODE to Pmode. */
2971 && ((CONST_INT_P (size)
2972 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2973 <= (GET_MODE_MASK (mode) >> 1)))
2974 || max_size <= (GET_MODE_MASK (mode) >> 1)
2975 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2976 {
2977 struct expand_operand ops[9];
2978 unsigned int nops;
2979
2980 nops = insn_data[(int) code].n_generator_args;
2981 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2982
2983 create_fixed_operand (&ops[0], object);
2984 /* The check above guarantees that this size conversion is valid. */
2985 create_convert_operand_to (&ops[1], size, mode, true);
2986 create_convert_operand_from (&ops[2], val, byte_mode, true);
2987 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2988 if (nops >= 6)
2989 {
2990 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2991 create_integer_operand (&ops[5], expected_size);
2992 }
2993 if (nops >= 8)
2994 {
2995 create_integer_operand (&ops[6], min_size);
2996 /* If we can not represent the maximal size,
2997 make parameter NULL. */
2998 if ((HOST_WIDE_INT) max_size != -1)
2999 create_integer_operand (&ops[7], max_size);
3000 else
3001 create_fixed_operand (&ops[7], NULL);
3002 }
3003 if (nops == 9)
3004 {
3005 /* If we can not represent the maximal size,
3006 make parameter NULL. */
3007 if ((HOST_WIDE_INT) probable_max_size != -1)
3008 create_integer_operand (&ops[8], probable_max_size);
3009 else
3010 create_fixed_operand (&ops[8], NULL);
3011 }
3012 if (maybe_expand_insn (code, nops, ops))
3013 return true;
3014 }
3015 }
3016
3017 return false;
3018 }
3019
3020 \f
3021 /* Write to one of the components of the complex value CPLX. Write VAL to
3022 the real part if IMAG_P is false, and the imaginary part if its true. */
3023
3024 static void
3025 write_complex_part (rtx cplx, rtx val, bool imag_p)
3026 {
3027 enum machine_mode cmode;
3028 enum machine_mode imode;
3029 unsigned ibitsize;
3030
3031 if (GET_CODE (cplx) == CONCAT)
3032 {
3033 emit_move_insn (XEXP (cplx, imag_p), val);
3034 return;
3035 }
3036
3037 cmode = GET_MODE (cplx);
3038 imode = GET_MODE_INNER (cmode);
3039 ibitsize = GET_MODE_BITSIZE (imode);
3040
3041 /* For MEMs simplify_gen_subreg may generate an invalid new address
3042 because, e.g., the original address is considered mode-dependent
3043 by the target, which restricts simplify_subreg from invoking
3044 adjust_address_nv. Instead of preparing fallback support for an
3045 invalid address, we call adjust_address_nv directly. */
3046 if (MEM_P (cplx))
3047 {
3048 emit_move_insn (adjust_address_nv (cplx, imode,
3049 imag_p ? GET_MODE_SIZE (imode) : 0),
3050 val);
3051 return;
3052 }
3053
3054 /* If the sub-object is at least word sized, then we know that subregging
3055 will work. This special case is important, since store_bit_field
3056 wants to operate on integer modes, and there's rarely an OImode to
3057 correspond to TCmode. */
3058 if (ibitsize >= BITS_PER_WORD
3059 /* For hard regs we have exact predicates. Assume we can split
3060 the original object if it spans an even number of hard regs.
3061 This special case is important for SCmode on 64-bit platforms
3062 where the natural size of floating-point regs is 32-bit. */
3063 || (REG_P (cplx)
3064 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3065 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3066 {
3067 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3068 imag_p ? GET_MODE_SIZE (imode) : 0);
3069 if (part)
3070 {
3071 emit_move_insn (part, val);
3072 return;
3073 }
3074 else
3075 /* simplify_gen_subreg may fail for sub-word MEMs. */
3076 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3077 }
3078
3079 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3080 }
3081
3082 /* Extract one of the components of the complex value CPLX. Extract the
3083 real part if IMAG_P is false, and the imaginary part if it's true. */
3084
3085 static rtx
3086 read_complex_part (rtx cplx, bool imag_p)
3087 {
3088 enum machine_mode cmode, imode;
3089 unsigned ibitsize;
3090
3091 if (GET_CODE (cplx) == CONCAT)
3092 return XEXP (cplx, imag_p);
3093
3094 cmode = GET_MODE (cplx);
3095 imode = GET_MODE_INNER (cmode);
3096 ibitsize = GET_MODE_BITSIZE (imode);
3097
3098 /* Special case reads from complex constants that got spilled to memory. */
3099 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3100 {
3101 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3102 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3103 {
3104 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3105 if (CONSTANT_CLASS_P (part))
3106 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3107 }
3108 }
3109
3110 /* For MEMs simplify_gen_subreg may generate an invalid new address
3111 because, e.g., the original address is considered mode-dependent
3112 by the target, which restricts simplify_subreg from invoking
3113 adjust_address_nv. Instead of preparing fallback support for an
3114 invalid address, we call adjust_address_nv directly. */
3115 if (MEM_P (cplx))
3116 return adjust_address_nv (cplx, imode,
3117 imag_p ? GET_MODE_SIZE (imode) : 0);
3118
3119 /* If the sub-object is at least word sized, then we know that subregging
3120 will work. This special case is important, since extract_bit_field
3121 wants to operate on integer modes, and there's rarely an OImode to
3122 correspond to TCmode. */
3123 if (ibitsize >= BITS_PER_WORD
3124 /* For hard regs we have exact predicates. Assume we can split
3125 the original object if it spans an even number of hard regs.
3126 This special case is important for SCmode on 64-bit platforms
3127 where the natural size of floating-point regs is 32-bit. */
3128 || (REG_P (cplx)
3129 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3130 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3131 {
3132 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3133 imag_p ? GET_MODE_SIZE (imode) : 0);
3134 if (ret)
3135 return ret;
3136 else
3137 /* simplify_gen_subreg may fail for sub-word MEMs. */
3138 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3139 }
3140
3141 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3142 true, NULL_RTX, imode, imode);
3143 }
3144 \f
3145 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3146 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3147 represented in NEW_MODE. If FORCE is true, this will never happen, as
3148 we'll force-create a SUBREG if needed. */
3149
3150 static rtx
3151 emit_move_change_mode (enum machine_mode new_mode,
3152 enum machine_mode old_mode, rtx x, bool force)
3153 {
3154 rtx ret;
3155
3156 if (push_operand (x, GET_MODE (x)))
3157 {
3158 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3159 MEM_COPY_ATTRIBUTES (ret, x);
3160 }
3161 else if (MEM_P (x))
3162 {
3163 /* We don't have to worry about changing the address since the
3164 size in bytes is supposed to be the same. */
3165 if (reload_in_progress)
3166 {
3167 /* Copy the MEM to change the mode and move any
3168 substitutions from the old MEM to the new one. */
3169 ret = adjust_address_nv (x, new_mode, 0);
3170 copy_replacements (x, ret);
3171 }
3172 else
3173 ret = adjust_address (x, new_mode, 0);
3174 }
3175 else
3176 {
3177 /* Note that we do want simplify_subreg's behavior of validating
3178 that the new mode is ok for a hard register. If we were to use
3179 simplify_gen_subreg, we would create the subreg, but would
3180 probably run into the target not being able to implement it. */
3181 /* Except, of course, when FORCE is true, when this is exactly what
3182 we want. Which is needed for CCmodes on some targets. */
3183 if (force)
3184 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3185 else
3186 ret = simplify_subreg (new_mode, x, old_mode, 0);
3187 }
3188
3189 return ret;
3190 }
3191
3192 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3193 an integer mode of the same size as MODE. Returns the instruction
3194 emitted, or NULL if such a move could not be generated. */
3195
3196 static rtx
3197 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3198 {
3199 enum machine_mode imode;
3200 enum insn_code code;
3201
3202 /* There must exist a mode of the exact size we require. */
3203 imode = int_mode_for_mode (mode);
3204 if (imode == BLKmode)
3205 return NULL_RTX;
3206
3207 /* The target must support moves in this mode. */
3208 code = optab_handler (mov_optab, imode);
3209 if (code == CODE_FOR_nothing)
3210 return NULL_RTX;
3211
3212 x = emit_move_change_mode (imode, mode, x, force);
3213 if (x == NULL_RTX)
3214 return NULL_RTX;
3215 y = emit_move_change_mode (imode, mode, y, force);
3216 if (y == NULL_RTX)
3217 return NULL_RTX;
3218 return emit_insn (GEN_FCN (code) (x, y));
3219 }
3220
3221 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3222 Return an equivalent MEM that does not use an auto-increment. */
3223
3224 static rtx
3225 emit_move_resolve_push (enum machine_mode mode, rtx x)
3226 {
3227 enum rtx_code code = GET_CODE (XEXP (x, 0));
3228 HOST_WIDE_INT adjust;
3229 rtx temp;
3230
3231 adjust = GET_MODE_SIZE (mode);
3232 #ifdef PUSH_ROUNDING
3233 adjust = PUSH_ROUNDING (adjust);
3234 #endif
3235 if (code == PRE_DEC || code == POST_DEC)
3236 adjust = -adjust;
3237 else if (code == PRE_MODIFY || code == POST_MODIFY)
3238 {
3239 rtx expr = XEXP (XEXP (x, 0), 1);
3240 HOST_WIDE_INT val;
3241
3242 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3243 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3244 val = INTVAL (XEXP (expr, 1));
3245 if (GET_CODE (expr) == MINUS)
3246 val = -val;
3247 gcc_assert (adjust == val || adjust == -val);
3248 adjust = val;
3249 }
3250
3251 /* Do not use anti_adjust_stack, since we don't want to update
3252 stack_pointer_delta. */
3253 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3254 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3255 0, OPTAB_LIB_WIDEN);
3256 if (temp != stack_pointer_rtx)
3257 emit_move_insn (stack_pointer_rtx, temp);
3258
3259 switch (code)
3260 {
3261 case PRE_INC:
3262 case PRE_DEC:
3263 case PRE_MODIFY:
3264 temp = stack_pointer_rtx;
3265 break;
3266 case POST_INC:
3267 case POST_DEC:
3268 case POST_MODIFY:
3269 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3270 break;
3271 default:
3272 gcc_unreachable ();
3273 }
3274
3275 return replace_equiv_address (x, temp);
3276 }
3277
3278 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3279 X is known to satisfy push_operand, and MODE is known to be complex.
3280 Returns the last instruction emitted. */
3281
3282 rtx
3283 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3284 {
3285 enum machine_mode submode = GET_MODE_INNER (mode);
3286 bool imag_first;
3287
3288 #ifdef PUSH_ROUNDING
3289 unsigned int submodesize = GET_MODE_SIZE (submode);
3290
3291 /* In case we output to the stack, but the size is smaller than the
3292 machine can push exactly, we need to use move instructions. */
3293 if (PUSH_ROUNDING (submodesize) != submodesize)
3294 {
3295 x = emit_move_resolve_push (mode, x);
3296 return emit_move_insn (x, y);
3297 }
3298 #endif
3299
3300 /* Note that the real part always precedes the imag part in memory
3301 regardless of machine's endianness. */
3302 switch (GET_CODE (XEXP (x, 0)))
3303 {
3304 case PRE_DEC:
3305 case POST_DEC:
3306 imag_first = true;
3307 break;
3308 case PRE_INC:
3309 case POST_INC:
3310 imag_first = false;
3311 break;
3312 default:
3313 gcc_unreachable ();
3314 }
3315
3316 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3317 read_complex_part (y, imag_first));
3318 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3319 read_complex_part (y, !imag_first));
3320 }
3321
3322 /* A subroutine of emit_move_complex. Perform the move from Y to X
3323 via two moves of the parts. Returns the last instruction emitted. */
3324
3325 rtx
3326 emit_move_complex_parts (rtx x, rtx y)
3327 {
3328 /* Show the output dies here. This is necessary for SUBREGs
3329 of pseudos since we cannot track their lifetimes correctly;
3330 hard regs shouldn't appear here except as return values. */
3331 if (!reload_completed && !reload_in_progress
3332 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3333 emit_clobber (x);
3334
3335 write_complex_part (x, read_complex_part (y, false), false);
3336 write_complex_part (x, read_complex_part (y, true), true);
3337
3338 return get_last_insn ();
3339 }
3340
3341 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3342 MODE is known to be complex. Returns the last instruction emitted. */
3343
3344 static rtx
3345 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3346 {
3347 bool try_int;
3348
3349 /* Need to take special care for pushes, to maintain proper ordering
3350 of the data, and possibly extra padding. */
3351 if (push_operand (x, mode))
3352 return emit_move_complex_push (mode, x, y);
3353
3354 /* See if we can coerce the target into moving both values at once, except
3355 for floating point where we favor moving as parts if this is easy. */
3356 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3357 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3358 && !(REG_P (x)
3359 && HARD_REGISTER_P (x)
3360 && hard_regno_nregs[REGNO (x)][mode] == 1)
3361 && !(REG_P (y)
3362 && HARD_REGISTER_P (y)
3363 && hard_regno_nregs[REGNO (y)][mode] == 1))
3364 try_int = false;
3365 /* Not possible if the values are inherently not adjacent. */
3366 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3367 try_int = false;
3368 /* Is possible if both are registers (or subregs of registers). */
3369 else if (register_operand (x, mode) && register_operand (y, mode))
3370 try_int = true;
3371 /* If one of the operands is a memory, and alignment constraints
3372 are friendly enough, we may be able to do combined memory operations.
3373 We do not attempt this if Y is a constant because that combination is
3374 usually better with the by-parts thing below. */
3375 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3376 && (!STRICT_ALIGNMENT
3377 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3378 try_int = true;
3379 else
3380 try_int = false;
3381
3382 if (try_int)
3383 {
3384 rtx ret;
3385
3386 /* For memory to memory moves, optimal behavior can be had with the
3387 existing block move logic. */
3388 if (MEM_P (x) && MEM_P (y))
3389 {
3390 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3391 BLOCK_OP_NO_LIBCALL);
3392 return get_last_insn ();
3393 }
3394
3395 ret = emit_move_via_integer (mode, x, y, true);
3396 if (ret)
3397 return ret;
3398 }
3399
3400 return emit_move_complex_parts (x, y);
3401 }
3402
3403 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3404 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3405
3406 static rtx
3407 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3408 {
3409 rtx ret;
3410
3411 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3412 if (mode != CCmode)
3413 {
3414 enum insn_code code = optab_handler (mov_optab, CCmode);
3415 if (code != CODE_FOR_nothing)
3416 {
3417 x = emit_move_change_mode (CCmode, mode, x, true);
3418 y = emit_move_change_mode (CCmode, mode, y, true);
3419 return emit_insn (GEN_FCN (code) (x, y));
3420 }
3421 }
3422
3423 /* Otherwise, find the MODE_INT mode of the same width. */
3424 ret = emit_move_via_integer (mode, x, y, false);
3425 gcc_assert (ret != NULL);
3426 return ret;
3427 }
3428
3429 /* Return true if word I of OP lies entirely in the
3430 undefined bits of a paradoxical subreg. */
3431
3432 static bool
3433 undefined_operand_subword_p (const_rtx op, int i)
3434 {
3435 enum machine_mode innermode, innermostmode;
3436 int offset;
3437 if (GET_CODE (op) != SUBREG)
3438 return false;
3439 innermode = GET_MODE (op);
3440 innermostmode = GET_MODE (SUBREG_REG (op));
3441 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3442 /* The SUBREG_BYTE represents offset, as if the value were stored in
3443 memory, except for a paradoxical subreg where we define
3444 SUBREG_BYTE to be 0; undo this exception as in
3445 simplify_subreg. */
3446 if (SUBREG_BYTE (op) == 0
3447 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3448 {
3449 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3450 if (WORDS_BIG_ENDIAN)
3451 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3452 if (BYTES_BIG_ENDIAN)
3453 offset += difference % UNITS_PER_WORD;
3454 }
3455 if (offset >= GET_MODE_SIZE (innermostmode)
3456 || offset <= -GET_MODE_SIZE (word_mode))
3457 return true;
3458 return false;
3459 }
3460
3461 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3462 MODE is any multi-word or full-word mode that lacks a move_insn
3463 pattern. Note that you will get better code if you define such
3464 patterns, even if they must turn into multiple assembler instructions. */
3465
3466 static rtx
3467 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3468 {
3469 rtx last_insn = 0;
3470 rtx seq, inner;
3471 bool need_clobber;
3472 int i;
3473
3474 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3475
3476 /* If X is a push on the stack, do the push now and replace
3477 X with a reference to the stack pointer. */
3478 if (push_operand (x, mode))
3479 x = emit_move_resolve_push (mode, x);
3480
3481 /* If we are in reload, see if either operand is a MEM whose address
3482 is scheduled for replacement. */
3483 if (reload_in_progress && MEM_P (x)
3484 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3485 x = replace_equiv_address_nv (x, inner);
3486 if (reload_in_progress && MEM_P (y)
3487 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3488 y = replace_equiv_address_nv (y, inner);
3489
3490 start_sequence ();
3491
3492 need_clobber = false;
3493 for (i = 0;
3494 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3495 i++)
3496 {
3497 rtx xpart = operand_subword (x, i, 1, mode);
3498 rtx ypart;
3499
3500 /* Do not generate code for a move if it would come entirely
3501 from the undefined bits of a paradoxical subreg. */
3502 if (undefined_operand_subword_p (y, i))
3503 continue;
3504
3505 ypart = operand_subword (y, i, 1, mode);
3506
3507 /* If we can't get a part of Y, put Y into memory if it is a
3508 constant. Otherwise, force it into a register. Then we must
3509 be able to get a part of Y. */
3510 if (ypart == 0 && CONSTANT_P (y))
3511 {
3512 y = use_anchored_address (force_const_mem (mode, y));
3513 ypart = operand_subword (y, i, 1, mode);
3514 }
3515 else if (ypart == 0)
3516 ypart = operand_subword_force (y, i, mode);
3517
3518 gcc_assert (xpart && ypart);
3519
3520 need_clobber |= (GET_CODE (xpart) == SUBREG);
3521
3522 last_insn = emit_move_insn (xpart, ypart);
3523 }
3524
3525 seq = get_insns ();
3526 end_sequence ();
3527
3528 /* Show the output dies here. This is necessary for SUBREGs
3529 of pseudos since we cannot track their lifetimes correctly;
3530 hard regs shouldn't appear here except as return values.
3531 We never want to emit such a clobber after reload. */
3532 if (x != y
3533 && ! (reload_in_progress || reload_completed)
3534 && need_clobber != 0)
3535 emit_clobber (x);
3536
3537 emit_insn (seq);
3538
3539 return last_insn;
3540 }
3541
3542 /* Low level part of emit_move_insn.
3543 Called just like emit_move_insn, but assumes X and Y
3544 are basically valid. */
3545
3546 rtx
3547 emit_move_insn_1 (rtx x, rtx y)
3548 {
3549 enum machine_mode mode = GET_MODE (x);
3550 enum insn_code code;
3551
3552 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3553
3554 code = optab_handler (mov_optab, mode);
3555 if (code != CODE_FOR_nothing)
3556 return emit_insn (GEN_FCN (code) (x, y));
3557
3558 /* Expand complex moves by moving real part and imag part. */
3559 if (COMPLEX_MODE_P (mode))
3560 return emit_move_complex (mode, x, y);
3561
3562 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3563 || ALL_FIXED_POINT_MODE_P (mode))
3564 {
3565 rtx result = emit_move_via_integer (mode, x, y, true);
3566
3567 /* If we can't find an integer mode, use multi words. */
3568 if (result)
3569 return result;
3570 else
3571 return emit_move_multi_word (mode, x, y);
3572 }
3573
3574 if (GET_MODE_CLASS (mode) == MODE_CC)
3575 return emit_move_ccmode (mode, x, y);
3576
3577 /* Try using a move pattern for the corresponding integer mode. This is
3578 only safe when simplify_subreg can convert MODE constants into integer
3579 constants. At present, it can only do this reliably if the value
3580 fits within a HOST_WIDE_INT. */
3581 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3582 {
3583 rtx ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3584
3585 if (ret)
3586 {
3587 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3588 return ret;
3589 }
3590 }
3591
3592 return emit_move_multi_word (mode, x, y);
3593 }
3594
3595 /* Generate code to copy Y into X.
3596 Both Y and X must have the same mode, except that
3597 Y can be a constant with VOIDmode.
3598 This mode cannot be BLKmode; use emit_block_move for that.
3599
3600 Return the last instruction emitted. */
3601
3602 rtx
3603 emit_move_insn (rtx x, rtx y)
3604 {
3605 enum machine_mode mode = GET_MODE (x);
3606 rtx y_cst = NULL_RTX;
3607 rtx last_insn, set;
3608
3609 gcc_assert (mode != BLKmode
3610 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3611
3612 if (CONSTANT_P (y))
3613 {
3614 if (optimize
3615 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3616 && (last_insn = compress_float_constant (x, y)))
3617 return last_insn;
3618
3619 y_cst = y;
3620
3621 if (!targetm.legitimate_constant_p (mode, y))
3622 {
3623 y = force_const_mem (mode, y);
3624
3625 /* If the target's cannot_force_const_mem prevented the spill,
3626 assume that the target's move expanders will also take care
3627 of the non-legitimate constant. */
3628 if (!y)
3629 y = y_cst;
3630 else
3631 y = use_anchored_address (y);
3632 }
3633 }
3634
3635 /* If X or Y are memory references, verify that their addresses are valid
3636 for the machine. */
3637 if (MEM_P (x)
3638 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3639 MEM_ADDR_SPACE (x))
3640 && ! push_operand (x, GET_MODE (x))))
3641 x = validize_mem (x);
3642
3643 if (MEM_P (y)
3644 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3645 MEM_ADDR_SPACE (y)))
3646 y = validize_mem (y);
3647
3648 gcc_assert (mode != BLKmode);
3649
3650 last_insn = emit_move_insn_1 (x, y);
3651
3652 if (y_cst && REG_P (x)
3653 && (set = single_set (last_insn)) != NULL_RTX
3654 && SET_DEST (set) == x
3655 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3656 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3657
3658 return last_insn;
3659 }
3660
3661 /* If Y is representable exactly in a narrower mode, and the target can
3662 perform the extension directly from constant or memory, then emit the
3663 move as an extension. */
3664
3665 static rtx
3666 compress_float_constant (rtx x, rtx y)
3667 {
3668 enum machine_mode dstmode = GET_MODE (x);
3669 enum machine_mode orig_srcmode = GET_MODE (y);
3670 enum machine_mode srcmode;
3671 REAL_VALUE_TYPE r;
3672 int oldcost, newcost;
3673 bool speed = optimize_insn_for_speed_p ();
3674
3675 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3676
3677 if (targetm.legitimate_constant_p (dstmode, y))
3678 oldcost = set_src_cost (y, speed);
3679 else
3680 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3681
3682 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3683 srcmode != orig_srcmode;
3684 srcmode = GET_MODE_WIDER_MODE (srcmode))
3685 {
3686 enum insn_code ic;
3687 rtx trunc_y, last_insn;
3688
3689 /* Skip if the target can't extend this way. */
3690 ic = can_extend_p (dstmode, srcmode, 0);
3691 if (ic == CODE_FOR_nothing)
3692 continue;
3693
3694 /* Skip if the narrowed value isn't exact. */
3695 if (! exact_real_truncate (srcmode, &r))
3696 continue;
3697
3698 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3699
3700 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3701 {
3702 /* Skip if the target needs extra instructions to perform
3703 the extension. */
3704 if (!insn_operand_matches (ic, 1, trunc_y))
3705 continue;
3706 /* This is valid, but may not be cheaper than the original. */
3707 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3708 speed);
3709 if (oldcost < newcost)
3710 continue;
3711 }
3712 else if (float_extend_from_mem[dstmode][srcmode])
3713 {
3714 trunc_y = force_const_mem (srcmode, trunc_y);
3715 /* This is valid, but may not be cheaper than the original. */
3716 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3717 speed);
3718 if (oldcost < newcost)
3719 continue;
3720 trunc_y = validize_mem (trunc_y);
3721 }
3722 else
3723 continue;
3724
3725 /* For CSE's benefit, force the compressed constant pool entry
3726 into a new pseudo. This constant may be used in different modes,
3727 and if not, combine will put things back together for us. */
3728 trunc_y = force_reg (srcmode, trunc_y);
3729 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3730 last_insn = get_last_insn ();
3731
3732 if (REG_P (x))
3733 set_unique_reg_note (last_insn, REG_EQUAL, y);
3734
3735 return last_insn;
3736 }
3737
3738 return NULL_RTX;
3739 }
3740 \f
3741 /* Pushing data onto the stack. */
3742
3743 /* Push a block of length SIZE (perhaps variable)
3744 and return an rtx to address the beginning of the block.
3745 The value may be virtual_outgoing_args_rtx.
3746
3747 EXTRA is the number of bytes of padding to push in addition to SIZE.
3748 BELOW nonzero means this padding comes at low addresses;
3749 otherwise, the padding comes at high addresses. */
3750
3751 rtx
3752 push_block (rtx size, int extra, int below)
3753 {
3754 rtx temp;
3755
3756 size = convert_modes (Pmode, ptr_mode, size, 1);
3757 if (CONSTANT_P (size))
3758 anti_adjust_stack (plus_constant (Pmode, size, extra));
3759 else if (REG_P (size) && extra == 0)
3760 anti_adjust_stack (size);
3761 else
3762 {
3763 temp = copy_to_mode_reg (Pmode, size);
3764 if (extra != 0)
3765 temp = expand_binop (Pmode, add_optab, temp,
3766 gen_int_mode (extra, Pmode),
3767 temp, 0, OPTAB_LIB_WIDEN);
3768 anti_adjust_stack (temp);
3769 }
3770
3771 #ifndef STACK_GROWS_DOWNWARD
3772 if (0)
3773 #else
3774 if (1)
3775 #endif
3776 {
3777 temp = virtual_outgoing_args_rtx;
3778 if (extra != 0 && below)
3779 temp = plus_constant (Pmode, temp, extra);
3780 }
3781 else
3782 {
3783 if (CONST_INT_P (size))
3784 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3785 -INTVAL (size) - (below ? 0 : extra));
3786 else if (extra != 0 && !below)
3787 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3788 negate_rtx (Pmode, plus_constant (Pmode, size,
3789 extra)));
3790 else
3791 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3792 negate_rtx (Pmode, size));
3793 }
3794
3795 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3796 }
3797
3798 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3799
3800 static rtx
3801 mem_autoinc_base (rtx mem)
3802 {
3803 if (MEM_P (mem))
3804 {
3805 rtx addr = XEXP (mem, 0);
3806 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3807 return XEXP (addr, 0);
3808 }
3809 return NULL;
3810 }
3811
3812 /* A utility routine used here, in reload, and in try_split. The insns
3813 after PREV up to and including LAST are known to adjust the stack,
3814 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3815 placing notes as appropriate. PREV may be NULL, indicating the
3816 entire insn sequence prior to LAST should be scanned.
3817
3818 The set of allowed stack pointer modifications is small:
3819 (1) One or more auto-inc style memory references (aka pushes),
3820 (2) One or more addition/subtraction with the SP as destination,
3821 (3) A single move insn with the SP as destination,
3822 (4) A call_pop insn,
3823 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3824
3825 Insns in the sequence that do not modify the SP are ignored,
3826 except for noreturn calls.
3827
3828 The return value is the amount of adjustment that can be trivially
3829 verified, via immediate operand or auto-inc. If the adjustment
3830 cannot be trivially extracted, the return value is INT_MIN. */
3831
3832 HOST_WIDE_INT
3833 find_args_size_adjust (rtx insn)
3834 {
3835 rtx dest, set, pat;
3836 int i;
3837
3838 pat = PATTERN (insn);
3839 set = NULL;
3840
3841 /* Look for a call_pop pattern. */
3842 if (CALL_P (insn))
3843 {
3844 /* We have to allow non-call_pop patterns for the case
3845 of emit_single_push_insn of a TLS address. */
3846 if (GET_CODE (pat) != PARALLEL)
3847 return 0;
3848
3849 /* All call_pop have a stack pointer adjust in the parallel.
3850 The call itself is always first, and the stack adjust is
3851 usually last, so search from the end. */
3852 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3853 {
3854 set = XVECEXP (pat, 0, i);
3855 if (GET_CODE (set) != SET)
3856 continue;
3857 dest = SET_DEST (set);
3858 if (dest == stack_pointer_rtx)
3859 break;
3860 }
3861 /* We'd better have found the stack pointer adjust. */
3862 if (i == 0)
3863 return 0;
3864 /* Fall through to process the extracted SET and DEST
3865 as if it was a standalone insn. */
3866 }
3867 else if (GET_CODE (pat) == SET)
3868 set = pat;
3869 else if ((set = single_set (insn)) != NULL)
3870 ;
3871 else if (GET_CODE (pat) == PARALLEL)
3872 {
3873 /* ??? Some older ports use a parallel with a stack adjust
3874 and a store for a PUSH_ROUNDING pattern, rather than a
3875 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3876 /* ??? See h8300 and m68k, pushqi1. */
3877 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3878 {
3879 set = XVECEXP (pat, 0, i);
3880 if (GET_CODE (set) != SET)
3881 continue;
3882 dest = SET_DEST (set);
3883 if (dest == stack_pointer_rtx)
3884 break;
3885
3886 /* We do not expect an auto-inc of the sp in the parallel. */
3887 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3888 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3889 != stack_pointer_rtx);
3890 }
3891 if (i < 0)
3892 return 0;
3893 }
3894 else
3895 return 0;
3896
3897 dest = SET_DEST (set);
3898
3899 /* Look for direct modifications of the stack pointer. */
3900 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3901 {
3902 /* Look for a trivial adjustment, otherwise assume nothing. */
3903 /* Note that the SPU restore_stack_block pattern refers to
3904 the stack pointer in V4SImode. Consider that non-trivial. */
3905 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3906 && GET_CODE (SET_SRC (set)) == PLUS
3907 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3908 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3909 return INTVAL (XEXP (SET_SRC (set), 1));
3910 /* ??? Reload can generate no-op moves, which will be cleaned
3911 up later. Recognize it and continue searching. */
3912 else if (rtx_equal_p (dest, SET_SRC (set)))
3913 return 0;
3914 else
3915 return HOST_WIDE_INT_MIN;
3916 }
3917 else
3918 {
3919 rtx mem, addr;
3920
3921 /* Otherwise only think about autoinc patterns. */
3922 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3923 {
3924 mem = dest;
3925 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3926 != stack_pointer_rtx);
3927 }
3928 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3929 mem = SET_SRC (set);
3930 else
3931 return 0;
3932
3933 addr = XEXP (mem, 0);
3934 switch (GET_CODE (addr))
3935 {
3936 case PRE_INC:
3937 case POST_INC:
3938 return GET_MODE_SIZE (GET_MODE (mem));
3939 case PRE_DEC:
3940 case POST_DEC:
3941 return -GET_MODE_SIZE (GET_MODE (mem));
3942 case PRE_MODIFY:
3943 case POST_MODIFY:
3944 addr = XEXP (addr, 1);
3945 gcc_assert (GET_CODE (addr) == PLUS);
3946 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3947 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3948 return INTVAL (XEXP (addr, 1));
3949 default:
3950 gcc_unreachable ();
3951 }
3952 }
3953 }
3954
3955 int
3956 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3957 {
3958 int args_size = end_args_size;
3959 bool saw_unknown = false;
3960 rtx insn;
3961
3962 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3963 {
3964 HOST_WIDE_INT this_delta;
3965
3966 if (!NONDEBUG_INSN_P (insn))
3967 continue;
3968
3969 this_delta = find_args_size_adjust (insn);
3970 if (this_delta == 0)
3971 {
3972 if (!CALL_P (insn)
3973 || ACCUMULATE_OUTGOING_ARGS
3974 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3975 continue;
3976 }
3977
3978 gcc_assert (!saw_unknown);
3979 if (this_delta == HOST_WIDE_INT_MIN)
3980 saw_unknown = true;
3981
3982 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3983 #ifdef STACK_GROWS_DOWNWARD
3984 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
3985 #endif
3986 args_size -= this_delta;
3987 }
3988
3989 return saw_unknown ? INT_MIN : args_size;
3990 }
3991
3992 #ifdef PUSH_ROUNDING
3993 /* Emit single push insn. */
3994
3995 static void
3996 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3997 {
3998 rtx dest_addr;
3999 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4000 rtx dest;
4001 enum insn_code icode;
4002
4003 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4004 /* If there is push pattern, use it. Otherwise try old way of throwing
4005 MEM representing push operation to move expander. */
4006 icode = optab_handler (push_optab, mode);
4007 if (icode != CODE_FOR_nothing)
4008 {
4009 struct expand_operand ops[1];
4010
4011 create_input_operand (&ops[0], x, mode);
4012 if (maybe_expand_insn (icode, 1, ops))
4013 return;
4014 }
4015 if (GET_MODE_SIZE (mode) == rounded_size)
4016 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4017 /* If we are to pad downward, adjust the stack pointer first and
4018 then store X into the stack location using an offset. This is
4019 because emit_move_insn does not know how to pad; it does not have
4020 access to type. */
4021 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4022 {
4023 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4024 HOST_WIDE_INT offset;
4025
4026 emit_move_insn (stack_pointer_rtx,
4027 expand_binop (Pmode,
4028 #ifdef STACK_GROWS_DOWNWARD
4029 sub_optab,
4030 #else
4031 add_optab,
4032 #endif
4033 stack_pointer_rtx,
4034 gen_int_mode (rounded_size, Pmode),
4035 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4036
4037 offset = (HOST_WIDE_INT) padding_size;
4038 #ifdef STACK_GROWS_DOWNWARD
4039 if (STACK_PUSH_CODE == POST_DEC)
4040 /* We have already decremented the stack pointer, so get the
4041 previous value. */
4042 offset += (HOST_WIDE_INT) rounded_size;
4043 #else
4044 if (STACK_PUSH_CODE == POST_INC)
4045 /* We have already incremented the stack pointer, so get the
4046 previous value. */
4047 offset -= (HOST_WIDE_INT) rounded_size;
4048 #endif
4049 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4050 gen_int_mode (offset, Pmode));
4051 }
4052 else
4053 {
4054 #ifdef STACK_GROWS_DOWNWARD
4055 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4056 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4057 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4058 Pmode));
4059 #else
4060 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4061 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4062 gen_int_mode (rounded_size, Pmode));
4063 #endif
4064 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4065 }
4066
4067 dest = gen_rtx_MEM (mode, dest_addr);
4068
4069 if (type != 0)
4070 {
4071 set_mem_attributes (dest, type, 1);
4072
4073 if (flag_optimize_sibling_calls)
4074 /* Function incoming arguments may overlap with sibling call
4075 outgoing arguments and we cannot allow reordering of reads
4076 from function arguments with stores to outgoing arguments
4077 of sibling calls. */
4078 set_mem_alias_set (dest, 0);
4079 }
4080 emit_move_insn (dest, x);
4081 }
4082
4083 /* Emit and annotate a single push insn. */
4084
4085 static void
4086 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
4087 {
4088 int delta, old_delta = stack_pointer_delta;
4089 rtx prev = get_last_insn ();
4090 rtx last;
4091
4092 emit_single_push_insn_1 (mode, x, type);
4093
4094 last = get_last_insn ();
4095
4096 /* Notice the common case where we emitted exactly one insn. */
4097 if (PREV_INSN (last) == prev)
4098 {
4099 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4100 return;
4101 }
4102
4103 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4104 gcc_assert (delta == INT_MIN || delta == old_delta);
4105 }
4106 #endif
4107
4108 /* Generate code to push X onto the stack, assuming it has mode MODE and
4109 type TYPE.
4110 MODE is redundant except when X is a CONST_INT (since they don't
4111 carry mode info).
4112 SIZE is an rtx for the size of data to be copied (in bytes),
4113 needed only if X is BLKmode.
4114
4115 ALIGN (in bits) is maximum alignment we can assume.
4116
4117 If PARTIAL and REG are both nonzero, then copy that many of the first
4118 bytes of X into registers starting with REG, and push the rest of X.
4119 The amount of space pushed is decreased by PARTIAL bytes.
4120 REG must be a hard register in this case.
4121 If REG is zero but PARTIAL is not, take any all others actions for an
4122 argument partially in registers, but do not actually load any
4123 registers.
4124
4125 EXTRA is the amount in bytes of extra space to leave next to this arg.
4126 This is ignored if an argument block has already been allocated.
4127
4128 On a machine that lacks real push insns, ARGS_ADDR is the address of
4129 the bottom of the argument block for this call. We use indexing off there
4130 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4131 argument block has not been preallocated.
4132
4133 ARGS_SO_FAR is the size of args previously pushed for this call.
4134
4135 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4136 for arguments passed in registers. If nonzero, it will be the number
4137 of bytes required. */
4138
4139 void
4140 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
4141 unsigned int align, int partial, rtx reg, int extra,
4142 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4143 rtx alignment_pad)
4144 {
4145 rtx xinner;
4146 enum direction stack_direction
4147 #ifdef STACK_GROWS_DOWNWARD
4148 = downward;
4149 #else
4150 = upward;
4151 #endif
4152
4153 /* Decide where to pad the argument: `downward' for below,
4154 `upward' for above, or `none' for don't pad it.
4155 Default is below for small data on big-endian machines; else above. */
4156 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4157
4158 /* Invert direction if stack is post-decrement.
4159 FIXME: why? */
4160 if (STACK_PUSH_CODE == POST_DEC)
4161 if (where_pad != none)
4162 where_pad = (where_pad == downward ? upward : downward);
4163
4164 xinner = x;
4165
4166 if (mode == BLKmode
4167 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4168 {
4169 /* Copy a block into the stack, entirely or partially. */
4170
4171 rtx temp;
4172 int used;
4173 int offset;
4174 int skip;
4175
4176 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4177 used = partial - offset;
4178
4179 if (mode != BLKmode)
4180 {
4181 /* A value is to be stored in an insufficiently aligned
4182 stack slot; copy via a suitably aligned slot if
4183 necessary. */
4184 size = GEN_INT (GET_MODE_SIZE (mode));
4185 if (!MEM_P (xinner))
4186 {
4187 temp = assign_temp (type, 1, 1);
4188 emit_move_insn (temp, xinner);
4189 xinner = temp;
4190 }
4191 }
4192
4193 gcc_assert (size);
4194
4195 /* USED is now the # of bytes we need not copy to the stack
4196 because registers will take care of them. */
4197
4198 if (partial != 0)
4199 xinner = adjust_address (xinner, BLKmode, used);
4200
4201 /* If the partial register-part of the arg counts in its stack size,
4202 skip the part of stack space corresponding to the registers.
4203 Otherwise, start copying to the beginning of the stack space,
4204 by setting SKIP to 0. */
4205 skip = (reg_parm_stack_space == 0) ? 0 : used;
4206
4207 #ifdef PUSH_ROUNDING
4208 /* Do it with several push insns if that doesn't take lots of insns
4209 and if there is no difficulty with push insns that skip bytes
4210 on the stack for alignment purposes. */
4211 if (args_addr == 0
4212 && PUSH_ARGS
4213 && CONST_INT_P (size)
4214 && skip == 0
4215 && MEM_ALIGN (xinner) >= align
4216 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
4217 /* Here we avoid the case of a structure whose weak alignment
4218 forces many pushes of a small amount of data,
4219 and such small pushes do rounding that causes trouble. */
4220 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4221 || align >= BIGGEST_ALIGNMENT
4222 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4223 == (align / BITS_PER_UNIT)))
4224 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4225 {
4226 /* Push padding now if padding above and stack grows down,
4227 or if padding below and stack grows up.
4228 But if space already allocated, this has already been done. */
4229 if (extra && args_addr == 0
4230 && where_pad != none && where_pad != stack_direction)
4231 anti_adjust_stack (GEN_INT (extra));
4232
4233 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4234 }
4235 else
4236 #endif /* PUSH_ROUNDING */
4237 {
4238 rtx target;
4239
4240 /* Otherwise make space on the stack and copy the data
4241 to the address of that space. */
4242
4243 /* Deduct words put into registers from the size we must copy. */
4244 if (partial != 0)
4245 {
4246 if (CONST_INT_P (size))
4247 size = GEN_INT (INTVAL (size) - used);
4248 else
4249 size = expand_binop (GET_MODE (size), sub_optab, size,
4250 gen_int_mode (used, GET_MODE (size)),
4251 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4252 }
4253
4254 /* Get the address of the stack space.
4255 In this case, we do not deal with EXTRA separately.
4256 A single stack adjust will do. */
4257 if (! args_addr)
4258 {
4259 temp = push_block (size, extra, where_pad == downward);
4260 extra = 0;
4261 }
4262 else if (CONST_INT_P (args_so_far))
4263 temp = memory_address (BLKmode,
4264 plus_constant (Pmode, args_addr,
4265 skip + INTVAL (args_so_far)));
4266 else
4267 temp = memory_address (BLKmode,
4268 plus_constant (Pmode,
4269 gen_rtx_PLUS (Pmode,
4270 args_addr,
4271 args_so_far),
4272 skip));
4273
4274 if (!ACCUMULATE_OUTGOING_ARGS)
4275 {
4276 /* If the source is referenced relative to the stack pointer,
4277 copy it to another register to stabilize it. We do not need
4278 to do this if we know that we won't be changing sp. */
4279
4280 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4281 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4282 temp = copy_to_reg (temp);
4283 }
4284
4285 target = gen_rtx_MEM (BLKmode, temp);
4286
4287 /* We do *not* set_mem_attributes here, because incoming arguments
4288 may overlap with sibling call outgoing arguments and we cannot
4289 allow reordering of reads from function arguments with stores
4290 to outgoing arguments of sibling calls. We do, however, want
4291 to record the alignment of the stack slot. */
4292 /* ALIGN may well be better aligned than TYPE, e.g. due to
4293 PARM_BOUNDARY. Assume the caller isn't lying. */
4294 set_mem_align (target, align);
4295
4296 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4297 }
4298 }
4299 else if (partial > 0)
4300 {
4301 /* Scalar partly in registers. */
4302
4303 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4304 int i;
4305 int not_stack;
4306 /* # bytes of start of argument
4307 that we must make space for but need not store. */
4308 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4309 int args_offset = INTVAL (args_so_far);
4310 int skip;
4311
4312 /* Push padding now if padding above and stack grows down,
4313 or if padding below and stack grows up.
4314 But if space already allocated, this has already been done. */
4315 if (extra && args_addr == 0
4316 && where_pad != none && where_pad != stack_direction)
4317 anti_adjust_stack (GEN_INT (extra));
4318
4319 /* If we make space by pushing it, we might as well push
4320 the real data. Otherwise, we can leave OFFSET nonzero
4321 and leave the space uninitialized. */
4322 if (args_addr == 0)
4323 offset = 0;
4324
4325 /* Now NOT_STACK gets the number of words that we don't need to
4326 allocate on the stack. Convert OFFSET to words too. */
4327 not_stack = (partial - offset) / UNITS_PER_WORD;
4328 offset /= UNITS_PER_WORD;
4329
4330 /* If the partial register-part of the arg counts in its stack size,
4331 skip the part of stack space corresponding to the registers.
4332 Otherwise, start copying to the beginning of the stack space,
4333 by setting SKIP to 0. */
4334 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4335
4336 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4337 x = validize_mem (force_const_mem (mode, x));
4338
4339 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4340 SUBREGs of such registers are not allowed. */
4341 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4342 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4343 x = copy_to_reg (x);
4344
4345 /* Loop over all the words allocated on the stack for this arg. */
4346 /* We can do it by words, because any scalar bigger than a word
4347 has a size a multiple of a word. */
4348 #ifndef PUSH_ARGS_REVERSED
4349 for (i = not_stack; i < size; i++)
4350 #else
4351 for (i = size - 1; i >= not_stack; i--)
4352 #endif
4353 if (i >= not_stack + offset)
4354 emit_push_insn (operand_subword_force (x, i, mode),
4355 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4356 0, args_addr,
4357 GEN_INT (args_offset + ((i - not_stack + skip)
4358 * UNITS_PER_WORD)),
4359 reg_parm_stack_space, alignment_pad);
4360 }
4361 else
4362 {
4363 rtx addr;
4364 rtx dest;
4365
4366 /* Push padding now if padding above and stack grows down,
4367 or if padding below and stack grows up.
4368 But if space already allocated, this has already been done. */
4369 if (extra && args_addr == 0
4370 && where_pad != none && where_pad != stack_direction)
4371 anti_adjust_stack (GEN_INT (extra));
4372
4373 #ifdef PUSH_ROUNDING
4374 if (args_addr == 0 && PUSH_ARGS)
4375 emit_single_push_insn (mode, x, type);
4376 else
4377 #endif
4378 {
4379 if (CONST_INT_P (args_so_far))
4380 addr
4381 = memory_address (mode,
4382 plus_constant (Pmode, args_addr,
4383 INTVAL (args_so_far)));
4384 else
4385 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4386 args_so_far));
4387 dest = gen_rtx_MEM (mode, addr);
4388
4389 /* We do *not* set_mem_attributes here, because incoming arguments
4390 may overlap with sibling call outgoing arguments and we cannot
4391 allow reordering of reads from function arguments with stores
4392 to outgoing arguments of sibling calls. We do, however, want
4393 to record the alignment of the stack slot. */
4394 /* ALIGN may well be better aligned than TYPE, e.g. due to
4395 PARM_BOUNDARY. Assume the caller isn't lying. */
4396 set_mem_align (dest, align);
4397
4398 emit_move_insn (dest, x);
4399 }
4400 }
4401
4402 /* If part should go in registers, copy that part
4403 into the appropriate registers. Do this now, at the end,
4404 since mem-to-mem copies above may do function calls. */
4405 if (partial > 0 && reg != 0)
4406 {
4407 /* Handle calls that pass values in multiple non-contiguous locations.
4408 The Irix 6 ABI has examples of this. */
4409 if (GET_CODE (reg) == PARALLEL)
4410 emit_group_load (reg, x, type, -1);
4411 else
4412 {
4413 gcc_assert (partial % UNITS_PER_WORD == 0);
4414 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4415 }
4416 }
4417
4418 if (extra && args_addr == 0 && where_pad == stack_direction)
4419 anti_adjust_stack (GEN_INT (extra));
4420
4421 if (alignment_pad && args_addr == 0)
4422 anti_adjust_stack (alignment_pad);
4423 }
4424 \f
4425 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4426 operations. */
4427
4428 static rtx
4429 get_subtarget (rtx x)
4430 {
4431 return (optimize
4432 || x == 0
4433 /* Only registers can be subtargets. */
4434 || !REG_P (x)
4435 /* Don't use hard regs to avoid extending their life. */
4436 || REGNO (x) < FIRST_PSEUDO_REGISTER
4437 ? 0 : x);
4438 }
4439
4440 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4441 FIELD is a bitfield. Returns true if the optimization was successful,
4442 and there's nothing else to do. */
4443
4444 static bool
4445 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4446 unsigned HOST_WIDE_INT bitpos,
4447 unsigned HOST_WIDE_INT bitregion_start,
4448 unsigned HOST_WIDE_INT bitregion_end,
4449 enum machine_mode mode1, rtx str_rtx,
4450 tree to, tree src)
4451 {
4452 enum machine_mode str_mode = GET_MODE (str_rtx);
4453 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4454 tree op0, op1;
4455 rtx value, result;
4456 optab binop;
4457 gimple srcstmt;
4458 enum tree_code code;
4459
4460 if (mode1 != VOIDmode
4461 || bitsize >= BITS_PER_WORD
4462 || str_bitsize > BITS_PER_WORD
4463 || TREE_SIDE_EFFECTS (to)
4464 || TREE_THIS_VOLATILE (to))
4465 return false;
4466
4467 STRIP_NOPS (src);
4468 if (TREE_CODE (src) != SSA_NAME)
4469 return false;
4470 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4471 return false;
4472
4473 srcstmt = get_gimple_for_ssa_name (src);
4474 if (!srcstmt
4475 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4476 return false;
4477
4478 code = gimple_assign_rhs_code (srcstmt);
4479
4480 op0 = gimple_assign_rhs1 (srcstmt);
4481
4482 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4483 to find its initialization. Hopefully the initialization will
4484 be from a bitfield load. */
4485 if (TREE_CODE (op0) == SSA_NAME)
4486 {
4487 gimple op0stmt = get_gimple_for_ssa_name (op0);
4488
4489 /* We want to eventually have OP0 be the same as TO, which
4490 should be a bitfield. */
4491 if (!op0stmt
4492 || !is_gimple_assign (op0stmt)
4493 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4494 return false;
4495 op0 = gimple_assign_rhs1 (op0stmt);
4496 }
4497
4498 op1 = gimple_assign_rhs2 (srcstmt);
4499
4500 if (!operand_equal_p (to, op0, 0))
4501 return false;
4502
4503 if (MEM_P (str_rtx))
4504 {
4505 unsigned HOST_WIDE_INT offset1;
4506
4507 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4508 str_mode = word_mode;
4509 str_mode = get_best_mode (bitsize, bitpos,
4510 bitregion_start, bitregion_end,
4511 MEM_ALIGN (str_rtx), str_mode, 0);
4512 if (str_mode == VOIDmode)
4513 return false;
4514 str_bitsize = GET_MODE_BITSIZE (str_mode);
4515
4516 offset1 = bitpos;
4517 bitpos %= str_bitsize;
4518 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4519 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4520 }
4521 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4522 return false;
4523
4524 /* If the bit field covers the whole REG/MEM, store_field
4525 will likely generate better code. */
4526 if (bitsize >= str_bitsize)
4527 return false;
4528
4529 /* We can't handle fields split across multiple entities. */
4530 if (bitpos + bitsize > str_bitsize)
4531 return false;
4532
4533 if (BYTES_BIG_ENDIAN)
4534 bitpos = str_bitsize - bitpos - bitsize;
4535
4536 switch (code)
4537 {
4538 case PLUS_EXPR:
4539 case MINUS_EXPR:
4540 /* For now, just optimize the case of the topmost bitfield
4541 where we don't need to do any masking and also
4542 1 bit bitfields where xor can be used.
4543 We might win by one instruction for the other bitfields
4544 too if insv/extv instructions aren't used, so that
4545 can be added later. */
4546 if (bitpos + bitsize != str_bitsize
4547 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4548 break;
4549
4550 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4551 value = convert_modes (str_mode,
4552 TYPE_MODE (TREE_TYPE (op1)), value,
4553 TYPE_UNSIGNED (TREE_TYPE (op1)));
4554
4555 /* We may be accessing data outside the field, which means
4556 we can alias adjacent data. */
4557 if (MEM_P (str_rtx))
4558 {
4559 str_rtx = shallow_copy_rtx (str_rtx);
4560 set_mem_alias_set (str_rtx, 0);
4561 set_mem_expr (str_rtx, 0);
4562 }
4563
4564 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4565 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4566 {
4567 value = expand_and (str_mode, value, const1_rtx, NULL);
4568 binop = xor_optab;
4569 }
4570 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4571 result = expand_binop (str_mode, binop, str_rtx,
4572 value, str_rtx, 1, OPTAB_WIDEN);
4573 if (result != str_rtx)
4574 emit_move_insn (str_rtx, result);
4575 return true;
4576
4577 case BIT_IOR_EXPR:
4578 case BIT_XOR_EXPR:
4579 if (TREE_CODE (op1) != INTEGER_CST)
4580 break;
4581 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4582 value = convert_modes (str_mode,
4583 TYPE_MODE (TREE_TYPE (op1)), value,
4584 TYPE_UNSIGNED (TREE_TYPE (op1)));
4585
4586 /* We may be accessing data outside the field, which means
4587 we can alias adjacent data. */
4588 if (MEM_P (str_rtx))
4589 {
4590 str_rtx = shallow_copy_rtx (str_rtx);
4591 set_mem_alias_set (str_rtx, 0);
4592 set_mem_expr (str_rtx, 0);
4593 }
4594
4595 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4596 if (bitpos + bitsize != str_bitsize)
4597 {
4598 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4599 str_mode);
4600 value = expand_and (str_mode, value, mask, NULL_RTX);
4601 }
4602 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4603 result = expand_binop (str_mode, binop, str_rtx,
4604 value, str_rtx, 1, OPTAB_WIDEN);
4605 if (result != str_rtx)
4606 emit_move_insn (str_rtx, result);
4607 return true;
4608
4609 default:
4610 break;
4611 }
4612
4613 return false;
4614 }
4615
4616 /* In the C++ memory model, consecutive bit fields in a structure are
4617 considered one memory location.
4618
4619 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4620 returns the bit range of consecutive bits in which this COMPONENT_REF
4621 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4622 and *OFFSET may be adjusted in the process.
4623
4624 If the access does not need to be restricted, 0 is returned in both
4625 *BITSTART and *BITEND. */
4626
4627 static void
4628 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4629 unsigned HOST_WIDE_INT *bitend,
4630 tree exp,
4631 HOST_WIDE_INT *bitpos,
4632 tree *offset)
4633 {
4634 HOST_WIDE_INT bitoffset;
4635 tree field, repr;
4636
4637 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4638
4639 field = TREE_OPERAND (exp, 1);
4640 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4641 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4642 need to limit the range we can access. */
4643 if (!repr)
4644 {
4645 *bitstart = *bitend = 0;
4646 return;
4647 }
4648
4649 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4650 part of a larger bit field, then the representative does not serve any
4651 useful purpose. This can occur in Ada. */
4652 if (handled_component_p (TREE_OPERAND (exp, 0)))
4653 {
4654 enum machine_mode rmode;
4655 HOST_WIDE_INT rbitsize, rbitpos;
4656 tree roffset;
4657 int unsignedp;
4658 int volatilep = 0;
4659 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4660 &roffset, &rmode, &unsignedp, &volatilep, false);
4661 if ((rbitpos % BITS_PER_UNIT) != 0)
4662 {
4663 *bitstart = *bitend = 0;
4664 return;
4665 }
4666 }
4667
4668 /* Compute the adjustment to bitpos from the offset of the field
4669 relative to the representative. DECL_FIELD_OFFSET of field and
4670 repr are the same by construction if they are not constants,
4671 see finish_bitfield_layout. */
4672 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4673 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4674 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4675 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4676 else
4677 bitoffset = 0;
4678 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4679 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4680
4681 /* If the adjustment is larger than bitpos, we would have a negative bit
4682 position for the lower bound and this may wreak havoc later. Adjust
4683 offset and bitpos to make the lower bound non-negative in that case. */
4684 if (bitoffset > *bitpos)
4685 {
4686 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4687 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4688
4689 *bitpos += adjust;
4690 if (*offset == NULL_TREE)
4691 *offset = size_int (-adjust / BITS_PER_UNIT);
4692 else
4693 *offset
4694 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4695 *bitstart = 0;
4696 }
4697 else
4698 *bitstart = *bitpos - bitoffset;
4699
4700 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4701 }
4702
4703 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4704 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4705 DECL_RTL was not set yet, return NORTL. */
4706
4707 static inline bool
4708 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4709 {
4710 if (TREE_CODE (addr) != ADDR_EXPR)
4711 return false;
4712
4713 tree base = TREE_OPERAND (addr, 0);
4714
4715 if (!DECL_P (base)
4716 || TREE_ADDRESSABLE (base)
4717 || DECL_MODE (base) == BLKmode)
4718 return false;
4719
4720 if (!DECL_RTL_SET_P (base))
4721 return nortl;
4722
4723 return (!MEM_P (DECL_RTL (base)));
4724 }
4725
4726 /* Returns true if the MEM_REF REF refers to an object that does not
4727 reside in memory and has non-BLKmode. */
4728
4729 static inline bool
4730 mem_ref_refers_to_non_mem_p (tree ref)
4731 {
4732 tree base = TREE_OPERAND (ref, 0);
4733 return addr_expr_of_non_mem_decl_p_1 (base, false);
4734 }
4735
4736 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4737 is true, try generating a nontemporal store. */
4738
4739 void
4740 expand_assignment (tree to, tree from, bool nontemporal)
4741 {
4742 rtx to_rtx = 0;
4743 rtx result;
4744 enum machine_mode mode;
4745 unsigned int align;
4746 enum insn_code icode;
4747
4748 /* Don't crash if the lhs of the assignment was erroneous. */
4749 if (TREE_CODE (to) == ERROR_MARK)
4750 {
4751 expand_normal (from);
4752 return;
4753 }
4754
4755 /* Optimize away no-op moves without side-effects. */
4756 if (operand_equal_p (to, from, 0))
4757 return;
4758
4759 /* Handle misaligned stores. */
4760 mode = TYPE_MODE (TREE_TYPE (to));
4761 if ((TREE_CODE (to) == MEM_REF
4762 || TREE_CODE (to) == TARGET_MEM_REF)
4763 && mode != BLKmode
4764 && !mem_ref_refers_to_non_mem_p (to)
4765 && ((align = get_object_alignment (to))
4766 < GET_MODE_ALIGNMENT (mode))
4767 && (((icode = optab_handler (movmisalign_optab, mode))
4768 != CODE_FOR_nothing)
4769 || SLOW_UNALIGNED_ACCESS (mode, align)))
4770 {
4771 rtx reg, mem;
4772
4773 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4774 reg = force_not_mem (reg);
4775 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4776
4777 if (icode != CODE_FOR_nothing)
4778 {
4779 struct expand_operand ops[2];
4780
4781 create_fixed_operand (&ops[0], mem);
4782 create_input_operand (&ops[1], reg, mode);
4783 /* The movmisalign<mode> pattern cannot fail, else the assignment
4784 would silently be omitted. */
4785 expand_insn (icode, 2, ops);
4786 }
4787 else
4788 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4789 return;
4790 }
4791
4792 /* Assignment of a structure component needs special treatment
4793 if the structure component's rtx is not simply a MEM.
4794 Assignment of an array element at a constant index, and assignment of
4795 an array element in an unaligned packed structure field, has the same
4796 problem. Same for (partially) storing into a non-memory object. */
4797 if (handled_component_p (to)
4798 || (TREE_CODE (to) == MEM_REF
4799 && mem_ref_refers_to_non_mem_p (to))
4800 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4801 {
4802 enum machine_mode mode1;
4803 HOST_WIDE_INT bitsize, bitpos;
4804 unsigned HOST_WIDE_INT bitregion_start = 0;
4805 unsigned HOST_WIDE_INT bitregion_end = 0;
4806 tree offset;
4807 int unsignedp;
4808 int volatilep = 0;
4809 tree tem;
4810
4811 push_temp_slots ();
4812 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4813 &unsignedp, &volatilep, true);
4814
4815 /* Make sure bitpos is not negative, it can wreak havoc later. */
4816 if (bitpos < 0)
4817 {
4818 gcc_assert (offset == NULL_TREE);
4819 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4820 ? 3 : exact_log2 (BITS_PER_UNIT)));
4821 bitpos &= BITS_PER_UNIT - 1;
4822 }
4823
4824 if (TREE_CODE (to) == COMPONENT_REF
4825 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4826 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4827 /* The C++ memory model naturally applies to byte-aligned fields.
4828 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4829 BITSIZE are not byte-aligned, there is no need to limit the range
4830 we can access. This can occur with packed structures in Ada. */
4831 else if (bitsize > 0
4832 && bitsize % BITS_PER_UNIT == 0
4833 && bitpos % BITS_PER_UNIT == 0)
4834 {
4835 bitregion_start = bitpos;
4836 bitregion_end = bitpos + bitsize - 1;
4837 }
4838
4839 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4840
4841 /* If the bitfield is volatile, we want to access it in the
4842 field's mode, not the computed mode.
4843 If a MEM has VOIDmode (external with incomplete type),
4844 use BLKmode for it instead. */
4845 if (MEM_P (to_rtx))
4846 {
4847 if (volatilep && flag_strict_volatile_bitfields > 0)
4848 to_rtx = adjust_address (to_rtx, mode1, 0);
4849 else if (GET_MODE (to_rtx) == VOIDmode)
4850 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4851 }
4852
4853 if (offset != 0)
4854 {
4855 enum machine_mode address_mode;
4856 rtx offset_rtx;
4857
4858 if (!MEM_P (to_rtx))
4859 {
4860 /* We can get constant negative offsets into arrays with broken
4861 user code. Translate this to a trap instead of ICEing. */
4862 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4863 expand_builtin_trap ();
4864 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4865 }
4866
4867 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4868 address_mode = get_address_mode (to_rtx);
4869 if (GET_MODE (offset_rtx) != address_mode)
4870 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4871
4872 /* The check for a constant address in TO_RTX not having VOIDmode
4873 is probably no longer necessary. */
4874 if (MEM_P (to_rtx)
4875 && GET_MODE (to_rtx) == BLKmode
4876 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4877 && bitsize > 0
4878 && (bitpos % bitsize) == 0
4879 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4880 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4881 {
4882 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4883 bitregion_start = 0;
4884 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4885 bitregion_end -= bitpos;
4886 bitpos = 0;
4887 }
4888
4889 to_rtx = offset_address (to_rtx, offset_rtx,
4890 highest_pow2_factor_for_target (to,
4891 offset));
4892 }
4893
4894 /* No action is needed if the target is not a memory and the field
4895 lies completely outside that target. This can occur if the source
4896 code contains an out-of-bounds access to a small array. */
4897 if (!MEM_P (to_rtx)
4898 && GET_MODE (to_rtx) != BLKmode
4899 && (unsigned HOST_WIDE_INT) bitpos
4900 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4901 {
4902 expand_normal (from);
4903 result = NULL;
4904 }
4905 /* Handle expand_expr of a complex value returning a CONCAT. */
4906 else if (GET_CODE (to_rtx) == CONCAT)
4907 {
4908 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4909 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4910 && bitpos == 0
4911 && bitsize == mode_bitsize)
4912 result = store_expr (from, to_rtx, false, nontemporal);
4913 else if (bitsize == mode_bitsize / 2
4914 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4915 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4916 nontemporal);
4917 else if (bitpos + bitsize <= mode_bitsize / 2)
4918 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4919 bitregion_start, bitregion_end,
4920 mode1, from,
4921 get_alias_set (to), nontemporal);
4922 else if (bitpos >= mode_bitsize / 2)
4923 result = store_field (XEXP (to_rtx, 1), bitsize,
4924 bitpos - mode_bitsize / 2,
4925 bitregion_start, bitregion_end,
4926 mode1, from,
4927 get_alias_set (to), nontemporal);
4928 else if (bitpos == 0 && bitsize == mode_bitsize)
4929 {
4930 rtx from_rtx;
4931 result = expand_normal (from);
4932 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4933 TYPE_MODE (TREE_TYPE (from)), 0);
4934 emit_move_insn (XEXP (to_rtx, 0),
4935 read_complex_part (from_rtx, false));
4936 emit_move_insn (XEXP (to_rtx, 1),
4937 read_complex_part (from_rtx, true));
4938 }
4939 else
4940 {
4941 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4942 GET_MODE_SIZE (GET_MODE (to_rtx)));
4943 write_complex_part (temp, XEXP (to_rtx, 0), false);
4944 write_complex_part (temp, XEXP (to_rtx, 1), true);
4945 result = store_field (temp, bitsize, bitpos,
4946 bitregion_start, bitregion_end,
4947 mode1, from,
4948 get_alias_set (to), nontemporal);
4949 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4950 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4951 }
4952 }
4953 else
4954 {
4955 if (MEM_P (to_rtx))
4956 {
4957 /* If the field is at offset zero, we could have been given the
4958 DECL_RTX of the parent struct. Don't munge it. */
4959 to_rtx = shallow_copy_rtx (to_rtx);
4960 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4961 if (volatilep)
4962 MEM_VOLATILE_P (to_rtx) = 1;
4963 }
4964
4965 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4966 bitregion_start, bitregion_end,
4967 mode1,
4968 to_rtx, to, from))
4969 result = NULL;
4970 else
4971 result = store_field (to_rtx, bitsize, bitpos,
4972 bitregion_start, bitregion_end,
4973 mode1, from,
4974 get_alias_set (to), nontemporal);
4975 }
4976
4977 if (result)
4978 preserve_temp_slots (result);
4979 pop_temp_slots ();
4980 return;
4981 }
4982
4983 /* If the rhs is a function call and its value is not an aggregate,
4984 call the function before we start to compute the lhs.
4985 This is needed for correct code for cases such as
4986 val = setjmp (buf) on machines where reference to val
4987 requires loading up part of an address in a separate insn.
4988
4989 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4990 since it might be a promoted variable where the zero- or sign- extension
4991 needs to be done. Handling this in the normal way is safe because no
4992 computation is done before the call. The same is true for SSA names. */
4993 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4994 && COMPLETE_TYPE_P (TREE_TYPE (from))
4995 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4996 && ! (((TREE_CODE (to) == VAR_DECL
4997 || TREE_CODE (to) == PARM_DECL
4998 || TREE_CODE (to) == RESULT_DECL)
4999 && REG_P (DECL_RTL (to)))
5000 || TREE_CODE (to) == SSA_NAME))
5001 {
5002 rtx value;
5003
5004 push_temp_slots ();
5005 value = expand_normal (from);
5006 if (to_rtx == 0)
5007 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5008
5009 /* Handle calls that return values in multiple non-contiguous locations.
5010 The Irix 6 ABI has examples of this. */
5011 if (GET_CODE (to_rtx) == PARALLEL)
5012 {
5013 if (GET_CODE (value) == PARALLEL)
5014 emit_group_move (to_rtx, value);
5015 else
5016 emit_group_load (to_rtx, value, TREE_TYPE (from),
5017 int_size_in_bytes (TREE_TYPE (from)));
5018 }
5019 else if (GET_CODE (value) == PARALLEL)
5020 emit_group_store (to_rtx, value, TREE_TYPE (from),
5021 int_size_in_bytes (TREE_TYPE (from)));
5022 else if (GET_MODE (to_rtx) == BLKmode)
5023 {
5024 /* Handle calls that return BLKmode values in registers. */
5025 if (REG_P (value))
5026 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5027 else
5028 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5029 }
5030 else
5031 {
5032 if (POINTER_TYPE_P (TREE_TYPE (to)))
5033 value = convert_memory_address_addr_space
5034 (GET_MODE (to_rtx), value,
5035 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5036
5037 emit_move_insn (to_rtx, value);
5038 }
5039 preserve_temp_slots (to_rtx);
5040 pop_temp_slots ();
5041 return;
5042 }
5043
5044 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5045 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5046
5047 /* Don't move directly into a return register. */
5048 if (TREE_CODE (to) == RESULT_DECL
5049 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5050 {
5051 rtx temp;
5052
5053 push_temp_slots ();
5054
5055 /* If the source is itself a return value, it still is in a pseudo at
5056 this point so we can move it back to the return register directly. */
5057 if (REG_P (to_rtx)
5058 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5059 && TREE_CODE (from) != CALL_EXPR)
5060 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5061 else
5062 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5063
5064 /* Handle calls that return values in multiple non-contiguous locations.
5065 The Irix 6 ABI has examples of this. */
5066 if (GET_CODE (to_rtx) == PARALLEL)
5067 {
5068 if (GET_CODE (temp) == PARALLEL)
5069 emit_group_move (to_rtx, temp);
5070 else
5071 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5072 int_size_in_bytes (TREE_TYPE (from)));
5073 }
5074 else if (temp)
5075 emit_move_insn (to_rtx, temp);
5076
5077 preserve_temp_slots (to_rtx);
5078 pop_temp_slots ();
5079 return;
5080 }
5081
5082 /* In case we are returning the contents of an object which overlaps
5083 the place the value is being stored, use a safe function when copying
5084 a value through a pointer into a structure value return block. */
5085 if (TREE_CODE (to) == RESULT_DECL
5086 && TREE_CODE (from) == INDIRECT_REF
5087 && ADDR_SPACE_GENERIC_P
5088 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5089 && refs_may_alias_p (to, from)
5090 && cfun->returns_struct
5091 && !cfun->returns_pcc_struct)
5092 {
5093 rtx from_rtx, size;
5094
5095 push_temp_slots ();
5096 size = expr_size (from);
5097 from_rtx = expand_normal (from);
5098
5099 emit_library_call (memmove_libfunc, LCT_NORMAL,
5100 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5101 XEXP (from_rtx, 0), Pmode,
5102 convert_to_mode (TYPE_MODE (sizetype),
5103 size, TYPE_UNSIGNED (sizetype)),
5104 TYPE_MODE (sizetype));
5105
5106 preserve_temp_slots (to_rtx);
5107 pop_temp_slots ();
5108 return;
5109 }
5110
5111 /* Compute FROM and store the value in the rtx we got. */
5112
5113 push_temp_slots ();
5114 result = store_expr (from, to_rtx, 0, nontemporal);
5115 preserve_temp_slots (result);
5116 pop_temp_slots ();
5117 return;
5118 }
5119
5120 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5121 succeeded, false otherwise. */
5122
5123 bool
5124 emit_storent_insn (rtx to, rtx from)
5125 {
5126 struct expand_operand ops[2];
5127 enum machine_mode mode = GET_MODE (to);
5128 enum insn_code code = optab_handler (storent_optab, mode);
5129
5130 if (code == CODE_FOR_nothing)
5131 return false;
5132
5133 create_fixed_operand (&ops[0], to);
5134 create_input_operand (&ops[1], from, mode);
5135 return maybe_expand_insn (code, 2, ops);
5136 }
5137
5138 /* Generate code for computing expression EXP,
5139 and storing the value into TARGET.
5140
5141 If the mode is BLKmode then we may return TARGET itself.
5142 It turns out that in BLKmode it doesn't cause a problem.
5143 because C has no operators that could combine two different
5144 assignments into the same BLKmode object with different values
5145 with no sequence point. Will other languages need this to
5146 be more thorough?
5147
5148 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5149 stack, and block moves may need to be treated specially.
5150
5151 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5152
5153 rtx
5154 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5155 {
5156 rtx temp;
5157 rtx alt_rtl = NULL_RTX;
5158 location_t loc = curr_insn_location ();
5159
5160 if (VOID_TYPE_P (TREE_TYPE (exp)))
5161 {
5162 /* C++ can generate ?: expressions with a throw expression in one
5163 branch and an rvalue in the other. Here, we resolve attempts to
5164 store the throw expression's nonexistent result. */
5165 gcc_assert (!call_param_p);
5166 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5167 return NULL_RTX;
5168 }
5169 if (TREE_CODE (exp) == COMPOUND_EXPR)
5170 {
5171 /* Perform first part of compound expression, then assign from second
5172 part. */
5173 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5174 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5175 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5176 nontemporal);
5177 }
5178 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5179 {
5180 /* For conditional expression, get safe form of the target. Then
5181 test the condition, doing the appropriate assignment on either
5182 side. This avoids the creation of unnecessary temporaries.
5183 For non-BLKmode, it is more efficient not to do this. */
5184
5185 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
5186
5187 do_pending_stack_adjust ();
5188 NO_DEFER_POP;
5189 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5190 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5191 nontemporal);
5192 emit_jump_insn (gen_jump (lab2));
5193 emit_barrier ();
5194 emit_label (lab1);
5195 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5196 nontemporal);
5197 emit_label (lab2);
5198 OK_DEFER_POP;
5199
5200 return NULL_RTX;
5201 }
5202 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5203 /* If this is a scalar in a register that is stored in a wider mode
5204 than the declared mode, compute the result into its declared mode
5205 and then convert to the wider mode. Our value is the computed
5206 expression. */
5207 {
5208 rtx inner_target = 0;
5209
5210 /* We can do the conversion inside EXP, which will often result
5211 in some optimizations. Do the conversion in two steps: first
5212 change the signedness, if needed, then the extend. But don't
5213 do this if the type of EXP is a subtype of something else
5214 since then the conversion might involve more than just
5215 converting modes. */
5216 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5217 && TREE_TYPE (TREE_TYPE (exp)) == 0
5218 && GET_MODE_PRECISION (GET_MODE (target))
5219 == TYPE_PRECISION (TREE_TYPE (exp)))
5220 {
5221 if (TYPE_UNSIGNED (TREE_TYPE (exp))
5222 != SUBREG_PROMOTED_UNSIGNED_P (target))
5223 {
5224 /* Some types, e.g. Fortran's logical*4, won't have a signed
5225 version, so use the mode instead. */
5226 tree ntype
5227 = (signed_or_unsigned_type_for
5228 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
5229 if (ntype == NULL)
5230 ntype = lang_hooks.types.type_for_mode
5231 (TYPE_MODE (TREE_TYPE (exp)),
5232 SUBREG_PROMOTED_UNSIGNED_P (target));
5233
5234 exp = fold_convert_loc (loc, ntype, exp);
5235 }
5236
5237 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5238 (GET_MODE (SUBREG_REG (target)),
5239 SUBREG_PROMOTED_UNSIGNED_P (target)),
5240 exp);
5241
5242 inner_target = SUBREG_REG (target);
5243 }
5244
5245 temp = expand_expr (exp, inner_target, VOIDmode,
5246 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5247
5248 /* If TEMP is a VOIDmode constant, use convert_modes to make
5249 sure that we properly convert it. */
5250 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5251 {
5252 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5253 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
5254 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5255 GET_MODE (target), temp,
5256 SUBREG_PROMOTED_UNSIGNED_P (target));
5257 }
5258
5259 convert_move (SUBREG_REG (target), temp,
5260 SUBREG_PROMOTED_UNSIGNED_P (target));
5261
5262 return NULL_RTX;
5263 }
5264 else if ((TREE_CODE (exp) == STRING_CST
5265 || (TREE_CODE (exp) == MEM_REF
5266 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5267 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5268 == STRING_CST
5269 && integer_zerop (TREE_OPERAND (exp, 1))))
5270 && !nontemporal && !call_param_p
5271 && MEM_P (target))
5272 {
5273 /* Optimize initialization of an array with a STRING_CST. */
5274 HOST_WIDE_INT exp_len, str_copy_len;
5275 rtx dest_mem;
5276 tree str = TREE_CODE (exp) == STRING_CST
5277 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5278
5279 exp_len = int_expr_size (exp);
5280 if (exp_len <= 0)
5281 goto normal_expr;
5282
5283 if (TREE_STRING_LENGTH (str) <= 0)
5284 goto normal_expr;
5285
5286 str_copy_len = strlen (TREE_STRING_POINTER (str));
5287 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5288 goto normal_expr;
5289
5290 str_copy_len = TREE_STRING_LENGTH (str);
5291 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5292 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5293 {
5294 str_copy_len += STORE_MAX_PIECES - 1;
5295 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5296 }
5297 str_copy_len = MIN (str_copy_len, exp_len);
5298 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5299 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5300 MEM_ALIGN (target), false))
5301 goto normal_expr;
5302
5303 dest_mem = target;
5304
5305 dest_mem = store_by_pieces (dest_mem,
5306 str_copy_len, builtin_strncpy_read_str,
5307 CONST_CAST (char *,
5308 TREE_STRING_POINTER (str)),
5309 MEM_ALIGN (target), false,
5310 exp_len > str_copy_len ? 1 : 0);
5311 if (exp_len > str_copy_len)
5312 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5313 GEN_INT (exp_len - str_copy_len),
5314 BLOCK_OP_NORMAL);
5315 return NULL_RTX;
5316 }
5317 else
5318 {
5319 rtx tmp_target;
5320
5321 normal_expr:
5322 /* If we want to use a nontemporal store, force the value to
5323 register first. */
5324 tmp_target = nontemporal ? NULL_RTX : target;
5325 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5326 (call_param_p
5327 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5328 &alt_rtl);
5329 }
5330
5331 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5332 the same as that of TARGET, adjust the constant. This is needed, for
5333 example, in case it is a CONST_DOUBLE and we want only a word-sized
5334 value. */
5335 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5336 && TREE_CODE (exp) != ERROR_MARK
5337 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5338 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5339 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5340
5341 /* If value was not generated in the target, store it there.
5342 Convert the value to TARGET's type first if necessary and emit the
5343 pending incrementations that have been queued when expanding EXP.
5344 Note that we cannot emit the whole queue blindly because this will
5345 effectively disable the POST_INC optimization later.
5346
5347 If TEMP and TARGET compare equal according to rtx_equal_p, but
5348 one or both of them are volatile memory refs, we have to distinguish
5349 two cases:
5350 - expand_expr has used TARGET. In this case, we must not generate
5351 another copy. This can be detected by TARGET being equal according
5352 to == .
5353 - expand_expr has not used TARGET - that means that the source just
5354 happens to have the same RTX form. Since temp will have been created
5355 by expand_expr, it will compare unequal according to == .
5356 We must generate a copy in this case, to reach the correct number
5357 of volatile memory references. */
5358
5359 if ((! rtx_equal_p (temp, target)
5360 || (temp != target && (side_effects_p (temp)
5361 || side_effects_p (target))))
5362 && TREE_CODE (exp) != ERROR_MARK
5363 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5364 but TARGET is not valid memory reference, TEMP will differ
5365 from TARGET although it is really the same location. */
5366 && !(alt_rtl
5367 && rtx_equal_p (alt_rtl, target)
5368 && !side_effects_p (alt_rtl)
5369 && !side_effects_p (target))
5370 /* If there's nothing to copy, don't bother. Don't call
5371 expr_size unless necessary, because some front-ends (C++)
5372 expr_size-hook must not be given objects that are not
5373 supposed to be bit-copied or bit-initialized. */
5374 && expr_size (exp) != const0_rtx)
5375 {
5376 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5377 {
5378 if (GET_MODE (target) == BLKmode)
5379 {
5380 /* Handle calls that return BLKmode values in registers. */
5381 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5382 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5383 else
5384 store_bit_field (target,
5385 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5386 0, 0, 0, GET_MODE (temp), temp);
5387 }
5388 else
5389 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5390 }
5391
5392 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5393 {
5394 /* Handle copying a string constant into an array. The string
5395 constant may be shorter than the array. So copy just the string's
5396 actual length, and clear the rest. First get the size of the data
5397 type of the string, which is actually the size of the target. */
5398 rtx size = expr_size (exp);
5399
5400 if (CONST_INT_P (size)
5401 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5402 emit_block_move (target, temp, size,
5403 (call_param_p
5404 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5405 else
5406 {
5407 enum machine_mode pointer_mode
5408 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5409 enum machine_mode address_mode = get_address_mode (target);
5410
5411 /* Compute the size of the data to copy from the string. */
5412 tree copy_size
5413 = size_binop_loc (loc, MIN_EXPR,
5414 make_tree (sizetype, size),
5415 size_int (TREE_STRING_LENGTH (exp)));
5416 rtx copy_size_rtx
5417 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5418 (call_param_p
5419 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5420 rtx label = 0;
5421
5422 /* Copy that much. */
5423 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5424 TYPE_UNSIGNED (sizetype));
5425 emit_block_move (target, temp, copy_size_rtx,
5426 (call_param_p
5427 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5428
5429 /* Figure out how much is left in TARGET that we have to clear.
5430 Do all calculations in pointer_mode. */
5431 if (CONST_INT_P (copy_size_rtx))
5432 {
5433 size = plus_constant (address_mode, size,
5434 -INTVAL (copy_size_rtx));
5435 target = adjust_address (target, BLKmode,
5436 INTVAL (copy_size_rtx));
5437 }
5438 else
5439 {
5440 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5441 copy_size_rtx, NULL_RTX, 0,
5442 OPTAB_LIB_WIDEN);
5443
5444 if (GET_MODE (copy_size_rtx) != address_mode)
5445 copy_size_rtx = convert_to_mode (address_mode,
5446 copy_size_rtx,
5447 TYPE_UNSIGNED (sizetype));
5448
5449 target = offset_address (target, copy_size_rtx,
5450 highest_pow2_factor (copy_size));
5451 label = gen_label_rtx ();
5452 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5453 GET_MODE (size), 0, label);
5454 }
5455
5456 if (size != const0_rtx)
5457 clear_storage (target, size, BLOCK_OP_NORMAL);
5458
5459 if (label)
5460 emit_label (label);
5461 }
5462 }
5463 /* Handle calls that return values in multiple non-contiguous locations.
5464 The Irix 6 ABI has examples of this. */
5465 else if (GET_CODE (target) == PARALLEL)
5466 {
5467 if (GET_CODE (temp) == PARALLEL)
5468 emit_group_move (target, temp);
5469 else
5470 emit_group_load (target, temp, TREE_TYPE (exp),
5471 int_size_in_bytes (TREE_TYPE (exp)));
5472 }
5473 else if (GET_CODE (temp) == PARALLEL)
5474 emit_group_store (target, temp, TREE_TYPE (exp),
5475 int_size_in_bytes (TREE_TYPE (exp)));
5476 else if (GET_MODE (temp) == BLKmode)
5477 emit_block_move (target, temp, expr_size (exp),
5478 (call_param_p
5479 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5480 /* If we emit a nontemporal store, there is nothing else to do. */
5481 else if (nontemporal && emit_storent_insn (target, temp))
5482 ;
5483 else
5484 {
5485 temp = force_operand (temp, target);
5486 if (temp != target)
5487 emit_move_insn (target, temp);
5488 }
5489 }
5490
5491 return NULL_RTX;
5492 }
5493 \f
5494 /* Return true if field F of structure TYPE is a flexible array. */
5495
5496 static bool
5497 flexible_array_member_p (const_tree f, const_tree type)
5498 {
5499 const_tree tf;
5500
5501 tf = TREE_TYPE (f);
5502 return (DECL_CHAIN (f) == NULL
5503 && TREE_CODE (tf) == ARRAY_TYPE
5504 && TYPE_DOMAIN (tf)
5505 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5506 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5507 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5508 && int_size_in_bytes (type) >= 0);
5509 }
5510
5511 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5512 must have in order for it to completely initialize a value of type TYPE.
5513 Return -1 if the number isn't known.
5514
5515 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5516
5517 static HOST_WIDE_INT
5518 count_type_elements (const_tree type, bool for_ctor_p)
5519 {
5520 switch (TREE_CODE (type))
5521 {
5522 case ARRAY_TYPE:
5523 {
5524 tree nelts;
5525
5526 nelts = array_type_nelts (type);
5527 if (nelts && tree_fits_uhwi_p (nelts))
5528 {
5529 unsigned HOST_WIDE_INT n;
5530
5531 n = tree_to_uhwi (nelts) + 1;
5532 if (n == 0 || for_ctor_p)
5533 return n;
5534 else
5535 return n * count_type_elements (TREE_TYPE (type), false);
5536 }
5537 return for_ctor_p ? -1 : 1;
5538 }
5539
5540 case RECORD_TYPE:
5541 {
5542 unsigned HOST_WIDE_INT n;
5543 tree f;
5544
5545 n = 0;
5546 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5547 if (TREE_CODE (f) == FIELD_DECL)
5548 {
5549 if (!for_ctor_p)
5550 n += count_type_elements (TREE_TYPE (f), false);
5551 else if (!flexible_array_member_p (f, type))
5552 /* Don't count flexible arrays, which are not supposed
5553 to be initialized. */
5554 n += 1;
5555 }
5556
5557 return n;
5558 }
5559
5560 case UNION_TYPE:
5561 case QUAL_UNION_TYPE:
5562 {
5563 tree f;
5564 HOST_WIDE_INT n, m;
5565
5566 gcc_assert (!for_ctor_p);
5567 /* Estimate the number of scalars in each field and pick the
5568 maximum. Other estimates would do instead; the idea is simply
5569 to make sure that the estimate is not sensitive to the ordering
5570 of the fields. */
5571 n = 1;
5572 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5573 if (TREE_CODE (f) == FIELD_DECL)
5574 {
5575 m = count_type_elements (TREE_TYPE (f), false);
5576 /* If the field doesn't span the whole union, add an extra
5577 scalar for the rest. */
5578 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5579 TYPE_SIZE (type)) != 1)
5580 m++;
5581 if (n < m)
5582 n = m;
5583 }
5584 return n;
5585 }
5586
5587 case COMPLEX_TYPE:
5588 return 2;
5589
5590 case VECTOR_TYPE:
5591 return TYPE_VECTOR_SUBPARTS (type);
5592
5593 case INTEGER_TYPE:
5594 case REAL_TYPE:
5595 case FIXED_POINT_TYPE:
5596 case ENUMERAL_TYPE:
5597 case BOOLEAN_TYPE:
5598 case POINTER_TYPE:
5599 case OFFSET_TYPE:
5600 case REFERENCE_TYPE:
5601 case NULLPTR_TYPE:
5602 return 1;
5603
5604 case ERROR_MARK:
5605 return 0;
5606
5607 case VOID_TYPE:
5608 case METHOD_TYPE:
5609 case FUNCTION_TYPE:
5610 case LANG_TYPE:
5611 default:
5612 gcc_unreachable ();
5613 }
5614 }
5615
5616 /* Helper for categorize_ctor_elements. Identical interface. */
5617
5618 static bool
5619 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5620 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5621 {
5622 unsigned HOST_WIDE_INT idx;
5623 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5624 tree value, purpose, elt_type;
5625
5626 /* Whether CTOR is a valid constant initializer, in accordance with what
5627 initializer_constant_valid_p does. If inferred from the constructor
5628 elements, true until proven otherwise. */
5629 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5630 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5631
5632 nz_elts = 0;
5633 init_elts = 0;
5634 num_fields = 0;
5635 elt_type = NULL_TREE;
5636
5637 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5638 {
5639 HOST_WIDE_INT mult = 1;
5640
5641 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5642 {
5643 tree lo_index = TREE_OPERAND (purpose, 0);
5644 tree hi_index = TREE_OPERAND (purpose, 1);
5645
5646 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5647 mult = (tree_to_uhwi (hi_index)
5648 - tree_to_uhwi (lo_index) + 1);
5649 }
5650 num_fields += mult;
5651 elt_type = TREE_TYPE (value);
5652
5653 switch (TREE_CODE (value))
5654 {
5655 case CONSTRUCTOR:
5656 {
5657 HOST_WIDE_INT nz = 0, ic = 0;
5658
5659 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5660 p_complete);
5661
5662 nz_elts += mult * nz;
5663 init_elts += mult * ic;
5664
5665 if (const_from_elts_p && const_p)
5666 const_p = const_elt_p;
5667 }
5668 break;
5669
5670 case INTEGER_CST:
5671 case REAL_CST:
5672 case FIXED_CST:
5673 if (!initializer_zerop (value))
5674 nz_elts += mult;
5675 init_elts += mult;
5676 break;
5677
5678 case STRING_CST:
5679 nz_elts += mult * TREE_STRING_LENGTH (value);
5680 init_elts += mult * TREE_STRING_LENGTH (value);
5681 break;
5682
5683 case COMPLEX_CST:
5684 if (!initializer_zerop (TREE_REALPART (value)))
5685 nz_elts += mult;
5686 if (!initializer_zerop (TREE_IMAGPART (value)))
5687 nz_elts += mult;
5688 init_elts += mult;
5689 break;
5690
5691 case VECTOR_CST:
5692 {
5693 unsigned i;
5694 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5695 {
5696 tree v = VECTOR_CST_ELT (value, i);
5697 if (!initializer_zerop (v))
5698 nz_elts += mult;
5699 init_elts += mult;
5700 }
5701 }
5702 break;
5703
5704 default:
5705 {
5706 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5707 nz_elts += mult * tc;
5708 init_elts += mult * tc;
5709
5710 if (const_from_elts_p && const_p)
5711 const_p = initializer_constant_valid_p (value, elt_type)
5712 != NULL_TREE;
5713 }
5714 break;
5715 }
5716 }
5717
5718 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5719 num_fields, elt_type))
5720 *p_complete = false;
5721
5722 *p_nz_elts += nz_elts;
5723 *p_init_elts += init_elts;
5724
5725 return const_p;
5726 }
5727
5728 /* Examine CTOR to discover:
5729 * how many scalar fields are set to nonzero values,
5730 and place it in *P_NZ_ELTS;
5731 * how many scalar fields in total are in CTOR,
5732 and place it in *P_ELT_COUNT.
5733 * whether the constructor is complete -- in the sense that every
5734 meaningful byte is explicitly given a value --
5735 and place it in *P_COMPLETE.
5736
5737 Return whether or not CTOR is a valid static constant initializer, the same
5738 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5739
5740 bool
5741 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5742 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5743 {
5744 *p_nz_elts = 0;
5745 *p_init_elts = 0;
5746 *p_complete = true;
5747
5748 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5749 }
5750
5751 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5752 of which had type LAST_TYPE. Each element was itself a complete
5753 initializer, in the sense that every meaningful byte was explicitly
5754 given a value. Return true if the same is true for the constructor
5755 as a whole. */
5756
5757 bool
5758 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5759 const_tree last_type)
5760 {
5761 if (TREE_CODE (type) == UNION_TYPE
5762 || TREE_CODE (type) == QUAL_UNION_TYPE)
5763 {
5764 if (num_elts == 0)
5765 return false;
5766
5767 gcc_assert (num_elts == 1 && last_type);
5768
5769 /* ??? We could look at each element of the union, and find the
5770 largest element. Which would avoid comparing the size of the
5771 initialized element against any tail padding in the union.
5772 Doesn't seem worth the effort... */
5773 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5774 }
5775
5776 return count_type_elements (type, true) == num_elts;
5777 }
5778
5779 /* Return 1 if EXP contains mostly (3/4) zeros. */
5780
5781 static int
5782 mostly_zeros_p (const_tree exp)
5783 {
5784 if (TREE_CODE (exp) == CONSTRUCTOR)
5785 {
5786 HOST_WIDE_INT nz_elts, init_elts;
5787 bool complete_p;
5788
5789 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5790 return !complete_p || nz_elts < init_elts / 4;
5791 }
5792
5793 return initializer_zerop (exp);
5794 }
5795
5796 /* Return 1 if EXP contains all zeros. */
5797
5798 static int
5799 all_zeros_p (const_tree exp)
5800 {
5801 if (TREE_CODE (exp) == CONSTRUCTOR)
5802 {
5803 HOST_WIDE_INT nz_elts, init_elts;
5804 bool complete_p;
5805
5806 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5807 return nz_elts == 0;
5808 }
5809
5810 return initializer_zerop (exp);
5811 }
5812 \f
5813 /* Helper function for store_constructor.
5814 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5815 CLEARED is as for store_constructor.
5816 ALIAS_SET is the alias set to use for any stores.
5817
5818 This provides a recursive shortcut back to store_constructor when it isn't
5819 necessary to go through store_field. This is so that we can pass through
5820 the cleared field to let store_constructor know that we may not have to
5821 clear a substructure if the outer structure has already been cleared. */
5822
5823 static void
5824 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5825 HOST_WIDE_INT bitpos, enum machine_mode mode,
5826 tree exp, int cleared, alias_set_type alias_set)
5827 {
5828 if (TREE_CODE (exp) == CONSTRUCTOR
5829 /* We can only call store_constructor recursively if the size and
5830 bit position are on a byte boundary. */
5831 && bitpos % BITS_PER_UNIT == 0
5832 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5833 /* If we have a nonzero bitpos for a register target, then we just
5834 let store_field do the bitfield handling. This is unlikely to
5835 generate unnecessary clear instructions anyways. */
5836 && (bitpos == 0 || MEM_P (target)))
5837 {
5838 if (MEM_P (target))
5839 target
5840 = adjust_address (target,
5841 GET_MODE (target) == BLKmode
5842 || 0 != (bitpos
5843 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5844 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5845
5846
5847 /* Update the alias set, if required. */
5848 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5849 && MEM_ALIAS_SET (target) != 0)
5850 {
5851 target = copy_rtx (target);
5852 set_mem_alias_set (target, alias_set);
5853 }
5854
5855 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5856 }
5857 else
5858 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5859 }
5860
5861
5862 /* Returns the number of FIELD_DECLs in TYPE. */
5863
5864 static int
5865 fields_length (const_tree type)
5866 {
5867 tree t = TYPE_FIELDS (type);
5868 int count = 0;
5869
5870 for (; t; t = DECL_CHAIN (t))
5871 if (TREE_CODE (t) == FIELD_DECL)
5872 ++count;
5873
5874 return count;
5875 }
5876
5877
5878 /* Store the value of constructor EXP into the rtx TARGET.
5879 TARGET is either a REG or a MEM; we know it cannot conflict, since
5880 safe_from_p has been called.
5881 CLEARED is true if TARGET is known to have been zero'd.
5882 SIZE is the number of bytes of TARGET we are allowed to modify: this
5883 may not be the same as the size of EXP if we are assigning to a field
5884 which has been packed to exclude padding bits. */
5885
5886 static void
5887 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5888 {
5889 tree type = TREE_TYPE (exp);
5890 #ifdef WORD_REGISTER_OPERATIONS
5891 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5892 #endif
5893
5894 switch (TREE_CODE (type))
5895 {
5896 case RECORD_TYPE:
5897 case UNION_TYPE:
5898 case QUAL_UNION_TYPE:
5899 {
5900 unsigned HOST_WIDE_INT idx;
5901 tree field, value;
5902
5903 /* If size is zero or the target is already cleared, do nothing. */
5904 if (size == 0 || cleared)
5905 cleared = 1;
5906 /* We either clear the aggregate or indicate the value is dead. */
5907 else if ((TREE_CODE (type) == UNION_TYPE
5908 || TREE_CODE (type) == QUAL_UNION_TYPE)
5909 && ! CONSTRUCTOR_ELTS (exp))
5910 /* If the constructor is empty, clear the union. */
5911 {
5912 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5913 cleared = 1;
5914 }
5915
5916 /* If we are building a static constructor into a register,
5917 set the initial value as zero so we can fold the value into
5918 a constant. But if more than one register is involved,
5919 this probably loses. */
5920 else if (REG_P (target) && TREE_STATIC (exp)
5921 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5922 {
5923 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5924 cleared = 1;
5925 }
5926
5927 /* If the constructor has fewer fields than the structure or
5928 if we are initializing the structure to mostly zeros, clear
5929 the whole structure first. Don't do this if TARGET is a
5930 register whose mode size isn't equal to SIZE since
5931 clear_storage can't handle this case. */
5932 else if (size > 0
5933 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
5934 != fields_length (type))
5935 || mostly_zeros_p (exp))
5936 && (!REG_P (target)
5937 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5938 == size)))
5939 {
5940 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5941 cleared = 1;
5942 }
5943
5944 if (REG_P (target) && !cleared)
5945 emit_clobber (target);
5946
5947 /* Store each element of the constructor into the
5948 corresponding field of TARGET. */
5949 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5950 {
5951 enum machine_mode mode;
5952 HOST_WIDE_INT bitsize;
5953 HOST_WIDE_INT bitpos = 0;
5954 tree offset;
5955 rtx to_rtx = target;
5956
5957 /* Just ignore missing fields. We cleared the whole
5958 structure, above, if any fields are missing. */
5959 if (field == 0)
5960 continue;
5961
5962 if (cleared && initializer_zerop (value))
5963 continue;
5964
5965 if (tree_fits_uhwi_p (DECL_SIZE (field)))
5966 bitsize = tree_to_uhwi (DECL_SIZE (field));
5967 else
5968 bitsize = -1;
5969
5970 mode = DECL_MODE (field);
5971 if (DECL_BIT_FIELD (field))
5972 mode = VOIDmode;
5973
5974 offset = DECL_FIELD_OFFSET (field);
5975 if (tree_fits_shwi_p (offset)
5976 && tree_fits_shwi_p (bit_position (field)))
5977 {
5978 bitpos = int_bit_position (field);
5979 offset = 0;
5980 }
5981 else
5982 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
5983
5984 if (offset)
5985 {
5986 enum machine_mode address_mode;
5987 rtx offset_rtx;
5988
5989 offset
5990 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5991 make_tree (TREE_TYPE (exp),
5992 target));
5993
5994 offset_rtx = expand_normal (offset);
5995 gcc_assert (MEM_P (to_rtx));
5996
5997 address_mode = get_address_mode (to_rtx);
5998 if (GET_MODE (offset_rtx) != address_mode)
5999 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6000
6001 to_rtx = offset_address (to_rtx, offset_rtx,
6002 highest_pow2_factor (offset));
6003 }
6004
6005 #ifdef WORD_REGISTER_OPERATIONS
6006 /* If this initializes a field that is smaller than a
6007 word, at the start of a word, try to widen it to a full
6008 word. This special case allows us to output C++ member
6009 function initializations in a form that the optimizers
6010 can understand. */
6011 if (REG_P (target)
6012 && bitsize < BITS_PER_WORD
6013 && bitpos % BITS_PER_WORD == 0
6014 && GET_MODE_CLASS (mode) == MODE_INT
6015 && TREE_CODE (value) == INTEGER_CST
6016 && exp_size >= 0
6017 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6018 {
6019 tree type = TREE_TYPE (value);
6020
6021 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6022 {
6023 type = lang_hooks.types.type_for_mode
6024 (word_mode, TYPE_UNSIGNED (type));
6025 value = fold_convert (type, value);
6026 }
6027
6028 if (BYTES_BIG_ENDIAN)
6029 value
6030 = fold_build2 (LSHIFT_EXPR, type, value,
6031 build_int_cst (type,
6032 BITS_PER_WORD - bitsize));
6033 bitsize = BITS_PER_WORD;
6034 mode = word_mode;
6035 }
6036 #endif
6037
6038 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6039 && DECL_NONADDRESSABLE_P (field))
6040 {
6041 to_rtx = copy_rtx (to_rtx);
6042 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6043 }
6044
6045 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6046 value, cleared,
6047 get_alias_set (TREE_TYPE (field)));
6048 }
6049 break;
6050 }
6051 case ARRAY_TYPE:
6052 {
6053 tree value, index;
6054 unsigned HOST_WIDE_INT i;
6055 int need_to_clear;
6056 tree domain;
6057 tree elttype = TREE_TYPE (type);
6058 int const_bounds_p;
6059 HOST_WIDE_INT minelt = 0;
6060 HOST_WIDE_INT maxelt = 0;
6061
6062 domain = TYPE_DOMAIN (type);
6063 const_bounds_p = (TYPE_MIN_VALUE (domain)
6064 && TYPE_MAX_VALUE (domain)
6065 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6066 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6067
6068 /* If we have constant bounds for the range of the type, get them. */
6069 if (const_bounds_p)
6070 {
6071 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6072 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6073 }
6074
6075 /* If the constructor has fewer elements than the array, clear
6076 the whole array first. Similarly if this is static
6077 constructor of a non-BLKmode object. */
6078 if (cleared)
6079 need_to_clear = 0;
6080 else if (REG_P (target) && TREE_STATIC (exp))
6081 need_to_clear = 1;
6082 else
6083 {
6084 unsigned HOST_WIDE_INT idx;
6085 tree index, value;
6086 HOST_WIDE_INT count = 0, zero_count = 0;
6087 need_to_clear = ! const_bounds_p;
6088
6089 /* This loop is a more accurate version of the loop in
6090 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6091 is also needed to check for missing elements. */
6092 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6093 {
6094 HOST_WIDE_INT this_node_count;
6095
6096 if (need_to_clear)
6097 break;
6098
6099 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6100 {
6101 tree lo_index = TREE_OPERAND (index, 0);
6102 tree hi_index = TREE_OPERAND (index, 1);
6103
6104 if (! tree_fits_uhwi_p (lo_index)
6105 || ! tree_fits_uhwi_p (hi_index))
6106 {
6107 need_to_clear = 1;
6108 break;
6109 }
6110
6111 this_node_count = (tree_to_uhwi (hi_index)
6112 - tree_to_uhwi (lo_index) + 1);
6113 }
6114 else
6115 this_node_count = 1;
6116
6117 count += this_node_count;
6118 if (mostly_zeros_p (value))
6119 zero_count += this_node_count;
6120 }
6121
6122 /* Clear the entire array first if there are any missing
6123 elements, or if the incidence of zero elements is >=
6124 75%. */
6125 if (! need_to_clear
6126 && (count < maxelt - minelt + 1
6127 || 4 * zero_count >= 3 * count))
6128 need_to_clear = 1;
6129 }
6130
6131 if (need_to_clear && size > 0)
6132 {
6133 if (REG_P (target))
6134 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6135 else
6136 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6137 cleared = 1;
6138 }
6139
6140 if (!cleared && REG_P (target))
6141 /* Inform later passes that the old value is dead. */
6142 emit_clobber (target);
6143
6144 /* Store each element of the constructor into the
6145 corresponding element of TARGET, determined by counting the
6146 elements. */
6147 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6148 {
6149 enum machine_mode mode;
6150 HOST_WIDE_INT bitsize;
6151 HOST_WIDE_INT bitpos;
6152 rtx xtarget = target;
6153
6154 if (cleared && initializer_zerop (value))
6155 continue;
6156
6157 mode = TYPE_MODE (elttype);
6158 if (mode == BLKmode)
6159 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6160 ? tree_to_uhwi (TYPE_SIZE (elttype))
6161 : -1);
6162 else
6163 bitsize = GET_MODE_BITSIZE (mode);
6164
6165 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6166 {
6167 tree lo_index = TREE_OPERAND (index, 0);
6168 tree hi_index = TREE_OPERAND (index, 1);
6169 rtx index_r, pos_rtx;
6170 HOST_WIDE_INT lo, hi, count;
6171 tree position;
6172
6173 /* If the range is constant and "small", unroll the loop. */
6174 if (const_bounds_p
6175 && tree_fits_shwi_p (lo_index)
6176 && tree_fits_shwi_p (hi_index)
6177 && (lo = tree_to_shwi (lo_index),
6178 hi = tree_to_shwi (hi_index),
6179 count = hi - lo + 1,
6180 (!MEM_P (target)
6181 || count <= 2
6182 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6183 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6184 <= 40 * 8)))))
6185 {
6186 lo -= minelt; hi -= minelt;
6187 for (; lo <= hi; lo++)
6188 {
6189 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6190
6191 if (MEM_P (target)
6192 && !MEM_KEEP_ALIAS_SET_P (target)
6193 && TREE_CODE (type) == ARRAY_TYPE
6194 && TYPE_NONALIASED_COMPONENT (type))
6195 {
6196 target = copy_rtx (target);
6197 MEM_KEEP_ALIAS_SET_P (target) = 1;
6198 }
6199
6200 store_constructor_field
6201 (target, bitsize, bitpos, mode, value, cleared,
6202 get_alias_set (elttype));
6203 }
6204 }
6205 else
6206 {
6207 rtx loop_start = gen_label_rtx ();
6208 rtx loop_end = gen_label_rtx ();
6209 tree exit_cond;
6210
6211 expand_normal (hi_index);
6212
6213 index = build_decl (EXPR_LOCATION (exp),
6214 VAR_DECL, NULL_TREE, domain);
6215 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6216 SET_DECL_RTL (index, index_r);
6217 store_expr (lo_index, index_r, 0, false);
6218
6219 /* Build the head of the loop. */
6220 do_pending_stack_adjust ();
6221 emit_label (loop_start);
6222
6223 /* Assign value to element index. */
6224 position =
6225 fold_convert (ssizetype,
6226 fold_build2 (MINUS_EXPR,
6227 TREE_TYPE (index),
6228 index,
6229 TYPE_MIN_VALUE (domain)));
6230
6231 position =
6232 size_binop (MULT_EXPR, position,
6233 fold_convert (ssizetype,
6234 TYPE_SIZE_UNIT (elttype)));
6235
6236 pos_rtx = expand_normal (position);
6237 xtarget = offset_address (target, pos_rtx,
6238 highest_pow2_factor (position));
6239 xtarget = adjust_address (xtarget, mode, 0);
6240 if (TREE_CODE (value) == CONSTRUCTOR)
6241 store_constructor (value, xtarget, cleared,
6242 bitsize / BITS_PER_UNIT);
6243 else
6244 store_expr (value, xtarget, 0, false);
6245
6246 /* Generate a conditional jump to exit the loop. */
6247 exit_cond = build2 (LT_EXPR, integer_type_node,
6248 index, hi_index);
6249 jumpif (exit_cond, loop_end, -1);
6250
6251 /* Update the loop counter, and jump to the head of
6252 the loop. */
6253 expand_assignment (index,
6254 build2 (PLUS_EXPR, TREE_TYPE (index),
6255 index, integer_one_node),
6256 false);
6257
6258 emit_jump (loop_start);
6259
6260 /* Build the end of the loop. */
6261 emit_label (loop_end);
6262 }
6263 }
6264 else if ((index != 0 && ! tree_fits_shwi_p (index))
6265 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6266 {
6267 tree position;
6268
6269 if (index == 0)
6270 index = ssize_int (1);
6271
6272 if (minelt)
6273 index = fold_convert (ssizetype,
6274 fold_build2 (MINUS_EXPR,
6275 TREE_TYPE (index),
6276 index,
6277 TYPE_MIN_VALUE (domain)));
6278
6279 position =
6280 size_binop (MULT_EXPR, index,
6281 fold_convert (ssizetype,
6282 TYPE_SIZE_UNIT (elttype)));
6283 xtarget = offset_address (target,
6284 expand_normal (position),
6285 highest_pow2_factor (position));
6286 xtarget = adjust_address (xtarget, mode, 0);
6287 store_expr (value, xtarget, 0, false);
6288 }
6289 else
6290 {
6291 if (index != 0)
6292 bitpos = ((tree_to_shwi (index) - minelt)
6293 * tree_to_uhwi (TYPE_SIZE (elttype)));
6294 else
6295 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6296
6297 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6298 && TREE_CODE (type) == ARRAY_TYPE
6299 && TYPE_NONALIASED_COMPONENT (type))
6300 {
6301 target = copy_rtx (target);
6302 MEM_KEEP_ALIAS_SET_P (target) = 1;
6303 }
6304 store_constructor_field (target, bitsize, bitpos, mode, value,
6305 cleared, get_alias_set (elttype));
6306 }
6307 }
6308 break;
6309 }
6310
6311 case VECTOR_TYPE:
6312 {
6313 unsigned HOST_WIDE_INT idx;
6314 constructor_elt *ce;
6315 int i;
6316 int need_to_clear;
6317 int icode = CODE_FOR_nothing;
6318 tree elttype = TREE_TYPE (type);
6319 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6320 enum machine_mode eltmode = TYPE_MODE (elttype);
6321 HOST_WIDE_INT bitsize;
6322 HOST_WIDE_INT bitpos;
6323 rtvec vector = NULL;
6324 unsigned n_elts;
6325 alias_set_type alias;
6326
6327 gcc_assert (eltmode != BLKmode);
6328
6329 n_elts = TYPE_VECTOR_SUBPARTS (type);
6330 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6331 {
6332 enum machine_mode mode = GET_MODE (target);
6333
6334 icode = (int) optab_handler (vec_init_optab, mode);
6335 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6336 if (icode != CODE_FOR_nothing)
6337 {
6338 tree value;
6339
6340 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6341 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6342 {
6343 icode = CODE_FOR_nothing;
6344 break;
6345 }
6346 }
6347 if (icode != CODE_FOR_nothing)
6348 {
6349 unsigned int i;
6350
6351 vector = rtvec_alloc (n_elts);
6352 for (i = 0; i < n_elts; i++)
6353 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6354 }
6355 }
6356
6357 /* If the constructor has fewer elements than the vector,
6358 clear the whole array first. Similarly if this is static
6359 constructor of a non-BLKmode object. */
6360 if (cleared)
6361 need_to_clear = 0;
6362 else if (REG_P (target) && TREE_STATIC (exp))
6363 need_to_clear = 1;
6364 else
6365 {
6366 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6367 tree value;
6368
6369 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6370 {
6371 int n_elts_here = tree_to_uhwi
6372 (int_const_binop (TRUNC_DIV_EXPR,
6373 TYPE_SIZE (TREE_TYPE (value)),
6374 TYPE_SIZE (elttype)));
6375
6376 count += n_elts_here;
6377 if (mostly_zeros_p (value))
6378 zero_count += n_elts_here;
6379 }
6380
6381 /* Clear the entire vector first if there are any missing elements,
6382 or if the incidence of zero elements is >= 75%. */
6383 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6384 }
6385
6386 if (need_to_clear && size > 0 && !vector)
6387 {
6388 if (REG_P (target))
6389 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6390 else
6391 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6392 cleared = 1;
6393 }
6394
6395 /* Inform later passes that the old value is dead. */
6396 if (!cleared && !vector && REG_P (target))
6397 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6398
6399 if (MEM_P (target))
6400 alias = MEM_ALIAS_SET (target);
6401 else
6402 alias = get_alias_set (elttype);
6403
6404 /* Store each element of the constructor into the corresponding
6405 element of TARGET, determined by counting the elements. */
6406 for (idx = 0, i = 0;
6407 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6408 idx++, i += bitsize / elt_size)
6409 {
6410 HOST_WIDE_INT eltpos;
6411 tree value = ce->value;
6412
6413 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6414 if (cleared && initializer_zerop (value))
6415 continue;
6416
6417 if (ce->index)
6418 eltpos = tree_to_uhwi (ce->index);
6419 else
6420 eltpos = i;
6421
6422 if (vector)
6423 {
6424 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6425 elements. */
6426 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6427 RTVEC_ELT (vector, eltpos)
6428 = expand_normal (value);
6429 }
6430 else
6431 {
6432 enum machine_mode value_mode =
6433 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6434 ? TYPE_MODE (TREE_TYPE (value))
6435 : eltmode;
6436 bitpos = eltpos * elt_size;
6437 store_constructor_field (target, bitsize, bitpos, value_mode,
6438 value, cleared, alias);
6439 }
6440 }
6441
6442 if (vector)
6443 emit_insn (GEN_FCN (icode)
6444 (target,
6445 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6446 break;
6447 }
6448
6449 default:
6450 gcc_unreachable ();
6451 }
6452 }
6453
6454 /* Store the value of EXP (an expression tree)
6455 into a subfield of TARGET which has mode MODE and occupies
6456 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6457 If MODE is VOIDmode, it means that we are storing into a bit-field.
6458
6459 BITREGION_START is bitpos of the first bitfield in this region.
6460 BITREGION_END is the bitpos of the ending bitfield in this region.
6461 These two fields are 0, if the C++ memory model does not apply,
6462 or we are not interested in keeping track of bitfield regions.
6463
6464 Always return const0_rtx unless we have something particular to
6465 return.
6466
6467 ALIAS_SET is the alias set for the destination. This value will
6468 (in general) be different from that for TARGET, since TARGET is a
6469 reference to the containing structure.
6470
6471 If NONTEMPORAL is true, try generating a nontemporal store. */
6472
6473 static rtx
6474 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6475 unsigned HOST_WIDE_INT bitregion_start,
6476 unsigned HOST_WIDE_INT bitregion_end,
6477 enum machine_mode mode, tree exp,
6478 alias_set_type alias_set, bool nontemporal)
6479 {
6480 if (TREE_CODE (exp) == ERROR_MARK)
6481 return const0_rtx;
6482
6483 /* If we have nothing to store, do nothing unless the expression has
6484 side-effects. */
6485 if (bitsize == 0)
6486 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6487
6488 if (GET_CODE (target) == CONCAT)
6489 {
6490 /* We're storing into a struct containing a single __complex. */
6491
6492 gcc_assert (!bitpos);
6493 return store_expr (exp, target, 0, nontemporal);
6494 }
6495
6496 /* If the structure is in a register or if the component
6497 is a bit field, we cannot use addressing to access it.
6498 Use bit-field techniques or SUBREG to store in it. */
6499
6500 if (mode == VOIDmode
6501 || (mode != BLKmode && ! direct_store[(int) mode]
6502 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6503 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6504 || REG_P (target)
6505 || GET_CODE (target) == SUBREG
6506 /* If the field isn't aligned enough to store as an ordinary memref,
6507 store it as a bit field. */
6508 || (mode != BLKmode
6509 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6510 || bitpos % GET_MODE_ALIGNMENT (mode))
6511 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6512 || (bitpos % BITS_PER_UNIT != 0)))
6513 || (bitsize >= 0 && mode != BLKmode
6514 && GET_MODE_BITSIZE (mode) > bitsize)
6515 /* If the RHS and field are a constant size and the size of the
6516 RHS isn't the same size as the bitfield, we must use bitfield
6517 operations. */
6518 || (bitsize >= 0
6519 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6520 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6521 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6522 decl we must use bitfield operations. */
6523 || (bitsize >= 0
6524 && TREE_CODE (exp) == MEM_REF
6525 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6526 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6527 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6528 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6529 {
6530 rtx temp;
6531 gimple nop_def;
6532
6533 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6534 implies a mask operation. If the precision is the same size as
6535 the field we're storing into, that mask is redundant. This is
6536 particularly common with bit field assignments generated by the
6537 C front end. */
6538 nop_def = get_def_for_expr (exp, NOP_EXPR);
6539 if (nop_def)
6540 {
6541 tree type = TREE_TYPE (exp);
6542 if (INTEGRAL_TYPE_P (type)
6543 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6544 && bitsize == TYPE_PRECISION (type))
6545 {
6546 tree op = gimple_assign_rhs1 (nop_def);
6547 type = TREE_TYPE (op);
6548 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6549 exp = op;
6550 }
6551 }
6552
6553 temp = expand_normal (exp);
6554
6555 /* If BITSIZE is narrower than the size of the type of EXP
6556 we will be narrowing TEMP. Normally, what's wanted are the
6557 low-order bits. However, if EXP's type is a record and this is
6558 big-endian machine, we want the upper BITSIZE bits. */
6559 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6560 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6561 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6562 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6563 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6564 NULL_RTX, 1);
6565
6566 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6567 if (mode != VOIDmode && mode != BLKmode
6568 && mode != TYPE_MODE (TREE_TYPE (exp)))
6569 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6570
6571 /* If the modes of TEMP and TARGET are both BLKmode, both
6572 must be in memory and BITPOS must be aligned on a byte
6573 boundary. If so, we simply do a block copy. Likewise
6574 for a BLKmode-like TARGET. */
6575 if (GET_MODE (temp) == BLKmode
6576 && (GET_MODE (target) == BLKmode
6577 || (MEM_P (target)
6578 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6579 && (bitpos % BITS_PER_UNIT) == 0
6580 && (bitsize % BITS_PER_UNIT) == 0)))
6581 {
6582 gcc_assert (MEM_P (target) && MEM_P (temp)
6583 && (bitpos % BITS_PER_UNIT) == 0);
6584
6585 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6586 emit_block_move (target, temp,
6587 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6588 / BITS_PER_UNIT),
6589 BLOCK_OP_NORMAL);
6590
6591 return const0_rtx;
6592 }
6593
6594 /* Handle calls that return values in multiple non-contiguous locations.
6595 The Irix 6 ABI has examples of this. */
6596 if (GET_CODE (temp) == PARALLEL)
6597 {
6598 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6599 rtx temp_target;
6600 if (mode == BLKmode)
6601 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6602 temp_target = gen_reg_rtx (mode);
6603 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6604 temp = temp_target;
6605 }
6606 else if (mode == BLKmode)
6607 {
6608 /* Handle calls that return BLKmode values in registers. */
6609 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6610 {
6611 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6612 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6613 temp = temp_target;
6614 }
6615 else
6616 {
6617 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6618 rtx temp_target;
6619 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6620 temp_target = gen_reg_rtx (mode);
6621 temp_target
6622 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6623 temp_target, mode, mode);
6624 temp = temp_target;
6625 }
6626 }
6627
6628 /* Store the value in the bitfield. */
6629 store_bit_field (target, bitsize, bitpos,
6630 bitregion_start, bitregion_end,
6631 mode, temp);
6632
6633 return const0_rtx;
6634 }
6635 else
6636 {
6637 /* Now build a reference to just the desired component. */
6638 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6639
6640 if (to_rtx == target)
6641 to_rtx = copy_rtx (to_rtx);
6642
6643 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6644 set_mem_alias_set (to_rtx, alias_set);
6645
6646 return store_expr (exp, to_rtx, 0, nontemporal);
6647 }
6648 }
6649 \f
6650 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6651 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6652 codes and find the ultimate containing object, which we return.
6653
6654 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6655 bit position, and *PUNSIGNEDP to the signedness of the field.
6656 If the position of the field is variable, we store a tree
6657 giving the variable offset (in units) in *POFFSET.
6658 This offset is in addition to the bit position.
6659 If the position is not variable, we store 0 in *POFFSET.
6660
6661 If any of the extraction expressions is volatile,
6662 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6663
6664 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6665 Otherwise, it is a mode that can be used to access the field.
6666
6667 If the field describes a variable-sized object, *PMODE is set to
6668 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6669 this case, but the address of the object can be found.
6670
6671 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6672 look through nodes that serve as markers of a greater alignment than
6673 the one that can be deduced from the expression. These nodes make it
6674 possible for front-ends to prevent temporaries from being created by
6675 the middle-end on alignment considerations. For that purpose, the
6676 normal operating mode at high-level is to always pass FALSE so that
6677 the ultimate containing object is really returned; moreover, the
6678 associated predicate handled_component_p will always return TRUE
6679 on these nodes, thus indicating that they are essentially handled
6680 by get_inner_reference. TRUE should only be passed when the caller
6681 is scanning the expression in order to build another representation
6682 and specifically knows how to handle these nodes; as such, this is
6683 the normal operating mode in the RTL expanders. */
6684
6685 tree
6686 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6687 HOST_WIDE_INT *pbitpos, tree *poffset,
6688 enum machine_mode *pmode, int *punsignedp,
6689 int *pvolatilep, bool keep_aligning)
6690 {
6691 tree size_tree = 0;
6692 enum machine_mode mode = VOIDmode;
6693 bool blkmode_bitfield = false;
6694 tree offset = size_zero_node;
6695 double_int bit_offset = double_int_zero;
6696
6697 /* First get the mode, signedness, and size. We do this from just the
6698 outermost expression. */
6699 *pbitsize = -1;
6700 if (TREE_CODE (exp) == COMPONENT_REF)
6701 {
6702 tree field = TREE_OPERAND (exp, 1);
6703 size_tree = DECL_SIZE (field);
6704 if (flag_strict_volatile_bitfields > 0
6705 && TREE_THIS_VOLATILE (exp)
6706 && DECL_BIT_FIELD_TYPE (field)
6707 && DECL_MODE (field) != BLKmode)
6708 /* Volatile bitfields should be accessed in the mode of the
6709 field's type, not the mode computed based on the bit
6710 size. */
6711 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6712 else if (!DECL_BIT_FIELD (field))
6713 mode = DECL_MODE (field);
6714 else if (DECL_MODE (field) == BLKmode)
6715 blkmode_bitfield = true;
6716
6717 *punsignedp = DECL_UNSIGNED (field);
6718 }
6719 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6720 {
6721 size_tree = TREE_OPERAND (exp, 1);
6722 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6723 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6724
6725 /* For vector types, with the correct size of access, use the mode of
6726 inner type. */
6727 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6728 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6729 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6730 mode = TYPE_MODE (TREE_TYPE (exp));
6731 }
6732 else
6733 {
6734 mode = TYPE_MODE (TREE_TYPE (exp));
6735 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6736
6737 if (mode == BLKmode)
6738 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6739 else
6740 *pbitsize = GET_MODE_BITSIZE (mode);
6741 }
6742
6743 if (size_tree != 0)
6744 {
6745 if (! tree_fits_uhwi_p (size_tree))
6746 mode = BLKmode, *pbitsize = -1;
6747 else
6748 *pbitsize = tree_to_uhwi (size_tree);
6749 }
6750
6751 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6752 and find the ultimate containing object. */
6753 while (1)
6754 {
6755 switch (TREE_CODE (exp))
6756 {
6757 case BIT_FIELD_REF:
6758 bit_offset += tree_to_double_int (TREE_OPERAND (exp, 2));
6759 break;
6760
6761 case COMPONENT_REF:
6762 {
6763 tree field = TREE_OPERAND (exp, 1);
6764 tree this_offset = component_ref_field_offset (exp);
6765
6766 /* If this field hasn't been filled in yet, don't go past it.
6767 This should only happen when folding expressions made during
6768 type construction. */
6769 if (this_offset == 0)
6770 break;
6771
6772 offset = size_binop (PLUS_EXPR, offset, this_offset);
6773 bit_offset += tree_to_double_int (DECL_FIELD_BIT_OFFSET (field));
6774
6775 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6776 }
6777 break;
6778
6779 case ARRAY_REF:
6780 case ARRAY_RANGE_REF:
6781 {
6782 tree index = TREE_OPERAND (exp, 1);
6783 tree low_bound = array_ref_low_bound (exp);
6784 tree unit_size = array_ref_element_size (exp);
6785
6786 /* We assume all arrays have sizes that are a multiple of a byte.
6787 First subtract the lower bound, if any, in the type of the
6788 index, then convert to sizetype and multiply by the size of
6789 the array element. */
6790 if (! integer_zerop (low_bound))
6791 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6792 index, low_bound);
6793
6794 offset = size_binop (PLUS_EXPR, offset,
6795 size_binop (MULT_EXPR,
6796 fold_convert (sizetype, index),
6797 unit_size));
6798 }
6799 break;
6800
6801 case REALPART_EXPR:
6802 break;
6803
6804 case IMAGPART_EXPR:
6805 bit_offset += double_int::from_uhwi (*pbitsize);
6806 break;
6807
6808 case VIEW_CONVERT_EXPR:
6809 if (keep_aligning && STRICT_ALIGNMENT
6810 && (TYPE_ALIGN (TREE_TYPE (exp))
6811 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6812 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6813 < BIGGEST_ALIGNMENT)
6814 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6815 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6816 goto done;
6817 break;
6818
6819 case MEM_REF:
6820 /* Hand back the decl for MEM[&decl, off]. */
6821 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6822 {
6823 tree off = TREE_OPERAND (exp, 1);
6824 if (!integer_zerop (off))
6825 {
6826 double_int boff, coff = mem_ref_offset (exp);
6827 boff = coff.lshift (BITS_PER_UNIT == 8
6828 ? 3 : exact_log2 (BITS_PER_UNIT));
6829 bit_offset += boff;
6830 }
6831 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6832 }
6833 goto done;
6834
6835 default:
6836 goto done;
6837 }
6838
6839 /* If any reference in the chain is volatile, the effect is volatile. */
6840 if (TREE_THIS_VOLATILE (exp))
6841 *pvolatilep = 1;
6842
6843 exp = TREE_OPERAND (exp, 0);
6844 }
6845 done:
6846
6847 /* If OFFSET is constant, see if we can return the whole thing as a
6848 constant bit position. Make sure to handle overflow during
6849 this conversion. */
6850 if (TREE_CODE (offset) == INTEGER_CST)
6851 {
6852 double_int tem = tree_to_double_int (offset);
6853 tem = tem.sext (TYPE_PRECISION (sizetype));
6854 tem = tem.lshift (BITS_PER_UNIT == 8 ? 3 : exact_log2 (BITS_PER_UNIT));
6855 tem += bit_offset;
6856 if (tem.fits_shwi ())
6857 {
6858 *pbitpos = tem.to_shwi ();
6859 *poffset = offset = NULL_TREE;
6860 }
6861 }
6862
6863 /* Otherwise, split it up. */
6864 if (offset)
6865 {
6866 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6867 if (bit_offset.is_negative ())
6868 {
6869 double_int mask
6870 = double_int::mask (BITS_PER_UNIT == 8
6871 ? 3 : exact_log2 (BITS_PER_UNIT));
6872 double_int tem = bit_offset.and_not (mask);
6873 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6874 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6875 bit_offset -= tem;
6876 tem = tem.arshift (BITS_PER_UNIT == 8
6877 ? 3 : exact_log2 (BITS_PER_UNIT),
6878 HOST_BITS_PER_DOUBLE_INT);
6879 offset = size_binop (PLUS_EXPR, offset,
6880 double_int_to_tree (sizetype, tem));
6881 }
6882
6883 *pbitpos = bit_offset.to_shwi ();
6884 *poffset = offset;
6885 }
6886
6887 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6888 if (mode == VOIDmode
6889 && blkmode_bitfield
6890 && (*pbitpos % BITS_PER_UNIT) == 0
6891 && (*pbitsize % BITS_PER_UNIT) == 0)
6892 *pmode = BLKmode;
6893 else
6894 *pmode = mode;
6895
6896 return exp;
6897 }
6898
6899 /* Return a tree of sizetype representing the size, in bytes, of the element
6900 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6901
6902 tree
6903 array_ref_element_size (tree exp)
6904 {
6905 tree aligned_size = TREE_OPERAND (exp, 3);
6906 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6907 location_t loc = EXPR_LOCATION (exp);
6908
6909 /* If a size was specified in the ARRAY_REF, it's the size measured
6910 in alignment units of the element type. So multiply by that value. */
6911 if (aligned_size)
6912 {
6913 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6914 sizetype from another type of the same width and signedness. */
6915 if (TREE_TYPE (aligned_size) != sizetype)
6916 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6917 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6918 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6919 }
6920
6921 /* Otherwise, take the size from that of the element type. Substitute
6922 any PLACEHOLDER_EXPR that we have. */
6923 else
6924 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6925 }
6926
6927 /* Return a tree representing the lower bound of the array mentioned in
6928 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6929
6930 tree
6931 array_ref_low_bound (tree exp)
6932 {
6933 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6934
6935 /* If a lower bound is specified in EXP, use it. */
6936 if (TREE_OPERAND (exp, 2))
6937 return TREE_OPERAND (exp, 2);
6938
6939 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6940 substituting for a PLACEHOLDER_EXPR as needed. */
6941 if (domain_type && TYPE_MIN_VALUE (domain_type))
6942 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6943
6944 /* Otherwise, return a zero of the appropriate type. */
6945 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6946 }
6947
6948 /* Returns true if REF is an array reference to an array at the end of
6949 a structure. If this is the case, the array may be allocated larger
6950 than its upper bound implies. */
6951
6952 bool
6953 array_at_struct_end_p (tree ref)
6954 {
6955 if (TREE_CODE (ref) != ARRAY_REF
6956 && TREE_CODE (ref) != ARRAY_RANGE_REF)
6957 return false;
6958
6959 while (handled_component_p (ref))
6960 {
6961 /* If the reference chain contains a component reference to a
6962 non-union type and there follows another field the reference
6963 is not at the end of a structure. */
6964 if (TREE_CODE (ref) == COMPONENT_REF
6965 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
6966 {
6967 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
6968 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
6969 nextf = DECL_CHAIN (nextf);
6970 if (nextf)
6971 return false;
6972 }
6973
6974 ref = TREE_OPERAND (ref, 0);
6975 }
6976
6977 /* If the reference is based on a declared entity, the size of the array
6978 is constrained by its given domain. */
6979 if (DECL_P (ref))
6980 return false;
6981
6982 return true;
6983 }
6984
6985 /* Return a tree representing the upper bound of the array mentioned in
6986 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6987
6988 tree
6989 array_ref_up_bound (tree exp)
6990 {
6991 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6992
6993 /* If there is a domain type and it has an upper bound, use it, substituting
6994 for a PLACEHOLDER_EXPR as needed. */
6995 if (domain_type && TYPE_MAX_VALUE (domain_type))
6996 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6997
6998 /* Otherwise fail. */
6999 return NULL_TREE;
7000 }
7001
7002 /* Return a tree representing the offset, in bytes, of the field referenced
7003 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7004
7005 tree
7006 component_ref_field_offset (tree exp)
7007 {
7008 tree aligned_offset = TREE_OPERAND (exp, 2);
7009 tree field = TREE_OPERAND (exp, 1);
7010 location_t loc = EXPR_LOCATION (exp);
7011
7012 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7013 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7014 value. */
7015 if (aligned_offset)
7016 {
7017 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7018 sizetype from another type of the same width and signedness. */
7019 if (TREE_TYPE (aligned_offset) != sizetype)
7020 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
7021 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
7022 size_int (DECL_OFFSET_ALIGN (field)
7023 / BITS_PER_UNIT));
7024 }
7025
7026 /* Otherwise, take the offset from that of the field. Substitute
7027 any PLACEHOLDER_EXPR that we have. */
7028 else
7029 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
7030 }
7031
7032 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7033
7034 static unsigned HOST_WIDE_INT
7035 target_align (const_tree target)
7036 {
7037 /* We might have a chain of nested references with intermediate misaligning
7038 bitfields components, so need to recurse to find out. */
7039
7040 unsigned HOST_WIDE_INT this_align, outer_align;
7041
7042 switch (TREE_CODE (target))
7043 {
7044 case BIT_FIELD_REF:
7045 return 1;
7046
7047 case COMPONENT_REF:
7048 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7049 outer_align = target_align (TREE_OPERAND (target, 0));
7050 return MIN (this_align, outer_align);
7051
7052 case ARRAY_REF:
7053 case ARRAY_RANGE_REF:
7054 this_align = TYPE_ALIGN (TREE_TYPE (target));
7055 outer_align = target_align (TREE_OPERAND (target, 0));
7056 return MIN (this_align, outer_align);
7057
7058 CASE_CONVERT:
7059 case NON_LVALUE_EXPR:
7060 case VIEW_CONVERT_EXPR:
7061 this_align = TYPE_ALIGN (TREE_TYPE (target));
7062 outer_align = target_align (TREE_OPERAND (target, 0));
7063 return MAX (this_align, outer_align);
7064
7065 default:
7066 return TYPE_ALIGN (TREE_TYPE (target));
7067 }
7068 }
7069
7070 \f
7071 /* Given an rtx VALUE that may contain additions and multiplications, return
7072 an equivalent value that just refers to a register, memory, or constant.
7073 This is done by generating instructions to perform the arithmetic and
7074 returning a pseudo-register containing the value.
7075
7076 The returned value may be a REG, SUBREG, MEM or constant. */
7077
7078 rtx
7079 force_operand (rtx value, rtx target)
7080 {
7081 rtx op1, op2;
7082 /* Use subtarget as the target for operand 0 of a binary operation. */
7083 rtx subtarget = get_subtarget (target);
7084 enum rtx_code code = GET_CODE (value);
7085
7086 /* Check for subreg applied to an expression produced by loop optimizer. */
7087 if (code == SUBREG
7088 && !REG_P (SUBREG_REG (value))
7089 && !MEM_P (SUBREG_REG (value)))
7090 {
7091 value
7092 = simplify_gen_subreg (GET_MODE (value),
7093 force_reg (GET_MODE (SUBREG_REG (value)),
7094 force_operand (SUBREG_REG (value),
7095 NULL_RTX)),
7096 GET_MODE (SUBREG_REG (value)),
7097 SUBREG_BYTE (value));
7098 code = GET_CODE (value);
7099 }
7100
7101 /* Check for a PIC address load. */
7102 if ((code == PLUS || code == MINUS)
7103 && XEXP (value, 0) == pic_offset_table_rtx
7104 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7105 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7106 || GET_CODE (XEXP (value, 1)) == CONST))
7107 {
7108 if (!subtarget)
7109 subtarget = gen_reg_rtx (GET_MODE (value));
7110 emit_move_insn (subtarget, value);
7111 return subtarget;
7112 }
7113
7114 if (ARITHMETIC_P (value))
7115 {
7116 op2 = XEXP (value, 1);
7117 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7118 subtarget = 0;
7119 if (code == MINUS && CONST_INT_P (op2))
7120 {
7121 code = PLUS;
7122 op2 = negate_rtx (GET_MODE (value), op2);
7123 }
7124
7125 /* Check for an addition with OP2 a constant integer and our first
7126 operand a PLUS of a virtual register and something else. In that
7127 case, we want to emit the sum of the virtual register and the
7128 constant first and then add the other value. This allows virtual
7129 register instantiation to simply modify the constant rather than
7130 creating another one around this addition. */
7131 if (code == PLUS && CONST_INT_P (op2)
7132 && GET_CODE (XEXP (value, 0)) == PLUS
7133 && REG_P (XEXP (XEXP (value, 0), 0))
7134 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7135 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7136 {
7137 rtx temp = expand_simple_binop (GET_MODE (value), code,
7138 XEXP (XEXP (value, 0), 0), op2,
7139 subtarget, 0, OPTAB_LIB_WIDEN);
7140 return expand_simple_binop (GET_MODE (value), code, temp,
7141 force_operand (XEXP (XEXP (value,
7142 0), 1), 0),
7143 target, 0, OPTAB_LIB_WIDEN);
7144 }
7145
7146 op1 = force_operand (XEXP (value, 0), subtarget);
7147 op2 = force_operand (op2, NULL_RTX);
7148 switch (code)
7149 {
7150 case MULT:
7151 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7152 case DIV:
7153 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7154 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7155 target, 1, OPTAB_LIB_WIDEN);
7156 else
7157 return expand_divmod (0,
7158 FLOAT_MODE_P (GET_MODE (value))
7159 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7160 GET_MODE (value), op1, op2, target, 0);
7161 case MOD:
7162 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7163 target, 0);
7164 case UDIV:
7165 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7166 target, 1);
7167 case UMOD:
7168 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7169 target, 1);
7170 case ASHIFTRT:
7171 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7172 target, 0, OPTAB_LIB_WIDEN);
7173 default:
7174 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7175 target, 1, OPTAB_LIB_WIDEN);
7176 }
7177 }
7178 if (UNARY_P (value))
7179 {
7180 if (!target)
7181 target = gen_reg_rtx (GET_MODE (value));
7182 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7183 switch (code)
7184 {
7185 case ZERO_EXTEND:
7186 case SIGN_EXTEND:
7187 case TRUNCATE:
7188 case FLOAT_EXTEND:
7189 case FLOAT_TRUNCATE:
7190 convert_move (target, op1, code == ZERO_EXTEND);
7191 return target;
7192
7193 case FIX:
7194 case UNSIGNED_FIX:
7195 expand_fix (target, op1, code == UNSIGNED_FIX);
7196 return target;
7197
7198 case FLOAT:
7199 case UNSIGNED_FLOAT:
7200 expand_float (target, op1, code == UNSIGNED_FLOAT);
7201 return target;
7202
7203 default:
7204 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7205 }
7206 }
7207
7208 #ifdef INSN_SCHEDULING
7209 /* On machines that have insn scheduling, we want all memory reference to be
7210 explicit, so we need to deal with such paradoxical SUBREGs. */
7211 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7212 value
7213 = simplify_gen_subreg (GET_MODE (value),
7214 force_reg (GET_MODE (SUBREG_REG (value)),
7215 force_operand (SUBREG_REG (value),
7216 NULL_RTX)),
7217 GET_MODE (SUBREG_REG (value)),
7218 SUBREG_BYTE (value));
7219 #endif
7220
7221 return value;
7222 }
7223 \f
7224 /* Subroutine of expand_expr: return nonzero iff there is no way that
7225 EXP can reference X, which is being modified. TOP_P is nonzero if this
7226 call is going to be used to determine whether we need a temporary
7227 for EXP, as opposed to a recursive call to this function.
7228
7229 It is always safe for this routine to return zero since it merely
7230 searches for optimization opportunities. */
7231
7232 int
7233 safe_from_p (const_rtx x, tree exp, int top_p)
7234 {
7235 rtx exp_rtl = 0;
7236 int i, nops;
7237
7238 if (x == 0
7239 /* If EXP has varying size, we MUST use a target since we currently
7240 have no way of allocating temporaries of variable size
7241 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7242 So we assume here that something at a higher level has prevented a
7243 clash. This is somewhat bogus, but the best we can do. Only
7244 do this when X is BLKmode and when we are at the top level. */
7245 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7246 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7247 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7248 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7249 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7250 != INTEGER_CST)
7251 && GET_MODE (x) == BLKmode)
7252 /* If X is in the outgoing argument area, it is always safe. */
7253 || (MEM_P (x)
7254 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7255 || (GET_CODE (XEXP (x, 0)) == PLUS
7256 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7257 return 1;
7258
7259 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7260 find the underlying pseudo. */
7261 if (GET_CODE (x) == SUBREG)
7262 {
7263 x = SUBREG_REG (x);
7264 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7265 return 0;
7266 }
7267
7268 /* Now look at our tree code and possibly recurse. */
7269 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7270 {
7271 case tcc_declaration:
7272 exp_rtl = DECL_RTL_IF_SET (exp);
7273 break;
7274
7275 case tcc_constant:
7276 return 1;
7277
7278 case tcc_exceptional:
7279 if (TREE_CODE (exp) == TREE_LIST)
7280 {
7281 while (1)
7282 {
7283 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7284 return 0;
7285 exp = TREE_CHAIN (exp);
7286 if (!exp)
7287 return 1;
7288 if (TREE_CODE (exp) != TREE_LIST)
7289 return safe_from_p (x, exp, 0);
7290 }
7291 }
7292 else if (TREE_CODE (exp) == CONSTRUCTOR)
7293 {
7294 constructor_elt *ce;
7295 unsigned HOST_WIDE_INT idx;
7296
7297 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7298 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7299 || !safe_from_p (x, ce->value, 0))
7300 return 0;
7301 return 1;
7302 }
7303 else if (TREE_CODE (exp) == ERROR_MARK)
7304 return 1; /* An already-visited SAVE_EXPR? */
7305 else
7306 return 0;
7307
7308 case tcc_statement:
7309 /* The only case we look at here is the DECL_INITIAL inside a
7310 DECL_EXPR. */
7311 return (TREE_CODE (exp) != DECL_EXPR
7312 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7313 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7314 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7315
7316 case tcc_binary:
7317 case tcc_comparison:
7318 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7319 return 0;
7320 /* Fall through. */
7321
7322 case tcc_unary:
7323 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7324
7325 case tcc_expression:
7326 case tcc_reference:
7327 case tcc_vl_exp:
7328 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7329 the expression. If it is set, we conflict iff we are that rtx or
7330 both are in memory. Otherwise, we check all operands of the
7331 expression recursively. */
7332
7333 switch (TREE_CODE (exp))
7334 {
7335 case ADDR_EXPR:
7336 /* If the operand is static or we are static, we can't conflict.
7337 Likewise if we don't conflict with the operand at all. */
7338 if (staticp (TREE_OPERAND (exp, 0))
7339 || TREE_STATIC (exp)
7340 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7341 return 1;
7342
7343 /* Otherwise, the only way this can conflict is if we are taking
7344 the address of a DECL a that address if part of X, which is
7345 very rare. */
7346 exp = TREE_OPERAND (exp, 0);
7347 if (DECL_P (exp))
7348 {
7349 if (!DECL_RTL_SET_P (exp)
7350 || !MEM_P (DECL_RTL (exp)))
7351 return 0;
7352 else
7353 exp_rtl = XEXP (DECL_RTL (exp), 0);
7354 }
7355 break;
7356
7357 case MEM_REF:
7358 if (MEM_P (x)
7359 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7360 get_alias_set (exp)))
7361 return 0;
7362 break;
7363
7364 case CALL_EXPR:
7365 /* Assume that the call will clobber all hard registers and
7366 all of memory. */
7367 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7368 || MEM_P (x))
7369 return 0;
7370 break;
7371
7372 case WITH_CLEANUP_EXPR:
7373 case CLEANUP_POINT_EXPR:
7374 /* Lowered by gimplify.c. */
7375 gcc_unreachable ();
7376
7377 case SAVE_EXPR:
7378 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7379
7380 default:
7381 break;
7382 }
7383
7384 /* If we have an rtx, we do not need to scan our operands. */
7385 if (exp_rtl)
7386 break;
7387
7388 nops = TREE_OPERAND_LENGTH (exp);
7389 for (i = 0; i < nops; i++)
7390 if (TREE_OPERAND (exp, i) != 0
7391 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7392 return 0;
7393
7394 break;
7395
7396 case tcc_type:
7397 /* Should never get a type here. */
7398 gcc_unreachable ();
7399 }
7400
7401 /* If we have an rtl, find any enclosed object. Then see if we conflict
7402 with it. */
7403 if (exp_rtl)
7404 {
7405 if (GET_CODE (exp_rtl) == SUBREG)
7406 {
7407 exp_rtl = SUBREG_REG (exp_rtl);
7408 if (REG_P (exp_rtl)
7409 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7410 return 0;
7411 }
7412
7413 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7414 are memory and they conflict. */
7415 return ! (rtx_equal_p (x, exp_rtl)
7416 || (MEM_P (x) && MEM_P (exp_rtl)
7417 && true_dependence (exp_rtl, VOIDmode, x)));
7418 }
7419
7420 /* If we reach here, it is safe. */
7421 return 1;
7422 }
7423
7424 \f
7425 /* Return the highest power of two that EXP is known to be a multiple of.
7426 This is used in updating alignment of MEMs in array references. */
7427
7428 unsigned HOST_WIDE_INT
7429 highest_pow2_factor (const_tree exp)
7430 {
7431 unsigned HOST_WIDE_INT ret;
7432 int trailing_zeros = tree_ctz (exp);
7433 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7434 return BIGGEST_ALIGNMENT;
7435 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7436 if (ret > BIGGEST_ALIGNMENT)
7437 return BIGGEST_ALIGNMENT;
7438 return ret;
7439 }
7440
7441 /* Similar, except that the alignment requirements of TARGET are
7442 taken into account. Assume it is at least as aligned as its
7443 type, unless it is a COMPONENT_REF in which case the layout of
7444 the structure gives the alignment. */
7445
7446 static unsigned HOST_WIDE_INT
7447 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7448 {
7449 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7450 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7451
7452 return MAX (factor, talign);
7453 }
7454 \f
7455 #ifdef HAVE_conditional_move
7456 /* Convert the tree comparison code TCODE to the rtl one where the
7457 signedness is UNSIGNEDP. */
7458
7459 static enum rtx_code
7460 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7461 {
7462 enum rtx_code code;
7463 switch (tcode)
7464 {
7465 case EQ_EXPR:
7466 code = EQ;
7467 break;
7468 case NE_EXPR:
7469 code = NE;
7470 break;
7471 case LT_EXPR:
7472 code = unsignedp ? LTU : LT;
7473 break;
7474 case LE_EXPR:
7475 code = unsignedp ? LEU : LE;
7476 break;
7477 case GT_EXPR:
7478 code = unsignedp ? GTU : GT;
7479 break;
7480 case GE_EXPR:
7481 code = unsignedp ? GEU : GE;
7482 break;
7483 case UNORDERED_EXPR:
7484 code = UNORDERED;
7485 break;
7486 case ORDERED_EXPR:
7487 code = ORDERED;
7488 break;
7489 case UNLT_EXPR:
7490 code = UNLT;
7491 break;
7492 case UNLE_EXPR:
7493 code = UNLE;
7494 break;
7495 case UNGT_EXPR:
7496 code = UNGT;
7497 break;
7498 case UNGE_EXPR:
7499 code = UNGE;
7500 break;
7501 case UNEQ_EXPR:
7502 code = UNEQ;
7503 break;
7504 case LTGT_EXPR:
7505 code = LTGT;
7506 break;
7507
7508 default:
7509 gcc_unreachable ();
7510 }
7511 return code;
7512 }
7513 #endif
7514
7515 /* Subroutine of expand_expr. Expand the two operands of a binary
7516 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7517 The value may be stored in TARGET if TARGET is nonzero. The
7518 MODIFIER argument is as documented by expand_expr. */
7519
7520 static void
7521 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7522 enum expand_modifier modifier)
7523 {
7524 if (! safe_from_p (target, exp1, 1))
7525 target = 0;
7526 if (operand_equal_p (exp0, exp1, 0))
7527 {
7528 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7529 *op1 = copy_rtx (*op0);
7530 }
7531 else
7532 {
7533 /* If we need to preserve evaluation order, copy exp0 into its own
7534 temporary variable so that it can't be clobbered by exp1. */
7535 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7536 exp0 = save_expr (exp0);
7537 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7538 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7539 }
7540 }
7541
7542 \f
7543 /* Return a MEM that contains constant EXP. DEFER is as for
7544 output_constant_def and MODIFIER is as for expand_expr. */
7545
7546 static rtx
7547 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7548 {
7549 rtx mem;
7550
7551 mem = output_constant_def (exp, defer);
7552 if (modifier != EXPAND_INITIALIZER)
7553 mem = use_anchored_address (mem);
7554 return mem;
7555 }
7556
7557 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7558 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7559
7560 static rtx
7561 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7562 enum expand_modifier modifier, addr_space_t as)
7563 {
7564 rtx result, subtarget;
7565 tree inner, offset;
7566 HOST_WIDE_INT bitsize, bitpos;
7567 int volatilep, unsignedp;
7568 enum machine_mode mode1;
7569
7570 /* If we are taking the address of a constant and are at the top level,
7571 we have to use output_constant_def since we can't call force_const_mem
7572 at top level. */
7573 /* ??? This should be considered a front-end bug. We should not be
7574 generating ADDR_EXPR of something that isn't an LVALUE. The only
7575 exception here is STRING_CST. */
7576 if (CONSTANT_CLASS_P (exp))
7577 {
7578 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7579 if (modifier < EXPAND_SUM)
7580 result = force_operand (result, target);
7581 return result;
7582 }
7583
7584 /* Everything must be something allowed by is_gimple_addressable. */
7585 switch (TREE_CODE (exp))
7586 {
7587 case INDIRECT_REF:
7588 /* This case will happen via recursion for &a->b. */
7589 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7590
7591 case MEM_REF:
7592 {
7593 tree tem = TREE_OPERAND (exp, 0);
7594 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7595 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7596 return expand_expr (tem, target, tmode, modifier);
7597 }
7598
7599 case CONST_DECL:
7600 /* Expand the initializer like constants above. */
7601 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7602 0, modifier), 0);
7603 if (modifier < EXPAND_SUM)
7604 result = force_operand (result, target);
7605 return result;
7606
7607 case REALPART_EXPR:
7608 /* The real part of the complex number is always first, therefore
7609 the address is the same as the address of the parent object. */
7610 offset = 0;
7611 bitpos = 0;
7612 inner = TREE_OPERAND (exp, 0);
7613 break;
7614
7615 case IMAGPART_EXPR:
7616 /* The imaginary part of the complex number is always second.
7617 The expression is therefore always offset by the size of the
7618 scalar type. */
7619 offset = 0;
7620 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7621 inner = TREE_OPERAND (exp, 0);
7622 break;
7623
7624 case COMPOUND_LITERAL_EXPR:
7625 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7626 rtl_for_decl_init is called on DECL_INITIAL with
7627 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7628 if (modifier == EXPAND_INITIALIZER
7629 && COMPOUND_LITERAL_EXPR_DECL (exp))
7630 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7631 target, tmode, modifier, as);
7632 /* FALLTHRU */
7633 default:
7634 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7635 expand_expr, as that can have various side effects; LABEL_DECLs for
7636 example, may not have their DECL_RTL set yet. Expand the rtl of
7637 CONSTRUCTORs too, which should yield a memory reference for the
7638 constructor's contents. Assume language specific tree nodes can
7639 be expanded in some interesting way. */
7640 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7641 if (DECL_P (exp)
7642 || TREE_CODE (exp) == CONSTRUCTOR
7643 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7644 {
7645 result = expand_expr (exp, target, tmode,
7646 modifier == EXPAND_INITIALIZER
7647 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7648
7649 /* If the DECL isn't in memory, then the DECL wasn't properly
7650 marked TREE_ADDRESSABLE, which will be either a front-end
7651 or a tree optimizer bug. */
7652
7653 if (TREE_ADDRESSABLE (exp)
7654 && ! MEM_P (result)
7655 && ! targetm.calls.allocate_stack_slots_for_args ())
7656 {
7657 error ("local frame unavailable (naked function?)");
7658 return result;
7659 }
7660 else
7661 gcc_assert (MEM_P (result));
7662 result = XEXP (result, 0);
7663
7664 /* ??? Is this needed anymore? */
7665 if (DECL_P (exp))
7666 TREE_USED (exp) = 1;
7667
7668 if (modifier != EXPAND_INITIALIZER
7669 && modifier != EXPAND_CONST_ADDRESS
7670 && modifier != EXPAND_SUM)
7671 result = force_operand (result, target);
7672 return result;
7673 }
7674
7675 /* Pass FALSE as the last argument to get_inner_reference although
7676 we are expanding to RTL. The rationale is that we know how to
7677 handle "aligning nodes" here: we can just bypass them because
7678 they won't change the final object whose address will be returned
7679 (they actually exist only for that purpose). */
7680 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7681 &mode1, &unsignedp, &volatilep, false);
7682 break;
7683 }
7684
7685 /* We must have made progress. */
7686 gcc_assert (inner != exp);
7687
7688 subtarget = offset || bitpos ? NULL_RTX : target;
7689 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7690 inner alignment, force the inner to be sufficiently aligned. */
7691 if (CONSTANT_CLASS_P (inner)
7692 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7693 {
7694 inner = copy_node (inner);
7695 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7696 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7697 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7698 }
7699 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7700
7701 if (offset)
7702 {
7703 rtx tmp;
7704
7705 if (modifier != EXPAND_NORMAL)
7706 result = force_operand (result, NULL);
7707 tmp = expand_expr (offset, NULL_RTX, tmode,
7708 modifier == EXPAND_INITIALIZER
7709 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7710
7711 result = convert_memory_address_addr_space (tmode, result, as);
7712 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7713
7714 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7715 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7716 else
7717 {
7718 subtarget = bitpos ? NULL_RTX : target;
7719 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7720 1, OPTAB_LIB_WIDEN);
7721 }
7722 }
7723
7724 if (bitpos)
7725 {
7726 /* Someone beforehand should have rejected taking the address
7727 of such an object. */
7728 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7729
7730 result = convert_memory_address_addr_space (tmode, result, as);
7731 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7732 if (modifier < EXPAND_SUM)
7733 result = force_operand (result, target);
7734 }
7735
7736 return result;
7737 }
7738
7739 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7740 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7741
7742 static rtx
7743 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7744 enum expand_modifier modifier)
7745 {
7746 addr_space_t as = ADDR_SPACE_GENERIC;
7747 enum machine_mode address_mode = Pmode;
7748 enum machine_mode pointer_mode = ptr_mode;
7749 enum machine_mode rmode;
7750 rtx result;
7751
7752 /* Target mode of VOIDmode says "whatever's natural". */
7753 if (tmode == VOIDmode)
7754 tmode = TYPE_MODE (TREE_TYPE (exp));
7755
7756 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7757 {
7758 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7759 address_mode = targetm.addr_space.address_mode (as);
7760 pointer_mode = targetm.addr_space.pointer_mode (as);
7761 }
7762
7763 /* We can get called with some Weird Things if the user does silliness
7764 like "(short) &a". In that case, convert_memory_address won't do
7765 the right thing, so ignore the given target mode. */
7766 if (tmode != address_mode && tmode != pointer_mode)
7767 tmode = address_mode;
7768
7769 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7770 tmode, modifier, as);
7771
7772 /* Despite expand_expr claims concerning ignoring TMODE when not
7773 strictly convenient, stuff breaks if we don't honor it. Note
7774 that combined with the above, we only do this for pointer modes. */
7775 rmode = GET_MODE (result);
7776 if (rmode == VOIDmode)
7777 rmode = tmode;
7778 if (rmode != tmode)
7779 result = convert_memory_address_addr_space (tmode, result, as);
7780
7781 return result;
7782 }
7783
7784 /* Generate code for computing CONSTRUCTOR EXP.
7785 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7786 is TRUE, instead of creating a temporary variable in memory
7787 NULL is returned and the caller needs to handle it differently. */
7788
7789 static rtx
7790 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7791 bool avoid_temp_mem)
7792 {
7793 tree type = TREE_TYPE (exp);
7794 enum machine_mode mode = TYPE_MODE (type);
7795
7796 /* Try to avoid creating a temporary at all. This is possible
7797 if all of the initializer is zero.
7798 FIXME: try to handle all [0..255] initializers we can handle
7799 with memset. */
7800 if (TREE_STATIC (exp)
7801 && !TREE_ADDRESSABLE (exp)
7802 && target != 0 && mode == BLKmode
7803 && all_zeros_p (exp))
7804 {
7805 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7806 return target;
7807 }
7808
7809 /* All elts simple constants => refer to a constant in memory. But
7810 if this is a non-BLKmode mode, let it store a field at a time
7811 since that should make a CONST_INT or CONST_DOUBLE when we
7812 fold. Likewise, if we have a target we can use, it is best to
7813 store directly into the target unless the type is large enough
7814 that memcpy will be used. If we are making an initializer and
7815 all operands are constant, put it in memory as well.
7816
7817 FIXME: Avoid trying to fill vector constructors piece-meal.
7818 Output them with output_constant_def below unless we're sure
7819 they're zeros. This should go away when vector initializers
7820 are treated like VECTOR_CST instead of arrays. */
7821 if ((TREE_STATIC (exp)
7822 && ((mode == BLKmode
7823 && ! (target != 0 && safe_from_p (target, exp, 1)))
7824 || TREE_ADDRESSABLE (exp)
7825 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7826 && (! MOVE_BY_PIECES_P
7827 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7828 TYPE_ALIGN (type)))
7829 && ! mostly_zeros_p (exp))))
7830 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7831 && TREE_CONSTANT (exp)))
7832 {
7833 rtx constructor;
7834
7835 if (avoid_temp_mem)
7836 return NULL_RTX;
7837
7838 constructor = expand_expr_constant (exp, 1, modifier);
7839
7840 if (modifier != EXPAND_CONST_ADDRESS
7841 && modifier != EXPAND_INITIALIZER
7842 && modifier != EXPAND_SUM)
7843 constructor = validize_mem (constructor);
7844
7845 return constructor;
7846 }
7847
7848 /* Handle calls that pass values in multiple non-contiguous
7849 locations. The Irix 6 ABI has examples of this. */
7850 if (target == 0 || ! safe_from_p (target, exp, 1)
7851 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7852 {
7853 if (avoid_temp_mem)
7854 return NULL_RTX;
7855
7856 target
7857 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7858 | (TREE_READONLY (exp)
7859 * TYPE_QUAL_CONST))),
7860 TREE_ADDRESSABLE (exp), 1);
7861 }
7862
7863 store_constructor (exp, target, 0, int_expr_size (exp));
7864 return target;
7865 }
7866
7867
7868 /* expand_expr: generate code for computing expression EXP.
7869 An rtx for the computed value is returned. The value is never null.
7870 In the case of a void EXP, const0_rtx is returned.
7871
7872 The value may be stored in TARGET if TARGET is nonzero.
7873 TARGET is just a suggestion; callers must assume that
7874 the rtx returned may not be the same as TARGET.
7875
7876 If TARGET is CONST0_RTX, it means that the value will be ignored.
7877
7878 If TMODE is not VOIDmode, it suggests generating the
7879 result in mode TMODE. But this is done only when convenient.
7880 Otherwise, TMODE is ignored and the value generated in its natural mode.
7881 TMODE is just a suggestion; callers must assume that
7882 the rtx returned may not have mode TMODE.
7883
7884 Note that TARGET may have neither TMODE nor MODE. In that case, it
7885 probably will not be used.
7886
7887 If MODIFIER is EXPAND_SUM then when EXP is an addition
7888 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7889 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7890 products as above, or REG or MEM, or constant.
7891 Ordinarily in such cases we would output mul or add instructions
7892 and then return a pseudo reg containing the sum.
7893
7894 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7895 it also marks a label as absolutely required (it can't be dead).
7896 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7897 This is used for outputting expressions used in initializers.
7898
7899 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7900 with a constant address even if that address is not normally legitimate.
7901 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7902
7903 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7904 a call parameter. Such targets require special care as we haven't yet
7905 marked TARGET so that it's safe from being trashed by libcalls. We
7906 don't want to use TARGET for anything but the final result;
7907 Intermediate values must go elsewhere. Additionally, calls to
7908 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7909
7910 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7911 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7912 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7913 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7914 recursively. */
7915
7916 rtx
7917 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7918 enum expand_modifier modifier, rtx *alt_rtl)
7919 {
7920 rtx ret;
7921
7922 /* Handle ERROR_MARK before anybody tries to access its type. */
7923 if (TREE_CODE (exp) == ERROR_MARK
7924 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7925 {
7926 ret = CONST0_RTX (tmode);
7927 return ret ? ret : const0_rtx;
7928 }
7929
7930 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7931 return ret;
7932 }
7933
7934 /* Try to expand the conditional expression which is represented by
7935 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7936 return the rtl reg which repsents the result. Otherwise return
7937 NULL_RTL. */
7938
7939 static rtx
7940 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
7941 tree treeop1 ATTRIBUTE_UNUSED,
7942 tree treeop2 ATTRIBUTE_UNUSED)
7943 {
7944 #ifdef HAVE_conditional_move
7945 rtx insn;
7946 rtx op00, op01, op1, op2;
7947 enum rtx_code comparison_code;
7948 enum machine_mode comparison_mode;
7949 gimple srcstmt;
7950 rtx temp;
7951 tree type = TREE_TYPE (treeop1);
7952 int unsignedp = TYPE_UNSIGNED (type);
7953 enum machine_mode mode = TYPE_MODE (type);
7954 enum machine_mode orig_mode = mode;
7955
7956 /* If we cannot do a conditional move on the mode, try doing it
7957 with the promoted mode. */
7958 if (!can_conditionally_move_p (mode))
7959 {
7960 mode = promote_mode (type, mode, &unsignedp);
7961 if (!can_conditionally_move_p (mode))
7962 return NULL_RTX;
7963 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
7964 }
7965 else
7966 temp = assign_temp (type, 0, 1);
7967
7968 start_sequence ();
7969 expand_operands (treeop1, treeop2,
7970 temp, &op1, &op2, EXPAND_NORMAL);
7971
7972 if (TREE_CODE (treeop0) == SSA_NAME
7973 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
7974 {
7975 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
7976 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
7977 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
7978 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
7979 comparison_mode = TYPE_MODE (type);
7980 unsignedp = TYPE_UNSIGNED (type);
7981 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7982 }
7983 else if (TREE_CODE_CLASS (TREE_CODE (treeop0)) == tcc_comparison)
7984 {
7985 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
7986 enum tree_code cmpcode = TREE_CODE (treeop0);
7987 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
7988 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
7989 unsignedp = TYPE_UNSIGNED (type);
7990 comparison_mode = TYPE_MODE (type);
7991 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7992 }
7993 else
7994 {
7995 op00 = expand_normal (treeop0);
7996 op01 = const0_rtx;
7997 comparison_code = NE;
7998 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
7999 }
8000
8001 if (GET_MODE (op1) != mode)
8002 op1 = gen_lowpart (mode, op1);
8003
8004 if (GET_MODE (op2) != mode)
8005 op2 = gen_lowpart (mode, op2);
8006
8007 /* Try to emit the conditional move. */
8008 insn = emit_conditional_move (temp, comparison_code,
8009 op00, op01, comparison_mode,
8010 op1, op2, mode,
8011 unsignedp);
8012
8013 /* If we could do the conditional move, emit the sequence,
8014 and return. */
8015 if (insn)
8016 {
8017 rtx seq = get_insns ();
8018 end_sequence ();
8019 emit_insn (seq);
8020 return convert_modes (orig_mode, mode, temp, 0);
8021 }
8022
8023 /* Otherwise discard the sequence and fall back to code with
8024 branches. */
8025 end_sequence ();
8026 #endif
8027 return NULL_RTX;
8028 }
8029
8030 rtx
8031 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
8032 enum expand_modifier modifier)
8033 {
8034 rtx op0, op1, op2, temp;
8035 tree type;
8036 int unsignedp;
8037 enum machine_mode mode;
8038 enum tree_code code = ops->code;
8039 optab this_optab;
8040 rtx subtarget, original_target;
8041 int ignore;
8042 bool reduce_bit_field;
8043 location_t loc = ops->location;
8044 tree treeop0, treeop1, treeop2;
8045 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8046 ? reduce_to_bit_field_precision ((expr), \
8047 target, \
8048 type) \
8049 : (expr))
8050
8051 type = ops->type;
8052 mode = TYPE_MODE (type);
8053 unsignedp = TYPE_UNSIGNED (type);
8054
8055 treeop0 = ops->op0;
8056 treeop1 = ops->op1;
8057 treeop2 = ops->op2;
8058
8059 /* We should be called only on simple (binary or unary) expressions,
8060 exactly those that are valid in gimple expressions that aren't
8061 GIMPLE_SINGLE_RHS (or invalid). */
8062 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8063 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8064 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8065
8066 ignore = (target == const0_rtx
8067 || ((CONVERT_EXPR_CODE_P (code)
8068 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8069 && TREE_CODE (type) == VOID_TYPE));
8070
8071 /* We should be called only if we need the result. */
8072 gcc_assert (!ignore);
8073
8074 /* An operation in what may be a bit-field type needs the
8075 result to be reduced to the precision of the bit-field type,
8076 which is narrower than that of the type's mode. */
8077 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8078 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8079
8080 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8081 target = 0;
8082
8083 /* Use subtarget as the target for operand 0 of a binary operation. */
8084 subtarget = get_subtarget (target);
8085 original_target = target;
8086
8087 switch (code)
8088 {
8089 case NON_LVALUE_EXPR:
8090 case PAREN_EXPR:
8091 CASE_CONVERT:
8092 if (treeop0 == error_mark_node)
8093 return const0_rtx;
8094
8095 if (TREE_CODE (type) == UNION_TYPE)
8096 {
8097 tree valtype = TREE_TYPE (treeop0);
8098
8099 /* If both input and output are BLKmode, this conversion isn't doing
8100 anything except possibly changing memory attribute. */
8101 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8102 {
8103 rtx result = expand_expr (treeop0, target, tmode,
8104 modifier);
8105
8106 result = copy_rtx (result);
8107 set_mem_attributes (result, type, 0);
8108 return result;
8109 }
8110
8111 if (target == 0)
8112 {
8113 if (TYPE_MODE (type) != BLKmode)
8114 target = gen_reg_rtx (TYPE_MODE (type));
8115 else
8116 target = assign_temp (type, 1, 1);
8117 }
8118
8119 if (MEM_P (target))
8120 /* Store data into beginning of memory target. */
8121 store_expr (treeop0,
8122 adjust_address (target, TYPE_MODE (valtype), 0),
8123 modifier == EXPAND_STACK_PARM,
8124 false);
8125
8126 else
8127 {
8128 gcc_assert (REG_P (target));
8129
8130 /* Store this field into a union of the proper type. */
8131 store_field (target,
8132 MIN ((int_size_in_bytes (TREE_TYPE
8133 (treeop0))
8134 * BITS_PER_UNIT),
8135 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8136 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8137 }
8138
8139 /* Return the entire union. */
8140 return target;
8141 }
8142
8143 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8144 {
8145 op0 = expand_expr (treeop0, target, VOIDmode,
8146 modifier);
8147
8148 /* If the signedness of the conversion differs and OP0 is
8149 a promoted SUBREG, clear that indication since we now
8150 have to do the proper extension. */
8151 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8152 && GET_CODE (op0) == SUBREG)
8153 SUBREG_PROMOTED_VAR_P (op0) = 0;
8154
8155 return REDUCE_BIT_FIELD (op0);
8156 }
8157
8158 op0 = expand_expr (treeop0, NULL_RTX, mode,
8159 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8160 if (GET_MODE (op0) == mode)
8161 ;
8162
8163 /* If OP0 is a constant, just convert it into the proper mode. */
8164 else if (CONSTANT_P (op0))
8165 {
8166 tree inner_type = TREE_TYPE (treeop0);
8167 enum machine_mode inner_mode = GET_MODE (op0);
8168
8169 if (inner_mode == VOIDmode)
8170 inner_mode = TYPE_MODE (inner_type);
8171
8172 if (modifier == EXPAND_INITIALIZER)
8173 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8174 subreg_lowpart_offset (mode,
8175 inner_mode));
8176 else
8177 op0= convert_modes (mode, inner_mode, op0,
8178 TYPE_UNSIGNED (inner_type));
8179 }
8180
8181 else if (modifier == EXPAND_INITIALIZER)
8182 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8183
8184 else if (target == 0)
8185 op0 = convert_to_mode (mode, op0,
8186 TYPE_UNSIGNED (TREE_TYPE
8187 (treeop0)));
8188 else
8189 {
8190 convert_move (target, op0,
8191 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8192 op0 = target;
8193 }
8194
8195 return REDUCE_BIT_FIELD (op0);
8196
8197 case ADDR_SPACE_CONVERT_EXPR:
8198 {
8199 tree treeop0_type = TREE_TYPE (treeop0);
8200 addr_space_t as_to;
8201 addr_space_t as_from;
8202
8203 gcc_assert (POINTER_TYPE_P (type));
8204 gcc_assert (POINTER_TYPE_P (treeop0_type));
8205
8206 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8207 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8208
8209 /* Conversions between pointers to the same address space should
8210 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8211 gcc_assert (as_to != as_from);
8212
8213 /* Ask target code to handle conversion between pointers
8214 to overlapping address spaces. */
8215 if (targetm.addr_space.subset_p (as_to, as_from)
8216 || targetm.addr_space.subset_p (as_from, as_to))
8217 {
8218 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8219 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8220 gcc_assert (op0);
8221 return op0;
8222 }
8223
8224 /* For disjoint address spaces, converting anything but
8225 a null pointer invokes undefined behaviour. We simply
8226 always return a null pointer here. */
8227 return CONST0_RTX (mode);
8228 }
8229
8230 case POINTER_PLUS_EXPR:
8231 /* Even though the sizetype mode and the pointer's mode can be different
8232 expand is able to handle this correctly and get the correct result out
8233 of the PLUS_EXPR code. */
8234 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8235 if sizetype precision is smaller than pointer precision. */
8236 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8237 treeop1 = fold_convert_loc (loc, type,
8238 fold_convert_loc (loc, ssizetype,
8239 treeop1));
8240 /* If sizetype precision is larger than pointer precision, truncate the
8241 offset to have matching modes. */
8242 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8243 treeop1 = fold_convert_loc (loc, type, treeop1);
8244
8245 case PLUS_EXPR:
8246 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8247 something else, make sure we add the register to the constant and
8248 then to the other thing. This case can occur during strength
8249 reduction and doing it this way will produce better code if the
8250 frame pointer or argument pointer is eliminated.
8251
8252 fold-const.c will ensure that the constant is always in the inner
8253 PLUS_EXPR, so the only case we need to do anything about is if
8254 sp, ap, or fp is our second argument, in which case we must swap
8255 the innermost first argument and our second argument. */
8256
8257 if (TREE_CODE (treeop0) == PLUS_EXPR
8258 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8259 && TREE_CODE (treeop1) == VAR_DECL
8260 && (DECL_RTL (treeop1) == frame_pointer_rtx
8261 || DECL_RTL (treeop1) == stack_pointer_rtx
8262 || DECL_RTL (treeop1) == arg_pointer_rtx))
8263 {
8264 gcc_unreachable ();
8265 }
8266
8267 /* If the result is to be ptr_mode and we are adding an integer to
8268 something, we might be forming a constant. So try to use
8269 plus_constant. If it produces a sum and we can't accept it,
8270 use force_operand. This allows P = &ARR[const] to generate
8271 efficient code on machines where a SYMBOL_REF is not a valid
8272 address.
8273
8274 If this is an EXPAND_SUM call, always return the sum. */
8275 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8276 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8277 {
8278 if (modifier == EXPAND_STACK_PARM)
8279 target = 0;
8280 if (TREE_CODE (treeop0) == INTEGER_CST
8281 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8282 && TREE_CONSTANT (treeop1))
8283 {
8284 rtx constant_part;
8285
8286 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8287 EXPAND_SUM);
8288 /* Use immed_double_const to ensure that the constant is
8289 truncated according to the mode of OP1, then sign extended
8290 to a HOST_WIDE_INT. Using the constant directly can result
8291 in non-canonical RTL in a 64x32 cross compile. */
8292 constant_part
8293 = immed_double_const (TREE_INT_CST_LOW (treeop0),
8294 (HOST_WIDE_INT) 0,
8295 TYPE_MODE (TREE_TYPE (treeop1)));
8296 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8297 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8298 op1 = force_operand (op1, target);
8299 return REDUCE_BIT_FIELD (op1);
8300 }
8301
8302 else if (TREE_CODE (treeop1) == INTEGER_CST
8303 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8304 && TREE_CONSTANT (treeop0))
8305 {
8306 rtx constant_part;
8307
8308 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8309 (modifier == EXPAND_INITIALIZER
8310 ? EXPAND_INITIALIZER : EXPAND_SUM));
8311 if (! CONSTANT_P (op0))
8312 {
8313 op1 = expand_expr (treeop1, NULL_RTX,
8314 VOIDmode, modifier);
8315 /* Return a PLUS if modifier says it's OK. */
8316 if (modifier == EXPAND_SUM
8317 || modifier == EXPAND_INITIALIZER)
8318 return simplify_gen_binary (PLUS, mode, op0, op1);
8319 goto binop2;
8320 }
8321 /* Use immed_double_const to ensure that the constant is
8322 truncated according to the mode of OP1, then sign extended
8323 to a HOST_WIDE_INT. Using the constant directly can result
8324 in non-canonical RTL in a 64x32 cross compile. */
8325 constant_part
8326 = immed_double_const (TREE_INT_CST_LOW (treeop1),
8327 (HOST_WIDE_INT) 0,
8328 TYPE_MODE (TREE_TYPE (treeop0)));
8329 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8330 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8331 op0 = force_operand (op0, target);
8332 return REDUCE_BIT_FIELD (op0);
8333 }
8334 }
8335
8336 /* Use TER to expand pointer addition of a negated value
8337 as pointer subtraction. */
8338 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8339 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8340 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8341 && TREE_CODE (treeop1) == SSA_NAME
8342 && TYPE_MODE (TREE_TYPE (treeop0))
8343 == TYPE_MODE (TREE_TYPE (treeop1)))
8344 {
8345 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8346 if (def)
8347 {
8348 treeop1 = gimple_assign_rhs1 (def);
8349 code = MINUS_EXPR;
8350 goto do_minus;
8351 }
8352 }
8353
8354 /* No sense saving up arithmetic to be done
8355 if it's all in the wrong mode to form part of an address.
8356 And force_operand won't know whether to sign-extend or
8357 zero-extend. */
8358 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8359 || mode != ptr_mode)
8360 {
8361 expand_operands (treeop0, treeop1,
8362 subtarget, &op0, &op1, EXPAND_NORMAL);
8363 if (op0 == const0_rtx)
8364 return op1;
8365 if (op1 == const0_rtx)
8366 return op0;
8367 goto binop2;
8368 }
8369
8370 expand_operands (treeop0, treeop1,
8371 subtarget, &op0, &op1, modifier);
8372 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8373
8374 case MINUS_EXPR:
8375 do_minus:
8376 /* For initializers, we are allowed to return a MINUS of two
8377 symbolic constants. Here we handle all cases when both operands
8378 are constant. */
8379 /* Handle difference of two symbolic constants,
8380 for the sake of an initializer. */
8381 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8382 && really_constant_p (treeop0)
8383 && really_constant_p (treeop1))
8384 {
8385 expand_operands (treeop0, treeop1,
8386 NULL_RTX, &op0, &op1, modifier);
8387
8388 /* If the last operand is a CONST_INT, use plus_constant of
8389 the negated constant. Else make the MINUS. */
8390 if (CONST_INT_P (op1))
8391 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8392 -INTVAL (op1)));
8393 else
8394 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8395 }
8396
8397 /* No sense saving up arithmetic to be done
8398 if it's all in the wrong mode to form part of an address.
8399 And force_operand won't know whether to sign-extend or
8400 zero-extend. */
8401 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8402 || mode != ptr_mode)
8403 goto binop;
8404
8405 expand_operands (treeop0, treeop1,
8406 subtarget, &op0, &op1, modifier);
8407
8408 /* Convert A - const to A + (-const). */
8409 if (CONST_INT_P (op1))
8410 {
8411 op1 = negate_rtx (mode, op1);
8412 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8413 }
8414
8415 goto binop2;
8416
8417 case WIDEN_MULT_PLUS_EXPR:
8418 case WIDEN_MULT_MINUS_EXPR:
8419 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8420 op2 = expand_normal (treeop2);
8421 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8422 target, unsignedp);
8423 return target;
8424
8425 case WIDEN_MULT_EXPR:
8426 /* If first operand is constant, swap them.
8427 Thus the following special case checks need only
8428 check the second operand. */
8429 if (TREE_CODE (treeop0) == INTEGER_CST)
8430 {
8431 tree t1 = treeop0;
8432 treeop0 = treeop1;
8433 treeop1 = t1;
8434 }
8435
8436 /* First, check if we have a multiplication of one signed and one
8437 unsigned operand. */
8438 if (TREE_CODE (treeop1) != INTEGER_CST
8439 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8440 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8441 {
8442 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8443 this_optab = usmul_widen_optab;
8444 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8445 != CODE_FOR_nothing)
8446 {
8447 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8448 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8449 EXPAND_NORMAL);
8450 else
8451 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8452 EXPAND_NORMAL);
8453 /* op0 and op1 might still be constant, despite the above
8454 != INTEGER_CST check. Handle it. */
8455 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8456 {
8457 op0 = convert_modes (innermode, mode, op0, true);
8458 op1 = convert_modes (innermode, mode, op1, false);
8459 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8460 target, unsignedp));
8461 }
8462 goto binop3;
8463 }
8464 }
8465 /* Check for a multiplication with matching signedness. */
8466 else if ((TREE_CODE (treeop1) == INTEGER_CST
8467 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8468 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8469 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8470 {
8471 tree op0type = TREE_TYPE (treeop0);
8472 enum machine_mode innermode = TYPE_MODE (op0type);
8473 bool zextend_p = TYPE_UNSIGNED (op0type);
8474 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8475 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8476
8477 if (TREE_CODE (treeop0) != INTEGER_CST)
8478 {
8479 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8480 != CODE_FOR_nothing)
8481 {
8482 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8483 EXPAND_NORMAL);
8484 /* op0 and op1 might still be constant, despite the above
8485 != INTEGER_CST check. Handle it. */
8486 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8487 {
8488 widen_mult_const:
8489 op0 = convert_modes (innermode, mode, op0, zextend_p);
8490 op1
8491 = convert_modes (innermode, mode, op1,
8492 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8493 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8494 target,
8495 unsignedp));
8496 }
8497 temp = expand_widening_mult (mode, op0, op1, target,
8498 unsignedp, this_optab);
8499 return REDUCE_BIT_FIELD (temp);
8500 }
8501 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8502 != CODE_FOR_nothing
8503 && innermode == word_mode)
8504 {
8505 rtx htem, hipart;
8506 op0 = expand_normal (treeop0);
8507 if (TREE_CODE (treeop1) == INTEGER_CST)
8508 op1 = convert_modes (innermode, mode,
8509 expand_normal (treeop1),
8510 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8511 else
8512 op1 = expand_normal (treeop1);
8513 /* op0 and op1 might still be constant, despite the above
8514 != INTEGER_CST check. Handle it. */
8515 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8516 goto widen_mult_const;
8517 temp = expand_binop (mode, other_optab, op0, op1, target,
8518 unsignedp, OPTAB_LIB_WIDEN);
8519 hipart = gen_highpart (innermode, temp);
8520 htem = expand_mult_highpart_adjust (innermode, hipart,
8521 op0, op1, hipart,
8522 zextend_p);
8523 if (htem != hipart)
8524 emit_move_insn (hipart, htem);
8525 return REDUCE_BIT_FIELD (temp);
8526 }
8527 }
8528 }
8529 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8530 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8531 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8532 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8533
8534 case FMA_EXPR:
8535 {
8536 optab opt = fma_optab;
8537 gimple def0, def2;
8538
8539 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8540 call. */
8541 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8542 {
8543 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8544 tree call_expr;
8545
8546 gcc_assert (fn != NULL_TREE);
8547 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8548 return expand_builtin (call_expr, target, subtarget, mode, false);
8549 }
8550
8551 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8552 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8553
8554 op0 = op2 = NULL;
8555
8556 if (def0 && def2
8557 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8558 {
8559 opt = fnms_optab;
8560 op0 = expand_normal (gimple_assign_rhs1 (def0));
8561 op2 = expand_normal (gimple_assign_rhs1 (def2));
8562 }
8563 else if (def0
8564 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8565 {
8566 opt = fnma_optab;
8567 op0 = expand_normal (gimple_assign_rhs1 (def0));
8568 }
8569 else if (def2
8570 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8571 {
8572 opt = fms_optab;
8573 op2 = expand_normal (gimple_assign_rhs1 (def2));
8574 }
8575
8576 if (op0 == NULL)
8577 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8578 if (op2 == NULL)
8579 op2 = expand_normal (treeop2);
8580 op1 = expand_normal (treeop1);
8581
8582 return expand_ternary_op (TYPE_MODE (type), opt,
8583 op0, op1, op2, target, 0);
8584 }
8585
8586 case MULT_EXPR:
8587 /* If this is a fixed-point operation, then we cannot use the code
8588 below because "expand_mult" doesn't support sat/no-sat fixed-point
8589 multiplications. */
8590 if (ALL_FIXED_POINT_MODE_P (mode))
8591 goto binop;
8592
8593 /* If first operand is constant, swap them.
8594 Thus the following special case checks need only
8595 check the second operand. */
8596 if (TREE_CODE (treeop0) == INTEGER_CST)
8597 {
8598 tree t1 = treeop0;
8599 treeop0 = treeop1;
8600 treeop1 = t1;
8601 }
8602
8603 /* Attempt to return something suitable for generating an
8604 indexed address, for machines that support that. */
8605
8606 if (modifier == EXPAND_SUM && mode == ptr_mode
8607 && tree_fits_shwi_p (treeop1))
8608 {
8609 tree exp1 = treeop1;
8610
8611 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8612 EXPAND_SUM);
8613
8614 if (!REG_P (op0))
8615 op0 = force_operand (op0, NULL_RTX);
8616 if (!REG_P (op0))
8617 op0 = copy_to_mode_reg (mode, op0);
8618
8619 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8620 gen_int_mode (tree_to_shwi (exp1),
8621 TYPE_MODE (TREE_TYPE (exp1)))));
8622 }
8623
8624 if (modifier == EXPAND_STACK_PARM)
8625 target = 0;
8626
8627 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8628 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8629
8630 case TRUNC_DIV_EXPR:
8631 case FLOOR_DIV_EXPR:
8632 case CEIL_DIV_EXPR:
8633 case ROUND_DIV_EXPR:
8634 case EXACT_DIV_EXPR:
8635 /* If this is a fixed-point operation, then we cannot use the code
8636 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8637 divisions. */
8638 if (ALL_FIXED_POINT_MODE_P (mode))
8639 goto binop;
8640
8641 if (modifier == EXPAND_STACK_PARM)
8642 target = 0;
8643 /* Possible optimization: compute the dividend with EXPAND_SUM
8644 then if the divisor is constant can optimize the case
8645 where some terms of the dividend have coeffs divisible by it. */
8646 expand_operands (treeop0, treeop1,
8647 subtarget, &op0, &op1, EXPAND_NORMAL);
8648 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8649
8650 case RDIV_EXPR:
8651 goto binop;
8652
8653 case MULT_HIGHPART_EXPR:
8654 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8655 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8656 gcc_assert (temp);
8657 return temp;
8658
8659 case TRUNC_MOD_EXPR:
8660 case FLOOR_MOD_EXPR:
8661 case CEIL_MOD_EXPR:
8662 case ROUND_MOD_EXPR:
8663 if (modifier == EXPAND_STACK_PARM)
8664 target = 0;
8665 expand_operands (treeop0, treeop1,
8666 subtarget, &op0, &op1, EXPAND_NORMAL);
8667 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8668
8669 case FIXED_CONVERT_EXPR:
8670 op0 = expand_normal (treeop0);
8671 if (target == 0 || modifier == EXPAND_STACK_PARM)
8672 target = gen_reg_rtx (mode);
8673
8674 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8675 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8676 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8677 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8678 else
8679 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8680 return target;
8681
8682 case FIX_TRUNC_EXPR:
8683 op0 = expand_normal (treeop0);
8684 if (target == 0 || modifier == EXPAND_STACK_PARM)
8685 target = gen_reg_rtx (mode);
8686 expand_fix (target, op0, unsignedp);
8687 return target;
8688
8689 case FLOAT_EXPR:
8690 op0 = expand_normal (treeop0);
8691 if (target == 0 || modifier == EXPAND_STACK_PARM)
8692 target = gen_reg_rtx (mode);
8693 /* expand_float can't figure out what to do if FROM has VOIDmode.
8694 So give it the correct mode. With -O, cse will optimize this. */
8695 if (GET_MODE (op0) == VOIDmode)
8696 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8697 op0);
8698 expand_float (target, op0,
8699 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8700 return target;
8701
8702 case NEGATE_EXPR:
8703 op0 = expand_expr (treeop0, subtarget,
8704 VOIDmode, EXPAND_NORMAL);
8705 if (modifier == EXPAND_STACK_PARM)
8706 target = 0;
8707 temp = expand_unop (mode,
8708 optab_for_tree_code (NEGATE_EXPR, type,
8709 optab_default),
8710 op0, target, 0);
8711 gcc_assert (temp);
8712 return REDUCE_BIT_FIELD (temp);
8713
8714 case ABS_EXPR:
8715 op0 = expand_expr (treeop0, subtarget,
8716 VOIDmode, EXPAND_NORMAL);
8717 if (modifier == EXPAND_STACK_PARM)
8718 target = 0;
8719
8720 /* ABS_EXPR is not valid for complex arguments. */
8721 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8722 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8723
8724 /* Unsigned abs is simply the operand. Testing here means we don't
8725 risk generating incorrect code below. */
8726 if (TYPE_UNSIGNED (type))
8727 return op0;
8728
8729 return expand_abs (mode, op0, target, unsignedp,
8730 safe_from_p (target, treeop0, 1));
8731
8732 case MAX_EXPR:
8733 case MIN_EXPR:
8734 target = original_target;
8735 if (target == 0
8736 || modifier == EXPAND_STACK_PARM
8737 || (MEM_P (target) && MEM_VOLATILE_P (target))
8738 || GET_MODE (target) != mode
8739 || (REG_P (target)
8740 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8741 target = gen_reg_rtx (mode);
8742 expand_operands (treeop0, treeop1,
8743 target, &op0, &op1, EXPAND_NORMAL);
8744
8745 /* First try to do it with a special MIN or MAX instruction.
8746 If that does not win, use a conditional jump to select the proper
8747 value. */
8748 this_optab = optab_for_tree_code (code, type, optab_default);
8749 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8750 OPTAB_WIDEN);
8751 if (temp != 0)
8752 return temp;
8753
8754 /* At this point, a MEM target is no longer useful; we will get better
8755 code without it. */
8756
8757 if (! REG_P (target))
8758 target = gen_reg_rtx (mode);
8759
8760 /* If op1 was placed in target, swap op0 and op1. */
8761 if (target != op0 && target == op1)
8762 {
8763 temp = op0;
8764 op0 = op1;
8765 op1 = temp;
8766 }
8767
8768 /* We generate better code and avoid problems with op1 mentioning
8769 target by forcing op1 into a pseudo if it isn't a constant. */
8770 if (! CONSTANT_P (op1))
8771 op1 = force_reg (mode, op1);
8772
8773 {
8774 enum rtx_code comparison_code;
8775 rtx cmpop1 = op1;
8776
8777 if (code == MAX_EXPR)
8778 comparison_code = unsignedp ? GEU : GE;
8779 else
8780 comparison_code = unsignedp ? LEU : LE;
8781
8782 /* Canonicalize to comparisons against 0. */
8783 if (op1 == const1_rtx)
8784 {
8785 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8786 or (a != 0 ? a : 1) for unsigned.
8787 For MIN we are safe converting (a <= 1 ? a : 1)
8788 into (a <= 0 ? a : 1) */
8789 cmpop1 = const0_rtx;
8790 if (code == MAX_EXPR)
8791 comparison_code = unsignedp ? NE : GT;
8792 }
8793 if (op1 == constm1_rtx && !unsignedp)
8794 {
8795 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8796 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8797 cmpop1 = const0_rtx;
8798 if (code == MIN_EXPR)
8799 comparison_code = LT;
8800 }
8801 #ifdef HAVE_conditional_move
8802 /* Use a conditional move if possible. */
8803 if (can_conditionally_move_p (mode))
8804 {
8805 rtx insn;
8806
8807 start_sequence ();
8808
8809 /* Try to emit the conditional move. */
8810 insn = emit_conditional_move (target, comparison_code,
8811 op0, cmpop1, mode,
8812 op0, op1, mode,
8813 unsignedp);
8814
8815 /* If we could do the conditional move, emit the sequence,
8816 and return. */
8817 if (insn)
8818 {
8819 rtx seq = get_insns ();
8820 end_sequence ();
8821 emit_insn (seq);
8822 return target;
8823 }
8824
8825 /* Otherwise discard the sequence and fall back to code with
8826 branches. */
8827 end_sequence ();
8828 }
8829 #endif
8830 if (target != op0)
8831 emit_move_insn (target, op0);
8832
8833 temp = gen_label_rtx ();
8834 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8835 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8836 -1);
8837 }
8838 emit_move_insn (target, op1);
8839 emit_label (temp);
8840 return target;
8841
8842 case BIT_NOT_EXPR:
8843 op0 = expand_expr (treeop0, subtarget,
8844 VOIDmode, EXPAND_NORMAL);
8845 if (modifier == EXPAND_STACK_PARM)
8846 target = 0;
8847 /* In case we have to reduce the result to bitfield precision
8848 for unsigned bitfield expand this as XOR with a proper constant
8849 instead. */
8850 if (reduce_bit_field && TYPE_UNSIGNED (type))
8851 temp = expand_binop (mode, xor_optab, op0,
8852 immed_double_int_const
8853 (double_int::mask (TYPE_PRECISION (type)), mode),
8854 target, 1, OPTAB_LIB_WIDEN);
8855 else
8856 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8857 gcc_assert (temp);
8858 return temp;
8859
8860 /* ??? Can optimize bitwise operations with one arg constant.
8861 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8862 and (a bitwise1 b) bitwise2 b (etc)
8863 but that is probably not worth while. */
8864
8865 case BIT_AND_EXPR:
8866 case BIT_IOR_EXPR:
8867 case BIT_XOR_EXPR:
8868 goto binop;
8869
8870 case LROTATE_EXPR:
8871 case RROTATE_EXPR:
8872 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8873 || (GET_MODE_PRECISION (TYPE_MODE (type))
8874 == TYPE_PRECISION (type)));
8875 /* fall through */
8876
8877 case LSHIFT_EXPR:
8878 case RSHIFT_EXPR:
8879 /* If this is a fixed-point operation, then we cannot use the code
8880 below because "expand_shift" doesn't support sat/no-sat fixed-point
8881 shifts. */
8882 if (ALL_FIXED_POINT_MODE_P (mode))
8883 goto binop;
8884
8885 if (! safe_from_p (subtarget, treeop1, 1))
8886 subtarget = 0;
8887 if (modifier == EXPAND_STACK_PARM)
8888 target = 0;
8889 op0 = expand_expr (treeop0, subtarget,
8890 VOIDmode, EXPAND_NORMAL);
8891 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8892 unsignedp);
8893 if (code == LSHIFT_EXPR)
8894 temp = REDUCE_BIT_FIELD (temp);
8895 return temp;
8896
8897 /* Could determine the answer when only additive constants differ. Also,
8898 the addition of one can be handled by changing the condition. */
8899 case LT_EXPR:
8900 case LE_EXPR:
8901 case GT_EXPR:
8902 case GE_EXPR:
8903 case EQ_EXPR:
8904 case NE_EXPR:
8905 case UNORDERED_EXPR:
8906 case ORDERED_EXPR:
8907 case UNLT_EXPR:
8908 case UNLE_EXPR:
8909 case UNGT_EXPR:
8910 case UNGE_EXPR:
8911 case UNEQ_EXPR:
8912 case LTGT_EXPR:
8913 temp = do_store_flag (ops,
8914 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8915 tmode != VOIDmode ? tmode : mode);
8916 if (temp)
8917 return temp;
8918
8919 /* Use a compare and a jump for BLKmode comparisons, or for function
8920 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8921
8922 if ((target == 0
8923 || modifier == EXPAND_STACK_PARM
8924 || ! safe_from_p (target, treeop0, 1)
8925 || ! safe_from_p (target, treeop1, 1)
8926 /* Make sure we don't have a hard reg (such as function's return
8927 value) live across basic blocks, if not optimizing. */
8928 || (!optimize && REG_P (target)
8929 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8930 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8931
8932 emit_move_insn (target, const0_rtx);
8933
8934 op1 = gen_label_rtx ();
8935 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8936
8937 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8938 emit_move_insn (target, constm1_rtx);
8939 else
8940 emit_move_insn (target, const1_rtx);
8941
8942 emit_label (op1);
8943 return target;
8944
8945 case COMPLEX_EXPR:
8946 /* Get the rtx code of the operands. */
8947 op0 = expand_normal (treeop0);
8948 op1 = expand_normal (treeop1);
8949
8950 if (!target)
8951 target = gen_reg_rtx (TYPE_MODE (type));
8952 else
8953 /* If target overlaps with op1, then either we need to force
8954 op1 into a pseudo (if target also overlaps with op0),
8955 or write the complex parts in reverse order. */
8956 switch (GET_CODE (target))
8957 {
8958 case CONCAT:
8959 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
8960 {
8961 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
8962 {
8963 complex_expr_force_op1:
8964 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
8965 emit_move_insn (temp, op1);
8966 op1 = temp;
8967 break;
8968 }
8969 complex_expr_swap_order:
8970 /* Move the imaginary (op1) and real (op0) parts to their
8971 location. */
8972 write_complex_part (target, op1, true);
8973 write_complex_part (target, op0, false);
8974
8975 return target;
8976 }
8977 break;
8978 case MEM:
8979 temp = adjust_address_nv (target,
8980 GET_MODE_INNER (GET_MODE (target)), 0);
8981 if (reg_overlap_mentioned_p (temp, op1))
8982 {
8983 enum machine_mode imode = GET_MODE_INNER (GET_MODE (target));
8984 temp = adjust_address_nv (target, imode,
8985 GET_MODE_SIZE (imode));
8986 if (reg_overlap_mentioned_p (temp, op0))
8987 goto complex_expr_force_op1;
8988 goto complex_expr_swap_order;
8989 }
8990 break;
8991 default:
8992 if (reg_overlap_mentioned_p (target, op1))
8993 {
8994 if (reg_overlap_mentioned_p (target, op0))
8995 goto complex_expr_force_op1;
8996 goto complex_expr_swap_order;
8997 }
8998 break;
8999 }
9000
9001 /* Move the real (op0) and imaginary (op1) parts to their location. */
9002 write_complex_part (target, op0, false);
9003 write_complex_part (target, op1, true);
9004
9005 return target;
9006
9007 case WIDEN_SUM_EXPR:
9008 {
9009 tree oprnd0 = treeop0;
9010 tree oprnd1 = treeop1;
9011
9012 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9013 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9014 target, unsignedp);
9015 return target;
9016 }
9017
9018 case REDUC_MAX_EXPR:
9019 case REDUC_MIN_EXPR:
9020 case REDUC_PLUS_EXPR:
9021 {
9022 op0 = expand_normal (treeop0);
9023 this_optab = optab_for_tree_code (code, type, optab_default);
9024 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9025 gcc_assert (temp);
9026 return temp;
9027 }
9028
9029 case VEC_LSHIFT_EXPR:
9030 case VEC_RSHIFT_EXPR:
9031 {
9032 target = expand_vec_shift_expr (ops, target);
9033 return target;
9034 }
9035
9036 case VEC_UNPACK_HI_EXPR:
9037 case VEC_UNPACK_LO_EXPR:
9038 {
9039 op0 = expand_normal (treeop0);
9040 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9041 target, unsignedp);
9042 gcc_assert (temp);
9043 return temp;
9044 }
9045
9046 case VEC_UNPACK_FLOAT_HI_EXPR:
9047 case VEC_UNPACK_FLOAT_LO_EXPR:
9048 {
9049 op0 = expand_normal (treeop0);
9050 /* The signedness is determined from input operand. */
9051 temp = expand_widen_pattern_expr
9052 (ops, op0, NULL_RTX, NULL_RTX,
9053 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9054
9055 gcc_assert (temp);
9056 return temp;
9057 }
9058
9059 case VEC_WIDEN_MULT_HI_EXPR:
9060 case VEC_WIDEN_MULT_LO_EXPR:
9061 case VEC_WIDEN_MULT_EVEN_EXPR:
9062 case VEC_WIDEN_MULT_ODD_EXPR:
9063 case VEC_WIDEN_LSHIFT_HI_EXPR:
9064 case VEC_WIDEN_LSHIFT_LO_EXPR:
9065 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9066 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9067 target, unsignedp);
9068 gcc_assert (target);
9069 return target;
9070
9071 case VEC_PACK_TRUNC_EXPR:
9072 case VEC_PACK_SAT_EXPR:
9073 case VEC_PACK_FIX_TRUNC_EXPR:
9074 mode = TYPE_MODE (TREE_TYPE (treeop0));
9075 goto binop;
9076
9077 case VEC_PERM_EXPR:
9078 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9079 op2 = expand_normal (treeop2);
9080
9081 /* Careful here: if the target doesn't support integral vector modes,
9082 a constant selection vector could wind up smooshed into a normal
9083 integral constant. */
9084 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9085 {
9086 tree sel_type = TREE_TYPE (treeop2);
9087 enum machine_mode vmode
9088 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9089 TYPE_VECTOR_SUBPARTS (sel_type));
9090 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9091 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9092 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9093 }
9094 else
9095 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9096
9097 temp = expand_vec_perm (mode, op0, op1, op2, target);
9098 gcc_assert (temp);
9099 return temp;
9100
9101 case DOT_PROD_EXPR:
9102 {
9103 tree oprnd0 = treeop0;
9104 tree oprnd1 = treeop1;
9105 tree oprnd2 = treeop2;
9106 rtx op2;
9107
9108 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9109 op2 = expand_normal (oprnd2);
9110 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9111 target, unsignedp);
9112 return target;
9113 }
9114
9115 case REALIGN_LOAD_EXPR:
9116 {
9117 tree oprnd0 = treeop0;
9118 tree oprnd1 = treeop1;
9119 tree oprnd2 = treeop2;
9120 rtx op2;
9121
9122 this_optab = optab_for_tree_code (code, type, optab_default);
9123 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9124 op2 = expand_normal (oprnd2);
9125 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9126 target, unsignedp);
9127 gcc_assert (temp);
9128 return temp;
9129 }
9130
9131 case COND_EXPR:
9132 /* A COND_EXPR with its type being VOID_TYPE represents a
9133 conditional jump and is handled in
9134 expand_gimple_cond_expr. */
9135 gcc_assert (!VOID_TYPE_P (type));
9136
9137 /* Note that COND_EXPRs whose type is a structure or union
9138 are required to be constructed to contain assignments of
9139 a temporary variable, so that we can evaluate them here
9140 for side effect only. If type is void, we must do likewise. */
9141
9142 gcc_assert (!TREE_ADDRESSABLE (type)
9143 && !ignore
9144 && TREE_TYPE (treeop1) != void_type_node
9145 && TREE_TYPE (treeop2) != void_type_node);
9146
9147 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9148 if (temp)
9149 return temp;
9150
9151 /* If we are not to produce a result, we have no target. Otherwise,
9152 if a target was specified use it; it will not be used as an
9153 intermediate target unless it is safe. If no target, use a
9154 temporary. */
9155
9156 if (modifier != EXPAND_STACK_PARM
9157 && original_target
9158 && safe_from_p (original_target, treeop0, 1)
9159 && GET_MODE (original_target) == mode
9160 && !MEM_P (original_target))
9161 temp = original_target;
9162 else
9163 temp = assign_temp (type, 0, 1);
9164
9165 do_pending_stack_adjust ();
9166 NO_DEFER_POP;
9167 op0 = gen_label_rtx ();
9168 op1 = gen_label_rtx ();
9169 jumpifnot (treeop0, op0, -1);
9170 store_expr (treeop1, temp,
9171 modifier == EXPAND_STACK_PARM,
9172 false);
9173
9174 emit_jump_insn (gen_jump (op1));
9175 emit_barrier ();
9176 emit_label (op0);
9177 store_expr (treeop2, temp,
9178 modifier == EXPAND_STACK_PARM,
9179 false);
9180
9181 emit_label (op1);
9182 OK_DEFER_POP;
9183 return temp;
9184
9185 case VEC_COND_EXPR:
9186 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9187 return target;
9188
9189 default:
9190 gcc_unreachable ();
9191 }
9192
9193 /* Here to do an ordinary binary operator. */
9194 binop:
9195 expand_operands (treeop0, treeop1,
9196 subtarget, &op0, &op1, EXPAND_NORMAL);
9197 binop2:
9198 this_optab = optab_for_tree_code (code, type, optab_default);
9199 binop3:
9200 if (modifier == EXPAND_STACK_PARM)
9201 target = 0;
9202 temp = expand_binop (mode, this_optab, op0, op1, target,
9203 unsignedp, OPTAB_LIB_WIDEN);
9204 gcc_assert (temp);
9205 /* Bitwise operations do not need bitfield reduction as we expect their
9206 operands being properly truncated. */
9207 if (code == BIT_XOR_EXPR
9208 || code == BIT_AND_EXPR
9209 || code == BIT_IOR_EXPR)
9210 return temp;
9211 return REDUCE_BIT_FIELD (temp);
9212 }
9213 #undef REDUCE_BIT_FIELD
9214
9215
9216 /* Return TRUE if expression STMT is suitable for replacement.
9217 Never consider memory loads as replaceable, because those don't ever lead
9218 into constant expressions. */
9219
9220 static bool
9221 stmt_is_replaceable_p (gimple stmt)
9222 {
9223 if (ssa_is_replaceable_p (stmt))
9224 {
9225 /* Don't move around loads. */
9226 if (!gimple_assign_single_p (stmt)
9227 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9228 return true;
9229 }
9230 return false;
9231 }
9232
9233 rtx
9234 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
9235 enum expand_modifier modifier, rtx *alt_rtl)
9236 {
9237 rtx op0, op1, temp, decl_rtl;
9238 tree type;
9239 int unsignedp;
9240 enum machine_mode mode;
9241 enum tree_code code = TREE_CODE (exp);
9242 rtx subtarget, original_target;
9243 int ignore;
9244 tree context;
9245 bool reduce_bit_field;
9246 location_t loc = EXPR_LOCATION (exp);
9247 struct separate_ops ops;
9248 tree treeop0, treeop1, treeop2;
9249 tree ssa_name = NULL_TREE;
9250 gimple g;
9251
9252 type = TREE_TYPE (exp);
9253 mode = TYPE_MODE (type);
9254 unsignedp = TYPE_UNSIGNED (type);
9255
9256 treeop0 = treeop1 = treeop2 = NULL_TREE;
9257 if (!VL_EXP_CLASS_P (exp))
9258 switch (TREE_CODE_LENGTH (code))
9259 {
9260 default:
9261 case 3: treeop2 = TREE_OPERAND (exp, 2);
9262 case 2: treeop1 = TREE_OPERAND (exp, 1);
9263 case 1: treeop0 = TREE_OPERAND (exp, 0);
9264 case 0: break;
9265 }
9266 ops.code = code;
9267 ops.type = type;
9268 ops.op0 = treeop0;
9269 ops.op1 = treeop1;
9270 ops.op2 = treeop2;
9271 ops.location = loc;
9272
9273 ignore = (target == const0_rtx
9274 || ((CONVERT_EXPR_CODE_P (code)
9275 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9276 && TREE_CODE (type) == VOID_TYPE));
9277
9278 /* An operation in what may be a bit-field type needs the
9279 result to be reduced to the precision of the bit-field type,
9280 which is narrower than that of the type's mode. */
9281 reduce_bit_field = (!ignore
9282 && INTEGRAL_TYPE_P (type)
9283 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9284
9285 /* If we are going to ignore this result, we need only do something
9286 if there is a side-effect somewhere in the expression. If there
9287 is, short-circuit the most common cases here. Note that we must
9288 not call expand_expr with anything but const0_rtx in case this
9289 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9290
9291 if (ignore)
9292 {
9293 if (! TREE_SIDE_EFFECTS (exp))
9294 return const0_rtx;
9295
9296 /* Ensure we reference a volatile object even if value is ignored, but
9297 don't do this if all we are doing is taking its address. */
9298 if (TREE_THIS_VOLATILE (exp)
9299 && TREE_CODE (exp) != FUNCTION_DECL
9300 && mode != VOIDmode && mode != BLKmode
9301 && modifier != EXPAND_CONST_ADDRESS)
9302 {
9303 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9304 if (MEM_P (temp))
9305 copy_to_reg (temp);
9306 return const0_rtx;
9307 }
9308
9309 if (TREE_CODE_CLASS (code) == tcc_unary
9310 || code == BIT_FIELD_REF
9311 || code == COMPONENT_REF
9312 || code == INDIRECT_REF)
9313 return expand_expr (treeop0, const0_rtx, VOIDmode,
9314 modifier);
9315
9316 else if (TREE_CODE_CLASS (code) == tcc_binary
9317 || TREE_CODE_CLASS (code) == tcc_comparison
9318 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9319 {
9320 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9321 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9322 return const0_rtx;
9323 }
9324
9325 target = 0;
9326 }
9327
9328 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9329 target = 0;
9330
9331 /* Use subtarget as the target for operand 0 of a binary operation. */
9332 subtarget = get_subtarget (target);
9333 original_target = target;
9334
9335 switch (code)
9336 {
9337 case LABEL_DECL:
9338 {
9339 tree function = decl_function_context (exp);
9340
9341 temp = label_rtx (exp);
9342 temp = gen_rtx_LABEL_REF (Pmode, temp);
9343
9344 if (function != current_function_decl
9345 && function != 0)
9346 LABEL_REF_NONLOCAL_P (temp) = 1;
9347
9348 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9349 return temp;
9350 }
9351
9352 case SSA_NAME:
9353 /* ??? ivopts calls expander, without any preparation from
9354 out-of-ssa. So fake instructions as if this was an access to the
9355 base variable. This unnecessarily allocates a pseudo, see how we can
9356 reuse it, if partition base vars have it set already. */
9357 if (!currently_expanding_to_rtl)
9358 {
9359 tree var = SSA_NAME_VAR (exp);
9360 if (var && DECL_RTL_SET_P (var))
9361 return DECL_RTL (var);
9362 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9363 LAST_VIRTUAL_REGISTER + 1);
9364 }
9365
9366 g = get_gimple_for_ssa_name (exp);
9367 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9368 if (g == NULL
9369 && modifier == EXPAND_INITIALIZER
9370 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9371 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9372 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9373 g = SSA_NAME_DEF_STMT (exp);
9374 if (g)
9375 {
9376 rtx r;
9377 location_t saved_loc = curr_insn_location ();
9378
9379 set_curr_insn_location (gimple_location (g));
9380 r = expand_expr_real (gimple_assign_rhs_to_tree (g), target,
9381 tmode, modifier, NULL);
9382 set_curr_insn_location (saved_loc);
9383 if (REG_P (r) && !REG_EXPR (r))
9384 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9385 return r;
9386 }
9387
9388 ssa_name = exp;
9389 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9390 exp = SSA_NAME_VAR (ssa_name);
9391 goto expand_decl_rtl;
9392
9393 case PARM_DECL:
9394 case VAR_DECL:
9395 /* If a static var's type was incomplete when the decl was written,
9396 but the type is complete now, lay out the decl now. */
9397 if (DECL_SIZE (exp) == 0
9398 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9399 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9400 layout_decl (exp, 0);
9401
9402 /* ... fall through ... */
9403
9404 case FUNCTION_DECL:
9405 case RESULT_DECL:
9406 decl_rtl = DECL_RTL (exp);
9407 expand_decl_rtl:
9408 gcc_assert (decl_rtl);
9409 decl_rtl = copy_rtx (decl_rtl);
9410 /* Record writes to register variables. */
9411 if (modifier == EXPAND_WRITE
9412 && REG_P (decl_rtl)
9413 && HARD_REGISTER_P (decl_rtl))
9414 add_to_hard_reg_set (&crtl->asm_clobbers,
9415 GET_MODE (decl_rtl), REGNO (decl_rtl));
9416
9417 /* Ensure variable marked as used even if it doesn't go through
9418 a parser. If it hasn't be used yet, write out an external
9419 definition. */
9420 TREE_USED (exp) = 1;
9421
9422 /* Show we haven't gotten RTL for this yet. */
9423 temp = 0;
9424
9425 /* Variables inherited from containing functions should have
9426 been lowered by this point. */
9427 context = decl_function_context (exp);
9428 gcc_assert (SCOPE_FILE_SCOPE_P (context)
9429 || context == current_function_decl
9430 || TREE_STATIC (exp)
9431 || DECL_EXTERNAL (exp)
9432 /* ??? C++ creates functions that are not TREE_STATIC. */
9433 || TREE_CODE (exp) == FUNCTION_DECL);
9434
9435 /* This is the case of an array whose size is to be determined
9436 from its initializer, while the initializer is still being parsed.
9437 ??? We aren't parsing while expanding anymore. */
9438
9439 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9440 temp = validize_mem (decl_rtl);
9441
9442 /* If DECL_RTL is memory, we are in the normal case and the
9443 address is not valid, get the address into a register. */
9444
9445 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9446 {
9447 if (alt_rtl)
9448 *alt_rtl = decl_rtl;
9449 decl_rtl = use_anchored_address (decl_rtl);
9450 if (modifier != EXPAND_CONST_ADDRESS
9451 && modifier != EXPAND_SUM
9452 && !memory_address_addr_space_p (DECL_MODE (exp),
9453 XEXP (decl_rtl, 0),
9454 MEM_ADDR_SPACE (decl_rtl)))
9455 temp = replace_equiv_address (decl_rtl,
9456 copy_rtx (XEXP (decl_rtl, 0)));
9457 }
9458
9459 /* If we got something, return it. But first, set the alignment
9460 if the address is a register. */
9461 if (temp != 0)
9462 {
9463 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9464 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9465
9466 return temp;
9467 }
9468
9469 /* If the mode of DECL_RTL does not match that of the decl,
9470 there are two cases: we are dealing with a BLKmode value
9471 that is returned in a register, or we are dealing with
9472 a promoted value. In the latter case, return a SUBREG
9473 of the wanted mode, but mark it so that we know that it
9474 was already extended. */
9475 if (REG_P (decl_rtl)
9476 && DECL_MODE (exp) != BLKmode
9477 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9478 {
9479 enum machine_mode pmode;
9480
9481 /* Get the signedness to be used for this variable. Ensure we get
9482 the same mode we got when the variable was declared. */
9483 if (code == SSA_NAME
9484 && (g = SSA_NAME_DEF_STMT (ssa_name))
9485 && gimple_code (g) == GIMPLE_CALL)
9486 {
9487 gcc_assert (!gimple_call_internal_p (g));
9488 pmode = promote_function_mode (type, mode, &unsignedp,
9489 gimple_call_fntype (g),
9490 2);
9491 }
9492 else
9493 pmode = promote_decl_mode (exp, &unsignedp);
9494 gcc_assert (GET_MODE (decl_rtl) == pmode);
9495
9496 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9497 SUBREG_PROMOTED_VAR_P (temp) = 1;
9498 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
9499 return temp;
9500 }
9501
9502 return decl_rtl;
9503
9504 case INTEGER_CST:
9505 temp = immed_double_const (TREE_INT_CST_LOW (exp),
9506 TREE_INT_CST_HIGH (exp), mode);
9507
9508 return temp;
9509
9510 case VECTOR_CST:
9511 {
9512 tree tmp = NULL_TREE;
9513 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9514 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9515 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9516 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9517 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9518 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9519 return const_vector_from_tree (exp);
9520 if (GET_MODE_CLASS (mode) == MODE_INT)
9521 {
9522 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9523 if (type_for_mode)
9524 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9525 }
9526 if (!tmp)
9527 {
9528 vec<constructor_elt, va_gc> *v;
9529 unsigned i;
9530 vec_alloc (v, VECTOR_CST_NELTS (exp));
9531 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9532 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9533 tmp = build_constructor (type, v);
9534 }
9535 return expand_expr (tmp, ignore ? const0_rtx : target,
9536 tmode, modifier);
9537 }
9538
9539 case CONST_DECL:
9540 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9541
9542 case REAL_CST:
9543 /* If optimized, generate immediate CONST_DOUBLE
9544 which will be turned into memory by reload if necessary.
9545
9546 We used to force a register so that loop.c could see it. But
9547 this does not allow gen_* patterns to perform optimizations with
9548 the constants. It also produces two insns in cases like "x = 1.0;".
9549 On most machines, floating-point constants are not permitted in
9550 many insns, so we'd end up copying it to a register in any case.
9551
9552 Now, we do the copying in expand_binop, if appropriate. */
9553 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9554 TYPE_MODE (TREE_TYPE (exp)));
9555
9556 case FIXED_CST:
9557 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9558 TYPE_MODE (TREE_TYPE (exp)));
9559
9560 case COMPLEX_CST:
9561 /* Handle evaluating a complex constant in a CONCAT target. */
9562 if (original_target && GET_CODE (original_target) == CONCAT)
9563 {
9564 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9565 rtx rtarg, itarg;
9566
9567 rtarg = XEXP (original_target, 0);
9568 itarg = XEXP (original_target, 1);
9569
9570 /* Move the real and imaginary parts separately. */
9571 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9572 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9573
9574 if (op0 != rtarg)
9575 emit_move_insn (rtarg, op0);
9576 if (op1 != itarg)
9577 emit_move_insn (itarg, op1);
9578
9579 return original_target;
9580 }
9581
9582 /* ... fall through ... */
9583
9584 case STRING_CST:
9585 temp = expand_expr_constant (exp, 1, modifier);
9586
9587 /* temp contains a constant address.
9588 On RISC machines where a constant address isn't valid,
9589 make some insns to get that address into a register. */
9590 if (modifier != EXPAND_CONST_ADDRESS
9591 && modifier != EXPAND_INITIALIZER
9592 && modifier != EXPAND_SUM
9593 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9594 MEM_ADDR_SPACE (temp)))
9595 return replace_equiv_address (temp,
9596 copy_rtx (XEXP (temp, 0)));
9597 return temp;
9598
9599 case SAVE_EXPR:
9600 {
9601 tree val = treeop0;
9602 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
9603
9604 if (!SAVE_EXPR_RESOLVED_P (exp))
9605 {
9606 /* We can indeed still hit this case, typically via builtin
9607 expanders calling save_expr immediately before expanding
9608 something. Assume this means that we only have to deal
9609 with non-BLKmode values. */
9610 gcc_assert (GET_MODE (ret) != BLKmode);
9611
9612 val = build_decl (curr_insn_location (),
9613 VAR_DECL, NULL, TREE_TYPE (exp));
9614 DECL_ARTIFICIAL (val) = 1;
9615 DECL_IGNORED_P (val) = 1;
9616 treeop0 = val;
9617 TREE_OPERAND (exp, 0) = treeop0;
9618 SAVE_EXPR_RESOLVED_P (exp) = 1;
9619
9620 if (!CONSTANT_P (ret))
9621 ret = copy_to_reg (ret);
9622 SET_DECL_RTL (val, ret);
9623 }
9624
9625 return ret;
9626 }
9627
9628
9629 case CONSTRUCTOR:
9630 /* If we don't need the result, just ensure we evaluate any
9631 subexpressions. */
9632 if (ignore)
9633 {
9634 unsigned HOST_WIDE_INT idx;
9635 tree value;
9636
9637 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9638 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9639
9640 return const0_rtx;
9641 }
9642
9643 return expand_constructor (exp, target, modifier, false);
9644
9645 case TARGET_MEM_REF:
9646 {
9647 addr_space_t as
9648 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9649 enum insn_code icode;
9650 unsigned int align;
9651
9652 op0 = addr_for_mem_ref (exp, as, true);
9653 op0 = memory_address_addr_space (mode, op0, as);
9654 temp = gen_rtx_MEM (mode, op0);
9655 set_mem_attributes (temp, exp, 0);
9656 set_mem_addr_space (temp, as);
9657 align = get_object_alignment (exp);
9658 if (modifier != EXPAND_WRITE
9659 && modifier != EXPAND_MEMORY
9660 && mode != BLKmode
9661 && align < GET_MODE_ALIGNMENT (mode)
9662 /* If the target does not have special handling for unaligned
9663 loads of mode then it can use regular moves for them. */
9664 && ((icode = optab_handler (movmisalign_optab, mode))
9665 != CODE_FOR_nothing))
9666 {
9667 struct expand_operand ops[2];
9668
9669 /* We've already validated the memory, and we're creating a
9670 new pseudo destination. The predicates really can't fail,
9671 nor can the generator. */
9672 create_output_operand (&ops[0], NULL_RTX, mode);
9673 create_fixed_operand (&ops[1], temp);
9674 expand_insn (icode, 2, ops);
9675 temp = ops[0].value;
9676 }
9677 return temp;
9678 }
9679
9680 case MEM_REF:
9681 {
9682 addr_space_t as
9683 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9684 enum machine_mode address_mode;
9685 tree base = TREE_OPERAND (exp, 0);
9686 gimple def_stmt;
9687 enum insn_code icode;
9688 unsigned align;
9689 /* Handle expansion of non-aliased memory with non-BLKmode. That
9690 might end up in a register. */
9691 if (mem_ref_refers_to_non_mem_p (exp))
9692 {
9693 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9694 base = TREE_OPERAND (base, 0);
9695 if (offset == 0
9696 && tree_fits_uhwi_p (TYPE_SIZE (type))
9697 && (GET_MODE_BITSIZE (DECL_MODE (base))
9698 == tree_to_uhwi (TYPE_SIZE (type))))
9699 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9700 target, tmode, modifier);
9701 if (TYPE_MODE (type) == BLKmode)
9702 {
9703 temp = assign_stack_temp (DECL_MODE (base),
9704 GET_MODE_SIZE (DECL_MODE (base)));
9705 store_expr (base, temp, 0, false);
9706 temp = adjust_address (temp, BLKmode, offset);
9707 set_mem_size (temp, int_size_in_bytes (type));
9708 return temp;
9709 }
9710 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9711 bitsize_int (offset * BITS_PER_UNIT));
9712 return expand_expr (exp, target, tmode, modifier);
9713 }
9714 address_mode = targetm.addr_space.address_mode (as);
9715 base = TREE_OPERAND (exp, 0);
9716 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9717 {
9718 tree mask = gimple_assign_rhs2 (def_stmt);
9719 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9720 gimple_assign_rhs1 (def_stmt), mask);
9721 TREE_OPERAND (exp, 0) = base;
9722 }
9723 align = get_object_alignment (exp);
9724 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9725 op0 = memory_address_addr_space (mode, op0, as);
9726 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9727 {
9728 rtx off
9729 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9730 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9731 op0 = memory_address_addr_space (mode, op0, as);
9732 }
9733 temp = gen_rtx_MEM (mode, op0);
9734 set_mem_attributes (temp, exp, 0);
9735 set_mem_addr_space (temp, as);
9736 if (TREE_THIS_VOLATILE (exp))
9737 MEM_VOLATILE_P (temp) = 1;
9738 if (modifier != EXPAND_WRITE
9739 && modifier != EXPAND_MEMORY
9740 && mode != BLKmode
9741 && align < GET_MODE_ALIGNMENT (mode))
9742 {
9743 if ((icode = optab_handler (movmisalign_optab, mode))
9744 != CODE_FOR_nothing)
9745 {
9746 struct expand_operand ops[2];
9747
9748 /* We've already validated the memory, and we're creating a
9749 new pseudo destination. The predicates really can't fail,
9750 nor can the generator. */
9751 create_output_operand (&ops[0], NULL_RTX, mode);
9752 create_fixed_operand (&ops[1], temp);
9753 expand_insn (icode, 2, ops);
9754 temp = ops[0].value;
9755 }
9756 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9757 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9758 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9759 (modifier == EXPAND_STACK_PARM
9760 ? NULL_RTX : target),
9761 mode, mode);
9762 }
9763 return temp;
9764 }
9765
9766 case ARRAY_REF:
9767
9768 {
9769 tree array = treeop0;
9770 tree index = treeop1;
9771 tree init;
9772
9773 /* Fold an expression like: "foo"[2].
9774 This is not done in fold so it won't happen inside &.
9775 Don't fold if this is for wide characters since it's too
9776 difficult to do correctly and this is a very rare case. */
9777
9778 if (modifier != EXPAND_CONST_ADDRESS
9779 && modifier != EXPAND_INITIALIZER
9780 && modifier != EXPAND_MEMORY)
9781 {
9782 tree t = fold_read_from_constant_string (exp);
9783
9784 if (t)
9785 return expand_expr (t, target, tmode, modifier);
9786 }
9787
9788 /* If this is a constant index into a constant array,
9789 just get the value from the array. Handle both the cases when
9790 we have an explicit constructor and when our operand is a variable
9791 that was declared const. */
9792
9793 if (modifier != EXPAND_CONST_ADDRESS
9794 && modifier != EXPAND_INITIALIZER
9795 && modifier != EXPAND_MEMORY
9796 && TREE_CODE (array) == CONSTRUCTOR
9797 && ! TREE_SIDE_EFFECTS (array)
9798 && TREE_CODE (index) == INTEGER_CST)
9799 {
9800 unsigned HOST_WIDE_INT ix;
9801 tree field, value;
9802
9803 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9804 field, value)
9805 if (tree_int_cst_equal (field, index))
9806 {
9807 if (!TREE_SIDE_EFFECTS (value))
9808 return expand_expr (fold (value), target, tmode, modifier);
9809 break;
9810 }
9811 }
9812
9813 else if (optimize >= 1
9814 && modifier != EXPAND_CONST_ADDRESS
9815 && modifier != EXPAND_INITIALIZER
9816 && modifier != EXPAND_MEMORY
9817 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9818 && TREE_CODE (index) == INTEGER_CST
9819 && (TREE_CODE (array) == VAR_DECL
9820 || TREE_CODE (array) == CONST_DECL)
9821 && (init = ctor_for_folding (array)) != error_mark_node)
9822 {
9823 if (TREE_CODE (init) == CONSTRUCTOR)
9824 {
9825 unsigned HOST_WIDE_INT ix;
9826 tree field, value;
9827
9828 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9829 field, value)
9830 if (tree_int_cst_equal (field, index))
9831 {
9832 if (TREE_SIDE_EFFECTS (value))
9833 break;
9834
9835 if (TREE_CODE (value) == CONSTRUCTOR)
9836 {
9837 /* If VALUE is a CONSTRUCTOR, this
9838 optimization is only useful if
9839 this doesn't store the CONSTRUCTOR
9840 into memory. If it does, it is more
9841 efficient to just load the data from
9842 the array directly. */
9843 rtx ret = expand_constructor (value, target,
9844 modifier, true);
9845 if (ret == NULL_RTX)
9846 break;
9847 }
9848
9849 return
9850 expand_expr (fold (value), target, tmode, modifier);
9851 }
9852 }
9853 else if (TREE_CODE (init) == STRING_CST)
9854 {
9855 tree low_bound = array_ref_low_bound (exp);
9856 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
9857
9858 /* Optimize the special case of a zero lower bound.
9859
9860 We convert the lower bound to sizetype to avoid problems
9861 with constant folding. E.g. suppose the lower bound is
9862 1 and its mode is QI. Without the conversion
9863 (ARRAY + (INDEX - (unsigned char)1))
9864 becomes
9865 (ARRAY + (-(unsigned char)1) + INDEX)
9866 which becomes
9867 (ARRAY + 255 + INDEX). Oops! */
9868 if (!integer_zerop (low_bound))
9869 index1 = size_diffop_loc (loc, index1,
9870 fold_convert_loc (loc, sizetype,
9871 low_bound));
9872
9873 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
9874 {
9875 tree type = TREE_TYPE (TREE_TYPE (init));
9876 enum machine_mode mode = TYPE_MODE (type);
9877
9878 if (GET_MODE_CLASS (mode) == MODE_INT
9879 && GET_MODE_SIZE (mode) == 1)
9880 return gen_int_mode (TREE_STRING_POINTER (init)
9881 [TREE_INT_CST_LOW (index1)],
9882 mode);
9883 }
9884 }
9885 }
9886 }
9887 goto normal_inner_ref;
9888
9889 case COMPONENT_REF:
9890 /* If the operand is a CONSTRUCTOR, we can just extract the
9891 appropriate field if it is present. */
9892 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9893 {
9894 unsigned HOST_WIDE_INT idx;
9895 tree field, value;
9896
9897 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9898 idx, field, value)
9899 if (field == treeop1
9900 /* We can normally use the value of the field in the
9901 CONSTRUCTOR. However, if this is a bitfield in
9902 an integral mode that we can fit in a HOST_WIDE_INT,
9903 we must mask only the number of bits in the bitfield,
9904 since this is done implicitly by the constructor. If
9905 the bitfield does not meet either of those conditions,
9906 we can't do this optimization. */
9907 && (! DECL_BIT_FIELD (field)
9908 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9909 && (GET_MODE_PRECISION (DECL_MODE (field))
9910 <= HOST_BITS_PER_WIDE_INT))))
9911 {
9912 if (DECL_BIT_FIELD (field)
9913 && modifier == EXPAND_STACK_PARM)
9914 target = 0;
9915 op0 = expand_expr (value, target, tmode, modifier);
9916 if (DECL_BIT_FIELD (field))
9917 {
9918 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9919 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9920
9921 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9922 {
9923 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
9924 imode);
9925 op0 = expand_and (imode, op0, op1, target);
9926 }
9927 else
9928 {
9929 int count = GET_MODE_PRECISION (imode) - bitsize;
9930
9931 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9932 target, 0);
9933 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9934 target, 0);
9935 }
9936 }
9937
9938 return op0;
9939 }
9940 }
9941 goto normal_inner_ref;
9942
9943 case BIT_FIELD_REF:
9944 case ARRAY_RANGE_REF:
9945 normal_inner_ref:
9946 {
9947 enum machine_mode mode1, mode2;
9948 HOST_WIDE_INT bitsize, bitpos;
9949 tree offset;
9950 int volatilep = 0, must_force_mem;
9951 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9952 &mode1, &unsignedp, &volatilep, true);
9953 rtx orig_op0, memloc;
9954 bool mem_attrs_from_type = false;
9955
9956 /* If we got back the original object, something is wrong. Perhaps
9957 we are evaluating an expression too early. In any event, don't
9958 infinitely recurse. */
9959 gcc_assert (tem != exp);
9960
9961 /* If TEM's type is a union of variable size, pass TARGET to the inner
9962 computation, since it will need a temporary and TARGET is known
9963 to have to do. This occurs in unchecked conversion in Ada. */
9964 orig_op0 = op0
9965 = expand_expr (tem,
9966 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9967 && COMPLETE_TYPE_P (TREE_TYPE (tem))
9968 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9969 != INTEGER_CST)
9970 && modifier != EXPAND_STACK_PARM
9971 ? target : NULL_RTX),
9972 VOIDmode,
9973 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
9974
9975 /* If the bitfield is volatile, we want to access it in the
9976 field's mode, not the computed mode.
9977 If a MEM has VOIDmode (external with incomplete type),
9978 use BLKmode for it instead. */
9979 if (MEM_P (op0))
9980 {
9981 if (volatilep && flag_strict_volatile_bitfields > 0)
9982 op0 = adjust_address (op0, mode1, 0);
9983 else if (GET_MODE (op0) == VOIDmode)
9984 op0 = adjust_address (op0, BLKmode, 0);
9985 }
9986
9987 mode2
9988 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9989
9990 /* If we have either an offset, a BLKmode result, or a reference
9991 outside the underlying object, we must force it to memory.
9992 Such a case can occur in Ada if we have unchecked conversion
9993 of an expression from a scalar type to an aggregate type or
9994 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9995 passed a partially uninitialized object or a view-conversion
9996 to a larger size. */
9997 must_force_mem = (offset
9998 || mode1 == BLKmode
9999 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10000
10001 /* Handle CONCAT first. */
10002 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10003 {
10004 if (bitpos == 0
10005 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10006 return op0;
10007 if (bitpos == 0
10008 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10009 && bitsize)
10010 {
10011 op0 = XEXP (op0, 0);
10012 mode2 = GET_MODE (op0);
10013 }
10014 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10015 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10016 && bitpos
10017 && bitsize)
10018 {
10019 op0 = XEXP (op0, 1);
10020 bitpos = 0;
10021 mode2 = GET_MODE (op0);
10022 }
10023 else
10024 /* Otherwise force into memory. */
10025 must_force_mem = 1;
10026 }
10027
10028 /* If this is a constant, put it in a register if it is a legitimate
10029 constant and we don't need a memory reference. */
10030 if (CONSTANT_P (op0)
10031 && mode2 != BLKmode
10032 && targetm.legitimate_constant_p (mode2, op0)
10033 && !must_force_mem)
10034 op0 = force_reg (mode2, op0);
10035
10036 /* Otherwise, if this is a constant, try to force it to the constant
10037 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10038 is a legitimate constant. */
10039 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10040 op0 = validize_mem (memloc);
10041
10042 /* Otherwise, if this is a constant or the object is not in memory
10043 and need be, put it there. */
10044 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10045 {
10046 tree nt = build_qualified_type (TREE_TYPE (tem),
10047 (TYPE_QUALS (TREE_TYPE (tem))
10048 | TYPE_QUAL_CONST));
10049 memloc = assign_temp (nt, 1, 1);
10050 emit_move_insn (memloc, op0);
10051 op0 = memloc;
10052 mem_attrs_from_type = true;
10053 }
10054
10055 if (offset)
10056 {
10057 enum machine_mode address_mode;
10058 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10059 EXPAND_SUM);
10060
10061 gcc_assert (MEM_P (op0));
10062
10063 address_mode = get_address_mode (op0);
10064 if (GET_MODE (offset_rtx) != address_mode)
10065 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10066
10067 if (GET_MODE (op0) == BLKmode
10068 /* The check for a constant address in OP0 not having VOIDmode
10069 is probably no longer necessary. */
10070 && GET_MODE (XEXP (op0, 0)) != VOIDmode
10071 && bitsize != 0
10072 && (bitpos % bitsize) == 0
10073 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10074 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
10075 {
10076 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10077 bitpos = 0;
10078 }
10079
10080 op0 = offset_address (op0, offset_rtx,
10081 highest_pow2_factor (offset));
10082 }
10083
10084 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10085 record its alignment as BIGGEST_ALIGNMENT. */
10086 if (MEM_P (op0) && bitpos == 0 && offset != 0
10087 && is_aligning_offset (offset, tem))
10088 set_mem_align (op0, BIGGEST_ALIGNMENT);
10089
10090 /* Don't forget about volatility even if this is a bitfield. */
10091 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10092 {
10093 if (op0 == orig_op0)
10094 op0 = copy_rtx (op0);
10095
10096 MEM_VOLATILE_P (op0) = 1;
10097 }
10098
10099 /* In cases where an aligned union has an unaligned object
10100 as a field, we might be extracting a BLKmode value from
10101 an integer-mode (e.g., SImode) object. Handle this case
10102 by doing the extract into an object as wide as the field
10103 (which we know to be the width of a basic mode), then
10104 storing into memory, and changing the mode to BLKmode. */
10105 if (mode1 == VOIDmode
10106 || REG_P (op0) || GET_CODE (op0) == SUBREG
10107 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10108 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10109 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10110 && modifier != EXPAND_CONST_ADDRESS
10111 && modifier != EXPAND_INITIALIZER
10112 && modifier != EXPAND_MEMORY)
10113 /* If the field is volatile, we always want an aligned
10114 access. Do this in following two situations:
10115 1. the access is not already naturally
10116 aligned, otherwise "normal" (non-bitfield) volatile fields
10117 become non-addressable.
10118 2. the bitsize is narrower than the access size. Need
10119 to extract bitfields from the access. */
10120 || (volatilep && flag_strict_volatile_bitfields > 0
10121 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0
10122 || (mode1 != BLKmode
10123 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)))
10124 /* If the field isn't aligned enough to fetch as a memref,
10125 fetch it as a bit field. */
10126 || (mode1 != BLKmode
10127 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10128 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10129 || (MEM_P (op0)
10130 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10131 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10132 && modifier != EXPAND_MEMORY
10133 && ((modifier == EXPAND_CONST_ADDRESS
10134 || modifier == EXPAND_INITIALIZER)
10135 ? STRICT_ALIGNMENT
10136 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10137 || (bitpos % BITS_PER_UNIT != 0)))
10138 /* If the type and the field are a constant size and the
10139 size of the type isn't the same size as the bitfield,
10140 we must use bitfield operations. */
10141 || (bitsize >= 0
10142 && TYPE_SIZE (TREE_TYPE (exp))
10143 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10144 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10145 bitsize)))
10146 {
10147 enum machine_mode ext_mode = mode;
10148
10149 if (ext_mode == BLKmode
10150 && ! (target != 0 && MEM_P (op0)
10151 && MEM_P (target)
10152 && bitpos % BITS_PER_UNIT == 0))
10153 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10154
10155 if (ext_mode == BLKmode)
10156 {
10157 if (target == 0)
10158 target = assign_temp (type, 1, 1);
10159
10160 /* ??? Unlike the similar test a few lines below, this one is
10161 very likely obsolete. */
10162 if (bitsize == 0)
10163 return target;
10164
10165 /* In this case, BITPOS must start at a byte boundary and
10166 TARGET, if specified, must be a MEM. */
10167 gcc_assert (MEM_P (op0)
10168 && (!target || MEM_P (target))
10169 && !(bitpos % BITS_PER_UNIT));
10170
10171 emit_block_move (target,
10172 adjust_address (op0, VOIDmode,
10173 bitpos / BITS_PER_UNIT),
10174 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10175 / BITS_PER_UNIT),
10176 (modifier == EXPAND_STACK_PARM
10177 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10178
10179 return target;
10180 }
10181
10182 /* If we have nothing to extract, the result will be 0 for targets
10183 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10184 return 0 for the sake of consistency, as reading a zero-sized
10185 bitfield is valid in Ada and the value is fully specified. */
10186 if (bitsize == 0)
10187 return const0_rtx;
10188
10189 op0 = validize_mem (op0);
10190
10191 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10192 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10193
10194 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10195 (modifier == EXPAND_STACK_PARM
10196 ? NULL_RTX : target),
10197 ext_mode, ext_mode);
10198
10199 /* If the result is a record type and BITSIZE is narrower than
10200 the mode of OP0, an integral mode, and this is a big endian
10201 machine, we must put the field into the high-order bits. */
10202 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10203 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10204 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10205 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10206 GET_MODE_BITSIZE (GET_MODE (op0))
10207 - bitsize, op0, 1);
10208
10209 /* If the result type is BLKmode, store the data into a temporary
10210 of the appropriate type, but with the mode corresponding to the
10211 mode for the data we have (op0's mode). It's tempting to make
10212 this a constant type, since we know it's only being stored once,
10213 but that can cause problems if we are taking the address of this
10214 COMPONENT_REF because the MEM of any reference via that address
10215 will have flags corresponding to the type, which will not
10216 necessarily be constant. */
10217 if (mode == BLKmode)
10218 {
10219 rtx new_rtx;
10220
10221 new_rtx = assign_stack_temp_for_type (ext_mode,
10222 GET_MODE_BITSIZE (ext_mode),
10223 type);
10224 emit_move_insn (new_rtx, op0);
10225 op0 = copy_rtx (new_rtx);
10226 PUT_MODE (op0, BLKmode);
10227 }
10228
10229 return op0;
10230 }
10231
10232 /* If the result is BLKmode, use that to access the object
10233 now as well. */
10234 if (mode == BLKmode)
10235 mode1 = BLKmode;
10236
10237 /* Get a reference to just this component. */
10238 if (modifier == EXPAND_CONST_ADDRESS
10239 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10240 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10241 else
10242 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10243
10244 if (op0 == orig_op0)
10245 op0 = copy_rtx (op0);
10246
10247 /* If op0 is a temporary because of forcing to memory, pass only the
10248 type to set_mem_attributes so that the original expression is never
10249 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10250 if (mem_attrs_from_type)
10251 set_mem_attributes (op0, type, 0);
10252 else
10253 set_mem_attributes (op0, exp, 0);
10254
10255 if (REG_P (XEXP (op0, 0)))
10256 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10257
10258 MEM_VOLATILE_P (op0) |= volatilep;
10259 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10260 || modifier == EXPAND_CONST_ADDRESS
10261 || modifier == EXPAND_INITIALIZER)
10262 return op0;
10263
10264 if (target == 0)
10265 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10266
10267 convert_move (target, op0, unsignedp);
10268 return target;
10269 }
10270
10271 case OBJ_TYPE_REF:
10272 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10273
10274 case CALL_EXPR:
10275 /* All valid uses of __builtin_va_arg_pack () are removed during
10276 inlining. */
10277 if (CALL_EXPR_VA_ARG_PACK (exp))
10278 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10279 {
10280 tree fndecl = get_callee_fndecl (exp), attr;
10281
10282 if (fndecl
10283 && (attr = lookup_attribute ("error",
10284 DECL_ATTRIBUTES (fndecl))) != NULL)
10285 error ("%Kcall to %qs declared with attribute error: %s",
10286 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10287 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10288 if (fndecl
10289 && (attr = lookup_attribute ("warning",
10290 DECL_ATTRIBUTES (fndecl))) != NULL)
10291 warning_at (tree_nonartificial_location (exp),
10292 0, "%Kcall to %qs declared with attribute warning: %s",
10293 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10294 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10295
10296 /* Check for a built-in function. */
10297 if (fndecl && DECL_BUILT_IN (fndecl))
10298 {
10299 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10300 return expand_builtin (exp, target, subtarget, tmode, ignore);
10301 }
10302 }
10303 return expand_call (exp, target, ignore);
10304
10305 case VIEW_CONVERT_EXPR:
10306 op0 = NULL_RTX;
10307
10308 /* If we are converting to BLKmode, try to avoid an intermediate
10309 temporary by fetching an inner memory reference. */
10310 if (mode == BLKmode
10311 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10312 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10313 && handled_component_p (treeop0))
10314 {
10315 enum machine_mode mode1;
10316 HOST_WIDE_INT bitsize, bitpos;
10317 tree offset;
10318 int unsignedp;
10319 int volatilep = 0;
10320 tree tem
10321 = get_inner_reference (treeop0, &bitsize, &bitpos,
10322 &offset, &mode1, &unsignedp, &volatilep,
10323 true);
10324 rtx orig_op0;
10325
10326 /* ??? We should work harder and deal with non-zero offsets. */
10327 if (!offset
10328 && (bitpos % BITS_PER_UNIT) == 0
10329 && bitsize >= 0
10330 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10331 {
10332 /* See the normal_inner_ref case for the rationale. */
10333 orig_op0
10334 = expand_expr (tem,
10335 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10336 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10337 != INTEGER_CST)
10338 && modifier != EXPAND_STACK_PARM
10339 ? target : NULL_RTX),
10340 VOIDmode,
10341 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
10342
10343 if (MEM_P (orig_op0))
10344 {
10345 op0 = orig_op0;
10346
10347 /* Get a reference to just this component. */
10348 if (modifier == EXPAND_CONST_ADDRESS
10349 || modifier == EXPAND_SUM
10350 || modifier == EXPAND_INITIALIZER)
10351 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10352 else
10353 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10354
10355 if (op0 == orig_op0)
10356 op0 = copy_rtx (op0);
10357
10358 set_mem_attributes (op0, treeop0, 0);
10359 if (REG_P (XEXP (op0, 0)))
10360 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10361
10362 MEM_VOLATILE_P (op0) |= volatilep;
10363 }
10364 }
10365 }
10366
10367 if (!op0)
10368 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
10369
10370 /* If the input and output modes are both the same, we are done. */
10371 if (mode == GET_MODE (op0))
10372 ;
10373 /* If neither mode is BLKmode, and both modes are the same size
10374 then we can use gen_lowpart. */
10375 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10376 && (GET_MODE_PRECISION (mode)
10377 == GET_MODE_PRECISION (GET_MODE (op0)))
10378 && !COMPLEX_MODE_P (GET_MODE (op0)))
10379 {
10380 if (GET_CODE (op0) == SUBREG)
10381 op0 = force_reg (GET_MODE (op0), op0);
10382 temp = gen_lowpart_common (mode, op0);
10383 if (temp)
10384 op0 = temp;
10385 else
10386 {
10387 if (!REG_P (op0) && !MEM_P (op0))
10388 op0 = force_reg (GET_MODE (op0), op0);
10389 op0 = gen_lowpart (mode, op0);
10390 }
10391 }
10392 /* If both types are integral, convert from one mode to the other. */
10393 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10394 op0 = convert_modes (mode, GET_MODE (op0), op0,
10395 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10396 /* As a last resort, spill op0 to memory, and reload it in a
10397 different mode. */
10398 else if (!MEM_P (op0))
10399 {
10400 /* If the operand is not a MEM, force it into memory. Since we
10401 are going to be changing the mode of the MEM, don't call
10402 force_const_mem for constants because we don't allow pool
10403 constants to change mode. */
10404 tree inner_type = TREE_TYPE (treeop0);
10405
10406 gcc_assert (!TREE_ADDRESSABLE (exp));
10407
10408 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10409 target
10410 = assign_stack_temp_for_type
10411 (TYPE_MODE (inner_type),
10412 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10413
10414 emit_move_insn (target, op0);
10415 op0 = target;
10416 }
10417
10418 /* At this point, OP0 is in the correct mode. If the output type is
10419 such that the operand is known to be aligned, indicate that it is.
10420 Otherwise, we need only be concerned about alignment for non-BLKmode
10421 results. */
10422 if (MEM_P (op0))
10423 {
10424 enum insn_code icode;
10425
10426 if (TYPE_ALIGN_OK (type))
10427 {
10428 /* ??? Copying the MEM without substantially changing it might
10429 run afoul of the code handling volatile memory references in
10430 store_expr, which assumes that TARGET is returned unmodified
10431 if it has been used. */
10432 op0 = copy_rtx (op0);
10433 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10434 }
10435 else if (mode != BLKmode
10436 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode)
10437 /* If the target does have special handling for unaligned
10438 loads of mode then use them. */
10439 && ((icode = optab_handler (movmisalign_optab, mode))
10440 != CODE_FOR_nothing))
10441 {
10442 rtx reg, insn;
10443
10444 op0 = adjust_address (op0, mode, 0);
10445 /* We've already validated the memory, and we're creating a
10446 new pseudo destination. The predicates really can't
10447 fail. */
10448 reg = gen_reg_rtx (mode);
10449
10450 /* Nor can the insn generator. */
10451 insn = GEN_FCN (icode) (reg, op0);
10452 emit_insn (insn);
10453 return reg;
10454 }
10455 else if (STRICT_ALIGNMENT
10456 && mode != BLKmode
10457 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10458 {
10459 tree inner_type = TREE_TYPE (treeop0);
10460 HOST_WIDE_INT temp_size
10461 = MAX (int_size_in_bytes (inner_type),
10462 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10463 rtx new_rtx
10464 = assign_stack_temp_for_type (mode, temp_size, type);
10465 rtx new_with_op0_mode
10466 = adjust_address (new_rtx, GET_MODE (op0), 0);
10467
10468 gcc_assert (!TREE_ADDRESSABLE (exp));
10469
10470 if (GET_MODE (op0) == BLKmode)
10471 emit_block_move (new_with_op0_mode, op0,
10472 GEN_INT (GET_MODE_SIZE (mode)),
10473 (modifier == EXPAND_STACK_PARM
10474 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10475 else
10476 emit_move_insn (new_with_op0_mode, op0);
10477
10478 op0 = new_rtx;
10479 }
10480
10481 op0 = adjust_address (op0, mode, 0);
10482 }
10483
10484 return op0;
10485
10486 case MODIFY_EXPR:
10487 {
10488 tree lhs = treeop0;
10489 tree rhs = treeop1;
10490 gcc_assert (ignore);
10491
10492 /* Check for |= or &= of a bitfield of size one into another bitfield
10493 of size 1. In this case, (unless we need the result of the
10494 assignment) we can do this more efficiently with a
10495 test followed by an assignment, if necessary.
10496
10497 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10498 things change so we do, this code should be enhanced to
10499 support it. */
10500 if (TREE_CODE (lhs) == COMPONENT_REF
10501 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10502 || TREE_CODE (rhs) == BIT_AND_EXPR)
10503 && TREE_OPERAND (rhs, 0) == lhs
10504 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10505 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10506 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10507 {
10508 rtx label = gen_label_rtx ();
10509 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10510 do_jump (TREE_OPERAND (rhs, 1),
10511 value ? label : 0,
10512 value ? 0 : label, -1);
10513 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10514 false);
10515 do_pending_stack_adjust ();
10516 emit_label (label);
10517 return const0_rtx;
10518 }
10519
10520 expand_assignment (lhs, rhs, false);
10521 return const0_rtx;
10522 }
10523
10524 case ADDR_EXPR:
10525 return expand_expr_addr_expr (exp, target, tmode, modifier);
10526
10527 case REALPART_EXPR:
10528 op0 = expand_normal (treeop0);
10529 return read_complex_part (op0, false);
10530
10531 case IMAGPART_EXPR:
10532 op0 = expand_normal (treeop0);
10533 return read_complex_part (op0, true);
10534
10535 case RETURN_EXPR:
10536 case LABEL_EXPR:
10537 case GOTO_EXPR:
10538 case SWITCH_EXPR:
10539 case ASM_EXPR:
10540 /* Expanded in cfgexpand.c. */
10541 gcc_unreachable ();
10542
10543 case TRY_CATCH_EXPR:
10544 case CATCH_EXPR:
10545 case EH_FILTER_EXPR:
10546 case TRY_FINALLY_EXPR:
10547 /* Lowered by tree-eh.c. */
10548 gcc_unreachable ();
10549
10550 case WITH_CLEANUP_EXPR:
10551 case CLEANUP_POINT_EXPR:
10552 case TARGET_EXPR:
10553 case CASE_LABEL_EXPR:
10554 case VA_ARG_EXPR:
10555 case BIND_EXPR:
10556 case INIT_EXPR:
10557 case CONJ_EXPR:
10558 case COMPOUND_EXPR:
10559 case PREINCREMENT_EXPR:
10560 case PREDECREMENT_EXPR:
10561 case POSTINCREMENT_EXPR:
10562 case POSTDECREMENT_EXPR:
10563 case LOOP_EXPR:
10564 case EXIT_EXPR:
10565 case COMPOUND_LITERAL_EXPR:
10566 /* Lowered by gimplify.c. */
10567 gcc_unreachable ();
10568
10569 case FDESC_EXPR:
10570 /* Function descriptors are not valid except for as
10571 initialization constants, and should not be expanded. */
10572 gcc_unreachable ();
10573
10574 case WITH_SIZE_EXPR:
10575 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10576 have pulled out the size to use in whatever context it needed. */
10577 return expand_expr_real (treeop0, original_target, tmode,
10578 modifier, alt_rtl);
10579
10580 default:
10581 return expand_expr_real_2 (&ops, target, tmode, modifier);
10582 }
10583 }
10584 \f
10585 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10586 signedness of TYPE), possibly returning the result in TARGET. */
10587 static rtx
10588 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10589 {
10590 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10591 if (target && GET_MODE (target) != GET_MODE (exp))
10592 target = 0;
10593 /* For constant values, reduce using build_int_cst_type. */
10594 if (CONST_INT_P (exp))
10595 {
10596 HOST_WIDE_INT value = INTVAL (exp);
10597 tree t = build_int_cst_type (type, value);
10598 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10599 }
10600 else if (TYPE_UNSIGNED (type))
10601 {
10602 rtx mask = immed_double_int_const (double_int::mask (prec),
10603 GET_MODE (exp));
10604 return expand_and (GET_MODE (exp), exp, mask, target);
10605 }
10606 else
10607 {
10608 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10609 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10610 exp, count, target, 0);
10611 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10612 exp, count, target, 0);
10613 }
10614 }
10615 \f
10616 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10617 when applied to the address of EXP produces an address known to be
10618 aligned more than BIGGEST_ALIGNMENT. */
10619
10620 static int
10621 is_aligning_offset (const_tree offset, const_tree exp)
10622 {
10623 /* Strip off any conversions. */
10624 while (CONVERT_EXPR_P (offset))
10625 offset = TREE_OPERAND (offset, 0);
10626
10627 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10628 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10629 if (TREE_CODE (offset) != BIT_AND_EXPR
10630 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10631 || compare_tree_int (TREE_OPERAND (offset, 1),
10632 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10633 || !exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10634 return 0;
10635
10636 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10637 It must be NEGATE_EXPR. Then strip any more conversions. */
10638 offset = TREE_OPERAND (offset, 0);
10639 while (CONVERT_EXPR_P (offset))
10640 offset = TREE_OPERAND (offset, 0);
10641
10642 if (TREE_CODE (offset) != NEGATE_EXPR)
10643 return 0;
10644
10645 offset = TREE_OPERAND (offset, 0);
10646 while (CONVERT_EXPR_P (offset))
10647 offset = TREE_OPERAND (offset, 0);
10648
10649 /* This must now be the address of EXP. */
10650 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10651 }
10652 \f
10653 /* Return the tree node if an ARG corresponds to a string constant or zero
10654 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10655 in bytes within the string that ARG is accessing. The type of the
10656 offset will be `sizetype'. */
10657
10658 tree
10659 string_constant (tree arg, tree *ptr_offset)
10660 {
10661 tree array, offset, lower_bound;
10662 STRIP_NOPS (arg);
10663
10664 if (TREE_CODE (arg) == ADDR_EXPR)
10665 {
10666 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10667 {
10668 *ptr_offset = size_zero_node;
10669 return TREE_OPERAND (arg, 0);
10670 }
10671 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10672 {
10673 array = TREE_OPERAND (arg, 0);
10674 offset = size_zero_node;
10675 }
10676 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10677 {
10678 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10679 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10680 if (TREE_CODE (array) != STRING_CST
10681 && TREE_CODE (array) != VAR_DECL)
10682 return 0;
10683
10684 /* Check if the array has a nonzero lower bound. */
10685 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10686 if (!integer_zerop (lower_bound))
10687 {
10688 /* If the offset and base aren't both constants, return 0. */
10689 if (TREE_CODE (lower_bound) != INTEGER_CST)
10690 return 0;
10691 if (TREE_CODE (offset) != INTEGER_CST)
10692 return 0;
10693 /* Adjust offset by the lower bound. */
10694 offset = size_diffop (fold_convert (sizetype, offset),
10695 fold_convert (sizetype, lower_bound));
10696 }
10697 }
10698 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10699 {
10700 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10701 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10702 if (TREE_CODE (array) != ADDR_EXPR)
10703 return 0;
10704 array = TREE_OPERAND (array, 0);
10705 if (TREE_CODE (array) != STRING_CST
10706 && TREE_CODE (array) != VAR_DECL)
10707 return 0;
10708 }
10709 else
10710 return 0;
10711 }
10712 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10713 {
10714 tree arg0 = TREE_OPERAND (arg, 0);
10715 tree arg1 = TREE_OPERAND (arg, 1);
10716
10717 STRIP_NOPS (arg0);
10718 STRIP_NOPS (arg1);
10719
10720 if (TREE_CODE (arg0) == ADDR_EXPR
10721 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10722 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10723 {
10724 array = TREE_OPERAND (arg0, 0);
10725 offset = arg1;
10726 }
10727 else if (TREE_CODE (arg1) == ADDR_EXPR
10728 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10729 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10730 {
10731 array = TREE_OPERAND (arg1, 0);
10732 offset = arg0;
10733 }
10734 else
10735 return 0;
10736 }
10737 else
10738 return 0;
10739
10740 if (TREE_CODE (array) == STRING_CST)
10741 {
10742 *ptr_offset = fold_convert (sizetype, offset);
10743 return array;
10744 }
10745 else if (TREE_CODE (array) == VAR_DECL
10746 || TREE_CODE (array) == CONST_DECL)
10747 {
10748 int length;
10749 tree init = ctor_for_folding (array);
10750
10751 /* Variables initialized to string literals can be handled too. */
10752 if (init == error_mark_node
10753 || !init
10754 || TREE_CODE (init) != STRING_CST)
10755 return 0;
10756
10757 /* Avoid const char foo[4] = "abcde"; */
10758 if (DECL_SIZE_UNIT (array) == NULL_TREE
10759 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10760 || (length = TREE_STRING_LENGTH (init)) <= 0
10761 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10762 return 0;
10763
10764 /* If variable is bigger than the string literal, OFFSET must be constant
10765 and inside of the bounds of the string literal. */
10766 offset = fold_convert (sizetype, offset);
10767 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10768 && (! tree_fits_uhwi_p (offset)
10769 || compare_tree_int (offset, length) >= 0))
10770 return 0;
10771
10772 *ptr_offset = offset;
10773 return init;
10774 }
10775
10776 return 0;
10777 }
10778 \f
10779 /* Generate code to calculate OPS, and exploded expression
10780 using a store-flag instruction and return an rtx for the result.
10781 OPS reflects a comparison.
10782
10783 If TARGET is nonzero, store the result there if convenient.
10784
10785 Return zero if there is no suitable set-flag instruction
10786 available on this machine.
10787
10788 Once expand_expr has been called on the arguments of the comparison,
10789 we are committed to doing the store flag, since it is not safe to
10790 re-evaluate the expression. We emit the store-flag insn by calling
10791 emit_store_flag, but only expand the arguments if we have a reason
10792 to believe that emit_store_flag will be successful. If we think that
10793 it will, but it isn't, we have to simulate the store-flag with a
10794 set/jump/set sequence. */
10795
10796 static rtx
10797 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10798 {
10799 enum rtx_code code;
10800 tree arg0, arg1, type;
10801 tree tem;
10802 enum machine_mode operand_mode;
10803 int unsignedp;
10804 rtx op0, op1;
10805 rtx subtarget = target;
10806 location_t loc = ops->location;
10807
10808 arg0 = ops->op0;
10809 arg1 = ops->op1;
10810
10811 /* Don't crash if the comparison was erroneous. */
10812 if (arg0 == error_mark_node || arg1 == error_mark_node)
10813 return const0_rtx;
10814
10815 type = TREE_TYPE (arg0);
10816 operand_mode = TYPE_MODE (type);
10817 unsignedp = TYPE_UNSIGNED (type);
10818
10819 /* We won't bother with BLKmode store-flag operations because it would mean
10820 passing a lot of information to emit_store_flag. */
10821 if (operand_mode == BLKmode)
10822 return 0;
10823
10824 /* We won't bother with store-flag operations involving function pointers
10825 when function pointers must be canonicalized before comparisons. */
10826 #ifdef HAVE_canonicalize_funcptr_for_compare
10827 if (HAVE_canonicalize_funcptr_for_compare
10828 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10829 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10830 == FUNCTION_TYPE))
10831 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10832 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10833 == FUNCTION_TYPE))))
10834 return 0;
10835 #endif
10836
10837 STRIP_NOPS (arg0);
10838 STRIP_NOPS (arg1);
10839
10840 /* For vector typed comparisons emit code to generate the desired
10841 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10842 expander for this. */
10843 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10844 {
10845 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10846 tree if_true = constant_boolean_node (true, ops->type);
10847 tree if_false = constant_boolean_node (false, ops->type);
10848 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10849 }
10850
10851 /* Get the rtx comparison code to use. We know that EXP is a comparison
10852 operation of some type. Some comparisons against 1 and -1 can be
10853 converted to comparisons with zero. Do so here so that the tests
10854 below will be aware that we have a comparison with zero. These
10855 tests will not catch constants in the first operand, but constants
10856 are rarely passed as the first operand. */
10857
10858 switch (ops->code)
10859 {
10860 case EQ_EXPR:
10861 code = EQ;
10862 break;
10863 case NE_EXPR:
10864 code = NE;
10865 break;
10866 case LT_EXPR:
10867 if (integer_onep (arg1))
10868 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10869 else
10870 code = unsignedp ? LTU : LT;
10871 break;
10872 case LE_EXPR:
10873 if (! unsignedp && integer_all_onesp (arg1))
10874 arg1 = integer_zero_node, code = LT;
10875 else
10876 code = unsignedp ? LEU : LE;
10877 break;
10878 case GT_EXPR:
10879 if (! unsignedp && integer_all_onesp (arg1))
10880 arg1 = integer_zero_node, code = GE;
10881 else
10882 code = unsignedp ? GTU : GT;
10883 break;
10884 case GE_EXPR:
10885 if (integer_onep (arg1))
10886 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10887 else
10888 code = unsignedp ? GEU : GE;
10889 break;
10890
10891 case UNORDERED_EXPR:
10892 code = UNORDERED;
10893 break;
10894 case ORDERED_EXPR:
10895 code = ORDERED;
10896 break;
10897 case UNLT_EXPR:
10898 code = UNLT;
10899 break;
10900 case UNLE_EXPR:
10901 code = UNLE;
10902 break;
10903 case UNGT_EXPR:
10904 code = UNGT;
10905 break;
10906 case UNGE_EXPR:
10907 code = UNGE;
10908 break;
10909 case UNEQ_EXPR:
10910 code = UNEQ;
10911 break;
10912 case LTGT_EXPR:
10913 code = LTGT;
10914 break;
10915
10916 default:
10917 gcc_unreachable ();
10918 }
10919
10920 /* Put a constant second. */
10921 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10922 || TREE_CODE (arg0) == FIXED_CST)
10923 {
10924 tem = arg0; arg0 = arg1; arg1 = tem;
10925 code = swap_condition (code);
10926 }
10927
10928 /* If this is an equality or inequality test of a single bit, we can
10929 do this by shifting the bit being tested to the low-order bit and
10930 masking the result with the constant 1. If the condition was EQ,
10931 we xor it with 1. This does not require an scc insn and is faster
10932 than an scc insn even if we have it.
10933
10934 The code to make this transformation was moved into fold_single_bit_test,
10935 so we just call into the folder and expand its result. */
10936
10937 if ((code == NE || code == EQ)
10938 && integer_zerop (arg1)
10939 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10940 {
10941 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
10942 if (srcstmt
10943 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
10944 {
10945 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
10946 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10947 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
10948 gimple_assign_rhs1 (srcstmt),
10949 gimple_assign_rhs2 (srcstmt));
10950 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
10951 if (temp)
10952 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
10953 }
10954 }
10955
10956 if (! get_subtarget (target)
10957 || GET_MODE (subtarget) != operand_mode)
10958 subtarget = 0;
10959
10960 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10961
10962 if (target == 0)
10963 target = gen_reg_rtx (mode);
10964
10965 /* Try a cstore if possible. */
10966 return emit_store_flag_force (target, code, op0, op1,
10967 operand_mode, unsignedp,
10968 (TYPE_PRECISION (ops->type) == 1
10969 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
10970 }
10971 \f
10972
10973 /* Stubs in case we haven't got a casesi insn. */
10974 #ifndef HAVE_casesi
10975 # define HAVE_casesi 0
10976 # define gen_casesi(a, b, c, d, e) (0)
10977 # define CODE_FOR_casesi CODE_FOR_nothing
10978 #endif
10979
10980 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10981 0 otherwise (i.e. if there is no casesi instruction).
10982
10983 DEFAULT_PROBABILITY is the probability of jumping to the default
10984 label. */
10985 int
10986 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10987 rtx table_label, rtx default_label, rtx fallback_label,
10988 int default_probability)
10989 {
10990 struct expand_operand ops[5];
10991 enum machine_mode index_mode = SImode;
10992 rtx op1, op2, index;
10993
10994 if (! HAVE_casesi)
10995 return 0;
10996
10997 /* Convert the index to SImode. */
10998 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10999 {
11000 enum machine_mode omode = TYPE_MODE (index_type);
11001 rtx rangertx = expand_normal (range);
11002
11003 /* We must handle the endpoints in the original mode. */
11004 index_expr = build2 (MINUS_EXPR, index_type,
11005 index_expr, minval);
11006 minval = integer_zero_node;
11007 index = expand_normal (index_expr);
11008 if (default_label)
11009 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11010 omode, 1, default_label,
11011 default_probability);
11012 /* Now we can safely truncate. */
11013 index = convert_to_mode (index_mode, index, 0);
11014 }
11015 else
11016 {
11017 if (TYPE_MODE (index_type) != index_mode)
11018 {
11019 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11020 index_expr = fold_convert (index_type, index_expr);
11021 }
11022
11023 index = expand_normal (index_expr);
11024 }
11025
11026 do_pending_stack_adjust ();
11027
11028 op1 = expand_normal (minval);
11029 op2 = expand_normal (range);
11030
11031 create_input_operand (&ops[0], index, index_mode);
11032 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11033 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11034 create_fixed_operand (&ops[3], table_label);
11035 create_fixed_operand (&ops[4], (default_label
11036 ? default_label
11037 : fallback_label));
11038 expand_jump_insn (CODE_FOR_casesi, 5, ops);
11039 return 1;
11040 }
11041
11042 /* Attempt to generate a tablejump instruction; same concept. */
11043 #ifndef HAVE_tablejump
11044 #define HAVE_tablejump 0
11045 #define gen_tablejump(x, y) (0)
11046 #endif
11047
11048 /* Subroutine of the next function.
11049
11050 INDEX is the value being switched on, with the lowest value
11051 in the table already subtracted.
11052 MODE is its expected mode (needed if INDEX is constant).
11053 RANGE is the length of the jump table.
11054 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11055
11056 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11057 index value is out of range.
11058 DEFAULT_PROBABILITY is the probability of jumping to
11059 the default label. */
11060
11061 static void
11062 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
11063 rtx default_label, int default_probability)
11064 {
11065 rtx temp, vector;
11066
11067 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11068 cfun->cfg->max_jumptable_ents = INTVAL (range);
11069
11070 /* Do an unsigned comparison (in the proper mode) between the index
11071 expression and the value which represents the length of the range.
11072 Since we just finished subtracting the lower bound of the range
11073 from the index expression, this comparison allows us to simultaneously
11074 check that the original index expression value is both greater than
11075 or equal to the minimum value of the range and less than or equal to
11076 the maximum value of the range. */
11077
11078 if (default_label)
11079 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11080 default_label, default_probability);
11081
11082
11083 /* If index is in range, it must fit in Pmode.
11084 Convert to Pmode so we can index with it. */
11085 if (mode != Pmode)
11086 index = convert_to_mode (Pmode, index, 1);
11087
11088 /* Don't let a MEM slip through, because then INDEX that comes
11089 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11090 and break_out_memory_refs will go to work on it and mess it up. */
11091 #ifdef PIC_CASE_VECTOR_ADDRESS
11092 if (flag_pic && !REG_P (index))
11093 index = copy_to_mode_reg (Pmode, index);
11094 #endif
11095
11096 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11097 GET_MODE_SIZE, because this indicates how large insns are. The other
11098 uses should all be Pmode, because they are addresses. This code
11099 could fail if addresses and insns are not the same size. */
11100 index = gen_rtx_PLUS
11101 (Pmode,
11102 gen_rtx_MULT (Pmode, index,
11103 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE), Pmode)),
11104 gen_rtx_LABEL_REF (Pmode, table_label));
11105 #ifdef PIC_CASE_VECTOR_ADDRESS
11106 if (flag_pic)
11107 index = PIC_CASE_VECTOR_ADDRESS (index);
11108 else
11109 #endif
11110 index = memory_address (CASE_VECTOR_MODE, index);
11111 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11112 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11113 convert_move (temp, vector, 0);
11114
11115 emit_jump_insn (gen_tablejump (temp, table_label));
11116
11117 /* If we are generating PIC code or if the table is PC-relative, the
11118 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11119 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11120 emit_barrier ();
11121 }
11122
11123 int
11124 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11125 rtx table_label, rtx default_label, int default_probability)
11126 {
11127 rtx index;
11128
11129 if (! HAVE_tablejump)
11130 return 0;
11131
11132 index_expr = fold_build2 (MINUS_EXPR, index_type,
11133 fold_convert (index_type, index_expr),
11134 fold_convert (index_type, minval));
11135 index = expand_normal (index_expr);
11136 do_pending_stack_adjust ();
11137
11138 do_tablejump (index, TYPE_MODE (index_type),
11139 convert_modes (TYPE_MODE (index_type),
11140 TYPE_MODE (TREE_TYPE (range)),
11141 expand_normal (range),
11142 TYPE_UNSIGNED (TREE_TYPE (range))),
11143 table_label, default_label, default_probability);
11144 return 1;
11145 }
11146
11147 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11148 static rtx
11149 const_vector_from_tree (tree exp)
11150 {
11151 rtvec v;
11152 unsigned i;
11153 int units;
11154 tree elt;
11155 enum machine_mode inner, mode;
11156
11157 mode = TYPE_MODE (TREE_TYPE (exp));
11158
11159 if (initializer_zerop (exp))
11160 return CONST0_RTX (mode);
11161
11162 units = GET_MODE_NUNITS (mode);
11163 inner = GET_MODE_INNER (mode);
11164
11165 v = rtvec_alloc (units);
11166
11167 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11168 {
11169 elt = VECTOR_CST_ELT (exp, i);
11170
11171 if (TREE_CODE (elt) == REAL_CST)
11172 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11173 inner);
11174 else if (TREE_CODE (elt) == FIXED_CST)
11175 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11176 inner);
11177 else
11178 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
11179 inner);
11180 }
11181
11182 return gen_rtx_CONST_VECTOR (mode, v);
11183 }
11184
11185 /* Build a decl for a personality function given a language prefix. */
11186
11187 tree
11188 build_personality_function (const char *lang)
11189 {
11190 const char *unwind_and_version;
11191 tree decl, type;
11192 char *name;
11193
11194 switch (targetm_common.except_unwind_info (&global_options))
11195 {
11196 case UI_NONE:
11197 return NULL;
11198 case UI_SJLJ:
11199 unwind_and_version = "_sj0";
11200 break;
11201 case UI_DWARF2:
11202 case UI_TARGET:
11203 unwind_and_version = "_v0";
11204 break;
11205 case UI_SEH:
11206 unwind_and_version = "_seh0";
11207 break;
11208 default:
11209 gcc_unreachable ();
11210 }
11211
11212 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11213
11214 type = build_function_type_list (integer_type_node, integer_type_node,
11215 long_long_unsigned_type_node,
11216 ptr_type_node, ptr_type_node, NULL_TREE);
11217 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11218 get_identifier (name), type);
11219 DECL_ARTIFICIAL (decl) = 1;
11220 DECL_EXTERNAL (decl) = 1;
11221 TREE_PUBLIC (decl) = 1;
11222
11223 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11224 are the flags assigned by targetm.encode_section_info. */
11225 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11226
11227 return decl;
11228 }
11229
11230 /* Extracts the personality function of DECL and returns the corresponding
11231 libfunc. */
11232
11233 rtx
11234 get_personality_function (tree decl)
11235 {
11236 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11237 enum eh_personality_kind pk;
11238
11239 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11240 if (pk == eh_personality_none)
11241 return NULL;
11242
11243 if (!personality
11244 && pk == eh_personality_any)
11245 personality = lang_hooks.eh_personality ();
11246
11247 if (pk == eh_personality_lang)
11248 gcc_assert (personality != NULL_TREE);
11249
11250 return XEXP (DECL_RTL (personality), 0);
11251 }
11252
11253 #include "gt-expr.h"