lto-streamer-in.c (lto_input_ts_decl_minimal_tree_pointers): Re-construct BLOCK_VARS.
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces_d
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
443
444 if (to_mode == full_mode)
445 {
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
455
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
459 }
460
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
465 {
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
475 }
476
477 /* Now both modes are integers. */
478
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
482 {
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
490
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
494 {
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
503 }
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
508 {
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
511 {
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
515 }
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
519 }
520
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
523
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
526
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
529
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
535
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
537
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
540
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_insn (insns);
565 return;
566 }
567
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
571 {
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
581 }
582
583 /* Now follow all the conversions between integers
584 no more than a word long. */
585
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
590 {
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
603 }
604
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
607 {
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
611 {
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
614 }
615 else
616 {
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
620
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
650 }
651 }
652
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
656 {
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
660 }
661
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
665
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 {
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
674 }
675
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
678 }
679
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
686
687 rtx
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 {
690 return convert_modes (mode, VOIDmode, x, unsignedp);
691 }
692
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
697
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
700
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702
703 rtx
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 {
706 rtx temp;
707
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
710
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
715
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
718
719 if (mode == oldmode)
720 return x;
721
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
727
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
731 {
732 double_int val = uhwi_to_double_int (INTVAL (x));
733
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737
738 return immed_double_int_const (val, mode);
739 }
740
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 {
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 {
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* STORE_MAX_PIECES is the number of bytes at a time that we can
796 store efficiently. Due to internal GCC limitations, this is
797 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
798 for an immediate constant. */
799
800 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
801
802 /* Determine whether the LEN bytes can be moved by using several move
803 instructions. Return nonzero if a call to move_by_pieces should
804 succeed. */
805
806 int
807 can_move_by_pieces (unsigned HOST_WIDE_INT len,
808 unsigned int align ATTRIBUTE_UNUSED)
809 {
810 return MOVE_BY_PIECES_P (len, align);
811 }
812
813 /* Generate several move instructions to copy LEN bytes from block FROM to
814 block TO. (These are MEM rtx's with BLKmode).
815
816 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
817 used to push FROM to the stack.
818
819 ALIGN is maximum stack alignment we can assume.
820
821 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
822 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
823 stpcpy. */
824
825 rtx
826 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
827 unsigned int align, int endp)
828 {
829 struct move_by_pieces_d data;
830 enum machine_mode to_addr_mode, from_addr_mode
831 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
832 rtx to_addr, from_addr = XEXP (from, 0);
833 unsigned int max_size = MOVE_MAX_PIECES + 1;
834 enum machine_mode mode = VOIDmode, tmode;
835 enum insn_code icode;
836
837 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
838
839 data.offset = 0;
840 data.from_addr = from_addr;
841 if (to)
842 {
843 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
844 to_addr = XEXP (to, 0);
845 data.to = to;
846 data.autinc_to
847 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
848 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
849 data.reverse
850 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
851 }
852 else
853 {
854 to_addr_mode = VOIDmode;
855 to_addr = NULL_RTX;
856 data.to = NULL_RTX;
857 data.autinc_to = 1;
858 #ifdef STACK_GROWS_DOWNWARD
859 data.reverse = 1;
860 #else
861 data.reverse = 0;
862 #endif
863 }
864 data.to_addr = to_addr;
865 data.from = from;
866 data.autinc_from
867 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
868 || GET_CODE (from_addr) == POST_INC
869 || GET_CODE (from_addr) == POST_DEC);
870
871 data.explicit_inc_from = 0;
872 data.explicit_inc_to = 0;
873 if (data.reverse) data.offset = len;
874 data.len = len;
875
876 /* If copying requires more than two move insns,
877 copy addresses to registers (to make displacements shorter)
878 and use post-increment if available. */
879 if (!(data.autinc_from && data.autinc_to)
880 && move_by_pieces_ninsns (len, align, max_size) > 2)
881 {
882 /* Find the mode of the largest move... */
883 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
884 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
885 if (GET_MODE_SIZE (tmode) < max_size)
886 mode = tmode;
887
888 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
889 {
890 data.from_addr = copy_to_mode_reg (from_addr_mode,
891 plus_constant (from_addr, len));
892 data.autinc_from = 1;
893 data.explicit_inc_from = -1;
894 }
895 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
896 {
897 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
898 data.autinc_from = 1;
899 data.explicit_inc_from = 1;
900 }
901 if (!data.autinc_from && CONSTANT_P (from_addr))
902 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
903 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
904 {
905 data.to_addr = copy_to_mode_reg (to_addr_mode,
906 plus_constant (to_addr, len));
907 data.autinc_to = 1;
908 data.explicit_inc_to = -1;
909 }
910 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
911 {
912 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
913 data.autinc_to = 1;
914 data.explicit_inc_to = 1;
915 }
916 if (!data.autinc_to && CONSTANT_P (to_addr))
917 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
918 }
919
920 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
921 if (align >= GET_MODE_ALIGNMENT (tmode))
922 align = GET_MODE_ALIGNMENT (tmode);
923 else
924 {
925 enum machine_mode xmode;
926
927 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
928 tmode != VOIDmode;
929 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
930 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
931 || SLOW_UNALIGNED_ACCESS (tmode, align))
932 break;
933
934 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
935 }
936
937 /* First move what we can in the largest integer mode, then go to
938 successively smaller modes. */
939
940 while (max_size > 1)
941 {
942 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
943 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
944 if (GET_MODE_SIZE (tmode) < max_size)
945 mode = tmode;
946
947 if (mode == VOIDmode)
948 break;
949
950 icode = optab_handler (mov_optab, mode);
951 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
952 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
953
954 max_size = GET_MODE_SIZE (mode);
955 }
956
957 /* The code above should have handled everything. */
958 gcc_assert (!data.len);
959
960 if (endp)
961 {
962 rtx to1;
963
964 gcc_assert (!data.reverse);
965 if (data.autinc_to)
966 {
967 if (endp == 2)
968 {
969 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
970 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
971 else
972 data.to_addr = copy_to_mode_reg (to_addr_mode,
973 plus_constant (data.to_addr,
974 -1));
975 }
976 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
977 data.offset);
978 }
979 else
980 {
981 if (endp == 2)
982 --data.offset;
983 to1 = adjust_address (data.to, QImode, data.offset);
984 }
985 return to1;
986 }
987 else
988 return data.to;
989 }
990
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
993
994 static unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
996 unsigned int max_size)
997 {
998 unsigned HOST_WIDE_INT n_insns = 0;
999 enum machine_mode tmode;
1000
1001 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1002 if (align >= GET_MODE_ALIGNMENT (tmode))
1003 align = GET_MODE_ALIGNMENT (tmode);
1004 else
1005 {
1006 enum machine_mode tmode, xmode;
1007
1008 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1009 tmode != VOIDmode;
1010 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1011 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1012 || SLOW_UNALIGNED_ACCESS (tmode, align))
1013 break;
1014
1015 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1016 }
1017
1018 while (max_size > 1)
1019 {
1020 enum machine_mode mode = VOIDmode;
1021 enum insn_code icode;
1022
1023 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1024 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1025 if (GET_MODE_SIZE (tmode) < max_size)
1026 mode = tmode;
1027
1028 if (mode == VOIDmode)
1029 break;
1030
1031 icode = optab_handler (mov_optab, mode);
1032 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1033 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1034
1035 max_size = GET_MODE_SIZE (mode);
1036 }
1037
1038 gcc_assert (!l);
1039 return n_insns;
1040 }
1041
1042 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1043 with move instructions for mode MODE. GENFUN is the gen_... function
1044 to make a move insn for that mode. DATA has all the other info. */
1045
1046 static void
1047 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1048 struct move_by_pieces_d *data)
1049 {
1050 unsigned int size = GET_MODE_SIZE (mode);
1051 rtx to1 = NULL_RTX, from1;
1052
1053 while (data->len >= size)
1054 {
1055 if (data->reverse)
1056 data->offset -= size;
1057
1058 if (data->to)
1059 {
1060 if (data->autinc_to)
1061 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1062 data->offset);
1063 else
1064 to1 = adjust_address (data->to, mode, data->offset);
1065 }
1066
1067 if (data->autinc_from)
1068 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1069 data->offset);
1070 else
1071 from1 = adjust_address (data->from, mode, data->offset);
1072
1073 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1074 emit_insn (gen_add2_insn (data->to_addr,
1075 GEN_INT (-(HOST_WIDE_INT)size)));
1076 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1077 emit_insn (gen_add2_insn (data->from_addr,
1078 GEN_INT (-(HOST_WIDE_INT)size)));
1079
1080 if (data->to)
1081 emit_insn ((*genfun) (to1, from1));
1082 else
1083 {
1084 #ifdef PUSH_ROUNDING
1085 emit_single_push_insn (mode, from1, NULL);
1086 #else
1087 gcc_unreachable ();
1088 #endif
1089 }
1090
1091 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1092 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1094 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1095
1096 if (! data->reverse)
1097 data->offset += size;
1098
1099 data->len -= size;
1100 }
1101 }
1102 \f
1103 /* Emit code to move a block Y to a block X. This may be done with
1104 string-move instructions, with multiple scalar move instructions,
1105 or with a library call.
1106
1107 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1108 SIZE is an rtx that says how long they are.
1109 ALIGN is the maximum alignment we can assume they have.
1110 METHOD describes what kind of copy this is, and what mechanisms may be used.
1111
1112 Return the address of the new block, if memcpy is called and returns it,
1113 0 otherwise. */
1114
1115 rtx
1116 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1117 unsigned int expected_align, HOST_WIDE_INT expected_size)
1118 {
1119 bool may_use_call;
1120 rtx retval = 0;
1121 unsigned int align;
1122
1123 gcc_assert (size);
1124 if (CONST_INT_P (size)
1125 && INTVAL (size) == 0)
1126 return 0;
1127
1128 switch (method)
1129 {
1130 case BLOCK_OP_NORMAL:
1131 case BLOCK_OP_TAILCALL:
1132 may_use_call = true;
1133 break;
1134
1135 case BLOCK_OP_CALL_PARM:
1136 may_use_call = block_move_libcall_safe_for_call_parm ();
1137
1138 /* Make inhibit_defer_pop nonzero around the library call
1139 to force it to pop the arguments right away. */
1140 NO_DEFER_POP;
1141 break;
1142
1143 case BLOCK_OP_NO_LIBCALL:
1144 may_use_call = false;
1145 break;
1146
1147 default:
1148 gcc_unreachable ();
1149 }
1150
1151 gcc_assert (MEM_P (x) && MEM_P (y));
1152 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1153 gcc_assert (align >= BITS_PER_UNIT);
1154
1155 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1156 block copy is more efficient for other large modes, e.g. DCmode. */
1157 x = adjust_address (x, BLKmode, 0);
1158 y = adjust_address (y, BLKmode, 0);
1159
1160 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1161 can be incorrect is coming from __builtin_memcpy. */
1162 if (CONST_INT_P (size))
1163 {
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1168 }
1169
1170 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align,
1173 expected_align, expected_size))
1174 ;
1175 else if (may_use_call
1176 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1177 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1178 retval = emit_block_move_via_libcall (x, y, size,
1179 method == BLOCK_OP_TAILCALL);
1180 else
1181 emit_block_move_via_loop (x, y, size, align);
1182
1183 if (method == BLOCK_OP_CALL_PARM)
1184 OK_DEFER_POP;
1185
1186 return retval;
1187 }
1188
1189 rtx
1190 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1191 {
1192 return emit_block_move_hints (x, y, size, method, 0, -1);
1193 }
1194
1195 /* A subroutine of emit_block_move. Returns true if calling the
1196 block move libcall will not clobber any parameters which may have
1197 already been placed on the stack. */
1198
1199 static bool
1200 block_move_libcall_safe_for_call_parm (void)
1201 {
1202 #if defined (REG_PARM_STACK_SPACE)
1203 tree fn;
1204 #endif
1205
1206 /* If arguments are pushed on the stack, then they're safe. */
1207 if (PUSH_ARGS)
1208 return true;
1209
1210 /* If registers go on the stack anyway, any argument is sure to clobber
1211 an outgoing argument. */
1212 #if defined (REG_PARM_STACK_SPACE)
1213 fn = emit_block_move_libcall_fn (false);
1214 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1215 depend on its argument. */
1216 (void) fn;
1217 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1218 && REG_PARM_STACK_SPACE (fn) != 0)
1219 return false;
1220 #endif
1221
1222 /* If any argument goes in memory, then it might clobber an outgoing
1223 argument. */
1224 {
1225 CUMULATIVE_ARGS args_so_far;
1226 tree fn, arg;
1227
1228 fn = emit_block_move_libcall_fn (false);
1229 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1230
1231 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1232 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1233 {
1234 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1235 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1236 NULL_TREE, true);
1237 if (!tmp || !REG_P (tmp))
1238 return false;
1239 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1240 return false;
1241 targetm.calls.function_arg_advance (&args_so_far, mode,
1242 NULL_TREE, true);
1243 }
1244 }
1245 return true;
1246 }
1247
1248 /* A subroutine of emit_block_move. Expand a movmem pattern;
1249 return true if successful. */
1250
1251 static bool
1252 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1253 unsigned int expected_align, HOST_WIDE_INT expected_size)
1254 {
1255 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1256 int save_volatile_ok = volatile_ok;
1257 enum machine_mode mode;
1258
1259 if (expected_align < align)
1260 expected_align = align;
1261
1262 /* Since this is a move insn, we don't care about volatility. */
1263 volatile_ok = 1;
1264
1265 /* Try the most limited insn first, because there's no point
1266 including more than one in the machine description unless
1267 the more limited one has some advantage. */
1268
1269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1270 mode = GET_MODE_WIDER_MODE (mode))
1271 {
1272 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1273 insn_operand_predicate_fn pred;
1274
1275 if (code != CODE_FOR_nothing
1276 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1277 here because if SIZE is less than the mode mask, as it is
1278 returned by the macro, it will definitely be less than the
1279 actual mode mask. */
1280 && ((CONST_INT_P (size)
1281 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1282 <= (GET_MODE_MASK (mode) >> 1)))
1283 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1284 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1285 || (*pred) (x, BLKmode))
1286 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1287 || (*pred) (y, BLKmode))
1288 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1289 || (*pred) (opalign, VOIDmode)))
1290 {
1291 rtx op2;
1292 rtx last = get_last_insn ();
1293 rtx pat;
1294
1295 op2 = convert_to_mode (mode, size, 1);
1296 pred = insn_data[(int) code].operand[2].predicate;
1297 if (pred != 0 && ! (*pred) (op2, mode))
1298 op2 = copy_to_mode_reg (mode, op2);
1299
1300 /* ??? When called via emit_block_move_for_call, it'd be
1301 nice if there were some way to inform the backend, so
1302 that it doesn't fail the expansion because it thinks
1303 emitting the libcall would be more efficient. */
1304
1305 if (insn_data[(int) code].n_operands == 4)
1306 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1307 else
1308 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1309 GEN_INT (expected_align
1310 / BITS_PER_UNIT),
1311 GEN_INT (expected_size));
1312 if (pat)
1313 {
1314 emit_insn (pat);
1315 volatile_ok = save_volatile_ok;
1316 return true;
1317 }
1318 else
1319 delete_insns_since (last);
1320 }
1321 }
1322
1323 volatile_ok = save_volatile_ok;
1324 return false;
1325 }
1326
1327 /* A subroutine of emit_block_move. Expand a call to memcpy.
1328 Return the return value from memcpy, 0 otherwise. */
1329
1330 rtx
1331 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1332 {
1333 rtx dst_addr, src_addr;
1334 tree call_expr, fn, src_tree, dst_tree, size_tree;
1335 enum machine_mode size_mode;
1336 rtx retval;
1337
1338 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1339 pseudos. We can then place those new pseudos into a VAR_DECL and
1340 use them later. */
1341
1342 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1343 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1344
1345 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1346 src_addr = convert_memory_address (ptr_mode, src_addr);
1347
1348 dst_tree = make_tree (ptr_type_node, dst_addr);
1349 src_tree = make_tree (ptr_type_node, src_addr);
1350
1351 size_mode = TYPE_MODE (sizetype);
1352
1353 size = convert_to_mode (size_mode, size, 1);
1354 size = copy_to_mode_reg (size_mode, size);
1355
1356 /* It is incorrect to use the libcall calling conventions to call
1357 memcpy in this context. This could be a user call to memcpy and
1358 the user may wish to examine the return value from memcpy. For
1359 targets where libcalls and normal calls have different conventions
1360 for returning pointers, we could end up generating incorrect code. */
1361
1362 size_tree = make_tree (sizetype, size);
1363
1364 fn = emit_block_move_libcall_fn (true);
1365 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1366 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1367
1368 retval = expand_normal (call_expr);
1369
1370 return retval;
1371 }
1372
1373 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1374 for the function we use for block copies. The first time FOR_CALL
1375 is true, we call assemble_external. */
1376
1377 static GTY(()) tree block_move_fn;
1378
1379 void
1380 init_block_move_fn (const char *asmspec)
1381 {
1382 if (!block_move_fn)
1383 {
1384 tree args, fn;
1385
1386 fn = get_identifier ("memcpy");
1387 args = build_function_type_list (ptr_type_node, ptr_type_node,
1388 const_ptr_type_node, sizetype,
1389 NULL_TREE);
1390
1391 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1392 DECL_EXTERNAL (fn) = 1;
1393 TREE_PUBLIC (fn) = 1;
1394 DECL_ARTIFICIAL (fn) = 1;
1395 TREE_NOTHROW (fn) = 1;
1396 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1397 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1398
1399 block_move_fn = fn;
1400 }
1401
1402 if (asmspec)
1403 set_user_assembler_name (block_move_fn, asmspec);
1404 }
1405
1406 static tree
1407 emit_block_move_libcall_fn (int for_call)
1408 {
1409 static bool emitted_extern;
1410
1411 if (!block_move_fn)
1412 init_block_move_fn (NULL);
1413
1414 if (for_call && !emitted_extern)
1415 {
1416 emitted_extern = true;
1417 make_decl_rtl (block_move_fn);
1418 assemble_external (block_move_fn);
1419 }
1420
1421 return block_move_fn;
1422 }
1423
1424 /* A subroutine of emit_block_move. Copy the data via an explicit
1425 loop. This is used only when libcalls are forbidden. */
1426 /* ??? It'd be nice to copy in hunks larger than QImode. */
1427
1428 static void
1429 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1430 unsigned int align ATTRIBUTE_UNUSED)
1431 {
1432 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1433 enum machine_mode x_addr_mode
1434 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1435 enum machine_mode y_addr_mode
1436 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1437 enum machine_mode iter_mode;
1438
1439 iter_mode = GET_MODE (size);
1440 if (iter_mode == VOIDmode)
1441 iter_mode = word_mode;
1442
1443 top_label = gen_label_rtx ();
1444 cmp_label = gen_label_rtx ();
1445 iter = gen_reg_rtx (iter_mode);
1446
1447 emit_move_insn (iter, const0_rtx);
1448
1449 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1450 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1451 do_pending_stack_adjust ();
1452
1453 emit_jump (cmp_label);
1454 emit_label (top_label);
1455
1456 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1457 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1458
1459 if (x_addr_mode != y_addr_mode)
1460 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1461 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1462
1463 x = change_address (x, QImode, x_addr);
1464 y = change_address (y, QImode, y_addr);
1465
1466 emit_move_insn (x, y);
1467
1468 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1469 true, OPTAB_LIB_WIDEN);
1470 if (tmp != iter)
1471 emit_move_insn (iter, tmp);
1472
1473 emit_label (cmp_label);
1474
1475 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1476 true, top_label);
1477 }
1478 \f
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1481
1482 void
1483 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1484 {
1485 int i;
1486 #ifdef HAVE_load_multiple
1487 rtx pat;
1488 rtx last;
1489 #endif
1490
1491 if (nregs == 0)
1492 return;
1493
1494 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1495 x = validize_mem (force_const_mem (mode, x));
1496
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple)
1500 {
1501 last = get_last_insn ();
1502 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1503 GEN_INT (nregs));
1504 if (pat)
1505 {
1506 emit_insn (pat);
1507 return;
1508 }
1509 else
1510 delete_insns_since (last);
1511 }
1512 #endif
1513
1514 for (i = 0; i < nregs; i++)
1515 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1516 operand_subword_force (x, i, mode));
1517 }
1518
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1521
1522 void
1523 move_block_from_reg (int regno, rtx x, int nregs)
1524 {
1525 int i;
1526
1527 if (nregs == 0)
1528 return;
1529
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple)
1533 {
1534 rtx last = get_last_insn ();
1535 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1536 GEN_INT (nregs));
1537 if (pat)
1538 {
1539 emit_insn (pat);
1540 return;
1541 }
1542 else
1543 delete_insns_since (last);
1544 }
1545 #endif
1546
1547 for (i = 0; i < nregs; i++)
1548 {
1549 rtx tem = operand_subword (x, i, 1, BLKmode);
1550
1551 gcc_assert (tem);
1552
1553 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1554 }
1555 }
1556
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1562
1563 rtx
1564 gen_group_rtx (rtx orig)
1565 {
1566 int i, length;
1567 rtx *tmps;
1568
1569 gcc_assert (GET_CODE (orig) == PARALLEL);
1570
1571 length = XVECLEN (orig, 0);
1572 tmps = XALLOCAVEC (rtx, length);
1573
1574 /* Skip a NULL entry in first slot. */
1575 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1576
1577 if (i)
1578 tmps[0] = 0;
1579
1580 for (; i < length; i++)
1581 {
1582 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1583 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1584
1585 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1586 }
1587
1588 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1589 }
1590
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1594
1595 static void
1596 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1597 {
1598 rtx src;
1599 int start, i;
1600 enum machine_mode m = GET_MODE (orig_src);
1601
1602 gcc_assert (GET_CODE (dst) == PARALLEL);
1603
1604 if (m != VOIDmode
1605 && !SCALAR_INT_MODE_P (m)
1606 && !MEM_P (orig_src)
1607 && GET_CODE (orig_src) != CONCAT)
1608 {
1609 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1610 if (imode == BLKmode)
1611 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1612 else
1613 src = gen_reg_rtx (imode);
1614 if (imode != BLKmode)
1615 src = gen_lowpart (GET_MODE (orig_src), src);
1616 emit_move_insn (src, orig_src);
1617 /* ...and back again. */
1618 if (imode != BLKmode)
1619 src = gen_lowpart (imode, src);
1620 emit_group_load_1 (tmps, dst, src, type, ssize);
1621 return;
1622 }
1623
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst, 0, 0), 0))
1627 start = 0;
1628 else
1629 start = 1;
1630
1631 /* Process the pieces. */
1632 for (i = start; i < XVECLEN (dst, 0); i++)
1633 {
1634 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1635 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1636 unsigned int bytelen = GET_MODE_SIZE (mode);
1637 int shift = 0;
1638
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1641 {
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1644 if (
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1647 == (BYTES_BIG_ENDIAN ? upward : downward)
1648 #else
1649 BYTES_BIG_ENDIAN
1650 #endif
1651 )
1652 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1653 bytelen = ssize - bytepos;
1654 gcc_assert (bytelen > 0);
1655 }
1656
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1660 src = orig_src;
1661 if (!MEM_P (orig_src)
1662 && (!CONSTANT_P (orig_src)
1663 || (GET_MODE (orig_src) != mode
1664 && GET_MODE (orig_src) != VOIDmode)))
1665 {
1666 if (GET_MODE (orig_src) == VOIDmode)
1667 src = gen_reg_rtx (mode);
1668 else
1669 src = gen_reg_rtx (GET_MODE (orig_src));
1670
1671 emit_move_insn (src, orig_src);
1672 }
1673
1674 /* Optimize the access just a bit. */
1675 if (MEM_P (src)
1676 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1677 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1678 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1679 && bytelen == GET_MODE_SIZE (mode))
1680 {
1681 tmps[i] = gen_reg_rtx (mode);
1682 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1683 }
1684 else if (COMPLEX_MODE_P (mode)
1685 && GET_MODE (src) == mode
1686 && bytelen == GET_MODE_SIZE (mode))
1687 /* Let emit_move_complex do the bulk of the work. */
1688 tmps[i] = src;
1689 else if (GET_CODE (src) == CONCAT)
1690 {
1691 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1692 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1693
1694 if ((bytepos == 0 && bytelen == slen0)
1695 || (bytepos != 0 && bytepos + bytelen <= slen))
1696 {
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1700 to be extracted. */
1701 tmps[i] = XEXP (src, bytepos / slen0);
1702 if (! CONSTANT_P (tmps[i])
1703 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1704 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1705 (bytepos % slen0) * BITS_PER_UNIT,
1706 1, NULL_RTX, mode, mode);
1707 }
1708 else
1709 {
1710 rtx mem;
1711
1712 gcc_assert (!bytepos);
1713 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1714 emit_move_insn (mem, src);
1715 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1716 0, 1, NULL_RTX, mode, mode);
1717 }
1718 }
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst))
1723 && REG_P (src))
1724 {
1725 int slen = GET_MODE_SIZE (GET_MODE (src));
1726 rtx mem;
1727
1728 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1729 emit_move_insn (mem, src);
1730 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1731 }
1732 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1733 && XVECLEN (dst, 0) > 1)
1734 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1735 else if (CONSTANT_P (src))
1736 {
1737 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1738
1739 if (len == ssize)
1740 tmps[i] = src;
1741 else
1742 {
1743 rtx first, second;
1744
1745 gcc_assert (2 * len == ssize);
1746 split_double (src, &first, &second);
1747 if (i)
1748 tmps[i] = second;
1749 else
1750 tmps[i] = first;
1751 }
1752 }
1753 else if (REG_P (src) && GET_MODE (src) == mode)
1754 tmps[i] = src;
1755 else
1756 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1757 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1758 mode, mode);
1759
1760 if (shift)
1761 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1762 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1763 }
1764 }
1765
1766 /* Emit code to move a block SRC of type TYPE to a block DST,
1767 where DST is non-consecutive registers represented by a PARALLEL.
1768 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1769 if not known. */
1770
1771 void
1772 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1773 {
1774 rtx *tmps;
1775 int i;
1776
1777 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1778 emit_group_load_1 (tmps, dst, src, type, ssize);
1779
1780 /* Copy the extracted pieces into the proper (probable) hard regs. */
1781 for (i = 0; i < XVECLEN (dst, 0); i++)
1782 {
1783 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1784 if (d == NULL)
1785 continue;
1786 emit_move_insn (d, tmps[i]);
1787 }
1788 }
1789
1790 /* Similar, but load SRC into new pseudos in a format that looks like
1791 PARALLEL. This can later be fed to emit_group_move to get things
1792 in the right place. */
1793
1794 rtx
1795 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1796 {
1797 rtvec vec;
1798 int i;
1799
1800 vec = rtvec_alloc (XVECLEN (parallel, 0));
1801 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1802
1803 /* Convert the vector to look just like the original PARALLEL, except
1804 with the computed values. */
1805 for (i = 0; i < XVECLEN (parallel, 0); i++)
1806 {
1807 rtx e = XVECEXP (parallel, 0, i);
1808 rtx d = XEXP (e, 0);
1809
1810 if (d)
1811 {
1812 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1813 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1814 }
1815 RTVEC_ELT (vec, i) = e;
1816 }
1817
1818 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1819 }
1820
1821 /* Emit code to move a block SRC to block DST, where SRC and DST are
1822 non-consecutive groups of registers, each represented by a PARALLEL. */
1823
1824 void
1825 emit_group_move (rtx dst, rtx src)
1826 {
1827 int i;
1828
1829 gcc_assert (GET_CODE (src) == PARALLEL
1830 && GET_CODE (dst) == PARALLEL
1831 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1832
1833 /* Skip first entry if NULL. */
1834 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1835 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1836 XEXP (XVECEXP (src, 0, i), 0));
1837 }
1838
1839 /* Move a group of registers represented by a PARALLEL into pseudos. */
1840
1841 rtx
1842 emit_group_move_into_temps (rtx src)
1843 {
1844 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1845 int i;
1846
1847 for (i = 0; i < XVECLEN (src, 0); i++)
1848 {
1849 rtx e = XVECEXP (src, 0, i);
1850 rtx d = XEXP (e, 0);
1851
1852 if (d)
1853 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1854 RTVEC_ELT (vec, i) = e;
1855 }
1856
1857 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1858 }
1859
1860 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1861 where SRC is non-consecutive registers represented by a PARALLEL.
1862 SSIZE represents the total size of block ORIG_DST, or -1 if not
1863 known. */
1864
1865 void
1866 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1867 {
1868 rtx *tmps, dst;
1869 int start, finish, i;
1870 enum machine_mode m = GET_MODE (orig_dst);
1871
1872 gcc_assert (GET_CODE (src) == PARALLEL);
1873
1874 if (!SCALAR_INT_MODE_P (m)
1875 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1876 {
1877 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1878 if (imode == BLKmode)
1879 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1880 else
1881 dst = gen_reg_rtx (imode);
1882 emit_group_store (dst, src, type, ssize);
1883 if (imode != BLKmode)
1884 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1885 emit_move_insn (orig_dst, dst);
1886 return;
1887 }
1888
1889 /* Check for a NULL entry, used to indicate that the parameter goes
1890 both on the stack and in registers. */
1891 if (XEXP (XVECEXP (src, 0, 0), 0))
1892 start = 0;
1893 else
1894 start = 1;
1895 finish = XVECLEN (src, 0);
1896
1897 tmps = XALLOCAVEC (rtx, finish);
1898
1899 /* Copy the (probable) hard regs into pseudos. */
1900 for (i = start; i < finish; i++)
1901 {
1902 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1903 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1904 {
1905 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1906 emit_move_insn (tmps[i], reg);
1907 }
1908 else
1909 tmps[i] = reg;
1910 }
1911
1912 /* If we won't be storing directly into memory, protect the real destination
1913 from strange tricks we might play. */
1914 dst = orig_dst;
1915 if (GET_CODE (dst) == PARALLEL)
1916 {
1917 rtx temp;
1918
1919 /* We can get a PARALLEL dst if there is a conditional expression in
1920 a return statement. In that case, the dst and src are the same,
1921 so no action is necessary. */
1922 if (rtx_equal_p (dst, src))
1923 return;
1924
1925 /* It is unclear if we can ever reach here, but we may as well handle
1926 it. Allocate a temporary, and split this into a store/load to/from
1927 the temporary. */
1928
1929 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1930 emit_group_store (temp, src, type, ssize);
1931 emit_group_load (dst, temp, type, ssize);
1932 return;
1933 }
1934 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1935 {
1936 enum machine_mode outer = GET_MODE (dst);
1937 enum machine_mode inner;
1938 HOST_WIDE_INT bytepos;
1939 bool done = false;
1940 rtx temp;
1941
1942 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1943 dst = gen_reg_rtx (outer);
1944
1945 /* Make life a bit easier for combine. */
1946 /* If the first element of the vector is the low part
1947 of the destination mode, use a paradoxical subreg to
1948 initialize the destination. */
1949 if (start < finish)
1950 {
1951 inner = GET_MODE (tmps[start]);
1952 bytepos = subreg_lowpart_offset (inner, outer);
1953 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1954 {
1955 temp = simplify_gen_subreg (outer, tmps[start],
1956 inner, 0);
1957 if (temp)
1958 {
1959 emit_move_insn (dst, temp);
1960 done = true;
1961 start++;
1962 }
1963 }
1964 }
1965
1966 /* If the first element wasn't the low part, try the last. */
1967 if (!done
1968 && start < finish - 1)
1969 {
1970 inner = GET_MODE (tmps[finish - 1]);
1971 bytepos = subreg_lowpart_offset (inner, outer);
1972 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1973 {
1974 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1975 inner, 0);
1976 if (temp)
1977 {
1978 emit_move_insn (dst, temp);
1979 done = true;
1980 finish--;
1981 }
1982 }
1983 }
1984
1985 /* Otherwise, simply initialize the result to zero. */
1986 if (!done)
1987 emit_move_insn (dst, CONST0_RTX (outer));
1988 }
1989
1990 /* Process the pieces. */
1991 for (i = start; i < finish; i++)
1992 {
1993 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1994 enum machine_mode mode = GET_MODE (tmps[i]);
1995 unsigned int bytelen = GET_MODE_SIZE (mode);
1996 unsigned int adj_bytelen = bytelen;
1997 rtx dest = dst;
1998
1999 /* Handle trailing fragments that run over the size of the struct. */
2000 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2001 adj_bytelen = ssize - bytepos;
2002
2003 if (GET_CODE (dst) == CONCAT)
2004 {
2005 if (bytepos + adj_bytelen
2006 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2007 dest = XEXP (dst, 0);
2008 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2009 {
2010 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2011 dest = XEXP (dst, 1);
2012 }
2013 else
2014 {
2015 enum machine_mode dest_mode = GET_MODE (dest);
2016 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2017
2018 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2019
2020 if (GET_MODE_ALIGNMENT (dest_mode)
2021 >= GET_MODE_ALIGNMENT (tmp_mode))
2022 {
2023 dest = assign_stack_temp (dest_mode,
2024 GET_MODE_SIZE (dest_mode),
2025 0);
2026 emit_move_insn (adjust_address (dest,
2027 tmp_mode,
2028 bytepos),
2029 tmps[i]);
2030 dst = dest;
2031 }
2032 else
2033 {
2034 dest = assign_stack_temp (tmp_mode,
2035 GET_MODE_SIZE (tmp_mode),
2036 0);
2037 emit_move_insn (dest, tmps[i]);
2038 dst = adjust_address (dest, dest_mode, bytepos);
2039 }
2040 break;
2041 }
2042 }
2043
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2045 {
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2055 )
2056 {
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2061 }
2062 bytelen = adj_bytelen;
2063 }
2064
2065 /* Optimize the access just a bit. */
2066 if (MEM_P (dest)
2067 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2068 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2069 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2070 && bytelen == GET_MODE_SIZE (mode))
2071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2072 else
2073 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2074 mode, tmps[i]);
2075 }
2076
2077 /* Copy from the pseudo into the (probable) hard reg. */
2078 if (orig_dst != dst)
2079 emit_move_insn (orig_dst, dst);
2080 }
2081
2082 /* Generate code to copy a BLKmode object of TYPE out of a
2083 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2084 is null, a stack temporary is created. TGTBLK is returned.
2085
2086 The purpose of this routine is to handle functions that return
2087 BLKmode structures in registers. Some machines (the PA for example)
2088 want to return all small structures in registers regardless of the
2089 structure's alignment. */
2090
2091 rtx
2092 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2093 {
2094 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2095 rtx src = NULL, dst = NULL;
2096 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2097 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2098 enum machine_mode copy_mode;
2099
2100 if (tgtblk == 0)
2101 {
2102 tgtblk = assign_temp (build_qualified_type (type,
2103 (TYPE_QUALS (type)
2104 | TYPE_QUAL_CONST)),
2105 0, 1, 1);
2106 preserve_temp_slots (tgtblk);
2107 }
2108
2109 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2110 into a new pseudo which is a full word. */
2111
2112 if (GET_MODE (srcreg) != BLKmode
2113 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2114 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2115
2116 /* If the structure doesn't take up a whole number of words, see whether
2117 SRCREG is padded on the left or on the right. If it's on the left,
2118 set PADDING_CORRECTION to the number of bits to skip.
2119
2120 In most ABIs, the structure will be returned at the least end of
2121 the register, which translates to right padding on little-endian
2122 targets and left padding on big-endian targets. The opposite
2123 holds if the structure is returned at the most significant
2124 end of the register. */
2125 if (bytes % UNITS_PER_WORD != 0
2126 && (targetm.calls.return_in_msb (type)
2127 ? !BYTES_BIG_ENDIAN
2128 : BYTES_BIG_ENDIAN))
2129 padding_correction
2130 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2131
2132 /* Copy the structure BITSIZE bits at a time. If the target lives in
2133 memory, take care of not reading/writing past its end by selecting
2134 a copy mode suited to BITSIZE. This should always be possible given
2135 how it is computed.
2136
2137 We could probably emit more efficient code for machines which do not use
2138 strict alignment, but it doesn't seem worth the effort at the current
2139 time. */
2140
2141 copy_mode = word_mode;
2142 if (MEM_P (tgtblk))
2143 {
2144 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2145 if (mem_mode != BLKmode)
2146 copy_mode = mem_mode;
2147 }
2148
2149 for (bitpos = 0, xbitpos = padding_correction;
2150 bitpos < bytes * BITS_PER_UNIT;
2151 bitpos += bitsize, xbitpos += bitsize)
2152 {
2153 /* We need a new source operand each time xbitpos is on a
2154 word boundary and when xbitpos == padding_correction
2155 (the first time through). */
2156 if (xbitpos % BITS_PER_WORD == 0
2157 || xbitpos == padding_correction)
2158 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2159 GET_MODE (srcreg));
2160
2161 /* We need a new destination operand each time bitpos is on
2162 a word boundary. */
2163 if (bitpos % BITS_PER_WORD == 0)
2164 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2165
2166 /* Use xbitpos for the source extraction (right justified) and
2167 bitpos for the destination store (left justified). */
2168 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2169 extract_bit_field (src, bitsize,
2170 xbitpos % BITS_PER_WORD, 1,
2171 NULL_RTX, copy_mode, copy_mode));
2172 }
2173
2174 return tgtblk;
2175 }
2176
2177 /* Add a USE expression for REG to the (possibly empty) list pointed
2178 to by CALL_FUSAGE. REG must denote a hard register. */
2179
2180 void
2181 use_reg (rtx *call_fusage, rtx reg)
2182 {
2183 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2184
2185 *call_fusage
2186 = gen_rtx_EXPR_LIST (VOIDmode,
2187 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2188 }
2189
2190 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2191 starting at REGNO. All of these registers must be hard registers. */
2192
2193 void
2194 use_regs (rtx *call_fusage, int regno, int nregs)
2195 {
2196 int i;
2197
2198 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2199
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2202 }
2203
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2207
2208 void
2209 use_group_regs (rtx *call_fusage, rtx regs)
2210 {
2211 int i;
2212
2213 for (i = 0; i < XVECLEN (regs, 0); i++)
2214 {
2215 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2216
2217 /* A NULL entry means the parameter goes both on the stack and in
2218 registers. This can also be a MEM for targets that pass values
2219 partially on the stack and partially in registers. */
2220 if (reg != 0 && REG_P (reg))
2221 use_reg (call_fusage, reg);
2222 }
2223 }
2224
2225 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2226 assigment and the code of the expresion on the RHS is CODE. Return
2227 NULL otherwise. */
2228
2229 static gimple
2230 get_def_for_expr (tree name, enum tree_code code)
2231 {
2232 gimple def_stmt;
2233
2234 if (TREE_CODE (name) != SSA_NAME)
2235 return NULL;
2236
2237 def_stmt = get_gimple_for_ssa_name (name);
2238 if (!def_stmt
2239 || gimple_assign_rhs_code (def_stmt) != code)
2240 return NULL;
2241
2242 return def_stmt;
2243 }
2244 \f
2245
2246 /* Determine whether the LEN bytes generated by CONSTFUN can be
2247 stored to memory using several move instructions. CONSTFUNDATA is
2248 a pointer which will be passed as argument in every CONSTFUN call.
2249 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2250 a memset operation and false if it's a copy of a constant string.
2251 Return nonzero if a call to store_by_pieces should succeed. */
2252
2253 int
2254 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2255 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2256 void *constfundata, unsigned int align, bool memsetp)
2257 {
2258 unsigned HOST_WIDE_INT l;
2259 unsigned int max_size;
2260 HOST_WIDE_INT offset = 0;
2261 enum machine_mode mode, tmode;
2262 enum insn_code icode;
2263 int reverse;
2264 rtx cst;
2265
2266 if (len == 0)
2267 return 1;
2268
2269 if (! (memsetp
2270 ? SET_BY_PIECES_P (len, align)
2271 : STORE_BY_PIECES_P (len, align)))
2272 return 0;
2273
2274 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2275 if (align >= GET_MODE_ALIGNMENT (tmode))
2276 align = GET_MODE_ALIGNMENT (tmode);
2277 else
2278 {
2279 enum machine_mode xmode;
2280
2281 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2282 tmode != VOIDmode;
2283 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2284 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2285 || SLOW_UNALIGNED_ACCESS (tmode, align))
2286 break;
2287
2288 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2289 }
2290
2291 /* We would first store what we can in the largest integer mode, then go to
2292 successively smaller modes. */
2293
2294 for (reverse = 0;
2295 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2296 reverse++)
2297 {
2298 l = len;
2299 mode = VOIDmode;
2300 max_size = STORE_MAX_PIECES + 1;
2301 while (max_size > 1)
2302 {
2303 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2304 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2305 if (GET_MODE_SIZE (tmode) < max_size)
2306 mode = tmode;
2307
2308 if (mode == VOIDmode)
2309 break;
2310
2311 icode = optab_handler (mov_optab, mode);
2312 if (icode != CODE_FOR_nothing
2313 && align >= GET_MODE_ALIGNMENT (mode))
2314 {
2315 unsigned int size = GET_MODE_SIZE (mode);
2316
2317 while (l >= size)
2318 {
2319 if (reverse)
2320 offset -= size;
2321
2322 cst = (*constfun) (constfundata, offset, mode);
2323 if (!LEGITIMATE_CONSTANT_P (cst))
2324 return 0;
2325
2326 if (!reverse)
2327 offset += size;
2328
2329 l -= size;
2330 }
2331 }
2332
2333 max_size = GET_MODE_SIZE (mode);
2334 }
2335
2336 /* The code above should have handled everything. */
2337 gcc_assert (!l);
2338 }
2339
2340 return 1;
2341 }
2342
2343 /* Generate several move instructions to store LEN bytes generated by
2344 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2345 pointer which will be passed as argument in every CONSTFUN call.
2346 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2347 a memset operation and false if it's a copy of a constant string.
2348 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2349 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2350 stpcpy. */
2351
2352 rtx
2353 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2354 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2355 void *constfundata, unsigned int align, bool memsetp, int endp)
2356 {
2357 enum machine_mode to_addr_mode
2358 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2359 struct store_by_pieces_d data;
2360
2361 if (len == 0)
2362 {
2363 gcc_assert (endp != 2);
2364 return to;
2365 }
2366
2367 gcc_assert (memsetp
2368 ? SET_BY_PIECES_P (len, align)
2369 : STORE_BY_PIECES_P (len, align));
2370 data.constfun = constfun;
2371 data.constfundata = constfundata;
2372 data.len = len;
2373 data.to = to;
2374 store_by_pieces_1 (&data, align);
2375 if (endp)
2376 {
2377 rtx to1;
2378
2379 gcc_assert (!data.reverse);
2380 if (data.autinc_to)
2381 {
2382 if (endp == 2)
2383 {
2384 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2385 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2386 else
2387 data.to_addr = copy_to_mode_reg (to_addr_mode,
2388 plus_constant (data.to_addr,
2389 -1));
2390 }
2391 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2392 data.offset);
2393 }
2394 else
2395 {
2396 if (endp == 2)
2397 --data.offset;
2398 to1 = adjust_address (data.to, QImode, data.offset);
2399 }
2400 return to1;
2401 }
2402 else
2403 return data.to;
2404 }
2405
2406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2408
2409 static void
2410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2411 {
2412 struct store_by_pieces_d data;
2413
2414 if (len == 0)
2415 return;
2416
2417 data.constfun = clear_by_pieces_1;
2418 data.constfundata = NULL;
2419 data.len = len;
2420 data.to = to;
2421 store_by_pieces_1 (&data, align);
2422 }
2423
2424 /* Callback routine for clear_by_pieces.
2425 Return const0_rtx unconditionally. */
2426
2427 static rtx
2428 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2429 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2430 enum machine_mode mode ATTRIBUTE_UNUSED)
2431 {
2432 return const0_rtx;
2433 }
2434
2435 /* Subroutine of clear_by_pieces and store_by_pieces.
2436 Generate several move instructions to store LEN bytes of block TO. (A MEM
2437 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2438
2439 static void
2440 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2441 unsigned int align ATTRIBUTE_UNUSED)
2442 {
2443 enum machine_mode to_addr_mode
2444 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2445 rtx to_addr = XEXP (data->to, 0);
2446 unsigned int max_size = STORE_MAX_PIECES + 1;
2447 enum machine_mode mode = VOIDmode, tmode;
2448 enum insn_code icode;
2449
2450 data->offset = 0;
2451 data->to_addr = to_addr;
2452 data->autinc_to
2453 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2454 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2455
2456 data->explicit_inc_to = 0;
2457 data->reverse
2458 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2459 if (data->reverse)
2460 data->offset = data->len;
2461
2462 /* If storing requires more than two move insns,
2463 copy addresses to registers (to make displacements shorter)
2464 and use post-increment if available. */
2465 if (!data->autinc_to
2466 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2467 {
2468 /* Determine the main mode we'll be using. */
2469 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2470 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2471 if (GET_MODE_SIZE (tmode) < max_size)
2472 mode = tmode;
2473
2474 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2475 {
2476 data->to_addr = copy_to_mode_reg (to_addr_mode,
2477 plus_constant (to_addr, data->len));
2478 data->autinc_to = 1;
2479 data->explicit_inc_to = -1;
2480 }
2481
2482 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2483 && ! data->autinc_to)
2484 {
2485 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2486 data->autinc_to = 1;
2487 data->explicit_inc_to = 1;
2488 }
2489
2490 if ( !data->autinc_to && CONSTANT_P (to_addr))
2491 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2492 }
2493
2494 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2495 if (align >= GET_MODE_ALIGNMENT (tmode))
2496 align = GET_MODE_ALIGNMENT (tmode);
2497 else
2498 {
2499 enum machine_mode xmode;
2500
2501 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2502 tmode != VOIDmode;
2503 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2504 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2505 || SLOW_UNALIGNED_ACCESS (tmode, align))
2506 break;
2507
2508 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2509 }
2510
2511 /* First store what we can in the largest integer mode, then go to
2512 successively smaller modes. */
2513
2514 while (max_size > 1)
2515 {
2516 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2517 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2518 if (GET_MODE_SIZE (tmode) < max_size)
2519 mode = tmode;
2520
2521 if (mode == VOIDmode)
2522 break;
2523
2524 icode = optab_handler (mov_optab, mode);
2525 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2526 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2527
2528 max_size = GET_MODE_SIZE (mode);
2529 }
2530
2531 /* The code above should have handled everything. */
2532 gcc_assert (!data->len);
2533 }
2534
2535 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2536 with move instructions for mode MODE. GENFUN is the gen_... function
2537 to make a move insn for that mode. DATA has all the other info. */
2538
2539 static void
2540 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2541 struct store_by_pieces_d *data)
2542 {
2543 unsigned int size = GET_MODE_SIZE (mode);
2544 rtx to1, cst;
2545
2546 while (data->len >= size)
2547 {
2548 if (data->reverse)
2549 data->offset -= size;
2550
2551 if (data->autinc_to)
2552 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2553 data->offset);
2554 else
2555 to1 = adjust_address (data->to, mode, data->offset);
2556
2557 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2558 emit_insn (gen_add2_insn (data->to_addr,
2559 GEN_INT (-(HOST_WIDE_INT) size)));
2560
2561 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2562 emit_insn ((*genfun) (to1, cst));
2563
2564 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2565 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2566
2567 if (! data->reverse)
2568 data->offset += size;
2569
2570 data->len -= size;
2571 }
2572 }
2573 \f
2574 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2575 its length in bytes. */
2576
2577 rtx
2578 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2579 unsigned int expected_align, HOST_WIDE_INT expected_size)
2580 {
2581 enum machine_mode mode = GET_MODE (object);
2582 unsigned int align;
2583
2584 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2585
2586 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2587 just move a zero. Otherwise, do this a piece at a time. */
2588 if (mode != BLKmode
2589 && CONST_INT_P (size)
2590 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2591 {
2592 rtx zero = CONST0_RTX (mode);
2593 if (zero != NULL)
2594 {
2595 emit_move_insn (object, zero);
2596 return NULL;
2597 }
2598
2599 if (COMPLEX_MODE_P (mode))
2600 {
2601 zero = CONST0_RTX (GET_MODE_INNER (mode));
2602 if (zero != NULL)
2603 {
2604 write_complex_part (object, zero, 0);
2605 write_complex_part (object, zero, 1);
2606 return NULL;
2607 }
2608 }
2609 }
2610
2611 if (size == const0_rtx)
2612 return NULL;
2613
2614 align = MEM_ALIGN (object);
2615
2616 if (CONST_INT_P (size)
2617 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2618 clear_by_pieces (object, INTVAL (size), align);
2619 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2620 expected_align, expected_size))
2621 ;
2622 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2623 return set_storage_via_libcall (object, size, const0_rtx,
2624 method == BLOCK_OP_TAILCALL);
2625 else
2626 gcc_unreachable ();
2627
2628 return NULL;
2629 }
2630
2631 rtx
2632 clear_storage (rtx object, rtx size, enum block_op_methods method)
2633 {
2634 return clear_storage_hints (object, size, method, 0, -1);
2635 }
2636
2637
2638 /* A subroutine of clear_storage. Expand a call to memset.
2639 Return the return value of memset, 0 otherwise. */
2640
2641 rtx
2642 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2643 {
2644 tree call_expr, fn, object_tree, size_tree, val_tree;
2645 enum machine_mode size_mode;
2646 rtx retval;
2647
2648 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2649 place those into new pseudos into a VAR_DECL and use them later. */
2650
2651 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2652
2653 size_mode = TYPE_MODE (sizetype);
2654 size = convert_to_mode (size_mode, size, 1);
2655 size = copy_to_mode_reg (size_mode, size);
2656
2657 /* It is incorrect to use the libcall calling conventions to call
2658 memset in this context. This could be a user call to memset and
2659 the user may wish to examine the return value from memset. For
2660 targets where libcalls and normal calls have different conventions
2661 for returning pointers, we could end up generating incorrect code. */
2662
2663 object_tree = make_tree (ptr_type_node, object);
2664 if (!CONST_INT_P (val))
2665 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2666 size_tree = make_tree (sizetype, size);
2667 val_tree = make_tree (integer_type_node, val);
2668
2669 fn = clear_storage_libcall_fn (true);
2670 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2671 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2672
2673 retval = expand_normal (call_expr);
2674
2675 return retval;
2676 }
2677
2678 /* A subroutine of set_storage_via_libcall. Create the tree node
2679 for the function we use for block clears. The first time FOR_CALL
2680 is true, we call assemble_external. */
2681
2682 tree block_clear_fn;
2683
2684 void
2685 init_block_clear_fn (const char *asmspec)
2686 {
2687 if (!block_clear_fn)
2688 {
2689 tree fn, args;
2690
2691 fn = get_identifier ("memset");
2692 args = build_function_type_list (ptr_type_node, ptr_type_node,
2693 integer_type_node, sizetype,
2694 NULL_TREE);
2695
2696 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2697 DECL_EXTERNAL (fn) = 1;
2698 TREE_PUBLIC (fn) = 1;
2699 DECL_ARTIFICIAL (fn) = 1;
2700 TREE_NOTHROW (fn) = 1;
2701 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2702 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2703
2704 block_clear_fn = fn;
2705 }
2706
2707 if (asmspec)
2708 set_user_assembler_name (block_clear_fn, asmspec);
2709 }
2710
2711 static tree
2712 clear_storage_libcall_fn (int for_call)
2713 {
2714 static bool emitted_extern;
2715
2716 if (!block_clear_fn)
2717 init_block_clear_fn (NULL);
2718
2719 if (for_call && !emitted_extern)
2720 {
2721 emitted_extern = true;
2722 make_decl_rtl (block_clear_fn);
2723 assemble_external (block_clear_fn);
2724 }
2725
2726 return block_clear_fn;
2727 }
2728 \f
2729 /* Expand a setmem pattern; return true if successful. */
2730
2731 bool
2732 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2733 unsigned int expected_align, HOST_WIDE_INT expected_size)
2734 {
2735 /* Try the most limited insn first, because there's no point
2736 including more than one in the machine description unless
2737 the more limited one has some advantage. */
2738
2739 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2740 enum machine_mode mode;
2741
2742 if (expected_align < align)
2743 expected_align = align;
2744
2745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2746 mode = GET_MODE_WIDER_MODE (mode))
2747 {
2748 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2749 insn_operand_predicate_fn pred;
2750
2751 if (code != CODE_FOR_nothing
2752 /* We don't need MODE to be narrower than
2753 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2754 the mode mask, as it is returned by the macro, it will
2755 definitely be less than the actual mode mask. */
2756 && ((CONST_INT_P (size)
2757 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2758 <= (GET_MODE_MASK (mode) >> 1)))
2759 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2760 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2761 || (*pred) (object, BLKmode))
2762 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2763 || (*pred) (opalign, VOIDmode)))
2764 {
2765 rtx opsize, opchar;
2766 enum machine_mode char_mode;
2767 rtx last = get_last_insn ();
2768 rtx pat;
2769
2770 opsize = convert_to_mode (mode, size, 1);
2771 pred = insn_data[(int) code].operand[1].predicate;
2772 if (pred != 0 && ! (*pred) (opsize, mode))
2773 opsize = copy_to_mode_reg (mode, opsize);
2774
2775 opchar = val;
2776 char_mode = insn_data[(int) code].operand[2].mode;
2777 if (char_mode != VOIDmode)
2778 {
2779 opchar = convert_to_mode (char_mode, opchar, 1);
2780 pred = insn_data[(int) code].operand[2].predicate;
2781 if (pred != 0 && ! (*pred) (opchar, char_mode))
2782 opchar = copy_to_mode_reg (char_mode, opchar);
2783 }
2784
2785 if (insn_data[(int) code].n_operands == 4)
2786 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2787 else
2788 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2789 GEN_INT (expected_align
2790 / BITS_PER_UNIT),
2791 GEN_INT (expected_size));
2792 if (pat)
2793 {
2794 emit_insn (pat);
2795 return true;
2796 }
2797 else
2798 delete_insns_since (last);
2799 }
2800 }
2801
2802 return false;
2803 }
2804
2805 \f
2806 /* Write to one of the components of the complex value CPLX. Write VAL to
2807 the real part if IMAG_P is false, and the imaginary part if its true. */
2808
2809 static void
2810 write_complex_part (rtx cplx, rtx val, bool imag_p)
2811 {
2812 enum machine_mode cmode;
2813 enum machine_mode imode;
2814 unsigned ibitsize;
2815
2816 if (GET_CODE (cplx) == CONCAT)
2817 {
2818 emit_move_insn (XEXP (cplx, imag_p), val);
2819 return;
2820 }
2821
2822 cmode = GET_MODE (cplx);
2823 imode = GET_MODE_INNER (cmode);
2824 ibitsize = GET_MODE_BITSIZE (imode);
2825
2826 /* For MEMs simplify_gen_subreg may generate an invalid new address
2827 because, e.g., the original address is considered mode-dependent
2828 by the target, which restricts simplify_subreg from invoking
2829 adjust_address_nv. Instead of preparing fallback support for an
2830 invalid address, we call adjust_address_nv directly. */
2831 if (MEM_P (cplx))
2832 {
2833 emit_move_insn (adjust_address_nv (cplx, imode,
2834 imag_p ? GET_MODE_SIZE (imode) : 0),
2835 val);
2836 return;
2837 }
2838
2839 /* If the sub-object is at least word sized, then we know that subregging
2840 will work. This special case is important, since store_bit_field
2841 wants to operate on integer modes, and there's rarely an OImode to
2842 correspond to TCmode. */
2843 if (ibitsize >= BITS_PER_WORD
2844 /* For hard regs we have exact predicates. Assume we can split
2845 the original object if it spans an even number of hard regs.
2846 This special case is important for SCmode on 64-bit platforms
2847 where the natural size of floating-point regs is 32-bit. */
2848 || (REG_P (cplx)
2849 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2850 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2851 {
2852 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2853 imag_p ? GET_MODE_SIZE (imode) : 0);
2854 if (part)
2855 {
2856 emit_move_insn (part, val);
2857 return;
2858 }
2859 else
2860 /* simplify_gen_subreg may fail for sub-word MEMs. */
2861 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2862 }
2863
2864 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2865 }
2866
2867 /* Extract one of the components of the complex value CPLX. Extract the
2868 real part if IMAG_P is false, and the imaginary part if it's true. */
2869
2870 static rtx
2871 read_complex_part (rtx cplx, bool imag_p)
2872 {
2873 enum machine_mode cmode, imode;
2874 unsigned ibitsize;
2875
2876 if (GET_CODE (cplx) == CONCAT)
2877 return XEXP (cplx, imag_p);
2878
2879 cmode = GET_MODE (cplx);
2880 imode = GET_MODE_INNER (cmode);
2881 ibitsize = GET_MODE_BITSIZE (imode);
2882
2883 /* Special case reads from complex constants that got spilled to memory. */
2884 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2885 {
2886 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2887 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2888 {
2889 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2890 if (CONSTANT_CLASS_P (part))
2891 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2892 }
2893 }
2894
2895 /* For MEMs simplify_gen_subreg may generate an invalid new address
2896 because, e.g., the original address is considered mode-dependent
2897 by the target, which restricts simplify_subreg from invoking
2898 adjust_address_nv. Instead of preparing fallback support for an
2899 invalid address, we call adjust_address_nv directly. */
2900 if (MEM_P (cplx))
2901 return adjust_address_nv (cplx, imode,
2902 imag_p ? GET_MODE_SIZE (imode) : 0);
2903
2904 /* If the sub-object is at least word sized, then we know that subregging
2905 will work. This special case is important, since extract_bit_field
2906 wants to operate on integer modes, and there's rarely an OImode to
2907 correspond to TCmode. */
2908 if (ibitsize >= BITS_PER_WORD
2909 /* For hard regs we have exact predicates. Assume we can split
2910 the original object if it spans an even number of hard regs.
2911 This special case is important for SCmode on 64-bit platforms
2912 where the natural size of floating-point regs is 32-bit. */
2913 || (REG_P (cplx)
2914 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2915 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2916 {
2917 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2918 imag_p ? GET_MODE_SIZE (imode) : 0);
2919 if (ret)
2920 return ret;
2921 else
2922 /* simplify_gen_subreg may fail for sub-word MEMs. */
2923 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2924 }
2925
2926 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2927 true, NULL_RTX, imode, imode);
2928 }
2929 \f
2930 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2931 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2932 represented in NEW_MODE. If FORCE is true, this will never happen, as
2933 we'll force-create a SUBREG if needed. */
2934
2935 static rtx
2936 emit_move_change_mode (enum machine_mode new_mode,
2937 enum machine_mode old_mode, rtx x, bool force)
2938 {
2939 rtx ret;
2940
2941 if (push_operand (x, GET_MODE (x)))
2942 {
2943 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2944 MEM_COPY_ATTRIBUTES (ret, x);
2945 }
2946 else if (MEM_P (x))
2947 {
2948 /* We don't have to worry about changing the address since the
2949 size in bytes is supposed to be the same. */
2950 if (reload_in_progress)
2951 {
2952 /* Copy the MEM to change the mode and move any
2953 substitutions from the old MEM to the new one. */
2954 ret = adjust_address_nv (x, new_mode, 0);
2955 copy_replacements (x, ret);
2956 }
2957 else
2958 ret = adjust_address (x, new_mode, 0);
2959 }
2960 else
2961 {
2962 /* Note that we do want simplify_subreg's behavior of validating
2963 that the new mode is ok for a hard register. If we were to use
2964 simplify_gen_subreg, we would create the subreg, but would
2965 probably run into the target not being able to implement it. */
2966 /* Except, of course, when FORCE is true, when this is exactly what
2967 we want. Which is needed for CCmodes on some targets. */
2968 if (force)
2969 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2970 else
2971 ret = simplify_subreg (new_mode, x, old_mode, 0);
2972 }
2973
2974 return ret;
2975 }
2976
2977 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2978 an integer mode of the same size as MODE. Returns the instruction
2979 emitted, or NULL if such a move could not be generated. */
2980
2981 static rtx
2982 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2983 {
2984 enum machine_mode imode;
2985 enum insn_code code;
2986
2987 /* There must exist a mode of the exact size we require. */
2988 imode = int_mode_for_mode (mode);
2989 if (imode == BLKmode)
2990 return NULL_RTX;
2991
2992 /* The target must support moves in this mode. */
2993 code = optab_handler (mov_optab, imode);
2994 if (code == CODE_FOR_nothing)
2995 return NULL_RTX;
2996
2997 x = emit_move_change_mode (imode, mode, x, force);
2998 if (x == NULL_RTX)
2999 return NULL_RTX;
3000 y = emit_move_change_mode (imode, mode, y, force);
3001 if (y == NULL_RTX)
3002 return NULL_RTX;
3003 return emit_insn (GEN_FCN (code) (x, y));
3004 }
3005
3006 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3007 Return an equivalent MEM that does not use an auto-increment. */
3008
3009 static rtx
3010 emit_move_resolve_push (enum machine_mode mode, rtx x)
3011 {
3012 enum rtx_code code = GET_CODE (XEXP (x, 0));
3013 HOST_WIDE_INT adjust;
3014 rtx temp;
3015
3016 adjust = GET_MODE_SIZE (mode);
3017 #ifdef PUSH_ROUNDING
3018 adjust = PUSH_ROUNDING (adjust);
3019 #endif
3020 if (code == PRE_DEC || code == POST_DEC)
3021 adjust = -adjust;
3022 else if (code == PRE_MODIFY || code == POST_MODIFY)
3023 {
3024 rtx expr = XEXP (XEXP (x, 0), 1);
3025 HOST_WIDE_INT val;
3026
3027 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3028 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3029 val = INTVAL (XEXP (expr, 1));
3030 if (GET_CODE (expr) == MINUS)
3031 val = -val;
3032 gcc_assert (adjust == val || adjust == -val);
3033 adjust = val;
3034 }
3035
3036 /* Do not use anti_adjust_stack, since we don't want to update
3037 stack_pointer_delta. */
3038 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3039 GEN_INT (adjust), stack_pointer_rtx,
3040 0, OPTAB_LIB_WIDEN);
3041 if (temp != stack_pointer_rtx)
3042 emit_move_insn (stack_pointer_rtx, temp);
3043
3044 switch (code)
3045 {
3046 case PRE_INC:
3047 case PRE_DEC:
3048 case PRE_MODIFY:
3049 temp = stack_pointer_rtx;
3050 break;
3051 case POST_INC:
3052 case POST_DEC:
3053 case POST_MODIFY:
3054 temp = plus_constant (stack_pointer_rtx, -adjust);
3055 break;
3056 default:
3057 gcc_unreachable ();
3058 }
3059
3060 return replace_equiv_address (x, temp);
3061 }
3062
3063 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3064 X is known to satisfy push_operand, and MODE is known to be complex.
3065 Returns the last instruction emitted. */
3066
3067 rtx
3068 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3069 {
3070 enum machine_mode submode = GET_MODE_INNER (mode);
3071 bool imag_first;
3072
3073 #ifdef PUSH_ROUNDING
3074 unsigned int submodesize = GET_MODE_SIZE (submode);
3075
3076 /* In case we output to the stack, but the size is smaller than the
3077 machine can push exactly, we need to use move instructions. */
3078 if (PUSH_ROUNDING (submodesize) != submodesize)
3079 {
3080 x = emit_move_resolve_push (mode, x);
3081 return emit_move_insn (x, y);
3082 }
3083 #endif
3084
3085 /* Note that the real part always precedes the imag part in memory
3086 regardless of machine's endianness. */
3087 switch (GET_CODE (XEXP (x, 0)))
3088 {
3089 case PRE_DEC:
3090 case POST_DEC:
3091 imag_first = true;
3092 break;
3093 case PRE_INC:
3094 case POST_INC:
3095 imag_first = false;
3096 break;
3097 default:
3098 gcc_unreachable ();
3099 }
3100
3101 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3102 read_complex_part (y, imag_first));
3103 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3104 read_complex_part (y, !imag_first));
3105 }
3106
3107 /* A subroutine of emit_move_complex. Perform the move from Y to X
3108 via two moves of the parts. Returns the last instruction emitted. */
3109
3110 rtx
3111 emit_move_complex_parts (rtx x, rtx y)
3112 {
3113 /* Show the output dies here. This is necessary for SUBREGs
3114 of pseudos since we cannot track their lifetimes correctly;
3115 hard regs shouldn't appear here except as return values. */
3116 if (!reload_completed && !reload_in_progress
3117 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3118 emit_clobber (x);
3119
3120 write_complex_part (x, read_complex_part (y, false), false);
3121 write_complex_part (x, read_complex_part (y, true), true);
3122
3123 return get_last_insn ();
3124 }
3125
3126 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3127 MODE is known to be complex. Returns the last instruction emitted. */
3128
3129 static rtx
3130 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3131 {
3132 bool try_int;
3133
3134 /* Need to take special care for pushes, to maintain proper ordering
3135 of the data, and possibly extra padding. */
3136 if (push_operand (x, mode))
3137 return emit_move_complex_push (mode, x, y);
3138
3139 /* See if we can coerce the target into moving both values at once. */
3140
3141 /* Move floating point as parts. */
3142 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3143 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3144 try_int = false;
3145 /* Not possible if the values are inherently not adjacent. */
3146 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3147 try_int = false;
3148 /* Is possible if both are registers (or subregs of registers). */
3149 else if (register_operand (x, mode) && register_operand (y, mode))
3150 try_int = true;
3151 /* If one of the operands is a memory, and alignment constraints
3152 are friendly enough, we may be able to do combined memory operations.
3153 We do not attempt this if Y is a constant because that combination is
3154 usually better with the by-parts thing below. */
3155 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3156 && (!STRICT_ALIGNMENT
3157 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3158 try_int = true;
3159 else
3160 try_int = false;
3161
3162 if (try_int)
3163 {
3164 rtx ret;
3165
3166 /* For memory to memory moves, optimal behavior can be had with the
3167 existing block move logic. */
3168 if (MEM_P (x) && MEM_P (y))
3169 {
3170 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3171 BLOCK_OP_NO_LIBCALL);
3172 return get_last_insn ();
3173 }
3174
3175 ret = emit_move_via_integer (mode, x, y, true);
3176 if (ret)
3177 return ret;
3178 }
3179
3180 return emit_move_complex_parts (x, y);
3181 }
3182
3183 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3184 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3185
3186 static rtx
3187 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3188 {
3189 rtx ret;
3190
3191 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3192 if (mode != CCmode)
3193 {
3194 enum insn_code code = optab_handler (mov_optab, CCmode);
3195 if (code != CODE_FOR_nothing)
3196 {
3197 x = emit_move_change_mode (CCmode, mode, x, true);
3198 y = emit_move_change_mode (CCmode, mode, y, true);
3199 return emit_insn (GEN_FCN (code) (x, y));
3200 }
3201 }
3202
3203 /* Otherwise, find the MODE_INT mode of the same width. */
3204 ret = emit_move_via_integer (mode, x, y, false);
3205 gcc_assert (ret != NULL);
3206 return ret;
3207 }
3208
3209 /* Return true if word I of OP lies entirely in the
3210 undefined bits of a paradoxical subreg. */
3211
3212 static bool
3213 undefined_operand_subword_p (const_rtx op, int i)
3214 {
3215 enum machine_mode innermode, innermostmode;
3216 int offset;
3217 if (GET_CODE (op) != SUBREG)
3218 return false;
3219 innermode = GET_MODE (op);
3220 innermostmode = GET_MODE (SUBREG_REG (op));
3221 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3222 /* The SUBREG_BYTE represents offset, as if the value were stored in
3223 memory, except for a paradoxical subreg where we define
3224 SUBREG_BYTE to be 0; undo this exception as in
3225 simplify_subreg. */
3226 if (SUBREG_BYTE (op) == 0
3227 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3228 {
3229 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3230 if (WORDS_BIG_ENDIAN)
3231 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3232 if (BYTES_BIG_ENDIAN)
3233 offset += difference % UNITS_PER_WORD;
3234 }
3235 if (offset >= GET_MODE_SIZE (innermostmode)
3236 || offset <= -GET_MODE_SIZE (word_mode))
3237 return true;
3238 return false;
3239 }
3240
3241 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3242 MODE is any multi-word or full-word mode that lacks a move_insn
3243 pattern. Note that you will get better code if you define such
3244 patterns, even if they must turn into multiple assembler instructions. */
3245
3246 static rtx
3247 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3248 {
3249 rtx last_insn = 0;
3250 rtx seq, inner;
3251 bool need_clobber;
3252 int i;
3253
3254 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3255
3256 /* If X is a push on the stack, do the push now and replace
3257 X with a reference to the stack pointer. */
3258 if (push_operand (x, mode))
3259 x = emit_move_resolve_push (mode, x);
3260
3261 /* If we are in reload, see if either operand is a MEM whose address
3262 is scheduled for replacement. */
3263 if (reload_in_progress && MEM_P (x)
3264 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3265 x = replace_equiv_address_nv (x, inner);
3266 if (reload_in_progress && MEM_P (y)
3267 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3268 y = replace_equiv_address_nv (y, inner);
3269
3270 start_sequence ();
3271
3272 need_clobber = false;
3273 for (i = 0;
3274 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3275 i++)
3276 {
3277 rtx xpart = operand_subword (x, i, 1, mode);
3278 rtx ypart;
3279
3280 /* Do not generate code for a move if it would come entirely
3281 from the undefined bits of a paradoxical subreg. */
3282 if (undefined_operand_subword_p (y, i))
3283 continue;
3284
3285 ypart = operand_subword (y, i, 1, mode);
3286
3287 /* If we can't get a part of Y, put Y into memory if it is a
3288 constant. Otherwise, force it into a register. Then we must
3289 be able to get a part of Y. */
3290 if (ypart == 0 && CONSTANT_P (y))
3291 {
3292 y = use_anchored_address (force_const_mem (mode, y));
3293 ypart = operand_subword (y, i, 1, mode);
3294 }
3295 else if (ypart == 0)
3296 ypart = operand_subword_force (y, i, mode);
3297
3298 gcc_assert (xpart && ypart);
3299
3300 need_clobber |= (GET_CODE (xpart) == SUBREG);
3301
3302 last_insn = emit_move_insn (xpart, ypart);
3303 }
3304
3305 seq = get_insns ();
3306 end_sequence ();
3307
3308 /* Show the output dies here. This is necessary for SUBREGs
3309 of pseudos since we cannot track their lifetimes correctly;
3310 hard regs shouldn't appear here except as return values.
3311 We never want to emit such a clobber after reload. */
3312 if (x != y
3313 && ! (reload_in_progress || reload_completed)
3314 && need_clobber != 0)
3315 emit_clobber (x);
3316
3317 emit_insn (seq);
3318
3319 return last_insn;
3320 }
3321
3322 /* Low level part of emit_move_insn.
3323 Called just like emit_move_insn, but assumes X and Y
3324 are basically valid. */
3325
3326 rtx
3327 emit_move_insn_1 (rtx x, rtx y)
3328 {
3329 enum machine_mode mode = GET_MODE (x);
3330 enum insn_code code;
3331
3332 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3333
3334 code = optab_handler (mov_optab, mode);
3335 if (code != CODE_FOR_nothing)
3336 return emit_insn (GEN_FCN (code) (x, y));
3337
3338 /* Expand complex moves by moving real part and imag part. */
3339 if (COMPLEX_MODE_P (mode))
3340 return emit_move_complex (mode, x, y);
3341
3342 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3343 || ALL_FIXED_POINT_MODE_P (mode))
3344 {
3345 rtx result = emit_move_via_integer (mode, x, y, true);
3346
3347 /* If we can't find an integer mode, use multi words. */
3348 if (result)
3349 return result;
3350 else
3351 return emit_move_multi_word (mode, x, y);
3352 }
3353
3354 if (GET_MODE_CLASS (mode) == MODE_CC)
3355 return emit_move_ccmode (mode, x, y);
3356
3357 /* Try using a move pattern for the corresponding integer mode. This is
3358 only safe when simplify_subreg can convert MODE constants into integer
3359 constants. At present, it can only do this reliably if the value
3360 fits within a HOST_WIDE_INT. */
3361 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3362 {
3363 rtx ret = emit_move_via_integer (mode, x, y, false);
3364 if (ret)
3365 return ret;
3366 }
3367
3368 return emit_move_multi_word (mode, x, y);
3369 }
3370
3371 /* Generate code to copy Y into X.
3372 Both Y and X must have the same mode, except that
3373 Y can be a constant with VOIDmode.
3374 This mode cannot be BLKmode; use emit_block_move for that.
3375
3376 Return the last instruction emitted. */
3377
3378 rtx
3379 emit_move_insn (rtx x, rtx y)
3380 {
3381 enum machine_mode mode = GET_MODE (x);
3382 rtx y_cst = NULL_RTX;
3383 rtx last_insn, set;
3384
3385 gcc_assert (mode != BLKmode
3386 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3387
3388 if (CONSTANT_P (y))
3389 {
3390 if (optimize
3391 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3392 && (last_insn = compress_float_constant (x, y)))
3393 return last_insn;
3394
3395 y_cst = y;
3396
3397 if (!LEGITIMATE_CONSTANT_P (y))
3398 {
3399 y = force_const_mem (mode, y);
3400
3401 /* If the target's cannot_force_const_mem prevented the spill,
3402 assume that the target's move expanders will also take care
3403 of the non-legitimate constant. */
3404 if (!y)
3405 y = y_cst;
3406 else
3407 y = use_anchored_address (y);
3408 }
3409 }
3410
3411 /* If X or Y are memory references, verify that their addresses are valid
3412 for the machine. */
3413 if (MEM_P (x)
3414 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3415 MEM_ADDR_SPACE (x))
3416 && ! push_operand (x, GET_MODE (x))))
3417 x = validize_mem (x);
3418
3419 if (MEM_P (y)
3420 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3421 MEM_ADDR_SPACE (y)))
3422 y = validize_mem (y);
3423
3424 gcc_assert (mode != BLKmode);
3425
3426 last_insn = emit_move_insn_1 (x, y);
3427
3428 if (y_cst && REG_P (x)
3429 && (set = single_set (last_insn)) != NULL_RTX
3430 && SET_DEST (set) == x
3431 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3432 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3433
3434 return last_insn;
3435 }
3436
3437 /* If Y is representable exactly in a narrower mode, and the target can
3438 perform the extension directly from constant or memory, then emit the
3439 move as an extension. */
3440
3441 static rtx
3442 compress_float_constant (rtx x, rtx y)
3443 {
3444 enum machine_mode dstmode = GET_MODE (x);
3445 enum machine_mode orig_srcmode = GET_MODE (y);
3446 enum machine_mode srcmode;
3447 REAL_VALUE_TYPE r;
3448 int oldcost, newcost;
3449 bool speed = optimize_insn_for_speed_p ();
3450
3451 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3452
3453 if (LEGITIMATE_CONSTANT_P (y))
3454 oldcost = rtx_cost (y, SET, speed);
3455 else
3456 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3457
3458 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3459 srcmode != orig_srcmode;
3460 srcmode = GET_MODE_WIDER_MODE (srcmode))
3461 {
3462 enum insn_code ic;
3463 rtx trunc_y, last_insn;
3464
3465 /* Skip if the target can't extend this way. */
3466 ic = can_extend_p (dstmode, srcmode, 0);
3467 if (ic == CODE_FOR_nothing)
3468 continue;
3469
3470 /* Skip if the narrowed value isn't exact. */
3471 if (! exact_real_truncate (srcmode, &r))
3472 continue;
3473
3474 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3475
3476 if (LEGITIMATE_CONSTANT_P (trunc_y))
3477 {
3478 /* Skip if the target needs extra instructions to perform
3479 the extension. */
3480 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3481 continue;
3482 /* This is valid, but may not be cheaper than the original. */
3483 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3484 if (oldcost < newcost)
3485 continue;
3486 }
3487 else if (float_extend_from_mem[dstmode][srcmode])
3488 {
3489 trunc_y = force_const_mem (srcmode, trunc_y);
3490 /* This is valid, but may not be cheaper than the original. */
3491 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3492 if (oldcost < newcost)
3493 continue;
3494 trunc_y = validize_mem (trunc_y);
3495 }
3496 else
3497 continue;
3498
3499 /* For CSE's benefit, force the compressed constant pool entry
3500 into a new pseudo. This constant may be used in different modes,
3501 and if not, combine will put things back together for us. */
3502 trunc_y = force_reg (srcmode, trunc_y);
3503 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3504 last_insn = get_last_insn ();
3505
3506 if (REG_P (x))
3507 set_unique_reg_note (last_insn, REG_EQUAL, y);
3508
3509 return last_insn;
3510 }
3511
3512 return NULL_RTX;
3513 }
3514 \f
3515 /* Pushing data onto the stack. */
3516
3517 /* Push a block of length SIZE (perhaps variable)
3518 and return an rtx to address the beginning of the block.
3519 The value may be virtual_outgoing_args_rtx.
3520
3521 EXTRA is the number of bytes of padding to push in addition to SIZE.
3522 BELOW nonzero means this padding comes at low addresses;
3523 otherwise, the padding comes at high addresses. */
3524
3525 rtx
3526 push_block (rtx size, int extra, int below)
3527 {
3528 rtx temp;
3529
3530 size = convert_modes (Pmode, ptr_mode, size, 1);
3531 if (CONSTANT_P (size))
3532 anti_adjust_stack (plus_constant (size, extra));
3533 else if (REG_P (size) && extra == 0)
3534 anti_adjust_stack (size);
3535 else
3536 {
3537 temp = copy_to_mode_reg (Pmode, size);
3538 if (extra != 0)
3539 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3540 temp, 0, OPTAB_LIB_WIDEN);
3541 anti_adjust_stack (temp);
3542 }
3543
3544 #ifndef STACK_GROWS_DOWNWARD
3545 if (0)
3546 #else
3547 if (1)
3548 #endif
3549 {
3550 temp = virtual_outgoing_args_rtx;
3551 if (extra != 0 && below)
3552 temp = plus_constant (temp, extra);
3553 }
3554 else
3555 {
3556 if (CONST_INT_P (size))
3557 temp = plus_constant (virtual_outgoing_args_rtx,
3558 -INTVAL (size) - (below ? 0 : extra));
3559 else if (extra != 0 && !below)
3560 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3561 negate_rtx (Pmode, plus_constant (size, extra)));
3562 else
3563 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3564 negate_rtx (Pmode, size));
3565 }
3566
3567 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3568 }
3569
3570 #ifdef PUSH_ROUNDING
3571
3572 /* Emit single push insn. */
3573
3574 static void
3575 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3576 {
3577 rtx dest_addr;
3578 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3579 rtx dest;
3580 enum insn_code icode;
3581 insn_operand_predicate_fn pred;
3582
3583 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3584 /* If there is push pattern, use it. Otherwise try old way of throwing
3585 MEM representing push operation to move expander. */
3586 icode = optab_handler (push_optab, mode);
3587 if (icode != CODE_FOR_nothing)
3588 {
3589 if (((pred = insn_data[(int) icode].operand[0].predicate)
3590 && !((*pred) (x, mode))))
3591 x = force_reg (mode, x);
3592 emit_insn (GEN_FCN (icode) (x));
3593 return;
3594 }
3595 if (GET_MODE_SIZE (mode) == rounded_size)
3596 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3597 /* If we are to pad downward, adjust the stack pointer first and
3598 then store X into the stack location using an offset. This is
3599 because emit_move_insn does not know how to pad; it does not have
3600 access to type. */
3601 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3602 {
3603 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3604 HOST_WIDE_INT offset;
3605
3606 emit_move_insn (stack_pointer_rtx,
3607 expand_binop (Pmode,
3608 #ifdef STACK_GROWS_DOWNWARD
3609 sub_optab,
3610 #else
3611 add_optab,
3612 #endif
3613 stack_pointer_rtx,
3614 GEN_INT (rounded_size),
3615 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3616
3617 offset = (HOST_WIDE_INT) padding_size;
3618 #ifdef STACK_GROWS_DOWNWARD
3619 if (STACK_PUSH_CODE == POST_DEC)
3620 /* We have already decremented the stack pointer, so get the
3621 previous value. */
3622 offset += (HOST_WIDE_INT) rounded_size;
3623 #else
3624 if (STACK_PUSH_CODE == POST_INC)
3625 /* We have already incremented the stack pointer, so get the
3626 previous value. */
3627 offset -= (HOST_WIDE_INT) rounded_size;
3628 #endif
3629 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3630 }
3631 else
3632 {
3633 #ifdef STACK_GROWS_DOWNWARD
3634 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3635 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3636 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3637 #else
3638 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3639 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3640 GEN_INT (rounded_size));
3641 #endif
3642 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3643 }
3644
3645 dest = gen_rtx_MEM (mode, dest_addr);
3646
3647 if (type != 0)
3648 {
3649 set_mem_attributes (dest, type, 1);
3650
3651 if (flag_optimize_sibling_calls)
3652 /* Function incoming arguments may overlap with sibling call
3653 outgoing arguments and we cannot allow reordering of reads
3654 from function arguments with stores to outgoing arguments
3655 of sibling calls. */
3656 set_mem_alias_set (dest, 0);
3657 }
3658 emit_move_insn (dest, x);
3659 }
3660 #endif
3661
3662 /* Generate code to push X onto the stack, assuming it has mode MODE and
3663 type TYPE.
3664 MODE is redundant except when X is a CONST_INT (since they don't
3665 carry mode info).
3666 SIZE is an rtx for the size of data to be copied (in bytes),
3667 needed only if X is BLKmode.
3668
3669 ALIGN (in bits) is maximum alignment we can assume.
3670
3671 If PARTIAL and REG are both nonzero, then copy that many of the first
3672 bytes of X into registers starting with REG, and push the rest of X.
3673 The amount of space pushed is decreased by PARTIAL bytes.
3674 REG must be a hard register in this case.
3675 If REG is zero but PARTIAL is not, take any all others actions for an
3676 argument partially in registers, but do not actually load any
3677 registers.
3678
3679 EXTRA is the amount in bytes of extra space to leave next to this arg.
3680 This is ignored if an argument block has already been allocated.
3681
3682 On a machine that lacks real push insns, ARGS_ADDR is the address of
3683 the bottom of the argument block for this call. We use indexing off there
3684 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3685 argument block has not been preallocated.
3686
3687 ARGS_SO_FAR is the size of args previously pushed for this call.
3688
3689 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3690 for arguments passed in registers. If nonzero, it will be the number
3691 of bytes required. */
3692
3693 void
3694 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3695 unsigned int align, int partial, rtx reg, int extra,
3696 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3697 rtx alignment_pad)
3698 {
3699 rtx xinner;
3700 enum direction stack_direction
3701 #ifdef STACK_GROWS_DOWNWARD
3702 = downward;
3703 #else
3704 = upward;
3705 #endif
3706
3707 /* Decide where to pad the argument: `downward' for below,
3708 `upward' for above, or `none' for don't pad it.
3709 Default is below for small data on big-endian machines; else above. */
3710 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3711
3712 /* Invert direction if stack is post-decrement.
3713 FIXME: why? */
3714 if (STACK_PUSH_CODE == POST_DEC)
3715 if (where_pad != none)
3716 where_pad = (where_pad == downward ? upward : downward);
3717
3718 xinner = x;
3719
3720 if (mode == BLKmode
3721 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3722 {
3723 /* Copy a block into the stack, entirely or partially. */
3724
3725 rtx temp;
3726 int used;
3727 int offset;
3728 int skip;
3729
3730 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3731 used = partial - offset;
3732
3733 if (mode != BLKmode)
3734 {
3735 /* A value is to be stored in an insufficiently aligned
3736 stack slot; copy via a suitably aligned slot if
3737 necessary. */
3738 size = GEN_INT (GET_MODE_SIZE (mode));
3739 if (!MEM_P (xinner))
3740 {
3741 temp = assign_temp (type, 0, 1, 1);
3742 emit_move_insn (temp, xinner);
3743 xinner = temp;
3744 }
3745 }
3746
3747 gcc_assert (size);
3748
3749 /* USED is now the # of bytes we need not copy to the stack
3750 because registers will take care of them. */
3751
3752 if (partial != 0)
3753 xinner = adjust_address (xinner, BLKmode, used);
3754
3755 /* If the partial register-part of the arg counts in its stack size,
3756 skip the part of stack space corresponding to the registers.
3757 Otherwise, start copying to the beginning of the stack space,
3758 by setting SKIP to 0. */
3759 skip = (reg_parm_stack_space == 0) ? 0 : used;
3760
3761 #ifdef PUSH_ROUNDING
3762 /* Do it with several push insns if that doesn't take lots of insns
3763 and if there is no difficulty with push insns that skip bytes
3764 on the stack for alignment purposes. */
3765 if (args_addr == 0
3766 && PUSH_ARGS
3767 && CONST_INT_P (size)
3768 && skip == 0
3769 && MEM_ALIGN (xinner) >= align
3770 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3771 /* Here we avoid the case of a structure whose weak alignment
3772 forces many pushes of a small amount of data,
3773 and such small pushes do rounding that causes trouble. */
3774 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3775 || align >= BIGGEST_ALIGNMENT
3776 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3777 == (align / BITS_PER_UNIT)))
3778 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3779 {
3780 /* Push padding now if padding above and stack grows down,
3781 or if padding below and stack grows up.
3782 But if space already allocated, this has already been done. */
3783 if (extra && args_addr == 0
3784 && where_pad != none && where_pad != stack_direction)
3785 anti_adjust_stack (GEN_INT (extra));
3786
3787 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3788 }
3789 else
3790 #endif /* PUSH_ROUNDING */
3791 {
3792 rtx target;
3793
3794 /* Otherwise make space on the stack and copy the data
3795 to the address of that space. */
3796
3797 /* Deduct words put into registers from the size we must copy. */
3798 if (partial != 0)
3799 {
3800 if (CONST_INT_P (size))
3801 size = GEN_INT (INTVAL (size) - used);
3802 else
3803 size = expand_binop (GET_MODE (size), sub_optab, size,
3804 GEN_INT (used), NULL_RTX, 0,
3805 OPTAB_LIB_WIDEN);
3806 }
3807
3808 /* Get the address of the stack space.
3809 In this case, we do not deal with EXTRA separately.
3810 A single stack adjust will do. */
3811 if (! args_addr)
3812 {
3813 temp = push_block (size, extra, where_pad == downward);
3814 extra = 0;
3815 }
3816 else if (CONST_INT_P (args_so_far))
3817 temp = memory_address (BLKmode,
3818 plus_constant (args_addr,
3819 skip + INTVAL (args_so_far)));
3820 else
3821 temp = memory_address (BLKmode,
3822 plus_constant (gen_rtx_PLUS (Pmode,
3823 args_addr,
3824 args_so_far),
3825 skip));
3826
3827 if (!ACCUMULATE_OUTGOING_ARGS)
3828 {
3829 /* If the source is referenced relative to the stack pointer,
3830 copy it to another register to stabilize it. We do not need
3831 to do this if we know that we won't be changing sp. */
3832
3833 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3834 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3835 temp = copy_to_reg (temp);
3836 }
3837
3838 target = gen_rtx_MEM (BLKmode, temp);
3839
3840 /* We do *not* set_mem_attributes here, because incoming arguments
3841 may overlap with sibling call outgoing arguments and we cannot
3842 allow reordering of reads from function arguments with stores
3843 to outgoing arguments of sibling calls. We do, however, want
3844 to record the alignment of the stack slot. */
3845 /* ALIGN may well be better aligned than TYPE, e.g. due to
3846 PARM_BOUNDARY. Assume the caller isn't lying. */
3847 set_mem_align (target, align);
3848
3849 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3850 }
3851 }
3852 else if (partial > 0)
3853 {
3854 /* Scalar partly in registers. */
3855
3856 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3857 int i;
3858 int not_stack;
3859 /* # bytes of start of argument
3860 that we must make space for but need not store. */
3861 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3862 int args_offset = INTVAL (args_so_far);
3863 int skip;
3864
3865 /* Push padding now if padding above and stack grows down,
3866 or if padding below and stack grows up.
3867 But if space already allocated, this has already been done. */
3868 if (extra && args_addr == 0
3869 && where_pad != none && where_pad != stack_direction)
3870 anti_adjust_stack (GEN_INT (extra));
3871
3872 /* If we make space by pushing it, we might as well push
3873 the real data. Otherwise, we can leave OFFSET nonzero
3874 and leave the space uninitialized. */
3875 if (args_addr == 0)
3876 offset = 0;
3877
3878 /* Now NOT_STACK gets the number of words that we don't need to
3879 allocate on the stack. Convert OFFSET to words too. */
3880 not_stack = (partial - offset) / UNITS_PER_WORD;
3881 offset /= UNITS_PER_WORD;
3882
3883 /* If the partial register-part of the arg counts in its stack size,
3884 skip the part of stack space corresponding to the registers.
3885 Otherwise, start copying to the beginning of the stack space,
3886 by setting SKIP to 0. */
3887 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3888
3889 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3890 x = validize_mem (force_const_mem (mode, x));
3891
3892 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3893 SUBREGs of such registers are not allowed. */
3894 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3895 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3896 x = copy_to_reg (x);
3897
3898 /* Loop over all the words allocated on the stack for this arg. */
3899 /* We can do it by words, because any scalar bigger than a word
3900 has a size a multiple of a word. */
3901 #ifndef PUSH_ARGS_REVERSED
3902 for (i = not_stack; i < size; i++)
3903 #else
3904 for (i = size - 1; i >= not_stack; i--)
3905 #endif
3906 if (i >= not_stack + offset)
3907 emit_push_insn (operand_subword_force (x, i, mode),
3908 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3909 0, args_addr,
3910 GEN_INT (args_offset + ((i - not_stack + skip)
3911 * UNITS_PER_WORD)),
3912 reg_parm_stack_space, alignment_pad);
3913 }
3914 else
3915 {
3916 rtx addr;
3917 rtx dest;
3918
3919 /* Push padding now if padding above and stack grows down,
3920 or if padding below and stack grows up.
3921 But if space already allocated, this has already been done. */
3922 if (extra && args_addr == 0
3923 && where_pad != none && where_pad != stack_direction)
3924 anti_adjust_stack (GEN_INT (extra));
3925
3926 #ifdef PUSH_ROUNDING
3927 if (args_addr == 0 && PUSH_ARGS)
3928 emit_single_push_insn (mode, x, type);
3929 else
3930 #endif
3931 {
3932 if (CONST_INT_P (args_so_far))
3933 addr
3934 = memory_address (mode,
3935 plus_constant (args_addr,
3936 INTVAL (args_so_far)));
3937 else
3938 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3939 args_so_far));
3940 dest = gen_rtx_MEM (mode, addr);
3941
3942 /* We do *not* set_mem_attributes here, because incoming arguments
3943 may overlap with sibling call outgoing arguments and we cannot
3944 allow reordering of reads from function arguments with stores
3945 to outgoing arguments of sibling calls. We do, however, want
3946 to record the alignment of the stack slot. */
3947 /* ALIGN may well be better aligned than TYPE, e.g. due to
3948 PARM_BOUNDARY. Assume the caller isn't lying. */
3949 set_mem_align (dest, align);
3950
3951 emit_move_insn (dest, x);
3952 }
3953 }
3954
3955 /* If part should go in registers, copy that part
3956 into the appropriate registers. Do this now, at the end,
3957 since mem-to-mem copies above may do function calls. */
3958 if (partial > 0 && reg != 0)
3959 {
3960 /* Handle calls that pass values in multiple non-contiguous locations.
3961 The Irix 6 ABI has examples of this. */
3962 if (GET_CODE (reg) == PARALLEL)
3963 emit_group_load (reg, x, type, -1);
3964 else
3965 {
3966 gcc_assert (partial % UNITS_PER_WORD == 0);
3967 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3968 }
3969 }
3970
3971 if (extra && args_addr == 0 && where_pad == stack_direction)
3972 anti_adjust_stack (GEN_INT (extra));
3973
3974 if (alignment_pad && args_addr == 0)
3975 anti_adjust_stack (alignment_pad);
3976 }
3977 \f
3978 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3979 operations. */
3980
3981 static rtx
3982 get_subtarget (rtx x)
3983 {
3984 return (optimize
3985 || x == 0
3986 /* Only registers can be subtargets. */
3987 || !REG_P (x)
3988 /* Don't use hard regs to avoid extending their life. */
3989 || REGNO (x) < FIRST_PSEUDO_REGISTER
3990 ? 0 : x);
3991 }
3992
3993 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3994 FIELD is a bitfield. Returns true if the optimization was successful,
3995 and there's nothing else to do. */
3996
3997 static bool
3998 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3999 unsigned HOST_WIDE_INT bitpos,
4000 enum machine_mode mode1, rtx str_rtx,
4001 tree to, tree src)
4002 {
4003 enum machine_mode str_mode = GET_MODE (str_rtx);
4004 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4005 tree op0, op1;
4006 rtx value, result;
4007 optab binop;
4008
4009 if (mode1 != VOIDmode
4010 || bitsize >= BITS_PER_WORD
4011 || str_bitsize > BITS_PER_WORD
4012 || TREE_SIDE_EFFECTS (to)
4013 || TREE_THIS_VOLATILE (to))
4014 return false;
4015
4016 STRIP_NOPS (src);
4017 if (!BINARY_CLASS_P (src)
4018 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4019 return false;
4020
4021 op0 = TREE_OPERAND (src, 0);
4022 op1 = TREE_OPERAND (src, 1);
4023 STRIP_NOPS (op0);
4024
4025 if (!operand_equal_p (to, op0, 0))
4026 return false;
4027
4028 if (MEM_P (str_rtx))
4029 {
4030 unsigned HOST_WIDE_INT offset1;
4031
4032 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4033 str_mode = word_mode;
4034 str_mode = get_best_mode (bitsize, bitpos,
4035 MEM_ALIGN (str_rtx), str_mode, 0);
4036 if (str_mode == VOIDmode)
4037 return false;
4038 str_bitsize = GET_MODE_BITSIZE (str_mode);
4039
4040 offset1 = bitpos;
4041 bitpos %= str_bitsize;
4042 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4043 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4044 }
4045 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4046 return false;
4047
4048 /* If the bit field covers the whole REG/MEM, store_field
4049 will likely generate better code. */
4050 if (bitsize >= str_bitsize)
4051 return false;
4052
4053 /* We can't handle fields split across multiple entities. */
4054 if (bitpos + bitsize > str_bitsize)
4055 return false;
4056
4057 if (BYTES_BIG_ENDIAN)
4058 bitpos = str_bitsize - bitpos - bitsize;
4059
4060 switch (TREE_CODE (src))
4061 {
4062 case PLUS_EXPR:
4063 case MINUS_EXPR:
4064 /* For now, just optimize the case of the topmost bitfield
4065 where we don't need to do any masking and also
4066 1 bit bitfields where xor can be used.
4067 We might win by one instruction for the other bitfields
4068 too if insv/extv instructions aren't used, so that
4069 can be added later. */
4070 if (bitpos + bitsize != str_bitsize
4071 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4072 break;
4073
4074 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4075 value = convert_modes (str_mode,
4076 TYPE_MODE (TREE_TYPE (op1)), value,
4077 TYPE_UNSIGNED (TREE_TYPE (op1)));
4078
4079 /* We may be accessing data outside the field, which means
4080 we can alias adjacent data. */
4081 if (MEM_P (str_rtx))
4082 {
4083 str_rtx = shallow_copy_rtx (str_rtx);
4084 set_mem_alias_set (str_rtx, 0);
4085 set_mem_expr (str_rtx, 0);
4086 }
4087
4088 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4089 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4090 {
4091 value = expand_and (str_mode, value, const1_rtx, NULL);
4092 binop = xor_optab;
4093 }
4094 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4095 build_int_cst (NULL_TREE, bitpos),
4096 NULL_RTX, 1);
4097 result = expand_binop (str_mode, binop, str_rtx,
4098 value, str_rtx, 1, OPTAB_WIDEN);
4099 if (result != str_rtx)
4100 emit_move_insn (str_rtx, result);
4101 return true;
4102
4103 case BIT_IOR_EXPR:
4104 case BIT_XOR_EXPR:
4105 if (TREE_CODE (op1) != INTEGER_CST)
4106 break;
4107 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4108 value = convert_modes (GET_MODE (str_rtx),
4109 TYPE_MODE (TREE_TYPE (op1)), value,
4110 TYPE_UNSIGNED (TREE_TYPE (op1)));
4111
4112 /* We may be accessing data outside the field, which means
4113 we can alias adjacent data. */
4114 if (MEM_P (str_rtx))
4115 {
4116 str_rtx = shallow_copy_rtx (str_rtx);
4117 set_mem_alias_set (str_rtx, 0);
4118 set_mem_expr (str_rtx, 0);
4119 }
4120
4121 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4122 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4123 {
4124 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4125 - 1);
4126 value = expand_and (GET_MODE (str_rtx), value, mask,
4127 NULL_RTX);
4128 }
4129 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4130 build_int_cst (NULL_TREE, bitpos),
4131 NULL_RTX, 1);
4132 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4133 value, str_rtx, 1, OPTAB_WIDEN);
4134 if (result != str_rtx)
4135 emit_move_insn (str_rtx, result);
4136 return true;
4137
4138 default:
4139 break;
4140 }
4141
4142 return false;
4143 }
4144
4145
4146 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4147 is true, try generating a nontemporal store. */
4148
4149 void
4150 expand_assignment (tree to, tree from, bool nontemporal)
4151 {
4152 rtx to_rtx = 0;
4153 rtx result;
4154 enum machine_mode mode;
4155 int align, icode;
4156
4157 /* Don't crash if the lhs of the assignment was erroneous. */
4158 if (TREE_CODE (to) == ERROR_MARK)
4159 {
4160 result = expand_normal (from);
4161 return;
4162 }
4163
4164 /* Optimize away no-op moves without side-effects. */
4165 if (operand_equal_p (to, from, 0))
4166 return;
4167
4168 mode = TYPE_MODE (TREE_TYPE (to));
4169 if ((TREE_CODE (to) == MEM_REF
4170 || TREE_CODE (to) == TARGET_MEM_REF)
4171 && mode != BLKmode
4172 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4173 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4174 < (signed) GET_MODE_ALIGNMENT (mode))
4175 && ((icode = optab_handler (movmisalign_optab, mode))
4176 != CODE_FOR_nothing))
4177 {
4178 enum machine_mode address_mode, op_mode1;
4179 rtx insn, reg, op0, mem;
4180
4181 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4182 reg = force_not_mem (reg);
4183
4184 if (TREE_CODE (to) == MEM_REF)
4185 {
4186 addr_space_t as
4187 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4188 tree base = TREE_OPERAND (to, 0);
4189 address_mode = targetm.addr_space.address_mode (as);
4190 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4191 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4192 if (!integer_zerop (TREE_OPERAND (to, 1)))
4193 {
4194 rtx off
4195 = immed_double_int_const (mem_ref_offset (to), address_mode);
4196 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4197 }
4198 op0 = memory_address_addr_space (mode, op0, as);
4199 mem = gen_rtx_MEM (mode, op0);
4200 set_mem_attributes (mem, to, 0);
4201 set_mem_addr_space (mem, as);
4202 }
4203 else if (TREE_CODE (to) == TARGET_MEM_REF)
4204 {
4205 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4206 struct mem_address addr;
4207
4208 get_address_description (to, &addr);
4209 op0 = addr_for_mem_ref (&addr, as, true);
4210 op0 = memory_address_addr_space (mode, op0, as);
4211 mem = gen_rtx_MEM (mode, op0);
4212 set_mem_attributes (mem, to, 0);
4213 set_mem_addr_space (mem, as);
4214 }
4215 else
4216 gcc_unreachable ();
4217 if (TREE_THIS_VOLATILE (to))
4218 MEM_VOLATILE_P (mem) = 1;
4219
4220 op_mode1 = insn_data[icode].operand[1].mode;
4221 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4222 && op_mode1 != VOIDmode)
4223 reg = copy_to_mode_reg (op_mode1, reg);
4224
4225 insn = GEN_FCN (icode) (mem, reg);
4226 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4227 silently be omitted. */
4228 gcc_assert (insn != NULL_RTX);
4229 emit_insn (insn);
4230 return;
4231 }
4232
4233 /* Assignment of a structure component needs special treatment
4234 if the structure component's rtx is not simply a MEM.
4235 Assignment of an array element at a constant index, and assignment of
4236 an array element in an unaligned packed structure field, has the same
4237 problem. */
4238 if (handled_component_p (to)
4239 /* ??? We only need to handle MEM_REF here if the access is not
4240 a full access of the base object. */
4241 || (TREE_CODE (to) == MEM_REF
4242 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4243 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4244 {
4245 enum machine_mode mode1;
4246 HOST_WIDE_INT bitsize, bitpos;
4247 tree offset;
4248 int unsignedp;
4249 int volatilep = 0;
4250 tree tem;
4251
4252 push_temp_slots ();
4253 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4254 &unsignedp, &volatilep, true);
4255
4256 /* If we are going to use store_bit_field and extract_bit_field,
4257 make sure to_rtx will be safe for multiple use. */
4258
4259 to_rtx = expand_normal (tem);
4260
4261 /* If the bitfield is volatile, we want to access it in the
4262 field's mode, not the computed mode. */
4263 if (volatilep
4264 && GET_CODE (to_rtx) == MEM
4265 && flag_strict_volatile_bitfields > 0)
4266 to_rtx = adjust_address (to_rtx, mode1, 0);
4267
4268 if (offset != 0)
4269 {
4270 enum machine_mode address_mode;
4271 rtx offset_rtx;
4272
4273 if (!MEM_P (to_rtx))
4274 {
4275 /* We can get constant negative offsets into arrays with broken
4276 user code. Translate this to a trap instead of ICEing. */
4277 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4278 expand_builtin_trap ();
4279 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4280 }
4281
4282 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4283 address_mode
4284 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4285 if (GET_MODE (offset_rtx) != address_mode)
4286 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4287
4288 /* A constant address in TO_RTX can have VOIDmode, we must not try
4289 to call force_reg for that case. Avoid that case. */
4290 if (MEM_P (to_rtx)
4291 && GET_MODE (to_rtx) == BLKmode
4292 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4293 && bitsize > 0
4294 && (bitpos % bitsize) == 0
4295 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4296 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4297 {
4298 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4299 bitpos = 0;
4300 }
4301
4302 to_rtx = offset_address (to_rtx, offset_rtx,
4303 highest_pow2_factor_for_target (to,
4304 offset));
4305 }
4306
4307 /* No action is needed if the target is not a memory and the field
4308 lies completely outside that target. This can occur if the source
4309 code contains an out-of-bounds access to a small array. */
4310 if (!MEM_P (to_rtx)
4311 && GET_MODE (to_rtx) != BLKmode
4312 && (unsigned HOST_WIDE_INT) bitpos
4313 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4314 {
4315 expand_normal (from);
4316 result = NULL;
4317 }
4318 /* Handle expand_expr of a complex value returning a CONCAT. */
4319 else if (GET_CODE (to_rtx) == CONCAT)
4320 {
4321 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4322 {
4323 gcc_assert (bitpos == 0);
4324 result = store_expr (from, to_rtx, false, nontemporal);
4325 }
4326 else
4327 {
4328 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4329 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4330 nontemporal);
4331 }
4332 }
4333 else
4334 {
4335 if (MEM_P (to_rtx))
4336 {
4337 /* If the field is at offset zero, we could have been given the
4338 DECL_RTX of the parent struct. Don't munge it. */
4339 to_rtx = shallow_copy_rtx (to_rtx);
4340
4341 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4342
4343 /* Deal with volatile and readonly fields. The former is only
4344 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4345 if (volatilep)
4346 MEM_VOLATILE_P (to_rtx) = 1;
4347 if (component_uses_parent_alias_set (to))
4348 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4349 }
4350
4351 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4352 to_rtx, to, from))
4353 result = NULL;
4354 else
4355 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4356 TREE_TYPE (tem), get_alias_set (to),
4357 nontemporal);
4358 }
4359
4360 if (result)
4361 preserve_temp_slots (result);
4362 free_temp_slots ();
4363 pop_temp_slots ();
4364 return;
4365 }
4366
4367 /* If the rhs is a function call and its value is not an aggregate,
4368 call the function before we start to compute the lhs.
4369 This is needed for correct code for cases such as
4370 val = setjmp (buf) on machines where reference to val
4371 requires loading up part of an address in a separate insn.
4372
4373 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4374 since it might be a promoted variable where the zero- or sign- extension
4375 needs to be done. Handling this in the normal way is safe because no
4376 computation is done before the call. The same is true for SSA names. */
4377 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4378 && COMPLETE_TYPE_P (TREE_TYPE (from))
4379 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4380 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4381 && REG_P (DECL_RTL (to)))
4382 || TREE_CODE (to) == SSA_NAME))
4383 {
4384 rtx value;
4385
4386 push_temp_slots ();
4387 value = expand_normal (from);
4388 if (to_rtx == 0)
4389 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4390
4391 /* Handle calls that return values in multiple non-contiguous locations.
4392 The Irix 6 ABI has examples of this. */
4393 if (GET_CODE (to_rtx) == PARALLEL)
4394 emit_group_load (to_rtx, value, TREE_TYPE (from),
4395 int_size_in_bytes (TREE_TYPE (from)));
4396 else if (GET_MODE (to_rtx) == BLKmode)
4397 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4398 else
4399 {
4400 if (POINTER_TYPE_P (TREE_TYPE (to)))
4401 value = convert_memory_address_addr_space
4402 (GET_MODE (to_rtx), value,
4403 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4404
4405 emit_move_insn (to_rtx, value);
4406 }
4407 preserve_temp_slots (to_rtx);
4408 free_temp_slots ();
4409 pop_temp_slots ();
4410 return;
4411 }
4412
4413 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4414 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4415
4416 if (to_rtx == 0)
4417 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4418
4419 /* Don't move directly into a return register. */
4420 if (TREE_CODE (to) == RESULT_DECL
4421 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4422 {
4423 rtx temp;
4424
4425 push_temp_slots ();
4426 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4427
4428 if (GET_CODE (to_rtx) == PARALLEL)
4429 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4430 int_size_in_bytes (TREE_TYPE (from)));
4431 else
4432 emit_move_insn (to_rtx, temp);
4433
4434 preserve_temp_slots (to_rtx);
4435 free_temp_slots ();
4436 pop_temp_slots ();
4437 return;
4438 }
4439
4440 /* In case we are returning the contents of an object which overlaps
4441 the place the value is being stored, use a safe function when copying
4442 a value through a pointer into a structure value return block. */
4443 if (TREE_CODE (to) == RESULT_DECL
4444 && TREE_CODE (from) == INDIRECT_REF
4445 && ADDR_SPACE_GENERIC_P
4446 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4447 && refs_may_alias_p (to, from)
4448 && cfun->returns_struct
4449 && !cfun->returns_pcc_struct)
4450 {
4451 rtx from_rtx, size;
4452
4453 push_temp_slots ();
4454 size = expr_size (from);
4455 from_rtx = expand_normal (from);
4456
4457 emit_library_call (memmove_libfunc, LCT_NORMAL,
4458 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4459 XEXP (from_rtx, 0), Pmode,
4460 convert_to_mode (TYPE_MODE (sizetype),
4461 size, TYPE_UNSIGNED (sizetype)),
4462 TYPE_MODE (sizetype));
4463
4464 preserve_temp_slots (to_rtx);
4465 free_temp_slots ();
4466 pop_temp_slots ();
4467 return;
4468 }
4469
4470 /* Compute FROM and store the value in the rtx we got. */
4471
4472 push_temp_slots ();
4473 result = store_expr (from, to_rtx, 0, nontemporal);
4474 preserve_temp_slots (result);
4475 free_temp_slots ();
4476 pop_temp_slots ();
4477 return;
4478 }
4479
4480 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4481 succeeded, false otherwise. */
4482
4483 bool
4484 emit_storent_insn (rtx to, rtx from)
4485 {
4486 enum machine_mode mode = GET_MODE (to), imode;
4487 enum insn_code code = optab_handler (storent_optab, mode);
4488 rtx pattern;
4489
4490 if (code == CODE_FOR_nothing)
4491 return false;
4492
4493 imode = insn_data[code].operand[0].mode;
4494 if (!insn_data[code].operand[0].predicate (to, imode))
4495 return false;
4496
4497 imode = insn_data[code].operand[1].mode;
4498 if (!insn_data[code].operand[1].predicate (from, imode))
4499 {
4500 from = copy_to_mode_reg (imode, from);
4501 if (!insn_data[code].operand[1].predicate (from, imode))
4502 return false;
4503 }
4504
4505 pattern = GEN_FCN (code) (to, from);
4506 if (pattern == NULL_RTX)
4507 return false;
4508
4509 emit_insn (pattern);
4510 return true;
4511 }
4512
4513 /* Generate code for computing expression EXP,
4514 and storing the value into TARGET.
4515
4516 If the mode is BLKmode then we may return TARGET itself.
4517 It turns out that in BLKmode it doesn't cause a problem.
4518 because C has no operators that could combine two different
4519 assignments into the same BLKmode object with different values
4520 with no sequence point. Will other languages need this to
4521 be more thorough?
4522
4523 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4524 stack, and block moves may need to be treated specially.
4525
4526 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4527
4528 rtx
4529 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4530 {
4531 rtx temp;
4532 rtx alt_rtl = NULL_RTX;
4533 location_t loc = EXPR_LOCATION (exp);
4534
4535 if (VOID_TYPE_P (TREE_TYPE (exp)))
4536 {
4537 /* C++ can generate ?: expressions with a throw expression in one
4538 branch and an rvalue in the other. Here, we resolve attempts to
4539 store the throw expression's nonexistent result. */
4540 gcc_assert (!call_param_p);
4541 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4542 return NULL_RTX;
4543 }
4544 if (TREE_CODE (exp) == COMPOUND_EXPR)
4545 {
4546 /* Perform first part of compound expression, then assign from second
4547 part. */
4548 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4549 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4550 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4551 nontemporal);
4552 }
4553 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4554 {
4555 /* For conditional expression, get safe form of the target. Then
4556 test the condition, doing the appropriate assignment on either
4557 side. This avoids the creation of unnecessary temporaries.
4558 For non-BLKmode, it is more efficient not to do this. */
4559
4560 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4561
4562 do_pending_stack_adjust ();
4563 NO_DEFER_POP;
4564 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4565 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4566 nontemporal);
4567 emit_jump_insn (gen_jump (lab2));
4568 emit_barrier ();
4569 emit_label (lab1);
4570 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4571 nontemporal);
4572 emit_label (lab2);
4573 OK_DEFER_POP;
4574
4575 return NULL_RTX;
4576 }
4577 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4578 /* If this is a scalar in a register that is stored in a wider mode
4579 than the declared mode, compute the result into its declared mode
4580 and then convert to the wider mode. Our value is the computed
4581 expression. */
4582 {
4583 rtx inner_target = 0;
4584
4585 /* We can do the conversion inside EXP, which will often result
4586 in some optimizations. Do the conversion in two steps: first
4587 change the signedness, if needed, then the extend. But don't
4588 do this if the type of EXP is a subtype of something else
4589 since then the conversion might involve more than just
4590 converting modes. */
4591 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4592 && TREE_TYPE (TREE_TYPE (exp)) == 0
4593 && GET_MODE_PRECISION (GET_MODE (target))
4594 == TYPE_PRECISION (TREE_TYPE (exp)))
4595 {
4596 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4597 != SUBREG_PROMOTED_UNSIGNED_P (target))
4598 {
4599 /* Some types, e.g. Fortran's logical*4, won't have a signed
4600 version, so use the mode instead. */
4601 tree ntype
4602 = (signed_or_unsigned_type_for
4603 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4604 if (ntype == NULL)
4605 ntype = lang_hooks.types.type_for_mode
4606 (TYPE_MODE (TREE_TYPE (exp)),
4607 SUBREG_PROMOTED_UNSIGNED_P (target));
4608
4609 exp = fold_convert_loc (loc, ntype, exp);
4610 }
4611
4612 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4613 (GET_MODE (SUBREG_REG (target)),
4614 SUBREG_PROMOTED_UNSIGNED_P (target)),
4615 exp);
4616
4617 inner_target = SUBREG_REG (target);
4618 }
4619
4620 temp = expand_expr (exp, inner_target, VOIDmode,
4621 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4622
4623 /* If TEMP is a VOIDmode constant, use convert_modes to make
4624 sure that we properly convert it. */
4625 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4626 {
4627 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4628 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4629 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4630 GET_MODE (target), temp,
4631 SUBREG_PROMOTED_UNSIGNED_P (target));
4632 }
4633
4634 convert_move (SUBREG_REG (target), temp,
4635 SUBREG_PROMOTED_UNSIGNED_P (target));
4636
4637 return NULL_RTX;
4638 }
4639 else if (TREE_CODE (exp) == STRING_CST
4640 && !nontemporal && !call_param_p
4641 && TREE_STRING_LENGTH (exp) > 0
4642 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4643 {
4644 /* Optimize initialization of an array with a STRING_CST. */
4645 HOST_WIDE_INT exp_len, str_copy_len;
4646 rtx dest_mem;
4647
4648 exp_len = int_expr_size (exp);
4649 if (exp_len <= 0)
4650 goto normal_expr;
4651
4652 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4653 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4654 goto normal_expr;
4655
4656 str_copy_len = TREE_STRING_LENGTH (exp);
4657 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4658 {
4659 str_copy_len += STORE_MAX_PIECES - 1;
4660 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4661 }
4662 str_copy_len = MIN (str_copy_len, exp_len);
4663 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4664 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4665 MEM_ALIGN (target), false))
4666 goto normal_expr;
4667
4668 dest_mem = target;
4669
4670 dest_mem = store_by_pieces (dest_mem,
4671 str_copy_len, builtin_strncpy_read_str,
4672 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4673 MEM_ALIGN (target), false,
4674 exp_len > str_copy_len ? 1 : 0);
4675 if (exp_len > str_copy_len)
4676 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4677 GEN_INT (exp_len - str_copy_len),
4678 BLOCK_OP_NORMAL);
4679 return NULL_RTX;
4680 }
4681 else if (TREE_CODE (exp) == MEM_REF
4682 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4683 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == STRING_CST
4684 && integer_zerop (TREE_OPERAND (exp, 1))
4685 && !nontemporal && !call_param_p
4686 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4687 {
4688 /* Optimize initialization of an array with a STRING_CST. */
4689 HOST_WIDE_INT exp_len, str_copy_len;
4690 rtx dest_mem;
4691 tree str = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4692
4693 exp_len = int_expr_size (exp);
4694 if (exp_len <= 0)
4695 goto normal_expr;
4696
4697 str_copy_len = strlen (TREE_STRING_POINTER (str));
4698 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4699 goto normal_expr;
4700
4701 str_copy_len = TREE_STRING_LENGTH (str);
4702 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4703 {
4704 str_copy_len += STORE_MAX_PIECES - 1;
4705 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4706 }
4707 str_copy_len = MIN (str_copy_len, exp_len);
4708 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4709 CONST_CAST(char *, TREE_STRING_POINTER (str)),
4710 MEM_ALIGN (target), false))
4711 goto normal_expr;
4712
4713 dest_mem = target;
4714
4715 dest_mem = store_by_pieces (dest_mem,
4716 str_copy_len, builtin_strncpy_read_str,
4717 CONST_CAST(char *, TREE_STRING_POINTER (str)),
4718 MEM_ALIGN (target), false,
4719 exp_len > str_copy_len ? 1 : 0);
4720 if (exp_len > str_copy_len)
4721 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4722 GEN_INT (exp_len - str_copy_len),
4723 BLOCK_OP_NORMAL);
4724 return NULL_RTX;
4725 }
4726 else
4727 {
4728 rtx tmp_target;
4729
4730 normal_expr:
4731 /* If we want to use a nontemporal store, force the value to
4732 register first. */
4733 tmp_target = nontemporal ? NULL_RTX : target;
4734 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4735 (call_param_p
4736 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4737 &alt_rtl);
4738 }
4739
4740 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4741 the same as that of TARGET, adjust the constant. This is needed, for
4742 example, in case it is a CONST_DOUBLE and we want only a word-sized
4743 value. */
4744 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4745 && TREE_CODE (exp) != ERROR_MARK
4746 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4747 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4748 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4749
4750 /* If value was not generated in the target, store it there.
4751 Convert the value to TARGET's type first if necessary and emit the
4752 pending incrementations that have been queued when expanding EXP.
4753 Note that we cannot emit the whole queue blindly because this will
4754 effectively disable the POST_INC optimization later.
4755
4756 If TEMP and TARGET compare equal according to rtx_equal_p, but
4757 one or both of them are volatile memory refs, we have to distinguish
4758 two cases:
4759 - expand_expr has used TARGET. In this case, we must not generate
4760 another copy. This can be detected by TARGET being equal according
4761 to == .
4762 - expand_expr has not used TARGET - that means that the source just
4763 happens to have the same RTX form. Since temp will have been created
4764 by expand_expr, it will compare unequal according to == .
4765 We must generate a copy in this case, to reach the correct number
4766 of volatile memory references. */
4767
4768 if ((! rtx_equal_p (temp, target)
4769 || (temp != target && (side_effects_p (temp)
4770 || side_effects_p (target))))
4771 && TREE_CODE (exp) != ERROR_MARK
4772 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4773 but TARGET is not valid memory reference, TEMP will differ
4774 from TARGET although it is really the same location. */
4775 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4776 /* If there's nothing to copy, don't bother. Don't call
4777 expr_size unless necessary, because some front-ends (C++)
4778 expr_size-hook must not be given objects that are not
4779 supposed to be bit-copied or bit-initialized. */
4780 && expr_size (exp) != const0_rtx)
4781 {
4782 if (GET_MODE (temp) != GET_MODE (target)
4783 && GET_MODE (temp) != VOIDmode)
4784 {
4785 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4786 if (GET_MODE (target) == BLKmode
4787 && GET_MODE (temp) == BLKmode)
4788 emit_block_move (target, temp, expr_size (exp),
4789 (call_param_p
4790 ? BLOCK_OP_CALL_PARM
4791 : BLOCK_OP_NORMAL));
4792 else if (GET_MODE (target) == BLKmode)
4793 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4794 0, GET_MODE (temp), temp);
4795 else
4796 convert_move (target, temp, unsignedp);
4797 }
4798
4799 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4800 {
4801 /* Handle copying a string constant into an array. The string
4802 constant may be shorter than the array. So copy just the string's
4803 actual length, and clear the rest. First get the size of the data
4804 type of the string, which is actually the size of the target. */
4805 rtx size = expr_size (exp);
4806
4807 if (CONST_INT_P (size)
4808 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4809 emit_block_move (target, temp, size,
4810 (call_param_p
4811 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4812 else
4813 {
4814 enum machine_mode pointer_mode
4815 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4816 enum machine_mode address_mode
4817 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4818
4819 /* Compute the size of the data to copy from the string. */
4820 tree copy_size
4821 = size_binop_loc (loc, MIN_EXPR,
4822 make_tree (sizetype, size),
4823 size_int (TREE_STRING_LENGTH (exp)));
4824 rtx copy_size_rtx
4825 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4826 (call_param_p
4827 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4828 rtx label = 0;
4829
4830 /* Copy that much. */
4831 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4832 TYPE_UNSIGNED (sizetype));
4833 emit_block_move (target, temp, copy_size_rtx,
4834 (call_param_p
4835 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4836
4837 /* Figure out how much is left in TARGET that we have to clear.
4838 Do all calculations in pointer_mode. */
4839 if (CONST_INT_P (copy_size_rtx))
4840 {
4841 size = plus_constant (size, -INTVAL (copy_size_rtx));
4842 target = adjust_address (target, BLKmode,
4843 INTVAL (copy_size_rtx));
4844 }
4845 else
4846 {
4847 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4848 copy_size_rtx, NULL_RTX, 0,
4849 OPTAB_LIB_WIDEN);
4850
4851 if (GET_MODE (copy_size_rtx) != address_mode)
4852 copy_size_rtx = convert_to_mode (address_mode,
4853 copy_size_rtx,
4854 TYPE_UNSIGNED (sizetype));
4855
4856 target = offset_address (target, copy_size_rtx,
4857 highest_pow2_factor (copy_size));
4858 label = gen_label_rtx ();
4859 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4860 GET_MODE (size), 0, label);
4861 }
4862
4863 if (size != const0_rtx)
4864 clear_storage (target, size, BLOCK_OP_NORMAL);
4865
4866 if (label)
4867 emit_label (label);
4868 }
4869 }
4870 /* Handle calls that return values in multiple non-contiguous locations.
4871 The Irix 6 ABI has examples of this. */
4872 else if (GET_CODE (target) == PARALLEL)
4873 emit_group_load (target, temp, TREE_TYPE (exp),
4874 int_size_in_bytes (TREE_TYPE (exp)));
4875 else if (GET_MODE (temp) == BLKmode)
4876 emit_block_move (target, temp, expr_size (exp),
4877 (call_param_p
4878 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4879 else if (nontemporal
4880 && emit_storent_insn (target, temp))
4881 /* If we managed to emit a nontemporal store, there is nothing else to
4882 do. */
4883 ;
4884 else
4885 {
4886 temp = force_operand (temp, target);
4887 if (temp != target)
4888 emit_move_insn (target, temp);
4889 }
4890 }
4891
4892 return NULL_RTX;
4893 }
4894 \f
4895 /* Helper for categorize_ctor_elements. Identical interface. */
4896
4897 static bool
4898 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4899 HOST_WIDE_INT *p_elt_count,
4900 bool *p_must_clear)
4901 {
4902 unsigned HOST_WIDE_INT idx;
4903 HOST_WIDE_INT nz_elts, elt_count;
4904 tree value, purpose;
4905
4906 /* Whether CTOR is a valid constant initializer, in accordance with what
4907 initializer_constant_valid_p does. If inferred from the constructor
4908 elements, true until proven otherwise. */
4909 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4910 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4911
4912 nz_elts = 0;
4913 elt_count = 0;
4914
4915 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4916 {
4917 HOST_WIDE_INT mult = 1;
4918
4919 if (TREE_CODE (purpose) == RANGE_EXPR)
4920 {
4921 tree lo_index = TREE_OPERAND (purpose, 0);
4922 tree hi_index = TREE_OPERAND (purpose, 1);
4923
4924 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4925 mult = (tree_low_cst (hi_index, 1)
4926 - tree_low_cst (lo_index, 1) + 1);
4927 }
4928
4929 switch (TREE_CODE (value))
4930 {
4931 case CONSTRUCTOR:
4932 {
4933 HOST_WIDE_INT nz = 0, ic = 0;
4934
4935 bool const_elt_p
4936 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4937
4938 nz_elts += mult * nz;
4939 elt_count += mult * ic;
4940
4941 if (const_from_elts_p && const_p)
4942 const_p = const_elt_p;
4943 }
4944 break;
4945
4946 case INTEGER_CST:
4947 case REAL_CST:
4948 case FIXED_CST:
4949 if (!initializer_zerop (value))
4950 nz_elts += mult;
4951 elt_count += mult;
4952 break;
4953
4954 case STRING_CST:
4955 nz_elts += mult * TREE_STRING_LENGTH (value);
4956 elt_count += mult * TREE_STRING_LENGTH (value);
4957 break;
4958
4959 case COMPLEX_CST:
4960 if (!initializer_zerop (TREE_REALPART (value)))
4961 nz_elts += mult;
4962 if (!initializer_zerop (TREE_IMAGPART (value)))
4963 nz_elts += mult;
4964 elt_count += mult;
4965 break;
4966
4967 case VECTOR_CST:
4968 {
4969 tree v;
4970 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4971 {
4972 if (!initializer_zerop (TREE_VALUE (v)))
4973 nz_elts += mult;
4974 elt_count += mult;
4975 }
4976 }
4977 break;
4978
4979 default:
4980 {
4981 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4982 if (tc < 1)
4983 tc = 1;
4984 nz_elts += mult * tc;
4985 elt_count += mult * tc;
4986
4987 if (const_from_elts_p && const_p)
4988 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4989 != NULL_TREE;
4990 }
4991 break;
4992 }
4993 }
4994
4995 if (!*p_must_clear
4996 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4997 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4998 {
4999 tree init_sub_type;
5000 bool clear_this = true;
5001
5002 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
5003 {
5004 /* We don't expect more than one element of the union to be
5005 initialized. Not sure what we should do otherwise... */
5006 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
5007 == 1);
5008
5009 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
5010 CONSTRUCTOR_ELTS (ctor),
5011 0)->value);
5012
5013 /* ??? We could look at each element of the union, and find the
5014 largest element. Which would avoid comparing the size of the
5015 initialized element against any tail padding in the union.
5016 Doesn't seem worth the effort... */
5017 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
5018 TYPE_SIZE (init_sub_type)) == 1)
5019 {
5020 /* And now we have to find out if the element itself is fully
5021 constructed. E.g. for union { struct { int a, b; } s; } u
5022 = { .s = { .a = 1 } }. */
5023 if (elt_count == count_type_elements (init_sub_type, false))
5024 clear_this = false;
5025 }
5026 }
5027
5028 *p_must_clear = clear_this;
5029 }
5030
5031 *p_nz_elts += nz_elts;
5032 *p_elt_count += elt_count;
5033
5034 return const_p;
5035 }
5036
5037 /* Examine CTOR to discover:
5038 * how many scalar fields are set to nonzero values,
5039 and place it in *P_NZ_ELTS;
5040 * how many scalar fields in total are in CTOR,
5041 and place it in *P_ELT_COUNT.
5042 * if a type is a union, and the initializer from the constructor
5043 is not the largest element in the union, then set *p_must_clear.
5044
5045 Return whether or not CTOR is a valid static constant initializer, the same
5046 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5047
5048 bool
5049 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5050 HOST_WIDE_INT *p_elt_count,
5051 bool *p_must_clear)
5052 {
5053 *p_nz_elts = 0;
5054 *p_elt_count = 0;
5055 *p_must_clear = false;
5056
5057 return
5058 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5059 }
5060
5061 /* Count the number of scalars in TYPE. Return -1 on overflow or
5062 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5063 array member at the end of the structure. */
5064
5065 HOST_WIDE_INT
5066 count_type_elements (const_tree type, bool allow_flexarr)
5067 {
5068 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5069 switch (TREE_CODE (type))
5070 {
5071 case ARRAY_TYPE:
5072 {
5073 tree telts = array_type_nelts (type);
5074 if (telts && host_integerp (telts, 1))
5075 {
5076 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5077 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5078 if (n == 0)
5079 return 0;
5080 else if (max / n > m)
5081 return n * m;
5082 }
5083 return -1;
5084 }
5085
5086 case RECORD_TYPE:
5087 {
5088 HOST_WIDE_INT n = 0, t;
5089 tree f;
5090
5091 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5092 if (TREE_CODE (f) == FIELD_DECL)
5093 {
5094 t = count_type_elements (TREE_TYPE (f), false);
5095 if (t < 0)
5096 {
5097 /* Check for structures with flexible array member. */
5098 tree tf = TREE_TYPE (f);
5099 if (allow_flexarr
5100 && DECL_CHAIN (f) == NULL
5101 && TREE_CODE (tf) == ARRAY_TYPE
5102 && TYPE_DOMAIN (tf)
5103 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5104 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5105 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5106 && int_size_in_bytes (type) >= 0)
5107 break;
5108
5109 return -1;
5110 }
5111 n += t;
5112 }
5113
5114 return n;
5115 }
5116
5117 case UNION_TYPE:
5118 case QUAL_UNION_TYPE:
5119 return -1;
5120
5121 case COMPLEX_TYPE:
5122 return 2;
5123
5124 case VECTOR_TYPE:
5125 return TYPE_VECTOR_SUBPARTS (type);
5126
5127 case INTEGER_TYPE:
5128 case REAL_TYPE:
5129 case FIXED_POINT_TYPE:
5130 case ENUMERAL_TYPE:
5131 case BOOLEAN_TYPE:
5132 case POINTER_TYPE:
5133 case OFFSET_TYPE:
5134 case REFERENCE_TYPE:
5135 return 1;
5136
5137 case ERROR_MARK:
5138 return 0;
5139
5140 case VOID_TYPE:
5141 case METHOD_TYPE:
5142 case FUNCTION_TYPE:
5143 case LANG_TYPE:
5144 default:
5145 gcc_unreachable ();
5146 }
5147 }
5148
5149 /* Return 1 if EXP contains mostly (3/4) zeros. */
5150
5151 static int
5152 mostly_zeros_p (const_tree exp)
5153 {
5154 if (TREE_CODE (exp) == CONSTRUCTOR)
5155
5156 {
5157 HOST_WIDE_INT nz_elts, count, elts;
5158 bool must_clear;
5159
5160 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5161 if (must_clear)
5162 return 1;
5163
5164 elts = count_type_elements (TREE_TYPE (exp), false);
5165
5166 return nz_elts < elts / 4;
5167 }
5168
5169 return initializer_zerop (exp);
5170 }
5171
5172 /* Return 1 if EXP contains all zeros. */
5173
5174 static int
5175 all_zeros_p (const_tree exp)
5176 {
5177 if (TREE_CODE (exp) == CONSTRUCTOR)
5178
5179 {
5180 HOST_WIDE_INT nz_elts, count;
5181 bool must_clear;
5182
5183 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5184 return nz_elts == 0;
5185 }
5186
5187 return initializer_zerop (exp);
5188 }
5189 \f
5190 /* Helper function for store_constructor.
5191 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5192 TYPE is the type of the CONSTRUCTOR, not the element type.
5193 CLEARED is as for store_constructor.
5194 ALIAS_SET is the alias set to use for any stores.
5195
5196 This provides a recursive shortcut back to store_constructor when it isn't
5197 necessary to go through store_field. This is so that we can pass through
5198 the cleared field to let store_constructor know that we may not have to
5199 clear a substructure if the outer structure has already been cleared. */
5200
5201 static void
5202 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5203 HOST_WIDE_INT bitpos, enum machine_mode mode,
5204 tree exp, tree type, int cleared,
5205 alias_set_type alias_set)
5206 {
5207 if (TREE_CODE (exp) == CONSTRUCTOR
5208 /* We can only call store_constructor recursively if the size and
5209 bit position are on a byte boundary. */
5210 && bitpos % BITS_PER_UNIT == 0
5211 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5212 /* If we have a nonzero bitpos for a register target, then we just
5213 let store_field do the bitfield handling. This is unlikely to
5214 generate unnecessary clear instructions anyways. */
5215 && (bitpos == 0 || MEM_P (target)))
5216 {
5217 if (MEM_P (target))
5218 target
5219 = adjust_address (target,
5220 GET_MODE (target) == BLKmode
5221 || 0 != (bitpos
5222 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5223 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5224
5225
5226 /* Update the alias set, if required. */
5227 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5228 && MEM_ALIAS_SET (target) != 0)
5229 {
5230 target = copy_rtx (target);
5231 set_mem_alias_set (target, alias_set);
5232 }
5233
5234 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5235 }
5236 else
5237 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5238 }
5239
5240 /* Store the value of constructor EXP into the rtx TARGET.
5241 TARGET is either a REG or a MEM; we know it cannot conflict, since
5242 safe_from_p has been called.
5243 CLEARED is true if TARGET is known to have been zero'd.
5244 SIZE is the number of bytes of TARGET we are allowed to modify: this
5245 may not be the same as the size of EXP if we are assigning to a field
5246 which has been packed to exclude padding bits. */
5247
5248 static void
5249 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5250 {
5251 tree type = TREE_TYPE (exp);
5252 #ifdef WORD_REGISTER_OPERATIONS
5253 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5254 #endif
5255
5256 switch (TREE_CODE (type))
5257 {
5258 case RECORD_TYPE:
5259 case UNION_TYPE:
5260 case QUAL_UNION_TYPE:
5261 {
5262 unsigned HOST_WIDE_INT idx;
5263 tree field, value;
5264
5265 /* If size is zero or the target is already cleared, do nothing. */
5266 if (size == 0 || cleared)
5267 cleared = 1;
5268 /* We either clear the aggregate or indicate the value is dead. */
5269 else if ((TREE_CODE (type) == UNION_TYPE
5270 || TREE_CODE (type) == QUAL_UNION_TYPE)
5271 && ! CONSTRUCTOR_ELTS (exp))
5272 /* If the constructor is empty, clear the union. */
5273 {
5274 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5275 cleared = 1;
5276 }
5277
5278 /* If we are building a static constructor into a register,
5279 set the initial value as zero so we can fold the value into
5280 a constant. But if more than one register is involved,
5281 this probably loses. */
5282 else if (REG_P (target) && TREE_STATIC (exp)
5283 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5284 {
5285 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5286 cleared = 1;
5287 }
5288
5289 /* If the constructor has fewer fields than the structure or
5290 if we are initializing the structure to mostly zeros, clear
5291 the whole structure first. Don't do this if TARGET is a
5292 register whose mode size isn't equal to SIZE since
5293 clear_storage can't handle this case. */
5294 else if (size > 0
5295 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5296 != fields_length (type))
5297 || mostly_zeros_p (exp))
5298 && (!REG_P (target)
5299 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5300 == size)))
5301 {
5302 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5303 cleared = 1;
5304 }
5305
5306 if (REG_P (target) && !cleared)
5307 emit_clobber (target);
5308
5309 /* Store each element of the constructor into the
5310 corresponding field of TARGET. */
5311 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5312 {
5313 enum machine_mode mode;
5314 HOST_WIDE_INT bitsize;
5315 HOST_WIDE_INT bitpos = 0;
5316 tree offset;
5317 rtx to_rtx = target;
5318
5319 /* Just ignore missing fields. We cleared the whole
5320 structure, above, if any fields are missing. */
5321 if (field == 0)
5322 continue;
5323
5324 if (cleared && initializer_zerop (value))
5325 continue;
5326
5327 if (host_integerp (DECL_SIZE (field), 1))
5328 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5329 else
5330 bitsize = -1;
5331
5332 mode = DECL_MODE (field);
5333 if (DECL_BIT_FIELD (field))
5334 mode = VOIDmode;
5335
5336 offset = DECL_FIELD_OFFSET (field);
5337 if (host_integerp (offset, 0)
5338 && host_integerp (bit_position (field), 0))
5339 {
5340 bitpos = int_bit_position (field);
5341 offset = 0;
5342 }
5343 else
5344 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5345
5346 if (offset)
5347 {
5348 enum machine_mode address_mode;
5349 rtx offset_rtx;
5350
5351 offset
5352 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5353 make_tree (TREE_TYPE (exp),
5354 target));
5355
5356 offset_rtx = expand_normal (offset);
5357 gcc_assert (MEM_P (to_rtx));
5358
5359 address_mode
5360 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5361 if (GET_MODE (offset_rtx) != address_mode)
5362 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5363
5364 to_rtx = offset_address (to_rtx, offset_rtx,
5365 highest_pow2_factor (offset));
5366 }
5367
5368 #ifdef WORD_REGISTER_OPERATIONS
5369 /* If this initializes a field that is smaller than a
5370 word, at the start of a word, try to widen it to a full
5371 word. This special case allows us to output C++ member
5372 function initializations in a form that the optimizers
5373 can understand. */
5374 if (REG_P (target)
5375 && bitsize < BITS_PER_WORD
5376 && bitpos % BITS_PER_WORD == 0
5377 && GET_MODE_CLASS (mode) == MODE_INT
5378 && TREE_CODE (value) == INTEGER_CST
5379 && exp_size >= 0
5380 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5381 {
5382 tree type = TREE_TYPE (value);
5383
5384 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5385 {
5386 type = lang_hooks.types.type_for_size
5387 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5388 value = fold_convert (type, value);
5389 }
5390
5391 if (BYTES_BIG_ENDIAN)
5392 value
5393 = fold_build2 (LSHIFT_EXPR, type, value,
5394 build_int_cst (type,
5395 BITS_PER_WORD - bitsize));
5396 bitsize = BITS_PER_WORD;
5397 mode = word_mode;
5398 }
5399 #endif
5400
5401 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5402 && DECL_NONADDRESSABLE_P (field))
5403 {
5404 to_rtx = copy_rtx (to_rtx);
5405 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5406 }
5407
5408 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5409 value, type, cleared,
5410 get_alias_set (TREE_TYPE (field)));
5411 }
5412 break;
5413 }
5414 case ARRAY_TYPE:
5415 {
5416 tree value, index;
5417 unsigned HOST_WIDE_INT i;
5418 int need_to_clear;
5419 tree domain;
5420 tree elttype = TREE_TYPE (type);
5421 int const_bounds_p;
5422 HOST_WIDE_INT minelt = 0;
5423 HOST_WIDE_INT maxelt = 0;
5424
5425 domain = TYPE_DOMAIN (type);
5426 const_bounds_p = (TYPE_MIN_VALUE (domain)
5427 && TYPE_MAX_VALUE (domain)
5428 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5429 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5430
5431 /* If we have constant bounds for the range of the type, get them. */
5432 if (const_bounds_p)
5433 {
5434 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5435 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5436 }
5437
5438 /* If the constructor has fewer elements than the array, clear
5439 the whole array first. Similarly if this is static
5440 constructor of a non-BLKmode object. */
5441 if (cleared)
5442 need_to_clear = 0;
5443 else if (REG_P (target) && TREE_STATIC (exp))
5444 need_to_clear = 1;
5445 else
5446 {
5447 unsigned HOST_WIDE_INT idx;
5448 tree index, value;
5449 HOST_WIDE_INT count = 0, zero_count = 0;
5450 need_to_clear = ! const_bounds_p;
5451
5452 /* This loop is a more accurate version of the loop in
5453 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5454 is also needed to check for missing elements. */
5455 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5456 {
5457 HOST_WIDE_INT this_node_count;
5458
5459 if (need_to_clear)
5460 break;
5461
5462 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5463 {
5464 tree lo_index = TREE_OPERAND (index, 0);
5465 tree hi_index = TREE_OPERAND (index, 1);
5466
5467 if (! host_integerp (lo_index, 1)
5468 || ! host_integerp (hi_index, 1))
5469 {
5470 need_to_clear = 1;
5471 break;
5472 }
5473
5474 this_node_count = (tree_low_cst (hi_index, 1)
5475 - tree_low_cst (lo_index, 1) + 1);
5476 }
5477 else
5478 this_node_count = 1;
5479
5480 count += this_node_count;
5481 if (mostly_zeros_p (value))
5482 zero_count += this_node_count;
5483 }
5484
5485 /* Clear the entire array first if there are any missing
5486 elements, or if the incidence of zero elements is >=
5487 75%. */
5488 if (! need_to_clear
5489 && (count < maxelt - minelt + 1
5490 || 4 * zero_count >= 3 * count))
5491 need_to_clear = 1;
5492 }
5493
5494 if (need_to_clear && size > 0)
5495 {
5496 if (REG_P (target))
5497 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5498 else
5499 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5500 cleared = 1;
5501 }
5502
5503 if (!cleared && REG_P (target))
5504 /* Inform later passes that the old value is dead. */
5505 emit_clobber (target);
5506
5507 /* Store each element of the constructor into the
5508 corresponding element of TARGET, determined by counting the
5509 elements. */
5510 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5511 {
5512 enum machine_mode mode;
5513 HOST_WIDE_INT bitsize;
5514 HOST_WIDE_INT bitpos;
5515 rtx xtarget = target;
5516
5517 if (cleared && initializer_zerop (value))
5518 continue;
5519
5520 mode = TYPE_MODE (elttype);
5521 if (mode == BLKmode)
5522 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5523 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5524 : -1);
5525 else
5526 bitsize = GET_MODE_BITSIZE (mode);
5527
5528 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5529 {
5530 tree lo_index = TREE_OPERAND (index, 0);
5531 tree hi_index = TREE_OPERAND (index, 1);
5532 rtx index_r, pos_rtx;
5533 HOST_WIDE_INT lo, hi, count;
5534 tree position;
5535
5536 /* If the range is constant and "small", unroll the loop. */
5537 if (const_bounds_p
5538 && host_integerp (lo_index, 0)
5539 && host_integerp (hi_index, 0)
5540 && (lo = tree_low_cst (lo_index, 0),
5541 hi = tree_low_cst (hi_index, 0),
5542 count = hi - lo + 1,
5543 (!MEM_P (target)
5544 || count <= 2
5545 || (host_integerp (TYPE_SIZE (elttype), 1)
5546 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5547 <= 40 * 8)))))
5548 {
5549 lo -= minelt; hi -= minelt;
5550 for (; lo <= hi; lo++)
5551 {
5552 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5553
5554 if (MEM_P (target)
5555 && !MEM_KEEP_ALIAS_SET_P (target)
5556 && TREE_CODE (type) == ARRAY_TYPE
5557 && TYPE_NONALIASED_COMPONENT (type))
5558 {
5559 target = copy_rtx (target);
5560 MEM_KEEP_ALIAS_SET_P (target) = 1;
5561 }
5562
5563 store_constructor_field
5564 (target, bitsize, bitpos, mode, value, type, cleared,
5565 get_alias_set (elttype));
5566 }
5567 }
5568 else
5569 {
5570 rtx loop_start = gen_label_rtx ();
5571 rtx loop_end = gen_label_rtx ();
5572 tree exit_cond;
5573
5574 expand_normal (hi_index);
5575
5576 index = build_decl (EXPR_LOCATION (exp),
5577 VAR_DECL, NULL_TREE, domain);
5578 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5579 SET_DECL_RTL (index, index_r);
5580 store_expr (lo_index, index_r, 0, false);
5581
5582 /* Build the head of the loop. */
5583 do_pending_stack_adjust ();
5584 emit_label (loop_start);
5585
5586 /* Assign value to element index. */
5587 position =
5588 fold_convert (ssizetype,
5589 fold_build2 (MINUS_EXPR,
5590 TREE_TYPE (index),
5591 index,
5592 TYPE_MIN_VALUE (domain)));
5593
5594 position =
5595 size_binop (MULT_EXPR, position,
5596 fold_convert (ssizetype,
5597 TYPE_SIZE_UNIT (elttype)));
5598
5599 pos_rtx = expand_normal (position);
5600 xtarget = offset_address (target, pos_rtx,
5601 highest_pow2_factor (position));
5602 xtarget = adjust_address (xtarget, mode, 0);
5603 if (TREE_CODE (value) == CONSTRUCTOR)
5604 store_constructor (value, xtarget, cleared,
5605 bitsize / BITS_PER_UNIT);
5606 else
5607 store_expr (value, xtarget, 0, false);
5608
5609 /* Generate a conditional jump to exit the loop. */
5610 exit_cond = build2 (LT_EXPR, integer_type_node,
5611 index, hi_index);
5612 jumpif (exit_cond, loop_end, -1);
5613
5614 /* Update the loop counter, and jump to the head of
5615 the loop. */
5616 expand_assignment (index,
5617 build2 (PLUS_EXPR, TREE_TYPE (index),
5618 index, integer_one_node),
5619 false);
5620
5621 emit_jump (loop_start);
5622
5623 /* Build the end of the loop. */
5624 emit_label (loop_end);
5625 }
5626 }
5627 else if ((index != 0 && ! host_integerp (index, 0))
5628 || ! host_integerp (TYPE_SIZE (elttype), 1))
5629 {
5630 tree position;
5631
5632 if (index == 0)
5633 index = ssize_int (1);
5634
5635 if (minelt)
5636 index = fold_convert (ssizetype,
5637 fold_build2 (MINUS_EXPR,
5638 TREE_TYPE (index),
5639 index,
5640 TYPE_MIN_VALUE (domain)));
5641
5642 position =
5643 size_binop (MULT_EXPR, index,
5644 fold_convert (ssizetype,
5645 TYPE_SIZE_UNIT (elttype)));
5646 xtarget = offset_address (target,
5647 expand_normal (position),
5648 highest_pow2_factor (position));
5649 xtarget = adjust_address (xtarget, mode, 0);
5650 store_expr (value, xtarget, 0, false);
5651 }
5652 else
5653 {
5654 if (index != 0)
5655 bitpos = ((tree_low_cst (index, 0) - minelt)
5656 * tree_low_cst (TYPE_SIZE (elttype), 1));
5657 else
5658 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5659
5660 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5661 && TREE_CODE (type) == ARRAY_TYPE
5662 && TYPE_NONALIASED_COMPONENT (type))
5663 {
5664 target = copy_rtx (target);
5665 MEM_KEEP_ALIAS_SET_P (target) = 1;
5666 }
5667 store_constructor_field (target, bitsize, bitpos, mode, value,
5668 type, cleared, get_alias_set (elttype));
5669 }
5670 }
5671 break;
5672 }
5673
5674 case VECTOR_TYPE:
5675 {
5676 unsigned HOST_WIDE_INT idx;
5677 constructor_elt *ce;
5678 int i;
5679 int need_to_clear;
5680 int icode = 0;
5681 tree elttype = TREE_TYPE (type);
5682 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5683 enum machine_mode eltmode = TYPE_MODE (elttype);
5684 HOST_WIDE_INT bitsize;
5685 HOST_WIDE_INT bitpos;
5686 rtvec vector = NULL;
5687 unsigned n_elts;
5688 alias_set_type alias;
5689
5690 gcc_assert (eltmode != BLKmode);
5691
5692 n_elts = TYPE_VECTOR_SUBPARTS (type);
5693 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5694 {
5695 enum machine_mode mode = GET_MODE (target);
5696
5697 icode = (int) optab_handler (vec_init_optab, mode);
5698 if (icode != CODE_FOR_nothing)
5699 {
5700 unsigned int i;
5701
5702 vector = rtvec_alloc (n_elts);
5703 for (i = 0; i < n_elts; i++)
5704 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5705 }
5706 }
5707
5708 /* If the constructor has fewer elements than the vector,
5709 clear the whole array first. Similarly if this is static
5710 constructor of a non-BLKmode object. */
5711 if (cleared)
5712 need_to_clear = 0;
5713 else if (REG_P (target) && TREE_STATIC (exp))
5714 need_to_clear = 1;
5715 else
5716 {
5717 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5718 tree value;
5719
5720 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5721 {
5722 int n_elts_here = tree_low_cst
5723 (int_const_binop (TRUNC_DIV_EXPR,
5724 TYPE_SIZE (TREE_TYPE (value)),
5725 TYPE_SIZE (elttype), 0), 1);
5726
5727 count += n_elts_here;
5728 if (mostly_zeros_p (value))
5729 zero_count += n_elts_here;
5730 }
5731
5732 /* Clear the entire vector first if there are any missing elements,
5733 or if the incidence of zero elements is >= 75%. */
5734 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5735 }
5736
5737 if (need_to_clear && size > 0 && !vector)
5738 {
5739 if (REG_P (target))
5740 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5741 else
5742 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5743 cleared = 1;
5744 }
5745
5746 /* Inform later passes that the old value is dead. */
5747 if (!cleared && !vector && REG_P (target))
5748 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5749
5750 if (MEM_P (target))
5751 alias = MEM_ALIAS_SET (target);
5752 else
5753 alias = get_alias_set (elttype);
5754
5755 /* Store each element of the constructor into the corresponding
5756 element of TARGET, determined by counting the elements. */
5757 for (idx = 0, i = 0;
5758 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5759 idx++, i += bitsize / elt_size)
5760 {
5761 HOST_WIDE_INT eltpos;
5762 tree value = ce->value;
5763
5764 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5765 if (cleared && initializer_zerop (value))
5766 continue;
5767
5768 if (ce->index)
5769 eltpos = tree_low_cst (ce->index, 1);
5770 else
5771 eltpos = i;
5772
5773 if (vector)
5774 {
5775 /* Vector CONSTRUCTORs should only be built from smaller
5776 vectors in the case of BLKmode vectors. */
5777 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5778 RTVEC_ELT (vector, eltpos)
5779 = expand_normal (value);
5780 }
5781 else
5782 {
5783 enum machine_mode value_mode =
5784 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5785 ? TYPE_MODE (TREE_TYPE (value))
5786 : eltmode;
5787 bitpos = eltpos * elt_size;
5788 store_constructor_field (target, bitsize, bitpos,
5789 value_mode, value, type,
5790 cleared, alias);
5791 }
5792 }
5793
5794 if (vector)
5795 emit_insn (GEN_FCN (icode)
5796 (target,
5797 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5798 break;
5799 }
5800
5801 default:
5802 gcc_unreachable ();
5803 }
5804 }
5805
5806 /* Store the value of EXP (an expression tree)
5807 into a subfield of TARGET which has mode MODE and occupies
5808 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5809 If MODE is VOIDmode, it means that we are storing into a bit-field.
5810
5811 Always return const0_rtx unless we have something particular to
5812 return.
5813
5814 TYPE is the type of the underlying object,
5815
5816 ALIAS_SET is the alias set for the destination. This value will
5817 (in general) be different from that for TARGET, since TARGET is a
5818 reference to the containing structure.
5819
5820 If NONTEMPORAL is true, try generating a nontemporal store. */
5821
5822 static rtx
5823 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5824 enum machine_mode mode, tree exp, tree type,
5825 alias_set_type alias_set, bool nontemporal)
5826 {
5827 if (TREE_CODE (exp) == ERROR_MARK)
5828 return const0_rtx;
5829
5830 /* If we have nothing to store, do nothing unless the expression has
5831 side-effects. */
5832 if (bitsize == 0)
5833 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5834
5835 /* If we are storing into an unaligned field of an aligned union that is
5836 in a register, we may have the mode of TARGET being an integer mode but
5837 MODE == BLKmode. In that case, get an aligned object whose size and
5838 alignment are the same as TARGET and store TARGET into it (we can avoid
5839 the store if the field being stored is the entire width of TARGET). Then
5840 call ourselves recursively to store the field into a BLKmode version of
5841 that object. Finally, load from the object into TARGET. This is not
5842 very efficient in general, but should only be slightly more expensive
5843 than the otherwise-required unaligned accesses. Perhaps this can be
5844 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5845 twice, once with emit_move_insn and once via store_field. */
5846
5847 if (mode == BLKmode
5848 && (REG_P (target) || GET_CODE (target) == SUBREG))
5849 {
5850 rtx object = assign_temp (type, 0, 1, 1);
5851 rtx blk_object = adjust_address (object, BLKmode, 0);
5852
5853 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5854 emit_move_insn (object, target);
5855
5856 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5857 nontemporal);
5858
5859 emit_move_insn (target, object);
5860
5861 /* We want to return the BLKmode version of the data. */
5862 return blk_object;
5863 }
5864
5865 if (GET_CODE (target) == CONCAT)
5866 {
5867 /* We're storing into a struct containing a single __complex. */
5868
5869 gcc_assert (!bitpos);
5870 return store_expr (exp, target, 0, nontemporal);
5871 }
5872
5873 /* If the structure is in a register or if the component
5874 is a bit field, we cannot use addressing to access it.
5875 Use bit-field techniques or SUBREG to store in it. */
5876
5877 if (mode == VOIDmode
5878 || (mode != BLKmode && ! direct_store[(int) mode]
5879 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5880 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5881 || REG_P (target)
5882 || GET_CODE (target) == SUBREG
5883 /* If the field isn't aligned enough to store as an ordinary memref,
5884 store it as a bit field. */
5885 || (mode != BLKmode
5886 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5887 || bitpos % GET_MODE_ALIGNMENT (mode))
5888 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5889 || (bitpos % BITS_PER_UNIT != 0)))
5890 /* If the RHS and field are a constant size and the size of the
5891 RHS isn't the same size as the bitfield, we must use bitfield
5892 operations. */
5893 || (bitsize >= 0
5894 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5895 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5896 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5897 decl we must use bitfield operations. */
5898 || (bitsize >= 0
5899 && TREE_CODE (exp) == MEM_REF
5900 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5901 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5902 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5903 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5904 {
5905 rtx temp;
5906 gimple nop_def;
5907
5908 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5909 implies a mask operation. If the precision is the same size as
5910 the field we're storing into, that mask is redundant. This is
5911 particularly common with bit field assignments generated by the
5912 C front end. */
5913 nop_def = get_def_for_expr (exp, NOP_EXPR);
5914 if (nop_def)
5915 {
5916 tree type = TREE_TYPE (exp);
5917 if (INTEGRAL_TYPE_P (type)
5918 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5919 && bitsize == TYPE_PRECISION (type))
5920 {
5921 tree op = gimple_assign_rhs1 (nop_def);
5922 type = TREE_TYPE (op);
5923 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5924 exp = op;
5925 }
5926 }
5927
5928 temp = expand_normal (exp);
5929
5930 /* If BITSIZE is narrower than the size of the type of EXP
5931 we will be narrowing TEMP. Normally, what's wanted are the
5932 low-order bits. However, if EXP's type is a record and this is
5933 big-endian machine, we want the upper BITSIZE bits. */
5934 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5935 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5936 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5937 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5938 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5939 - bitsize),
5940 NULL_RTX, 1);
5941
5942 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5943 MODE. */
5944 if (mode != VOIDmode && mode != BLKmode
5945 && mode != TYPE_MODE (TREE_TYPE (exp)))
5946 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5947
5948 /* If the modes of TEMP and TARGET are both BLKmode, both
5949 must be in memory and BITPOS must be aligned on a byte
5950 boundary. If so, we simply do a block copy. Likewise
5951 for a BLKmode-like TARGET. */
5952 if (GET_MODE (temp) == BLKmode
5953 && (GET_MODE (target) == BLKmode
5954 || (MEM_P (target)
5955 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5956 && (bitpos % BITS_PER_UNIT) == 0
5957 && (bitsize % BITS_PER_UNIT) == 0)))
5958 {
5959 gcc_assert (MEM_P (target) && MEM_P (temp)
5960 && (bitpos % BITS_PER_UNIT) == 0);
5961
5962 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5963 emit_block_move (target, temp,
5964 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5965 / BITS_PER_UNIT),
5966 BLOCK_OP_NORMAL);
5967
5968 return const0_rtx;
5969 }
5970
5971 /* Store the value in the bitfield. */
5972 store_bit_field (target, bitsize, bitpos, mode, temp);
5973
5974 return const0_rtx;
5975 }
5976 else
5977 {
5978 /* Now build a reference to just the desired component. */
5979 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5980
5981 if (to_rtx == target)
5982 to_rtx = copy_rtx (to_rtx);
5983
5984 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5985 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5986 set_mem_alias_set (to_rtx, alias_set);
5987
5988 return store_expr (exp, to_rtx, 0, nontemporal);
5989 }
5990 }
5991 \f
5992 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5993 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5994 codes and find the ultimate containing object, which we return.
5995
5996 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5997 bit position, and *PUNSIGNEDP to the signedness of the field.
5998 If the position of the field is variable, we store a tree
5999 giving the variable offset (in units) in *POFFSET.
6000 This offset is in addition to the bit position.
6001 If the position is not variable, we store 0 in *POFFSET.
6002
6003 If any of the extraction expressions is volatile,
6004 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6005
6006 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6007 Otherwise, it is a mode that can be used to access the field.
6008
6009 If the field describes a variable-sized object, *PMODE is set to
6010 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6011 this case, but the address of the object can be found.
6012
6013 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6014 look through nodes that serve as markers of a greater alignment than
6015 the one that can be deduced from the expression. These nodes make it
6016 possible for front-ends to prevent temporaries from being created by
6017 the middle-end on alignment considerations. For that purpose, the
6018 normal operating mode at high-level is to always pass FALSE so that
6019 the ultimate containing object is really returned; moreover, the
6020 associated predicate handled_component_p will always return TRUE
6021 on these nodes, thus indicating that they are essentially handled
6022 by get_inner_reference. TRUE should only be passed when the caller
6023 is scanning the expression in order to build another representation
6024 and specifically knows how to handle these nodes; as such, this is
6025 the normal operating mode in the RTL expanders. */
6026
6027 tree
6028 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6029 HOST_WIDE_INT *pbitpos, tree *poffset,
6030 enum machine_mode *pmode, int *punsignedp,
6031 int *pvolatilep, bool keep_aligning)
6032 {
6033 tree size_tree = 0;
6034 enum machine_mode mode = VOIDmode;
6035 bool blkmode_bitfield = false;
6036 tree offset = size_zero_node;
6037 double_int bit_offset = double_int_zero;
6038
6039 /* First get the mode, signedness, and size. We do this from just the
6040 outermost expression. */
6041 *pbitsize = -1;
6042 if (TREE_CODE (exp) == COMPONENT_REF)
6043 {
6044 tree field = TREE_OPERAND (exp, 1);
6045 size_tree = DECL_SIZE (field);
6046 if (!DECL_BIT_FIELD (field))
6047 mode = DECL_MODE (field);
6048 else if (DECL_MODE (field) == BLKmode)
6049 blkmode_bitfield = true;
6050 else if (TREE_THIS_VOLATILE (exp)
6051 && flag_strict_volatile_bitfields > 0)
6052 /* Volatile bitfields should be accessed in the mode of the
6053 field's type, not the mode computed based on the bit
6054 size. */
6055 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6056
6057 *punsignedp = DECL_UNSIGNED (field);
6058 }
6059 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6060 {
6061 size_tree = TREE_OPERAND (exp, 1);
6062 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6063 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6064
6065 /* For vector types, with the correct size of access, use the mode of
6066 inner type. */
6067 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6068 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6069 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6070 mode = TYPE_MODE (TREE_TYPE (exp));
6071 }
6072 else
6073 {
6074 mode = TYPE_MODE (TREE_TYPE (exp));
6075 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6076
6077 if (mode == BLKmode)
6078 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6079 else
6080 *pbitsize = GET_MODE_BITSIZE (mode);
6081 }
6082
6083 if (size_tree != 0)
6084 {
6085 if (! host_integerp (size_tree, 1))
6086 mode = BLKmode, *pbitsize = -1;
6087 else
6088 *pbitsize = tree_low_cst (size_tree, 1);
6089 }
6090
6091 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6092 and find the ultimate containing object. */
6093 while (1)
6094 {
6095 switch (TREE_CODE (exp))
6096 {
6097 case BIT_FIELD_REF:
6098 bit_offset
6099 = double_int_add (bit_offset,
6100 tree_to_double_int (TREE_OPERAND (exp, 2)));
6101 break;
6102
6103 case COMPONENT_REF:
6104 {
6105 tree field = TREE_OPERAND (exp, 1);
6106 tree this_offset = component_ref_field_offset (exp);
6107
6108 /* If this field hasn't been filled in yet, don't go past it.
6109 This should only happen when folding expressions made during
6110 type construction. */
6111 if (this_offset == 0)
6112 break;
6113
6114 offset = size_binop (PLUS_EXPR, offset, this_offset);
6115 bit_offset = double_int_add (bit_offset,
6116 tree_to_double_int
6117 (DECL_FIELD_BIT_OFFSET (field)));
6118
6119 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6120 }
6121 break;
6122
6123 case ARRAY_REF:
6124 case ARRAY_RANGE_REF:
6125 {
6126 tree index = TREE_OPERAND (exp, 1);
6127 tree low_bound = array_ref_low_bound (exp);
6128 tree unit_size = array_ref_element_size (exp);
6129
6130 /* We assume all arrays have sizes that are a multiple of a byte.
6131 First subtract the lower bound, if any, in the type of the
6132 index, then convert to sizetype and multiply by the size of
6133 the array element. */
6134 if (! integer_zerop (low_bound))
6135 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6136 index, low_bound);
6137
6138 offset = size_binop (PLUS_EXPR, offset,
6139 size_binop (MULT_EXPR,
6140 fold_convert (sizetype, index),
6141 unit_size));
6142 }
6143 break;
6144
6145 case REALPART_EXPR:
6146 break;
6147
6148 case IMAGPART_EXPR:
6149 bit_offset = double_int_add (bit_offset,
6150 uhwi_to_double_int (*pbitsize));
6151 break;
6152
6153 case VIEW_CONVERT_EXPR:
6154 if (keep_aligning && STRICT_ALIGNMENT
6155 && (TYPE_ALIGN (TREE_TYPE (exp))
6156 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6157 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6158 < BIGGEST_ALIGNMENT)
6159 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6160 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6161 goto done;
6162 break;
6163
6164 case MEM_REF:
6165 /* Hand back the decl for MEM[&decl, off]. */
6166 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6167 {
6168 tree off = TREE_OPERAND (exp, 1);
6169 if (!integer_zerop (off))
6170 {
6171 double_int boff, coff = mem_ref_offset (exp);
6172 boff = double_int_lshift (coff,
6173 BITS_PER_UNIT == 8
6174 ? 3 : exact_log2 (BITS_PER_UNIT),
6175 HOST_BITS_PER_DOUBLE_INT, true);
6176 bit_offset = double_int_add (bit_offset, boff);
6177 }
6178 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6179 }
6180 goto done;
6181
6182 default:
6183 goto done;
6184 }
6185
6186 /* If any reference in the chain is volatile, the effect is volatile. */
6187 if (TREE_THIS_VOLATILE (exp))
6188 *pvolatilep = 1;
6189
6190 exp = TREE_OPERAND (exp, 0);
6191 }
6192 done:
6193
6194 /* If OFFSET is constant, see if we can return the whole thing as a
6195 constant bit position. Make sure to handle overflow during
6196 this conversion. */
6197 if (host_integerp (offset, 0))
6198 {
6199 double_int tem = double_int_lshift (tree_to_double_int (offset),
6200 BITS_PER_UNIT == 8
6201 ? 3 : exact_log2 (BITS_PER_UNIT),
6202 HOST_BITS_PER_DOUBLE_INT, true);
6203 tem = double_int_add (tem, bit_offset);
6204 if (double_int_fits_in_shwi_p (tem))
6205 {
6206 *pbitpos = double_int_to_shwi (tem);
6207 *poffset = offset = NULL_TREE;
6208 }
6209 }
6210
6211 /* Otherwise, split it up. */
6212 if (offset)
6213 {
6214 *pbitpos = double_int_to_shwi (bit_offset);
6215 *poffset = offset;
6216 }
6217
6218 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6219 if (mode == VOIDmode
6220 && blkmode_bitfield
6221 && (*pbitpos % BITS_PER_UNIT) == 0
6222 && (*pbitsize % BITS_PER_UNIT) == 0)
6223 *pmode = BLKmode;
6224 else
6225 *pmode = mode;
6226
6227 return exp;
6228 }
6229
6230 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6231 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6232 EXP is marked as PACKED. */
6233
6234 bool
6235 contains_packed_reference (const_tree exp)
6236 {
6237 bool packed_p = false;
6238
6239 while (1)
6240 {
6241 switch (TREE_CODE (exp))
6242 {
6243 case COMPONENT_REF:
6244 {
6245 tree field = TREE_OPERAND (exp, 1);
6246 packed_p = DECL_PACKED (field)
6247 || TYPE_PACKED (TREE_TYPE (field))
6248 || TYPE_PACKED (TREE_TYPE (exp));
6249 if (packed_p)
6250 goto done;
6251 }
6252 break;
6253
6254 case BIT_FIELD_REF:
6255 case ARRAY_REF:
6256 case ARRAY_RANGE_REF:
6257 case REALPART_EXPR:
6258 case IMAGPART_EXPR:
6259 case VIEW_CONVERT_EXPR:
6260 break;
6261
6262 default:
6263 goto done;
6264 }
6265 exp = TREE_OPERAND (exp, 0);
6266 }
6267 done:
6268 return packed_p;
6269 }
6270
6271 /* Return a tree of sizetype representing the size, in bytes, of the element
6272 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6273
6274 tree
6275 array_ref_element_size (tree exp)
6276 {
6277 tree aligned_size = TREE_OPERAND (exp, 3);
6278 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6279 location_t loc = EXPR_LOCATION (exp);
6280
6281 /* If a size was specified in the ARRAY_REF, it's the size measured
6282 in alignment units of the element type. So multiply by that value. */
6283 if (aligned_size)
6284 {
6285 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6286 sizetype from another type of the same width and signedness. */
6287 if (TREE_TYPE (aligned_size) != sizetype)
6288 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6289 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6290 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6291 }
6292
6293 /* Otherwise, take the size from that of the element type. Substitute
6294 any PLACEHOLDER_EXPR that we have. */
6295 else
6296 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6297 }
6298
6299 /* Return a tree representing the lower bound of the array mentioned in
6300 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6301
6302 tree
6303 array_ref_low_bound (tree exp)
6304 {
6305 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6306
6307 /* If a lower bound is specified in EXP, use it. */
6308 if (TREE_OPERAND (exp, 2))
6309 return TREE_OPERAND (exp, 2);
6310
6311 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6312 substituting for a PLACEHOLDER_EXPR as needed. */
6313 if (domain_type && TYPE_MIN_VALUE (domain_type))
6314 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6315
6316 /* Otherwise, return a zero of the appropriate type. */
6317 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6318 }
6319
6320 /* Return a tree representing the upper bound of the array mentioned in
6321 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6322
6323 tree
6324 array_ref_up_bound (tree exp)
6325 {
6326 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6327
6328 /* If there is a domain type and it has an upper bound, use it, substituting
6329 for a PLACEHOLDER_EXPR as needed. */
6330 if (domain_type && TYPE_MAX_VALUE (domain_type))
6331 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6332
6333 /* Otherwise fail. */
6334 return NULL_TREE;
6335 }
6336
6337 /* Return a tree representing the offset, in bytes, of the field referenced
6338 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6339
6340 tree
6341 component_ref_field_offset (tree exp)
6342 {
6343 tree aligned_offset = TREE_OPERAND (exp, 2);
6344 tree field = TREE_OPERAND (exp, 1);
6345 location_t loc = EXPR_LOCATION (exp);
6346
6347 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6348 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6349 value. */
6350 if (aligned_offset)
6351 {
6352 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6353 sizetype from another type of the same width and signedness. */
6354 if (TREE_TYPE (aligned_offset) != sizetype)
6355 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6356 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6357 size_int (DECL_OFFSET_ALIGN (field)
6358 / BITS_PER_UNIT));
6359 }
6360
6361 /* Otherwise, take the offset from that of the field. Substitute
6362 any PLACEHOLDER_EXPR that we have. */
6363 else
6364 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6365 }
6366
6367 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6368
6369 static unsigned HOST_WIDE_INT
6370 target_align (const_tree target)
6371 {
6372 /* We might have a chain of nested references with intermediate misaligning
6373 bitfields components, so need to recurse to find out. */
6374
6375 unsigned HOST_WIDE_INT this_align, outer_align;
6376
6377 switch (TREE_CODE (target))
6378 {
6379 case BIT_FIELD_REF:
6380 return 1;
6381
6382 case COMPONENT_REF:
6383 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6384 outer_align = target_align (TREE_OPERAND (target, 0));
6385 return MIN (this_align, outer_align);
6386
6387 case ARRAY_REF:
6388 case ARRAY_RANGE_REF:
6389 this_align = TYPE_ALIGN (TREE_TYPE (target));
6390 outer_align = target_align (TREE_OPERAND (target, 0));
6391 return MIN (this_align, outer_align);
6392
6393 CASE_CONVERT:
6394 case NON_LVALUE_EXPR:
6395 case VIEW_CONVERT_EXPR:
6396 this_align = TYPE_ALIGN (TREE_TYPE (target));
6397 outer_align = target_align (TREE_OPERAND (target, 0));
6398 return MAX (this_align, outer_align);
6399
6400 default:
6401 return TYPE_ALIGN (TREE_TYPE (target));
6402 }
6403 }
6404
6405 \f
6406 /* Given an rtx VALUE that may contain additions and multiplications, return
6407 an equivalent value that just refers to a register, memory, or constant.
6408 This is done by generating instructions to perform the arithmetic and
6409 returning a pseudo-register containing the value.
6410
6411 The returned value may be a REG, SUBREG, MEM or constant. */
6412
6413 rtx
6414 force_operand (rtx value, rtx target)
6415 {
6416 rtx op1, op2;
6417 /* Use subtarget as the target for operand 0 of a binary operation. */
6418 rtx subtarget = get_subtarget (target);
6419 enum rtx_code code = GET_CODE (value);
6420
6421 /* Check for subreg applied to an expression produced by loop optimizer. */
6422 if (code == SUBREG
6423 && !REG_P (SUBREG_REG (value))
6424 && !MEM_P (SUBREG_REG (value)))
6425 {
6426 value
6427 = simplify_gen_subreg (GET_MODE (value),
6428 force_reg (GET_MODE (SUBREG_REG (value)),
6429 force_operand (SUBREG_REG (value),
6430 NULL_RTX)),
6431 GET_MODE (SUBREG_REG (value)),
6432 SUBREG_BYTE (value));
6433 code = GET_CODE (value);
6434 }
6435
6436 /* Check for a PIC address load. */
6437 if ((code == PLUS || code == MINUS)
6438 && XEXP (value, 0) == pic_offset_table_rtx
6439 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6440 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6441 || GET_CODE (XEXP (value, 1)) == CONST))
6442 {
6443 if (!subtarget)
6444 subtarget = gen_reg_rtx (GET_MODE (value));
6445 emit_move_insn (subtarget, value);
6446 return subtarget;
6447 }
6448
6449 if (ARITHMETIC_P (value))
6450 {
6451 op2 = XEXP (value, 1);
6452 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6453 subtarget = 0;
6454 if (code == MINUS && CONST_INT_P (op2))
6455 {
6456 code = PLUS;
6457 op2 = negate_rtx (GET_MODE (value), op2);
6458 }
6459
6460 /* Check for an addition with OP2 a constant integer and our first
6461 operand a PLUS of a virtual register and something else. In that
6462 case, we want to emit the sum of the virtual register and the
6463 constant first and then add the other value. This allows virtual
6464 register instantiation to simply modify the constant rather than
6465 creating another one around this addition. */
6466 if (code == PLUS && CONST_INT_P (op2)
6467 && GET_CODE (XEXP (value, 0)) == PLUS
6468 && REG_P (XEXP (XEXP (value, 0), 0))
6469 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6470 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6471 {
6472 rtx temp = expand_simple_binop (GET_MODE (value), code,
6473 XEXP (XEXP (value, 0), 0), op2,
6474 subtarget, 0, OPTAB_LIB_WIDEN);
6475 return expand_simple_binop (GET_MODE (value), code, temp,
6476 force_operand (XEXP (XEXP (value,
6477 0), 1), 0),
6478 target, 0, OPTAB_LIB_WIDEN);
6479 }
6480
6481 op1 = force_operand (XEXP (value, 0), subtarget);
6482 op2 = force_operand (op2, NULL_RTX);
6483 switch (code)
6484 {
6485 case MULT:
6486 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6487 case DIV:
6488 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6489 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6490 target, 1, OPTAB_LIB_WIDEN);
6491 else
6492 return expand_divmod (0,
6493 FLOAT_MODE_P (GET_MODE (value))
6494 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6495 GET_MODE (value), op1, op2, target, 0);
6496 case MOD:
6497 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6498 target, 0);
6499 case UDIV:
6500 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6501 target, 1);
6502 case UMOD:
6503 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6504 target, 1);
6505 case ASHIFTRT:
6506 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6507 target, 0, OPTAB_LIB_WIDEN);
6508 default:
6509 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6510 target, 1, OPTAB_LIB_WIDEN);
6511 }
6512 }
6513 if (UNARY_P (value))
6514 {
6515 if (!target)
6516 target = gen_reg_rtx (GET_MODE (value));
6517 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6518 switch (code)
6519 {
6520 case ZERO_EXTEND:
6521 case SIGN_EXTEND:
6522 case TRUNCATE:
6523 case FLOAT_EXTEND:
6524 case FLOAT_TRUNCATE:
6525 convert_move (target, op1, code == ZERO_EXTEND);
6526 return target;
6527
6528 case FIX:
6529 case UNSIGNED_FIX:
6530 expand_fix (target, op1, code == UNSIGNED_FIX);
6531 return target;
6532
6533 case FLOAT:
6534 case UNSIGNED_FLOAT:
6535 expand_float (target, op1, code == UNSIGNED_FLOAT);
6536 return target;
6537
6538 default:
6539 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6540 }
6541 }
6542
6543 #ifdef INSN_SCHEDULING
6544 /* On machines that have insn scheduling, we want all memory reference to be
6545 explicit, so we need to deal with such paradoxical SUBREGs. */
6546 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6547 && (GET_MODE_SIZE (GET_MODE (value))
6548 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6549 value
6550 = simplify_gen_subreg (GET_MODE (value),
6551 force_reg (GET_MODE (SUBREG_REG (value)),
6552 force_operand (SUBREG_REG (value),
6553 NULL_RTX)),
6554 GET_MODE (SUBREG_REG (value)),
6555 SUBREG_BYTE (value));
6556 #endif
6557
6558 return value;
6559 }
6560 \f
6561 /* Subroutine of expand_expr: return nonzero iff there is no way that
6562 EXP can reference X, which is being modified. TOP_P is nonzero if this
6563 call is going to be used to determine whether we need a temporary
6564 for EXP, as opposed to a recursive call to this function.
6565
6566 It is always safe for this routine to return zero since it merely
6567 searches for optimization opportunities. */
6568
6569 int
6570 safe_from_p (const_rtx x, tree exp, int top_p)
6571 {
6572 rtx exp_rtl = 0;
6573 int i, nops;
6574
6575 if (x == 0
6576 /* If EXP has varying size, we MUST use a target since we currently
6577 have no way of allocating temporaries of variable size
6578 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6579 So we assume here that something at a higher level has prevented a
6580 clash. This is somewhat bogus, but the best we can do. Only
6581 do this when X is BLKmode and when we are at the top level. */
6582 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6583 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6584 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6585 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6586 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6587 != INTEGER_CST)
6588 && GET_MODE (x) == BLKmode)
6589 /* If X is in the outgoing argument area, it is always safe. */
6590 || (MEM_P (x)
6591 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6592 || (GET_CODE (XEXP (x, 0)) == PLUS
6593 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6594 return 1;
6595
6596 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6597 find the underlying pseudo. */
6598 if (GET_CODE (x) == SUBREG)
6599 {
6600 x = SUBREG_REG (x);
6601 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6602 return 0;
6603 }
6604
6605 /* Now look at our tree code and possibly recurse. */
6606 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6607 {
6608 case tcc_declaration:
6609 exp_rtl = DECL_RTL_IF_SET (exp);
6610 break;
6611
6612 case tcc_constant:
6613 return 1;
6614
6615 case tcc_exceptional:
6616 if (TREE_CODE (exp) == TREE_LIST)
6617 {
6618 while (1)
6619 {
6620 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6621 return 0;
6622 exp = TREE_CHAIN (exp);
6623 if (!exp)
6624 return 1;
6625 if (TREE_CODE (exp) != TREE_LIST)
6626 return safe_from_p (x, exp, 0);
6627 }
6628 }
6629 else if (TREE_CODE (exp) == CONSTRUCTOR)
6630 {
6631 constructor_elt *ce;
6632 unsigned HOST_WIDE_INT idx;
6633
6634 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6635 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6636 || !safe_from_p (x, ce->value, 0))
6637 return 0;
6638 return 1;
6639 }
6640 else if (TREE_CODE (exp) == ERROR_MARK)
6641 return 1; /* An already-visited SAVE_EXPR? */
6642 else
6643 return 0;
6644
6645 case tcc_statement:
6646 /* The only case we look at here is the DECL_INITIAL inside a
6647 DECL_EXPR. */
6648 return (TREE_CODE (exp) != DECL_EXPR
6649 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6650 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6651 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6652
6653 case tcc_binary:
6654 case tcc_comparison:
6655 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6656 return 0;
6657 /* Fall through. */
6658
6659 case tcc_unary:
6660 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6661
6662 case tcc_expression:
6663 case tcc_reference:
6664 case tcc_vl_exp:
6665 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6666 the expression. If it is set, we conflict iff we are that rtx or
6667 both are in memory. Otherwise, we check all operands of the
6668 expression recursively. */
6669
6670 switch (TREE_CODE (exp))
6671 {
6672 case ADDR_EXPR:
6673 /* If the operand is static or we are static, we can't conflict.
6674 Likewise if we don't conflict with the operand at all. */
6675 if (staticp (TREE_OPERAND (exp, 0))
6676 || TREE_STATIC (exp)
6677 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6678 return 1;
6679
6680 /* Otherwise, the only way this can conflict is if we are taking
6681 the address of a DECL a that address if part of X, which is
6682 very rare. */
6683 exp = TREE_OPERAND (exp, 0);
6684 if (DECL_P (exp))
6685 {
6686 if (!DECL_RTL_SET_P (exp)
6687 || !MEM_P (DECL_RTL (exp)))
6688 return 0;
6689 else
6690 exp_rtl = XEXP (DECL_RTL (exp), 0);
6691 }
6692 break;
6693
6694 case MEM_REF:
6695 if (MEM_P (x)
6696 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6697 get_alias_set (exp)))
6698 return 0;
6699 break;
6700
6701 case CALL_EXPR:
6702 /* Assume that the call will clobber all hard registers and
6703 all of memory. */
6704 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6705 || MEM_P (x))
6706 return 0;
6707 break;
6708
6709 case WITH_CLEANUP_EXPR:
6710 case CLEANUP_POINT_EXPR:
6711 /* Lowered by gimplify.c. */
6712 gcc_unreachable ();
6713
6714 case SAVE_EXPR:
6715 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6716
6717 default:
6718 break;
6719 }
6720
6721 /* If we have an rtx, we do not need to scan our operands. */
6722 if (exp_rtl)
6723 break;
6724
6725 nops = TREE_OPERAND_LENGTH (exp);
6726 for (i = 0; i < nops; i++)
6727 if (TREE_OPERAND (exp, i) != 0
6728 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6729 return 0;
6730
6731 break;
6732
6733 case tcc_type:
6734 /* Should never get a type here. */
6735 gcc_unreachable ();
6736 }
6737
6738 /* If we have an rtl, find any enclosed object. Then see if we conflict
6739 with it. */
6740 if (exp_rtl)
6741 {
6742 if (GET_CODE (exp_rtl) == SUBREG)
6743 {
6744 exp_rtl = SUBREG_REG (exp_rtl);
6745 if (REG_P (exp_rtl)
6746 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6747 return 0;
6748 }
6749
6750 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6751 are memory and they conflict. */
6752 return ! (rtx_equal_p (x, exp_rtl)
6753 || (MEM_P (x) && MEM_P (exp_rtl)
6754 && true_dependence (exp_rtl, VOIDmode, x,
6755 rtx_addr_varies_p)));
6756 }
6757
6758 /* If we reach here, it is safe. */
6759 return 1;
6760 }
6761
6762 \f
6763 /* Return the highest power of two that EXP is known to be a multiple of.
6764 This is used in updating alignment of MEMs in array references. */
6765
6766 unsigned HOST_WIDE_INT
6767 highest_pow2_factor (const_tree exp)
6768 {
6769 unsigned HOST_WIDE_INT c0, c1;
6770
6771 switch (TREE_CODE (exp))
6772 {
6773 case INTEGER_CST:
6774 /* We can find the lowest bit that's a one. If the low
6775 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6776 We need to handle this case since we can find it in a COND_EXPR,
6777 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6778 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6779 later ICE. */
6780 if (TREE_OVERFLOW (exp))
6781 return BIGGEST_ALIGNMENT;
6782 else
6783 {
6784 /* Note: tree_low_cst is intentionally not used here,
6785 we don't care about the upper bits. */
6786 c0 = TREE_INT_CST_LOW (exp);
6787 c0 &= -c0;
6788 return c0 ? c0 : BIGGEST_ALIGNMENT;
6789 }
6790 break;
6791
6792 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6793 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6794 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6795 return MIN (c0, c1);
6796
6797 case MULT_EXPR:
6798 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6799 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6800 return c0 * c1;
6801
6802 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6803 case CEIL_DIV_EXPR:
6804 if (integer_pow2p (TREE_OPERAND (exp, 1))
6805 && host_integerp (TREE_OPERAND (exp, 1), 1))
6806 {
6807 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6808 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6809 return MAX (1, c0 / c1);
6810 }
6811 break;
6812
6813 case BIT_AND_EXPR:
6814 /* The highest power of two of a bit-and expression is the maximum of
6815 that of its operands. We typically get here for a complex LHS and
6816 a constant negative power of two on the RHS to force an explicit
6817 alignment, so don't bother looking at the LHS. */
6818 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6819
6820 CASE_CONVERT:
6821 case SAVE_EXPR:
6822 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6823
6824 case COMPOUND_EXPR:
6825 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6826
6827 case COND_EXPR:
6828 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6829 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6830 return MIN (c0, c1);
6831
6832 default:
6833 break;
6834 }
6835
6836 return 1;
6837 }
6838
6839 /* Similar, except that the alignment requirements of TARGET are
6840 taken into account. Assume it is at least as aligned as its
6841 type, unless it is a COMPONENT_REF in which case the layout of
6842 the structure gives the alignment. */
6843
6844 static unsigned HOST_WIDE_INT
6845 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6846 {
6847 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6848 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6849
6850 return MAX (factor, talign);
6851 }
6852 \f
6853 /* Subroutine of expand_expr. Expand the two operands of a binary
6854 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6855 The value may be stored in TARGET if TARGET is nonzero. The
6856 MODIFIER argument is as documented by expand_expr. */
6857
6858 static void
6859 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6860 enum expand_modifier modifier)
6861 {
6862 if (! safe_from_p (target, exp1, 1))
6863 target = 0;
6864 if (operand_equal_p (exp0, exp1, 0))
6865 {
6866 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6867 *op1 = copy_rtx (*op0);
6868 }
6869 else
6870 {
6871 /* If we need to preserve evaluation order, copy exp0 into its own
6872 temporary variable so that it can't be clobbered by exp1. */
6873 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6874 exp0 = save_expr (exp0);
6875 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6876 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6877 }
6878 }
6879
6880 \f
6881 /* Return a MEM that contains constant EXP. DEFER is as for
6882 output_constant_def and MODIFIER is as for expand_expr. */
6883
6884 static rtx
6885 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6886 {
6887 rtx mem;
6888
6889 mem = output_constant_def (exp, defer);
6890 if (modifier != EXPAND_INITIALIZER)
6891 mem = use_anchored_address (mem);
6892 return mem;
6893 }
6894
6895 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6896 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6897
6898 static rtx
6899 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6900 enum expand_modifier modifier, addr_space_t as)
6901 {
6902 rtx result, subtarget;
6903 tree inner, offset;
6904 HOST_WIDE_INT bitsize, bitpos;
6905 int volatilep, unsignedp;
6906 enum machine_mode mode1;
6907
6908 /* If we are taking the address of a constant and are at the top level,
6909 we have to use output_constant_def since we can't call force_const_mem
6910 at top level. */
6911 /* ??? This should be considered a front-end bug. We should not be
6912 generating ADDR_EXPR of something that isn't an LVALUE. The only
6913 exception here is STRING_CST. */
6914 if (CONSTANT_CLASS_P (exp))
6915 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6916
6917 /* Everything must be something allowed by is_gimple_addressable. */
6918 switch (TREE_CODE (exp))
6919 {
6920 case INDIRECT_REF:
6921 /* This case will happen via recursion for &a->b. */
6922 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6923
6924 case MEM_REF:
6925 {
6926 tree tem = TREE_OPERAND (exp, 0);
6927 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6928 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6929 tem,
6930 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6931 return expand_expr (tem, target, tmode, modifier);
6932 }
6933
6934 case CONST_DECL:
6935 /* Expand the initializer like constants above. */
6936 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6937
6938 case REALPART_EXPR:
6939 /* The real part of the complex number is always first, therefore
6940 the address is the same as the address of the parent object. */
6941 offset = 0;
6942 bitpos = 0;
6943 inner = TREE_OPERAND (exp, 0);
6944 break;
6945
6946 case IMAGPART_EXPR:
6947 /* The imaginary part of the complex number is always second.
6948 The expression is therefore always offset by the size of the
6949 scalar type. */
6950 offset = 0;
6951 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6952 inner = TREE_OPERAND (exp, 0);
6953 break;
6954
6955 default:
6956 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6957 expand_expr, as that can have various side effects; LABEL_DECLs for
6958 example, may not have their DECL_RTL set yet. Expand the rtl of
6959 CONSTRUCTORs too, which should yield a memory reference for the
6960 constructor's contents. Assume language specific tree nodes can
6961 be expanded in some interesting way. */
6962 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6963 if (DECL_P (exp)
6964 || TREE_CODE (exp) == CONSTRUCTOR
6965 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6966 {
6967 result = expand_expr (exp, target, tmode,
6968 modifier == EXPAND_INITIALIZER
6969 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6970
6971 /* If the DECL isn't in memory, then the DECL wasn't properly
6972 marked TREE_ADDRESSABLE, which will be either a front-end
6973 or a tree optimizer bug. */
6974 gcc_assert (MEM_P (result));
6975 result = XEXP (result, 0);
6976
6977 /* ??? Is this needed anymore? */
6978 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6979 {
6980 assemble_external (exp);
6981 TREE_USED (exp) = 1;
6982 }
6983
6984 if (modifier != EXPAND_INITIALIZER
6985 && modifier != EXPAND_CONST_ADDRESS)
6986 result = force_operand (result, target);
6987 return result;
6988 }
6989
6990 /* Pass FALSE as the last argument to get_inner_reference although
6991 we are expanding to RTL. The rationale is that we know how to
6992 handle "aligning nodes" here: we can just bypass them because
6993 they won't change the final object whose address will be returned
6994 (they actually exist only for that purpose). */
6995 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6996 &mode1, &unsignedp, &volatilep, false);
6997 break;
6998 }
6999
7000 /* We must have made progress. */
7001 gcc_assert (inner != exp);
7002
7003 subtarget = offset || bitpos ? NULL_RTX : target;
7004 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7005 inner alignment, force the inner to be sufficiently aligned. */
7006 if (CONSTANT_CLASS_P (inner)
7007 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7008 {
7009 inner = copy_node (inner);
7010 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7011 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7012 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7013 }
7014 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7015
7016 if (offset)
7017 {
7018 rtx tmp;
7019
7020 if (modifier != EXPAND_NORMAL)
7021 result = force_operand (result, NULL);
7022 tmp = expand_expr (offset, NULL_RTX, tmode,
7023 modifier == EXPAND_INITIALIZER
7024 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7025
7026 result = convert_memory_address_addr_space (tmode, result, as);
7027 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7028
7029 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7030 result = gen_rtx_PLUS (tmode, result, tmp);
7031 else
7032 {
7033 subtarget = bitpos ? NULL_RTX : target;
7034 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7035 1, OPTAB_LIB_WIDEN);
7036 }
7037 }
7038
7039 if (bitpos)
7040 {
7041 /* Someone beforehand should have rejected taking the address
7042 of such an object. */
7043 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7044
7045 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7046 if (modifier < EXPAND_SUM)
7047 result = force_operand (result, target);
7048 }
7049
7050 return result;
7051 }
7052
7053 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7054 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7055
7056 static rtx
7057 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7058 enum expand_modifier modifier)
7059 {
7060 addr_space_t as = ADDR_SPACE_GENERIC;
7061 enum machine_mode address_mode = Pmode;
7062 enum machine_mode pointer_mode = ptr_mode;
7063 enum machine_mode rmode;
7064 rtx result;
7065
7066 /* Target mode of VOIDmode says "whatever's natural". */
7067 if (tmode == VOIDmode)
7068 tmode = TYPE_MODE (TREE_TYPE (exp));
7069
7070 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7071 {
7072 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7073 address_mode = targetm.addr_space.address_mode (as);
7074 pointer_mode = targetm.addr_space.pointer_mode (as);
7075 }
7076
7077 /* We can get called with some Weird Things if the user does silliness
7078 like "(short) &a". In that case, convert_memory_address won't do
7079 the right thing, so ignore the given target mode. */
7080 if (tmode != address_mode && tmode != pointer_mode)
7081 tmode = address_mode;
7082
7083 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7084 tmode, modifier, as);
7085
7086 /* Despite expand_expr claims concerning ignoring TMODE when not
7087 strictly convenient, stuff breaks if we don't honor it. Note
7088 that combined with the above, we only do this for pointer modes. */
7089 rmode = GET_MODE (result);
7090 if (rmode == VOIDmode)
7091 rmode = tmode;
7092 if (rmode != tmode)
7093 result = convert_memory_address_addr_space (tmode, result, as);
7094
7095 return result;
7096 }
7097
7098 /* Generate code for computing CONSTRUCTOR EXP.
7099 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7100 is TRUE, instead of creating a temporary variable in memory
7101 NULL is returned and the caller needs to handle it differently. */
7102
7103 static rtx
7104 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7105 bool avoid_temp_mem)
7106 {
7107 tree type = TREE_TYPE (exp);
7108 enum machine_mode mode = TYPE_MODE (type);
7109
7110 /* Try to avoid creating a temporary at all. This is possible
7111 if all of the initializer is zero.
7112 FIXME: try to handle all [0..255] initializers we can handle
7113 with memset. */
7114 if (TREE_STATIC (exp)
7115 && !TREE_ADDRESSABLE (exp)
7116 && target != 0 && mode == BLKmode
7117 && all_zeros_p (exp))
7118 {
7119 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7120 return target;
7121 }
7122
7123 /* All elts simple constants => refer to a constant in memory. But
7124 if this is a non-BLKmode mode, let it store a field at a time
7125 since that should make a CONST_INT or CONST_DOUBLE when we
7126 fold. Likewise, if we have a target we can use, it is best to
7127 store directly into the target unless the type is large enough
7128 that memcpy will be used. If we are making an initializer and
7129 all operands are constant, put it in memory as well.
7130
7131 FIXME: Avoid trying to fill vector constructors piece-meal.
7132 Output them with output_constant_def below unless we're sure
7133 they're zeros. This should go away when vector initializers
7134 are treated like VECTOR_CST instead of arrays. */
7135 if ((TREE_STATIC (exp)
7136 && ((mode == BLKmode
7137 && ! (target != 0 && safe_from_p (target, exp, 1)))
7138 || TREE_ADDRESSABLE (exp)
7139 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7140 && (! MOVE_BY_PIECES_P
7141 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7142 TYPE_ALIGN (type)))
7143 && ! mostly_zeros_p (exp))))
7144 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7145 && TREE_CONSTANT (exp)))
7146 {
7147 rtx constructor;
7148
7149 if (avoid_temp_mem)
7150 return NULL_RTX;
7151
7152 constructor = expand_expr_constant (exp, 1, modifier);
7153
7154 if (modifier != EXPAND_CONST_ADDRESS
7155 && modifier != EXPAND_INITIALIZER
7156 && modifier != EXPAND_SUM)
7157 constructor = validize_mem (constructor);
7158
7159 return constructor;
7160 }
7161
7162 /* Handle calls that pass values in multiple non-contiguous
7163 locations. The Irix 6 ABI has examples of this. */
7164 if (target == 0 || ! safe_from_p (target, exp, 1)
7165 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7166 {
7167 if (avoid_temp_mem)
7168 return NULL_RTX;
7169
7170 target
7171 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7172 | (TREE_READONLY (exp)
7173 * TYPE_QUAL_CONST))),
7174 0, TREE_ADDRESSABLE (exp), 1);
7175 }
7176
7177 store_constructor (exp, target, 0, int_expr_size (exp));
7178 return target;
7179 }
7180
7181
7182 /* expand_expr: generate code for computing expression EXP.
7183 An rtx for the computed value is returned. The value is never null.
7184 In the case of a void EXP, const0_rtx is returned.
7185
7186 The value may be stored in TARGET if TARGET is nonzero.
7187 TARGET is just a suggestion; callers must assume that
7188 the rtx returned may not be the same as TARGET.
7189
7190 If TARGET is CONST0_RTX, it means that the value will be ignored.
7191
7192 If TMODE is not VOIDmode, it suggests generating the
7193 result in mode TMODE. But this is done only when convenient.
7194 Otherwise, TMODE is ignored and the value generated in its natural mode.
7195 TMODE is just a suggestion; callers must assume that
7196 the rtx returned may not have mode TMODE.
7197
7198 Note that TARGET may have neither TMODE nor MODE. In that case, it
7199 probably will not be used.
7200
7201 If MODIFIER is EXPAND_SUM then when EXP is an addition
7202 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7203 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7204 products as above, or REG or MEM, or constant.
7205 Ordinarily in such cases we would output mul or add instructions
7206 and then return a pseudo reg containing the sum.
7207
7208 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7209 it also marks a label as absolutely required (it can't be dead).
7210 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7211 This is used for outputting expressions used in initializers.
7212
7213 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7214 with a constant address even if that address is not normally legitimate.
7215 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7216
7217 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7218 a call parameter. Such targets require special care as we haven't yet
7219 marked TARGET so that it's safe from being trashed by libcalls. We
7220 don't want to use TARGET for anything but the final result;
7221 Intermediate values must go elsewhere. Additionally, calls to
7222 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7223
7224 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7225 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7226 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7227 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7228 recursively. */
7229
7230 rtx
7231 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7232 enum expand_modifier modifier, rtx *alt_rtl)
7233 {
7234 rtx ret;
7235
7236 /* Handle ERROR_MARK before anybody tries to access its type. */
7237 if (TREE_CODE (exp) == ERROR_MARK
7238 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7239 {
7240 ret = CONST0_RTX (tmode);
7241 return ret ? ret : const0_rtx;
7242 }
7243
7244 /* If this is an expression of some kind and it has an associated line
7245 number, then emit the line number before expanding the expression.
7246
7247 We need to save and restore the file and line information so that
7248 errors discovered during expansion are emitted with the right
7249 information. It would be better of the diagnostic routines
7250 used the file/line information embedded in the tree nodes rather
7251 than globals. */
7252 if (cfun && EXPR_HAS_LOCATION (exp))
7253 {
7254 location_t saved_location = input_location;
7255 location_t saved_curr_loc = get_curr_insn_source_location ();
7256 tree saved_block = get_curr_insn_block ();
7257 input_location = EXPR_LOCATION (exp);
7258 set_curr_insn_source_location (input_location);
7259
7260 /* Record where the insns produced belong. */
7261 set_curr_insn_block (TREE_BLOCK (exp));
7262
7263 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7264
7265 input_location = saved_location;
7266 set_curr_insn_block (saved_block);
7267 set_curr_insn_source_location (saved_curr_loc);
7268 }
7269 else
7270 {
7271 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7272 }
7273
7274 return ret;
7275 }
7276
7277 rtx
7278 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7279 enum expand_modifier modifier)
7280 {
7281 rtx op0, op1, op2, temp;
7282 tree type;
7283 int unsignedp;
7284 enum machine_mode mode;
7285 enum tree_code code = ops->code;
7286 optab this_optab;
7287 rtx subtarget, original_target;
7288 int ignore;
7289 bool reduce_bit_field;
7290 location_t loc = ops->location;
7291 tree treeop0, treeop1;
7292 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7293 ? reduce_to_bit_field_precision ((expr), \
7294 target, \
7295 type) \
7296 : (expr))
7297
7298 type = ops->type;
7299 mode = TYPE_MODE (type);
7300 unsignedp = TYPE_UNSIGNED (type);
7301
7302 treeop0 = ops->op0;
7303 treeop1 = ops->op1;
7304
7305 /* We should be called only on simple (binary or unary) expressions,
7306 exactly those that are valid in gimple expressions that aren't
7307 GIMPLE_SINGLE_RHS (or invalid). */
7308 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7309 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7310 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7311
7312 ignore = (target == const0_rtx
7313 || ((CONVERT_EXPR_CODE_P (code)
7314 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7315 && TREE_CODE (type) == VOID_TYPE));
7316
7317 /* We should be called only if we need the result. */
7318 gcc_assert (!ignore);
7319
7320 /* An operation in what may be a bit-field type needs the
7321 result to be reduced to the precision of the bit-field type,
7322 which is narrower than that of the type's mode. */
7323 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7324 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7325
7326 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7327 target = 0;
7328
7329 /* Use subtarget as the target for operand 0 of a binary operation. */
7330 subtarget = get_subtarget (target);
7331 original_target = target;
7332
7333 switch (code)
7334 {
7335 case NON_LVALUE_EXPR:
7336 case PAREN_EXPR:
7337 CASE_CONVERT:
7338 if (treeop0 == error_mark_node)
7339 return const0_rtx;
7340
7341 if (TREE_CODE (type) == UNION_TYPE)
7342 {
7343 tree valtype = TREE_TYPE (treeop0);
7344
7345 /* If both input and output are BLKmode, this conversion isn't doing
7346 anything except possibly changing memory attribute. */
7347 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7348 {
7349 rtx result = expand_expr (treeop0, target, tmode,
7350 modifier);
7351
7352 result = copy_rtx (result);
7353 set_mem_attributes (result, type, 0);
7354 return result;
7355 }
7356
7357 if (target == 0)
7358 {
7359 if (TYPE_MODE (type) != BLKmode)
7360 target = gen_reg_rtx (TYPE_MODE (type));
7361 else
7362 target = assign_temp (type, 0, 1, 1);
7363 }
7364
7365 if (MEM_P (target))
7366 /* Store data into beginning of memory target. */
7367 store_expr (treeop0,
7368 adjust_address (target, TYPE_MODE (valtype), 0),
7369 modifier == EXPAND_STACK_PARM,
7370 false);
7371
7372 else
7373 {
7374 gcc_assert (REG_P (target));
7375
7376 /* Store this field into a union of the proper type. */
7377 store_field (target,
7378 MIN ((int_size_in_bytes (TREE_TYPE
7379 (treeop0))
7380 * BITS_PER_UNIT),
7381 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7382 0, TYPE_MODE (valtype), treeop0,
7383 type, 0, false);
7384 }
7385
7386 /* Return the entire union. */
7387 return target;
7388 }
7389
7390 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7391 {
7392 op0 = expand_expr (treeop0, target, VOIDmode,
7393 modifier);
7394
7395 /* If the signedness of the conversion differs and OP0 is
7396 a promoted SUBREG, clear that indication since we now
7397 have to do the proper extension. */
7398 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7399 && GET_CODE (op0) == SUBREG)
7400 SUBREG_PROMOTED_VAR_P (op0) = 0;
7401
7402 return REDUCE_BIT_FIELD (op0);
7403 }
7404
7405 op0 = expand_expr (treeop0, NULL_RTX, mode,
7406 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7407 if (GET_MODE (op0) == mode)
7408 ;
7409
7410 /* If OP0 is a constant, just convert it into the proper mode. */
7411 else if (CONSTANT_P (op0))
7412 {
7413 tree inner_type = TREE_TYPE (treeop0);
7414 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7415
7416 if (modifier == EXPAND_INITIALIZER)
7417 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7418 subreg_lowpart_offset (mode,
7419 inner_mode));
7420 else
7421 op0= convert_modes (mode, inner_mode, op0,
7422 TYPE_UNSIGNED (inner_type));
7423 }
7424
7425 else if (modifier == EXPAND_INITIALIZER)
7426 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7427
7428 else if (target == 0)
7429 op0 = convert_to_mode (mode, op0,
7430 TYPE_UNSIGNED (TREE_TYPE
7431 (treeop0)));
7432 else
7433 {
7434 convert_move (target, op0,
7435 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7436 op0 = target;
7437 }
7438
7439 return REDUCE_BIT_FIELD (op0);
7440
7441 case ADDR_SPACE_CONVERT_EXPR:
7442 {
7443 tree treeop0_type = TREE_TYPE (treeop0);
7444 addr_space_t as_to;
7445 addr_space_t as_from;
7446
7447 gcc_assert (POINTER_TYPE_P (type));
7448 gcc_assert (POINTER_TYPE_P (treeop0_type));
7449
7450 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7451 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7452
7453 /* Conversions between pointers to the same address space should
7454 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7455 gcc_assert (as_to != as_from);
7456
7457 /* Ask target code to handle conversion between pointers
7458 to overlapping address spaces. */
7459 if (targetm.addr_space.subset_p (as_to, as_from)
7460 || targetm.addr_space.subset_p (as_from, as_to))
7461 {
7462 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7463 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7464 gcc_assert (op0);
7465 return op0;
7466 }
7467
7468 /* For disjoint address spaces, converting anything but
7469 a null pointer invokes undefined behaviour. We simply
7470 always return a null pointer here. */
7471 return CONST0_RTX (mode);
7472 }
7473
7474 case POINTER_PLUS_EXPR:
7475 /* Even though the sizetype mode and the pointer's mode can be different
7476 expand is able to handle this correctly and get the correct result out
7477 of the PLUS_EXPR code. */
7478 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7479 if sizetype precision is smaller than pointer precision. */
7480 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7481 treeop1 = fold_convert_loc (loc, type,
7482 fold_convert_loc (loc, ssizetype,
7483 treeop1));
7484 case PLUS_EXPR:
7485 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7486 something else, make sure we add the register to the constant and
7487 then to the other thing. This case can occur during strength
7488 reduction and doing it this way will produce better code if the
7489 frame pointer or argument pointer is eliminated.
7490
7491 fold-const.c will ensure that the constant is always in the inner
7492 PLUS_EXPR, so the only case we need to do anything about is if
7493 sp, ap, or fp is our second argument, in which case we must swap
7494 the innermost first argument and our second argument. */
7495
7496 if (TREE_CODE (treeop0) == PLUS_EXPR
7497 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7498 && TREE_CODE (treeop1) == VAR_DECL
7499 && (DECL_RTL (treeop1) == frame_pointer_rtx
7500 || DECL_RTL (treeop1) == stack_pointer_rtx
7501 || DECL_RTL (treeop1) == arg_pointer_rtx))
7502 {
7503 tree t = treeop1;
7504
7505 treeop1 = TREE_OPERAND (treeop0, 0);
7506 TREE_OPERAND (treeop0, 0) = t;
7507 }
7508
7509 /* If the result is to be ptr_mode and we are adding an integer to
7510 something, we might be forming a constant. So try to use
7511 plus_constant. If it produces a sum and we can't accept it,
7512 use force_operand. This allows P = &ARR[const] to generate
7513 efficient code on machines where a SYMBOL_REF is not a valid
7514 address.
7515
7516 If this is an EXPAND_SUM call, always return the sum. */
7517 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7518 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7519 {
7520 if (modifier == EXPAND_STACK_PARM)
7521 target = 0;
7522 if (TREE_CODE (treeop0) == INTEGER_CST
7523 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7524 && TREE_CONSTANT (treeop1))
7525 {
7526 rtx constant_part;
7527
7528 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7529 EXPAND_SUM);
7530 /* Use immed_double_const to ensure that the constant is
7531 truncated according to the mode of OP1, then sign extended
7532 to a HOST_WIDE_INT. Using the constant directly can result
7533 in non-canonical RTL in a 64x32 cross compile. */
7534 constant_part
7535 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7536 (HOST_WIDE_INT) 0,
7537 TYPE_MODE (TREE_TYPE (treeop1)));
7538 op1 = plus_constant (op1, INTVAL (constant_part));
7539 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7540 op1 = force_operand (op1, target);
7541 return REDUCE_BIT_FIELD (op1);
7542 }
7543
7544 else if (TREE_CODE (treeop1) == INTEGER_CST
7545 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7546 && TREE_CONSTANT (treeop0))
7547 {
7548 rtx constant_part;
7549
7550 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7551 (modifier == EXPAND_INITIALIZER
7552 ? EXPAND_INITIALIZER : EXPAND_SUM));
7553 if (! CONSTANT_P (op0))
7554 {
7555 op1 = expand_expr (treeop1, NULL_RTX,
7556 VOIDmode, modifier);
7557 /* Return a PLUS if modifier says it's OK. */
7558 if (modifier == EXPAND_SUM
7559 || modifier == EXPAND_INITIALIZER)
7560 return simplify_gen_binary (PLUS, mode, op0, op1);
7561 goto binop2;
7562 }
7563 /* Use immed_double_const to ensure that the constant is
7564 truncated according to the mode of OP1, then sign extended
7565 to a HOST_WIDE_INT. Using the constant directly can result
7566 in non-canonical RTL in a 64x32 cross compile. */
7567 constant_part
7568 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7569 (HOST_WIDE_INT) 0,
7570 TYPE_MODE (TREE_TYPE (treeop0)));
7571 op0 = plus_constant (op0, INTVAL (constant_part));
7572 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7573 op0 = force_operand (op0, target);
7574 return REDUCE_BIT_FIELD (op0);
7575 }
7576 }
7577
7578 /* Use TER to expand pointer addition of a negated value
7579 as pointer subtraction. */
7580 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7581 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7582 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7583 && TREE_CODE (treeop1) == SSA_NAME
7584 && TYPE_MODE (TREE_TYPE (treeop0))
7585 == TYPE_MODE (TREE_TYPE (treeop1)))
7586 {
7587 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7588 if (def)
7589 {
7590 treeop1 = gimple_assign_rhs1 (def);
7591 code = MINUS_EXPR;
7592 goto do_minus;
7593 }
7594 }
7595
7596 /* No sense saving up arithmetic to be done
7597 if it's all in the wrong mode to form part of an address.
7598 And force_operand won't know whether to sign-extend or
7599 zero-extend. */
7600 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7601 || mode != ptr_mode)
7602 {
7603 expand_operands (treeop0, treeop1,
7604 subtarget, &op0, &op1, EXPAND_NORMAL);
7605 if (op0 == const0_rtx)
7606 return op1;
7607 if (op1 == const0_rtx)
7608 return op0;
7609 goto binop2;
7610 }
7611
7612 expand_operands (treeop0, treeop1,
7613 subtarget, &op0, &op1, modifier);
7614 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7615
7616 case MINUS_EXPR:
7617 do_minus:
7618 /* For initializers, we are allowed to return a MINUS of two
7619 symbolic constants. Here we handle all cases when both operands
7620 are constant. */
7621 /* Handle difference of two symbolic constants,
7622 for the sake of an initializer. */
7623 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7624 && really_constant_p (treeop0)
7625 && really_constant_p (treeop1))
7626 {
7627 expand_operands (treeop0, treeop1,
7628 NULL_RTX, &op0, &op1, modifier);
7629
7630 /* If the last operand is a CONST_INT, use plus_constant of
7631 the negated constant. Else make the MINUS. */
7632 if (CONST_INT_P (op1))
7633 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7634 else
7635 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7636 }
7637
7638 /* No sense saving up arithmetic to be done
7639 if it's all in the wrong mode to form part of an address.
7640 And force_operand won't know whether to sign-extend or
7641 zero-extend. */
7642 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7643 || mode != ptr_mode)
7644 goto binop;
7645
7646 expand_operands (treeop0, treeop1,
7647 subtarget, &op0, &op1, modifier);
7648
7649 /* Convert A - const to A + (-const). */
7650 if (CONST_INT_P (op1))
7651 {
7652 op1 = negate_rtx (mode, op1);
7653 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7654 }
7655
7656 goto binop2;
7657
7658 case WIDEN_MULT_PLUS_EXPR:
7659 case WIDEN_MULT_MINUS_EXPR:
7660 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7661 op2 = expand_normal (ops->op2);
7662 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7663 target, unsignedp);
7664 return target;
7665
7666 case WIDEN_MULT_EXPR:
7667 /* If first operand is constant, swap them.
7668 Thus the following special case checks need only
7669 check the second operand. */
7670 if (TREE_CODE (treeop0) == INTEGER_CST)
7671 {
7672 tree t1 = treeop0;
7673 treeop0 = treeop1;
7674 treeop1 = t1;
7675 }
7676
7677 /* First, check if we have a multiplication of one signed and one
7678 unsigned operand. */
7679 if (TREE_CODE (treeop1) != INTEGER_CST
7680 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7681 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7682 {
7683 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7684 this_optab = usmul_widen_optab;
7685 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7686 {
7687 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7688 {
7689 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7690 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7691 EXPAND_NORMAL);
7692 else
7693 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7694 EXPAND_NORMAL);
7695 goto binop3;
7696 }
7697 }
7698 }
7699 /* Check for a multiplication with matching signedness. */
7700 else if ((TREE_CODE (treeop1) == INTEGER_CST
7701 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7702 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7703 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7704 {
7705 tree op0type = TREE_TYPE (treeop0);
7706 enum machine_mode innermode = TYPE_MODE (op0type);
7707 bool zextend_p = TYPE_UNSIGNED (op0type);
7708 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7709 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7710
7711 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7712 {
7713 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7714 {
7715 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7716 EXPAND_NORMAL);
7717 temp = expand_widening_mult (mode, op0, op1, target,
7718 unsignedp, this_optab);
7719 return REDUCE_BIT_FIELD (temp);
7720 }
7721 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7722 && innermode == word_mode)
7723 {
7724 rtx htem, hipart;
7725 op0 = expand_normal (treeop0);
7726 if (TREE_CODE (treeop1) == INTEGER_CST)
7727 op1 = convert_modes (innermode, mode,
7728 expand_normal (treeop1), unsignedp);
7729 else
7730 op1 = expand_normal (treeop1);
7731 temp = expand_binop (mode, other_optab, op0, op1, target,
7732 unsignedp, OPTAB_LIB_WIDEN);
7733 hipart = gen_highpart (innermode, temp);
7734 htem = expand_mult_highpart_adjust (innermode, hipart,
7735 op0, op1, hipart,
7736 zextend_p);
7737 if (htem != hipart)
7738 emit_move_insn (hipart, htem);
7739 return REDUCE_BIT_FIELD (temp);
7740 }
7741 }
7742 }
7743 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7744 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7745 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7746 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7747
7748 case MULT_EXPR:
7749 /* If this is a fixed-point operation, then we cannot use the code
7750 below because "expand_mult" doesn't support sat/no-sat fixed-point
7751 multiplications. */
7752 if (ALL_FIXED_POINT_MODE_P (mode))
7753 goto binop;
7754
7755 /* If first operand is constant, swap them.
7756 Thus the following special case checks need only
7757 check the second operand. */
7758 if (TREE_CODE (treeop0) == INTEGER_CST)
7759 {
7760 tree t1 = treeop0;
7761 treeop0 = treeop1;
7762 treeop1 = t1;
7763 }
7764
7765 /* Attempt to return something suitable for generating an
7766 indexed address, for machines that support that. */
7767
7768 if (modifier == EXPAND_SUM && mode == ptr_mode
7769 && host_integerp (treeop1, 0))
7770 {
7771 tree exp1 = treeop1;
7772
7773 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7774 EXPAND_SUM);
7775
7776 if (!REG_P (op0))
7777 op0 = force_operand (op0, NULL_RTX);
7778 if (!REG_P (op0))
7779 op0 = copy_to_mode_reg (mode, op0);
7780
7781 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7782 gen_int_mode (tree_low_cst (exp1, 0),
7783 TYPE_MODE (TREE_TYPE (exp1)))));
7784 }
7785
7786 if (modifier == EXPAND_STACK_PARM)
7787 target = 0;
7788
7789 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7790 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7791
7792 case TRUNC_DIV_EXPR:
7793 case FLOOR_DIV_EXPR:
7794 case CEIL_DIV_EXPR:
7795 case ROUND_DIV_EXPR:
7796 case EXACT_DIV_EXPR:
7797 /* If this is a fixed-point operation, then we cannot use the code
7798 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7799 divisions. */
7800 if (ALL_FIXED_POINT_MODE_P (mode))
7801 goto binop;
7802
7803 if (modifier == EXPAND_STACK_PARM)
7804 target = 0;
7805 /* Possible optimization: compute the dividend with EXPAND_SUM
7806 then if the divisor is constant can optimize the case
7807 where some terms of the dividend have coeffs divisible by it. */
7808 expand_operands (treeop0, treeop1,
7809 subtarget, &op0, &op1, EXPAND_NORMAL);
7810 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7811
7812 case RDIV_EXPR:
7813 goto binop;
7814
7815 case TRUNC_MOD_EXPR:
7816 case FLOOR_MOD_EXPR:
7817 case CEIL_MOD_EXPR:
7818 case ROUND_MOD_EXPR:
7819 if (modifier == EXPAND_STACK_PARM)
7820 target = 0;
7821 expand_operands (treeop0, treeop1,
7822 subtarget, &op0, &op1, EXPAND_NORMAL);
7823 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7824
7825 case FIXED_CONVERT_EXPR:
7826 op0 = expand_normal (treeop0);
7827 if (target == 0 || modifier == EXPAND_STACK_PARM)
7828 target = gen_reg_rtx (mode);
7829
7830 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7831 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7832 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7833 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7834 else
7835 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7836 return target;
7837
7838 case FIX_TRUNC_EXPR:
7839 op0 = expand_normal (treeop0);
7840 if (target == 0 || modifier == EXPAND_STACK_PARM)
7841 target = gen_reg_rtx (mode);
7842 expand_fix (target, op0, unsignedp);
7843 return target;
7844
7845 case FLOAT_EXPR:
7846 op0 = expand_normal (treeop0);
7847 if (target == 0 || modifier == EXPAND_STACK_PARM)
7848 target = gen_reg_rtx (mode);
7849 /* expand_float can't figure out what to do if FROM has VOIDmode.
7850 So give it the correct mode. With -O, cse will optimize this. */
7851 if (GET_MODE (op0) == VOIDmode)
7852 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7853 op0);
7854 expand_float (target, op0,
7855 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7856 return target;
7857
7858 case NEGATE_EXPR:
7859 op0 = expand_expr (treeop0, subtarget,
7860 VOIDmode, EXPAND_NORMAL);
7861 if (modifier == EXPAND_STACK_PARM)
7862 target = 0;
7863 temp = expand_unop (mode,
7864 optab_for_tree_code (NEGATE_EXPR, type,
7865 optab_default),
7866 op0, target, 0);
7867 gcc_assert (temp);
7868 return REDUCE_BIT_FIELD (temp);
7869
7870 case ABS_EXPR:
7871 op0 = expand_expr (treeop0, subtarget,
7872 VOIDmode, EXPAND_NORMAL);
7873 if (modifier == EXPAND_STACK_PARM)
7874 target = 0;
7875
7876 /* ABS_EXPR is not valid for complex arguments. */
7877 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7878 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7879
7880 /* Unsigned abs is simply the operand. Testing here means we don't
7881 risk generating incorrect code below. */
7882 if (TYPE_UNSIGNED (type))
7883 return op0;
7884
7885 return expand_abs (mode, op0, target, unsignedp,
7886 safe_from_p (target, treeop0, 1));
7887
7888 case MAX_EXPR:
7889 case MIN_EXPR:
7890 target = original_target;
7891 if (target == 0
7892 || modifier == EXPAND_STACK_PARM
7893 || (MEM_P (target) && MEM_VOLATILE_P (target))
7894 || GET_MODE (target) != mode
7895 || (REG_P (target)
7896 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7897 target = gen_reg_rtx (mode);
7898 expand_operands (treeop0, treeop1,
7899 target, &op0, &op1, EXPAND_NORMAL);
7900
7901 /* First try to do it with a special MIN or MAX instruction.
7902 If that does not win, use a conditional jump to select the proper
7903 value. */
7904 this_optab = optab_for_tree_code (code, type, optab_default);
7905 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7906 OPTAB_WIDEN);
7907 if (temp != 0)
7908 return temp;
7909
7910 /* At this point, a MEM target is no longer useful; we will get better
7911 code without it. */
7912
7913 if (! REG_P (target))
7914 target = gen_reg_rtx (mode);
7915
7916 /* If op1 was placed in target, swap op0 and op1. */
7917 if (target != op0 && target == op1)
7918 {
7919 temp = op0;
7920 op0 = op1;
7921 op1 = temp;
7922 }
7923
7924 /* We generate better code and avoid problems with op1 mentioning
7925 target by forcing op1 into a pseudo if it isn't a constant. */
7926 if (! CONSTANT_P (op1))
7927 op1 = force_reg (mode, op1);
7928
7929 {
7930 enum rtx_code comparison_code;
7931 rtx cmpop1 = op1;
7932
7933 if (code == MAX_EXPR)
7934 comparison_code = unsignedp ? GEU : GE;
7935 else
7936 comparison_code = unsignedp ? LEU : LE;
7937
7938 /* Canonicalize to comparisons against 0. */
7939 if (op1 == const1_rtx)
7940 {
7941 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7942 or (a != 0 ? a : 1) for unsigned.
7943 For MIN we are safe converting (a <= 1 ? a : 1)
7944 into (a <= 0 ? a : 1) */
7945 cmpop1 = const0_rtx;
7946 if (code == MAX_EXPR)
7947 comparison_code = unsignedp ? NE : GT;
7948 }
7949 if (op1 == constm1_rtx && !unsignedp)
7950 {
7951 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7952 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7953 cmpop1 = const0_rtx;
7954 if (code == MIN_EXPR)
7955 comparison_code = LT;
7956 }
7957 #ifdef HAVE_conditional_move
7958 /* Use a conditional move if possible. */
7959 if (can_conditionally_move_p (mode))
7960 {
7961 rtx insn;
7962
7963 /* ??? Same problem as in expmed.c: emit_conditional_move
7964 forces a stack adjustment via compare_from_rtx, and we
7965 lose the stack adjustment if the sequence we are about
7966 to create is discarded. */
7967 do_pending_stack_adjust ();
7968
7969 start_sequence ();
7970
7971 /* Try to emit the conditional move. */
7972 insn = emit_conditional_move (target, comparison_code,
7973 op0, cmpop1, mode,
7974 op0, op1, mode,
7975 unsignedp);
7976
7977 /* If we could do the conditional move, emit the sequence,
7978 and return. */
7979 if (insn)
7980 {
7981 rtx seq = get_insns ();
7982 end_sequence ();
7983 emit_insn (seq);
7984 return target;
7985 }
7986
7987 /* Otherwise discard the sequence and fall back to code with
7988 branches. */
7989 end_sequence ();
7990 }
7991 #endif
7992 if (target != op0)
7993 emit_move_insn (target, op0);
7994
7995 temp = gen_label_rtx ();
7996 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7997 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7998 -1);
7999 }
8000 emit_move_insn (target, op1);
8001 emit_label (temp);
8002 return target;
8003
8004 case BIT_NOT_EXPR:
8005 op0 = expand_expr (treeop0, subtarget,
8006 VOIDmode, EXPAND_NORMAL);
8007 if (modifier == EXPAND_STACK_PARM)
8008 target = 0;
8009 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8010 gcc_assert (temp);
8011 return temp;
8012
8013 /* ??? Can optimize bitwise operations with one arg constant.
8014 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8015 and (a bitwise1 b) bitwise2 b (etc)
8016 but that is probably not worth while. */
8017
8018 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8019 boolean values when we want in all cases to compute both of them. In
8020 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8021 as actual zero-or-1 values and then bitwise anding. In cases where
8022 there cannot be any side effects, better code would be made by
8023 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8024 how to recognize those cases. */
8025
8026 case TRUTH_AND_EXPR:
8027 code = BIT_AND_EXPR;
8028 case BIT_AND_EXPR:
8029 goto binop;
8030
8031 case TRUTH_OR_EXPR:
8032 code = BIT_IOR_EXPR;
8033 case BIT_IOR_EXPR:
8034 goto binop;
8035
8036 case TRUTH_XOR_EXPR:
8037 code = BIT_XOR_EXPR;
8038 case BIT_XOR_EXPR:
8039 goto binop;
8040
8041 case LROTATE_EXPR:
8042 case RROTATE_EXPR:
8043 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8044 || (GET_MODE_PRECISION (TYPE_MODE (type))
8045 == TYPE_PRECISION (type)));
8046 /* fall through */
8047
8048 case LSHIFT_EXPR:
8049 case RSHIFT_EXPR:
8050 /* If this is a fixed-point operation, then we cannot use the code
8051 below because "expand_shift" doesn't support sat/no-sat fixed-point
8052 shifts. */
8053 if (ALL_FIXED_POINT_MODE_P (mode))
8054 goto binop;
8055
8056 if (! safe_from_p (subtarget, treeop1, 1))
8057 subtarget = 0;
8058 if (modifier == EXPAND_STACK_PARM)
8059 target = 0;
8060 op0 = expand_expr (treeop0, subtarget,
8061 VOIDmode, EXPAND_NORMAL);
8062 temp = expand_shift (code, mode, op0, treeop1, target,
8063 unsignedp);
8064 if (code == LSHIFT_EXPR)
8065 temp = REDUCE_BIT_FIELD (temp);
8066 return temp;
8067
8068 /* Could determine the answer when only additive constants differ. Also,
8069 the addition of one can be handled by changing the condition. */
8070 case LT_EXPR:
8071 case LE_EXPR:
8072 case GT_EXPR:
8073 case GE_EXPR:
8074 case EQ_EXPR:
8075 case NE_EXPR:
8076 case UNORDERED_EXPR:
8077 case ORDERED_EXPR:
8078 case UNLT_EXPR:
8079 case UNLE_EXPR:
8080 case UNGT_EXPR:
8081 case UNGE_EXPR:
8082 case UNEQ_EXPR:
8083 case LTGT_EXPR:
8084 temp = do_store_flag (ops,
8085 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8086 tmode != VOIDmode ? tmode : mode);
8087 if (temp)
8088 return temp;
8089
8090 /* Use a compare and a jump for BLKmode comparisons, or for function
8091 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8092
8093 if ((target == 0
8094 || modifier == EXPAND_STACK_PARM
8095 || ! safe_from_p (target, treeop0, 1)
8096 || ! safe_from_p (target, treeop1, 1)
8097 /* Make sure we don't have a hard reg (such as function's return
8098 value) live across basic blocks, if not optimizing. */
8099 || (!optimize && REG_P (target)
8100 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8101 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8102
8103 emit_move_insn (target, const0_rtx);
8104
8105 op1 = gen_label_rtx ();
8106 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8107
8108 emit_move_insn (target, const1_rtx);
8109
8110 emit_label (op1);
8111 return target;
8112
8113 case TRUTH_NOT_EXPR:
8114 if (modifier == EXPAND_STACK_PARM)
8115 target = 0;
8116 op0 = expand_expr (treeop0, target,
8117 VOIDmode, EXPAND_NORMAL);
8118 /* The parser is careful to generate TRUTH_NOT_EXPR
8119 only with operands that are always zero or one. */
8120 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8121 target, 1, OPTAB_LIB_WIDEN);
8122 gcc_assert (temp);
8123 return temp;
8124
8125 case COMPLEX_EXPR:
8126 /* Get the rtx code of the operands. */
8127 op0 = expand_normal (treeop0);
8128 op1 = expand_normal (treeop1);
8129
8130 if (!target)
8131 target = gen_reg_rtx (TYPE_MODE (type));
8132
8133 /* Move the real (op0) and imaginary (op1) parts to their location. */
8134 write_complex_part (target, op0, false);
8135 write_complex_part (target, op1, true);
8136
8137 return target;
8138
8139 case WIDEN_SUM_EXPR:
8140 {
8141 tree oprnd0 = treeop0;
8142 tree oprnd1 = treeop1;
8143
8144 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8145 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8146 target, unsignedp);
8147 return target;
8148 }
8149
8150 case REDUC_MAX_EXPR:
8151 case REDUC_MIN_EXPR:
8152 case REDUC_PLUS_EXPR:
8153 {
8154 op0 = expand_normal (treeop0);
8155 this_optab = optab_for_tree_code (code, type, optab_default);
8156 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8157 gcc_assert (temp);
8158 return temp;
8159 }
8160
8161 case VEC_EXTRACT_EVEN_EXPR:
8162 case VEC_EXTRACT_ODD_EXPR:
8163 {
8164 expand_operands (treeop0, treeop1,
8165 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8166 this_optab = optab_for_tree_code (code, type, optab_default);
8167 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8168 OPTAB_WIDEN);
8169 gcc_assert (temp);
8170 return temp;
8171 }
8172
8173 case VEC_INTERLEAVE_HIGH_EXPR:
8174 case VEC_INTERLEAVE_LOW_EXPR:
8175 {
8176 expand_operands (treeop0, treeop1,
8177 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8178 this_optab = optab_for_tree_code (code, type, optab_default);
8179 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8180 OPTAB_WIDEN);
8181 gcc_assert (temp);
8182 return temp;
8183 }
8184
8185 case VEC_LSHIFT_EXPR:
8186 case VEC_RSHIFT_EXPR:
8187 {
8188 target = expand_vec_shift_expr (ops, target);
8189 return target;
8190 }
8191
8192 case VEC_UNPACK_HI_EXPR:
8193 case VEC_UNPACK_LO_EXPR:
8194 {
8195 op0 = expand_normal (treeop0);
8196 this_optab = optab_for_tree_code (code, type, optab_default);
8197 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8198 target, unsignedp);
8199 gcc_assert (temp);
8200 return temp;
8201 }
8202
8203 case VEC_UNPACK_FLOAT_HI_EXPR:
8204 case VEC_UNPACK_FLOAT_LO_EXPR:
8205 {
8206 op0 = expand_normal (treeop0);
8207 /* The signedness is determined from input operand. */
8208 this_optab = optab_for_tree_code (code,
8209 TREE_TYPE (treeop0),
8210 optab_default);
8211 temp = expand_widen_pattern_expr
8212 (ops, op0, NULL_RTX, NULL_RTX,
8213 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8214
8215 gcc_assert (temp);
8216 return temp;
8217 }
8218
8219 case VEC_WIDEN_MULT_HI_EXPR:
8220 case VEC_WIDEN_MULT_LO_EXPR:
8221 {
8222 tree oprnd0 = treeop0;
8223 tree oprnd1 = treeop1;
8224
8225 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8226 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8227 target, unsignedp);
8228 gcc_assert (target);
8229 return target;
8230 }
8231
8232 case VEC_PACK_TRUNC_EXPR:
8233 case VEC_PACK_SAT_EXPR:
8234 case VEC_PACK_FIX_TRUNC_EXPR:
8235 mode = TYPE_MODE (TREE_TYPE (treeop0));
8236 goto binop;
8237
8238 default:
8239 gcc_unreachable ();
8240 }
8241
8242 /* Here to do an ordinary binary operator. */
8243 binop:
8244 expand_operands (treeop0, treeop1,
8245 subtarget, &op0, &op1, EXPAND_NORMAL);
8246 binop2:
8247 this_optab = optab_for_tree_code (code, type, optab_default);
8248 binop3:
8249 if (modifier == EXPAND_STACK_PARM)
8250 target = 0;
8251 temp = expand_binop (mode, this_optab, op0, op1, target,
8252 unsignedp, OPTAB_LIB_WIDEN);
8253 gcc_assert (temp);
8254 return REDUCE_BIT_FIELD (temp);
8255 }
8256 #undef REDUCE_BIT_FIELD
8257
8258 rtx
8259 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8260 enum expand_modifier modifier, rtx *alt_rtl)
8261 {
8262 rtx op0, op1, temp, decl_rtl;
8263 tree type;
8264 int unsignedp;
8265 enum machine_mode mode;
8266 enum tree_code code = TREE_CODE (exp);
8267 optab this_optab;
8268 rtx subtarget, original_target;
8269 int ignore;
8270 tree context;
8271 bool reduce_bit_field;
8272 location_t loc = EXPR_LOCATION (exp);
8273 struct separate_ops ops;
8274 tree treeop0, treeop1, treeop2;
8275 tree ssa_name = NULL_TREE;
8276 gimple g;
8277
8278 type = TREE_TYPE (exp);
8279 mode = TYPE_MODE (type);
8280 unsignedp = TYPE_UNSIGNED (type);
8281
8282 treeop0 = treeop1 = treeop2 = NULL_TREE;
8283 if (!VL_EXP_CLASS_P (exp))
8284 switch (TREE_CODE_LENGTH (code))
8285 {
8286 default:
8287 case 3: treeop2 = TREE_OPERAND (exp, 2);
8288 case 2: treeop1 = TREE_OPERAND (exp, 1);
8289 case 1: treeop0 = TREE_OPERAND (exp, 0);
8290 case 0: break;
8291 }
8292 ops.code = code;
8293 ops.type = type;
8294 ops.op0 = treeop0;
8295 ops.op1 = treeop1;
8296 ops.op2 = treeop2;
8297 ops.location = loc;
8298
8299 ignore = (target == const0_rtx
8300 || ((CONVERT_EXPR_CODE_P (code)
8301 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8302 && TREE_CODE (type) == VOID_TYPE));
8303
8304 /* An operation in what may be a bit-field type needs the
8305 result to be reduced to the precision of the bit-field type,
8306 which is narrower than that of the type's mode. */
8307 reduce_bit_field = (!ignore
8308 && TREE_CODE (type) == INTEGER_TYPE
8309 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8310
8311 /* If we are going to ignore this result, we need only do something
8312 if there is a side-effect somewhere in the expression. If there
8313 is, short-circuit the most common cases here. Note that we must
8314 not call expand_expr with anything but const0_rtx in case this
8315 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8316
8317 if (ignore)
8318 {
8319 if (! TREE_SIDE_EFFECTS (exp))
8320 return const0_rtx;
8321
8322 /* Ensure we reference a volatile object even if value is ignored, but
8323 don't do this if all we are doing is taking its address. */
8324 if (TREE_THIS_VOLATILE (exp)
8325 && TREE_CODE (exp) != FUNCTION_DECL
8326 && mode != VOIDmode && mode != BLKmode
8327 && modifier != EXPAND_CONST_ADDRESS)
8328 {
8329 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8330 if (MEM_P (temp))
8331 temp = copy_to_reg (temp);
8332 return const0_rtx;
8333 }
8334
8335 if (TREE_CODE_CLASS (code) == tcc_unary
8336 || code == COMPONENT_REF || code == INDIRECT_REF)
8337 return expand_expr (treeop0, const0_rtx, VOIDmode,
8338 modifier);
8339
8340 else if (TREE_CODE_CLASS (code) == tcc_binary
8341 || TREE_CODE_CLASS (code) == tcc_comparison
8342 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8343 {
8344 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8345 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8346 return const0_rtx;
8347 }
8348 else if (code == BIT_FIELD_REF)
8349 {
8350 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8351 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8352 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8353 return const0_rtx;
8354 }
8355
8356 target = 0;
8357 }
8358
8359 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8360 target = 0;
8361
8362 /* Use subtarget as the target for operand 0 of a binary operation. */
8363 subtarget = get_subtarget (target);
8364 original_target = target;
8365
8366 switch (code)
8367 {
8368 case LABEL_DECL:
8369 {
8370 tree function = decl_function_context (exp);
8371
8372 temp = label_rtx (exp);
8373 temp = gen_rtx_LABEL_REF (Pmode, temp);
8374
8375 if (function != current_function_decl
8376 && function != 0)
8377 LABEL_REF_NONLOCAL_P (temp) = 1;
8378
8379 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8380 return temp;
8381 }
8382
8383 case SSA_NAME:
8384 /* ??? ivopts calls expander, without any preparation from
8385 out-of-ssa. So fake instructions as if this was an access to the
8386 base variable. This unnecessarily allocates a pseudo, see how we can
8387 reuse it, if partition base vars have it set already. */
8388 if (!currently_expanding_to_rtl)
8389 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8390 NULL);
8391
8392 g = get_gimple_for_ssa_name (exp);
8393 if (g)
8394 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8395 modifier, NULL);
8396
8397 ssa_name = exp;
8398 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8399 exp = SSA_NAME_VAR (ssa_name);
8400 goto expand_decl_rtl;
8401
8402 case PARM_DECL:
8403 case VAR_DECL:
8404 /* If a static var's type was incomplete when the decl was written,
8405 but the type is complete now, lay out the decl now. */
8406 if (DECL_SIZE (exp) == 0
8407 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8408 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8409 layout_decl (exp, 0);
8410
8411 /* ... fall through ... */
8412
8413 case FUNCTION_DECL:
8414 case RESULT_DECL:
8415 decl_rtl = DECL_RTL (exp);
8416 expand_decl_rtl:
8417 gcc_assert (decl_rtl);
8418 decl_rtl = copy_rtx (decl_rtl);
8419 /* Record writes to register variables. */
8420 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8421 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8422 {
8423 int i = REGNO (decl_rtl);
8424 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8425 while (nregs)
8426 {
8427 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8428 i++;
8429 nregs--;
8430 }
8431 }
8432
8433 /* Ensure variable marked as used even if it doesn't go through
8434 a parser. If it hasn't be used yet, write out an external
8435 definition. */
8436 if (! TREE_USED (exp))
8437 {
8438 assemble_external (exp);
8439 TREE_USED (exp) = 1;
8440 }
8441
8442 /* Show we haven't gotten RTL for this yet. */
8443 temp = 0;
8444
8445 /* Variables inherited from containing functions should have
8446 been lowered by this point. */
8447 context = decl_function_context (exp);
8448 gcc_assert (!context
8449 || context == current_function_decl
8450 || TREE_STATIC (exp)
8451 || DECL_EXTERNAL (exp)
8452 /* ??? C++ creates functions that are not TREE_STATIC. */
8453 || TREE_CODE (exp) == FUNCTION_DECL);
8454
8455 /* This is the case of an array whose size is to be determined
8456 from its initializer, while the initializer is still being parsed.
8457 See expand_decl. */
8458
8459 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8460 temp = validize_mem (decl_rtl);
8461
8462 /* If DECL_RTL is memory, we are in the normal case and the
8463 address is not valid, get the address into a register. */
8464
8465 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8466 {
8467 if (alt_rtl)
8468 *alt_rtl = decl_rtl;
8469 decl_rtl = use_anchored_address (decl_rtl);
8470 if (modifier != EXPAND_CONST_ADDRESS
8471 && modifier != EXPAND_SUM
8472 && !memory_address_addr_space_p (DECL_MODE (exp),
8473 XEXP (decl_rtl, 0),
8474 MEM_ADDR_SPACE (decl_rtl)))
8475 temp = replace_equiv_address (decl_rtl,
8476 copy_rtx (XEXP (decl_rtl, 0)));
8477 }
8478
8479 /* If we got something, return it. But first, set the alignment
8480 if the address is a register. */
8481 if (temp != 0)
8482 {
8483 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8484 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8485
8486 return temp;
8487 }
8488
8489 /* If the mode of DECL_RTL does not match that of the decl, it
8490 must be a promoted value. We return a SUBREG of the wanted mode,
8491 but mark it so that we know that it was already extended. */
8492 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8493 {
8494 enum machine_mode pmode;
8495
8496 /* Get the signedness to be used for this variable. Ensure we get
8497 the same mode we got when the variable was declared. */
8498 if (code == SSA_NAME
8499 && (g = SSA_NAME_DEF_STMT (ssa_name))
8500 && gimple_code (g) == GIMPLE_CALL)
8501 pmode = promote_function_mode (type, mode, &unsignedp,
8502 TREE_TYPE
8503 (TREE_TYPE (gimple_call_fn (g))),
8504 2);
8505 else
8506 pmode = promote_decl_mode (exp, &unsignedp);
8507 gcc_assert (GET_MODE (decl_rtl) == pmode);
8508
8509 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8510 SUBREG_PROMOTED_VAR_P (temp) = 1;
8511 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8512 return temp;
8513 }
8514
8515 return decl_rtl;
8516
8517 case INTEGER_CST:
8518 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8519 TREE_INT_CST_HIGH (exp), mode);
8520
8521 return temp;
8522
8523 case VECTOR_CST:
8524 {
8525 tree tmp = NULL_TREE;
8526 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8527 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8528 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8529 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8530 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8531 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8532 return const_vector_from_tree (exp);
8533 if (GET_MODE_CLASS (mode) == MODE_INT)
8534 {
8535 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8536 if (type_for_mode)
8537 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8538 }
8539 if (!tmp)
8540 tmp = build_constructor_from_list (type,
8541 TREE_VECTOR_CST_ELTS (exp));
8542 return expand_expr (tmp, ignore ? const0_rtx : target,
8543 tmode, modifier);
8544 }
8545
8546 case CONST_DECL:
8547 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8548
8549 case REAL_CST:
8550 /* If optimized, generate immediate CONST_DOUBLE
8551 which will be turned into memory by reload if necessary.
8552
8553 We used to force a register so that loop.c could see it. But
8554 this does not allow gen_* patterns to perform optimizations with
8555 the constants. It also produces two insns in cases like "x = 1.0;".
8556 On most machines, floating-point constants are not permitted in
8557 many insns, so we'd end up copying it to a register in any case.
8558
8559 Now, we do the copying in expand_binop, if appropriate. */
8560 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8561 TYPE_MODE (TREE_TYPE (exp)));
8562
8563 case FIXED_CST:
8564 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8565 TYPE_MODE (TREE_TYPE (exp)));
8566
8567 case COMPLEX_CST:
8568 /* Handle evaluating a complex constant in a CONCAT target. */
8569 if (original_target && GET_CODE (original_target) == CONCAT)
8570 {
8571 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8572 rtx rtarg, itarg;
8573
8574 rtarg = XEXP (original_target, 0);
8575 itarg = XEXP (original_target, 1);
8576
8577 /* Move the real and imaginary parts separately. */
8578 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8579 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8580
8581 if (op0 != rtarg)
8582 emit_move_insn (rtarg, op0);
8583 if (op1 != itarg)
8584 emit_move_insn (itarg, op1);
8585
8586 return original_target;
8587 }
8588
8589 /* ... fall through ... */
8590
8591 case STRING_CST:
8592 temp = expand_expr_constant (exp, 1, modifier);
8593
8594 /* temp contains a constant address.
8595 On RISC machines where a constant address isn't valid,
8596 make some insns to get that address into a register. */
8597 if (modifier != EXPAND_CONST_ADDRESS
8598 && modifier != EXPAND_INITIALIZER
8599 && modifier != EXPAND_SUM
8600 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8601 MEM_ADDR_SPACE (temp)))
8602 return replace_equiv_address (temp,
8603 copy_rtx (XEXP (temp, 0)));
8604 return temp;
8605
8606 case SAVE_EXPR:
8607 {
8608 tree val = treeop0;
8609 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8610
8611 if (!SAVE_EXPR_RESOLVED_P (exp))
8612 {
8613 /* We can indeed still hit this case, typically via builtin
8614 expanders calling save_expr immediately before expanding
8615 something. Assume this means that we only have to deal
8616 with non-BLKmode values. */
8617 gcc_assert (GET_MODE (ret) != BLKmode);
8618
8619 val = build_decl (EXPR_LOCATION (exp),
8620 VAR_DECL, NULL, TREE_TYPE (exp));
8621 DECL_ARTIFICIAL (val) = 1;
8622 DECL_IGNORED_P (val) = 1;
8623 treeop0 = val;
8624 TREE_OPERAND (exp, 0) = treeop0;
8625 SAVE_EXPR_RESOLVED_P (exp) = 1;
8626
8627 if (!CONSTANT_P (ret))
8628 ret = copy_to_reg (ret);
8629 SET_DECL_RTL (val, ret);
8630 }
8631
8632 return ret;
8633 }
8634
8635
8636 case CONSTRUCTOR:
8637 /* If we don't need the result, just ensure we evaluate any
8638 subexpressions. */
8639 if (ignore)
8640 {
8641 unsigned HOST_WIDE_INT idx;
8642 tree value;
8643
8644 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8645 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8646
8647 return const0_rtx;
8648 }
8649
8650 return expand_constructor (exp, target, modifier, false);
8651
8652 case TARGET_MEM_REF:
8653 {
8654 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8655 struct mem_address addr;
8656 int icode, align;
8657
8658 get_address_description (exp, &addr);
8659 op0 = addr_for_mem_ref (&addr, as, true);
8660 op0 = memory_address_addr_space (mode, op0, as);
8661 temp = gen_rtx_MEM (mode, op0);
8662 set_mem_attributes (temp, exp, 0);
8663 set_mem_addr_space (temp, as);
8664 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8665 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8666 if (mode != BLKmode
8667 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8668 /* If the target does not have special handling for unaligned
8669 loads of mode then it can use regular moves for them. */
8670 && ((icode = optab_handler (movmisalign_optab, mode))
8671 != CODE_FOR_nothing))
8672 {
8673 rtx reg, insn;
8674
8675 /* We've already validated the memory, and we're creating a
8676 new pseudo destination. The predicates really can't fail. */
8677 reg = gen_reg_rtx (mode);
8678
8679 /* Nor can the insn generator. */
8680 insn = GEN_FCN (icode) (reg, temp);
8681 gcc_assert (insn != NULL_RTX);
8682 emit_insn (insn);
8683
8684 return reg;
8685 }
8686 return temp;
8687 }
8688
8689 case MEM_REF:
8690 {
8691 addr_space_t as
8692 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8693 enum machine_mode address_mode;
8694 tree base = TREE_OPERAND (exp, 0);
8695 gimple def_stmt;
8696 int icode, align;
8697 /* Handle expansion of non-aliased memory with non-BLKmode. That
8698 might end up in a register. */
8699 if (TREE_CODE (base) == ADDR_EXPR)
8700 {
8701 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8702 tree bit_offset;
8703 base = TREE_OPERAND (base, 0);
8704 if (!DECL_P (base))
8705 {
8706 HOST_WIDE_INT off;
8707 base = get_addr_base_and_unit_offset (base, &off);
8708 gcc_assert (base);
8709 offset += off;
8710 }
8711 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8712 decl we must use bitfield operations. */
8713 if (DECL_P (base)
8714 && !TREE_ADDRESSABLE (base)
8715 && DECL_MODE (base) != BLKmode
8716 && DECL_RTL_SET_P (base)
8717 && !MEM_P (DECL_RTL (base)))
8718 {
8719 tree bftype;
8720 if (offset == 0
8721 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8722 && (GET_MODE_BITSIZE (DECL_MODE (base))
8723 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8724 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8725 TREE_TYPE (exp), base),
8726 target, tmode, modifier);
8727 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8728 bftype = TREE_TYPE (base);
8729 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8730 bftype = TREE_TYPE (exp);
8731 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8732 base,
8733 TYPE_SIZE (TREE_TYPE (exp)),
8734 bit_offset),
8735 target, tmode, modifier);
8736 }
8737 }
8738 address_mode = targetm.addr_space.address_mode (as);
8739 base = TREE_OPERAND (exp, 0);
8740 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8741 {
8742 tree mask = gimple_assign_rhs2 (def_stmt);
8743 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8744 gimple_assign_rhs1 (def_stmt), mask);
8745 TREE_OPERAND (exp, 0) = base;
8746 }
8747 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8748 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8749 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8750 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8751 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8752 {
8753 rtx off
8754 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8755 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8756 }
8757 op0 = memory_address_addr_space (mode, op0, as);
8758 temp = gen_rtx_MEM (mode, op0);
8759 set_mem_attributes (temp, exp, 0);
8760 set_mem_addr_space (temp, as);
8761 if (TREE_THIS_VOLATILE (exp))
8762 MEM_VOLATILE_P (temp) = 1;
8763 if (mode != BLKmode
8764 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8765 /* If the target does not have special handling for unaligned
8766 loads of mode then it can use regular moves for them. */
8767 && ((icode = optab_handler (movmisalign_optab, mode))
8768 != CODE_FOR_nothing))
8769 {
8770 rtx reg, insn;
8771
8772 /* We've already validated the memory, and we're creating a
8773 new pseudo destination. The predicates really can't fail. */
8774 reg = gen_reg_rtx (mode);
8775
8776 /* Nor can the insn generator. */
8777 insn = GEN_FCN (icode) (reg, temp);
8778 emit_insn (insn);
8779
8780 return reg;
8781 }
8782 return temp;
8783 }
8784
8785 case ARRAY_REF:
8786
8787 {
8788 tree array = treeop0;
8789 tree index = treeop1;
8790
8791 /* Fold an expression like: "foo"[2].
8792 This is not done in fold so it won't happen inside &.
8793 Don't fold if this is for wide characters since it's too
8794 difficult to do correctly and this is a very rare case. */
8795
8796 if (modifier != EXPAND_CONST_ADDRESS
8797 && modifier != EXPAND_INITIALIZER
8798 && modifier != EXPAND_MEMORY)
8799 {
8800 tree t = fold_read_from_constant_string (exp);
8801
8802 if (t)
8803 return expand_expr (t, target, tmode, modifier);
8804 }
8805
8806 /* If this is a constant index into a constant array,
8807 just get the value from the array. Handle both the cases when
8808 we have an explicit constructor and when our operand is a variable
8809 that was declared const. */
8810
8811 if (modifier != EXPAND_CONST_ADDRESS
8812 && modifier != EXPAND_INITIALIZER
8813 && modifier != EXPAND_MEMORY
8814 && TREE_CODE (array) == CONSTRUCTOR
8815 && ! TREE_SIDE_EFFECTS (array)
8816 && TREE_CODE (index) == INTEGER_CST)
8817 {
8818 unsigned HOST_WIDE_INT ix;
8819 tree field, value;
8820
8821 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8822 field, value)
8823 if (tree_int_cst_equal (field, index))
8824 {
8825 if (!TREE_SIDE_EFFECTS (value))
8826 return expand_expr (fold (value), target, tmode, modifier);
8827 break;
8828 }
8829 }
8830
8831 else if (optimize >= 1
8832 && modifier != EXPAND_CONST_ADDRESS
8833 && modifier != EXPAND_INITIALIZER
8834 && modifier != EXPAND_MEMORY
8835 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8836 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8837 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8838 && const_value_known_p (array))
8839 {
8840 if (TREE_CODE (index) == INTEGER_CST)
8841 {
8842 tree init = DECL_INITIAL (array);
8843
8844 if (TREE_CODE (init) == CONSTRUCTOR)
8845 {
8846 unsigned HOST_WIDE_INT ix;
8847 tree field, value;
8848
8849 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8850 field, value)
8851 if (tree_int_cst_equal (field, index))
8852 {
8853 if (TREE_SIDE_EFFECTS (value))
8854 break;
8855
8856 if (TREE_CODE (value) == CONSTRUCTOR)
8857 {
8858 /* If VALUE is a CONSTRUCTOR, this
8859 optimization is only useful if
8860 this doesn't store the CONSTRUCTOR
8861 into memory. If it does, it is more
8862 efficient to just load the data from
8863 the array directly. */
8864 rtx ret = expand_constructor (value, target,
8865 modifier, true);
8866 if (ret == NULL_RTX)
8867 break;
8868 }
8869
8870 return expand_expr (fold (value), target, tmode,
8871 modifier);
8872 }
8873 }
8874 else if(TREE_CODE (init) == STRING_CST)
8875 {
8876 tree index1 = index;
8877 tree low_bound = array_ref_low_bound (exp);
8878 index1 = fold_convert_loc (loc, sizetype,
8879 treeop1);
8880
8881 /* Optimize the special-case of a zero lower bound.
8882
8883 We convert the low_bound to sizetype to avoid some problems
8884 with constant folding. (E.g. suppose the lower bound is 1,
8885 and its mode is QI. Without the conversion,l (ARRAY
8886 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8887 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8888
8889 if (! integer_zerop (low_bound))
8890 index1 = size_diffop_loc (loc, index1,
8891 fold_convert_loc (loc, sizetype,
8892 low_bound));
8893
8894 if (0 > compare_tree_int (index1,
8895 TREE_STRING_LENGTH (init)))
8896 {
8897 tree type = TREE_TYPE (TREE_TYPE (init));
8898 enum machine_mode mode = TYPE_MODE (type);
8899
8900 if (GET_MODE_CLASS (mode) == MODE_INT
8901 && GET_MODE_SIZE (mode) == 1)
8902 return gen_int_mode (TREE_STRING_POINTER (init)
8903 [TREE_INT_CST_LOW (index1)],
8904 mode);
8905 }
8906 }
8907 }
8908 }
8909 }
8910 goto normal_inner_ref;
8911
8912 case COMPONENT_REF:
8913 /* If the operand is a CONSTRUCTOR, we can just extract the
8914 appropriate field if it is present. */
8915 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8916 {
8917 unsigned HOST_WIDE_INT idx;
8918 tree field, value;
8919
8920 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8921 idx, field, value)
8922 if (field == treeop1
8923 /* We can normally use the value of the field in the
8924 CONSTRUCTOR. However, if this is a bitfield in
8925 an integral mode that we can fit in a HOST_WIDE_INT,
8926 we must mask only the number of bits in the bitfield,
8927 since this is done implicitly by the constructor. If
8928 the bitfield does not meet either of those conditions,
8929 we can't do this optimization. */
8930 && (! DECL_BIT_FIELD (field)
8931 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8932 && (GET_MODE_BITSIZE (DECL_MODE (field))
8933 <= HOST_BITS_PER_WIDE_INT))))
8934 {
8935 if (DECL_BIT_FIELD (field)
8936 && modifier == EXPAND_STACK_PARM)
8937 target = 0;
8938 op0 = expand_expr (value, target, tmode, modifier);
8939 if (DECL_BIT_FIELD (field))
8940 {
8941 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8942 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8943
8944 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8945 {
8946 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8947 op0 = expand_and (imode, op0, op1, target);
8948 }
8949 else
8950 {
8951 tree count
8952 = build_int_cst (NULL_TREE,
8953 GET_MODE_BITSIZE (imode) - bitsize);
8954
8955 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8956 target, 0);
8957 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8958 target, 0);
8959 }
8960 }
8961
8962 return op0;
8963 }
8964 }
8965 goto normal_inner_ref;
8966
8967 case BIT_FIELD_REF:
8968 case ARRAY_RANGE_REF:
8969 normal_inner_ref:
8970 {
8971 enum machine_mode mode1, mode2;
8972 HOST_WIDE_INT bitsize, bitpos;
8973 tree offset;
8974 int volatilep = 0, must_force_mem;
8975 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8976 &mode1, &unsignedp, &volatilep, true);
8977 rtx orig_op0, memloc;
8978
8979 /* If we got back the original object, something is wrong. Perhaps
8980 we are evaluating an expression too early. In any event, don't
8981 infinitely recurse. */
8982 gcc_assert (tem != exp);
8983
8984 /* If TEM's type is a union of variable size, pass TARGET to the inner
8985 computation, since it will need a temporary and TARGET is known
8986 to have to do. This occurs in unchecked conversion in Ada. */
8987 orig_op0 = op0
8988 = expand_expr (tem,
8989 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8990 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8991 != INTEGER_CST)
8992 && modifier != EXPAND_STACK_PARM
8993 ? target : NULL_RTX),
8994 VOIDmode,
8995 (modifier == EXPAND_INITIALIZER
8996 || modifier == EXPAND_CONST_ADDRESS
8997 || modifier == EXPAND_STACK_PARM)
8998 ? modifier : EXPAND_NORMAL);
8999
9000
9001 /* If the bitfield is volatile, we want to access it in the
9002 field's mode, not the computed mode. */
9003 if (volatilep
9004 && GET_CODE (op0) == MEM
9005 && flag_strict_volatile_bitfields > 0)
9006 op0 = adjust_address (op0, mode1, 0);
9007
9008 mode2
9009 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9010
9011 /* If we have either an offset, a BLKmode result, or a reference
9012 outside the underlying object, we must force it to memory.
9013 Such a case can occur in Ada if we have unchecked conversion
9014 of an expression from a scalar type to an aggregate type or
9015 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9016 passed a partially uninitialized object or a view-conversion
9017 to a larger size. */
9018 must_force_mem = (offset
9019 || mode1 == BLKmode
9020 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9021
9022 /* Handle CONCAT first. */
9023 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9024 {
9025 if (bitpos == 0
9026 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9027 return op0;
9028 if (bitpos == 0
9029 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9030 && bitsize)
9031 {
9032 op0 = XEXP (op0, 0);
9033 mode2 = GET_MODE (op0);
9034 }
9035 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9036 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9037 && bitpos
9038 && bitsize)
9039 {
9040 op0 = XEXP (op0, 1);
9041 bitpos = 0;
9042 mode2 = GET_MODE (op0);
9043 }
9044 else
9045 /* Otherwise force into memory. */
9046 must_force_mem = 1;
9047 }
9048
9049 /* If this is a constant, put it in a register if it is a legitimate
9050 constant and we don't need a memory reference. */
9051 if (CONSTANT_P (op0)
9052 && mode2 != BLKmode
9053 && LEGITIMATE_CONSTANT_P (op0)
9054 && !must_force_mem)
9055 op0 = force_reg (mode2, op0);
9056
9057 /* Otherwise, if this is a constant, try to force it to the constant
9058 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9059 is a legitimate constant. */
9060 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9061 op0 = validize_mem (memloc);
9062
9063 /* Otherwise, if this is a constant or the object is not in memory
9064 and need be, put it there. */
9065 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9066 {
9067 tree nt = build_qualified_type (TREE_TYPE (tem),
9068 (TYPE_QUALS (TREE_TYPE (tem))
9069 | TYPE_QUAL_CONST));
9070 memloc = assign_temp (nt, 1, 1, 1);
9071 emit_move_insn (memloc, op0);
9072 op0 = memloc;
9073 }
9074
9075 if (offset)
9076 {
9077 enum machine_mode address_mode;
9078 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9079 EXPAND_SUM);
9080
9081 gcc_assert (MEM_P (op0));
9082
9083 address_mode
9084 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9085 if (GET_MODE (offset_rtx) != address_mode)
9086 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9087
9088 if (GET_MODE (op0) == BLKmode
9089 /* A constant address in OP0 can have VOIDmode, we must
9090 not try to call force_reg in that case. */
9091 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9092 && bitsize != 0
9093 && (bitpos % bitsize) == 0
9094 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9095 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9096 {
9097 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9098 bitpos = 0;
9099 }
9100
9101 op0 = offset_address (op0, offset_rtx,
9102 highest_pow2_factor (offset));
9103 }
9104
9105 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9106 record its alignment as BIGGEST_ALIGNMENT. */
9107 if (MEM_P (op0) && bitpos == 0 && offset != 0
9108 && is_aligning_offset (offset, tem))
9109 set_mem_align (op0, BIGGEST_ALIGNMENT);
9110
9111 /* Don't forget about volatility even if this is a bitfield. */
9112 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9113 {
9114 if (op0 == orig_op0)
9115 op0 = copy_rtx (op0);
9116
9117 MEM_VOLATILE_P (op0) = 1;
9118 }
9119
9120 /* In cases where an aligned union has an unaligned object
9121 as a field, we might be extracting a BLKmode value from
9122 an integer-mode (e.g., SImode) object. Handle this case
9123 by doing the extract into an object as wide as the field
9124 (which we know to be the width of a basic mode), then
9125 storing into memory, and changing the mode to BLKmode. */
9126 if (mode1 == VOIDmode
9127 || REG_P (op0) || GET_CODE (op0) == SUBREG
9128 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9129 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9130 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9131 && modifier != EXPAND_CONST_ADDRESS
9132 && modifier != EXPAND_INITIALIZER)
9133 /* If the field is volatile, we always want an aligned
9134 access. */
9135 || (volatilep && flag_strict_volatile_bitfields > 0)
9136 /* If the field isn't aligned enough to fetch as a memref,
9137 fetch it as a bit field. */
9138 || (mode1 != BLKmode
9139 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9140 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9141 || (MEM_P (op0)
9142 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9143 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9144 && ((modifier == EXPAND_CONST_ADDRESS
9145 || modifier == EXPAND_INITIALIZER)
9146 ? STRICT_ALIGNMENT
9147 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9148 || (bitpos % BITS_PER_UNIT != 0)))
9149 /* If the type and the field are a constant size and the
9150 size of the type isn't the same size as the bitfield,
9151 we must use bitfield operations. */
9152 || (bitsize >= 0
9153 && TYPE_SIZE (TREE_TYPE (exp))
9154 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9155 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9156 bitsize)))
9157 {
9158 enum machine_mode ext_mode = mode;
9159
9160 if (ext_mode == BLKmode
9161 && ! (target != 0 && MEM_P (op0)
9162 && MEM_P (target)
9163 && bitpos % BITS_PER_UNIT == 0))
9164 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9165
9166 if (ext_mode == BLKmode)
9167 {
9168 if (target == 0)
9169 target = assign_temp (type, 0, 1, 1);
9170
9171 if (bitsize == 0)
9172 return target;
9173
9174 /* In this case, BITPOS must start at a byte boundary and
9175 TARGET, if specified, must be a MEM. */
9176 gcc_assert (MEM_P (op0)
9177 && (!target || MEM_P (target))
9178 && !(bitpos % BITS_PER_UNIT));
9179
9180 emit_block_move (target,
9181 adjust_address (op0, VOIDmode,
9182 bitpos / BITS_PER_UNIT),
9183 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9184 / BITS_PER_UNIT),
9185 (modifier == EXPAND_STACK_PARM
9186 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9187
9188 return target;
9189 }
9190
9191 op0 = validize_mem (op0);
9192
9193 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9194 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9195
9196 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9197 (modifier == EXPAND_STACK_PARM
9198 ? NULL_RTX : target),
9199 ext_mode, ext_mode);
9200
9201 /* If the result is a record type and BITSIZE is narrower than
9202 the mode of OP0, an integral mode, and this is a big endian
9203 machine, we must put the field into the high-order bits. */
9204 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9205 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9206 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9207 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9208 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9209 - bitsize),
9210 op0, 1);
9211
9212 /* If the result type is BLKmode, store the data into a temporary
9213 of the appropriate type, but with the mode corresponding to the
9214 mode for the data we have (op0's mode). It's tempting to make
9215 this a constant type, since we know it's only being stored once,
9216 but that can cause problems if we are taking the address of this
9217 COMPONENT_REF because the MEM of any reference via that address
9218 will have flags corresponding to the type, which will not
9219 necessarily be constant. */
9220 if (mode == BLKmode)
9221 {
9222 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9223 rtx new_rtx;
9224
9225 /* If the reference doesn't use the alias set of its type,
9226 we cannot create the temporary using that type. */
9227 if (component_uses_parent_alias_set (exp))
9228 {
9229 new_rtx = assign_stack_local (ext_mode, size, 0);
9230 set_mem_alias_set (new_rtx, get_alias_set (exp));
9231 }
9232 else
9233 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9234
9235 emit_move_insn (new_rtx, op0);
9236 op0 = copy_rtx (new_rtx);
9237 PUT_MODE (op0, BLKmode);
9238 set_mem_attributes (op0, exp, 1);
9239 }
9240
9241 return op0;
9242 }
9243
9244 /* If the result is BLKmode, use that to access the object
9245 now as well. */
9246 if (mode == BLKmode)
9247 mode1 = BLKmode;
9248
9249 /* Get a reference to just this component. */
9250 if (modifier == EXPAND_CONST_ADDRESS
9251 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9252 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9253 else
9254 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9255
9256 if (op0 == orig_op0)
9257 op0 = copy_rtx (op0);
9258
9259 set_mem_attributes (op0, exp, 0);
9260 if (REG_P (XEXP (op0, 0)))
9261 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9262
9263 MEM_VOLATILE_P (op0) |= volatilep;
9264 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9265 || modifier == EXPAND_CONST_ADDRESS
9266 || modifier == EXPAND_INITIALIZER)
9267 return op0;
9268 else if (target == 0)
9269 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9270
9271 convert_move (target, op0, unsignedp);
9272 return target;
9273 }
9274
9275 case OBJ_TYPE_REF:
9276 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9277
9278 case CALL_EXPR:
9279 /* All valid uses of __builtin_va_arg_pack () are removed during
9280 inlining. */
9281 if (CALL_EXPR_VA_ARG_PACK (exp))
9282 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9283 {
9284 tree fndecl = get_callee_fndecl (exp), attr;
9285
9286 if (fndecl
9287 && (attr = lookup_attribute ("error",
9288 DECL_ATTRIBUTES (fndecl))) != NULL)
9289 error ("%Kcall to %qs declared with attribute error: %s",
9290 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9291 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9292 if (fndecl
9293 && (attr = lookup_attribute ("warning",
9294 DECL_ATTRIBUTES (fndecl))) != NULL)
9295 warning_at (tree_nonartificial_location (exp),
9296 0, "%Kcall to %qs declared with attribute warning: %s",
9297 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9298 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9299
9300 /* Check for a built-in function. */
9301 if (fndecl && DECL_BUILT_IN (fndecl))
9302 {
9303 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9304 return expand_builtin (exp, target, subtarget, tmode, ignore);
9305 }
9306 }
9307 return expand_call (exp, target, ignore);
9308
9309 case VIEW_CONVERT_EXPR:
9310 op0 = NULL_RTX;
9311
9312 /* If we are converting to BLKmode, try to avoid an intermediate
9313 temporary by fetching an inner memory reference. */
9314 if (mode == BLKmode
9315 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9316 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9317 && handled_component_p (treeop0))
9318 {
9319 enum machine_mode mode1;
9320 HOST_WIDE_INT bitsize, bitpos;
9321 tree offset;
9322 int unsignedp;
9323 int volatilep = 0;
9324 tree tem
9325 = get_inner_reference (treeop0, &bitsize, &bitpos,
9326 &offset, &mode1, &unsignedp, &volatilep,
9327 true);
9328 rtx orig_op0;
9329
9330 /* ??? We should work harder and deal with non-zero offsets. */
9331 if (!offset
9332 && (bitpos % BITS_PER_UNIT) == 0
9333 && bitsize >= 0
9334 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9335 {
9336 /* See the normal_inner_ref case for the rationale. */
9337 orig_op0
9338 = expand_expr (tem,
9339 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9340 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9341 != INTEGER_CST)
9342 && modifier != EXPAND_STACK_PARM
9343 ? target : NULL_RTX),
9344 VOIDmode,
9345 (modifier == EXPAND_INITIALIZER
9346 || modifier == EXPAND_CONST_ADDRESS
9347 || modifier == EXPAND_STACK_PARM)
9348 ? modifier : EXPAND_NORMAL);
9349
9350 if (MEM_P (orig_op0))
9351 {
9352 op0 = orig_op0;
9353
9354 /* Get a reference to just this component. */
9355 if (modifier == EXPAND_CONST_ADDRESS
9356 || modifier == EXPAND_SUM
9357 || modifier == EXPAND_INITIALIZER)
9358 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9359 else
9360 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9361
9362 if (op0 == orig_op0)
9363 op0 = copy_rtx (op0);
9364
9365 set_mem_attributes (op0, treeop0, 0);
9366 if (REG_P (XEXP (op0, 0)))
9367 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9368
9369 MEM_VOLATILE_P (op0) |= volatilep;
9370 }
9371 }
9372 }
9373
9374 if (!op0)
9375 op0 = expand_expr (treeop0,
9376 NULL_RTX, VOIDmode, modifier);
9377
9378 /* If the input and output modes are both the same, we are done. */
9379 if (mode == GET_MODE (op0))
9380 ;
9381 /* If neither mode is BLKmode, and both modes are the same size
9382 then we can use gen_lowpart. */
9383 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9384 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9385 && !COMPLEX_MODE_P (GET_MODE (op0)))
9386 {
9387 if (GET_CODE (op0) == SUBREG)
9388 op0 = force_reg (GET_MODE (op0), op0);
9389 temp = gen_lowpart_common (mode, op0);
9390 if (temp)
9391 op0 = temp;
9392 else
9393 {
9394 if (!REG_P (op0) && !MEM_P (op0))
9395 op0 = force_reg (GET_MODE (op0), op0);
9396 op0 = gen_lowpart (mode, op0);
9397 }
9398 }
9399 /* If both types are integral, convert from one mode to the other. */
9400 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9401 op0 = convert_modes (mode, GET_MODE (op0), op0,
9402 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9403 /* As a last resort, spill op0 to memory, and reload it in a
9404 different mode. */
9405 else if (!MEM_P (op0))
9406 {
9407 /* If the operand is not a MEM, force it into memory. Since we
9408 are going to be changing the mode of the MEM, don't call
9409 force_const_mem for constants because we don't allow pool
9410 constants to change mode. */
9411 tree inner_type = TREE_TYPE (treeop0);
9412
9413 gcc_assert (!TREE_ADDRESSABLE (exp));
9414
9415 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9416 target
9417 = assign_stack_temp_for_type
9418 (TYPE_MODE (inner_type),
9419 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9420
9421 emit_move_insn (target, op0);
9422 op0 = target;
9423 }
9424
9425 /* At this point, OP0 is in the correct mode. If the output type is
9426 such that the operand is known to be aligned, indicate that it is.
9427 Otherwise, we need only be concerned about alignment for non-BLKmode
9428 results. */
9429 if (MEM_P (op0))
9430 {
9431 op0 = copy_rtx (op0);
9432
9433 if (TYPE_ALIGN_OK (type))
9434 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9435 else if (STRICT_ALIGNMENT
9436 && mode != BLKmode
9437 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9438 {
9439 tree inner_type = TREE_TYPE (treeop0);
9440 HOST_WIDE_INT temp_size
9441 = MAX (int_size_in_bytes (inner_type),
9442 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9443 rtx new_rtx
9444 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9445 rtx new_with_op0_mode
9446 = adjust_address (new_rtx, GET_MODE (op0), 0);
9447
9448 gcc_assert (!TREE_ADDRESSABLE (exp));
9449
9450 if (GET_MODE (op0) == BLKmode)
9451 emit_block_move (new_with_op0_mode, op0,
9452 GEN_INT (GET_MODE_SIZE (mode)),
9453 (modifier == EXPAND_STACK_PARM
9454 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9455 else
9456 emit_move_insn (new_with_op0_mode, op0);
9457
9458 op0 = new_rtx;
9459 }
9460
9461 op0 = adjust_address (op0, mode, 0);
9462 }
9463
9464 return op0;
9465
9466 /* Use a compare and a jump for BLKmode comparisons, or for function
9467 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9468
9469 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9470 are occassionally created by folding during expansion. */
9471 case TRUTH_ANDIF_EXPR:
9472 case TRUTH_ORIF_EXPR:
9473 if (! ignore
9474 && (target == 0
9475 || modifier == EXPAND_STACK_PARM
9476 || ! safe_from_p (target, treeop0, 1)
9477 || ! safe_from_p (target, treeop1, 1)
9478 /* Make sure we don't have a hard reg (such as function's return
9479 value) live across basic blocks, if not optimizing. */
9480 || (!optimize && REG_P (target)
9481 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9482 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9483
9484 if (target)
9485 emit_move_insn (target, const0_rtx);
9486
9487 op1 = gen_label_rtx ();
9488 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9489
9490 if (target)
9491 emit_move_insn (target, const1_rtx);
9492
9493 emit_label (op1);
9494 return ignore ? const0_rtx : target;
9495
9496 case STATEMENT_LIST:
9497 {
9498 tree_stmt_iterator iter;
9499
9500 gcc_assert (ignore);
9501
9502 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9503 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9504 }
9505 return const0_rtx;
9506
9507 case COND_EXPR:
9508 /* A COND_EXPR with its type being VOID_TYPE represents a
9509 conditional jump and is handled in
9510 expand_gimple_cond_expr. */
9511 gcc_assert (!VOID_TYPE_P (type));
9512
9513 /* Note that COND_EXPRs whose type is a structure or union
9514 are required to be constructed to contain assignments of
9515 a temporary variable, so that we can evaluate them here
9516 for side effect only. If type is void, we must do likewise. */
9517
9518 gcc_assert (!TREE_ADDRESSABLE (type)
9519 && !ignore
9520 && TREE_TYPE (treeop1) != void_type_node
9521 && TREE_TYPE (treeop2) != void_type_node);
9522
9523 /* If we are not to produce a result, we have no target. Otherwise,
9524 if a target was specified use it; it will not be used as an
9525 intermediate target unless it is safe. If no target, use a
9526 temporary. */
9527
9528 if (modifier != EXPAND_STACK_PARM
9529 && original_target
9530 && safe_from_p (original_target, treeop0, 1)
9531 && GET_MODE (original_target) == mode
9532 #ifdef HAVE_conditional_move
9533 && (! can_conditionally_move_p (mode)
9534 || REG_P (original_target))
9535 #endif
9536 && !MEM_P (original_target))
9537 temp = original_target;
9538 else
9539 temp = assign_temp (type, 0, 0, 1);
9540
9541 do_pending_stack_adjust ();
9542 NO_DEFER_POP;
9543 op0 = gen_label_rtx ();
9544 op1 = gen_label_rtx ();
9545 jumpifnot (treeop0, op0, -1);
9546 store_expr (treeop1, temp,
9547 modifier == EXPAND_STACK_PARM,
9548 false);
9549
9550 emit_jump_insn (gen_jump (op1));
9551 emit_barrier ();
9552 emit_label (op0);
9553 store_expr (treeop2, temp,
9554 modifier == EXPAND_STACK_PARM,
9555 false);
9556
9557 emit_label (op1);
9558 OK_DEFER_POP;
9559 return temp;
9560
9561 case VEC_COND_EXPR:
9562 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9563 return target;
9564
9565 case MODIFY_EXPR:
9566 {
9567 tree lhs = treeop0;
9568 tree rhs = treeop1;
9569 gcc_assert (ignore);
9570
9571 /* Check for |= or &= of a bitfield of size one into another bitfield
9572 of size 1. In this case, (unless we need the result of the
9573 assignment) we can do this more efficiently with a
9574 test followed by an assignment, if necessary.
9575
9576 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9577 things change so we do, this code should be enhanced to
9578 support it. */
9579 if (TREE_CODE (lhs) == COMPONENT_REF
9580 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9581 || TREE_CODE (rhs) == BIT_AND_EXPR)
9582 && TREE_OPERAND (rhs, 0) == lhs
9583 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9584 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9585 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9586 {
9587 rtx label = gen_label_rtx ();
9588 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9589 do_jump (TREE_OPERAND (rhs, 1),
9590 value ? label : 0,
9591 value ? 0 : label, -1);
9592 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9593 MOVE_NONTEMPORAL (exp));
9594 do_pending_stack_adjust ();
9595 emit_label (label);
9596 return const0_rtx;
9597 }
9598
9599 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9600 return const0_rtx;
9601 }
9602
9603 case ADDR_EXPR:
9604 return expand_expr_addr_expr (exp, target, tmode, modifier);
9605
9606 case REALPART_EXPR:
9607 op0 = expand_normal (treeop0);
9608 return read_complex_part (op0, false);
9609
9610 case IMAGPART_EXPR:
9611 op0 = expand_normal (treeop0);
9612 return read_complex_part (op0, true);
9613
9614 case RETURN_EXPR:
9615 case LABEL_EXPR:
9616 case GOTO_EXPR:
9617 case SWITCH_EXPR:
9618 case ASM_EXPR:
9619 /* Expanded in cfgexpand.c. */
9620 gcc_unreachable ();
9621
9622 case TRY_CATCH_EXPR:
9623 case CATCH_EXPR:
9624 case EH_FILTER_EXPR:
9625 case TRY_FINALLY_EXPR:
9626 /* Lowered by tree-eh.c. */
9627 gcc_unreachable ();
9628
9629 case WITH_CLEANUP_EXPR:
9630 case CLEANUP_POINT_EXPR:
9631 case TARGET_EXPR:
9632 case CASE_LABEL_EXPR:
9633 case VA_ARG_EXPR:
9634 case BIND_EXPR:
9635 case INIT_EXPR:
9636 case CONJ_EXPR:
9637 case COMPOUND_EXPR:
9638 case PREINCREMENT_EXPR:
9639 case PREDECREMENT_EXPR:
9640 case POSTINCREMENT_EXPR:
9641 case POSTDECREMENT_EXPR:
9642 case LOOP_EXPR:
9643 case EXIT_EXPR:
9644 /* Lowered by gimplify.c. */
9645 gcc_unreachable ();
9646
9647 case FDESC_EXPR:
9648 /* Function descriptors are not valid except for as
9649 initialization constants, and should not be expanded. */
9650 gcc_unreachable ();
9651
9652 case WITH_SIZE_EXPR:
9653 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9654 have pulled out the size to use in whatever context it needed. */
9655 return expand_expr_real (treeop0, original_target, tmode,
9656 modifier, alt_rtl);
9657
9658 case REALIGN_LOAD_EXPR:
9659 {
9660 tree oprnd0 = treeop0;
9661 tree oprnd1 = treeop1;
9662 tree oprnd2 = treeop2;
9663 rtx op2;
9664
9665 this_optab = optab_for_tree_code (code, type, optab_default);
9666 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9667 op2 = expand_normal (oprnd2);
9668 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9669 target, unsignedp);
9670 gcc_assert (temp);
9671 return temp;
9672 }
9673
9674 case DOT_PROD_EXPR:
9675 {
9676 tree oprnd0 = treeop0;
9677 tree oprnd1 = treeop1;
9678 tree oprnd2 = treeop2;
9679 rtx op2;
9680
9681 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9682 op2 = expand_normal (oprnd2);
9683 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9684 target, unsignedp);
9685 return target;
9686 }
9687
9688 case COMPOUND_LITERAL_EXPR:
9689 {
9690 /* Initialize the anonymous variable declared in the compound
9691 literal, then return the variable. */
9692 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9693
9694 /* Create RTL for this variable. */
9695 if (!DECL_RTL_SET_P (decl))
9696 {
9697 if (DECL_HARD_REGISTER (decl))
9698 /* The user specified an assembler name for this variable.
9699 Set that up now. */
9700 rest_of_decl_compilation (decl, 0, 0);
9701 else
9702 expand_decl (decl);
9703 }
9704
9705 return expand_expr_real (decl, original_target, tmode,
9706 modifier, alt_rtl);
9707 }
9708
9709 default:
9710 return expand_expr_real_2 (&ops, target, tmode, modifier);
9711 }
9712 }
9713 \f
9714 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9715 signedness of TYPE), possibly returning the result in TARGET. */
9716 static rtx
9717 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9718 {
9719 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9720 if (target && GET_MODE (target) != GET_MODE (exp))
9721 target = 0;
9722 /* For constant values, reduce using build_int_cst_type. */
9723 if (CONST_INT_P (exp))
9724 {
9725 HOST_WIDE_INT value = INTVAL (exp);
9726 tree t = build_int_cst_type (type, value);
9727 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9728 }
9729 else if (TYPE_UNSIGNED (type))
9730 {
9731 rtx mask = immed_double_int_const (double_int_mask (prec),
9732 GET_MODE (exp));
9733 return expand_and (GET_MODE (exp), exp, mask, target);
9734 }
9735 else
9736 {
9737 tree count = build_int_cst (NULL_TREE,
9738 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9739 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9740 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9741 }
9742 }
9743 \f
9744 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9745 when applied to the address of EXP produces an address known to be
9746 aligned more than BIGGEST_ALIGNMENT. */
9747
9748 static int
9749 is_aligning_offset (const_tree offset, const_tree exp)
9750 {
9751 /* Strip off any conversions. */
9752 while (CONVERT_EXPR_P (offset))
9753 offset = TREE_OPERAND (offset, 0);
9754
9755 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9756 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9757 if (TREE_CODE (offset) != BIT_AND_EXPR
9758 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9759 || compare_tree_int (TREE_OPERAND (offset, 1),
9760 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9761 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9762 return 0;
9763
9764 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9765 It must be NEGATE_EXPR. Then strip any more conversions. */
9766 offset = TREE_OPERAND (offset, 0);
9767 while (CONVERT_EXPR_P (offset))
9768 offset = TREE_OPERAND (offset, 0);
9769
9770 if (TREE_CODE (offset) != NEGATE_EXPR)
9771 return 0;
9772
9773 offset = TREE_OPERAND (offset, 0);
9774 while (CONVERT_EXPR_P (offset))
9775 offset = TREE_OPERAND (offset, 0);
9776
9777 /* This must now be the address of EXP. */
9778 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9779 }
9780 \f
9781 /* Return the tree node if an ARG corresponds to a string constant or zero
9782 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9783 in bytes within the string that ARG is accessing. The type of the
9784 offset will be `sizetype'. */
9785
9786 tree
9787 string_constant (tree arg, tree *ptr_offset)
9788 {
9789 tree array, offset, lower_bound;
9790 STRIP_NOPS (arg);
9791
9792 if (TREE_CODE (arg) == ADDR_EXPR)
9793 {
9794 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9795 {
9796 *ptr_offset = size_zero_node;
9797 return TREE_OPERAND (arg, 0);
9798 }
9799 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9800 {
9801 array = TREE_OPERAND (arg, 0);
9802 offset = size_zero_node;
9803 }
9804 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9805 {
9806 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9807 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9808 if (TREE_CODE (array) != STRING_CST
9809 && TREE_CODE (array) != VAR_DECL)
9810 return 0;
9811
9812 /* Check if the array has a nonzero lower bound. */
9813 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9814 if (!integer_zerop (lower_bound))
9815 {
9816 /* If the offset and base aren't both constants, return 0. */
9817 if (TREE_CODE (lower_bound) != INTEGER_CST)
9818 return 0;
9819 if (TREE_CODE (offset) != INTEGER_CST)
9820 return 0;
9821 /* Adjust offset by the lower bound. */
9822 offset = size_diffop (fold_convert (sizetype, offset),
9823 fold_convert (sizetype, lower_bound));
9824 }
9825 }
9826 else
9827 return 0;
9828 }
9829 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9830 {
9831 tree arg0 = TREE_OPERAND (arg, 0);
9832 tree arg1 = TREE_OPERAND (arg, 1);
9833
9834 STRIP_NOPS (arg0);
9835 STRIP_NOPS (arg1);
9836
9837 if (TREE_CODE (arg0) == ADDR_EXPR
9838 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9839 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9840 {
9841 array = TREE_OPERAND (arg0, 0);
9842 offset = arg1;
9843 }
9844 else if (TREE_CODE (arg1) == ADDR_EXPR
9845 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9846 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9847 {
9848 array = TREE_OPERAND (arg1, 0);
9849 offset = arg0;
9850 }
9851 else
9852 return 0;
9853 }
9854 else
9855 return 0;
9856
9857 if (TREE_CODE (array) == STRING_CST)
9858 {
9859 *ptr_offset = fold_convert (sizetype, offset);
9860 return array;
9861 }
9862 else if (TREE_CODE (array) == VAR_DECL
9863 || TREE_CODE (array) == CONST_DECL)
9864 {
9865 int length;
9866
9867 /* Variables initialized to string literals can be handled too. */
9868 if (!const_value_known_p (array)
9869 || !DECL_INITIAL (array)
9870 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9871 return 0;
9872
9873 /* Avoid const char foo[4] = "abcde"; */
9874 if (DECL_SIZE_UNIT (array) == NULL_TREE
9875 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9876 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9877 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9878 return 0;
9879
9880 /* If variable is bigger than the string literal, OFFSET must be constant
9881 and inside of the bounds of the string literal. */
9882 offset = fold_convert (sizetype, offset);
9883 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9884 && (! host_integerp (offset, 1)
9885 || compare_tree_int (offset, length) >= 0))
9886 return 0;
9887
9888 *ptr_offset = offset;
9889 return DECL_INITIAL (array);
9890 }
9891
9892 return 0;
9893 }
9894 \f
9895 /* Generate code to calculate OPS, and exploded expression
9896 using a store-flag instruction and return an rtx for the result.
9897 OPS reflects a comparison.
9898
9899 If TARGET is nonzero, store the result there if convenient.
9900
9901 Return zero if there is no suitable set-flag instruction
9902 available on this machine.
9903
9904 Once expand_expr has been called on the arguments of the comparison,
9905 we are committed to doing the store flag, since it is not safe to
9906 re-evaluate the expression. We emit the store-flag insn by calling
9907 emit_store_flag, but only expand the arguments if we have a reason
9908 to believe that emit_store_flag will be successful. If we think that
9909 it will, but it isn't, we have to simulate the store-flag with a
9910 set/jump/set sequence. */
9911
9912 static rtx
9913 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9914 {
9915 enum rtx_code code;
9916 tree arg0, arg1, type;
9917 tree tem;
9918 enum machine_mode operand_mode;
9919 int unsignedp;
9920 rtx op0, op1;
9921 rtx subtarget = target;
9922 location_t loc = ops->location;
9923
9924 arg0 = ops->op0;
9925 arg1 = ops->op1;
9926
9927 /* Don't crash if the comparison was erroneous. */
9928 if (arg0 == error_mark_node || arg1 == error_mark_node)
9929 return const0_rtx;
9930
9931 type = TREE_TYPE (arg0);
9932 operand_mode = TYPE_MODE (type);
9933 unsignedp = TYPE_UNSIGNED (type);
9934
9935 /* We won't bother with BLKmode store-flag operations because it would mean
9936 passing a lot of information to emit_store_flag. */
9937 if (operand_mode == BLKmode)
9938 return 0;
9939
9940 /* We won't bother with store-flag operations involving function pointers
9941 when function pointers must be canonicalized before comparisons. */
9942 #ifdef HAVE_canonicalize_funcptr_for_compare
9943 if (HAVE_canonicalize_funcptr_for_compare
9944 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9945 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9946 == FUNCTION_TYPE))
9947 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9948 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9949 == FUNCTION_TYPE))))
9950 return 0;
9951 #endif
9952
9953 STRIP_NOPS (arg0);
9954 STRIP_NOPS (arg1);
9955
9956 /* Get the rtx comparison code to use. We know that EXP is a comparison
9957 operation of some type. Some comparisons against 1 and -1 can be
9958 converted to comparisons with zero. Do so here so that the tests
9959 below will be aware that we have a comparison with zero. These
9960 tests will not catch constants in the first operand, but constants
9961 are rarely passed as the first operand. */
9962
9963 switch (ops->code)
9964 {
9965 case EQ_EXPR:
9966 code = EQ;
9967 break;
9968 case NE_EXPR:
9969 code = NE;
9970 break;
9971 case LT_EXPR:
9972 if (integer_onep (arg1))
9973 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9974 else
9975 code = unsignedp ? LTU : LT;
9976 break;
9977 case LE_EXPR:
9978 if (! unsignedp && integer_all_onesp (arg1))
9979 arg1 = integer_zero_node, code = LT;
9980 else
9981 code = unsignedp ? LEU : LE;
9982 break;
9983 case GT_EXPR:
9984 if (! unsignedp && integer_all_onesp (arg1))
9985 arg1 = integer_zero_node, code = GE;
9986 else
9987 code = unsignedp ? GTU : GT;
9988 break;
9989 case GE_EXPR:
9990 if (integer_onep (arg1))
9991 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9992 else
9993 code = unsignedp ? GEU : GE;
9994 break;
9995
9996 case UNORDERED_EXPR:
9997 code = UNORDERED;
9998 break;
9999 case ORDERED_EXPR:
10000 code = ORDERED;
10001 break;
10002 case UNLT_EXPR:
10003 code = UNLT;
10004 break;
10005 case UNLE_EXPR:
10006 code = UNLE;
10007 break;
10008 case UNGT_EXPR:
10009 code = UNGT;
10010 break;
10011 case UNGE_EXPR:
10012 code = UNGE;
10013 break;
10014 case UNEQ_EXPR:
10015 code = UNEQ;
10016 break;
10017 case LTGT_EXPR:
10018 code = LTGT;
10019 break;
10020
10021 default:
10022 gcc_unreachable ();
10023 }
10024
10025 /* Put a constant second. */
10026 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10027 || TREE_CODE (arg0) == FIXED_CST)
10028 {
10029 tem = arg0; arg0 = arg1; arg1 = tem;
10030 code = swap_condition (code);
10031 }
10032
10033 /* If this is an equality or inequality test of a single bit, we can
10034 do this by shifting the bit being tested to the low-order bit and
10035 masking the result with the constant 1. If the condition was EQ,
10036 we xor it with 1. This does not require an scc insn and is faster
10037 than an scc insn even if we have it.
10038
10039 The code to make this transformation was moved into fold_single_bit_test,
10040 so we just call into the folder and expand its result. */
10041
10042 if ((code == NE || code == EQ)
10043 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10044 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10045 {
10046 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10047 return expand_expr (fold_single_bit_test (loc,
10048 code == NE ? NE_EXPR : EQ_EXPR,
10049 arg0, arg1, type),
10050 target, VOIDmode, EXPAND_NORMAL);
10051 }
10052
10053 if (! get_subtarget (target)
10054 || GET_MODE (subtarget) != operand_mode)
10055 subtarget = 0;
10056
10057 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10058
10059 if (target == 0)
10060 target = gen_reg_rtx (mode);
10061
10062 /* Try a cstore if possible. */
10063 return emit_store_flag_force (target, code, op0, op1,
10064 operand_mode, unsignedp, 1);
10065 }
10066 \f
10067
10068 /* Stubs in case we haven't got a casesi insn. */
10069 #ifndef HAVE_casesi
10070 # define HAVE_casesi 0
10071 # define gen_casesi(a, b, c, d, e) (0)
10072 # define CODE_FOR_casesi CODE_FOR_nothing
10073 #endif
10074
10075 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10076 0 otherwise (i.e. if there is no casesi instruction). */
10077 int
10078 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10079 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10080 rtx fallback_label ATTRIBUTE_UNUSED)
10081 {
10082 enum machine_mode index_mode = SImode;
10083 int index_bits = GET_MODE_BITSIZE (index_mode);
10084 rtx op1, op2, index;
10085 enum machine_mode op_mode;
10086
10087 if (! HAVE_casesi)
10088 return 0;
10089
10090 /* Convert the index to SImode. */
10091 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10092 {
10093 enum machine_mode omode = TYPE_MODE (index_type);
10094 rtx rangertx = expand_normal (range);
10095
10096 /* We must handle the endpoints in the original mode. */
10097 index_expr = build2 (MINUS_EXPR, index_type,
10098 index_expr, minval);
10099 minval = integer_zero_node;
10100 index = expand_normal (index_expr);
10101 if (default_label)
10102 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10103 omode, 1, default_label);
10104 /* Now we can safely truncate. */
10105 index = convert_to_mode (index_mode, index, 0);
10106 }
10107 else
10108 {
10109 if (TYPE_MODE (index_type) != index_mode)
10110 {
10111 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10112 index_expr = fold_convert (index_type, index_expr);
10113 }
10114
10115 index = expand_normal (index_expr);
10116 }
10117
10118 do_pending_stack_adjust ();
10119
10120 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10121 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10122 (index, op_mode))
10123 index = copy_to_mode_reg (op_mode, index);
10124
10125 op1 = expand_normal (minval);
10126
10127 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10128 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10129 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10130 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10131 (op1, op_mode))
10132 op1 = copy_to_mode_reg (op_mode, op1);
10133
10134 op2 = expand_normal (range);
10135
10136 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10137 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10138 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10139 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10140 (op2, op_mode))
10141 op2 = copy_to_mode_reg (op_mode, op2);
10142
10143 emit_jump_insn (gen_casesi (index, op1, op2,
10144 table_label, !default_label
10145 ? fallback_label : default_label));
10146 return 1;
10147 }
10148
10149 /* Attempt to generate a tablejump instruction; same concept. */
10150 #ifndef HAVE_tablejump
10151 #define HAVE_tablejump 0
10152 #define gen_tablejump(x, y) (0)
10153 #endif
10154
10155 /* Subroutine of the next function.
10156
10157 INDEX is the value being switched on, with the lowest value
10158 in the table already subtracted.
10159 MODE is its expected mode (needed if INDEX is constant).
10160 RANGE is the length of the jump table.
10161 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10162
10163 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10164 index value is out of range. */
10165
10166 static void
10167 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10168 rtx default_label)
10169 {
10170 rtx temp, vector;
10171
10172 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10173 cfun->cfg->max_jumptable_ents = INTVAL (range);
10174
10175 /* Do an unsigned comparison (in the proper mode) between the index
10176 expression and the value which represents the length of the range.
10177 Since we just finished subtracting the lower bound of the range
10178 from the index expression, this comparison allows us to simultaneously
10179 check that the original index expression value is both greater than
10180 or equal to the minimum value of the range and less than or equal to
10181 the maximum value of the range. */
10182
10183 if (default_label)
10184 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10185 default_label);
10186
10187 /* If index is in range, it must fit in Pmode.
10188 Convert to Pmode so we can index with it. */
10189 if (mode != Pmode)
10190 index = convert_to_mode (Pmode, index, 1);
10191
10192 /* Don't let a MEM slip through, because then INDEX that comes
10193 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10194 and break_out_memory_refs will go to work on it and mess it up. */
10195 #ifdef PIC_CASE_VECTOR_ADDRESS
10196 if (flag_pic && !REG_P (index))
10197 index = copy_to_mode_reg (Pmode, index);
10198 #endif
10199
10200 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10201 GET_MODE_SIZE, because this indicates how large insns are. The other
10202 uses should all be Pmode, because they are addresses. This code
10203 could fail if addresses and insns are not the same size. */
10204 index = gen_rtx_PLUS (Pmode,
10205 gen_rtx_MULT (Pmode, index,
10206 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10207 gen_rtx_LABEL_REF (Pmode, table_label));
10208 #ifdef PIC_CASE_VECTOR_ADDRESS
10209 if (flag_pic)
10210 index = PIC_CASE_VECTOR_ADDRESS (index);
10211 else
10212 #endif
10213 index = memory_address (CASE_VECTOR_MODE, index);
10214 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10215 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10216 convert_move (temp, vector, 0);
10217
10218 emit_jump_insn (gen_tablejump (temp, table_label));
10219
10220 /* If we are generating PIC code or if the table is PC-relative, the
10221 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10222 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10223 emit_barrier ();
10224 }
10225
10226 int
10227 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10228 rtx table_label, rtx default_label)
10229 {
10230 rtx index;
10231
10232 if (! HAVE_tablejump)
10233 return 0;
10234
10235 index_expr = fold_build2 (MINUS_EXPR, index_type,
10236 fold_convert (index_type, index_expr),
10237 fold_convert (index_type, minval));
10238 index = expand_normal (index_expr);
10239 do_pending_stack_adjust ();
10240
10241 do_tablejump (index, TYPE_MODE (index_type),
10242 convert_modes (TYPE_MODE (index_type),
10243 TYPE_MODE (TREE_TYPE (range)),
10244 expand_normal (range),
10245 TYPE_UNSIGNED (TREE_TYPE (range))),
10246 table_label, default_label);
10247 return 1;
10248 }
10249
10250 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10251 static rtx
10252 const_vector_from_tree (tree exp)
10253 {
10254 rtvec v;
10255 int units, i;
10256 tree link, elt;
10257 enum machine_mode inner, mode;
10258
10259 mode = TYPE_MODE (TREE_TYPE (exp));
10260
10261 if (initializer_zerop (exp))
10262 return CONST0_RTX (mode);
10263
10264 units = GET_MODE_NUNITS (mode);
10265 inner = GET_MODE_INNER (mode);
10266
10267 v = rtvec_alloc (units);
10268
10269 link = TREE_VECTOR_CST_ELTS (exp);
10270 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10271 {
10272 elt = TREE_VALUE (link);
10273
10274 if (TREE_CODE (elt) == REAL_CST)
10275 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10276 inner);
10277 else if (TREE_CODE (elt) == FIXED_CST)
10278 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10279 inner);
10280 else
10281 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10282 inner);
10283 }
10284
10285 /* Initialize remaining elements to 0. */
10286 for (; i < units; ++i)
10287 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10288
10289 return gen_rtx_CONST_VECTOR (mode, v);
10290 }
10291
10292
10293 /* Build a decl for a EH personality function named NAME. */
10294
10295 tree
10296 build_personality_function (const char *name)
10297 {
10298 tree decl, type;
10299
10300 type = build_function_type_list (integer_type_node, integer_type_node,
10301 long_long_unsigned_type_node,
10302 ptr_type_node, ptr_type_node, NULL_TREE);
10303 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10304 get_identifier (name), type);
10305 DECL_ARTIFICIAL (decl) = 1;
10306 DECL_EXTERNAL (decl) = 1;
10307 TREE_PUBLIC (decl) = 1;
10308
10309 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10310 are the flags assigned by targetm.encode_section_info. */
10311 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10312
10313 return decl;
10314 }
10315
10316 /* Extracts the personality function of DECL and returns the corresponding
10317 libfunc. */
10318
10319 rtx
10320 get_personality_function (tree decl)
10321 {
10322 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10323 enum eh_personality_kind pk;
10324
10325 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10326 if (pk == eh_personality_none)
10327 return NULL;
10328
10329 if (!personality
10330 && pk == eh_personality_any)
10331 personality = lang_hooks.eh_personality ();
10332
10333 if (pk == eh_personality_lang)
10334 gcc_assert (personality != NULL_TREE);
10335
10336 return XEXP (DECL_RTL (personality), 0);
10337 }
10338
10339 #include "gt-expr.h"